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EXECUTIVE SUMMARY 

Texas Department of Transportation (TxDOT) determines unit prices of pay items using the 

historical bids-based estimation method and then develops an engineer’s project appraisal. The 

engineer's estimate is used to assess the bids and select the bidder. However, the unit price of a 

work item is heavily affected by various project-specific and external factors, including but not 

limited to the project location, the quantity of the work, project complexity, time factors, and 

macroeconomic conditions. Therefore, accurate and reliable unit price estimation based on these 

project-specific and external factors is vital for the optimum use of the available project budget.  

The project objectives included: (1) conducting an overview analysis of factors affecting unit 

prices, (2) identifying factors affecting unit prices in Texas, (3) creating a unit price estimation 

database, (4) creating a spatio-temporal unit price estimation model considering the factors 

affecting unit prices, (5) developing a GIS-based visualization tool, and (6) implementing, 

demonstrating, and validating the interactive unit price estimation and GIS-based visualization 

tool on six Receiving Agency’s projects.  

The factors that affect unit prices of construction line items were identified with an extensive 

literature review. Then, we collected data on various project-specific factors and external factors 

(i.e., independent variables) and the bidder’s estimate and the TxDOT engineer’s estimate (i.e., 

dependent variables). Using that dataset, spatiotemporal unit price estimation models were 

developed to predict the TxDOT engineer’s unit price estimate and the bidder’s average unit bid 

price. Finally, a GIS-based unit price estimation and visualization tool (UPEVT) was created, and 

we used the tool for estimating unit prices of a few line items in six Texas projects to demonstrate 

the tool’s application. The UPEVT enables TxDOT personnel to visualize the historic unit price 

data. Implementing this system facilitates quick data retrieval and visualization across different 

geographic locations.
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CHAPTER 1. INTRODUCTION 

Texas is a large state with an expansive construction budget. In fiscal year 2024, TxDOT achieved 

a record milestone with $13.7 billion awarded for state highway improvement projects, and the 

agency plans to invest 104 billion dollars over the next 10 years from 2025 to 2034 (TxDOT 2025). 

Hence, accurate and reliable unit price estimation is vital for the optimum use of the available 

project budget. Moreover, a GIS-based tool is essential to facilitate quick retrieval and 

visualization of unit price data across different geographic locations. 

The objectives of this project are: (1) conducting an overview analysis of factors affecting unit 

prices, (2) identifying factors affecting unit prices in Texas, (3) creating a unit price estimation 

database, (4) creating a spatio-temporal unit price estimation model considering the factors 

affecting unit prices, (5) developing a GIS-based visualization tool, and (6) implementing, 

demonstrating, and validating the interactive unit price estimation and GIS-based visualization 

tool on six Receiving Agency’s projects.  

This technical report explains all the tasks performed in the development of the Unit Price 

Estimation and Visualization Tool (UPEVT). The report is organized as follows: 

• Chapter 1 is this introductory chapter. 

• Chapter 2 explains factors affecting unit prices and the state DOT’s unit price estimation 

methods. 

• Chapter 3 explains the data collection of historical unit prices and factors that potentially 

affect unit prices. 

• Chapter 4 explains machine learning model development for unit price estimation. 

• Chapter 5 explains mixed-effects model development for unit price estimation. 

• Chapter 6 describes the creation of the Unit Price Estimation and Visualization Tool 

(UPEVT). 

• Chapter 7 explains the implementation of the developed GIS-based visualization tool for 

Texas projects to validate the framework’s performance. 

• Chapter 8 explains the process of handing over the developed GIS-based visualization 

tool and the models to TxDOT. 
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CHAPTER 2. OVERVIEW ANALYSIS OF FACTORS AFFECTING UNIT PRICES 

AND THE STATE DOT’S UNIT PRICE ESTIMATION METHODS 

2.1. FACTORS AFFECTING UNIT PRICES 

The unit price of a work item is heavily affected by various project-specific and external factors, 

including but not limited to the project location, the quantity of the line item, time factors, and 

macroeconomic conditions. Figure 1 shows the gaps between the unit prices estimated by TxDOT 

engineers (Workbook: Bid Tabulations 2025) and the actual unit prices reported by Engineering 

News Record (ENR 2023) of the Portland cement line item in Dallas from January 2022 to 

December 2023. It should be noted that the TxDOT Engineer’s Estimate of unit prices is 

determined by calculating the average of different unit prices of Portland cement (bid item 275-

6001) on projects let in the same month in Dallas.   

Figure 1 Gaps between the TxDOT Engineer’s Estimate average unit price and actual unit price for the Portland 

cement line item in Dallas 
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The unit prices in the TxDOT Engineer’s Estimate vary significantly from actual unit prices, which 

may result in a highly biased and inconsistent project cost estimation. Previous studies show that 

project-specific and external factors affect the unit prices of work items in highway projects. For 

example, unexpected risks such as the 2021 Texas Winter Storm inflated the unit price of Dallas 

pipe material items by up to 10 percent (Kim and Shahandashti 2022). Highway construction costs 

are found to be highly related to macroeconomic factors such as crude oil prices (Shahandashti 

and Ashuri 2016). Moreover, as the quantity of goods or services requested in a bid increases, 

suppliers or contractors may offer lower bid unit prices because larger quantities often lead to 

economies of scale and volume discounts (Baek and Ashuri 2019).  Construction market 

conditions have a significant impact on a highway construction cost forecast (Mahadavian et al. 

2021). Different project-specific and external factors were considered to estimate unit prices in 

highway projects, as summarized in Table 1.
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Rafiei and Adeli 

(2018)
✓ - ✓ ✓ ✓ - - - ✓ ✓ -

Bhargava et al. 

(2017)
✓ ✓ - - - - - - - - -

Gardner et al. 

(2017)
- ✓ ✓ - - - - - - ✓ -

Zhang et al. 

(2017)
- - - - - - ✓ - ✓ ✓ -

Swei et al. (2017) - - - - - ✓ ✓ - - - -

Hannan et al. 

(2016)
- - - - - ✓ - - - - ✓

Hyari et al. 

(2016)
✓ - - - - ✓ ✓ - - - -

Shahandashti and 

Ashuri (2016)
- - - - - - - ✓ ✓ - -

Cirilovic et al. 

(2014)
- - - - - - ✓ - ✓ ✓ -

Cheng (2014) ✓ ✓ ✓ ✓ - - - - ✓ ✓ ✓ 

Hegazy and Ayed 

(1998)
✓ ✓ - ✓ ✓ - - ✓ - ✓ -

The factors affecting unit prices of work items are classified into two groups: project-specific and 

external factors (Baek and Ashuri 2019). Figure 2 shows the different project-specific and external 

factors that can affect the unit prices of a work item. 
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Figure 2 Potential project-specific and external factors affecting the unit price of a work item  

2.1.1. PROJECT-SPECIFIC FACTORS  

Estimating unit prices for highway projects involves considering a range of project-specific factors 

that can impact the highway project cost. Project-specific factors include project features, time 

factors, site conditions, bid conditions, and legal regulations. 

Project Features  

Project-specific characteristics, such as project type, duration, complexity, and size, are 

significantly correlated with construction costs (Baek and Ashuri 2019). The complexity of the 

project design and scope can impact unit prices as more complex projects may require specialized 

equipment and skilled labor, which can increase unit prices. The complex engineering and 

logistical challenges, such as excavating a deep tunnel beneath the city in the Alaskan Way Viaduct 

replacement tunnel project in Seattle, Washington, contributed to the higher unit prices, requiring 

specialized and custom-built tunneling equipment (Riddle and Whittington 2022). Also, projects 

requiring extended periods of construction will reflect higher bid prices because suppliers do not 

normally guarantee the same prices for extended periods of time, and the contractor(s) will usually 

hedge their bid prices for protection against any increase in unit prices (Kim et al. 2022; Thomason 

2017). Moreover, projects at places where equipment and construction materials are not easily 
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accessible are likely to have more construction costs than projects in well-facilitated areas (Baek 

and Ashuri 2019; Wang et al. 2022).

Time Factors 

Project time factors, such as month, season, and year, are closely related to unit prices as the unit 

prices of a work item fluctuate over time with a trend and seasonality (Kim et al. 2020, 

Shahandashti and Ashuri 2013). The time of year a project is to be let for contract and the estimated 

time required for completion can significantly impact prices, as seasonal or weather factors (e.g., 

inclement weather that may necessitate project suspension or delay) can affect unit bid prices 

(Thomason 2017). The project timeline and work schedule can also impact unit prices, as 

accelerated timelines or work schedules may require additional resources or overtime pay, leading 

to unit price inflation (Levy 2018). 

Site Conditions  

Project site factors, such as location, distance to manufacturing plants, lack of access to the job 

site, and source of materials, can cause significant differences in unit prices for highway pavement 

construction projects (Cao et al. 2018). The project location can significantly impact the unit price 

of a work item, as it affects transportation costs, availability of materials and labor, and 

environmental factors (Ahmed and Arocho 2021). Site conditions, such as soil type, terrain, and 

geology, can impact unit prices, as they can affect the ease and cost of construction (Meharie et al. 

2022). Work that is normally easy to accomplish on level terrain or gentle slopes may be almost 

impossible on steep slopes (Thomason 2017). Sites that require implementation measures to 

mitigate adverse environmental impacts, safeguard species, or protect archaeological structures 

may have increased unit costs.

Bid Conditions  

Bid conditions, such as the number of bidders and bid quantities, can impact unit prices for 

highway construction projects (Mahadavian et al. 2021). These bid conditions can affect the 

competitive landscape, the bidding process, and the final price that is agreed upon. For example, 

when there are more bidders, competition is typically higher, which can drive down prices. 

Conversely, when there are fewer bidders, the competition is lower, which can lead to higher 

prices. The quantity of bid items shows a significant correlation with unit prices (Baek and Ashuri 
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2019). When the bid quantity is large, it can provide economies of scale, allowing contractors to 

achieve cost savings through bulk purchasing or more efficient use of resources. This can lead to 

lower unit prices. Bid qualifications and requirements can also impact unit prices. When a project 

has strict requirements or requires specialized skills, the number of qualified bidders may be 

limited. This can result in higher unit prices due to less competition among the bidders.

Legal Regulations 

Project-specific legal regulations can also affect unit prices, as complying with these requirements 

can require additional resources and expenses. For example, changes in earthquake safety 

specifications right after the 1994 Northridge earthquake required design and material changes, 

increasing the unit prices and resulting in significant cost overruns for ongoing projects 

(Danisworo and Latief 2019; Raetz et al. 2020). Also, the type of contract used for the project can 

impact unit prices, as different types of contracts have different risk profiles and cost structures 

(Awuku et al. 2022). 

2.1.2. EXTERNAL FACTORS 

External factors include macroeconomic conditions, regional construction market conditions, 

regional economic conditions, unexpected external risks, and national highway construction cost 

variations represented by the national highway construction cost index. Regional construction 

market conditions, such as construction demand and supply, can determine the unit price of work 

items for highway construction projects (Cao et al. 2018). Also, overall changes in national 

highway construction costs can impact the unit price of work items in highway projects 

(Shahandashti and Ashuri 2016).  

Macroeconomic Conditions 

Macroeconomic conditions can significantly impact unit prices of work items since they influence 

the cost and availability of construction labor, materials, and equipment (Kim et al. 2024; Ashuri 

et al. 2012). For example, the cost of steel during the Interstate 4 Ultimate project in Orlando, 

Florida, increased by over 40% due to high inflation rates in the construction industry between 

2015 and 2019, which led to higher unit prices for steel-related work items such as reinforcing 

bars and bridge components (FDOT 2023). Also, inflation can lead to higher interest rates, which 
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can increase the cost of financing, leading to unit price inflation (Musarat et al. 2021). The energy 

costs can affect the unit prices of work items (Ashworth and Perera 2015). Government policies 

and regulations can also impact the overall unit price structure of the industry. The contribution of 

the inflation rate to predict in the total costs of highway construction projects is approximately 

45% of all the estimation parameters taken into account (Meharie et al. 2022).

Regional Construction Market 

Regional construction market factors could also have a significant impact on unit prices for 

highway construction projects since they affect the availability and cost of labor, materials, and 

equipment within a specific geographic area. For example, the unit prices for construction 

materials and labor vary over regions due to different material and labor market conditions, 

including the supply of materials and labor, transportation and logistics costs, prevailing wages, 

and unionization rates (Kim et al. 2022). The level of regional construction demand also affects 

unit prices for highway construction projects. Markets with high construction demand have higher 

unit prices (Ahmadi and Shahandashti 2018).

Regional Economy 

Local economic conditions, such as regional GDP and economic growth, can impact unit prices 

for highway construction projects (Baek and Ashuri 2019; Cao et al. 2018). Regions with strong 

economic growth tend to have higher unit prices due to increased resource competition (Shiha et 

al. 2020). Regional budget expenditure in transportation projects also impacted the unit prices of 

pavement materials (Kim et al. 2020).    

Unexpected Risks 

Unexpected risks, such as disasters, supply chain disruption, and pandemics, can have a significant 

impact on unit prices for highway construction projects (Khodahemmati and Shahandashti 2020; 

Ahmadi and Shahandashti 2020). Disasters such as hurricanes and tornadoes have damaged or 

destroyed critical infrastructure, increased demand for reconstruction, and inflated labor wages in 

the US highways, roads, and bridges sector by 20% (Pradhan and Arneson 2021). Hurricanes 

Katrina and Rita caused bid prices for superpave asphaltic concrete line items for highway projects 

in Louisiana to be significantly higher than their bid prices before the hurricanes (Baek and Ashuri 
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2018b). Also, the global pandemic significantly influenced pavement material unit prices and 

project costs in California (Kim et al. 2020).

National Highway Construction Cost Variations  

The National Highway Construction Cost Index (NHCCI) measures the costs of materials and 

labor used in highway construction projects (Shahandashti and Ashuri 2015). It is used by the 

Federal Highway Administration (FHWA) to adjust the costs of highway construction projects for 

inflation and other cost factors. As such, the NHCCI is highly correlated with the unit prices of 

work items for highway projects (Shahandashti and Ashuri 2016).
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CHAPTER 3. DATA COLLECTION OF HISTORICAL BID PRICES AND FACTORS 

AFFECTING UNIT PRICES 

3.1. INTRODUCTION 

This chapter provides a concise overview of data collection procedures and variable sources. The 

relevance of the data to be collected is established in the previous chapter (Chapter 2) through a 

review of studies. 

3.2. DATA SOURCES 

A dataset is created by collecting data on dependent and independent variables from publicly 

available sources. Tables 2 and 3 display the list of dependent and independent variables, 

respectively, with their sources and the granularity of space and time in which they are collected.  

Table 2 Data sources for dependent variables 
Dependent 

Variable  

Definition Link to Data Source Data level 

TxDOT 

Engineer's 

Estimate 

Preliminary estimated value 

of an item 

by TxDOT's engineer in a 

construction project that 

serves as a baseline for 

budgeting purposes.  

https://tableau.txdot.gov/views/BidTabulationstxdot_gov Item level 

Table 3 Data sources for independent variables  
Independent 

Variable  

Definition Link of Data Source Data level 

Building 

Permit 

The total dollar value of new 

privately owned residential 

construction 

https://www.census.gov/ county level, 

monthly 

Gross 

Domestic 

Product 

The inflation-adjusted value 

of the goods and services 

produced by labor and 

property 

https://apps.bea.gov/itable/ county level, 

monthly 

Establishment 

Counts 

The total number of private 

construction establishments 

https://data.bls.gov/maps/ county level, 

quarterly 

https://tableau.txdot.gov/views/BidTabulationstxdot_gov
https://www.census.gov/
https://apps.bea.gov/itable/
https://data.bls.gov/maps/
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Independent 

Variable  

Definition Link of Data Source Data level 

Unemployment 

Rate 

A measure of the percentage 

of unemployed people 

https://data.bls.gov/lausmap/ county level, 

monthly 

Precipitation Any form of water, whether 

liquid or solid, that falls from 

the atmosphere and reaches 

the ground, including rain, 

snow, sleet, hail, and drizzle.  

https://www.ncei.noaa.gov/ county level, 

monthly 

Population The total number of people 

or inhabitant in a county. 

https://www.census.gov/data/datasets/ county level, 

yearly 

Area of a 

County 

The total land and water 

surface of the county 

https://data.census.gov/profile?g=040XX00US48 county level 

Inflation The overall general upward 

price movement of goods and 

services in the US economy 

https://www.bls.gov/charts/ national 

level, 

monthly 

Architecture 

Billings Index 

(ABI) 

An economic indicator for 

nonresidential construction 

activities 

https://www.aia.org/partner-aia national 

level, 

monthly 

Prime loan 

rate  

The lowest interest rate at 

which money can be 

borrowed commercially 

https://fred.stlouisfed.org/series/MPRIME national 

level, 

monthly 

Consumer 

Price Index 

(CPI) 

Index measure of the average 

change over time in the 

prices paid by urban 

consumers for a market 

basket of consumer goods 

and services 

https://www.ssa.gov/oact/STATS/cpiw.html national 

level, 

monthly 

Crude Oil 

Price of  

West Texas  

Intermediate 

(WTI) 

The price of West Texas 

Intermediate (WTI) crude oil, 

which serves as one of the 

main benchmarks for oil 

pricing 

https://www.eia.gov/ national 

level, 

monthly 

https://data.bls.gov/lausmap/
https://www.ncei.noaa.gov/
https://www.census.gov/data/datasets/
https://data.census.gov/profile?g=040XX00US48
https://www.bls.gov/charts/
https://www.aia.org/partner-aia
https://fred.stlouisfed.org/series/MPRIME
https://www.ssa.gov/oact/STATS/cpiw.html
https://www.eia.gov/
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Independent 

Variable  

Definition Link of Data Source Data level 

Construction 

Spending 

The total amount of money 

spent on construction related 

activities 

https://www.census.gov/econ/ national 

level, 

monthly 

Construction 

Cost Index 

(CCI) 

An overview of construction 

cost trends across 20 

designated cities in the USA 

https://www.enr.com/Cost-Data-Dashboard national 

level, 

monthly 

Project 

duration 

Estimated number of 

working days duration of a 

project 

https://tableau.txdot.gov/views/BidTabulations/  project level 

Length of the 

Project 

The total linear distance that 

a project covers along its 

main alignment  

https://tableau.txdot.gov/views/BidTabulations/  project level 

The number of 

items in a 

project 

The number of line items in a 

project 

https://tableau.txdot.gov/views/BidTabulations/  project level 

Quantity The quantity/amount of a bid 

item that is required for the 

project 

https://tableau.txdot.gov/views/BidTabulations/  Item level 

Number of 

Bidders 

The number of bidders who 

participated in the bid 

https://tableau.txdot.gov/views/BidTabulations/  project level 

A detailed explanation of the process of data collection from data sources is provided in Appendix 

A.  

https://www.census.gov/econ/​
https://www.enr.com/Cost-Data-Dashboard
https://tableau.txdot.gov/views/BidTabulations/
https://tableau.txdot.gov/views/BidTabulations/
https://tableau.txdot.gov/views/BidTabulations/
https://tableau.txdot.gov/views/BidTabulations/
https://tableau.txdot.gov/views/BidTabulations/
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CHAPTER 4. MACHINE LEARNING MODEL DEVELOPMENT 

4.1. INTRODUCTION 

This chapter outlines the development, training, and deployment of machine learning models 

designed to estimate the engineer’s unit price of highway construction line items for the Texas 

Department of Transportation (TxDOT). This chapter explains the critical steps in developing the 

machine learning forecasting framework. The objective of the research was to design data-driven, 

reliable, and reproducible estimation systems to assist TxDOT engineers and planners in 

estimating future construction unit prices. 

