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SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS

Symbol | When You Know | Multiply By | To Find | Symbol
LENGTH
in inches 254 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in? square inches 645.2 square millimeters mm?
ft? square feet 0.093 square meters m?
yd? square yards 0.836 square meters m?
ac acres 0.405 hectares ha
mi? square miles 2.59 square kilometers km?
VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft cubic feet 0.028 cubic meters m3
yad?3 cubic yards 0.765 cubic meters m3
NOTE: volumes greater than 1000L shall be shown in m?
MASS
oz ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or metric ton”) Mg (or “t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5(F-32)/9 Celsius °C

or (F-32)/1.8
FORCE and PRESSURE or STRESS

Ibf poundforce 4.45 newtons N
Ibf/in? poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol | When You Know | Multiply By | To Find | Symbol
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm?2 square millimeters 0.0016 square inches in?
m? square meters 10.764 square feet ft?
m? square meters 1.195 square yards yd?
ha hectares 2.47 acres ac
km? Square kilometers 0.386 square miles mi?
VOLUME
mL milliliters 0.034 fluid ounces 0z
L liters 0.264 gallons gal
m?3 cubic meters 35.314 cubic feet fts
m3 cubic meters 1.307 cubic yards yad3
MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds Ib
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2000Ib) T
TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch lb/in?

*Sl is the symbol for the International System of Units






CHAPTER 1. INTRODUCTION

The 82nd Texas Legislature amended Section 545.353 of the Transportation Code by
adding Subsection (h-2), which permits speed limits up to 85 miles per hour on parts of the state
highway system. An 85-mph speed limit can be posted if an engineering and traffic investigation
determines that the speed limit is reasonable and safe for that part of the highway system.

Longitudinal barriers (e.g., guardrails, median barriers, bridge rails) are currently tested
and evaluated at a design impact speed of 62 mph. For economic reasons, many existing barrier
systems are optimized for the current design impact conditions and have little or no factor of
safety for accommodating more severe impacts. New or modified barrier designs may be needed
to withstand high-speed impacts to maintain the desired level of safety for motorists traveling on
high-speed sections of highway.

The objectives of this project include determining appropriate impact conditions for
roadways with posted speed limits of 75 mph and above and exploring the capability of existing
or modified barriers to accommodate these impact conditions. The following sections first
review applicable roadside hardware testing standards and past speed-related safety studies
associated with roadside hardware treatments.

1.1. ROADSIDE SAFETY FEATURES CRASH TESTING GUIDELINES

The first step in designing new roadside hardware for high-speed roadways is to define
the design impact requirements. The design requirements for roadside hardware are typically
performance based and described by a crash test matrix with a prescribed set of impact
conditions defined in terms of vehicle type, vehicle mass, impact speed, and impact angle.

The earliest guidelines for testing roadside appurtenances date back to the 1960s.
Periodically, these standards have been updated to reflect changes in the vehicle fleet, impact
conditions, etc.

The American Association of State Highway and Transportation Officials (AASHTO)
Manual for Assessing Safety Hardware (MASH) is the latest in a series of documents that
provides guidance on testing and evaluation of roadside safety features (1). This document was
published in 2009 and represented a comprehensive update to crash test and evaluation
procedures to reflect changes in the vehicle fleet, operating conditions, and roadside safety
knowledge and technology. It superseded National Cooperative Highway Research Program
(NCHRP) Report 350, Recommended Procedures for the Safety Performance Evaluation of
Highway Features (2). AASHTO published an updated edition of the MASH document, MASH
2"d Edition, in 2016 (3). Along with this, the Federal Highway Administration (FHWA) and
AASHTO adopted a joint implementation agreement that established dates for implementing
MASH compliant safety hardware for new installations and full replacements on the National
Highway System (NHS).

MASH was developed to incorporate changes to procedures for safety-performance
evaluation of roadside safety features, and updated to reflect the changing character of the
highway network and the vehicles using it (3). For example, MASH increased the weight of the
pickup truck design test vehicle from 4409 Ib to 5000 Ib, changed the body style from a %-ton,
standard cab to a ¥2-ton 4-door, and imposed a minimum height for the vertical center of gravity



of 28 inches. The increase in vehicle mass represents an increase in impact severity of
approximately 13 percent for pickup truck design test vehicles with respect to the impact
conditions of NCHRP Report 350 (2). The impact conditions for the passenger car test also
changed. The weight of the passenger car design test vehicle increased from 1800 1b to 2420 Ib,
and impact angle increased from 20 degrees to 25 degrees. These changes represent an increase
in impact severity of 206 percent for Test 3-10 with the small passenger car design test vehicle,
with respect to the impact conditions of NCHRP Report 350.

MASH defines six test levels for longitudinal barriers. Each test level places an
increasing level of demand on the structural capacity of a barrier system. The basic test level is
Test Level 3 (TL-3). The structural adequacy test for this test level consists of a 5000-1b pickup
truck (denoted 2270P) impacting a barrier at 62 mph and 25 degrees. The severity test consists of
a 2420-1b passenger car (denoted 1100C) impacting the barrier at 62 mph and 25 degrees.
Barriers on high-speed roadways on the NHS are required, at a minimum, to meet TL-3
requirements. The passenger vehicle impact speed recommended in MASH (i.e., 62 mph) was
derived from analyses of reconstructed crash data collected on roads with design speeds up to 70
mph.

1.2. BARRIER SYSTEMS USED BY THE TEXAS DEPARTMENT OF
TRANSPORTATION

The Texas Department of Transportation (TXDOT) standards include various guardrail,
median barrier, and bridge rail systems. Barrier types investigated under this project were
selected by the TXDOT project panel. These included W-beam guardrail, single slope (SSCB)
and F-Shape (CSB) concrete median barrier, and single slope (SSTR) and vertical (T222)
concrete bridge rails.



CHAPTER 2. LITERATURE REVIEW

Determination of impact conditions for single vehicle run-off-road crashes requires in-
depth investigation and reconstruction of detailed crash data. Police-level crash data do not
provide sufficient detail for this purpose. Due to the high cost associated with detailed data
collection and in-depth crash investigation and reconstruction, only a few studies of this type
have been performed. There have also been some limited prior investigations of barriers at
higher impact speeds that were reviewed for use under this project.

2.1. TXDOT PROJECT 0-6071

TxDOT funded Project 0-6071 as part of a proactive consideration of roadside safety on
high-speed facilities (5,6). The first step in evaluating the performance of hardware for high-
speed roadways is to define the design impact requirements. Impact conditions are generally
defined by vehicle type, vehicle mass, impact speed, and impact angle.

The 0-6071 project aimed to use high design speeds (above 80 mph) on some roads for
faster and more efficient travel. However, the current roadside safety hardware is tested at a
speed of 62 mph, and its ability to handle higher impacts is uncertain. The objective of this
research was to develop roadside safety hardware suitable for very high-speed highways. They
use finite element simulations to evaluate the impact performance of various roadside safety
devices and recommend design modifications for further consideration. The design vehicles
chosen were those specified in MASH and included a 5000-1b pickup truck and a 2420-Ib
passenger car.

In the first part of the project (6071-1) (5), the researchers utilized computer simulation
techniques to obtain better understanding about vehicle impact performance at high speeds.
Engineering analyses and finite element simulations were used to evaluate the impact
performance of selected roadside safety devices. For safety considerations, the project prioritizes
the development of guardrails, bridge rails, breakaway hardware, and median barriers. They
evaluated the impact performance of modified thrie-beam guardrails, box beam guardrails,
single-slope concrete barriers, and slip-base sign supports. The results of the high-speed impact
simulations into the single-slope barrier indicate marginal to unacceptable performance. While it
is predicted that the single slope barrier will contain and redirect the design pickup truck in a
stable manner, the occupant risk numbers and occupant compartment deformation are expected
to be close to the allowable limits of the MASH criteria.

In 2015, researchers performed a crash data analysis of high-speed roads in Texas with
posted speed limits of 70, 75, 80, and 85 mph (6,7). The purpose was to investigate whether
MAGSH test guidelines were applicable for roadside safety appurtenances placed on roads with
posted speed limits greater than 75 mph. A representative sample of real-world, single-vehicle,
run-off-road crashes involving longitudinal barriers as the first harmful event was extracted from
TxDOT’s Crash Records Information System (CRIS). Specific data were compiled with respect
to vehicle information including injury severity.

The relevance of current longitudinal roadside safety barriers designed for 62 mph
oblique impacts was examined by determining whether injury severity has increased for real-
world vehicle crashes that occurred on higher speed roads, among other factors. At the 5 percent
significance level, the fatal and incapacitating injury severity percentage was not statistically



different between roadways with a 70-mph posted speed limit and those with a speed limit >
80 mph for years 2010-2013. However, the combined crash data for all four years did show a
statistically significant increase at the 5 percent level. This suggests that the 85th percentile
impact speed for real-world crashes occurring on roads with posted speed limit > 80 mph could
be higher. Key study results were:

e Plots of crashes showed that fatal and incapacitating injury crashes are not concentrated
in one area, but some highways consistently experienced more severe injuries for
consecutive years.

e The K+A injury severity percentages increased as the posted speed limit increased from
70 mph to > 80 mph.

e The K+A percentages between roadways with posted speed limits of 70 mph and
> 80 mph were not statistically different at the 5 percent significance level. This was
consistent for every year and was attributed to the small sample size.

e The K+A percentages for the combined 2010-2013 data showed significance at the
5 percent level between 70 mph and > 80 mph posted speed limit roads.

e Since the combined data showed a statistically significant difference, it was concluded
that there is a possibility that the severity of injuries increases as the posted speed limit
increases.

2.2. NCHRP PROJECT 17-22 CRASH DATABASE

Under NCHRP Project 17-22, Identification of Vehicular Impact Conditions Associated
with Serious Run-Off-Road Crashes, a database of reconstructed, single-vehicle, run-off-road
crashes was developed. While prior analyses of impact data were based primarily on roadway
functional classification, Albuquerque et al. used the 17-22 database (8) to develop impact speed
and angle distributions for different posted speed values in addition to functional class and type
of access control (9). In their study, they found that impact speed and impact angle were well-
defined by normal distributions and that impact speed and impact angle are not well-correlated.
A surprising observation is that “highways with 60 to 65 mph speed limits had higher impact
speeds than roadways with 70 to 75 mph speed limits” (9). The 85th percentile values of the
impact speed were 61.5 and 60 mph for highways with speed limits of 60—65 mph and 70—

75 mph, respectively. Similarly, the 85th percentile impact angle values showed the same
behavior with values of 31 and 27 degrees for highways with speed limits of 60—65 mph and 70—
75 mph, respectively.

2.3. NCHRP 17-43 CRASH DATABASE

The National Automotive Sampling System (NASS) provides the National Highway
Traffic Safety Administration (NHTSA) a resource with which to conduct data collection
representing a broad spectrum of American society. NASS is composed of two systems—the
Crashworthiness Data System (CDS) and the General Estimates System. The NASS CDS data
have detailed data on a representative, random sample of thousands of minor, serious, and fatal
passenger vehicle crashes. Field research teams located at Primary Sampling Units (PSUs) across
the country study crashes involving passenger cars, light trucks, vans, and utility vehicles. These



data are used to investigate injury mechanisms to identify potential improvements in vehicle
design.

In 2010, NCHRP Project 17-43, Long-Term Roadside Crash Data Collection Program,
was funded with the objective to develop a crash database that included roadside encroachment,
impact, trajectory, and terrain data. The NCHRP 17-43 database was developed as a relational
database interfacing with the NASS CDS database (10). All crashes included in the 17-43
database were clinically reconstructed to estimate impact speed and impact angle among other
data elements.

The NCHRP 17-43 database consists of nine related tables. The highest-level table is the
Road Table. The Roadside and Trajectory tables are children of the Road Table. The tables
regarding roadside objects and rollovers are children of the Trajectory Table.

Roadside and Trajectory tables are linked to the Road Table through the case year, PSU,
case number, and vehicle number. The Trajectory Table has one record for each event recorded
in NASS-CDS containing the details of the vehicle leading up to and during that event.

2.4. NCHRP PROJECT 17-79

Under NCHRP Project 17-79, Safety Effects of Raising Speed Limits to 75 mph and
Higher, researchers investigated crash testing parameters (specifically impact speed and angle)
for high-speed roadways with the NCHRP 17-43 database and associated NASS-CDS crash
data (11). They obtained a beta version (20190624) of the NCHRP 17-43 database for the
analysis. This version of the NCHRP 17-43 database contained 1,582 crashes between 2011—
2015.

The crashes were grouped in posted speed categories of 50-55 mph, 60-65 mph, and 70—
75 mph. An inclusive 50-75 mph posted speed category was also considered. Crashes that
involved a rollover event were excluded from the analysis.

Weighted cumulative distribution functions were developed based on the weighted
number of cases calculated through use of the ratio inflation factor to adjust for differences
between actual and estimated totals. The 85th percentile impact speed and impact angle were
determined for each posted-speed limit roadway category.

The Texas A&M Transportation Institute (TT1) researchers utilized linear regression of
the 85th percentile impact speed and angle values to extrapolate the impact speed and angle for
roadways with an 85-mph posted speed limit. The analysis suggested an impact speed of 69 mph
and an impact angle of 33.5 degrees for designing roadside hardware for roadways with a posted
speed limit of 85 mph.

The analysis suggested that a higher impact speed and impact angle may be appropriate
for roadways with posted speed limits in the 7075 mph category. The weighted 85th percentile
impact speed and angle for this speed category were 67.7 mph and 33 degrees, respectively.
These values are different from the impact conditions of the 62-mph speed and 25-degree angle
utilized in MASH for evaluating roadside hardware for high-speed applications. The number of
crashes in the posted speed category was limited, and further investigation was recommended to
confirm these results.



2.5. BARRIER BEHAVIOR

For economic reasons, many roadside safety features are optimized for the currently
prescribed design MASH impact conditions and may have little or no factor of safety for
accommodating more severe impacts. The potential increases in test impact speed and angle
recommended for evaluating roadside safety devices for higher speed roadways will place more
structural demand on barrier systems, may aggravate stability problems associated with some
existing barriers, and will may necessitate the redesign of some roadside appurtenances.

2.5.1. Rigid Concrete Barrier

Concrete barriers are frequently used as bridge rails or in narrow medians along high-
speed, high-volume roadways due to their negligible deflection, low life-cycle cost, and
maintenance-free characteristics. The rigid nature of these concrete barriers results in essentially
no dynamic deflection. Thus, vehicle deceleration rates and probability of injury are greater for
concrete barriers than for more flexible systems. Although the installation cost is relatively high,
concrete barriers require little maintenance or repair after an impact. This reduces the risk of
maintenance personnel and congestion due to lane closures.

Concrete median barriers in TXDOT standards include the 32-inch F-Shape and 42-inch
SSCB. Concrete bridge rails in TXDOT standards include the 36-inch SSTR and 36-inch vertical
parapet (T222) among others. The F-Shape and single slope profiles promote some vehicles’
climb compared to the vertical parapet. A vertical wall of proper height reduces vehicle climb
but will impart slightly higher decelerations and cause more vehicle damage.

2.5.2. Midwest Guardrail System

As stated in the AASHTO (2002) Roadside Design Guide, “A roadside barrier is a
longitudinal barrier used to shield motorists from natural or man-made obstacles located along
either side of a traveled way” (12). A barrier is typically warranted when the consequences of a
vehicle leaving the traveled way and striking a fixed object or traversing a terrain feature are
judged to be more severe than striking the barrier.

