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CHAPTER 1: OVERVIEW 

INTRODUCTION 

Several research projects on freeway safety performance have been sponsored by Texas, 

other states, and federal agencies over the past 15 years.  These research projects have yielded 

resources like the Roadway Safety Design Workbook (1) and chapters for the Highway Safety 

Manual (HSM) (2), among others.  Safety prediction models in these resources can be used to 

estimate the crash frequency for a freeway segment of interest as a function of key site variables.  

However, due to the passage of time since the 2009 publication of the Roadway Safety Design 

Workbook and the fact that the HSM freeway models were calibrated using data from other 

states, there is a need to re-evaluate and re-calibrate safety prediction models for freeways in 

Texas. 

Safety analysis is becoming increasingly important for projects involving widening or 

realigning urban freeways, since these projects are often complex and require tradeoffs with key 

geometric design variables.  For example, the addition of lanes may require accepting a narrower 

lane width or narrower shoulders, since the cost of acquiring right-of-way for widening projects 

in urban areas is usually significant.  Additionally, a growing number of urban freeway 

improvement projects are involving widening to more than 10 general-purpose lanes or 

construction of new managed-lane facilities such as high-occupancy vehicle (HOV) or toll lanes.  

No safety prediction models exist for freeway segments with more than 10 lanes, nor for 

managed-lane facilities if the analyst needs to estimate the crash frequency in the managed lanes 

and the adjacent general-purpose lanes separately. 

RESEARCH APPROACH 

The research team built a database of urban freeway segments in Texas and used the 

database to calibrate the urban freeway models in the HSM.  The research team applied a three-

stage process to compute local calibration factors for the HSM models and assessed the goodness 

of fit of the calibrated models.  These calibrated models allow practitioners to consider a wide 

range of site characteristics, including traffic volume; cross-sectional widths; longitudinal barrier 

presence; rumble strip presence; and location, type, and volume of upstream and downstream 

ramp entrances and exits.  Some of these variables were not included in earlier safety prediction 

models that were developed for Texas.  The research team also assessed the models’ 

applicability to urban freeway segments with 12 general-purpose lanes and determined that the 

10-lane model from the HSM can be extended to these wider segments with an appropriate set of 

derived calibration factors.  Finally, the research team conducted a detailed review of crash 

reports from crashes that occurred on urban freeways with managed lanes, allocated the crashes 

to either the managed lanes or the adjacent general-purpose lanes, and developed new safety 

prediction models specifically for the managed lanes.  These new models account for variables 

such as traffic volume, cross-sectional widths, buffer type (i.e., pavement stripe, pylons, or 

concrete buffer), and location and design of access points.
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CHAPTER 2: LITERATURE REVIEW 

INTRODUCTION 

Safety prediction models have been developed for urban freeway segments in Texas and 

elsewhere to apply to cross sections up to 10 lanes wide.  These models are documented in 

resources such as the Texas Department of Transportation’s (TxDOT’s) Roadway Safety Design 

Workbook (1) and the HSM (2, 3) and are applied in several spreadsheet-based analysis tools that 

accompany these documents.  These tools are acknowledged in TxDOT’s Project Development 

Process Manual (4) and have been used by various district personnel, particularly in the 

evaluation of project alternatives or analysis of design exceptions.  However, additional research 

is needed to address knowledge gaps as well as to develop updated local calibration factors for 

the models.  Specifically, safety prediction models do not exist for freeway segments with 11 or 

more lanes or freeway segments with managed lanes (e.g., high-occupancy-vehicle or high-

occupancy-toll lanes). 

This chapter describes a literature review that summarizes freeway safety prediction 

models that have been developed for urban freeway facilities in the past two decades.  The scope 

is limited to urban facilities because the facilities of interest (i.e., freeways with 11 or more lanes 

or freeways with managed lanes) do not exist in rural areas.  This chapter is divided into two 

parts.  The first part discusses and compares freeway safety prediction models from the literature.  

The second part summarizes issues and insights with statistical modeling methods used to 

calibrate safety prediction models. 