Machine learning (ML) algorithms are among the most advanced alternatives for making cost 

predictions (Cao et al. 2018). Machine learning models have become a viable and robust alternative 

to traditional statistical approaches for exploring nonparametric and nonlinear relationships 

(Shahandashti et al. 2023). ML methods are capable of learning from input data and generating 

predictions based on that information. Hegazy and Ayed (1998) utilized a neural network to create 

a parametric cost estimating model for 18 highway projects. To estimate the initial costs of 

highway construction projects, Al-Tabtabai et al. (1999) employed a neural network-based model. 

According to Emsley et al. (2002), neural networks outperformed linear regression models by 

better handling the nonlinear characteristics of data in construction cost prediction. Wilmot and 

Cheng (2003) employed an artificial neural network model utilizing subitem cost information to 

project the Louisiana Highway Construction Cost Index. Wilmot and Mei (2005) developed an 

artificial neural network model to replicate past trends in highway construction costs in Louisiana. 

Petroutsatou et al. (2012) employed neural network techniques to develop models that forecast 

initial cost estimates for both road and tunnel construction projects. Gardner et al. (2016) proposed 

cost estimation models for highway projects by applying both artificial neural networks and 

multiple regression methods. Ashuri et al. (2018) developed predictive models to estimate the costs 

of the lump sum pay items for Traffic Control and Grading Complete. Previous research offers a 

promising foundation for enhancing the accuracy of construction cost estimation in highway 

projects using machine learning models. 
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In this project, two machine learning models (Deep Neural Network models and Ensemble models) 

were employed to predict unit prices of construction line items for highway projects in Texas. Both 

models leveraged a wide range of input features, including project-specific and external variables, 

encompassing both numerical and categorical types. Deep Neural Network (DNN) models and 

Ensemble models were developed using a structured pipeline that combines feature engineering, 

categorical embeddings, dimensionality reduction using Principal Component Analysis (PCA), 

hyperparameter tuning, and model validation. Finally, the developed models were used to provide 

an estimated unit price for TxDOT engineers for construction line items.  

Figure 3 illustrates a typical machine learning workflow, starting with raw data processing, 

followed by iterative data preprocessing until the data is ready for modelling. Once prepared, 

machine learning algorithms are applied, and models are evaluated to identify the best-performing 

models. The model is then deployed for practical application.  

Figure 3 Typical machine learning modeling process 

4.1.1 DEEP NEURAL NETWORK MODELS 

Deep learning neural networks have gained substantial attention in recent years due to their 

capacity to model complex patterns in data (Ortiz-Garcia et al. 2016) and capture spatiotemporal 

relationships among variables (Hussain et al. 2022). Goodfellow et al. (2016) characterize deep 

learning as an advanced form of machine learning that builds knowledge hierarchically, where 

higher-level abstractions are constructed from layers of simpler, lower-level features. This layered 

representation enables the learning of highly complex functions (Hosein and Hosein 2017). 

In the context of highway construction unit price estimation, Deep Neural Networks (DNNs) offer 

a powerful and flexible modeling approach. Unlike traditional models that often rely on expert-
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designed rules or handcrafted features, DNNs excel due to their ability to automatically identify 

and learn meaningful patterns from raw input data. This capability of DNN allows them to uncover 

complex structures in the data by leveraging large datasets, leading to more accurate and 

generalizable models (Sze et al. 2020). These deep neural networks are composed of multiple 

interconnected layers that extract, learn, and interpret hierarchical representations of the input, 

enabling them to handle diverse and high-dimensional datasets effectively (Chauhan and Singh, 

2018). Moreover, DNNs can model nonlinear relationships that are difficult to capture with 

conventional linear approaches, particularly when dealing with spatiotemporal variations in 

highway construction unit price estimation data. By integrating both spatial inputs (e.g., county-

level geographic information) and temporal factors (e.g., inflation rates, construction cost index 

trends), DNNs can enhance the accuracy, depth, and robustness of cost predictions, making them 

a valuable tool for data-driven unit price estimation. 

Figure 4 illustrates the general architecture of a deep neural network, where a set of k input 

features is processed through multiple hidden layers to estimate the unit prices of a work item as 

an output. 

Figure 4 Architecture of a deep neural network model 

4.1.2 ENSEMBLE MODEL 

Ensemble-based machine learning methods are gaining traction as advanced tools for construction 

cost estimation (Meharie et al. 2022). While prior studies have explored these methods at a broader 

project level scope, their application specifically to unit price estimation remains limited, 
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presenting a key area where this study contributes. Ensemble methods are machine learning 

techniques that combine outputs of multiple base learners and make predictions on new data by 

combining their outputs, typically through a weighted voting approach (Dietterich 2000). 

Ensemble machine learning models combine predictions from several base models to produce 

results that are more accurate and reliable than those from any single model (Xiao et al. 2018; Han 

et al. 2020). Chou and Lin (2012) predicted the likelihood of disputes in public–private partnership 

projects using early-stage project parameters. According to their findings, the ensemble approach 

that merged an artificial neural network (ANN), a support vector machine (SVM), and a decision 

tree provided the most precise predictions, with an accuracy close to 84%. Williams and Gong 

(2014) utilized an ensemble staking model combining K-Star, Ridor, and Radial Basis Function 

(RBF) neural networks to predict project cost overruns using contract documents,  achieving the 

best performance among tested models despite a relatively low accuracy of around 44%. Cao et 

al. (2018) combined two layers of prediction models to predict unit price bids of resurfacing 

highway projects. The first layer made predictions from three machine learning algorithms 

(extreme gradient boosting, random forest, and gradient boosting), and the second layer was made 

of a neural network to make the final predictions. The developed ensemble model outperformed 

multiple regression and Monte Carlo simulations.  

In this research, an ensemble model was developed to combine the strengths of Long Short-Term 

Memory (LSTM) networks and Convolutional Neural Networks (CNNs) at Layer 1 and a Neural 

Network at Layer 2 to create models that involve both temporal (sequence) and spatial (pattern) 

information. LSTM extracts the temporal dependencies in the dataset, and CNN captures the 

spatial features. In this context, the ensemble models combine spatial information from different 

counties, project and construction line-item types, with temporal trends leading to a robust 

spatiotemporal model. 

Figure 5 illustrates the architecture of an ensemble model that is composed of an LSTM and CNN 

in the first layer and a neural network in the second layer. The model processes spatiotemporal 

data as input, starting with Layer 1. The output from the LSTM and CNN (first layer) is fed into 

the neural network (second layer) to make the final prediction. The model's final output represents 
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the estimated engineer’s unit price, reflecting the influence of both spatial and temporal factors 

within the input data. 

Figure 5 Architecture of an ensemble model 

4.2. DATASET FOR MACHINE LEARNING MODELING  

The dataset consisted of engineers’ unit price estimates over 2 years, from March 4, 2022, to 

September 24, 2024. The dataset contains 13,398 unique observations, covering 115 distinct 

construction line-item types, 299 different construction project types, and 216 counties across 

Texas. However, the data coverage is uneven. First, not all of Texas’s 254 counties are represented, 

indicating incomplete geographic coverage. Second, even among the included counties, not all 

types of construction projects and construction line-item types are represented consistently over 

the two years. This results in an imbalanced dataset with gaps in construction project and line-item 

type representation across counties and time. 

4.3. MODEL DEVELOPMENT 

This section describes a systematic process for developing machine learning models for eight line 

items for the Texas highway projects, using both DNN models and Ensemble models. Figure 6 

depicts the overall methodology adopted for developing the machine learning models. 
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Figure 6 Overview of the process for developing machine learning models 

               

                  

                                  
                           

               

          

                                      

              

The subsection below describes the step-by-step pipeline for developing the two machine learning 

models. It begins with data processing, followed by feature engineering to extract meaningful 

variables. The data is then split into training and testing sets and subjected to variable encoding, 

dimensionality reduction, and normalization to prepare it for modeling. Next, the model undergoes 

training and hyperparameter tuning to optimize performance and accuracy. The trained model is 

then evaluated using evaluation metrics and finally used for prediction on new or unseen data. 

4.3.1 DATA PROCESSING 

Poor data quality can significantly compromise the performance of forecasting model 

development. Therefore, the modeling process began with a rigorous data preparation step, using 

a curated dataset of estimated records for the top eight highway construction line items. These top 
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eight items were selected based on their frequency across all counties over the two years. The 

selected line items were: “Excavation”, “Backfill”, “Asphalt”, “Barricades, Signs and Traffic 

Handling”, “Truck-Mounted Attenuator (TMA)”, “Mobilization”, “Portable Changeable Message 

Sign”, and “Vegetative Watering”. 

This dataset incorporated both project-level bid information (such as engineer’s estimated unit 

price, estimated duration for the project, bid date), bidder’s information’s relevant to engineer’s 

unit price estimate (such as number of bidders for the project, average of the lowest three bidders), 

and external factors (such as NHCCI, CCI, CPI, GDP). The average of the lowest three bidders 

was included in the machine learning models in addition to the variables described in Chapter 2. 

To ensure unbiased estimation of unit prices, the total project cost was excluded from the model 

as an external variable. 

Table 4 depicts the project-specific factors used in developing the machine learning models. The 

table also indicates the spatial and temporal data levels associated with each variable. 

Table 4 Project-specific factors used in the development of the machine learning models 

Variables Definition Data level 

Project duration Estimated number of working days duration of a project. Project level 

Length of the 

Project 

The total linear distance that a project covers along its main 

alignment. 
Project level 

The number of 

items in a project 
The number of line items in a project. Project level 

Quantity 
The quantity/amount of a bid item that is required for the 

project. 
Item level 

Number of Bidders The number of bidders who participated in the bid. Project level 

Average of three 

lowest bidders 

The average of the three lowest bidders is the arithmetic mean 

of the three smallest bid amounts submitted for the project. Project level 

Table 5 shows the external influencing factors used in the development of the machine learning 

models. The table indicates the data levels associated with each variable. Refer to Chapter 2 for 

a detailed explanation of the variables used. 

Table 5 External factors used in the development of the machine learning models 

Variables Definition Data level 

Building Permit 
The total dollar value of new privately owned residential 

construction. 
County level, monthly 

Gross Domestic 

Product 

The inflation-adjusted value of the goods and services produced 

by labor and property. 
County level, monthly 



32 

 

 

 

Project 0-7184  UT Arlington 

 
Establishment 

Counts 
The total number of private construction establishments. County level, quarterly 

Unemployment 

rate 
A measure of the percentage of unemployed people. County level, monthly 

Precipitation 

Any form of water, whether liquid or solid, that falls from the 

atmosphere and reaches the ground, including rain, snow, sleet, 

hail, and drizzle.  

County level, monthly 

Population The total number of people or inhabitants in a county. County level, yearly 

Area of a 

county 
The total land and water surface of the county. County level 

Inflation rate 
The overall general upward price movement of goods and 

services in the US economy. 
national level, monthly 

Architecture 

Billings Index 

(ABI) 

An economic indicator for nonresidential construction activities. national level, monthly 

Prime loan rate  
The lowest interest rate at which money can be borrowed 

commercially. 
national level, monthly 

Consumer Price 

Index (CPI) 

Index measure of the average change over time in the prices 

paid by urban consumers for a market basket of consumer goods 

and services. 

national level, monthly 

Crude Oil Price 

of West Texas 

Intermediate 

(WTI) 

The price of West Texas Intermediate (WTI) crude oil, which 

serves as one of the main benchmarks for oil pricing. 
national level, monthly 

Construction 

Cost Index 

(CCI) 

An overview of construction cost trends across 20 designated 

cities in the USA. 
national level, monthly 

4.3.2 DATA CLEANING AND STRUCTURING 

The dataset was filtered to isolate line-item-specific records. Irrelevant entries were removed from 

the dataset. Another prominent step in data cleaning is handling the outliers. Outliers refer to the 

data points that significantly deviate from most of the data points. The presence of outliers can 

have a detrimental impact on the effectiveness and accuracy of the models, and it is often required 

to detect and handle the outliers to improve the performance of the model. The handling of the 

outliers must be done before training the machine learning models.  

To improve the model’s performance, stabilize variance, and handle extreme outliers, the 

dependent variable (the engineer’s unit price estimate) underwent key preprocessing steps: 

Winsorization 

To mitigate the influence of extreme outliers, the engineer’s estimated unit prices were winsorized 

by capping the engineer’s estimated unit price distribution. Winsorization is a technique used to 

handle outliers by replacing extreme values with the nearest value of the threshold (Nyitrai and 

Virag 2019). This method involves defining upper and lower threshold limits based on the 
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percentile of the empirical distribution and substituting any values that are outside these limits 

with the nearest threshold value. During the development of the models, the range varied from the 

1st to 5th percentile (as lower threshold) and the 95th to the 99th  percentile (as upper threshold). 

This ensures that extremely low or high estimates do not disproportionately affect model training. 

Log Transformation 

A logarithmic transformation was applied to the winsorized engineer’s estimates to reduce 

skewness and approximate a more normal distribution. This is particularly effective in dealing with 

right-skewed cost data and enhances model convergence and interpretability. 

4.3.3 FEATURE EXTRACTION 

To capture the trends in the dataset, four feature extraction steps were performed. 

Temporal Features 

To capture seasonality and trends over time, the following features were extracted: 

• Calendar features: Year, month, and quarter from the bid date. 

• Cyclic encodings: Sine and cosine transformations of month and quarter to model periodic 

behavior effectively. 

Lagged and Rolling Statistics 

To provide historical context of unit bid prices at the county level, the following features were 

derived from the past bid information: 

• Lag features: Lagged engineer's estimates at 1, 3, 6, and 12 months. 

• Rolling aggregates: Mean and standard deviation over 3- and 6-month windows. 

• Trend estimation: Local temporal slope from linear regression over the prior 6 months. 

Monthly Aggregation 

Average unit prices were aggregated monthly across key dimensions to enrich temporal signals: 

• Item code and month 

• Project type and month 

• County and month 
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Interaction Features 

To capture complex cross-variable dependencies, interaction terms were created and encoded: 

• Item type and project type 

• Item type and county 

• Item type and year 

• Item type and month 

A safe encoding approach was applied to prevent information leakage by ensuring encodings were 

learned only from training data. All these temporal features were used in addition to the project-

specific factors and external factors during the machine learning models. 

4.3.4. CORRELATION ANALYSIS AND DIMENSIONALITY REDUCTION 

To manage the high-dimensional nature of the external dataset and reduce the risk of 

multicollinearity, a two-step process was followed: (1) correlation analysis to understand the 

relationships among variables, and (2) Principal Component Analysis (PCA) to transform the data 

into a lower-dimensional, uncorrelated feature space.

Correlation Analysis 

The initial step involved computing the Pearson correlation coefficient between all pairs of 

external variables. This analysis helped identify variables that were strongly linearly related. A 

threshold of 0.8 was selected as a cutoff value to flag high correlations. Variables that exhibit such 

strong correlations can introduce multicollinearity, which may negatively impact model training 

by inflating variance and reducing interpretability. 

Figure 7 shows a heatmap of the Pearson correlation coefficients across all external variables. The 

heatmap reveals multiple clusters of high correlation among external variables. Notably, the 

correlation between “Establishment Counts” and “GDP” exceeds 0.8, as does the correlation 

between “Construction Spending” and variables like “CPI” and “CCI.” These correlations indicate 

that several variables are capturing overlapping information. However, rather than removing 

individual variables manually, Principal Component Analysis (PCA) was performed to reduce the 

number of variables automatically.



35 

 

 

 

Project 0-7184  UT Arlington 

 

Figure 7 Heatmap of Pearson correlation coefficients among external variables 

Principal Component Analysis (PCA) 

To systematically address the observed multicollinearity and reduce the number of input features 

while retaining as much information as possible, Principal Component Analysis (PCA) was 

applied to the entire set of external variables. PCA is a linear transformation technique that 

converts a correlated set of variables into a smaller number of orthogonal (uncorrelated) principal 

components. Each component captures a portion of the total variance in the original dataset, 

allowing the model to focus on the most informative dimensions. 
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Figure 8 displays the variance explained by each principal component, shown here for the 

Excavation line item as an example. The first principal component accounts for approximately 

38% of the total variance, and the second component adds over 20%, indicating that a significant 

portion of the information is concentrated in just a few components. To determine how many 

components to retain, we used a cumulative variance threshold of 98%, ensuring that the vast 

majority of the original data's variability was preserved. This typically resulted in a considerable 

reduction in dimensionality, simplifying the input space for subsequent modeling. 