The most common configuration of guardrail is the strong-post W-beam guardrail
commonly referred to as the Midwest Guardrail System (MGS). TxDOT includes a variation of
this system with 8-inch-deep offset blocks in its standards. The mounting height of the W-beam
rail is 31 inches and moves the rail splice locations to be located midspan between the support
posts, which may be wood or steel.

Various applications of the MGS W-beam guardrail system have been successfully crash
tested in accordance with MASH TL-3 impact conditions. However, when tested on a 7:1 flare
rate at an effective impact angle of 33 degrees and a nominal speed of 62 mph under MASH
Test 3-10 impact conditions, the W-beam rail ruptured, resulting in failure to contain the
1100C passenger car (13). The MGS guardrail system was subsequently tested per MASH
Test 3-11 impact conditions installed on an 11:1 flare at a reduced effective impact angle of
30.2 degrees. During the impact, the upstream terminal anchor failed, permitting the pickup truck
to penetrate behind the guardrail system (13). Based on the results of these full-scale crash tests,



it is unknown whether the current strong-post MGS system can accommodate increased test
impact severity associated with higher impact speeds.

2.6. RELATIONSHIP BETWEEN POSTED SPEED LIMIT AND OPERATING SPEED

Speed is used both as a design criterion to promote consistency and as a performance
measure to evaluate highway and street designs. Geometric design practitioners and researchers
are, however, increasingly recognizing that the current design process does not ensure consistent
roadway alignment or driver behavior along these alignments. Strong relationships between
design speed, operating speed, and posted speed limit would be desirable, and these relationships
could be used to design and build roads that would produce the speed desired for a facility.

Design speed is a selected speed used to determine the various geometric features of the
roadway. It is the safe speed that can be maintained over a specified section of highway when
conditions are so favorable that the design features of the highway govern. The selected design
speed is with respect to the anticipated operating speed, topography, the adjacent land use, and
the functional classification of the highway.

The operating speed is the speed at which drivers are observed operating their vehicles.
The 85th percentile of a sample of observed speeds is the most frequently used descriptive
statistic for the operating speed associated with a particular location or geometric feature. Posted
speed refers to the maximum speed limit posted on a section of highway using the regulatory
sign.






CHAPTER 3. DATA COLLECTION AND ANALYSIS

3.1. DATA COLLECTION

The applicability of currently available data for the assessment of commonly used generic

longitudinal barrier systems installed on Texas roadways with different posted speed limits was
assessed. Databases considered for use in the analyses are:

National Automotive Sampling System—Crashworthiness Data System and Crash
Investigation Sampling System (CISS) collect data on approximately 5,000 and

3,000 cases annually, respectively. The database is maintained by NHTSA. The NASS
CDS/CISS database has detailed data on a representative, random sample of thousands of
minor, serious, and fatal passenger vehicle crashes. Field research teams located at PSUs
across the country study crashes involving passenger cars, light trucks, vans, and utility
vehicles. These data are used to investigate injury mechanisms to identify potential
improvements in vehicle design.

Event Data Recorder Data are collected from vehicles involved in crashes and include
data on vehicle kinematics during the crash event such as time series data for vehicle
speed, delta-v, pedal application, and steering wheel application. These data have been
combined in a database with NASS CDS/CISS data by researchers at Virginia Tech.
NCHRP Project 17-22 Database includes reconstructed run-off-the-road crashes. The
data are segregated by posted speed limits. The database was developed using data from
1998-2001; therefore, the Performing Agency suggests using newer datasets that better
reflect current operating conditions, posted speed limits, and vehicle fleet characteristics.
NCHRP 17-43 Database includes reconstructed run-off-the-road crashes and was
developed using more recent crash data. The current database contains a total of

1,582 crash cases from 20112015 and includes data related to crashes that occurred on
highways having posted speed limits up to 75 mph. This version also includes an “Object
Angle” variable that records the impact angle of the vehicle with respect to the impacted
object.

Crash Records Information Systems contains Texas crash data collected from Texas
Peace Officer Crash Reports (form CR-3). CRIS contains data from the year 2011 to
current date. The data include crashes that occur on public roadways and result in a death,
injury, and/or $1,000 in damage.

Roadway Highway Inventory Network Offload (RHiINO) database includes a variety
of roadway characteristics. The location data in CRIS can be linked to RHINO data to
gain further information about the roadway inventory data.

TxDOT Speed Limits Data are an extract from the Geospatial Roadway Inventory
Database (GRID) that is used for managing roadway assets in Texas. Extracts from GRID
are made on a regular basis and reflect the state of the data at that moment. It is available
from the TXDOT Open Data Portal.

3.2. SAFETY DATA ANALYSIS

Texas has some unique characteristics in that most rural interstates and significant miles

on rural highways have a posted speed limit of 75 mph and above. However, most of the crash



investigation databases listed above do not have many crashes where the posted speed limit was
75 mph and above. Therefore, identifying the impact conditions for 75-mph roadways using
these databases is challenging. Safety data analysis was performed to identify the
underperforming barrier systems on high-speed roadways, where a high-speed roadway is
defined as a roadway segment having a speed limit of 75 mph and above. The researchers
conducted exploratory data analysis (EDA) and cross-sectional data analysis using the most
relevant barrier impact data to determine how commonly used generic longitudinal barrier
systems are performing on Texas roadways with high posted speeds relative to barriers installed
on roadways with posted speeds of 70 mph and below.

3.2.1. Exploratory Data Analysis

Using CRIS data, extracted on November 16, 2021, for the years 2016 to 2021, and
TxDOT’s speed limit data, available through the TxDOT Open Data Portal, crashes were linked
with the roadway speed limit data using ArcMap. The speed limit data are a subset of the larger
GRID. The CRIS data only included crashes that were identified as “TxDOT reportable,” which
means they occurred on a public roadway and resulted in a fatality or injury or in $1000 or more
of damage.

The linked data were filtered to developed two data sets: crashes on roadways with speed
limits of greater than 70 mph and crashes on roadways with speed limits between 50 and 70 mph.
The resulting data sets were used to develop a Power Bi report that allows for the interactive
exploration of the data. While analyzing the CRIS database, six different object-struck
parameters were considered: hit concrete traffic barrier, hit end of bridge (abutment or rail end),
hit guard post and guardrail, hit median barrier, hit side of barrier (bridge rail), hit work zone
barricades, codes, signs, or material.

Table 1 shows the number of crashes and types of injuries for on-system, one-motor
vehicle crashes extracted from the Power Bi Database. Table 2 lists the number of crashes based
on object struck parameters and injury types from 2016 to September 2021, which helps
determine which object is more crucial for which sort of injury.

Figure 1 to Figure 6 provide percentage values in a bar chart of injury type versus object
struck. These figures help with visualization of the injury data.

The data were also analyzed for all six object struck categories to examine injury
frequency for the combined high posted speed categories. The Power Bi report was filtered for
different injury types for speed limits of 75, 80, and 85 mph, as shown in Figure 7 to Figure 10.
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Table 1. On-System, One-Motor Vehicle Crashes.

Crash Year Fatal Injuries Serious Injuries Minor Injuries Possible Injuries
Speed 75 | 80 | 85 75 80 85 75 80 85 75 80 85
(mph)

2016 27 3 | — 82 3 — 341 13 3 382 12 4
2017 30 1 — 97 7 1 331 14 — | 357 8

2018 32 1 — 95 3 — 339 24 — | 393 15 —
2019 25 4 | — 65 5 1 282 20 — | 386 16 —
2020 37 1 — 83 8 — 304 11 — | 342 17 1

2021 (Till | 30 4 1 100 7 — 286 24 — | 321 15 —

September)

Individual | 181 | 14 1 522 33 2 1883 | 106 3 2181 | 83 6
Total
Total 196 557 1992 2270

% Total |3.80|5.93|8.33|10.95|13.98 | 16.67 | 39.50 | 44.92 | 25.00 | 45.75 | 35.17 | 50.00
no. of
Injuries
Note: — = not applicable.
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Table 2. Object Struck Parameter versus Type of Injuries.

Object | Speed Type of Injuries
Struck | (mph) | Fatal % Serious % Minor % Possible %
Properties Injuries | Fatal | Injuries | Serious | Injuries | Minor | Injuries | Possible
Injuries Injuries Injuries Injuries
Hit 75 15 8.29 0 0 197 10.46 232 10.63
Concrete 80 2 2.13 0 0 9 8.49 7 8.43
Traffic 85 0 0 0 0 0 0 0 0
Barrier
Hit Guard 75 1 0.55 0 0 0 0 0 0
Post 80 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0
Hit 75 82 45.31 212 40.62 595 31.6 571 26.18
Guardrail ™ gg 5 5.32 18 | 5454 | 58 | 5471 | 49 59.04
85 0 0 2 100 3 100 3 50
Hit 75 121 66.85 387 7414 | 1459 | 77.48 1702 78.03
Median 80 11 11.7 29 87.88 83 78.3 70 84.38
Barrier 85 1 100 1 50 3 100 6 100
Hit Work 75 12 6.63 33 6.32 61 3.24 76 3.48
Zone 80 0 0 0 0 7 6.61 1 1.21
Barricade 85 0 0 0 0 0 0 0 0
Hit End of 75 7 3.86 2 1.1 1 0.05 1 0.046
Bridge 80 0 0 1 3 0 0 0 0
85 0 0 0 0 0 0 0 0
Hit Sideof | 75 26 14.36 51 9.77 133 7.06 142 6.51
Barrier 80 0 0 0 0 9 8.49 3 3.61
85 0 0 0 0 0 0 0 0
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HIT CONCRETE BARRIER (2016-2021)
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Figure 1. Hit Concrete Barrier versus Type of Injuries.

HIT MEDIAN BARRIERS (2016-2021)
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Figure 2. Hit Median Barrier versus Type of Injuries.
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HIT END OF BRIDGE (2016-2021)
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Figure 3. Hit End of Bridge versus Type of Injuries.
HIT GUARDRAIL (2016-2021)
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Figure 4. Hit Guardrail versus Type of Injuries.
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HIT WORKZONE BARRICADES, CONES, SIGNS
(2016-2021)
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Figure 5. Hit Work Zone Barricades, Cones, Signs versus Type of Injuries.

HIT SIDE OF BARRIER (2016-2021)
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Figure 6. Hit Side of Barrier versus Type of Injuries.
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3.2.2. 17-22 Database

Determination of impact conditions for single-vehicle run-off-road crashes requires in-
depth investigation and reconstruction of detailed crash data. Police-level crash data do not
provide sufficient detail for this purpose. Due to the high cost associated with detailed data
collection and in-depth crash investigation and reconstruction, few studies of this type have been
performed. Under NCHRP Project 17-22, a database of reconstructed run-off-road crashes was
developed (8).

Historically, the 85th percentile impact speed has been selected as a design impact speed
for the testing and evaluation of roadside safety hardware. Using the 17-22 database,
Albuquerque et al. found that the 85th percentile impact speed for controlled access freeways,
interstate highways, and highways with a 70-mph to 75-mph design speed to be 59.7 mph,

60.1 mph, and 60.0, respectively (9). The researchers used linear regression of the

85th percentile impact speed and angle values to estimate the relationship with posted speed and
extrapolate the impact speed and angle for a road segment with an 85-mph posted speed limit.
Table 3 shows descriptive statistics for impact speed and angle for the 17-22 data segregated by
speed limit (9). A surprising observation is that “highways with 60 to 65-mph speed limits had
higher impact speeds than roadways with 70 to 75-mph speed limits” (9).

Table 3. Impact Speed and Angle Statistics for Segregated Data by Speed Limit (9).

Posted N Mean Median SD Maximum
Speed (mph) 85th Percentile
Impact Speed (mph)

50-55 375 37.3 36.3 15.9 53.1

60-—65 72 46.1 48 16.7 61.5

70-75 161 43.9 45 16.8 60.0
Impact Angle (degrees)

50-55 422 16.9 14.0 12.4 28.0

60-65 73 18.7 19.0 11.0 31.0

70-75 166 17.7 17.0 11.3 27.0

Figure 11 and Figure 12 present the linear regression results for the evaluation of the
85th percentile impact speed and impact angle based on descriptive statistics from Albuquerque
etal. (9).

18



75

70
= 65
o L]
= 60 * ”'i:’
E L]
g L
55
% / R
=]
50

40 45 50 55 60 65 70 75 20 85
Design Speed Limit (mph)

Figure 11. Regression Relationship for Impact Speed by Albuquerque et al. (9).
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Figure 12. Regression Relationship for Impact Angle by Albuquerque et al. (9).

The impact speeds suggested by Albuquerque et al. seem low. TTI researchers obtained a
later version of the 17-22 database and reanalyzed the impact speed distributions associated with
run-off-road crashes. To achieve sufficient sample sizing, the following posted speed categories
were considered: 45 mph, 50-55 mph, 60-65 mph, and 7075 mph. Normal distributions were fit
to the data, and the 85th percentile impact speed was determined for each category of posted
speed limit.

While performing the linear regression and forecasting impact data for roadways with
75, 80, and 85-mph posted speed limits, the R-squared value was examined as a measure of
goodness-of-fit. This statistic indicates the percentage of the variance in the dependent variable
that the independent variables collectively explain. The results of the updated data and associated
linear regression relationships are presented in Table 4, Table 5, and Figure 13 for impact speed
and Table 6, Table 7, and Figure 14 for impact angle. The results showed slightly higher values
of impact speed compared to the previous analysis by Albuquerque et al.
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Table 4. Descriptive Statistics for Impact Speed for New Updated Data for Speed Limit.

Speed N Weighted Mean 85th Percentile
50-55 418 53.58 56.5
60-65 75 63.15 64.3
70-75 169 71.07 61.6

Table 5. Predicted 85th Percentile Impact Speed through Linear Regression.

Posted Speed Limit

85th Percentile

75 64.6
80 66.2
85 67.9

Linear Regression for 17-22 Impact Speed
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Figure 13. Linear Regression for 85th Percentile Impact Speed with Updated 17-22 Crash
Data Set.

Table 6. Descriptive Statistics for Impact Angle for New Updated Data for Speed Limit.

Speed N Weighted Mean 85th Percentile
50-55 256 53.58 26
60-65 97 63.15 17.98
70-75 58 71.07 33

Table 7. Predicted 85th Percentile Impact Angle through Linear Regression.

Posted Speed Limit 85th Percentile
75 28.3
80 28.2
85 28.0
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Figure 14. Linear Regression for 85th Percentile Impact Angle with Updated 17-22 Crash
Data Set.

3.2.3. 17-43 Database

NCHRP 17-43 Roadside Database was developed as a relational database interfacing
with the NASS-CDS database, incorporating additional information about run-off-road crashes.
It has a total of 1582 reconstructed cases from 20112015 that includes impact speed and angle
along with other data about the event as well as roadside and the associated NASS-CDS data.

Linear regression analysis was performed for both impact speed and impact angle to
obtain an estimate for high-speed roadways with posted speed limits of 75, 80, and 85 mph. The
impact conditions provided in the results are based on weighted data considering the Ratwgt for
each crash event included in the NASS-CDS. Ratwgt is used to obtain a national estimate from
the sampled crashes.

The R-squared parameter was determined as a goodness-of-fit measure for the linear
regression models. The higher the R-squared, the better the model fits the data. R-squared (R?) is
a statistical measure that represents the percentage of the variance of a dependent variable that is
explained by an independent variable or variables in a regression model. Whereas correlation
explains the strength of the relationship between an independent and dependent variable, R?
explains to what extent the variance of one variable explains the variance of the second variable.
So, if the R? of a model is 0.50, then approximately half of the observed variation can be
explained by the model’s input.