SAFETY PREDICTION MODELS 

Freeways have been the subject of safety analysis research projects over the past 20 years 

in Texas and elsewhere.  These projects include TxDOT Research Project 0-4703 (1), TxDOT 

Research Project 0-6811 (5), Federal Highway Administration (FHWA) Task Order T-5012 (6), 

and National Cooperative Highway Research Program (NCHRP) Project 17-45 (3).  Most of 

these projects have focused on freeway facilities that are more abundant in terms of centerline 

mileage.  Relatively little research has been conducted on freeway segments with 11 or more 

lanes or freeways with managed lanes because of their relative rarity.  However, because of 

significant and growing demand for freeway capacity in urbanized areas, such facilities are 

becoming more common and are often constructed in corridors with limited right-of-way.  As a 

result, wider freeways sometimes have lanes and shoulders that are narrower than desired, and 

design tradeoffs have to be made between narrowing the different cross-sectional elements, 

especially in constrained locations like between bridge columns. 

Safety analysis is performed in various stages of the project development process, 

including project identification, alternatives analysis, preliminary design, and final design (4).  It 

is particularly common for safety analysis to be conducted as part of the design exception 

process.  These efforts require knowledge of safety trends.  The current state of this knowledge is 

summarized in the following sections. 
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Highway Safety Manual Models 

Chapters 18 and 19 of the HSM contain safety performance functions (SPFs) for freeway 

mainline segments and ramps, respectively (2).  These models were calibrated using data from 

the states of Washington, California, and Maine (3).  Equations 1–5 describe the models for 

urban freeway mainline segments with no ramp entrances or exits present.  These equations 

provide separate estimates for multiple-vehicle and single-vehicle crashes, as well as for fatal-

and-injury (FI) and property-damage-only (PDO) crashes.  Table 1 provides the calibration 

coefficients for Equations 2–5.  Note that Equation 1 provides the base crash frequency, which is 

the crash frequency for a segment that has geometric and traffic control characteristics that match 

the “base” or “typical” conditions identified in the analysis of the model calibration dataset.  The 

HSM also provides crash modification factors (CMFs) for Equations 2–5 that allow the analyst 

to adjust for conditions that differ from the base conditions. 

 𝑁 = 𝑁𝑀𝑉,𝐹𝐼 + 𝑁𝑀𝑉,𝑃𝐷𝑂 + 𝑁𝑆𝑉,𝐹𝐼 + 𝑁𝑆𝑉,𝑃𝐷𝑂 ( 1) 

with: 

 𝑁𝑀𝑉,𝐹𝐼 =  𝐿 × 𝑏𝑛,𝑀𝑉,𝐹𝐼 × (
𝐴𝐴𝐷𝑇

1000
)

1.492

 ( 2) 

 𝑁𝑀𝑉,𝑃𝐷𝑂 =  𝐿 × 𝑏𝑛,𝑀𝑉,𝑃𝐷𝑂 × (
𝐴𝐴𝐷𝑇

1000
)

1.936

 ( 3) 

 𝑁𝑆𝑉,𝐹𝐼 =  𝐿 × 𝑏𝑛,𝑆𝑉,𝐹𝐼 × (
𝐴𝐴𝐷𝑇

1000
)

0.646

 ( 4) 

 𝑁𝑆𝑉,𝑃𝐷𝑂 =  𝐿 × 𝑏𝑛,𝑆𝑉,𝑃𝐷𝑂 × (
𝐴𝐴𝐷𝑇

1000
)

0.876

 ( 5) 

where: 

N = base number of crashes per year; 

NMV,FI = number of multiple-vehicle FI crashes per year; 

NMV,PDO = number of multiple-vehicle PDO crashes per year; 

NSV,FI = number of single-vehicle FI crashes per year; 

NSV,PDO = number of single-vehicle PDO crashes per year; 

L = freeway segment length, mi; 

AADT = annual average daily traffic (AADT), veh/day; and 

bn,x,y = calibration coefficient for lane count n, crash type x (multiple-vehicle or single-

vehicle), and crash severity y (FI or PDO). 

Table 1 provides the bn,x,y calibration coefficients for use in Equations 2–5. 

Table 1.  HSM Model Calibration Coefficients. 