Figure 8 Variance explained by the principal components (Example representation for excavation line item) 

By retaining the principal components that explain the majority of the variance, the model benefits 

from a more compact, informative, and noise-reduced representation of the input data. This also 

helps improve model performance, reduce overfitting, and lower computational cost without 

sacrificing predictive power. 

4.4. MODELING FRAMEWORK 

This section outlines the modeling strategy used to predict the engineer's estimated unit prices for 

highway construction line items, emphasizing temporal integrity, scalability, and reproducibility 

for DNN models and ensemble models. 
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4.4.1 DATA SPLITTING AND VALIDATION DATASET  

To ensure temporal consistency during model development, a 5-fold time series cross-validation 

strategy was applied for model validation and hyperparameter tuning. In this method, the dataset 

is split into sequential folds while preserving the chronological order of the data. Each fold expands 

the training window and uses the subsequent period as the validation set. This approach allows the 

model to be validated on future data in a realistic, time-aware manner, avoiding any look-ahead 

bias. 

Unlike traditional K-fold cross-validation, which randomly shuffles data, time series cross-

validation respects the temporal structure, an essential requirement when working with sequential 

data where current values depend on past observations. This method was used solely during model 

training and validation to evaluate generalization performance and optimize model parameters. 

The final evaluation of the model was performed separately on a hold-out test set, consisting of 

the most recent three months of data, which remained completely unseen during the training and 

validation phases. The remaining data was used for training. This combination of time-based 

validation and out-of-sample testing ensures that the model development process aligns with the 

sequential nature of the construction data and supports reliable forecasting by evaluating on the 

most recent, unseen data. Figure 9 shows the time series cross-validation split of the training 

dataset. 

Figure 9 Time series cross-validation split 
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4.4.2 FEATURE ENCODING AND NORMALIZATION  

Categorical Encoding: High-cardinality variables and interaction terms were label encoded. 

Lower-cardinality features (e.g., item type, unit) were one-hot encoded for efficiency. 

Numerical Scaling: Continuous features were standardized using statistics from the training set 

to ensure consistency across validation and test folds. 

4.4.3 MODEL ARCHITECTURE  

The predictive modeling framework incorporated both deep neural network (DNN) and ensemble 

learning approaches, designed to integrate heterogeneous input modalities via dedicated 

processing components. The following subsections detail the architectural configurations used for 

each model type. 

Deep Neural Network (DNN) Architecture 

The DNN model was constructed to handle mixed-type data inputs and capture complex nonlinear 

relationships among variables: 

• Input Representation 

Categorical features and the interaction terms were mapped into dense vectors using trainable 

embedding layers, while one-hot encoded categorical variables and normalized numerical features 

were directly passed into the dense layers. 

• Embedding Layers 

Each categorical and interaction feature was assigned a dedicated embedding layer, with 

dimensionality ranging from 4 to 16 depending on the feature’s cardinality. 

• Hidden Layers 

The combined feature vector consisting of embeddings, numeric values, and one-hot encodings 

was passed through a sequence of fully connected layers: 

o Number of layers: 3 to 10 

o Units per layer: 2 to 512 

o Activation functions: ReLU, Swish, Tanh, and ELU 
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o Regularization: Dropout (0.2 to 0.6) and L2 weight decay 

o Learning rate: 0.00001 to 0.1 

• Output Layer 

A single linear neuron was used to predict the log-transformed engineer’s unit price. 

 Ensemble Model Architecture  

To improve predictive performance, an ensemble model architecture was developed by combining 

convolutional, recurrent, and feedforward components: 

• Input Representation  

Categorical features and engineered interactions were mapped into dense vectors using 

trainable embedding layers, while one-hot encoded categorical variables and normalized 

numerical features were directly passed into the dense layers. 

• Embedding Layers 

Each categorical and interaction feature was assigned a dedicated embedding layer, with 

dimensionality ranging from 4 to 16 depending on the feature’s cardinality. 

• CNN and LSTM Branches 

Normalized numerical inputs were reshaped and processed via two parallel modules: 

o 1D Convolutional Neural Network (CNN): Captured local spatial trends using 

convolution and global max pooling. 

o Long Short-Term Memory (LSTM): Modeled temporal dependencies over time-

engineered features. 

• Dense Stack and Output 

o Outputs from embeddings, CNN, LSTM, and one-hot layers were merged and 

passed through 2 to 10 fully connected layers. 

o Layer sizes (8 to 128 units), activation functions (ReLU, Swish, Tanh, ELU), 

dropout (0.2 to 0.5), and L2 regularization were tuned. 

The final output was a single neuron predicting the log-transformed engineer unit price. 
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4.4.4 HYPERPARAMETER TUNING  

Both the DNN and ensemble architectures’ hyperparameters were optimized using the Optuna 

hyperparameter search framework as defined by Akiba et al. (2019). A 5-fold time series cross-

validation was applied to preserve the temporal sequence of project data and avoid data leakage. 

The tuning objective was to minimize Mean Absolute Error (MAE). Key hyperparameters 

explored included: 

o Number of hidden layers: 3 to 10 

o Units per layer: 2 to 512 for DNN models and 8 to 128 for Ensemble models 

o Activation functions: ReLU, Swish, Tanh, and ELU 

o Dropout rates: 0.2 to 0.6 for DNN models and 0.2 to 0.5 for Ensemble models 

o L2 regularization strength 

o Learning rate: 0.00001 to 0.1 

For the ensemble model, additional tuning involved the integration of CNN and LSTM branches 

with dense layers. Early stopping and pruning strategies were employed in both models to enhance 

training efficiency and reduce overfitting. The best-performing configuration for each model was 

selected based on the lowest average mean absolute error across validation folds. 

4.4.5 MODEL EVALUATION  

The results obtained from the developed machine learning models were evaluated using three 

metrics (Mean Absolute Error, Root Mean Squared Error, and Mean Absolute Percentage Error) 

on training and testing datasets. The following three metrics were used to evaluate the performance 

of machine learning models on in-sample (training) and out-of-sample (testing) datasets. 

Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) represents the average of the absolute differences between 

predicted and actual values, disregarding whether the predictions are over or under the actual 

values. As a linear metric, it assigns equal weight to all errors, making it a straightforward and 

interpretable measure of model accuracy. The metric is defined as Equation 1.1 below. 

𝐌𝐀𝐄 =
𝟏

𝒏
∑ |𝐲 − 𝐲𝒊|

𝒏
𝒊=𝟏              Equation 1.1 
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where y is the actual value, yi is the predicted value, and n is the number of observations. 

Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) calculates the square root of the average of the squared 

differences between predicted and actual values. Unlike MAE, RMSE gives greater weight to 

larger errors, making it particularly sensitive to outliers and useful for highlighting models that 

occasionally make large mistakes. The metric is defined as Equation 1.2 below. 

𝐑𝐌𝐒𝐄 = √
𝟏

𝒏
∑ (𝐲 − 𝐲𝒊)𝟐𝒏

𝒊=𝟏
      Equation 1.2 

where y is the actual value, yi is the predicted value, and n is the number of observations. 

Mean Absolute Percentage Error (MAPE) 

The Mean Absolute Percentage Error (MAPE) quantifies the average absolute difference between 

predicted and actual values as a percentage of the actual values. This metric provides an intuitive, 

scale-independent measure of prediction accuracy, making it especially useful for comparing 

model performance across different datasets or units. The metric is defined as Equation 1.3 below. 

𝐌𝐀𝐏𝐄 =
𝟏𝟎𝟎%

𝒏
∑

|𝐲−𝐲𝒊|

𝒚

𝒏

𝒊=𝟏
            Equation 1.3 

where y is the actual value, yi is the predicted value, and n is the number of observations. 

4.4.6 FORECASTING FUTURE PRICES  

The target or dependent variable (the engineer’s unit price) was log-transformed to stabilize 

variance and normalize skewness during the model development. To return predictions to the 

original scale (in dollar units), the inverse transformation is applied. Furthermore, to improve 

numerical stability and avoid the influence of extreme or spurious predictions, all predicted dollar 

values were clipped to lie within the 1st and 99th or 5th and 95th percentiles of the training target 

distribution. This approach ensures that future price estimates remain within the plausible range 

observed during model training. A structured pipeline was followed to predict prices for the next 

three months: 
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• Generated all combinations of county × project type × item code × month 

• Imputed missing values using historical monthly averages 

• Applied trained encoders and scalers 

• Removed unseen categorical values 

• Predicted log values and converted them to the dollar scale 

• Exported the predicted engineer’s estimate to Excel 

4.4.7 AUTOMATION AND REPRODUCIBILITY  

The full pipeline from data processing to forecasting is modular and fully automated. The process 

is easily replicable across all line items using preprocessed datasets, enabling scalable forecasting 

for large infrastructure datasets. The models can be generalized with the addition of more datasets. 

4.5. RESULTS OF THE MACHINE LEARNING MODELS 

This subsection depicts the training and testing errors for individual line-item models as well as a 

multi-task model developed to estimate unit prices for TxDOT highway construction line items. 

Each model's performance is evaluated using three common metrics: Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). These metrics 

are reported separately for both the training and testing datasets to assess the model’s 

generalization ability. 

Table 6 presents the performance of the deep neural network models for the eight highway 

construction line items and a multi-task model. Performance was evaluated using MAE, RMSE, 

and MAPE for both training and testing phases. 

Table 6 Train and test results for deep neural network models 
Line Item Training Errors Testing Errors 

 MAE RMSE MAPE MAE RMSE MAPE 

Excavation 0.23 0.32 8.04 0.34 0.45 11.25 

Backfill 0.21 0.31 4.46 0.24 0.35 5.24 

Asphalt 0.12 0.16 14.22 0.22 0.28 26.97 

Barricades, Signs and Traffic Handling 0.33 0.43 3.75 0.35 0.44 3.93 

TMA 0.27 0.38 5.44 0.28 0.39 5.50 

Vegetative Watering 0.36 0.51 12.76 0.43 0.59 12.37 
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Mobilization 0.41 0.55 4.57 0.63 0.87 7.43 

Portable Changeable Message Sign 0.29 0.42 4.68 0.45 0.64 7.61 

Multi-task Model 0.34 0.52 7.77 0.53 0.74 12.97 

Table 6 shows that the model for Barricades, Signs, and Traffic Handling achieved a training MAE 

of 0.33, RMSE of 0.43, and MAPE of 3.75%, while its testing performance remained stable with 

MAE of 0.35, RMSE of 0.44, and MAPE of 3.93%. The Backfill model showed similarly strong 

results, with a training MAE of 0.21, RMSE of 0.31, and MAPE of 4.46%, and a testing MAE of 

0.24, RMSE of 0.35, and MAPE of 5.24%. Likewise, the TMA model exhibited consistent 

behavior, with training errors of MAE 0.27, RMSE 0.38, and MAPE 5.44%, and testing errors of 

MAE 0.28, RMSE 0.39, and MAPE 5.50%. 

Other models showed more variability between training and testing phases. The Portable 

Changeable Message Sign model had a training MAE of 0.29, RMSE of 0.42, and MAPE of 

4.68%, but testing metrics increased to MAE 0.45, RMSE 0.64, and MAPE 7.61%. The Excavation 

model reported a training MAE of 0.23, RMSE of 0.32, and MAPE of 8.04%, with testing values 

of MAE 0.34, RMSE 0.45, and MAPE 11.25%. The Vegetative Watering model had generally 

higher errors, with training MAE 0.36, RMSE 0.51, and MAPE 12.76%, and testing MAE 0.43, 

RMSE 0.59, and MAPE 12.37%. The Mobilization model showed notable differences between 

training and testing, increasing from MAE 0.41, RMSE 0.55, and MAPE 4.57% in training to 

MAE 0.63, RMSE 0.87, and MAPE 7.43% in testing. 

The Asphalt model, despite a low training MAE of 0.12 and RMSE of 0.16, with a MAPE of 

14.22%, experienced a substantial rise in testing errors, reaching MAE 0.22, RMSE 0.28, and a 

much higher MAPE of 26.97%, indicating high variability in asphalt unit price data. Finally, the 

multi-task model, which predicted all line items jointly, showed moderate training errors (MAE 

0.34, RMSE 0.52, and MAPE 7.77%) but an apparent increase in testing errors (MAE 0.53, RMSE 

0.74, and MAPE 12.97%), reflecting the limitations of using a single generalized model across 

diverse item types. 
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These results suggest that line-item-specific models generally outperform the multi-task model, 

particularly in terms of prediction accuracy and generalization. The variation in errors across line 

items underscores the importance of accounting for item-specific characteristics such as unit 

pricing variability, data volume, and temporal patterns when developing cost estimation models 

for highway construction projects.  

Similarly, Table 7 presents the performance of the ensemble model, which integrates LSTM, 

CNN, and neural network architectures, across eight highway construction line items. Performance 

was evaluated using MAE, RMSE, and MAPE for both training and testing phases. 

Table 7 Train and test results for ensemble models 
Line Item Training Errors Testing Errors 

 MAE RMSE MAPE MAE RMSE MAPE 

Excavation 0.35 0.49 12.17 0.58 0.76 19.68 

Backfill 0.22 0.30 4.42 0.35 0.48 7.02 

Asphalt 0.21 0.27 31 0.37 0.55 49.53 

Barricades, Signs and Traffic Handling 0.39 0.49 4.57 0.38 0.49 4.40 

TMA 0.31 0.42 6.15 0.38 0.48 7.21 

Vegetative Watering 0.53 0.69 17.73 0.62 0.80 18.28 

Mobilization 0.89 1.14 9.54 0.97 1.21 10.26 

Portable Changeable Message Sign 0.33 0.56 5.44 0.72 0.27 10.72 

Multi-task Model 0.40 0.58 7.50 0.60 0.84 10.89 

Table 7 shows that the Barricades, Signs, and Traffic Handling model exhibited the most stable 

and accurate performance, with a training MAE of 0.39, RMSE of 0.49, and MAPE of 4.57%, and 

slightly improved testing values of MAE 0.38, RMSE 0.49, and MAPE 4.40%. The Backfill model 

also performed well, with a training MAE of 0.22, RMSE 0.30, and MAPE 4.42%, and testing 

metrics of MAE 0.35, RMSE 0.48, and MAPE 7.02%. The TMA model maintained balanced 

results, with training MAPE 6.15% and testing MAPE 7.21%, reflecting consistent learning across 

both phases. 
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However, other models demonstrated more variation. The Excavation model showed a notable 

increase in error from training (MAPE 12.17%) to testing (MAPE 19.68%), while the Vegetative 

Watering model remained relatively consistent with high MAPE values of 17.73% (training) and 

18.28% (testing). The Mobilization model had relatively high errors as well, with testing MAE 

0.97, RMSE 1.21, and MAPE 10.26%. The Asphalt model experienced significant overfitting, 

increasing from a training MAPE of 31% to a testing MAPE of 49.53%. The Portable Changeable 

Message Sign model showed a training MAPE of 5.44% and a notable increase in testing MAPE 

to 10.72%, indicating possible instability or overfitting. The multi-task model, which attempts to 

predict all line items simultaneously, produced moderate results with a testing MAE of 0.60, 

RMSE of 0.84, and MAPE of 10.89%. 

The ensemble model offered improved generalization for some items, such as Barricades and 

TMA, while showing increased error for others, such as Asphalt and Excavation, in comparison to 

the DNN models. In general, DNN models had lower testing MAPEs for line items like Backfill, 

Asphalt, and Portable Signs. Conversely, the ensemble model outperformed in terms of stability 

for items with strong temporal or sequential patterns. These findings suggest that model selection 

should be guided by the specific characteristics of each line item, where ensemble models may be 

better suited for capturing temporal complexity, while DNNs may generalize better across more 

stable or well-represented features.  
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CHAPTER 5. MIXED-EFFECTS MODEL DEVELOPMENT 

5.1. INTRODUCTION 

A mixed-effects model is a statistical model that integrates fixed effects, which represent the 

average relationship between predictors and the outcome across all observations, with random 

effects, which address unobserved heterogeneity and correlation within groups or clusters (Laird 

and Ware 1982; Meteyard and Davies 2020). In our dataset, individual items are nested within 

projects, which are nested within counties. Mixed-effects models allow for intercepts and slopes 

across groups to vary while leveraging the overall population strength to enhance estimation 

efficiency (Meteyard and Davies 2020). Hence, a mixed-effects model is suitable for our 

hierarchical data structure.  

5.2. DATASET FOR MODEL DEVELOPMENT 

The dataset comprises 31 months of data, from March 4, 2022, to September 25, 2024, 

encompassing 13,398 observations categorized into 115 item types, 299 project types, and 212 

counties. The top eight most repeated line items were selected from the pool of construction line 

items based on their repetition over all the counties and over the two years.  

• Truck-Mounted Attenuator (TMA) 

• Backfill 

• Excavation 

• Vegetative Watering 

• Mobilization 

• Barricades, Signs and Traffic Management 

• Portable Changeable Message Signs 

• Asphalt Operations 

With additional years of data, models can be developed to estimate unit prices of more line items.  
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5.3. VARIABLE ANALYSIS FOR MODEL DEVELOPMENT 

The variables in the model are collected at different levels (project-level, item-level, county-level, 

and time-level). Table 8 shows variable definitions, acronyms, and the granularity of data used for 

model development. 

Table 8 Description of variables 
Variable name Acronym Description Level Frequency 

Engineer's estimate log(EngEst) Natural logarithm of the preliminary estimated value of 

an item by TxDOT's engineer, used as a budgeting 

baseline. 

Item -- 

Quantity log(Qty) Natural logarithm of the quantity of a bid item required 

in the project. 

Item -- 

Project duration log(Dur) Natural logarithm of the estimated number of working 

days to complete a project. 

Project -- 

Number of items in 

project 

log(Items) Natural logarithm of the number of bid line items in a 

project. 

Project -- 

Number of bidders log(Bids) Natural logarithm of the number of contractors who 

submitted bids for the project. 

Project -- 

Unemployment rate UnempRate Percentage of unemployed individuals in the civilian 

labor force. 

County Monthly 

Establishment counts log(Estab) Natural logarithm of the number of private construction 

establishments in the county. 