The posted speed categories were grouped due to the small sample size for some posted
speed values. The regression analysis was performed for different groupings of posted speed
categories to obtain the best fit of the data.
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3.2.3.1. Case 1: Speed Categorization as 50-55 mph, 60-65 mph, 70-75 mph

Statistical linear regression analysis was performed on Case 1 of the 17-43 data, where
the posted speed limit was categorized as 50-55 mph, 60—-65 mph, and 70—75 mph. The
descriptive statistics for this grouping of posted speeds is presented in Table 8. The linear
regression results for impact speed are shown in Figure 15. The estimates of 85th percentile
impact speed for posted speed limits of 75, 80, and 85 mph are summarized in Table 9. Similar
data for impact angle are presented in Table 10, Figure 16, and Table 11.

Table 8. Case 1: Descriptive Statistics of Impact Speed for 17-43 Database.

Speed Limit{mph)

Speed N Weighted Mean 85th Percentile
50-55 109 53.6 62.37
60-65 35 63.1 53.2
70-75 28 71.1 67.6
Linear Regression for 17-43 Impact Speed
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Figure 15. Case 1: Linear Regression for 85th Percentile Impact Speed with 17-43 Crash
Database.

Table 9. Case 1: Predicted 85th Percentile Impact Speed through Linear Regression.

Posted Speed Limit

85th Percentile

75 64.3
80 65.6
85 66.9

Table 10. Case 1: Descriptive Statistic

s for Impact Angle of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 256 53.6 26
60-65 97 63.1 17.98
70-75 58 71.1 33
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Figure 16. Case 1: Linear Regression for 85th Percentile Impact Angle with 17-43 Crash
Database.

Table 11. Case 1: Predicted 85th Percentile Impact Angle through Linear Regression.

Posted Speed Limit 85th Percentile
75 30.04
80 31.8
85 33.50

3.2.3.2. Case 2: Speed Categorization as 50-55 mph, 60-65-70 mph, 75 mph

Statistical linear regression analysis was performed on Case 2 of the 17-43 data, where
the posted speed limit was categorized as 50-55 mph, 60-65-70 mph, and 75 mph. The
descriptive statistics for this grouping of posted speeds is presented in Table 12. The linear
regression results for impact speed are shown in Figure 17. The estimates of 85th percentile
impact speed for posted speed limits of 75, 80, and 85 mph are summarized in Table 13. Similar
data for impact angle are presented in Table 14, Figure 18, and Table 15.

Table 12. Case 2: Descriptive Statistics for Impact Speed of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 109 53.6 62.37
60-65-70 57 65.8 55
75 6 75 63
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Figure 17. Case 2: Linear Regression for 85th Percentile Impact Speed with 17-43 Crash
Database.

Table 13. Case 2: Predicted 85th Percentile Impact Speed through Linear Regression.

Posted Speed Limit

85th Percentile

75 63
80 60.1
85 60.0
Table 14. Case 2: Descriptive Statistics for Impact Angle of 17-43 Database.
Speed N Weighted Mean 85th Percentile
50-55 256 53.6 26
60-65-70 142 65.8 19
75 18 75 31.61
Linear Regression for 17-43 Impact Angle
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Figure 18. Case 2: Linear Regression for 85th Percentile Impact Angle with 17-43 Crash
Database.
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Table 15 Case 2: Predicted 85th Percentile Impact Angle through Linear Regression

Posted Speed Limit 85th Percentile
75 31.6
80 28.8
85 29.9

3.2.3.3. Case 3: Individual Speed Categorization as 50, 55, 60, 65, 70 mph

Statistical linear regression analysis was performed on Case 3 of the 17-43 data, where
the posted speed limit was categorized as 50, 55, 60, 65, and 70 mph. The descriptive statistics
for this grouping of posted speeds is presented in Table 16. The linear regression results for
impact speed are shown in Figure 19. The estimates of 85th percentile impact speed for posted
speed limits of 75, 80, and 85 mph are summarized in Table 17. Similar data for impact angle are
presented in Table 18, Figure 20, and Table 19.

Table 16. Case 3: Descriptive Statistics for Impact Speed of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50 31 50 61.9
55 77 55 58.3
60 13 60 514
65 22 65 53.4
70 22 70 67.6

Linear Regression for 17-43: Impact Speed

70.0
| 67.6 @

= 65.0

-g. 61.9 | 61.2 61.7

g 60.5 A

— ° | Byeerrertt At

2 60.0 58.3 sofgaerett? |

E Q.uees aaanats |

g |

5 55.0 5_?)'.4

& 514 @

= ° |

g 50.0 y=0.1284x+50.808
| | R? =0.0242

450 T——++ —— —t—t— —t—t— —t—t—
45 55 65 75 85 95

Speed Limit{mph)

Figure 19. Case 3: Linear Regression for 85th Percentile Impact Speed with 17-43 Crash
Database.
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Table 17. Case 3: Predicted 85th Percentile Impact Speed through Linear Regression.

Posted Speed Limit

85th Percentile

75 60.5
80 61.2
85 61.7

Table 18. Case 3: Descriptive Statistic

s for Impact Angle of 17-43 Database.

Speed Limit{mph)

Speed N Weighted Mean 85th Percentile
50 63 50 27.3
55 193 55 25.4
60 34 60 15.0
65 63 65 18.0
70 45 70 23.8

Linear Regression for 17-43: Impact Angle
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Figure 20. Case 3: Linear Regression for 85th Percentile Impact Angle with 17-43 Crash

Database.

Table 19. Case 3: Predicted 85th Percentile Impact Angle through Linear Regression.

Posted Speed Limit

85th Percentile

75 17.9
80 16.1
85 145

To further analyze the impact conditions from the 17-43 database, a few additional cases
were analyzed based on roadway classifications.

3.2.3.4. Case 4: Interstate Roadways Classification for 50-55 mph, 60-65 mph, 70-75 mph
Speed Categories

Statistical linear regression analysis was performed on Case 4 of the 17-43 data for
interstates with posted speed limit categories of 50-55 mph, 60-65 mph, and 70-75 mph. The
descriptive statistics for interstate roadways for this grouping of posted speeds is presented in
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Table 20. The linear regression results for impact speed are shown in Figure 21. The estimates of
85th percentile impact speed for posted speed limits of 75, 80, and 85 mph are summarized in
Table 21. Similar data for impact angle are presented in Table 22, Figure 22, and Table 23.

Table 20. Case 4: Descriptive Statistics for Impact Speed of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 8 52.5 55.2
60-65 7 63.6 45.8
70-75 7 70 48.3
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Figure 21. Case 4: Linear Regression for 85th Percentile Impact Speed with 17-43 Crash
Database.

Table 21. Case 4: Predicted 85th Percentile Impact Speed through Linear Regression.

Posted Speed Limit 85th Percentile

75 44.0
80 41.8
85 39.6

Table 22. Case 4: Descriptive Statistics for Impact Angle of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 17 55 20.7
60-65 25 63 15.3
70-75 12 70 20.8
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Figure 22. Case 4: Linear Regression for 85th Percentile Impact Angle with 17-43 Crash
Database.

Table 23. Case 4: Predicted 85th Percentile Impact Angle through Linear Regression.

Posted Speed Limit 85th Percentile
75 18.9
80 18.8
85 18.8

3.2.3.5. Case 5: Freeway Roadways Classification for 50-55 mph, 60-65 mph, 70-75 mph
Speed Categories

Statistical linear regression analysis was performed on Case 4 of the 17-43 data for
freeways with posted speed limit categories of 50-55 mph, 60—65 mph, and 70-75 mph. The
descriptive statistics for interstate roadways for this grouping of posted speeds is presented in
Table 24. The linear regression results for impact speed are shown in Figure 23. The estimates of
85th percentile impact speed for posted speed limits of 75, 80, and 85 mph are summarized in
Table 25. Similar data for impact angle are presented in Table 26, Figure 24, and Table 27.

Table 24. Case 5: Descriptive Statistics for Impact Speed of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 11 52.7 58.66
60-65 13 62.3 47.00
70-75 14 71.1 68.81
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Figure 23. Case 5: Linear Regression for 85th Percentile Impact Speed with 17-43 Crash
Database.

Table 25. Case 5: Predicted 85th Percentile Impact Speed through Linear Regression.

Posted Speed Limit

85th Percentile

75 65.0
80 67.6
85 70.2

Table 26. Case 5: Descriptive Statistic

s for Impact Angle of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 38 54.1 18.00
60-65 37 62.6 15.15
70-75 28 70.9 23.63
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Figure 24. Case 5: Linear Regression for 85th Percentile Impact Angle with 17-43 Crash

Database.

Table 27. Case 5: Predicted 85th Percentile Impact Angle through Linear Regression.

Posted Speed Limit

85th Percentile

75 23.1
80 24.7
85 26.4

3.2.3.6. Case 6: Interstate and Freeway Roadways Classification for 50-55 mph, 60—
65 mph, 70-75 mph Speed Categories

Statistical linear regression analysis was performed on Case 6 of the 17-43 data for
combined interstate and freeway classifications with posted speed limit categories of 50-55 mph,
60-65 mph, and 70-75 mph. The descriptive statistics for interstate roadways for this grouping
of posted speeds is presented in Table 28. The linear regression results for impact speed are
shown in Figure 25. The estimates of 85th percentile impact speed for posted speed limits of 75,
80, and 85 mph are summarized in Table 29. Similar data for impact angle are presented in Table
30, Figure 26, and Table 31.

Table 28. Case 6: Descriptive Statistics for Impact Speed of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 19 53.7 58.7
60-65 20 62.8 47.0
70-75 21 70.7 67.7
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Figure 25. Case 6: Linear Regression for 85th Percentile Impact Speed with 17-43 Crash

Database.

Table 29. Case 6: Predicted 85th Percentile Impact Speed through Linear Regression.

Posted Speed Limit

85th Percentile

75 64.0
80 66.4
85 68.9

Table 30. Case 6: Descriptive Statistics for Impact Angle of 17-43 Database.

Speed N Weighted Mean 85th Percentile
50-55 55 54.4 18
60-65 61 62.7 16.8
70-75 40 70.6 23.7
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Figure 26. Case 6: Linear Regression for 85th Percentile Impact Angle with 17-43 Crash
Database.

Table 31. Case 6: Predicted 85th Percentile Impact Angle through Linear Regression.

Posted Speed Limit 85th Percentile
75 23.8
80 25.6
85 27.3

3.3. CONCLUSION

The applicability of currently available data for the assessment of commonly used generic
longitudinal barrier system crashworthiness on Texas roadways with different posted speed
limits were identified and assessed. Linear regression analyses were performed on the 17-43 data
to estimate impact conditions for roadways with posted speeds of 75, 80, and 85 mph. Different
groupings of data by posted speed and highway classification were performed. The predicted
85th percentile impact speed and angle for these cases is summarized in Table 32. One of the
important parameters in the interpretation of the linear regression analyses results is the R? value.
The R? value is associated with how well the regression model explains the observed data. The
R? values associated with the regression relationships obtained from the 17-43 data for the
different roadway classifications are shown in Table 33.
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Table 32. Summary of 17-43 Data Analysis Cases.

Category Speed Impact Speed Impact Angle
Categorization

All Roadways 50-55 62.4 26.0
60-65 53.2 17.9
70-75 67.6 33.0
75 64.3 30.0
80 65.6 31.8
85 66.9 335
Interstate 50-55 55.2 20.7
Roadways 60-65 45.8 15.3
70-75 48.3 20.8
75 44.0 18.9
80 41.8 18.8
85 39.6 18.8
Freeway 50-55 58.7 18.0
Roadways 60—65 47.0 15.2
70-75 68.8 23.6
75 65.0 23.1
80 67.6 24.7
85 70.2 26.4
Interstate and 50-55 58.7 18.0
Freeway 60-65 47.0 16.8
Roadways 70-75 67.7 23.7
75 64.0 23.8
80 66.4 25.6
85 68.9 27.3

Table 33. R? Value versus Roadway Classification.

Category R? Value for R? Value for Impact
Impact Speed Angle
All Roadways 0.7036 0.4895
Interstate Roadways 0.6431 0.0003
Freeway Roadways 0.1954 0.4201
Interstate and Freeway 0.1599 0.5798
Roadways

After review and comparison of the different data groupings, it was recommended to use
Case 6: Interstate and Freeway Roadway Classifications with 50-55 mph, 60—65 mph, 70—
75 mph speed categories to forecast impact conditions for high-speed roadways with posted
speed limits of 75 mph, 80 mph, and 85 mph, as shown in Table 31. This case was recommended
because it is considered to best represent the character of highspeed roadways in Texas, which
consist of both state highways and rural interstates. Based on the regression analysis for Case 6,
estimated impact conditions for testing and evaluation of roadside safety barriers on roadways

with high posted speed limits are shown in Table 34.
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Table 34. Proposed Impact Conditions for Very High Speed Roadways.

Posted Speed Limit (mph) Impact Speed Impact Angle Impact Severity (Kip-
(mph) (degree) ft)
(m =5000 Ib)

75 64.0 23.8 111.4

80 66.4 25.6 127.7
67.7 = 26.5 = 152.5

Average 80 and 85 (66.4 +68.9) + 2 | (25.6 + 27.3) + 2
85 68.9 27.3 166.8

It was noted that the impact speed of 64 mph for a posted speed limit of 75 mph is within
the current MASH tolerance for impact speed for TL-3, which is 62 mph + 2.5 mph. The impact
angle for a posted speed limit of 75 mph is slightly lower than the nominal impact angle for TL-3
but within the allowable tolerance (25 degrees * 1.5 degrees). The resulting impact severity (1S)
associated with the 75-mph posted speed limit impact conditions is lower than the IS for the
nominal TL-3 impact conditions, which is 114.7 kip-ft. Consequently, the research team
concluded that current MASH impact conditions are adequate for evaluating roadside barriers for
roadways having a posted speed limit of 75 mph.

Engineering analyses and finite element computer simulations were used to assess the
impact performance of current concrete barrier and guardrail systems for the impact conditions
associated with roadways having posted speed limits of 80 mph and 85 mph. These analyses are

described in the following chapters.
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CHAPTER 4. FINITE ELEMENT SIMULATION

This chapter documents the finite element analyses (FEA) performed on rigid concrete
median barriers and bridge rails using the proposed high-speed impact conditions for higher
posted speed limits. The simulations were performed with a RAM pickup truck model that is
representative of the MASH 2270P design vehicle and a Toyota Yaris passenger car that is
representative of the MASH 1100C design vehicle.

The impact conditions associated with an 85-mph posted speed limit were selected for
use in evaluating the concrete barrier systems. These conditions involve an impact speed of
68.9 mph and impact angle of 27.3 degrees. If a system demonstrates acceptable impact
performance for these impact conditions, the system would be considered acceptable for any
lower posted speed limit categories.

The following concrete barrier systems were selected for evaluation in consultation with
the project panel:

SSCB (42-inch-tall single slope median barrier).
SSTR (36-inch-tall single slope bridge rail).
T222 (36-inch-tall vertical profile bridge rail).
CSB (32-inch-tall safety shape median barrier).

The researchers used available MASH crash tests to validate the concrete barrier models.
The validation between test and simulation consisted of comparison of vehicle behavior, MASH
occupant risk indices such as occupant impact velocity (OIV) and ridedown acceleration (RA),
and roll, pitch, and yaw angles. Angular velocities and linear acceleration time histories were
extracted from the simulations and processed using the Test Risk Assessment Program (TRAP).