Number of Lanes (n) 𝒃𝒏,𝑴𝑽,𝑭𝑰 𝒃𝒏,𝑴𝑽,𝑷𝑫𝑶 𝒃𝒏,𝑺𝑽,𝑭𝑰 𝒃𝒏,𝑺𝑽,𝑷𝑫𝑶 

4 0.0042 0.0014 0.1193 0.1070 

6 0.0037 0.0011 0.1281 0.1029 

8 0.0036 0.0009 0.1374 0.0991 

10 0.0029 0.0007 0.1473 0.0953 
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Figure 1 shows the HSM SPFs in graphical format.  The black lines provide total (FI + 

PDO) crash frequency, and the red lines provide FI crash frequency.  As shown, the models 

predict that for a given traffic volume, crash frequency will decrease with a larger number of 

lanes. 

 
Figure 1.  HSM Models. 

Texas-Calibrated Models 

TxDOT’s Roadway Safety Design Workbook contains freeway SPFs that were calibrated 

using Texas data (1).  These SPFs provide estimates of base FI crash frequency.  Equations 6–8 

show the Workbook urban freeway SPFs for segments that do not have ramp entrances or exits.  

The Workbook also provides CMFs that allow the analyst to adjust for conditions that differ from 

the base conditions. 

 𝑁𝐹𝐼 = 𝑁𝑀𝑉,𝐹𝐼 + 𝑁𝑆𝑉,𝐹𝐼 ( 6) 

with: 

 𝑁𝑀𝑉,𝐹𝐼 =  𝐿 × 𝑏𝑛,𝑀𝑉,𝐹𝐼 × (
𝐴𝐴𝐷𝑇

1000
)

1.55

 ( 7) 

 𝑁𝑆𝑉,𝐹𝐼 =  𝐿 × 𝑏𝑛,𝑆𝑉,𝐹𝐼 × (
𝐴𝐴𝐷𝑇

1000
)

0.646

 ( 8) 

where: 

NFI = base number of FI crashes per year. 
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Table 2 provides the bn,x,y calibration coefficients for use in Equations 7 and 8. 

Table 2.  Workbook Model Calibration Coefficients. 

Number of lanes, two-way total (n) 𝒃𝒏,𝑴𝑽,𝑭𝑰 𝒃𝒏,𝑺𝑽,𝑭𝑰 

4 0.00532 0.13400 

6 0.00352 0.11900 

8 0.00289 0.11300 

10 0.00220 0.10400 

Figure 2 shows the Workbook SPFs in graphical format.  As shown, the models predict 

that for a given traffic volume, crash frequency will decrease with a larger number of lanes. 

 
Figure 2.  Workbook Models. 

In TxDOT Research Project 0-6811, a new set of SPFs was calibrated for urban freeway 

segments (5).  These models are shown in Equations 9 and 10.  These models are formulated to 

provide a one-way crash frequency, considering each roadbed of the freeway separately, such 

that the distances to upstream and downstream ramps can be independently considered for the 

two directions of travel.  Unlike the preceding models, the 0-6811 SPFs bound to a value of zero 

(instead of a positive crash frequency) if the distance to the upstream and downstream ramps 

approaches infinity.  These models were calibrated using a dataset of urban freeway segments, 

and all segments had upstream and downstream ramps within 1.5 miles of the segment. 
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 𝑁 = 1.0027 × 𝐿 × 𝐴𝐴𝐷𝑇0.539𝑒−1.0243𝐷𝑢𝑝−1.0877𝐷𝑑𝑜𝑤𝑛−0.0241𝑛𝑜𝑤𝑙 ( 9) 

 𝑁𝐾𝐴𝐵 = 0.0514 × 𝐿 × 𝐴𝐴𝐷𝑇0.662𝑒−1.5787𝐷𝑢𝑝−0.8659𝐷𝑑𝑜𝑤𝑛−0.0253𝑛𝑜𝑤𝑙 ( 10) 

where: 

NKAB = number of K, A, and B crashes per year (using the KABCO scale); 

Dup = distance to upstream ramp, mi; 

Ddown = distance to downstream ramp, mi; 

no = number of lanes (one-way total); and 

wl = average lane width, ft. 

Figure 3 shows the 0-6811 SPFs in graphical format.  As shown, the models predict that 

for a given traffic volume, crash frequency will decrease with a larger number of lanes. 

 
Figure 3.  TxDOT 0-6811 Models. 