County Quarterly 

Precipitation Precip Any form of water from the atmosphere that reaches 

the ground (e.g., rain, snow, hail). 

County Monthly 

County area log(Area) Natural logarithm of the total land and water area of the 

county. 

County -- 

Crude oil price log(WTI) Natural logarithm of the West Texas Intermediate crude 

oil price, a U.S. benchmark. 

National Monthly 

Construction Cost 

Index 

log(CCI) Natural logarithm of the construction cost index for 20 

major U.S. cities. 

National Monthly 
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In order to study the distribution and central tendencies of the variables included in the model, as 

defined in Table 8, descriptive statistics are performed. Table 9 presents the descriptive statistics 

of the variables. 

Table 9 Descriptive statistics of variables 

Variable Mean Median Std. Dev. Min Max 

log(EngEst) 6.733 5.858 3.194 -2.303 17.823 

log(Qty) 3.404 3.178 2.714 -4.605 14.055 

log(Dur) 4.979 5.03 0.917 1.946 7.805 

log(Items) 3.704 3.807 1.061 0 6.753 

log(Bids) 1.242 1.386 0.517 0 2.565 

UnempRate 4.11 4 0.923 2.1 11 

log(Estab) 5.648 5.768 1.892 0 9.057 

Precip 2.927 2.17 2.662 0 18.13 

log(Area) 6.861 6.829 0.406 5.003 8.731 

log(WTI) 4.358 4.358 0.068 4.252 4.687 

log(CCI) 9.505 9.51 0.012 9.457 9.52 

The engineer's estimate (log(EngEst)) exhibits considerable variation (SD = 3.194), indicating 

diverse project scales, market conditions, item types, and complexity levels across the hierarchical 

structure of items nested within projects. The quantity of bid items, log(Qty), demonstrates high 

variability (SD = 2.714), indicating a wide range of construction volumes, while project duration 

(log(Dur)) displays moderate variance (SD = 0.917) with a mean of 4.979. The number of items 

per project (log(Items)) shows variability (SD = 1.061), but the number of bidders (log(Bids)) has 

less dispersion (SD = 0.517), with minimum values of zero indicating that some projects attracted 

only a single bidder, as the natural logarithm of one equals zero. The economic and environmental 

variables capture diverse conditions across counties and periods. Unemployment rates 

(UnempRate) vary modestly around a mean of 4.110 (SD = 0.923), spanning from 2.100% to 

11.000%. Meanwhile, establishment counts, log(Estab), exhibit substantial heterogeneity (SD = 

1.892), reflecting varying levels of local construction industry presence. Precipitation (Precip) 

exhibits high variability (SD = 2.662), suggesting diverse weather conditions that may impact 

construction activities. The county area, log(Area), exhibits relatively low variation (SD = 0.406), 

indicating that the sample comprises counties of similar geographic scope. In contrast, the 

macroeconomic indicators, like West Texas Intermediate crude oil price, log(WTI), and the 
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Construction Cost Index, log(CCI), display minimal variation (SD = 0.068 and 0.012, 

respectively), consistent with their role as time-varying factors affecting all observations uniformly 

within specific periods. The wide ranges across most variables underscore the dataset's 

comprehensive coverage of diverse market conditions and economic environments. Table 10 

displays the correlation matrix of all variables, illustrating the pairwise correlations among the 

explanatory and control variables in our study. 

Table 10 Correlation matrix 
Variables log(EngEst) log(Qty) log(Dur) log(Items) log(Bids) UnempRate log(Estab) Precip log(Area) log(WTI) log(CCI) 

log(EngEst) 1           
log(Qty) -0.809 1          
log(Dur) -0.113 0.304 1         

log(Items) -0.084 0.254 0.494 1        
log(Bids) 0.015 -0.026 -0.1 -0.038 1       

UnempRate 0 -0.006 0.016 0.007 -0.081 1      
log(Estab) -0.004 0.005 0.114 0.073 0.013 -0.088 1     

Precip -0.014 -0.004 -0.029 -0.037 0.044 0.119 0.045 1    
log(Area) 0.001 0.01 0.041 0.033 -0.072 -0.033 0.159 -0.048 1   
log(WTI) -0.002 0.015 0.009 0.022 -0.017 -0.053 -0.064 0.08 -0.015 1  
log(CCI) 0.043 -0.022 0.011 -0.039 0.05 0.112 0.023 0.118 -0.011 0.062 1 

From Table 10, it can be noted that the item characteristic quantity is negatively correlated with 

both the engineer's estimate (-0.809) and the average bid (-0.778), suggesting that larger quantities 

are associated with lower unit costs. A moderate positive correlation (0.494) exists between the 

number of items and project duration, indicating that projects with a greater number of line items 

tend to require more time to complete. 

5.4. MODEL DEVELOPMENT 

The final mixed-effects model is developed through a systematic evaluation of alternative 

formulations, each designed to address the econometric challenges posed by the hierarchical 

structure of the data. This section describes the model progression and the corresponding results. 

5.4.1. BASELINE MODELS 

To establish baseline estimates before addressing hierarchical structure and heterogeneity 

concerns, standard regression methods are employed. 

49 
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Ordinary Least Squares (OLS) Regression 

The ordinary least squares (OLS) model is used as our first framework, considering all 

observations as independent and disregarding the hierarchical data structure. The model estimates 

coefficients for all variables without considering the potential correlation of observations within 

the same project or county. The pooled OLS model serves as the starting point, treating all 

observations as independent and ignoring the nested data structure.  Table 11 presents the results 

of the OLS for the engineer’s estimates. 

Table 11 Results from Ordinary Least Squares (OLS) regression 

 Variable log(EngEst) VIF 

log(Qty) 

-1.015*** 

(-0.007) 

1.12 

log(Dur) 

0.383*** 

(-0.02) 

1.41 

log(Items) 

0.251*** 

(-0.018) 

1.35 

log(Bids) 

0.037 

(-0.032) 

1.03 

UnempRate 

-0.034** 

(-0.017) 

1.05 

log(Area) 

-0.033*** 

(-0.009) 

1.04 

Precip 

-0.015** 

(-0.006) 

1.04 

log(WTI) 

0.039 

(-0.041) 

1.02 

log(Estab) 

0.29 

(-0.233) 

1.06 

log(CCI) 

7.775*** 

(-1.372) 

1.04 

Intercept 

-67.757*** 

(-13.028) 

-- 

Mean VIF -- 1.12 

Number of 

observations 13,398 -- 

R-squared 0.6794 -- 

 Item types 115 -- 

 Project types 299 -- 

 Counties 212 -- 

 Months 25 -- 

Note: Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05, * p < 0.10. 

Table 11 also presents Variance Inflation Factors (VIF) and mean VIF statistics to assess 

multicollinearity concerns among the explanatory variables. The VIF indicates low collinearity 

concerns, with individual VIF values below two and a mean VIF of 1.12, which is well below the 
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conventional threshold of concern (VIF > 5). The models represent substantial variation in the 

dependent variables, with R-squared values of 0.6794 for engineers’ estimates, based on 13,398 

observations across 115 item types, 299 project types, 212 counties, and 31 months. However, since 

OLS overlooks the nested structure of items clustered within projects and counties, it is likely to 

result in biased standard errors and estimates. Also, while providing initial coefficient estimates, 

this specification fails to account for correlation within counties and projects, likely producing 

biased standard errors and inefficient estimates. 

Random Effects Regression 

A single-level random effects model includes random variation at one hierarchical level, such as 

random effects for item types, project types, or counties, but not multiple levels simultaneously. 

This approach allows group-specific intercepts that vary randomly around the overall mean. Table 

12 presents three separate single-level random effects specifications for both dependent variables: 

item-type random effects, project-type random effects, and county-level random effects.  

Table 12 Random effects regression results 

  
Item level Project level County level 

Variable log(EngEst) log(EngEst) log(EngEst) 

log(Qty) -0.407*** 

-0.007 

-1.046*** 

-0.006 

-1.018*** 

-0.006 

log(Dur) 0.273*** 

-0.014 

0.583*** 

-0.024 

0.380*** 

-0.021 

log(Items) 0.327*** 

-0.012 

0.014 

-0.026 

0.257*** 

-0.018 

log(Bids) 0.017 

-0.019 

0.049 

-0.033 

0.082** 

-0.032 

UnempRate -0.039*** 

-0.011 

-0.028 

-0.017 

-0.051** 

-0.024 

log(Estab) -0.052*** 

-0.005 

-0.015* 

-0.009 

-0.046** 

-0.017 

Precip 0.001 

-0.004 

-0.006 

-0.006 

-0.005 

-0.006 

log(Area) 0.035 

-0.024 

0.009 

-0.039 

0.023 

-0.064 

log(WTI) 0.003 

-0.143 

0.021 

-0.232 

0.192 

-0.236 

log(CCI) 6.874*** 

-0.849 

9.406*** 

-1.384 

8.281*** 

-1.403 

Intercept -61.195*** 

-8.05 

-82.161*** 

-13.109 

-71.961*** 

-13.292 
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Number of groups 115 299 212 

Within R-squared 0.263 0.702 0.6853 

R-squared 0.6217 0.6742 0.6792 

Rho 0.5733 0.1289 0.0233 

p-value 0 0 0 

Observations 13,398 13,398 13,398 

Note: Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05, * p < 0.10. 

The intraclass correlation coefficients (rho) in Table 12 show considerable variation in grouping 

effects across specifications, ranging from 0.0233 for county-level to 0.5733 for item-type random 

effects, indicating that between 2.33% and 57.33% of the total variance goes to the corresponding 

group-level differences. For example, the rho value of 0.5733 for item-type random effects means 

that 57.33% of the total variance in the log(EngEst) is due to differences between different item 

types. However, our data format is hierarchical; thus, these single-level random effect models are 

insufficient to address the multi-level hierarchy of items within projects across counties. 

Fixed Effects Regression for Addressing Heterogeneity Concerns 

Heterogeneity concern arises when individuals or groups have unobserved differences that are not 

accounted for in the model. Different construction line items, such as concrete work, asphalt 

paving, and steel structures, exhibit different cost structures, technical requirements, and markets. 

Additionally, prices may vary across geographic locations (such as counties) and periods due to 

local economic conditions, seasonal effects, and fluctuations in material costs. We developed 

models that include fixed effects for item types and project types, in addition to various 

combinations of temporal (month) and spatial (county) controls to prepare for the multi-

dimensional heterogeneity of our data, as detailed in the following subsections.  

I. Item Level Heterogeneity and Temporal Spatial Variation  

This specification introduces item-specific controls and temporal-spatial factors to capture 

variation in item characteristics and location-time effects. Table 13 presents results for the 

engineer’s estimates (log(EngEst)), indicating improvements in model performance when considering 

item-level heterogeneity and temporal-spatial variation. 
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Table 13 Item-level heterogeneity and temporal spatial variation for log(EngEst) 

  log(EngEst) 

log(Qty) – -0.423*** 

-0.007 

-0.450*** 

-0.015 

-0.402*** 

-0.007 

-0.450*** 

-0.007 

log(Dur) 0.132*** 

-0.018 

0.368*** 

-0.017 

0.407*** 

-0.031 

0.259*** 

-0.014 

0.422*** 

-0.023 

log(Items) 0.135*** 

-0.022 

0.155*** 

-0.02 

0.207*** 

-0.035 

0.340*** 

-0.012 

0.178*** 

-0.027 

log(Bids) -0.044* 

-0.024 

0.035 

-0.023 

0.145** 

-0.045 

0.068** 

-0.021 

0.015 

-0.03 

UnempRate – 0.051 

-0.054 

– 0.046 

-0.054 

0.101 

-0.069 

log(Estab) – 0.095 

-0.316 

– -0.208 

-0.309 

0.602 

-0.458 

Precip – -0.003 

-0.006 

– -0.001 

-0.006 

0.003 

-0.008 

log(Area) – -3.324 

-11.598 

– 8.864 

-10.89 

3.799 

-3.778 

log(WTI) – 5.613 

-6.186 

– 6.233 

-6.398 

– 

log(CCI) – 34.122 

-27.58 

– 28.978 

-28.121 

– 

Intercept 5.686*** 

-0.096 

-321.263 

-297.476 

5.695*** 

-0.164 

-357.513 

-302.483 

-25.636 

-29.055 

Fixed 

Effects 

ItemType×Month 

& ProjType 

ItemType 

& 

ProjType 

ItemType×Month×County 

& ProjType 
ItemType 

ItemType×Month 

& 

ProjType×Month 

Dummy 

Variables 
– 

Month & 

County 
– 

Month 

& 

County 

County 

Observations 13,099 13,360 5,643 13,365 13,075 

Adjusted R-

squared 
0.8622 0.8973 0.8949 0.8844 0.9033 

AIC 40,797.92 38,383.80 12,841.36 40,275.86 35,317.26 

Note: Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05, * p < 0.10. 

Table 13 demonstrates an increase in adjusted R-squared values across models as compared to 

OLS models in Table 11 and the RE model in Table 12, suggesting that item-type heterogeneity 

accounts for a considerable portion of the variation in both dependent variables. The AIC values 

indicate substantial improvements, reflecting the model’s advantages compared to simpler models. 

These models address item-level variation but do not fully capture the complete hierarchical 

structure where items are nested within projects within counties. 

II. Project Type Heterogeneity with Incremental Spatial and Temporal Controls 

The heterogeneity of project types, together with spatial and temporal controls, indicates an 

advancement in our approach by considering the cost structures, purchasing patterns, and market 
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dynamics associated with various construction project categories, such as highway construction, 

bridge building, and utility work, which may also differ over time and across geographic locations. 

This approach strengthens the item-level heterogeneity controls from the previous models by 

including project-type fixed effects, along with various spatial (county) and temporal (month) 

controls, which address the multidimensional aspects of construction pricing heterogeneity. The 

models change from basic project-type-month interactions (ProjType × Month) to more complex 

structures that incorporate distinct project-type effects (ProjType) with interaction terms. 

Ultimately, we included additional dummy variables for months and counties to account for 

broader temporal trends and geographic influences that operate independently of project-type-

specific variations. Table 14 presents the results for the engineer’s estimates (log(EngEst)), 

showing the effects of adjusting for project-type heterogeneity through incremental spatial and 

temporal controls. 

Table 14 Project type heterogeneity with incremental spatial and temporal controls for log(EngEst) 

  log(EngEst) 

log(Qty)     -1.083*** 

-0.006 

-1.060*** 

-0.006 

-1.060*** 

-0.006 

log(Dur) -0.011 

-0.064 

-0.188** 

-0.083 

0.609*** 

-0.044 

0.640*** 

-0.027 

0.642*** 

-0.027 

log(Items) -0.453*** 

-0.076 

-0.289** 

-0.094 

-0.052 

-0.05 

-0.095** 

-0.033 

-0.092** 

-0.032 

log(Bids) -0.127 

-0.083 

0.115 

-0.123 

0.112* 

-0.065 

0.052 

-0.038 

0.068* 

-0.037 

UnempRate       0.037 

-0.09 

-0.04 

-0.045 

log(Estab)       -0.087 

-0.522 

-0.152 

-0.517 

Precip       0 

-0.01 

0.006 

-0.007 

log(Area)       -3.279 

-16.378 

-0.993 

-16.222 

log(WTI)       2.251 

-10.305 

-0.185 

-0.248 

log(CCI)       21.623 

-45.937 

11.158*** 

-1.503 

Intercept 8.627*** 

-0.337 

8.608*** 

-0.456 

7.448*** 

-0.24 

-184.783 

-489.903 

-89.657 

-110.281 

Fixed Effects ProjType×Month 
ProjType×Month 

+ ProjType 

ProjType×Month 

+ ProjType 
ProjType ProjType 

Dummy 

Variables 
   Item 

Month + 

County 
County 

Observations 13,363 13,303 13,303 13,391 13,390 

Within R-sq. 0.0039 0.0025 0.7248 0.7119 0.7148 

AIC 67,742.05 67,202.29 50,075.40 52,234.22 52,216.21 

Note: Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05, * p < 0.10.   
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The findings from Table 14 indicate considerable improvements in model fit with the incremental 

inclusion of spatial and temporal controls. The differing significance patterns of key variables 

across various fixed-effects models indicate that project-type heterogeneity interacts closely with 

spatial and temporal factors. This shows the necessity for modeling approaches that can 

simultaneously address multiple causes of variation within the hierarchical data structure. 

III. County-Level Heterogeneity and Temporal Specification 

County-level heterogeneity and temporal specification are essential for addressing geographic 

clustering and unobserved county characteristics that affect the dependent variables. Table 15 

displays the effect of considering county-level heterogeneity through the models that combine 

fixed-effects structures. 

Table 15 County-level heterogeneity and temporal specification 

log(EngEst) 

log(Qty) -1.024*** 

(-0.006) 

-1.060*** 

(-0.006) 

log(Dur) 0.381*** 

(-0.022) 

0.640*** 

(-0.027) 

log(Items) 0.251*** 

(-0.018) 

-0.095** 

(-0.033) 

log(Bids) 0.107** 

(-0.034) 

0.052 

(-0.038) 

UnempRate -0.003 

(-0.089) 

0.037 

(-0.09) 

log(Estab) -0.278 

(-0.507) 

-0.087 

(-0.522) 

Precip 0.006 

(-0.009) 

0 

(-0.01) 

log(Area) 3.265 

(-15.236) 

-3.279 

(-16.378) 

log(WTI) 3.922 

(-10.529) 

2.251 

(-10.305) 

log(CCI) 19.67 

(-46.278) 

21.623 

(-45.937) 

Intercept -217.349 

(-493.44) 

-184.783 

(-489.903) 

Fixed Effects – ProjType 

DummyVariables 
County + 

Month 
County + Month 

Observations 13,398 13,391 

Within R-sq. 0.6927 0.7119 

AIC 53,814.81 52,234.22 

Note: Significance levels are indicated as follows: *** p < 0.01, ** p < 0.05, * p < 0.10. 
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This specification acknowledges that counties may exhibit variations in economic conditions, 

regulatory environments, material availability, labor markets, and contractor networks, 

necessitating consideration of spatial dependencies within the modeling framework. The model 

includes county and month dummy variables to adjust for cross-sectional geographic differences 

and temporal trends that consistently influence all observations within specified time frames.  