Concrete barriers anchored or keyed into a bridge deck or roadway pavement behave
rigidly with little or no movement. Therefore, the concrete barrier systems were modeled using a
rigid material definition having the correct geometry and profile.

4.1. SINGLE SLOPE CONCRETE BARRIER

Details of the 42-inch-tall SSCB are found in TXDOT standard SSCB(1)-16, which is
presented in Appendix A. The FEA simulations were performed with both the 1100C passenger
car and 2270P pickup truck. The impact conditions for the crash test, validation simulation, and
high-speed simulation (representative of an 85-mph posted speed limit) are shown in Table 35
and Table 36 for the passenger car and pickup truck, respectively.

A comparison of vehicle behavior for the crash test, validation simulation performed at
the same impact conditions as the crash test, and the high-speed simulation for 85-mph posted
speed limit is shown in Table 37 for the passenger car and Table 38 for the pickup truck.
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Table 35. SSCB Impact Conditions for Passenger Car.

Impact Angle (degrees)

Description Impact Speed (mph)
Test 611901-03-1 (15) 62.7 275
Baseline Simulation 62.7 27.5
High-Speed Simulation 68.9 27.3

Table 36. SSCB Impact Conditions for Pickup Truck.

Description Impact Speed (mph) Impact Angle (degrees)
Test 611901-04-1 (15) 63.2 24.9
Baseline Simulation 63.2 24.9
High-Speed Simulation 68.9 27.3
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Table 37. Impact Behavior of Passenger Car with SSCB System.

DESCRIPITON

SS 1100 MASH Simulation

SS 1100 High-Speed Simulation

The front tire of
vehicle contacts
barrier.

Vehicle begins
to climb as it
interacts with
sloped barrier
face.

Rear tire of
vehicle contacts
barrier.

Rear tire loses
contact with
barrier.

Vehicle after
exiting system.

SS_1100C_Test (15)
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Table 38. Impact Behavior of Pickup Truck with SSCB System.

DESCRIPTION SS 2270P Test (15) SS 2270 MASH_Simulation SS 2270 High-Speed Simulation
Front tire of = 1 ; N

vehicle contacts
barrier.

w

Vehicle parallel to
system.

Rear tire of vehicle
contacts barrier.

Vehicle at exit
from system.

Vehicle recontacts
ground.

o
=
=

5

Lo
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The angular roll, pitch and yaw displacement comparison is shown in Figure 27, Figure
28, and Figure 29, respectively, for the passenger car and Figure 30, Figure 31, and Figure 32,
respectively, for the pickup truck impacting the SSCB.

The TRAP was used to calculate the OIV, RA, and maximum roll, pitch, and yaw angles.
A comparison of OIV, RA, and maximum roll, pitch, and yaw angles for the passenger car are
shown in Figure 33 to Figure 35, respectively. These values are summarized and compared
against MASH criteria in Table 39. A similar comparison for the pickup truck impacts with the
SSCB are shown in Figure 36 to Figure 38, respectively. A summary against MASH criteria is

provided in Table 40.
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Figure 32. Yaw-Time History for SSCB-Pickup.
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Figure 33. Occupant Impact Velocity for SSCB-Car.
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Figure 34. Ridedown Acceleration for SSCB-Car.
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Figure 35. Roll, Pitch, Yaw Comparison for SSCB-Car.
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Table 39. Occupant Risk Comparison for SSCB-Car.

Test Parameter MASH Crash Test Baseline High Speed
Criteria (15) Simulation | Simulation
Ol1V, Longitudinal (ft/s) <40.0 21.3 19.7 20.5
OlV, Lateral (ft/s) <40.0 331 30.9 32.3
RA, Longitudinal (g) <20.49 4.0 4.8 4.7
RA, Lateral (g) <20.49 13.3 14.3 134
Max. Roll (deg.) <75 16 18.6 23.1
Max. Pitch (deg.) <75 10 12 12.3
Max. Yaw (deg.) N/A 111 54 735
SSTB 2270 OIV(ft/sec)
26.9
$82270: OIV .y 277
30.9
|
|
19.26
$82270: OIV.x 15.7
e 205
0 5 10 15 20 25 30 35
B Test @Calibrated & High Speed

Figure 36. Occupant Impact Velocity for SSCB-Truck.

44



SSTB 2270 RA (G's)

10.4

SS2270:RA .y 146

(el 12.6

935

S52270:RA x 3.6

5.8

0 2 4 6 g 10 12 14 16

B Test ®Calibrated ®high speed

Figure 37. Ridedown Acceleration for SSCB-Truck.
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Figure 38. Roll, Pitch, Yaw Comparison for SSCB-Truck.

Table 40. Occupant Risk Comparison for SSCB System-Truck.

Test Parameter MASH Crash Test Baseline High Speed
(15) Simulation | Simulation
OIV, Longitudinal (ft/s) <40.0 18.7 15.7 20.5
OlV, Lateral (ft/s) <40.0 28.9 27.7 30.9
RA, Longitudinal (g) <20.49 3.3 3.6 5.8
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RA, Lateral (g) <20.49 10.8 14.6 12.6
Roll (deg.) <75 22 12 14.2
Pitch (deg.) <75 6 7 8.1
Yaw (deg.) N/A 41 37.2 45.2

Table 41 provides a comparison between the test and baseline validation simulation for
the SSCB for both passenger car and pickup truck. The comparison includes the maximum
absolute values of OIV and RA, as well as the absolute percentage variation between the test and
simulation. The comparison was less than 10 percent for the passenger car and the pickup truck
OIV. The pickup truck RA had a larger difference, but the simulation was conservative with a
prediction of a higher value.

Table 41. FEA Validation of SSCB.

Vehicle Parameter | Crash Test Baseline |% Variation| =
(15) Simulation 100*(MASH
Simulation—
Test)/Test

Passenger Car | OIV (ft/s) 33.1 30.9 6.65
Passenger Car RA (9) 13.1 14.3 7.52
Pickup Truck OlV (ft/s) 28.9 27.7 4.15
Pickup Truck RA (9) 10.8 14.6 40.38

4.2. SINGLE SLOPE TRAFFIC RAIL

Details of the 36-inch-tall single slope traffic rail are found in TXDOT bridge rail
standard Type SSTR, which is presented in Appendix B. The FEA simulations were performed
with both the 1100C passenger car and 2270P pickup truck. The impact conditions for the crash
test, validation simulation, and high-speed simulation (representative of an 85-mph posted speed
limit) are shown in Table 42 and Table 43 for the passenger car and pickup truck, respectively.

A comparison of vehicle behavior for the crash test, validation simulation performed at
the same impact conditions as the crash test, and the high-speed simulation for 85-mph posted
speed limit is shown in Table 44 for the passenger car and Table 45 for the pickup truck.

Table 42. SSTR Impact Conditions for Passenger Car.

Description Impact Speed (mph) Impact Angle (degrees)
Test 140MASH3C16-04 (16) 61.2 25.7
Baseline Simulation 61.2 25.7
High-Speed Simulation 68.9 27.3

Table 43. SSTR Impact Conditions for Pickup Truck.

Description Impact Speed (mph) Impact Angle (degrees)
Test 420020-3 (17) 63.8 24.8
Baseline Simulation 63.8 24.8
High-Speed Simulation 68.9 27.3
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Table 44. Impact Behavior of Passenger Car with SSTR System.

DESCRIPITON

SSTR_1100 Test (16

Front tire
contact with
barrier.

SSTR 1100 MASH Simulation

SSTR 1100 High Speed Simulation

Vehicle parallel
to system.

Rear tire
contact with
barrier.

Rear tire loss of
contact from
the barrier.

Vehicle exit
from system.
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Table 45. Impact Behavior of Pickup Truck with SSTR System.

DESCRIPTION

SS_2270 Test (17)

SS 2270 MASH Simulation

SS 2270 High Speed_Simulation

Front tire contact
with barrier.

Vehicle begins
to climb as it
interacts with
sloped barrier
face.

Rear tire contact
with barrier.

Rear after
exiting system.

=i
=h

5
.

f=
B
557
<«




Note that the single slope barrier model used in the simulations corresponded to a single
slope concrete median barrier (CMB). The single slope CMB was modeled as rigid and has the
same slope profile as the single-sided SSTR. The simulation results are applicable to both a
single-sided and symmetrical rigid, single slope concrete barrier.

The TRAP was used to calculate the OIV, RA, and maximum roll, pitch, and yaw angles.
A comparison of OIV, RA, and maximum roll, pitch, and yaw angles for the passenger car are
shown in Figure 39 to Figure 41, respectively. These values are summarized and compared
against MASH criteria in Table 46. A similar comparison for the pickup truck impacts with the
SSCB are shown in Figure 42 to Figure 44, respectively. A summary against MASH criteria is
provided in Table 47.
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Figure 39. Occupant Impact Velocity for SSTR-Car.
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Figure 40. Ridedown Acceleration for SSTR-Car.
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Figure 41. Roll, Pitch, Yaw for SSTR-Car.
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Table 46. Occupant Risk Factors for SSTR System-Car.

Test Parameter MASH Crash Test Baseline High Speed
(16) Simulation | Simulation
Ol1V, Longitudinal (ft/s) <40.0 25.6 17.1 20.0
OlV, Lateral (ft/s) <40.0 31.2 29.4 31.8
RA, Longitudinal (g) <20.49 4.8 3.1 5.2
RA, Lateral (g) <20.49 10.8 11.9 12.9
Roll (deg.) <75 12 20.0 21.7
Pitch (deg.) <75 4.2 11.7 14.3
Yaw (deg.) N/A 4.8 51.0 77.2
SSTR 2270 OIV (ft/sec)
299
36" §8 2270 : OIV .y 27.5
30.1
22
36" S8 2270 : OIV.x 15.8
- 201
|
0 5 10 15 20 25 30 35

B Test ®Calibrated BEHigh Speed

Figure 42. Occupant Impact Velocity for SSTR-Truck.
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Figure 43. Ridedown Acceleration for SSTR-Truck.
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Figure 44. Roll, Pitch, Yaw for SSTR-Truck.
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Table 47. Occupant Risk Factors for SSTR System-Truck.

Test Parameter MASH Crash Test Baseline High Speed
(17) Simulation | Simulation
OlV, Longitudinal (ft/s) <40.0 22 15.8 20.1
OlV, Lateral (ft/s) <40.0 29.9 27.5 30.1
RA, Longitudinal (g) <20.49 5.3 5.3 5.4
RA, Lateral (g) <20.49 11.7 13.0 124
Roll (deg.) <75 26 21.3 29.4
Pitch (deg.) <75 8 9.9 111
Yaw (deg.) N/A 34 32.6 48.5

Comparison of the SSCB and SSTR high-speed simulation results indicates that the
height of the single slope barrier system (42 inches for SSCB versus 36 inches for SSTR) does
not result in a significant difference in vehicle occupant risk (OIV, RA) or stability (maximum
yaw, pitch, roll angles). The occupant risk metrics tended to increase for both single slope barrier
systems for the high-speed impact conditions compared to the MASH impact conditions, but the
values were well within MASH thresholds.

The maximum roll angle was underpredicted for the pickup truck impact in the validation
simulations compared to the measured crash test values. The maximum roll angle comparison
between validation simulation and crash test was reasonable for the passenger car. In the high-
speed simulations, the roll angle increased, but the vehicles remained relatively stable.

Based on the simulation results, the SSCB and SSTR are likely to meet MASH
evaluation criteria for the high-speed impact conditions associated with a posted speed limit of

85 mph.

4.3. VERTICAL SHAPE CONCRETE BARRIER

Details of the 36-inch-tall T222 vertical concrete bridge rail are found in TXDOT bridge
rail standard Type T222, which is presented in Appendix C. The FEA simulations were
performed with both the 1100C passenger car and 2270P pickup truck. The impact conditions for
the crash test, validation simulation, and high-speed simulation (representative of an 85-mph
posted speed limit) are shown in Table 48 and Table 49 for the passenger car and pickup truck,

respectively.

Table 48. T222 Impact Conditions for Passenger Car.

Description Impact Speed (mph) Impact Angle (degrees)
MASH Test 3-10 62.2 25
Baseline Simulation 62.2 25
High-Speed Simulation 68.9 27.3
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Table 49. T222 Impact Conditions for Pickup Truck.

Description Impact Speed (mph) Impact Angle (degrees)
Test 490024-2-1 (18) 64.4 25.5
Baseline Simulation 64.4 25.5
High-Speed Simulation 68.9 27.3

A comparison of vehicle behavior for the crash test, validation simulation performed at
the same impact conditions as the crash test, and the high-speed simulation for 85-mph posted
speed limit is shown in Table 50 for the passenger car and for the pickup truck.

A comparison of roll, pitch, and yaw angle time histories for the MASH and high-speed
impact conditions for the passenger car with the T222 are shown in Figure 45, Figure 46, and
Figure 47, respectively. A similar comparison for the pickup truck impacts with the T222 are
shown in Figure 48, Figure 49, and Figure 50, respectively.

The TRAP was used to calculate the OIV, RA, and maximum roll, pitch, and yaw angles.
A comparison of OIV, RA, and maximum roll, pitch, and yaw angles for the passenger car are
shown in Figure 51 to Figure 53, respectively. These values are summarized and compared
against MASH criteria in Table 52. A similar comparison for the pickup truck impacts with the
SSCB are shown in Figure 54 to Figure 56, respectively. A summary against MASH criteria is
provided in Table 53.
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Table 50. Impact Behavior of Passenger Car with T222 System.

DESCRIPTION

T222_1100_MASH_Simulation

T222 1100 High Speed Simulation

Front tire contact with
barrier.

Rear tire contact with
barrier.

Vehicle exit from
system.

Vehicle stable after exit
from system.
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Table 51. Impact Behavior of Pickup Truck with T222 System.

DESCRIPTION T222 1100 Test (18) T222 1100 MASH_ Simulation | T222 1100 High Speed Simulation
Front tire contact with & :
barrier. ?‘Wm "

i

Vehicle engaged with
system.

Rear tire contact with
barrier.

Rear tire loss of contact
with barrier.

Vehicle exit from system.

e e
"
m A
L
B @
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Figure 45. Roll-Time History for T222-Car.
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Figure 46. Pitch-Time History for T222-Car.
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Figure 48. Roll-Time History for T222-Pickup.
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Figure 51. Occupant Impact Velocity for T222-Car.
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Figure 52. Ridedown Acceleration for T222-Car.

60



T222 1100 RPY

Max Yaw (degrees) P

Max Pitch (degrees)

Max Roll (degrees)

0 10 20 30 40 50 60

B Calibrated O high speed

Figure 53. Roll, Pitch, Yaw for T222-Car.

Table 52. Occupant Risk Factors for T222-Car.

Test Parameter MASH Baseline High Speed
Simulation | Simulation
Ol1V, Longitudinal (ft/s) <40.0 20.4 24.7
OlV, Lateral (ft/s) <40.0 30.3 34.3
RA, Longitudinal (g) <20.49 4.3 5.0
RA, Lateral (g) <20.49 14.3 14.7
Roll (deg.) <75 10.6 18.7
Pitch (deg.) <75 7.6 8.2
Yaw (deg.) N/A 37.2 48.3

61




T222 2270 OIV (fi/sec)

T2222270:0IV .,y

216

T2222270: OIV.x 18

222

0 5 10 15 20 25 30 35 40

B Test 8 Calibrated ®&High Speed

Figure 54. Occupant Impact Velocity for T222-Truck.
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Figure 55. Ridedown Acceleration for T222-Truck.
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Figure 56. Roll, Pitch, Yaw for T222-Truck.