More recently, freeway SPFs were calibrated for TxDOT’s Beaumont District in TxDOT 

Implementation Project 5-9052 (7).  These models are shown in Equations 11 and 12.  Figure 4 

shows these models graphically.  In a manner consistent with the previous models, the Beaumont 

models show a decrease in crash frequency with a larger number of lanes. 

 𝑁 = 6.62 × 10−6 × 𝐿 × 𝐴𝐴𝐷𝑇1.5332 × 𝑒−0.0871𝑛 ( 11) 

 𝑁𝐹𝐼 = 4.30 × 10−6 × 𝐿 × 𝐴𝐴𝐷𝑇1.4731 × 𝑒−0.0619𝑛 ( 12) 
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Figure 4.  TxDOT 5-9052 Models. 

Effect of Cross-Sectional Widths on Safety Performance 

The preceding safety prediction models include lane width as an input variable.  A 

comparison of four lane-width CMFs is shown in Figure 5.  Three of the four models showed a 

similar relationship between lane width and crash frequency.  The exception was the models 

developed in TxDOT Research Project 0-6811, which suggested that lane width had a greater 

effect on crash frequency.  It is important to note that very few variables were included in the 

SPF, so the lane width may be capturing the effect of other correlated variables. 

The preceding safety prediction models also include inside and outside shoulder width as 

input variables.  A comparison of eight shoulder-width CMFs is shown in Figure 6.  Note the 

following observations: 

• The findings of TxDOT Research Project 0-4703 suggest that inside shoulders are more 

influential on crash frequency than outside shoulders.  However, the magnitude of the 

safety effect is relatively minor.  The computed CMF values are less than 1.2 (indicating 

a 20-percent increase in crash frequency) for both outside and inside shoulders even if the 

width decreases to 1 ft. 

• The HSM safety prediction models (i.e., the findings of NCHRP Project 17-45) suggest 

that outside shoulders are more influential on crash frequency than inside shoulders.  The 

computed CMF values are relatively small for inside shoulders but relatively large for 

outside shoulders. 

• The findings of TxDOT Research Project 0-6811 suggest that outside shoulders are more 

influential on crash frequency than inside shoulders.  The computed CMF values are 

relatively large for both outside and inside shoulders. 
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• The findings of TxDOT Implementation Project 5-9052 suggest that the effect of outside 

shoulder width is similar to that found in TxDOT Research Project 0-4703.  This 

project’s findings also suggest that inside shoulder width is notably more influential on 

crash frequency than what was found in the other research projects. 

 
Figure 5.  Lane Width CMFs. 

 
Figure 6.  Shoulder Width CMFs. 
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In all three research projects, the shoulder width CMFs were developed for all lane 

counts and as part of a full model calibration effort.  That is, the same CMF applied for freeway 

segments with 4 lanes or 10 lanes. 

Severity Distribution 

The HSM safety prediction models include severity distribution functions (SDFs) to 

account for the differing effects that some input variables may have on the distribution of crash 

severity.  The following variables are included in the SDF: 

• Inside (median) and/or outside (roadside) longitudinal barrier presence. 

• Proportion of hours with high traffic volumes (defined as greater than 1000 veh/h/lane). 

• Rumble strip presence on the inside and/or outside shoulders. 

• Proportion of segment length with horizontal curvature. 

• Lane width. 

• Area type (rural vs. urban). 

Figure 7 shows a graphical representation of the lane width SDF, which illustrates a 

decrease in the proportion of K crashes and an increase in the proportion of C crashes when lane 

width increases. 

 
Figure 7.  Lane Width SDF for HSM Models (3). 

The safety prediction models from TxDOT Research Project 0-6811 account for severity 

distribution by providing different CMF coefficient values for the total crash frequency model 

and the KAB crash frequency model.  Similarly, the models from TxDOT Research Project 5-

9052 provide different CMF coefficient values for the total crash frequency model and the FI 

crash frequency model. 
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Effects of Lane Count on Safety Performance 

Lane count is one of the most important design elements of a roadway.  It significantly 

influences capacity, level of service, operation, and safety.  Urban multilane highway facilities 

are typically designed with 4–8 lanes.  With the growth in traffic demand, some urban roadways 

have been designed or reconstructed with more lanes to increase capacity.  While the increase in 

the number of lanes decreases congestion greatly and less congestion is usually associated with 

some degree of improved safety, most practicing engineers and transportation planners are 

concerned that crash rates might increase with the increase in the number of lanes, perhaps due 

to the tradeoffs that may occur to accommodate the new lanes, such as narrowing lanes or 

shoulders. 