The differing significance patterns of key variables across various fixed-effects models indicate 

that project-type heterogeneity interacts closely with spatial and temporal factors. This shows the 

necessity for modeling approaches that can simultaneously address multiple causes of variation 

within the hierarchical data structure. 

5.4.2. MIXED EFFECTS MODEL 

We developed a mixed-effects model to control for county, project type, and item type 

heterogeneity. This approach strengthens the item-level heterogeneity controls from the previous 

models by including project-type fixed effects, along with various spatial (county) and temporal 

(month) controls, which address the multidimensional aspects of construction pricing 

heterogeneity. Seven mixed effects models are developed that change from basic project-type-

month interactions (ProjType × Month) to more complex structures that incorporate distinct 

project type effects (ProjType) with interaction terms. Ultimately, they include additional dummy 

variables for months and counties to account for broader temporal trends and geographic 

influences that operate independently of project-type-specific variations. Table 16 presents results 

for engineer’s estimates, log(EngEst), showing the effects of adjusting for project-type 

heterogeneity through incremental spatial and temporal controls.  
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Table 16 Mixed effects models controlling for county, project type, and item type heterogeneity for log(EngEst) 

Variable 

Log(EngEst) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

log(Qty) -0.939*** 

-0.006 

-0.939*** 

-0.006 

-0.525*** 

-0.007 

-0.525*** 

-0.007 

-0.422*** 

-0.007 

-

0.430*** 

-0.007 

-0.443*** 

-0.007 

log(Dur) 0.474*** 

-0.02 

0.470*** 

-0.02 

0.404*** 

-0.015 

0.402*** 

-0.015 

0.372*** 

-0.017 

0.356*** 

-0.016 

0.409*** 

-0.021 

log(Items) 0.208*** 

-0.018 

0.208*** 

-0.019 

0.164*** 

-0.017 

0.161*** 

-0.017 

0.155*** 

-0.019 

0.190*** 

-0.018 

0.167*** 

-0.025 

log(Bids) 0.093*** 

-0.028 

0.083*** 

-0.028 

0.056*** 

-0.02 

0.041** 

-0.02 

0.032 

-0.021 

0.002 

-0.021 

-0.028 

-0.027 

UnempRate -0.036 

-0.023 

-0.04 

-0.028 

-0.01 

-0.024 

0.046 

-0.048 

-0.033** 

-0.016 

-0.031** 

-0.012 

-0.046*** 

-0.015 

log(Estab) -0.060*** 

-0.016 

-0.059*** 

-0.016 

-0.086 

-0.281 

-0.049 

-0.284 

-0.050*** 

-0.011 

-

0.042*** 

-0.006 

-0.040*** 

-0.007 

Precip -0.005 

-0.005 

-0.011 

-0.007 

0.005 

-0.004 

-0.003 

-0.005 

0.003 

-0.004 

-0.004 

-0.005 

-0.002 

-0.006 

log(Area) 0.03 

-0.064 

0.031 

-0.064 

    0.016 

-0.042 

0.012 

-0.024 

-0.017 

-0.03 

log(WTI) 0.2 

-0.183 

  -0.149 

-0.133 

  -0.095 

-0.146 

    

log(CCI) 11.048*** 

-1.101 

  10.536*** 

-0.81 

  9.589*** 

-0.874 

    

Intercept 
-

98.955*** 

-10.426 

7.128*** 

-0.484 

-

93.444*** 

-7.848 

5.668*** 

-2.091 

-

80.606*** 

-8.266 

9.491*** 

-0.22 

5.256*** 

-0.546 

Random 

Effects 

County, 

ProjType, 

ItemType 

County, 

ProjType, 

ItemType 

ProjType, 

ItemType 

ProjType, 

ItemType 
County 

ProjTyp

e 
ItemType 

Fixed Effects   Month County 
County + 

Month 

ItemTyp

e + 

ProjType 

ItemTyp

e×Month 

ProjType×

Month 

Observations 13,398 13,398 13,398 13,398 13,398 13,398 13,398 

Log 

Likelihood 
-25,397.60 -25,421.80 -20,515.20 -20,539.60 -19,309.60 

-

19,170.8

0 

-18,790.10 

AIC 50,825.20 50,917.60 41,478.40 41,571.20 39,465.30 39,891.60 40,074.30 

Parameters 15 37 224 246 423 775 1,247 

Table 16 displays the results of the mixed-effects model for the engineer’s estimate (log(EngEst)) 

across seven specifications, each including different combinations of fixed and random effects 

structures. The specifications range from models with random effects for county, project type, and 

item type, without fixed effects, to a more complex model that includes month fixed effects in the 

second model. The third and fourth models use random effects for project type and item type, 

while county is considered as a fixed effect. The latter model includes month fixed effects, too. 
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The fifth specification employs random effects for counties, while project type and item type are 

treated as fixed effects. The sixth specification includes fixed effects for item type and month, with 

random effects for project type. In contrast, the seventh model analyzes the interaction between 

project type and month as fixed effects, with random effects for item type.  

Model selection based on the Akaike Information Criterion indicates that the fifth model has the 

lowest AIC value (39,465.3), representing the optimal balance between model fit and complexity. 

This model, which accounts for county-level heterogeneity through random effects while 

controlling for project and item type characteristics through fixed effects, proved to be the most 

appropriate model. 

5.4.3. MODEL COMPARISON AND SELECTION CRITERIA 

The results of the developed models in Section 5.4.2 suggest the limitations of regression methods 

in the context of hierarchical construction data. The OLS model ignores the nested structure, while 

single-level random effects models just consider the association of variables within groups. The 

fixed-effects models address the heterogeneity by using various combinations of fixed effects for 

item types, project types, counties, and temporal controls. While these models suggest 

improvements in fit statistics and uncover relationships, they primarily consider the hierarchical 

structure as a problem to be managed rather than as a fundamental aspect of the data creation 

process. Additionally, they are not efficient in managing the large number of parameters needed 

when all group-specific effects are treated as fixed. This limitation presents issues when particular 

groups have limited observations, resulting in imprecise estimates and increased standard errors.  

5.4.4. PREDICTION AND PERFORMANCE EVALUATION 

Model 5 from Table 16 for engineers' estimates (log(EngEst)) is the selected model for which we 

utilize mixed-effects models to enhance predictive accuracy by considering the hierarchical 

structure of our data. In contrast to conventional methods that assume independence among 

observations, these mixed-effects models utilize both population-level fixed effects and group-

specific random effects to produce more precise predictions. The evaluation of predictions for 

engineers' estimates indicates that the mixed-effects model yields a Symmetric Mean Absolute 
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Percentage Error (SMAPE) of 66.2% and a Root Mean Square Error (RMSE) of 1.00 on the 

logarithmic scale.  

5.4.5. RESULT INTERPRETATION 

In model 5, the quantity variable (log(Qty) shows a strong negative relationship with the engineer’s 

estimate, with a coefficient of -0.422, indicating that a 1% increase in quantity is associated with 

approximately a 0.42% decrease in the unit price estimate, possibly because of production 

efficiency and economy of scale (PennDOT 2025).  

The project duration (log(Dur)) demonstrates a positive and significant effect (0.372), indicating 

that longer projects tend to have higher unit prices, potentially because accelerated work schedules 

may require additional resources or overtime pay, leading to unit price inflation (Levy 2006).  

The number of items per project (log(Items)) exhibits a positive relationship (0.155), indicating 

that projects with more line items tend to have higher unit estimates.  

The number of bidders (log(Bids)) shows an insignificant positive coefficient (0.032), which 

contradicts the idea that more competition should reduce prices (Zhang et al. 2023). However, this 

finding is consistent with Model 5’s specification, which includes fixed effects for project type 

and item type. After accounting for differences among project and item types, the remaining 

variation in bidder participation may indicate project attractiveness rather than mere competitive 

pressure. More technically demanding projects within the same category could attract a greater 

number of bidders and require higher estimates.  

The negative coefficient (-0.033) of unemployment rates (UnempRate)) is economically rational, 

because high unemployment generally results in decreased labor costs and greater contractor 

availability, which decreases project estimates (Jiang et al. 2022).  

Establishment counts (log(Estab)) exhibit a significant negative coefficient (-0.050), indicating 

that counties with a higher number of construction experience increased competitive pressure, 

resulting in lower estimates (Jiang et al., 2022).  

Environmental and geographic factors, such as precipitation (Precip) and county area (log(Area)), 

display statistically insignificant effects. This indicates that these variables do not impact 
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engineers’ estimates in model 5, which includes county-level random effects that account for much 

of the geographic and environmental variation typically associated with these variables.  

The construction cost index (log(CCI)) has a significant positive association (9.589), which 

matches expectations that rises in aggregate construction costs result in higher project estimates 

(Zhang et al. 2023).  
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CHAPTER 6. DEVELOPMENT OF A GIS-BASED UNIT PRICE ESTIMATION AND 

VISUALIZATION TOOL 

6.1. INTRODUCTION 

This chapter defines the development of a web-based ArcGIS tool that facilitates easy visualization 

of the unit prices of construction line items. We used ESRI ArcGIS Pro for data visualization 

because of its ability to effectively represent spatial relationships and create time-series maps that 

help access changes in data over time. Thematic mapping and interactive visualization are some 

additional features of ESRI ArcGIS Pro that qualify its use in this project.  

6.2. MAP-BASED INTERFACE TO VISUALIZE PRICE DATA 

Users can access the map-based application using the web address: 

“https://axb9823.uta.cloud/UPEVT/login.php”. The widgets included in the map-based interface 

is shown in Figure 10. 

Figure 10 Features of map-based interface 

The features pointed by red arrows are the widgets of the tool. Each widget is designed to enable 

users to customize the display by selecting the specific information they want to view. Table 17 

provides a concise overview of the widgets and their functionalities. 

https://axb9823.uta.cloud/UPEVT/login.php
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Table 17 Description of widgets in the map-based interface 

Widget Name Description 

Search  This widget helps to find a specific location in the map-based interface. 

Zoom In  This widget helps to zoom in on the map view in the map-based interface. 

Zoom Out  This widget helps to zoom out of the current map view in the map-based interface. 

Home  This widget brings the map view to the initial view extent. 

Locator  This widget helps to find the location of the user. 

Basemap  
This widget allows the user to select the base map to be displayed in the map view of the 

map-based interface. 

Entity 
This widget displays the list of spatial data entities. Users can choose to display or remove 

the entities from the map in the map-based interface.  

Editor  
This widget allows the user to add or edit a slope failure feature in the map-based 

interface. 

Legend  
This widget displays the legends of the spatial data entities which are displayed in the 

map-based interface. 

User Manual This widget allows the user to access the user manual for the map-based interface. 

Table 17 summarizes the key functionalities of various widgets within the map-based interface, 

highlighting their roles in enhancing user interaction and navigation. The widgets that facilitate 

map navigation options are Search, Zoom In, Zoom Out, Home, and Locator. Other widgets enable 

data interaction.  

6.3. USE CASES 

A use case is a set of possible sequences of interactions between a user and a system. The use case 

clearly indicates what action the system takes in as response to what action is taken by the user. A 

use-case diagram is a graphical table of contents for individual use cases and defines a system 

boundary. Figure 11 represents the use case diagram for Unit Price Estimation and Visualization 

Tool (UPEVT).  
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Figure 11 Use case diagram 

Table 18 UC1: Signup 

Actor: User System: UPEVT 

 0.  The browser displays a web page. 

1. The user enters the web address in the address bar 

and presses enter.  

I. URL: 

II. https://axb9823.uta.cloud/UPEVT/register.php

2.  The system displays the signup page which 

prompts the user to sign up for a new account. 

3. The user fills in the information (First Name, Last 

Name, Email address, Password) requested on the 

sign-up page and clicks the Sign-Up button to 

complete the process. 

4. The system sends an email to the user's email 

address for activation of the account. 

5. The user opens the email and clicks the activation 

link to activate the account. 

6. The system registers the user and displays the 

confirmation of registration. 

https://axb9823.uta.cloud/UPEVT/register.php
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Table 19 UC2: Login 

Actor: User System: UPEVT 

 0.  The browser displays a web page. 

1. The user enters the web address in the address bar 

and press enter. 

URL:  

https://axb9823.uta.cloud/UPEVT/login.php

2. The system displays the login page which prompts 

the user to login using a username and password. 

3. The user enters the username and password and 

then clicks the login button. 

4. The system displays  

a. The map-based interface if username and 

password are entered correctly. 

b. The message requesting to recheck inputs if the 

username or password is incorrect. 

5. The user sees the map-based interface or login error 

is displayed. 
 

Table 20 UC3: Search  

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user enters the location on the search bar. 

                                                             

2. The system displays the searched location. 

Table 21 UC4: Return to initial map view extent 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the home button.                                           2. The system returns to the initial map view extent. 

Table 22 UC5: Zoom in and zoom out of the map view 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the zoom-in or zoom-out button. 2. The system zooms in or zooms out in the map view 

of the map-based interface. 

Table 23 UC6: Find the user's location 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

https://axb9823.uta.cloud/UPEVT/login.php?
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1. The user clicks the locator widget.        2. The system displays the location of the user in the 

map-based interface. 

Table 24 UC7: Change basemap 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the base map widget.     2. The system displays the available base maps from 

which the user can make the selection. 

3. The user clicks on the desired base map. 4. The system changes the existing base map to the 

base map selected by the user. 

5. The user clicks on the base map widget. 6. The system closes the expanded base map widget. 

Table 25 UC8: Display spatial data entity 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the entity widget.   

III.

2. The system expands the entity widget and displays 

the list of spatial data entities.  

3. The user clicks on the entity to turn it on and off. 4. The system displays or removes the entity from the 

map view. 

5. The user clicks on the entity widget to close the list 

of entities. 

6. The system closes the expanded entity widget. 

Table 26 UC9: Display the legend of the data entity 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the legend widget.  2. The system displays the legend of the entities 

displayed in the map-based interface. 

Table 27 UC10: Display the user manual 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the legend widget.  2. The system expands the widget and provides the 

user an option to “ click here” to open the user 

manual. 
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3. The user clicks on “click here” to open the user 

manual. 

4. The system opens the user manual. 

Table 28 UC11: Filter Down the Data 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the filter widget.  2. The system expands the widgets and provides 

the user with an option to select item, year, data 

type, and data details. 

3. The user selects the line item, year, data type, 

and details to visualize on the interface. 

4. The system displays engineer’s estimate or unit 

average bid (either average value or values 

with information on quantity) of the selected 

line item in the selected year across Texas 

counties in the map. 

Table 29 UC12: Logout 

Actor: User System: UPEVT 

 0. The system displays the map-based interface. 

1. The user clicks the logout button on the application.                                      2. The system exits the application. 

A comprehensive summary of usermanual is presented in Appendix B. The usermanual provides 

necessary information for users to effectively access, navigate, and use the map-based interface 

for the Unit Price Estimation and Visualization Tool (UPEVT).  
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CHAPTER 7. IMPLEMENTATION OF THE DEVELOPED GIS-BASED 

VISUALIZATION TOOL ON SIX TXDOT PROJECTS 

7.1. INTRODUCTION 

This chapter defines how the GIS-based visualization tool we developed can visualize the unit 

prices of construction line items used in Texas projects via case studies of six projects whose 

estimation details are provided by TxDOT.  

7.2. CASE STUDIES 

This chapter presents the case studies conducted for six different projects in Texas. The research 

team received project cost estimates for six projects from six counties (i.e., Denton County, 

Runnels County, Tarrant County, Midland County, Terrell County, and San Angelo) to develop 

case studies and showcase the successful implementation of the visualization tool in cooperation 

with TxDOT. Each project has a key descriptor called Construction Control Section Job (CCSJ), 

which provides a record of that project in the Design and Construction Information System (DCIS) 

of TxDOT. Thus, we use CCSJ as an identifier for every project. Figure 12 shows the locations 

of the projects for which estimation documents were provided by TxDOT. 

Figure 12 Locations of projects for case studies 
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The goal of conducting case studies is to show the performance of the developed tool. The 

estimated unit price values in project documents are compared with the predicted values of the 

estimates by visualizing historical data using the tool. First, all the available unit price values for 

an item are visualized along with the corresponding quantity. Then, the data is filtered based on 

the project type and the year. For every county in the case study, the research team tried to match 

all information about the item, project type, and time, and analyze unit price values. If data were 

unavailable in the same county, the research team analyzed the values in neighboring counties. 

The following subsections elaborate on the case studies of the projects in detail. 

7.2.1 CASE 1: PROJECT 2054-01-018 

The basic characteristics of the project 2054-01-018 are summarized in Table 30. 

Table 30 Summary of the project 2054-01-018 

CCSJ 

(Construction 

Control 

Section job) 

Location 

Highway 

Name Project Type Let Date 

Number of 

Bidders 
Number of 

Line Items 

Total 

Estimated 

Cost of the 

Project 

2054-01-018 
Denton 

County FM 2164 

HIGHWAY IMPROVEMENT, 

WIDEN ROAD - ADD 

SHOULDERS 

1/8/2025 
5 105 

$10,474,532.26 

We selected three line items and compared their prices with the estimated prices obtained from the 

visualization of the historical data in the tool. We also compared the values with the estimated 

values from the developed models. The values are shown in Table 31.  

Table 31 Comparison of engineer’s estimate of example line items used in the project 2054-01-018 

Item  
Bid 

Quantity  

Actual Bid 

Cost 

TxDOT 

Engineer's 

Estimate Used in 

this Project  

Predicted Value 

of Engineer's 

Estimate using 

the Visualization 

tool  

Predicted 

Engineer's 

Estimate by 

the Statistical 

Model  

Predicted 

Engineer’s 

Estimate by 

ML Model 

1007001: 
EXCAVATION 

(ROADWAY)(CY)  

13224  $17.00  $16.00   $12.00   $13.67   $20.12  

1347004: BACKFILL 

(TY A OR B) (STA)  
361.62  $250  $300.00   $298.30   $304.47   $258  

5057002: TMA 
(MOBILE 

OPERATION))(DAY)  

250  $110.00  $250.00   $250.00   $203.00   $266.03  
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A detailed explanation of the price estimation using the visualization tool is provided in Figures 

13, 14, and 15. 