Table 53. Occupant Risk Factors for T222-Truck.

Test Parameter MASH Crash Test Baseline High Speed
(18) Simulation | Simulation
OlV, Longitudinal (ft/s) <40.0 21.6 18.1 22.3
OlV, Lateral (ft/s) <40.0 26.9 29.2 33.4
RA, Longitudinal (g) <20.49 3.6 4.1 4.8
RA, Lateral (g) <20.49 111 9.4 10.2
Roll (deg.) <75 7 11.7 17.8
Pitch (deg.) <75 12 6.2 6.3
Yaw (deg.) N/A 37 43.2 58.6

Table 54 provides a comparison between the test and baseline validation simulation for
the T222 vertical concrete bridge rail for both passenger car and pickup truck. No passenger car
test was available, so only the MASH simulation results are shown. The comparison for the
pickup truck impact includes the maximum absolute values of OIV and RA, as well as the
absolute percentage variation between the test and simulation. The comparison is reasonable,
with a difference of approximately 11 percent for the OIV and 15 percent for RA.
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Table 54. MASH TL-3 FEA T222 System Validation.

Vehicle Parameter | Crash Test Baseline |% Variation| =
(18) Simulation 100*(MASH
Simulation—
Test)/Test

Passenger Car | OIV (ft/sec) N/A 30.3 N/A
Passenger Car RA (9) N/A 14.3 N/A
Pickup Truck OlV (ft/s) 26.9 29.9 11.15
Pickup Truck RA (0) 11.1 9.4 15.31

The occupant risk metrics and angular displacements associated with the high-speed
impact conditions increased for both vehicles for the T222 compared to the MASH impact
conditions. However, the values were well within MASH thresholds. Based on the simulation
results, the T222 vertical concrete bridge rail is likely to meet MASH evaluation criteria for the
high-speed impact conditions associated with a posted speed limit of 85 mph.

4.4. F-SHAPE CONCRETE BARRIER

Details of the 32-inch-tall F-Shape concrete safety barrier are found in TXDOT bridge rail
standard Type T551, which is presented in Appendix D. The FEA simulations were performed
with both the 1100C passenger car and 2270P pickup truck. The impact conditions for the crash
test, validation simulation, and high-speed simulation (representative of an 85-mph posted speed
limit) are shown in Table 55 and Table 56 for the passenger car and pickup truck, respectively.

Table 55. F-Shape Impact Conditions for Passenger Car.

Description Impact Speed (mph) Impact Angle (degrees)
Test 603111-1 (19) 62.3 25.8
Baseline Simulation 62.3 25.8
High-Speed Simulation 68.9 27.3

Table 56. F-Shape Impact Conditions for Pickup Truck.

Description Impact Speed (mph) Impact Angle (degrees)
Test 603111-12 (19) 62.8 25.2
Baseline Simulation 62.8 25.2
High-Speed Simulation 68.9 27.3

A comparison of vehicle behavior for the crash test, validation simulation performed at
the same impact conditions as the crash test, and the high-speed simulation for 85-mph posted
speed limit is shown in Table 57 for the passenger car and Table 58 for the pickup truck from an
overhead perspective. Additional comparisons of vehicle behavior from a frontal view between
the MASH simulation and high-speed simulation are shown in Table 59 and Table 60 for the
passenger car and pickup truck, respectively.
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Table 57. Post-Impact Trajectory of Passenger Car on F-Shape System—Top View.

DESCRIPTION

F-Shape 1100 MASH Simulation

F-Shape 1100 High Speed Simulation

The front tire of the
vehicle contacted the
barrier.

F-Shape_1100_Test (19)

Vehicle ramps up after
impacting the system.

Rear tire of the vehicle
contacted the barrier.

Rear tire lost contact
from the barrier

Vehicle starting to exit
the system.
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Table 58. Post-Impact Trajectory of Pickup Truck on F-Shape System—Top View.

DESCRIPTION

F-Shape_2270_Test (19 F-Shape 2270 MASH Simulation | F-Shape 2270 High Speed Simulation
The front tire of Py o

the vehicle
contacted the

barrier.

Vehicle ramps up
after impacting the
system.

Rear tire of the
vehicle contacted
the barrier.

Rear tire lost
contact with the
system.

& &5
- @D
oy Ty
m
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Table 59. Post-Impact Trajectory of Passenger Car on F-Shape System—Front View.

DESCRIPTION

F-Shape 1100 MASH Simulation

F-Shape 1100 High Speed Simulation

The front tire of the vehicle
contacted the barrier.

Vehicle ramps up after impacting
the system.

Rear tire of the vehicle contacted
the barrier.

Rear tire lost contact from the
barrier.

Vehicle starting to exit the
system.
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Table 60. Post-Impact Trajectory of Pickup Truck on F-Shape System—Front View.

DESCRIPTION

F-Shape 2270 MASH Simulation

F-Shape 2270 High Speed Simulation

The front tire of the vehicle
contacted the barrier.

Vehicle ramps up after impacting
the system.

RN (T

e

=

i LU Y
eI

Rear tire of the vehicle contacted
the barrier.

R ‘.\\‘\'\‘\.H‘i&“’ >
TR

Rear tire lost contact with the
system.
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A comparison of roll, pitch, and yaw angle time histories for the MASH and high-speed
impact conditions for the passenger car with the F-Shape are shown in Figure 57 to Figure 59,
respectively. A similar comparison for the pickup truck impacts with the F-Shape are shown in
Figure 60 to Figure 62, respectively.

The TRAP was used to calculate the OIV, RA, and maximum roll, pitch, and yaw angles.
A comparison of OIV, RA, and maximum roll, pitch, and yaw angles for the passenger car are
shown in Figure 63 to Figure 65, respectively. These values are summarized and compared
against MASH criteria in Table 61. A similar comparison for the pickup truck impacts with the
SSCB are shown in Figure 66 to Figure 68, respectively. A summary against MASH criteria is

provided in Table 62.
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Figure 64. Ridedown Acceleration for F-Shape-Car.
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Table 61. Occupant Risk Factors for F-Shape-Car.

Test Parameter MASH Crash Test Baseline High Speed
(19) Simulation | Simulation

OlV, Longitudinal (ft/s) <40.0 20 18.8 21.6

OlV, Lateral (ft/s) <40.0 29.8 311 34.0
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RA, Longitudinal (g) <20.49 3.7 3.3 3.9
RA, Lateral (g) <20.49 11.9 12.0 131
Roll (deg.) <75 15 18.3 22
Pitch (deg.) <75 18 9 9.1
Yaw (deg.) N/A 65 62.6 95.4
FS 2270 OIV (ft/sec)
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Figure 66. Occupant Impact Velocity for F-Shape-Truck.
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Figure 68. Roll, Pitch, Yaw for F-Shape-Truck.

Table 62. Occupant Risk Factors for F-Shape-Truck.

Test Parameter MASH Crash Test Baseline High Speed
(19) Simulation | Simulation
OlV, Longitudinal (ft/s) <40.0 16.7 17.4 21.6
OlV, Lateral (ft/s) <40.0 27.2 28.9 325
RA, Longitudinal (g) <20.49 54 4.0 4.8
RA, Lateral (g) <20.49 9.3 9.1 11.5
Roll (deg.) <75 21 16 27.4
Pitch (deg.) <75 13 9.4 12.3
Yaw (deg.) N/A 38 72 69.1

Table 63 provides a comparison between the test and baseline validation simulation for
the F-Shape concrete barrier for both passenger car and pickup truck. The comparison includes
the maximum absolute values of OIV and RA, as well as the absolute percentage variation
between the test and simulation. The comparison is good, with a maximum difference of
approximately 6 percent for the OIV and 2 percent for RA.
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Table 63. MASH TL-3 FEA F-Shape System Validation.

Vehicle Parameter | Crash Test Baseline |% Variation| =
(19) Simulation 100*(MASH
Simulation—
Test)/Test

Passenger Car | OIV (ft/sec) 29.8 31.1 4.37
Passenger Car RA (9) 11.9 12.0 0.84
Pickup Truck OlV (ft/s) 27.2 28.9 6.25
Pickup Truck RA (0) 9.3 9.1 2.15

The occupant risk metrics and angular displacements associated with the high-speed
impact conditions increased for both vehicles for the F-Shape compared to the MASH impact
conditions. However, the values were within MASH thresholds. Based on the simulation results,
the F-Shape concrete barrier is likely to meet MASH evaluation criteria for the high-speed
impact conditions associated with a posted speed limit of 85 mph.

4.5. CONCLUSION

The researchers evaluated the impact performance of four concrete barrier systems under
high-speed impact conditions associated with a posted speed limit of 85 mph through finite
element simulation. The impact simulations were performed using models of a MASH 1100C
passenger car (Toyota Yaris) and 2270P pickup truck (RAM pickup truck). In each case, the
results of a baseline validation simulation under MASH impact conditions were compared with
the results from the simulations using the determined high-speed impact conditions.

4.5.1. Occupant Risk Comparison

Table 64 provides a comparison of OIV and RA values between the baseline MASH
impact conditions and high-speed impact conditions for the passenger vehicle for all four
concrete barrier types investigated. A similar comparison for the pickup truck simulations is
shown in Table 65.

Table 64. Comparison of Occupant Risk Metrics for Passenger Car Impacting Rigid
Concrete Systems.

System Parameter Baseline High Speed |% Variation| =
Simulation | Simulation 100*(MASH Simulation—
High Speed/MASH
Simulation)

SSTB OIV, y (ft/s) 30.9 32.3 4.53

SSTB RA, vV (9) 14.3 13.4 6.30

SSTR OlV, y (ft/s) 29.4 31.8 8.16

SSTR RA, vV (9) 11.9 12.9 8.40

1222 OlV, y (ft/s) 30.3 34.3 13.2

1222 RA, vV (9) 14.3 14.7 2.80
F-Shape OlV, y (ft/s) 31.1 34.0 8.68
F-Shape RA, vV (9) 12.0 13.1 9.17
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Table 65. Comparison of Occupant Risk Metrics for Pickup Truck Impacting Rigid
Concrete Systems.

System Parameter Baseline High Speed |% Variation| =
Simulation Simulation 100*(MASH Simulation—
High Speed/MASH
Simulation)

SSTB OlV, y (ft/s) 27.7 30.9 11.55

SSTB RA, v (9) 14.6 12.6 13.70

SSTR OlV, y (ft/s) 27.5 30.1 9.45

SSTR RA, v (9) 13.0 12.4 4.61

T222 OIV, y (ftls) 29.9 33.4 11.70

T222 RA, v (9) 9.4 10.2 8.51
F-Shape | OIV,y (ft/s) 28.9 32.5 12.45
F-Shape RA, v (9) 9.1 115 26.37

The percent variation in occupant risk values for the passenger car between MASH and
high-speed impact conditions is less than 10 percent for all barrier types, with the exception of
the OIV for the T222 vertical concrete bridge rail, which is approximately 13 percent. The
vertical profile of the T222 is expected to generate higher risk values compared to the single
slope and F-Shape profiles that impart some vehicle climb.

The percent variation in occupant risk values for the pickup truck between MASH and
high-speed impact conditions is less than 14 percent for all barrier types, with the exception of
RA for the F-Shape concrete barrier, which is approximately 26 percent. Although, the
percentage difference in RA for the F-Shape is higher than the metrics for the other concrete
barriers, the RA value of 11.5 g is well below the MASH threshold of 20 g and is significantly
below the preferred MASH value of 15 g.

4.5.2. Angular Displacement Comparison

Table 66 provides a comparison of maximum roll, pitch, and yaw angles between the
baseline MASH impact conditions and high-speed impact conditions for the passenger vehicle
for all four concrete barrier types investigated. A similar comparison for the pickup truck
simulations is shown in Table 67.

As shown in Table 66 and Table 67, the percentage difference in angular displacements is
much more variable than the occupant risk metrics, ranging from approximately 1 percent to 76
percent for the passenger car and 2 percent to 71 percent for the pickup truck. The MASH
threshold for roll and pitch angles is 75 degrees. The maximum roll and pitch angles for the
passenger car across the different concrete barrier types for the high-speed impact conditions
were 23 degrees and 14 degrees, respectively. Similarly, the maximum roll and pitch angles for
the truck across the different concrete barrier types for the high-speed impact conditions were
29 degrees and 12 degrees, respectively. These values are indicative of stable vehicle redirection.
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Table 66. Comparison of Angular Displacements for Passenger Car Impacting Rigid
Concrete Systems.

System | Parameter Baseline High Speed |% Variation| =
(degrees) | Simulation Simulation 100*(Baseline Model—
High Speed)/Baseline Model)
SSTB Roll 18.6 23.1 24.20
SSTB Pitch 12 12.3 2.5
SSTB Yaw o4 73.5 36.12
SSTR Roll 20.0 21.7 8.5
SSTR Pitch 11.7 14.3 22.22
SSTR Yaw 51.0 77.2 51.37
T222 Roll 10.6 18.7 76.41
T222 Pitch 7.6 8.2 7.90
T222 Yaw 37.2 48.3 29.84
F-Shape Roll 18.3 22 20.20
F-Shape Pitch 9 9.1 1.11
F-Shape Yaw 62.6 95.4 52.40

Table 67. Comparison of Angular Displacements for Pickup Truck Impacting Rigid
Concrete Systems.

System | Parameter Baseline High Speed |% Variation| =
(degrees) | Simulation Simulation 100*(MASH Simulation—
High Speed)/MASH
Simulation)

SSTB Roll 12 14.2 18.34

SSTB Pitch 7 8.1 15.71

SSTB Yaw 37.2 45.2 21.50

SSTR Roll 21.3 29.4 38.03

SSTR Pitch 9.9 11.1 12.12

SSTR Yaw 32.6 48.5 48.78

T222 Roll 11.7 17.8 52.14

T222 Pitch 6.2 6.3 1.61

T222 Yaw 43.2 58.6 35.65
F-Shape Roll 16 27.4 71.25
F-Shape Pitch 94 12.3 30.85
F-Shape Yaw 72 69.1 4.03

Although the occupant risk metrics and angular displacements increased for the high-
speed impact conditions compared to the MASH impact conditions, the values were all within
MASH thresholds. Based on the simulation results, the SSCB, SSTR, T222, and F-Shape
concrete barriers are likely to meet MASH evaluation criteria for the 1100C passenger car and
2270P pickup truck for the high-speed impact conditions associated with a posted speed limit of

85 mph.
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CHAPTER 5. STRUCTURAL ADEQUACY

Barriers must provide adequate structural capacity to contain and redirect vehicles
impacting under the selected design conditions. Higher impact speeds increase the overall impact
severity and result in increased impact loads that must be resisted by the barrier. In this chapter,
the design impact loads associated with the impact conditions for roadways with higher posted
speed limits are estimated and compared to the capacity of the various concrete barrier systems
simulated in Chapter 4. The structural analysis procedures used to determine capacity of the solid
concrete barrier systems follow the yield line analyses developed in Section 13 of the AASHTO
LRFD Bridge Design Specifications (20).

5.1. DESIGN IMPACT LOADS

The design loads in the AASHTO LRFD Bridge Design Specifications are based on
NCHRP Report 350 impact conditions. Updated design loads for MASH impact conditions were
developed under NCHRP Project 22-20(2) (21). For MASH TL-3, the design impact load is
71 Kips at a resultant height of 19 inches.

To estimate the design force for the high-speed impact conditions, TTI researchers scaled
the MASH TL-3 design force of 71 kips based on the increase of IS between the two test
conditions. The IS is defined as:

1
IS = EM(Vsiné?)2 Eqn. 1

Where:
IS = Impact Severity, kip-ft
M = Vehicle mass, Ib
V = Impact Speed, ft/s
©® = Impact Angle, degrees

For MASH Test 3-11, which is the structural adequacy test for TL-3, the nominal impact
speed is 62 mph, the nominal impact angle is 25 degrees, and the weight of the 2270P pickup
truck is 5,000 Ib. This impact condition results in an 1S of 114.7 kip-ft.

For a roadway with a posted speed limit of 80 mph, the associated 85th percentile impact
speed is 66.4 mph, and the 85th percentile impact angle is 25.6 degrees. Considering the MASH
2270P pickup truck, which has a weight of 5,000 Ib, the resulting IS is 137.5 kip-ft. This IS is
19.9 percent greater than the IS for MASH Test 3-11, resulting in a scaled design impact force of
85.1 kips.

For a roadway with a posted speed limit of 85 mph, the associated 85th percentile impact
speed is 68.9 mph, and the 85th percentile impact angle is 27.3 degrees. Considering the MASH
2270P pickup truck, which has a weight of 5,000 Ib, the resulting IS is 166.8 Kip-ft. This IS is
45.4 percent greater than the IS for MASH Test 3-11, resulting in a scaled design impact force of
103.3 kips.
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5.2. YIELD LINE ANALYSIS PROCEDURE

A strength analysis following the methodology of Section 13 of the AASHTO LRFD
Bridge Design Specifications (20) was used to analyze the structural capacity of T222, F-Shape,
and SSTR concrete barriers.

The total transverse resistance of a solid concrete parapet on an interior segment of the
barrier away from a joint, as represented in Figure 69, is calculated using Equations A13.3.1-1
and A13.3.1-2 from AASHTO LRFD Section 13 (Equations 2 and 3 below):

2 M_L?
Ry = (ZLC_Lt) (8My + 8M,, + =) Eqn. 2
L L\2 = 8H(Mp+M
Lot [
C

Where:

Rw = Total transverse resistance of the railing (kips)

L = Critical length of yield line failure pattern (ft)

Lt = Longitudinal length of distribution of impact force (ft)

Mw = Flexural resistance of the wall about its vertical axis (Kip-ft)

Mp = Additional flexural resistance of beam in addition to Mw, if any, at top of the wall
(kip-ft)

M. = Flexural resistance of cantilevered walls about an axis parallel to the longitudinal
axis of the bridge rail (kip-ft/ft)

H = Height of wall (ft)

Figure 69. Yield Line Analysis of Concrete Parapet for Impact within Wall Segment (20).

The total transverse resistance of a solid concrete parapet at the end of a segment or at a
joint, as illustrated in Figure 70, can be calculated using Equations A13.3.1-3 and A13.3.1-4
from AASHTO Section 13 (Equations 4 and 5 below):

2

Rw = (ZLC—Lt) (Mb + My, + MIC{L%) Eqn. 4
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o=+ J(8)

Where:

Rw = Total transverse resistance of the railing (kips)
L = Critical length of yield line failure pattern (ft)

Lt = Longitudinal length of distribution of impact force (ft)
Mw = Flexural resistance of the wall about its vertical axis (kip-ft)
My = Additional flexural resistance of beam in addition to Mw, if any, at top of the wall

(kip-ft)

M. = Flexural resistance of cantilevered walls about an axis parallel to the longitudinal
axis of the bridge rail (kip-ft/ft)

H = Height of wall (ft)

Figure 70. Yield Line Analysis of Concrete Parapet for Impact Near End of Segment (20).

5.3. BARRIER CAPACITY

The transverse resistance of the SSTR, T222 vertical parapet, and F-Shaped concrete
bridge rail (T551) computed using the yield line analysis approach of AASTHO LRFD
Section 13 is shown in Table 68. The simulations of the F-Shape concrete barrier in Chapter 4
geometrically represented a symmetric median barrier profile. Since the barrier was rigidly
modeled, the results equally applicable to a single-sided, F-Shape bridge rail such as the T551.
The strength analysis was performed on the single-sided T551 F-Shape bridge rail because it

represents a more critical section from a capacity standpoint.

Table 68. Total Transverse Barrier Resistance.

Barrier T551 T222 SSTR
Within wall 159.0 184.6 162.0
segment (Kips)
Near the end of 90.0 97.6 90.9
wall segment (Kips)
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Recall from Section 5.1 that the design impact load associated with an 80-mph posted
speed limit is 85.1 kips. Therefore, according to the strength analysis, all barrier types analyzed
have adequate capacity to resist impact loads associated with the design impact conditions for a
roadway with a posted speed of 80 mph both within the barrier interior as well as at the end of a
barrier segment or joint.

The design impact load associated with an 85-mph posted speed limit is 103.3 kips. The
capacity of each barrier type within the barrier interior is sufficient for resisting this design
impact load. However, at the end of a barrier segment, the calculated capacity is less than the
design impact load. Thus, the reinforcement may need to be increased at the end of segments to
accommodate the design impact load associated with an 85-mph posted speed limit.

The researchers performed additional strength analyses with the barrier vertical
reinforcement and deck anchorage vertical reinforcement reduced from the original 6 inches. As
shown in Table 69, a small decrease in spacing to 5.5 inches for the T222 and 5.0 inches for the
F-Shape (T551) and SSTR provides sufficient capacity to accommodate the 103.3-kip design
impact load associated with a posted speed limit of 85 mph. The length of the reduced barrier
vertical reinforcement and deck anchorage reinforcement is 5 ft from the end for the F-Shape
(T551) and 5.5 ft for the T222 and SSTR.

Table 69. Transverse Strength for Recommended End Reinforcement Spacing and Length
for 85 mph Posted Speed Limit.

Parameter T551 T222 SSTR

Barrier vertical reinforcement spacing at end/joint 5.0in 5.5in 5.0in.

Deck anchorage reinforcement spacing at end/joint 5.0in 5.5in 5.0in.
Barrier End Capacity, Rw_end 103.5 kips | 103.7 kips | 104.4 Kkips

Lc _end (length needed for end reinforcement) 5.0 ft 55 ft 55 ft

5.4. CONCLUSION

The structural adequacy assessment of selected concrete barriers was investigated by
comparing the structural capacity of the barrier systems with the design impact loads associated
with posted speed limits of 80 mph and 85 mph. The F-Shape (T551), T222 vertical parapet, and
SSTR were determined to be structurally adequate for an 80-mph posted speed limit both within
the barrier interior and at the end of a segment.

While the transverse capacity of the barrier interior was also satisfactory for design
impact loads for an 85-mph posted speed limit, the resistance at a segment end or joint was
slightly below the design impact load. The end capacity was increased to resist the design impact
load for an 85-mph posted speed limit by slightly reducing the spacing of the barrier vertical
reinforcement and deck anchorage reinforcement for a short distance, as recommended in Table
69.
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CHAPTER 6. GUARDRAIL

A guardrail is a barrier used to help shield motorists from obstacles or non-traversable
terrain features on the roadside. The TXDOT Metal Beam Guard Fence (MBGF) is a type of
strong post, semi-rigid guardrail that incorporates a W-beam rail element mounted on W6 x
8.5 steel posts with wood or composite offset blocks inserted between the rail and posts. The 31-
inch rail mounting height and placement of rail splices midspan between posts make the MBGF
a variation of the MGS. Details of the MBGF can be found in TXDOT standard GF(31)-19.
Consideration was given to the impact performance of this guardrail and other guardrail systems
under high-speed impact conditions.

6.1. PREVIOUS GUARDRAIL TESTING AND PERFORMANCE LIMITS

The MGS guardrail and many associated design configurations, including the TxDOT
MBGF, have satisfied MASH TL-3 impact conditions. However, recent testing of different
guardrail applications under MASH TL-3 impact conditions have resulted in rail rupture or
tearing, indicating that guardrail design may not have significant reserve capacity to
accommodate high-speed impacts.

MASH Test 3-10 with the 1100C passenger car was performed on an MGS guardrail with
32-inch rail mounting height placed with the front face of the guardrail located 6 inches behind a
6-inch-tall AASHTO Type B curb and one post omitted near the middle of the system, resulting
in a 12.5-ft span between two posts (22). The W-beam rail ruptured at the splice located within
the unsupported span. The system was strengthened using 37.5 ft of nested W-beam rail around
the location of the omitted post. In a test of the modified system, the vehicle was successfully
contained and redirected without any evidence of rail tearing (22).

In another project, MASH Test 3-11 was performed on an MGS W-beam guardrail with
the post spacing reduced from the standard spacing of 75 inches to a half post spacing of
37.5 inches (23). The objective of the project was to evaluate the dynamic deflection of stiffened
guardrail systems. During the impact, the rail ruptured due to localized interaction between the
W-beam rail and offset block (23). The system was modified by using a shortened offset block.
The modified system successfully met MASH Test 3-11 criteria, and the pickup truck was
contained and redirected without any evidence of rail tearing.

Under a project sponsored by the Roadside Safety Pooled Fund, a stiffened thrie-beam
guardrail system was designed to reduce dynamic deflection for placement in close proximity to
fixed objects on the roadside (24). A thrie-beam rail has a greater cross-sectional area and is
generally considered to have more capacity than a W-beam rail. When MASH Test 3-11 was
performed on the stiffened thrie-beam guardrail, the pickup truck was successfully contained and
redirected, but the thrie-beam rail was partially torn.

Recall from Chapter 1 that the impact severity associated with MASH TL-3 impact
conditions of 62 mph and 25 degrees is 114.7 kip-ft. For impact conditions associated with an
80-mph posted speed limit (66.4 mph and 25.6 degrees), the impact severity increases to
137.5 kip-ft., which is a 19.9 percent increase.

Although the MGS W-beam guardrail system has not been directly tested at higher
impact speeds, it has been tested in various flared configurations that resulted in a higher impact
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severity. The guardrail flare increases the effective impact angle, which increases the overall
impact severity.

MASH Test 3-10 with the 1100C passenger car was performed on an MGS steel post, W-
beam guardrail system installed on a 7:1 flare (25). The flare effectively increased the nominal
impact angle by 8 degrees, with the actual IS being 91.4 kip-ft. During the test, the W-beam
guardrail ruptured at a post location, permitting penetration of the test vehicle behind the system
(25).

MASH Test 3-11 with the 2270P pickup truck was subsequently performed on an MGS
steel post, W-beam guardrail system installed on a reduced 11:1 flare (25). The flare effectively
increased the nominal impact angle by 5 degrees, with the actual IS being 149.8 kip-ft. During
the test, the W-beam guardrail ruptured between post locations, permitting penetration of the test
vehicle behind the system (25).

These tests raised concerns regarding the ability of standard MBGF to accommodate the
increased impact severity associated with higher speed impacts estimated for roadways with
higher posted speed limits. These failure modes often result from very localized interactions
between the vehicle and rail element that can be difficult to capture through finite element
modeling and simulation. Accurately modeling and predicting rail rupture is particularly
challenging given current material models and modeling techniques. More commonly, predicted
rail stresses and/or strains, rail deformation, and rail deflected shape are analyzed to evaluate
propensity for rail failure.

After discussion with the project panel, it was decided to focus on the evaluation of two
guardrail configurations considered to offer potential for enhanced capacity for higher severity
impact conditions. These include an MGS W-beam guardrail system with shortened blockouts
and a roadside thrie-beam guardrail system (RTGS) that was successfully tested to MASH TL-3
criteria (26).

As referenced above, an MGS guardrail system with reduced (half) post spacing was
successfully tested in accordance with MASH Test 3-11 criteria using shortened offset blocks
after an unsuccessful test with conventional length offset blocks (23). Researchers theorized that
the shortened offset blocks reduce stress concentrations on the bottom edge of the rail where rail
tears often initiate.

The RTGS uses a stronger thrie-beam rail element with a taller mounting height of
34 inches in conjunction with shortened offset blocks (26). Researchers believe the attributes of
this rail system may provide additional capacity to accommodate higher speed impacts.

The impact performance of these two guardrail systems was evaluated using finite
element modeling and simulation. While the previously mentioned limitations are acknowledged,
TTI researchers believed these simulations would add knowledge and increase understanding of
guardrail behavior under high-speed impact conditions and avoid obvious failure modes. The
simulation effort undertaken to investigate the performance of these systems following the
impact conditions estimated for 80-mph posted speed limits is described in the following
sections.
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6.2. ROADSIDE THRIE-BEAM GUARDRAIL SYSTEM

The RTGS consists of a 12-gauge thrie-beam rail element mounted on standard 6-ft-long,
W6x8.5 steel posts at a height of 34 inches (26). The support posts have a 75-inch spacing. A 14-
inch-long wooden offset block, typical of W-beam guardrail systems, is incorporated between
the rail and posts and secured with a single guardrail bolt. Figure 71 shows a cross section of the
RTGS.

Thnebeam
12 gauge 12.5' span 9 / Timber Blockout, for W-section Post
4-space .4
A
24 < \—10" Guardrail Bolt

P 72" Wide-Flange Guardrail Post
1>

Figure 71. Roadside Thrie-Beam Guardrail System (26).

An existing finite element model of the RTGS system, shown in Figure 72, was used in
the simulation effort. The model was previously validated and used in the development and
evaluation of the RTGS for MASH TL-3 impact conditions (26). Figure 73 shows images of the
MASH 1100C passenger car and 2270P pickup truck vehicle models used in the high-speed
simulation analyses. These models were developed by researchers at George Mason University
under sponsorship of FHWA and have been modified by TTI researchers to improve robustness
and fidelity over the course of various simulation projects.
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Figure 72. Finite Element Model of Roadside Thrie-Beam Guardrail System.

(b)
Figure 73. MASH Test Vehicles: (a) 1100C and (b) 2270P.

The predictive impact simulations on the RTGS were performed using impact conditions
for a posted speed limit of 80 mph, which involved an impact speed of 66.4 mph and impact
angle of 25.6 degrees. The researchers conducted the simulations at three different impact points
to determine the critical impact point (CIP) for each design vehicle. Traditional impact locations
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indicated by MASH are not necessarily applicable for higher speed impacts. The simulations
were performed with the impact point occurring at a post as well as 2 ft upstream and

downstream of a post.

The RTGS system was evaluated for vehicle stability and occupant risk factors. Results
from the three high-speed simulations with the 1100C passenger car are shown in Table 70 to

Table 72 for impact at a post, 2 ft downstream of a post, and 2 ft upstream of a post, respectively.

In all cases, the occupant risk criteria and angular displacements satisfied MASH criteria.

Based on a review of the results, the researchers recommend impacting at a post as the
CIP for the 1100C passenger car impacting the RTGS at high speed. It has marginally higher
occupant risk metrics and roll angle compared to the simulations at the other impact points.

Table 70. RTGS 1100C Simulation Results with Impact Point at Post.

Test Parameter MASH High Speed Impact at Post
Criteria
OlV, Longitudinal (ft/s) <40.0 20.8
OlV, Lateral (ft/s) <40.0 22.3
RA, Longitudinal (g) <20.49 -19.1
RA, Lateral () <20.49 -13.5
Max. Roll (deg.) <75 -13.0
Max. Pitch (deg.) <75 3.6
Max. Yaw (deg.) N/A —42.9
Max. Rail Deflection (inches) N/A 33.1

Table 71. RTGS 1100C Simulation Results with Imp

act Point 2 ft Downstream of Post.