Figure 13 The estimation of unit price of EXCAVATION (ROADWAY)(CY) for the project 2054-01-018 using the 

GIS-based visualization tool 

The unit price of EXCAVATION (ROADWAY)(CY) wasn’t available for Denton County, so the 

value from the nearest neighboring county, Cooke County (marked by ), was taken. The predicted 

unit price from the tool is $12, while the value used in this project was $16. 

Figure 14 The estimation of unit price of BACKFILL (TY A OR B)(STA) for the project 2054-01-018 using the 

GIS-based visualization tool 
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The unit price of BACKFILL (TY A OR B)(STA) was available for Denton County, but the criteria 

for the project type were not met. Hence, we took the average value, i.e., 298.3$ in that county, 

while the value used in this project was $300.  

Figure 15 The estimation of unit price of TMA (MOBILE OPERATION)(DAY) for the project 2054-01-018 using 

the GIS-based visualization tool 

The unit price of TMA (MOBILE OPERATION)(DAY) wasn't available for Denton County, and 

the criterion for project type wasn’t met. Hence, the average value from the nearest neighboring 

county, Dallas (marked by ), was taken. The unit price is $250, and the value used in this project 

was also $250. 

7.2.2 CASE 2: PROJECT 0907-13-017 

The basic characteristics of the project 0907-13-017 are summarized in Table 32. 

Table 32 Summary of the project 0907-13-017 

CCSJ 

(Construction 

Control Section 

job) 

Location Project Type 
Let 

Date 

Number 

of 

Bidders 

Number 

of Line 

Items 

Total 

Estimated 

Cost of the 

Project 

0907-13-017 
Runnels 

County 

BRIDGE 

REPLACEMENT 
1/8/2025 8 49 $2,664,343.88  
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We selected two line items and compared their prices with the estimated prices obtained from the 

visualization of the historical data in the tool. We also compared the values with the estimated 

values from the developed models. The values are shown in Table 33. 

Table 33 Comparison of engineer’s estimate of example line items used in the project 2054-01-018 

Item  
Bid 

Quantity  

Actual Bid 

Cost 

TxDOT 

Engineer's 

Estimate Used in 

this Project  

Predicted Value 

of Engineer's 

Estimate using 

the 

Visualization 

tool  

Predicted 

Engineer's 

Estimate by 

the 

Statistical 

Model  

Predicted 

Engineer’s 

Estimate by 

ML Model 

5027001: 

BARRICADES, SIGNS 
AND TRAFFIC 

HANDLING (MO)  

22  $5,000  $9,609.00   $10,000.00   $7,542.05   $6,916.91  

1007001: 
EXCAVATION 

(ROADWAY) (CY)  

312  $25  $45.00   $25.00   $25.70   $34.63  

A detailed explanation of the price estimation using the visualization tool is provided in Figures 

16 and 17. 

Figure 16 The estimation of the unit price of BARRICADES, SIGNS AND TRAFFIC HANDLING (MO) for the 

project 0907-13-017 using the GIS-based visualization tool 

The unit price of BARRICADES, SIGNS AND TRAFFIC HANDLING (MO) wasn't available 

for Runnels County. Considering the criteria for project type, time (year), and bid quantity, most 

counties had the value $10,000, so this value was considered as the predicted value, while the 

value used in this project was $9609. 
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Figure 17 The estimation of unit price of EXCAVATION (ROADWAY)(CY) for the project 0907-13-017 using the 

GIS-based visualization tool 

The unit price of EXCAVATION (ROADWAY)(CY) was not available in Runnels County, so the 

unit price value from the nearest neighboring county, Nolan (marked by ), was taken, which is 

$25, while the value used in this project was $45. 

7.2.3 CASE 3: PROJECT 2208-01-071 

The basic characteristics of Project 2208-01-071 are summarized in Table 34. 

Table 34 Summary of the project 2208-01-071 

CCSJ 

(Construction 

Control Section 

job) 

Location Project Type Let Date 

Number 

of 

Bidders 

Number 

of Line 

Items 

Total 

Estimated 

Cost of the 

Project 

2208-01-071 
Tarrant 

County 

BRIDGE 

MAINTAINANCE 
01/08/2025 7 97 $4,810,282 

We selected three line items and compared their prices with the estimated prices obtained from the 

visualization of the historical data in the tool. We also compared the values with the estimated 
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values from the developed models. Table 35 compares price data used in the project with unit 

prices obtained from the tool.  

Table 35 Price comparison of example line items used in the project 2208-01-071  

Item  
Bid 

Quantity  

Actual 

Bid 

Cost 

TxDOT 

Engineer's 

Estimate 

Used in 

this 

Project  

Predicted 

Value of 

Engineer's 

Estimate 

using the 

Visualization 

tool  

Predicted 

Engineer's 

Estimate 

by the 

Statistical 

Model  

Predicted 

Engineer’s 

Estimate 

by ML 

Model 

4027001: TRENCH EXCAVATION 

PROTECTION(LF) 
390 $25  $22.00  $25.00  $14  $23.72  

1687001: VEGETATIVE WATERING 

(MG) 
562 $60  $26  $23.75  $23  $28.98  

5057001: TMA (STATIONARY) (DAY) 16 $150  $175.00  $250.00  $182  $194.56  

A detailed explanation of the price estimation using the visualization tool is provided in Figures 

18, 19, and 20. 

Figure 18 The estimation of unit price of TRENCH EXCAVATION PROTECTION(LF) for the project 2208-01-

071 using the GIS-based visualization tool 

The unit price of TRENCH EXCAVATION PROTECTION(LF) wasn't available in Tarrant 

County, so the value from the nearest neighboring county, Grayson County (marked by ), was 

taken, which is $25, while the value used in this project was $22. 



74 

 

 

 

Project 0-7184  UT Arlington 

 

Figure 19 The estimation of unit price of VEGETATIVE WATERING (MG) for the project 2208-01-071 using the 

GIS-based visualization tool 

The unit price of VEGETATIVE WATERING (MG) wasn't available in Tarrant County, so the 

nearest neighboring county, Dallas, was considered as a reference for price estimation. There were 

two values in Dallas, so the average value ($23.75) was taken (marked by ). The value used in 

this project was $26. 

Figure 20 The estimation of unit price of TMA STATIONARY(DAY) for the project 2208-01-071 using the GIS-

based visualization tool 
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The unit price of TMA STATIONARY(DAY) was available on Tarrant County, which is $250. 

However, since this unit price value isn’t for the year 2020 and the bid quantity 16 or around 16, 

it is more than the estimate used in the project which was $175. 

7.2.4 CASE 4: PROJECT 0380-09-104 

The basic characteristics of Project 0380-09-104 are summarized in Table 36. 

Table 36 Summary of the project 0380-09-104 

CCSJ (Construction 

Control Section job) 
Location Project Type Let Date 

Number of 

line items 

Total Estimated 

Cost of the Project 

0380-09-104 
Midland 

County 
OVERLAY 

to be let in 

Sep 2025 
74 $7,890,199.35 

It is to be noted that the project hasn’t been let yet. However, we can still compare the unit prices 

of this project with the latest price data (end of 2024, if available) in the tool and with the estimated 

values by the statistical and machine learning models. Table 37 shows some examples of 

comparisons of unit prices.  

Table 37 Price comparison of example line items used in the project 0380-09-104 

Item  
Bid 

Quantity  

Actual 

Bid Cost 

TxDOT 

Engineer's 

Estimate 

Used in this 

Project  

Predicted 

Value of 

Engineer's 

Estimate 

using the 

Visualization 

tool  

Predicted 

Engineer's 

Estimate 

by the 

Statistical 

Model  

Predicted 

Engineer’s 

Estimate 

by ML 

Model 

1347002: BACKFILL (TY B) 

(STA)  
266  $635  $175   $282.50   $261.82   $244.43  

5027001: BARRICADES, SIGNS 

AND TRAFFIC HANDLING 

(MO)  

7  $13,600  $15,000   $15,000   $12,483   $9,433.57  

5057001: TMA (STATIONARY) 

(DAY)  
236  $165  $200   $250.00   $202.60   $204.22  

5057003: TMA (MOBILE 

OPERATION) (DAY)  
60  $935  $300   $254.18   $569.75   $272.35  

A detailed explanation of the price estimation using the visualization tool is provided in Figures 

21, 22, 23, and 24. 
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Figure 21 The estimation of unit price BACKFILL (TY B)(STA) for the project 0380-09-104 using the GIS-based 

visualization tool 

The unit price of BACKFILL (TY B)(STA) wasn't available for Midland County, and the criterion 

for project type wasn’t met. Hence, the average value from the nearest neighboring county, Ector 

(marked by ), was taken. The unit price value is $282.5, while the value used in this project was 

$175. 

Figure 22 The estimation of unit price BARRICADES, SIGNS AND TRAFFIC HANDLING(MO) for the project 

0380-09-104 using the GIS-based visualization tool 
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The unit price of BARRICADES, SIGNS AND TRAFFIC HANDLING(MO) wasn't available for 

Midland County, and the criterion for project type wasn’t met. Hence, the average value from the 

nearest neighboring county, Ector (marked by ), was taken. The unit price value is $15000, and 

the value used in this project was also $15000. 

Figure 23 The estimation of unit price TMA (STATIONARY)(DAY) for the project 0380-09-104 using the GIS-

based visualization tool 

The unit price of TMA (STATIONARY)(DAY) wasn't available for Midland County, and the 

criterion for project type wasn’t met. Hence, the average value from the nearest neighboring 

county, Scurry (marked by ), was taken. The unit price value is $250, while the value used in this 

project was $200. 
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Figure 24 The estimation of unit price TMA (MOBILE OPERATION)(DAY) for the project 0380-09-104 using the 

GIS-based visualization tool 

The unit price of TMA (MOBILE OPERATION)(DAY) wasn't available for Midland County, and 

the criterion for project type wasn’t met. Hence, the average value from the nearest neighboring 

county, Ector (marked by ), was taken. The unit price value is $254.18, while the value used in 

this project was $300. 

7.2.5 CASE 5: PROJECT 0022-01-034 

The basic characteristics of the project 0022-01-034 are summarized in Table 38. 

Table 38 Summary of the project 0022-01-034 

CCSJ (Construction 

Control Section job) 
Location Project Type Let Date 

Number of 

Line Items 

Total Estimated Cost of the 

Project 

0022-01-034 
Terrell 

County 

BRIDGE 

REPLACEMENT 
January 2026 34 $8,776,758 

Table 38 shows that the project will be let in 2026, so we don’t have actual price data to use as a 

comparison reference in the tool. However, we can use the latest values for comparison (price data 

for 2024, if available). We also don’t have actual bid price data.Table 39 shows examples of 

comparing the price data used in the project with the values estimated using the tool. We also 

compared the values with the estimated values from the developed models. 



79 

 

 

 

Project 0-7184  UT Arlington 

 
Table 39 Price comparison of example line items used in the project 0022-01-034 

Item  
Bid 

Quantity  

TxDOT 

Engineer's 

Estimate Used 

in this Project  

Predicted Value 

of Engineer's 

Estimate using 

the Visualization 

Tool  

Predicted 

Engineer's 

Estimate by 

the Statistical 

Model  

Predicted 

Engineer’s 

Estimate by 

ML Model 

5027001: BARRICADES, SIGNS 

AND TRAFFIC HANDLING(MO)  
15  $20,000   $10,000   $19,387   

$6621.42 

5057001: TMA (STATIONARY) 

(DAY)  
440  $280   $250   $281   

$265.40 

5057003: TMA (MOBILE 

OPERATION) (DAY)  
16  $500   $350  $343   

$297.77 

1007001: EXCAVATION 

(ROADWAY)(CY)  
890  $20   $30   $16   

$22.22 

A detailed explanation of the price estimation using the visualization tool is provided in Figures 

25, 26, 27, and 28. 

Figure 25 The estimation of unit price BARRICADES, SIGNS AND TRAFFIC HANDLING(MO) for the project 

0022-01-034 using the GIS-based visualization tool 

The unit price of BARRICADES, SIGNS AND TRAFFIC HANDLING(MO) wasn't available for 

Terrell County. Hence, the value from the nearest neighboring county, Dallas (marked by ), was 

used as a reference for estimation. The value is $10,000, while the value used in this project was 

$20000. 
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Figure 26 The estimation of unit price TMA (STATIONARY)(DAY) for the project 0022-01-034 using the GIS-

based visualization tool 

The unit price of TMA (STATIONARY)(DAY) wasn't available for Terrell County. Hence, the 

value from the nearest neighboring county, Navarro (marked by ), was used as a reference for 

estimation. The value is $250, while the value used in this project was $280. 

Figure 27 The estimation of unit price TMA (MOBILE OPERATION)(DAY) for the project 0022-01-034 using the 

GIS-based visualization tool 
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The unit price of TMA (MOBILE OPERATION)(DAY) wasn't available for Terrell County. 

Hence, the value from the nearest neighboring county, Rockwall (marked by ), was used as a 

reference for estimation. This county was selected among all the neighboring counties because of 

the similarity in bid quantity used in the project. The value is $350, while the value used in this 

project was $500. 

Figure 28 The estimation of unit price EXCAVATION (ROADWAY)(CY) for the project 0022-01-034 using the 

GIS-based visualization tool 

The unit price of EXCAVATION (ROADWAY)(CY) was available for Terrell County. However, 

the quantity match wasn’t exact, so the value from the tool was more than the one used in this 

project. We tried to adjust the price for the quantity, but the relationship between the price and the 

quantity wasn’t consistent when we analyzed price data in other counties. Hence, we used the 

value $30, while the value used in this project was $20. 
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7.2.6 CASE 6: PROJECT 6435-42-001 

The basic characteristics of Project 6435-42-001 are summarized in Table 40. 

Table 40 Summary of the project 6435-42-001 

CCSJ (Construction 

Control Section job) 
Location Project Type Let Date 

Number of 

Line Items 

Total Estimated 

Cost of the 

Project 

6435-42-001 San Angelo 

Culvert 

Lengthening and 

Replacement 

2025 46 $456,935  

Table 40 shows that the project was let in 2025, so we don’t have actual price data to use as a 

comparison reference in the tool. However, we can use the latest values for comparison (price data 

for 2024, if available).  We also don’t have bid price data available. Table 41 shows examples of 

comparing the price data used in the project with the values estimated using the tool. 

Table 41 Price comparison of example line items used in the project 6435-42-001 

Item 
Bid 

Quantity 

Predicted Value of 

Engineer's Estimate 

using the 

visualization tool 

TxDOT 

Engineer's 

Estimate Used in 

this Project 

Predicted 

Engineer's 

Estimate by 

the Statistical 

Model 

Predicted 

Engineer’s 

Estimate 

by ML 

Model 

4027001: TRENCH 

EXCAVATION 

PROTECTION (LF) 

28 $45.57  $50  $56  

$52.88 

5057001: TMA 

STATIONARY (DAY) 
9 $280  $300  $299  

$269.63 

A detailed explanation of the price estimation using the visualization tool is provided in Figures 

29 and 30. 
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Figure 29 The estimation of unit price TRENCH EXCAVATION PROTECTION (LF) for the project 6435-42-001 

using the GIS-based visualization tool 

The unit price of TRENCH EXCAVATION PROTECTION (LF) wasn't available for San Angelo. 

Hence, the value from the nearest neighboring county was used as a reference for estimation. The 

value is $45.57. 

Figure 30 The estimation of unit price TMA STATIONARY (DAY) for the project 6435-42-001 using the GIS-based 

visualization tool 

The unit price of TMA STATIONARY (DAY) was available for San Angelo, so we estimated the 

value $280, while the value used in this project was $300. 
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CHAPTER 8. TECHNOLOGY TRANSFER  

8.1. INTRODUCTION 

Technology transfer refers to the formal handover of the developed web-based visualization tool 

and the unit price estimation models to the Texas Department of Transportation (TxDOT). This 

chapter describes the delivered components of the GIS-based visualization tool and the models, 

along with the procedures and considerations necessary for their successful implementation on a 

cloud platform or a computing environment. 

8.2. DELIVERED COMPONENTS OF THE DEVELOPED GIS-BASED TOOL AND 

MODELS 

This section details the codebase and files that were handed over to TxDOT for the successful 

implementation of the GIS-based visualization tool and the models.  

8.2.1. DELIVERED COMPONENTS OF THE GIS-BASED TOOL 

The tool facilitates the visualization of the unit price of construction line items, illustrated for the 

data collected from TxDOT projects (2022 to 2024). The tool allows users to filter the unit price 

based on different criteria related to the line items (such as quantity). Since the tool is GIS-based, 

the database is submitted as a geodatabase file (GIS_Data.gdb). Then, the codebase for developing 

the tool was zipped into a file (0-7184_webapp_ historical_price_code.zip) and handed over to 

TxDOT.  

8.2.2. DELIVERED COMPONENTS OF ESTIMATION MODELS 

Machine learning models (DNN models and Ensemble models) and statistical models (Mixed-

effects Models) were developed for estimating the unit prices and illustrated for estimating the top 

8 most commonly used construction line items for the past two years (2022 to 2024). The 

components of the developed models include a database, codebase, and files with predicted values. 

There are two different folders for each machine learning model (DNN and Ensemble models). In 

each folder, there are nine folders where the database, codebase, and prediction files are saved. 

Similarly, for the statistical models (Mixed-effects Model), the database, codebase, and prediction 

file are saved under the folder for the mixed-effects model.  
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Delivered Database of Estimation Models 

A dataset (final_df_8.xlsx) containing the top 8 most commonly used construction line items was 

created, which is a subset of the 2-year dataset (1_dataset.xlsx). Both of these Excel files were 

transferred, while the one used for developing both the machine learning models and statistical 

models is the dataset for the top eight line items (final_df_8.xlsx). 

 Delivered Codebase and Generated Prediction of Machine Learning Models 

The codebase (in Python) and prediction files (in Excel) were provided for all eight line items for 

each model. For running the model for each item, a Python file (.ipynb) was handed over. Then, a 

Keras file was handed over for saving the model in a Python file. Finally, the saved predicted 

values were provided in an Excel file (.xlsx) for each model. 