Test Parameter MASH High Speed Impact 2 ft
Criteria Downstream of Post
OlV, Longitudinal (ft/s) <40.0 21.8
OlV, Lateral (ft/s) <40.0 19.1
RA, Longitudinal (g) <20.49 -18.1
RA, Lateral (g) <20.49 -11.9
Max. Roll (deg.) <75 11.8
Max. Pitch (deg.) <75 -5.0
Max. Yaw (deg.) N/A —64.1
Max. Rail Deflection (inches) N/A 38.1

Table 72. RTGS 1100C Simulation Results with Im

pact Point 2 ft Upstream of Post.

Test Parameter MASH High Speed Impact 2 ft
Criteria Upstream of Post
OlV, Longitudinal (ft/s) <40.0 26.4
OlV, Lateral (ft/s) <40.0 19.7
RA, Longitudinal (g) <20.49 -14.8
RA, Lateral (g) <20.49 -12.5
Max. Roll (deg.) <75 -5.9
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Max. Pitch (deg.) <75 —4.0
Max. Yaw (deg.) N/A —48.1
Max. Rail Deflection (inches) N/A 41

Figure 74 to Figure 77 present images from the high-speed passenger car simulation with
the RTGS system at the CIP (i.e., impact at a post). The 1100C vehicle is successfully contained
and redirected. Significant wheel interaction with the posts is evident. The vehicle model used in
the simulations incorporated suspension failure, and the front impact side wheel separated from
the vehicle.

[

Figure 74. Front Tire of Car Contacts Post in RTGS (T = 0.08 sec).

Figure 75. Wheel Snagging on Post during Car Interaction with RTGS (T = 0.24 sec).

Figure 76. Rear of Car Interacts with RTGS (T = 0.335 sec).
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Figure 77. Car Exits RTGS in Stable Manner (T = 0.865 sec).

The occupant risk factors for the RTGS impacted by the passenger car at the CIP were
within MASH limits. The maximum dynamic rail deflection was 38.1 inches. The maximum
effective plastic strain of the rail segment above a selected 20 percent threshold and is shown in
Figure 78. Yielding of the rail is isolated and indicates that rail rupture is not likely.

A similar set of simulations with the 2270P pickup truck were performed on the RTGS at
the impact conditions associated with an 80-mph speed limit. The researchers performed
simulations at three different impact locations to determine the CIP. The results were used to
assess vehicle stability, occupant risk factors, and structural adequacy. Table 73 to Table 75
show the occupant risk metrics, angular displacements, and maximum dynamic deflection for
impact at a post, 2 ft downstream of a post, and 2 ft upstream of a post, respectively.

#ﬁ'EJNADE%VWO"d deck by LS-PrePost Effective Plastic Strain
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min=0, at elem# 9003406 166701
. max=0.684, at elem# 9851292 1.333e-01 _
1zm Post 1.000e-01 _

6.667¢-02_
3333602
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Figure 78. Effective Plastic Strain in RTGS Rail Segment during Passenger Car Impact at
CIP.

In all cases, the occupant risk criteria and angular displacements satisfied MASH criteria.
The researchers recommend 2 ft downstream from the post as the CIP for the 2270P pickup truck
due to the high roll angle that occurs after the vehicle exits the system.

Figure 80 to Figure 83 present images from the high-speed pickup truck simulation with
the RTGS system at the CIP (i.e., 2 ft downstream of a post). The 2270P vehicle was
successfully contained and redirected. After exiting the system, the pickup truck experiences a
high roll angle (52 degrees) but remains upright and returns to the ground thereafter.
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Table 73. RTGS 2270P Simulation Results with Impact Point at Post.

Test Parameter MASH | High Speed Analysis Impacting

at Post
OlV, Longitudinal (ft/s) <40.0 17.5
OlV, Lateral (ft/s) <40.0 175

RA, Longitudinal (g) <20.49 -12.7
RA, Lateral () <20.49 -9.9
Max. Roll (deg.) <75 16.5
Max. Pitch (deg.) <75 -8.0

Max. Yaw (deg.) N/A —45.8

Max. Rail Deflection (inches) N/A 44.6

Table 74. RTGS 2270P Simulation Results with Impact Point 2 ft Downstream of Post.

Test Parameter MASH | High Speed Analysis Impacting
2 ft Downstream from Post
OlV, Longitudinal (ft/s) <40.0 15.8
OlV, Lateral (ft/s) <40.0 17.7
RA, Longitudinal (g) <20.49 -8.0
RA, Lateral (g) <20.49 -9.5
Max. Roll (deg.) <75 52.2
Max. Pitch (deg.) <75 -13.5
Max. Yaw (deg.) N/A —47.3
Max. Rail Deflection (inches) N/A 45

Table 75. RTGS 2270P Simulation Results with Impact Point 2 ft Upstream of Post.

Test Parameter MASH | High Speed Analysis Impacting
2 ft Upstream from Post

OlV, Longitudinal (ft/s) <40.0 16.6
OlV, Lateral (ft/s) <40.0 154
RA, Longitudinal (g) <20.49 —6.9
RA, Lateral (g) <20.49 -9.2
Max. Roll (deg.) <75 25.3
Max. Pitch (deg.) <75 -11.9
Max. Yaw (deg.) N/A —47.7
Max. Rail Deflection (inches) N/A 44.5
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I
Figure 80. Pickup Truck Interaction with RTGS (T = 0.22 sec).

[
Figure 81. Rear of Pickup Truck Interacts with RTGS (T = 0.29 sec).
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Figure 82. Maximum Roll of Pickup Truck after Exiting System (T = 0.93 sec).

The occupant risk factors for RTGS impacted by the pickup truck at the CIP were well
within MASH limits. The maximum dynamic rail deflection was 45 inches. The maximum
effective plastic strain of the rail segment above a selected 20 percent threshold is shown in
Figure 83. Yielding of the rail is localized and indicates that rail rupture is not likely.
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Figure 83. Effective Plastic Strain in RTGS Rail Segment during Pickup Truck Impact at
CIP.

6.3. MIDWEST GUARDRAIL SYSTEM WITH SHORTENED BLOCKOUTS

The MGS consists of a 12-gauge W-Beam rail element mounted on standard 6-ft-long,
W6x8.5 steel posts at a height of 31 inches. The support posts have a 75-inch spacing. A
shortened, 10-inch-long wooden offset block is incorporated between the rail and posts and
secured with a single guardrail bolt. Figure 71 shows a cross section of the MGS with shortened
blockouts.

An existing finite element model of the MGS with shortened blockouts, shown in Figure
85, was used in the simulation effort. The model was previously validated and used in the
development and evaluation of a W-beam guardrail with reduced post spacing (23).

The predictive impact simulations on the MGS with shortened blockouts were performed
using impact conditions for a posted speed limit of 80 mph, which involved an impact speed of
66.4 mph and impact angle of 25.6 degrees. The researchers conducted the simulations at three
different impact points to determine the CIP for each design vehicle. The simulations were
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performed with the impact point occurring at a post as well as 2 ft upstream and downstream of a
post.

The MGS with shortened blockouts was evaluated for vehicle stability and occupant risk
factors. Results from the three high-speed simulations with the 1100C passenger car are shown
in Table 76 to Table 78 for impact at a post, 2 ft downstream of a post, and 2 ft upstream of a
post, respectively. In all cases, the occupant risk criteria and angular displacements satisfied
MASH criteria.

' A ’ 10" Guardrail Boll
o
2" Wide-Flange

|

Figure 84. MGS with Shortened Blockout (23).
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Figure 85. Finite Element Model of MGS with Shortened Blockout.

Table 76. MGS with Shortened Blockout 1100C Simulation Results with Impact at Post.

Test Parameter MASH | High Speed Analysis Impacting
at Post
OlV, Longitudinal (ft/s) <40.0 21.9
OlV, Lateral (ft/s) <40.0 16.4
RA, Longitudinal (g) <20.49 -16.2
RA, Lateral (g) <20.49 -12.1
Max. Roll (deg.) <75 -9.6
Max. Pitch (deg.) <75 -3.4
Max. Yaw (deg.) N/A 68.3
Max. Rail Deflection (inches) N/A 35.6

Table 77. MGS with Shortened Blockout 1100C Simulation Results with Impact 2 ft
Downstream of Post.

Test Parameter MASH | High Speed Analysis Impacting
2 ft Downstream from Post

OlV, Longitudinal (ft/s) <40.0 29.4
OlV, Lateral (ft/s) <40.0 17.7
RA, Longitudinal (g) <20.49 -13.7
RA, Lateral (g) <20.49 -9.8
Max. Roll (deg.) <75 -9.0
Max. Pitch (deg.) <75 —8.6
Max. Yaw (deg.) N/A —25.8
Max. Rail Deflection (inches) N/A 34.3
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Table 78. MGS with Shortened Blockout 1100C Simulation Results with Impact 2 ft
Upstream of Post.

Test Parameter MASH | High Speed Analysis impacting
2 ft upstream from the post

OlV, Longitudinal (ft/s) <40.0 26.6
OlV, Lateral (ft/s) <40.0 16.6
RA, Longitudinal (g) <20.49 -19.2
RA, Lateral (g) <20.49 -13.3
Max. Roll (deg.) <75 -11.4
Max. Pitch (deg.) <75 -16.9
Max. Yaw (deg.) N/A 46.1
Max. Rail Deflection (inches) N/A 34.8

Based on a review of the results, the researchers recommend impacting 2ft upstream from
a post as the CIP for the 1100C passenger car impacting the MGS with shortened blockouts at
high speed. It has the highest ridedown acceleration and roll angle compared to the simulations at
the other impact points.

Figure 86 to Figure 88 present images from the high-speed passenger car simulation with
the MGS with shortened blockouts at the CIP (i.e., 2ft upstream from a post). Significant wheel
interaction with the posts is evident, but the 1100C vehicle is successfully contained and
redirected. The wheel snagging did result in the vehicle yawing in a clockwise direction after
exiting the system, but all MASH criteria were satisfied.

Figure 86. Front Tire of Car Contacts Post in MGS with Shortened Blockout (T = 0.08 sec).
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Figure 87. Car Interaction with MGS with Shortened Blockout (T = 0.31 sec).

Figure 88. Post Impact Trajectory of Car for MGS with Shortened Blockout (T = 1.1 sec).

The occupant risk factors for the MGS with shortened blockouts impacted by the
passenger car at the CIP were within MASH limits. The maximum dynamic rail deflection was
35 inches. The maximum effective plastic strain of the rail segment above a selected 20 percent
threshold is shown in Figure 89. Yielding of the rail is isolated and indicates that rail rupture is
not likely.
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Figure 89. Effective Plastic Strain of MGS Rail Segment Impacted by Passenger Car at
CIP.

A similar set of simulations with the 2270P pickup truck were performed on the MGS

with shortened blockouts at the impact conditions associated with an 80-mph speed limit. The
researchers performed simulations at three different impact locations to determine the CIP. The
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results were used to assess vehicle stability, occupant risk factors, and structural adequacy. Table
79 to Table 81 show the occupant risk metrics, angular displacements, and maximum dynamic
deflection for impact at a post, 2 ft downstream of a post, and 2 ft upstream of a post,
respectively.

Table 79. MGS with Shortened Blockouts 2270P Simulation Results with Impact at Post.

Test Parameter MASH | High Speed Analysis impacting

at post
OlV, Longitudinal (ft/s) <40.0 194
OlV, Lateral (ft/s) <40.0 14.6
RA, Longitudinal (g) <20.49 -9.7
RA, Lateral (g) <20.49 -9.4
Max. Roll (deg.) <75 -7.8
Max. Pitch (deg.) <75 -3.0

Max. Yaw (deg.) N/A -32.3

Max. Rail Deflection (inches) N/A 47.25

Table 80. MGS 2270P Simulation Results

with Impact Point 2ft Downstream of Post.

Test Parameter

MASH

High Speed Analysis Impacting
2 ft Downstream from Post

OlV, Longitudinal (ft/s) <40.0 26.6
OlV, Lateral (ft/s) <40.0 16.6

RA, Longitudinal (g) <20.49 -19.2
RA, Lateral () <20.49 -13.3

Max. Roll (deg.) <75 114

Max. Pitch (deg.) <75 -16.9

Max. Yaw (deg.) N/A 46.1

Max. Rail Deflection (inches) N/A 49.9

Table 81. MGS 2270P Simulation Result

s with Impact Point 2ft Upstream of Post.

Test Parameter MASH | High Speed Analysis impacting
2 ft upstream from post
OlV, Longitudinal (ft/s) <40.0 20.8
OlV, Lateral (ft/s) <40.0 15.7
RA, Longitudinal (g) <20.49 -7.9
RA, Lateral (g) <20.49 -9.0
Max. Roll (deg.) <75 3.8

Max. Pitch (deg.) <75 =27
Max. Yaw (deg.) N/A —41.4
Max. Rail Deflection (inches) N/A 47.7

In all cases, the occupant risk criteria and angular displacements satisfied MASH criteria.
The researchers recommend 2 ft downstream from the post as the CIP for the 2270P pickup
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truck. This impact location generated the highest occupant risk metrics and angular
displacements.

Figure 90 to Figure 93 present images from the high-speed pickup truck simulation with
the RTGS system at the CIP (i.e., 2 ft downstream of a post). The 2270P vehicle was
successfully contained and redirected in a stable manner.

I
Figure 90. Front Tire of Pickup Truck Interacts with Post (T = 0.1 sec).

Figure 91. Truck Interaction with MGS with Shortened Blockout System (T = 0.25 sec).

Figure 92. Rear of Pickup Truck Interacts with MGS with Shortened Blockout System
(T =0.38 sec).
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Figure 93. Pickup Truck Exits MGS with Shortened Blockout System in Stable Manner
(T =0.79 sec).

The occupant risk factors for the MGS with shortened blockouts impacted by the pickup
truck at the CIP were within MASH limits. The maximum dynamic rail deflection was 50 inches.
The maximum effective plastic strain of the rail segment above a selected 20 percent threshold is
shown in Figure 94. Yielding of the rail is localized and indicates that rail rupture is not likely.
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Figure 94. Effective Plastic Strain of RTGS Rail Segment Impacted by Pickup Truck at
CIP.

6.4. CONCLUSIONS AND RECOMMENDATIONS

Finite element simulations were performed to evaluate the high-speed impact
performance of an MGS guardrail system with shortened blockouts and a RTGS. The impact
conditions used in the simulations included an impact speed of 66.4 mph and impact angle of
25.6 degrees, which correspond to the impact conditions associated with a posted speed limit of
80 mph, as determined in this project.

Both these systems satisfied MASH evaluation criteria for both the 1100C passenger car
and 2270P pickup truck design vehicles. Researchers consider both of these systems to have a
reasonable probability of complying with MASH for the high-speed impact conditions.
However, due to a lack of validation of the barrier models for high-speed impact conditions and
various limitations associated with predicting some failure modes such as rail rupture,
researchers recommend performing crash tests of these systems to verify impact performance.
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CHAPTER 7. CONCLUSIONS AND IMPLEMENTATION
RECOMMENDATIONS

This research evaluates the impact performance of selected barrier systems for high-
speed impact conditions estimated for roadways having posted speed limits of 75 mph, 80 mph,
and 85 mph. TTI researchers predicted 85th percentile impact conditions for these high-speed
roadways by using linear regressions to extrapolate available reconstructed crash data for
freeways and interstate facilities. It was found that the impact conditions associated with a 75-
mph posted speed limit were within current tolerance for the MASH TL-3 impact speed and
angle. Therefore, it was concluded that MASH compliant barriers should be suitable for use on
roadways with a posted speed limit of 75 mph. Impact conditions estimated for roadways with an
80-mph posted speed limit included an impact speed of 66.4 mph and an impact angle of
25.6 degrees. The impact conditions associated with an 85-mph posted speed limit involved an
impact speed of 68.9 mph and an impact angle of 27.3 degrees.