Delivered Codebase and Generated Prediction of the Mixed Effects Model 

For preparing the database before running the model in STATA, a codebase 

(prep_regression_data.do) was handed over. Then, another STATA code 

(mixed_effect_model.do) was provided for running the model. This code generates seven models, 

and model 5 is concluded to be the best model among those models. Hence, for generating 

prediction values, model 5 was used. A codebase (model5_prediction_eng_est.do) for generating 

the predicted values and an Excel file (model5_predictions_eng_est.xlsx) with the saved predicted 

values were handed over. 

8.3. PROCEDURES AND CONSIDERATIONS FOR THE IMPLEMENTATION OF THE 

DEVELOPED GIS-BASED TOOL 

This section details the steps to be followed for the integration of the tool into a cloud platform 

and for running the model in a computing environment.  

8.3.1. STEPS FOR INTEGRATION OF THE GIS-BASED TOOL  

The following steps detail the measures to be followed for the integration of the tool into the 

TxDOT cloud platform: 

• Open the folder (GIS_Data.gdb) in ArcGIS Pro and upload the geodatabase file (GIS_data) 

into the folder. Then, share the uploaded layer as a feature layer in ArcGIS Online. The 

folder (GIS_Data.gdb) has 50 companion files.  
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• Unzip the file (0-7184_webapp_ historical_price_code.zip) and upload it to the TxDOT 

cloud platform. In the zipped files, there are CSS files, PHP files, and an HTML file (with 

JavaScript). The CSS files help with the design of the web interface layout. The PHP files 

control the registration of user accounts and their login to and logout from the app. The 

HTML file has a script container that houses most of the display codes and links to the 

ArcGIS Online web layer. The link should be updated to point to the web layer created in 

the previous step. 

8.3.2. STEPS FOR RUNNING MACHINE LEARNING MODELS  

There are two separate folders for two machine learning models (DNN Model and Ensemble 

Models). Each folder has a codebase for all eight line items, including a multi-task model. All the 

files follow consistent naming, so the steps to run the model are the same for all the items for both 

models. The following steps detail the measures to be followed for running the machine learning 

models for one of the line items: EXCAVATION.  

• A dataset with the top 8 most common line items (final_df_8.xlsx) should be 

developed, which is a subset of the 2-year dataset (1_dataset.xlsx). However, since both 

of these files are provided, one can directly use the dataset (final_df_8.xlsx) for running 

the model. 

• Run the model with Python code (Excavation.ipynb). 

• Save the model in a Python file (Excavation.keras). 

• Save the prediction values in an Excel file (excavation_eng_est_predictions.xlsx). 

8.3.3. STEPS FOR RUNNING MIXED-EFFECTS MODELS  

The following steps detail the measures to be followed for running the mixed-effects model. 

• A dataset with the top 8 most common line items (final_df_8.xlsx) should be developed, 

which is a subset of the 2-year dataset (1_dataset.xlsx). However, since both of these files 

are provided, one can directly use the dataset (final_df_8.xlsx) for running the model. 

• Prepare data for modeling with STATA codes (prep_regression_data.do). 
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• Run the model with STATA codes (mixed_effect_model.do). This code develops seven 

statistical models. 

• Generate predicted values for model 5 with STATA codes 

(model5_prediction_eng_est.do). Save the predicted values in an Excel file 

(model5_predictions_eng_est.xlsx). We selected model 5 as the best model since it has the 

least AIC (Akaike Information Criterion) value. 

8.4. TECHNICAL DOCUMENTATION  

This subsection summarizes the documentation provided to guide the users to implement and use 

the developed GIS-based visualization tool and to run the models. A presentation (0-

7184_June2025_Tool_Transfer_Meeting_Final.pptx) was prepared and handed over, where the 

names of the delivered files are clearly mentioned along with the overview of the steps to be 

followed for implementation. Moreover, Educational Material (0-7184_April2025_EM.pptx), 

Video Training Material (0-7184_April2025_VTM.mp4), and User manual (0-

7184_April2025_Usermanual.docx) were developed for TxDOT staff to learn how to estimate the 

unit price of each work item, visualize unit prices, and analyze the results using the GIS-based 

visualization tool.  
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CHAPTER 9. SUMMARY AND CONCLUSION 

The goal of this project (TxDOT 0-7184) was to develop spatiotemporal models for estimating 

unit prices of construction line items for TxDOT projects and create a Unit Price Estimation and 

Visualization Tool (UPEVT) to visualize unit price data across Texas counties. 

The unit price of a work item is heavily affected by various project-specific and external factors, 

including but not limited to the project location, quantity of the work, project duration, time factors, 

site conditions, market conditions, and macroeconomic conditions. Moreover, unit prices of work 

items are subject to significant variations from project to project and over time. Hence, firstly, the 

identification of potential factors that affect unit prices is necessary, and it was achieved through 

a literature review. The practices and recommendations from several State Departments of 

Transportation (State DOTs) regarding adjusting unit prices considering various factors were 

reviewed as well. Texas Department of Transportation (TxDOT) recommends adjusting unit prices 

for work quantity, project type, site conditions, and inflation, but hasn’t mentioned clearly their 

process for adjusting the unit prices. 

After identifying potential factors that affect unit prices, data were collected from publicly 

available sources. The unit price data were collected for about two years (March 4, 2022, to 

September 25, 2024), and other data from publicly available resources were created in the same 

timeframe. Then, a database was created by merging all the collected data. A collection of data 

from each data source is briefly explained in this report. 

Machine learning models (DNN models and Ensemble models) were developed and illustrated for 

estimating the unit prices of the top eight commonly used construction line items using two years 

of data (March 2022 to September 2024). The modeling process involved data preprocessing, 

incorporation of external factors, feature extraction, and training both individual and multi-task 

models using DNN and Ensemble architectures. The last three months of the dataset were reserved 

for testing, while the remaining data was used for training to ensure a realistic evaluation of model 

performance. Results showed that DNN models generally offered better generalization for those 

line items with stable or less complex patterns, while Ensemble models may better capture 

temporal dependencies where such patterns exist. Overall, the models provided accurate and robust 
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estimation tools based on the available two-year dataset. Since machine learning models heavily 

rely on the data used during training, expanding the dataset with more historical records, broader 

project coverage, and greater variability could further enhance model performance. TxDOT could 

benefit even more from these models by fine-tuning them with a larger and more diverse dataset. 

Statistical models (Mixed-effects Model) were developed for estimating the unit prices of the top 

eight commonly used construction line items using two years of data (March 2022 to September 

2024). The mixed-effects models successfully addressed the multidimensional aspects of the 

heterogeneity involved in the dataset by utilizing both population-level fixed effects and group-

specific random effects and produced more precise predictions. Reliable predictions from mixed-

effects models could be observed via case studies. However, the models were developed with only 

two years of data, so the model performance could be improved with an expanded dataset covering 

more line items, projects, counties, and historical records.   

A GIS-based Unit Price Estimation and Visualization Tool (UTEVT) was developed to visualize 

unit prices of construction line items across Texas counties. Spatial data such as unit price, 

quantity, and the Texas county map were collected and stored in a geodatabase. Two years of 

historical unit price data were visualized using the tool. TxDOT determines unit prices of pay items 

using the historical bid-based estimation method and then develops an engineer’s project appraisal. 

The historical value of an engineer's estimate is used to assess the bids and select the bidder. 

Therefore, this tool can help users access historical values in an efficient way. Moreover, a user 

manual can be accessed through the tool for users to be able to understand the functions of the tool 

easily.  

To demonstrate the application of the developed GIS-based visualization tool, case studies of six 

projects from different Texas counties were conducted. Since the projects were of different types 

and let in different counties, the research team could demonstrate the use of the developed tool to 

analyze and estimate unit prices in different scenarios. In many cases, all criteria for quantity of 

work item, county, project type, and time couldn’t be satisfied. Even so, reasonable estimates could 

be achieved based on the nearby/relatable criteria.  
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In addition to the usual manual, Educational Material (EM) and Video Training Material (VTM) 

were created to help potential users learn how to estimate the unit price of each work item, visualize 

unit prices, and analyze the results data using the GIS-based visualization tool. A PowerPoint 

presentation was provided as the EM, and a video was provided as the VTM. These materials 

helped document the process of estimating unit prices using the developed GIS-based visualization 

tool. 

Finally, the tool and the developed model, database, codebase, and other files were transferred to 

TxDOT. The components of the delivered products (a tool and models) and their integration and 

computation procedures were thoroughly documented and presented.  

It is expected that this research project’s findings will assist TxDOT engineers and managers in 

decision-making by considering various factors that potentially affect unit prices in estimating unit 

prices. Moreover, the visualization of unit prices using the GIS-based tool will help them visually 

access price values in developing estimates.  
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APPENDIX A 

Figure A1: Bid information for TxDOT engineer’s estimate and bidders’ estimate 

Note: TxDOT illustrates bidding information on projects statewide and districtwide along with TxDOT Engineer’s 

Estimate for the past 24 months on the Bid Tabulations dashboard (Workbook: Bid Tabulations (Txdot.Gov) v3.0, 

2025). 

 

Figure A2: Bid Tabulations dashboard showing details on project type 

Note: The Bid Tabulations dashboard displays information on project type under the “PROJECT CLASS” heading.  
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Figure A3: Bid Tabulations dashboard showing details on project duration 

Note: The Bid Tabulations dashboard also displays information on project duration.  

 
Figure A4: Bid Tabulations dashboard showing details on bid quantity 

Note: The Bid Tabulations dashboard also displays information on bid quantity 



93 

 

 

 

Project 0-7184  UT Arlington 

 

 
Figure A5: Real Gross Domestic Product of Dallas County in the year 2022 as shown by US Bureau of Labor 

Statistics  

Note: The US Bureau of Labor Statistics provides data on the Gross Domestic Product.  

 
Figure A6: U.S. Total Construction Spending data monthly from 2018 to 2024 as published by United States 

Census Bureau 

Note: United States Census Bureau publishes monthly data on construction spending from January 2002. 
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Figure A7: Monthly crude oil price of West Texas Intermediate 

Note: U.S. Energy Information Administration publishes monthly data on West Texas 

Intermediate (WTI). 

Figure A8: Quarterly value of National Highway Construction Cost Index 

Note: The US Bureau of Transportation Statistics publishes the quarterly value of the National Highway 

Construction Cost Index (NHCCI).  
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Figure A9: Mean monthly precipitation over Texas counties for September 2024 

Note: The National Centers for Environmental Information, NOAA publishes precipitation data for different 

granularities of time and space. 

Figure A10: US Census Bureau with annual estimates of the resident population  



96 

 

 

 

Project 0-7184  UT Arlington 

 
Note: Clicking on the any one of the states directly downloads annual population data for all the counties in that 

state. 

 
Figure A11: Federal Reserve website for collecting data on monthly prime loan rate  

Note: The Board of Governors of the Federal Reserve System publishes data on weekly, monthly, or annual Prime 

Bank Loan Rate (PLR).  

 
Figure A12: Unemployment rate of Texas counties in January 2024 

Notes: The US Bureau of Labor Statistics (BLS) publishes the unemployment rate from 1990 to the present. 
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Figure A13: Consumer Price Index (CPI) for Urban Wage Earners and Clerical Workers (CPI-W) monthly from 

2022 to 2025 

Note: U.S. Bureau of Labor Statistics publishes monthly data on CPI from 1974. 

Figure A14: Quarterly data of establishment counts across Texas counties 

Note: U.S. Bureau of Labor Statistics publishes quarterly data on CPI from 2001. 
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Figure A15: Bid Tabulations dashboard showing details on project length 

Figure A16: Bid Tabulations dashboard showing details on number of bidders 
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APPENDIX B 

Figure B1: Account registration and sign up process for the developed tool 

Figure B2: Layout window and description of the widgets in the developed tool 
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Figure B3: Filter widget details 

Figure B4: Search or select item function using the Filter widget 
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Figure B5: Functions for selecting project type and year using the Filter widget 

Figure B6: Functions for selecting data type and data details using the Filter widget 
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Figure B7: Visualization of unit prices of a line item across Texas counties for demonstrating the value of the 

project for unit price visualization 

Figure B8: Demonstration of the tool use for estimating the unit price of a construction line item 



103 

 

 

 

Project 0-7184  UT Arlington 

 

 

REFERENCES 

Abd, A. M., Kareem, Y. A., and Zehawi, R. N. (2024). Prediction and Estimation of Highway 

Construction Cost Using Machine Learning. Engineering, Technology Applied Science Research, 

14(5):17222–17231. 

Ahmadi, N., and Shahandashti, M. (2020), Characterizing Construction Demand Surge Using 

Spatial Panel Data Models, Natural Hazards Review, ASCE, 21(2), 04020008. 

Ahmed, S., & Arocho, I. (2021). Analysis of cost comparison and effects of change orders during 

construction: Study of a mass timber and a concrete building project. Journal of Building 

Engineering, 33, 101856. 

Al-Tabtabai, H., Alex, A. P., & Tantash, M. (1999). Preliminary Cost Estimation of Highway 

Construction Using Neural Networks. Cost Engineering, 41(3), 19. 

Ashuri, B., Baek, M., & Li, M. (2022). Enhancing the Accuracy of Construction Cost Estimates 

for Major Lump Sum (LS) Pay Items and Generating a More Accurate List of Pay Items throughout 

the Design Development Process (No. FHWA-GA-22-2017). Georgia. Department of 

Transportation. Office of Performance-Based Management & Research. 

Ashuri, B., Shahandashti, S. M., and Lu, J. (2012), Empirical Tests for Identifying Leading 

Indicators of ENR Construction Cost Index, Construction Management and Economics, Taylor & 

Francis, 30(11), 917-927.  

Ashworth, A., & Perera, S. (2015). Cost Studies of Buildings (0 ed.). Routledge. 

https://doi.org/10.4324/9781315708867 

Awuku, B., Asa, E., & Baffoe-Twum, E. (2022). Conceptual cost estimation of highway bid unit 

prices using ordinary kriging. International Journal of Construction Management, 1–10. 

https://doi.org/10.1080/15623599.2022.2156844 

Baek, M. and Ashuri, B. (2019). Analysis of the variability of submitted unit price bids for asphalt 

line items in highway projects. Journal of construction engineering and management, 

145(4):04019020. 



104 

 

 

 

Project 0-7184  UT Arlington 

 

 

Baek, M., & Ashuri, B. (2018a). Assessment of spatial correlation patterns of unit price bids and 

external factors. Proc., 54th Associated Schools of Construction (ASC) Annual Int. Conf, 18–21. 

Baek, M., & Ashuri, B. (2018b). Profile Monitoring for Examining Impact of Hurricane Katrina 

and Rita on Highway Construction Cost. Transportation Research Record: Journal of the 

Transportation Research Board, 2672(51), 79–87. https://doi.org/10.1177/0361198118777619 

Bhargava, A., Labi, S., Chen, S., Saeed, T. U., & Sinha, K. C. (2017). Predicting cost escalation 

pathways and deviation severities of infrastructure projects using risk‐based econometric models 

and Monte Carlo simulation. Computer‐Aided Civil and Infrastructure Engineering, 32(8), 620–

640. 

Board of Governors of the Federal Reserve System (U.S.). (n.d.). Bank Prime Loan 

Rate [MPRIME]. Retrieved July 11, 2025, from Federal Reserve Bank of St. Louis: 

https://fred.stlouisfed.org/series/MPRIME 

Cao, Y., Ashuri, B., & Baek, M. (2018). Prediction of unit price bids of resurfacing highway 

projects through ensemble machine learning. Journal of Computing in Civil Engineering, 32(5), 

04018043. 

Chauhan, N. K., & Singh, K. (2018, September). A review on conventional machine learning vs 

deep learning. In 2018 International conference on computing, power and communication 

technologies (GUCON) (pp. 347-352). IEEE. 

Cheng, Y. M. (2014). An exploration into cost-influencing factors on construction projects. 

International Journal of Project Management, 32(5), 850-860. 

Choi, C-Y., Ryu, K.R., and Shahandashti, M. (2021), Predicting City-level Construction Cost 

Index using Linear Forecasting Models, Journal of Construction Engineering and Management, 

ASCE, 147(2), 04020158. 

Chou, J. S., & Lin, C. (2013). Predicting disputes in public-private partnership projects: 

Classification and ensemble models. Journal of Computing in Civil Engineering, 27(1), 51-60. 

https://fred.stlouisfed.org/series/MPRIME


105 

 

 

 

Project 0-7184  UT Arlington 

 

 

Cirilovic, J., Vajdic, N., Mladenovic, G., & Queiroz, C. (2014). Developing cost estimation models 

for road rehabilitation and reconstruction: Case study of projects in Europe and Central Asia. 

Journal of Construction Engineering and Management, 140(3), 04013065. 

Danisworo, B., & Latief, Y. (2019). Estimation model of Jakarta MRT phase 1 project cost overrun 

for the risk based next phase project funding purpose. IOP Conference Series: Earth and 

Environmental Science, 258, 012049. https://doi.org/10.1088/1755-1315/258/1/012049 

Dietterich, T. G. 2000. “Ensemble methods in machine learning.” In Proc., Int. Workshop on 

Multiple Classifier Systems, 1–15. Berlin: Springer. 

Dong, R., Muhammad, A., and Nauman, U. (2025). The influence of weather conditions on time, 

cost, and quality in successful construction project delivery. Buildings, 15(3):474. 

Emsley, M. W., Lowe, D. J., Duff, A. R., Harding, A., & Hickson, A. (2002). Data modelling and 

the application of a neural network approach to the prediction of total construction 

costs. Construction Management & Economics, 20(6), 465-472. 

Engineering News-Record. (n.d.). Engineering News-Record. ENR. https://www.enr.com/ 

Gardner, B. J., Gransberg, D. D., & Jeong, H. D. (2016). Reducing data-collection efforts for 

conceptual cost estimating at a highway agency. Journal of Construction Engineering and 

Management, 142(11), 04016057. 