TTI researchers evaluated four concrete barrier systems for high-speed impact conditions.
These included a 42-inch-tall SSCB, 36-inch-tall SSTR, 32-inch-tall F-Shape barrier, and 36-
inch-tall T222. Finite element impact simulations were performed on each of these systems using
impact conditions associated with an 85-mph posted speed limit for both the MASH 1100C
passenger car and 2270P pickup truck. Barrier performance was evaluated using MASH criteria.
Although the occupant risk metrics and angular displacements increased for the high-speed
impact conditions compared to MASH TL-3 impact conditions, the values were all within
MASH thresholds. Based on the simulation results, the SSCB, SSTR, T222, and F-Shape
concrete barriers are likely to meet MASH evaluation criteria for the 1100C passenger car and
2270P pickup truck for the high-speed impact conditions associated with a posted speed limit of
85 mph.

The concrete barriers evaluated through finite element simulation were modeled as rigid
without any deflection or deformation. Consequently, the simulation results are applicable to
both symmetric median profiles and single-side bridge rails provided sufficient structural
capacity is provided. The results are only applicable to cast-in-place barrier. Further research is
needed to evaluate precast concrete barrier to consider the connections between segments and the
associated barrier deflection.

The structural adequacy of the concrete barrier systems was investigated at both the
barrier interior and ends using the yield line methodology recommended in Section 13 of the
AASHTO LRFD Bridge Design Specification (20). Design impact loads for the high-speed
impact conditions were estimated based on impact severity and compared to the calculated
barrier capacity. Researchers found that the existing concrete barrier designs have sufficient
strength both on the interior and at the ends to resist impact forces associated with an 80-mph
posted speed limit. When the designs were assessed for a posted speed limit of 85 mph, it was
found that the barrier interiors had sufficient capacity, but the strength of the barrier ends was
slightly below the estimated design impact loads. Researchers recommended a reduced spacing
of the vertical barrier reinforcement and anchorage bars at the ends of the barriers to increase the
resistance to meet the 85-mph impact loads.

Previous crash testing indicates that current guardrail systems may be near their
performance limits under MASH TL-3 impact conditions. Testing of various guardrail
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configurations has resulted in rail tearing or rupture at impact severities at or below those
associated with the high-speed impact conditions.

The project panel selected two guardrail systems to investigate for high-speed impact
conditions associated with a posted speed limit of 80 mph. These included a MGS with shortened
10-inch-long offset blocks and a RTGS that incorporates a stronger thrie-beam rail element with
a taller mounting height of 34 inches in conjunction with shortened offset blocks.

The impact performance of these two guardrail systems was evaluated using finite
element modeling and simulation. Both of these guardrail systems satisfied MASH evaluation
criteria for the high-speed impact conditions for both the 1100C passenger car and 2270P pickup
truck design vehicles. Researchers consider both of these systems to have a reasonable
probability of complying with MASH for the high-speed impact conditions. However, due to a
lack of validation of the barrier models for high-speed impact conditions and various limitations
associated with predicting some failure modes such as rail rupture, researchers recommend
performing crash tests of these systems to verify impact performance.

A discussion on the value of this research is presented in Appendix E.
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APPENDIX D. F-SHAPE DETAILS

¥ 53 Bars W]
o Berrise T Expersich Jairrts
Ll Soocect # 15+ 04 ¢ e
Barrler 190 T, Vo ot
1+ ain,

LeriHugIngl Relffareamst
R Bas iy

|_Teal v
e

[ (|
=1
ED "n}ln. tran 31 'Dcn \

A BRIDGE TWTERWEDIATE JOTWT DETAIL

oea ot al L withaur
E‘Dw sl IM‘I md IPING at
33 fhotmax b 18 min.
1 pncrer g
30 | 3. (R archar Bore Spoced - O [l N k; Long X 3° Deen AP EXPSTON JOINT PLAEMENT
END VIEW o l e e incge Slors, o reauices Tices ot o1l tranaveree I
cal Ancharope ot ol | Expaslon | Ancner Spozing noy Do Gl tered 1a ccconadate Taea Conaror Nore Bre Nete o - ey
Cast-fn-Plage (CIF} Barrier aie ra Inrermedlare JoIRTE e 3--0F Drainogs 31ove, o diacied by fa Enginears General Notes
BOTIar |5 SymWIrion| ABOUT Tha Centar Lins 1. Concrate shot| be Closs €, unless othermise apecifled in
ELEVATION VIEW The plont.
Cast-'n-Flace (C38) on Bridge Decks or Lol forcamant shall ba Grods €0 cnd
. Contfrucus |y Relnforced Concrete Povemert ICRCPI T he b ave dech creulres esony “coutes” reintarcemnt,
» eegr of CIP pareige DU iShow!ng Refrforcement ond Anchor Requirement! the borrler ond/er onchorcoe moy reguire the some, T8 shown
e ol inater & 5 alsewnare in the plans.
B rocius. | & .
slpn s Y A-Il of ceﬂ in-place bereior ahall be varticol, escept where the
il EUpere|euotes, then axi enall be n 10 rootwoy

Torroce.

BARRLER PLACEMENT COVER (CRCP) JOINTS

Henoerd ta Gthee formets o0 For InGorTact raksith o GOTRRIOR FARUITing Trom 18w,

auoe EgIngaring Proctise Act™, We worronty of ony Kird |s mods by Ts0T for ony purpers whoteoevars

| _
S P R ——— . ::‘:?::;:‘fl"-in-plﬂ borrier snail hove o % - choafer ar
z | LHOP Joiee Culen gr without tigmorsi: Twe |oyers of 30s racfing feit 5
E | . o Va' Preformen bitamineus fiber mor el
s = Anchorops muat be locoted o lesst 3° from Fallan ma mm-wr + ai
| - Crcrorope. thawn 15 the minimm Teo|rad, o
5 ‘ B © 1engltuginal Jelnt. aml.mrcn lml\ﬂlo’, 1o tha bid item. >
¥ . | - 5. Brainoge alot dusths may oe increaad 1 1o mm«. 1:9 sm
I H] $ich opan Jolmt tocatiant (12°+ G°, C-C Win. Spacing! ore shown e
e 1 ﬁ_‘ Barrier spen lairt dirested by the Englneer:
52 — — 7. Cont-in-pioce berriar oy ba siip forned, Bracing moy oe ties or
: ‘ prevguli it Radiberg st pidhn e i
3 | 5 ~ =+ Plan View Be mat weld fo gnchor WH. fhl ralnfercenent coge moy rest on
- ‘ 2 Barrler the top af tha finishead
= | —t 8 For locations wnace 1ignting 18 raquiced, sed the CSBIAI srat
= ! ] ] o the Braper relnforcement ond archarope.
-
}
fg 24" l* pretormed blhumincus
13 Flbar matarTal frés sids of
.t foint o = b0 w1 e | COST-In-Place or 51!p-Formed (CSB)
&3 CONCRETE SAFETY BARRIER (CSB) T oot o oy rest BARRIER OVER TRANSVERSE OPEM JOINT - © ot in-Plose verriur sty be Gamweted 19 prasett (55,
§ Vo oW tha foaisned e, % Jalnt Gonnect! bes” muy bt ubed In Cost-ln-Pioee
H Barr i er, 10 mOTCn The precuEt borrier camect
5> TTae ramiired comaction Tyma’ elssert I the Blnel
§el
iz stengera inchorogs nares . I Tha weignt of Cort-InoF looe 1031 (F-Shaper 1R oopr o
30 degrees In oy direction “OTr aptsy ecatad enchor dors in. 440 1bs oar TH.
abait the barrier G . Barrler  ore redired, 1 Iover € of T Hems
1 [ he bars muFt nat Be epony coated.
N i |t it
5 Welded Wire Reinforcerent — Besien
< A
H . IWWR} Cption for Bars S and R M Texas Deporment of Transportation | Standond
. u' WA Gereral Wotes
Concrete - = 1. Deformeo weiged Wire Reinforcensnt (NWR) ol Sonfors CONCRETE SAFETY
vt win Edge Distance o MSTW A8 BARRIER (F-SHAPE)
ol um ke . A 7. Toe celoua wiry coge o e orainens <iote moy ng et or nane A
—— From Lengitudinal Joint Eiiasira (i dohe 500 18 S awranc, 1 Siraeiod o7 CAST TN PLACE
19° L iy sasihebs
2 "OPTIONAL " ANCHORAGE Plastnt exar a lonaliudinal bride " {BRIDGE DECK or CRCP)
PR Joint Is not 3. Tha weldes wira spiles locatians chal| hove o "slnima”
splice (op |ength of 127, CSB(3) _16
Fregn inseetion matneg o 4. Comainations of reinfaraing stael ono will b parmitrad,
Taype 111, tloss € Looxy Method o P g1 b o it L e Fim el dm N T e i BT
Concreds Pavement / Bridge Deck Anchoroge: e borcier section 15 the Fires wire shall not exched 3or T oy 06 L T T
- I548 Cardran Nots 71 Cost-1n-Fices or S1ip-Formed Borrier = T T
] [Ses Ganercl Notes 2 & 51 a7 4104 oo} = =
Bt 1

111






APPENDIX E. VALUE OF RESEARCH

The Centers for Disease Control and Prevention estimates that the total societal cost of
highway crashes in Texas is over $5.7 billion per year. The value of research (VOR) for this
project is defined in terms of its economic benefits. The economic benefit is safety related and
expressed in terms of potential lives saved and associated societal cost associated with
implementation of the evaluated guardrail systems on high-speed roadways. Use of enhanced
guardrail designs on high-speed facilities may offer an increase in effective barrier capacity,
which can result in fewer barrier penetrations or vehicle rollovers compared to conventional
guardrail systems. Finite element impact simulations of existing concrete barriers found that
these barriers are likely to meet occupant risk and vehicle stability requirements for posted
speeds up to 85 mph. Therefore, although this is a significant finding, the continued
implementation of these concrete barriers on high-speed roadways will not result in additional
safety benefits beyond those already being realized.

In support of the economic safety analysis of this research, four years of crash data from
CRIS was analyzed from the years 2016 through September 2021. A total of 17 fatal crashes
were coded as Hit Concrete Traffic Barrier and 88 fatal crashes were coded as Hit Guardrail
System on high-speed roadways having posted speed limits of 75 mph or greater. Under this
project, the impact conditions estimated for roadways with a speed limit of 75 mph were within
MASH impact tolerances for TL-3. Therefore, MASH TL-3 compliant barriers are considered
satisfactory for roadways with a posted speed limit of 75 mph. Additionally, Texas only has
about 30 miles of roadway with a posted speed limit of 85 mph. Therefore, the VOR analysis
focused on roadways with a posted speed limit of 80 mph.

Table 82 shows the number of fatal and serious injury guardrail crashes on roadways with
a posted speed limit of 80 mph. There was a total of 14 fatal and 33 serious injury crashes coded
as Hit Guardrail during the period 2016 through September 2021. This equates to 2.43 fatalities
and 5.74 serious injury guardrail related crashes per year.

Table 82 Guardrail Crashes for 80-mph Posted Speed Limit.

Year No. of Fatal Crashes | No. of Serious Injury Crashes
2016 3 3
2017 1 7
2018 1 3
2019 4 5
2020 1 8
Jan.—Sept. 2021 4 7
Total 14 33

While the performance limits of existing guardrails have not been well defined, previous
crash testing has indicated that current guardrail designs may be near their capacity under MASH
TL-3 impact conditions. The alternative guardrail systems evaluated through finite element
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simulation under this research indicate they have a reasonable probability of satisfying MASH
criteria for impact speeds up to 66.4 mph, which is the 85th percentile impact speed estimated for
roadways with a posted speed limit of 80 mph. Thus, if these guardrail systems are implemented
on roadways with a posted speed limit of 80 mph, they will theoretically accommodate a broader
range of impact speeds than the conventional metal beam guard fence. Specifically, the safety
benefit associated with these barriers will be realized for impact speeds ranging from 62 mph
(the MASH TL-3 impact speed) to 66.4 mph (the impact speed estimated for roadways with a
posted speed limit of 80 mph).

The NCHRP 17-43 database is comprised of clinically reconstructed run-off-road
crashes. Both impact speed and posted speed are available in this database. The researchers
assumed that the mean impact speed for a given facility type is proportional to the posted speed
limit. For this analysis, which relates to high-speed facilities, data for interstate and freeway
classes were used. Mean impact speeds for the higher posted speed limits for which crash data
were unavailable were estimated using linear regression of mean impact speed for other posted
speed limits for these facility types.

Previous research has found that a gamma function provides the best fit for both
univariate impact speed distributions. The gamma function is uniquely defined by two
coefficients that can be used to describe the mean and variance of the distribution. Therefore, by
assuming a mean impact speed for a given posted speed, a gamma function can be defined.

Figure 95 shows the probability density function of the gamma distribution for impact
speed associated with a posted speed limit of 80 mph. The percentage change between the
MASH impact speed of 62 mph and the impact speed of 66.4 mph was calculated, as highlighted
in Figure 95. This graph indicates an impact speed of 66.4 encompasses 4.84 percent more
crashes beyond an impact speed of 62 mph.

A recent published report by NHTSA entitled The Economic and Societal Impact of
Motor Vehicle Crashes (2019) indicates that the economic cost to society of each fatality in a
fatal crash is $1,584,326. The economic cost of a serious injury crash (average cost of MAIS 3-
5) is approximately $623,262. Thus, the economic safety benefit associated with implementation
of the high-speed guardrail systems on roadways with a posted speed limit of 80 mph posted
speed limit can be estimated as follows:

(2.43 fatalities/year x $1,584,326/fatality + 5.74 serious injuries/year x
$623,262/serious injury) *0.0484 = $359,488/year.
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Figure 95. Probability Density Function for Impact Speed for Posted Speed Limit of
80 mph.

The total economic value of the project over a 20-year period is summarized in Figure 96.
Implementing the guardrail systems on roadways with a posted speed limit of 80 mph or greater
will provide a safety benefit in terms of a reduction in fatal and serious injury guardrail crashes.
Researchers suggest performing full-scale crash testing of the guardrail systems to confirm
impact performance at the higher impact speed associated with a posted speed limit of 80 mph.
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Texas
Department
of Transportation

Project #

0-7121

Project Name:

Develop Guidelines for Inspection, Repair, and Use of Portable

Concrete Barrier

Agency: |TTI Project Budget | $ 270,000
Project Duration (Yrs) 2.0 Exp. Value (per Yr)| $ 359,488
Expected Value Duration (Yrs) 20 Discount Rate 5%
Economic Value
Total Savings: 2,965,392 Net Present Value (NPV):| $ 2,402,847
Payback Period (Yrs): 0.751068 Cost Benefit Ratio (CBR, $1:$___):| $ 9

Years Expected Value
0 $89,488
1 $0
2 $359,488
3 $359,488
4 $359,488
5 $359,488
6 $359,488
7 $359,488
8 $359,488
9 $359,488

10 $359,488
11 $359,488
12 $359,488
13 $359,488
14 $359,488
15 $359,488
16 $359,488
17 $359,488
18 $359,488
19 $359,488
20 $359,488
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Value of Research: NPV
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Figure 96. Estimated Economic Value of Project.
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