Ghimire, P., Pokharel, S., Kim, K., and Barutha, P. (2023). Machine learning-based pre- diction 

models for budget forecast in capital construction. In Proceedings of the 2nd International 

Conference on Construction, Energy, Environment & Sustainability, Funchal, Portugal, pages 27–

30. 

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). 

Cambridge: MIT press. 

Han, T., Siddique, A., Khayat, K., Huang, J., & Kumar, A. (2020). An ensemble machine learning 

approach for prediction and optimization of modulus of elasticity of recycled aggregate 

concrete. Construction and Building Materials, 244, 118271. 

https://www.enr.com/


106 

 

 

 

Project 0-7184  UT Arlington 

 

 

Hannan, A., Ahmed, A., Ashraf, T., & Bai, Q. (2016). Estimation of highway project cost using 

probabilistic technique. DEStech Transactions on Engineering and Technology Research. 

Hegazy, T., & Ayed, A. (1998). Neural network model for parametric cost estimation of highway 

projects. Journal of construction engineering and management, 124(3), 210-218. 

Hyari, K. H., Al-Daraiseh, A., & El-Mashaleh, M. (2016). Conceptual Cost Estimation Model for 

Engineering Services in Public Construction Projects. Journal of Management in Engineering, 

32(1), 04015021. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000381 

Idaho Transportation Department (2019). Construction Cost Estimating Guide. Idaho 

Transportation Department. Published online; includes monthly equipment-rental and cost 

calculations. 

Indiana Department of Transportation (2020). Chapter 20: Cost Estimating. Indiana De- partment 

of Transportation. Refer to the chapter in the Indiana Design Manual. 

Jiang, F., Awaitey, J., and Xie, H. (2022). Analysis of construction cost and investment planning 

using time series data. Sustainability, 14(3):1703. 

Karaca, I., Gransberg, D. D., and Jeong, H. D. (2020). Improving the accuracy of early cost 

estimates on transportation infrastructure projects. Journal of Management in Engineering, 

36(5):04020063. 

Khodahemmati, N., and Shahandashti, M. (2020), Diagnosis and Quantification of Post-Disaster 

Construction Material Cost Fluctuations, Natural Hazards Review, ASCE, 21(3), DOI: 

10.1061/(ASCE)NH.1527-6996.0000381. 

Kim, S., & Shahandashti, M. (2023). Examining Pipe Cost Changes after Various Disasters in Los 

Angeles, California. In Pipelines 2023 (pp. 481-491). 

Kim, S., Abediniangerabi, B., and Shahandashti, M. (2020). Forecasting pipeline construction 

costs using time series methods. In Pipelines 2020, pages 198–209. American Society of Civil 

Engineers Reston, VA. 

https://doi.org/10.1061/(ASCE)ME.1943-5479.0000381


107 

 

 

 

Project 0-7184  UT Arlington 

 

 

Kim, S., Choi, C.-Y., Shahandashti, M., and Ryu, K. R. (2022). Improving accuracy in predicting 

city-level construction cost indices by combining linear arima and nonlinear anns. Journal of 

Management in Engineering, 38(2):04021093. 

Kim, S., Makhmalbaf, A., and Shahandashti, M. (2024), Forecasting the Architecture Billing Index 

(ABI) using Machine Learning Prediction Models, Engineering, Construction, and Architectural 

Management, Emerald, DOI: 10.1108/ECAM-06-2023-0544. 

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 

pages 963–974. 

Le, C., Le, T., Jeong, H. D., and Lee, E.-B. (2019). Geographic information system–based 

framework for estimating and visualizing unit prices of highway work items. Journal of 

Construction Engineering and Management, 145(8):04019044. 

Levy, S. M. (2006). Project Management in Construction (McGraw-Hill Professional Engi- 

neering). McGraw-Hill Professional. 

Mahdavian, A., Shojaei, A., Salem, M., Yuan, J. S., and Oloufa, A. A. (2021). Data-driven 

predictive modeling of highway construction cost items. Journal of Construction Engineering and 

Management, 147(3):04020180. 

Massaoudi, M., Abu-Rub, H., Refaat, S. S., Chihi, I., & Oueslati, F. S. (2021). Deep learning in 

smart grid technology: A review of recent advancements and future prospects. IEEE Access, 9, 

54558-54578. 

Meharie, M. G., Mengesha, W. J., Gariy, Z. A., & Mutuku, R. N. (2022). Application of stacking 

ensemble machine learning algorithm in predicting the cost of highway construction 

projects. Engineering, Construction and Architectural Management, 29(7), 2836-2853. 

Meng, C., Qu, D., and Duan, X. (2024). Cost estimation of metro construction projects using 

interpretable machine learning. Journal of Computing in Civil Engineering, 38(6):04024038. 

Meteyard, L. and Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in 

psychological science. Journal of Memory and Language, 112:104092. 



108 

 

 

 

Project 0-7184  UT Arlington 

 

 

Mohamed, B., & Moselhi, O. (2022). Conceptual estimation of construction duration and cost of 

public highway projects. J. Inf. Technol. Constr, 27(29), 595-618. 

Morabito, F. C., et al. 2017. “Deep learning representation from electroencephalography of early-

stage Creutzfeld-Jakob disease and features for differentiation from rapidly progressive dementia.” 

Int. J. Neural Syst. 27 (2): 1650039. https://doi.org/10.1142/S0129065716500398.  

Musarat, M. A., Alaloul, W. S., & Liew, M. S. (2021). Impact of inflation rate on construction 

projects budget: A review. Ain Shams Engineering Journal, 12(1), 407–414. 

National Centers for Environmental Information. (n.d.). National Centers for Environmental 

Information. National Oceanic and Atmospheric Administration. Retrieved July 11, 2025, from 

https://www.ncei.noaa.gov/ 

Nyitrai, T., & Virág, M. (2019). The effects of handling outliers on the performance of bankruptcy 

prediction models. Socio-Economic Planning Sciences, 67, 34-42. 

Ortega-Zamorano, F., Jerez, J. M., Gómez, I., & Franco, L. (2017). Layer multiplexing FPGA 

implementation for deep back-propagation learning. Integrated Computer-Aided 

Engineering, 24(2), 171-185. 

Ortiz-Garcia, A., J. Munilla, J. M. Gorriz, and J. Ramirez. 2016. “Ensembles of deep learning 

architectures for the early diagnosis of the Alzheimer’s disease.” Int. J. Neural Syst. 26 (7): 

1650025. https://doi.org/10.1142/S0129065716500258. 

Paik, Y., Chung, F., and Ashuri, B. (2025). Preliminary cost estimation of pavement maintenance 

projects through machine learning: Emphasis on trees algorithms. Journal of Management in 

Engineering, 41(4):04025027. 

Pennsylvania Department of Transportation (PennDOT) (2025). Publication 352: Estimating 

Manual. Pennsylvania Department of Transportation. Effective for projects initiated after October 

1, 2025. 

Petroutsatou, K., Georgopoulos, E., Lambropoulos, S., & Pantouvakis, J. P. (2012). Early cost 

estimating of road tunnel construction using neural networks. Journal of construction engineering 

and management, 138(6), 679-687. 

https://doi.org/10.1142/S0129065716500398
https://www.ncei.noaa.gov/
https://doi.org/10.1142/S0129065716500258


109 

 

 

 

Project 0-7184  UT Arlington 

 

 

Pradhan, S., & Arneson, E. (2021). Postdisaster Labor-Demand Surge in the US Highways, Roads, 

and Bridges Construction Sector. Journal of Management in Engineering, 37(1), 04020102. 

https://doi.org/10.1061/(ASCE)ME.1943-5479.0000869 

Raetz, H., Forscher, T., Kneebone, E., & Reid, C. (2020). The Hard Costs of Construction: Recent 

Trends in Labor and Materials Costs for Apartment Buildings in California. 

https://ternercenter.berkeley.edu/wpcontent/uploads/pdfs/Hard_Construction_Costs_March_202

0.pdf 

Rafiei, M. H., & Adeli, H. (2018). Novel Machine-Learning Model for Estimating Construction 

Costs Considering Economic Variables and Indexes. Journal of Construction Engineering and 

Management, 144(12), 04018106. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001570 

Riddle, M., & Whittington, J. (2022). A tunnel beneath Seattle: The megaproject to replace the 

Alaskan Way Viaduct. In Megaprojects for Megacities (pp. 275–305). Edward Elgar Publishing. 

Shahandashti, M., Abediniangerabi, B., Zahed, E., & Kim, S. (2023). Construction analytics: 

Forecasting and investment valuation. Berlin: Springer. 

Shahandashti, M., and Ashuri, B. (2015), Highway Construction Cost Variation Forecasting Using 

Vector Error Correction Models, Journal of Management in Engineering, ASCE, 32(2), 04015040. 

Shahandashti, S. M. and Ashuri, B. (2013), Forecasting ENR Construction Cost Index Using 

Multivariate Time Series Models, Journal of Construction Engineering and Management, ASCE, 

139(9), 1237-1243. 

Shiha, A., Dorra, E. M., & Nassar, K. (2020). Neural Networks Model for Prediction of 

Construction Material Prices in Egypt Using Macroeconomic Indicators. Journal of Construction 

Engineering and Management, 146(3), 04020010. https://doi.org/10.1061/(ASCE)CO.1943-

7862.0001785 

Shrestha, B., Shrestha, P. P., Maharjan, R., & Gransberg, D. (2022). Cost, Change Order, and 

Schedule Performance of Highway Projects. Journal of Legal Affairs and Dispute Resolution in 

Engineering and Construction, 14(1), 04521044. https://doi.org/10.1061/(ASCE)LA.1943-

4170.0000523 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001570
https://doi.org/10.1061/(ASCE)LA.1943-4170.0000523
https://doi.org/10.1061/(ASCE)LA.1943-4170.0000523


110 

 

 

 

Project 0-7184  UT Arlington 

 

 

Shrestha, K. J., Paul, P., and Uddin, M. M. (2025). Parametric cost estimating models for 

resurfacing projects. Journal of Legal Affairs and Dispute Resolution in Engineering and 

Construction, 13(4):04525058. 

Simi´c, N., Ivaniˇsevi´c, N., Nedeljkovi´c, , Seni´c, A., Stojadinovi´c, Z., and Ivanovi´c, M. (2023). 

Early highway construction cost estimation: Selection of key cost drivers. Sustainability, 

15(6):5584. 

Swei, O., Gregory, J., & Kirchain, R. (2017). Construction cost estimation: A parametric approach 

for better estimates of expected cost and variation. Transportation Research Part B: 

Methodological, 101, 295–305. https://doi.org/10.1016/j.trb.2017.04.013 

Texas Department of Transportation (2022). Plan review guidelines. https://ftp.txdot.

gov/pub/txdot-info/sat/specinfo/plan-review.pdf. Accessed: 2025-06-24. 

Texas Department of Transportation (2025). Transportation funding in texas: January 2025 edition 

(state fiscal years 2026–2027). Accessed: July 3, 2025. 

Texas Department of Transportation. (n.d.). Bid tabulations dashboard. Tableau Public. 

https://tableau.txdot.gov/views/BidTabulations/BidTabulations

Bureau of Labor Statistics. (n.d.). *Home page*. U.S. Department of Labor. Retrieved July 4, 

2025, from https://www.bls.gov/

Thomason, C. (2017, October 26). PS&E Preparation Manual: Prices. 

http://onlinemanuals.txdot.gov/txdotmanuals/pse/prices.htm 

Tong, B., Guo, J., and Fang, S. (2021). Predicting budgetary estimate of highway construction 

projects in china based on gra-lasso. Journal of Management in Engineering, 37(3):04021012. 

U.S. Bureau of Economic Analysis. (n.d.). U.S. Bureau of Economic Analysis. Retrieved July 11, 

2025, from https://www.bea.gov/

U.S. Census Bureau. (n.d.). U.S. Census Bureau. Retrieved July 11, 2025, from 

https://www.census.gov/

https://ftp.txdot.gov/pub/txdot-info/sat/specinfo/plan-review.pdf
https://ftp.txdot.gov/pub/txdot-info/sat/specinfo/plan-review.pdf
https://tableau.txdot.gov/views/BidTabulations/BidTabulations
https://www.bls.gov/
https://www.bea.gov/
https://www.census.gov/


111 

 

 

 

Project 0-7184  UT Arlington 

 

 

U.S. Census Bureau. (n.d.). U.S. Census Bureau. Retrieved July 11, 2025, from 

https://www.census.gov/ 

U.S. Department of Transportation, Office of Inspector General (2019). Fhwa lacks adequate 

oversight and guidance for engineer’s estimates. Technical Report ST2019020, U.S. Department 

of Transportation. Report No. ST2019020, issued March 13, 2019. 

U.S. Energy Information Administration. (n.d.). U.S. Energy Information Administration. 

Retrieved July 11, 2025, from https://www.eia.gov/ 

Virginia Department of Transportation (2025). VDOT Cost Estimating Manual. Virginia 

Department of Transportation, Richmond, VA. Published March 25, 2025; accessed July 6, 2025. 

Wang, R., Asghari, V., Cheung, C. M., Hsu, S. C., & Lee, C. J. (2022). Assessing effects of 

economic factors on construction cost estimation using deep neural networks. Automation in 

Construction, 134, 104080. 

Williams, T. P., & Gong, J. (2014). Predicting construction cost overruns using text mining, 

numerical data and ensemble classifiers. Automation in Construction, 43, 23-29. 

Wilmot, C. G., & Cheng, G. (2003). Estimating future highway construction costs. Journal of 

Construction Engineering and Management, 129(3), 272-279. 

Wilmot, C. G., & Mei, B. (2005). Neural network modeling of highway construction costs. Journal 

of construction engineering and management, 131(7), 765-771. 

Xiao, Y., Wu, J., Lin, Z., & Zhao, X. (2018). A deep learning-based multi-model ensemble method 

for cancer prediction. Computer methods and programs in biomedicine, 153, 1-9. 

Zhang, Y., Minchin Jr, R. E., Flood, I., and Ries, R. J. (2023). Preliminary cost estimation of 

highway projects using statistical learning methods. Journal of Construction Engineering and 

Management, 149(5):04023026. 

https://www.census.gov/
https://www.eia.gov/

	Front Matter
	Technical Report Documentation Page
	Title Page
	Disclaimer
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary

	Chapter 1. Introduction
	Chapter 2. Overview Analysis of Factors Affecting Unit Prices and the State DOT's Unit Price Estimation Methods
	2.1 Factors Affecting Unit Prices
	2.1.1 Project-Specific Factors
	Project Features
	Time Factors
	Site Conditions
	Bid Conditions
	Legal Regulations

	2.1.2 External Factors
	Macroeconomic Conditions
	Regional Construction Market
	Regional Economy
	Unexpected Risks
	National Highway Construction Cost Variations



	Chapter 3. Data Collection of Historical Bid Prices and Factors Affecting Unit Prices
	3.1 Introduction
	3.2 Data Sources

	Chapter 4. Machine Learning Model Development
	4.1 Introduction
	4.1.1 Deep Neural Network Models
	4.1.2 Ensemble Model

	4.2 Dataset for Machine Learning Modeling
	4.3 Model Development
	4.3.1 Data Processing
	4.3.2 Data Cleaning and Structuring
	Winsorization
	Log Transformation

	4.3.3 Feature Extraction
	Temporal Features
	Lagged and Rolling Statistics
	Monthly Aggregation
	Interaction Features

	4.3.4 Correlation Analysis and Dimensionality Reduction
	Correlation Analysis
	Principal Component Analysis (PCA)


	4.4 Modeling Framework
	4.4.1 Data Splitting and Validation Dataset
	4.4.2 Feature Encoding and Normalization
	4.4.3 Model Architecture
	Deep Neural Network (DNN) Architecture
	Ensemble Model Architecture

	4.4.4 Hyperparameter Tuning
	4.4.5 Model Evaluation
	Mean Absolute Error (MAE)
	Root Mean Squared Error (RMSE)
	Mean Absolute Percentage Error (MAPE)

	4.4.6 Forecasting Future Prices
	4.4.7 Automation and Reproducibility

	4.5 Results of the Machine Learning Models

	Chapter 5. Mixed-Effects Model Development
	5.1 Introduction
	5.2 Dataset for Model Development
	5.3 Variable Analysis for Model Development
	5.4 Model Development
	5.4.1 Baseline Models
	Ordinary Least Squares (OLS) Regression
	Random Effects Regression
	Fixed Effects Regression for Addressing Heterogeneity Concerns

	5.4.2 Mixed Effects Model
	5.4.3 Model Comparison and Selection Criteria
	5.4.4 Prediction and Performance Evaluation
	5.4.5 Result Interpretation


	Chapter 6. Development of a GIS-Based Unit Price Estimation and Visualization Tool
	6.1 Introduction
	6.2 Map-Based Interface to Visualize Price Data
	6.3 Use Cases

	Chapter 7. Implementation of the Developed GIS-Based Visualization Tool on Six TxDOT Projects
	7.1 Introduction
	7.2 Case Studies
	7.2.1 Case 1: Project 2054-01-018
	7.2.2 Case 2: Project 0907-13-017
	7.2.3 Case 3: Project 2208-01-071
	7.2.4 Case 4: Project 0380-09-104
	7.2.5 Case 5: Project 0022-01-034
	7.2.6 Case 6: Project 6435-42-001


	Chapter 8. Technology Transfer
	8.1 Introduction
	8.2 Delivered Components of the Developed GIS-Based Tool and Models
	8.2.1 Delivered Components of the GIS-Based Tool
	8.2.2 Delivered Components of Estimation Models
	Delivered Database of Estimation Models
	Delivered Codebase and Generated Prediction of Machine Learning Models
	Delivered Codebase and Generated Prediction of the Mixed Effects Model


	8.3 Procedures and Considerations for the Implementation of the Developed GIS-Based Tool 
	8.3.1 Steps for Integration of the GIS-Based Tool
	8.3.2 Steps for Running Machine Learning Models
	8.3.3 Steps for Running Mixed-Effects Models

	8.4 Technical Documentation

	Chapter 9. Summary and Conclusion
	Appendix A.
	Appendix B. 
	References