According to the HCM, capacity is proportional to the number of lanes, and as the 

number of lanes increases, the free-flow speed also increases slightly (8).  So far, the relationship 

between number of lanes and safety has not been fully explained by safety researchers, 

especially when the number of lanes is 11 or more.  Some researchers have evaluated the safety 

effectiveness of lane conversion.  Council and Stewart (9) compared the safety performance of 

two- and four-lane roadways.  They concluded that the safety effects of converting two-lane 

roads to four lanes is a crash reduction of 40–60 percent.  Some studies, however, have reported 

opposite results.  Milton and Mannering (10) developed crash prediction models for principal 

arterials in Washington State.  In the following elasticity analysis, the researchers found that a 

higher number of lanes is associated with more crashes.  To examine whether various changes in 

road network infrastructure and geometric design can be associated with changes in roadway 

safety, Noland and Oh (11) analyzed the county-level time-series roadway and crash data in 

Illinois.  Increasing the number of lanes was not found to be beneficial for safety.  Abdel-Aty 

and Radwan (12) and Kononov et al. (13) reported similar findings. 

Managed-Lane Models 

Fitzpatrick and Avelar conducted an analysis of managed-lane safety performance, 

focusing on the cross-sectional elements (6).  They developed statistical models using a dataset 

of about 128 miles of freeways with managed lanes in California and about 60 miles of freeways 

with managed lanes in Texas.  Their Texas sites consisted of about 42 miles of freeways with 

pylon-separated managed lanes and about 18 miles of freeways with managed lanes separated by 

flush-paved, marked buffers.  These sites were located in Dallas (I-635 and US 75) and Houston 

(US 290, I-10, and US 59).  Figure 8 shows a comparison of crash frequencies and buffer width 

by buffer type.  (The crashes include those that occurred on general purpose and managed lanes.)  

The following two trends are apparent: (a) crash frequency decreases with wider buffers, and (b) 

crash frequency is higher with pylon-separated managed lanes than with flush-paved managed 

lanes. 
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Figure 8.  Safety Effect of Managed-Lane Buffer Type and Width in Texas (6). 

Srinivasan et al. analyzed the safety performance of freeways with managed lanes in 

Florida (14).  They developed safety prediction models for FI crash frequency and total crash 

frequency for the following facility types: 

• Six-lane freeways with HOV lanes. 

• Eight-lane freeways with HOV lanes. 

• Ten-lane freeways with HOV lanes. 

• Ten-lane freeways with high-occupancy toll (HOT) lanes. 

• Twelve-lane freeways with HOV lanes. 

Their models account for crashes across the entire cross section, combining the crashes in 

the general-purpose lanes and the managed lanes. 

The authors found that the provision of a marked buffer with more than 2 ft of width 

would slightly reduce FI crash frequency (see Figure 9a) and the provision of a buffer of any 

width would slightly reduce total crash frequency compared to providing only a marked stripe 

(see Figure 9b).  These trends are similar to those reported by Fitzpatrick and Avelar (6). 
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a.  FI Crash Frequency b.  Total Crash Frequency 

Figure 9.  Safety Effect of Managed-Lane Buffer Type and Width in Florida (14). 

Other Models in the Literature 

In addition to the preceding safety prediction models, additional models have been 

documented to provide more focused analyses of key geometric variables for freeways.  Most of 

these models are applied in a manner similar to those documented in the HSM and similar 

sources.  Additionally, some “real-time” crash prediction models have been developed for the 

purpose of assisting active traffic safety management systems on freeways. 

Conventional Models 

Moon and Hummer (15) developed safety prediction models for crashes occurring at 

influence areas of freeway ramps.  The models computed the safety effects of key factors (i.e., 

traffic, roadway, and environmental) using three statistical models with negative binomial (NB) 

distribution: (a) a generalized linear model (GLM) with only main effect variables, (b) a GLM 

with main effects and interaction terms, and (c) a model with the basic functional form 

recommended by Hauer (16) with consideration of various functional forms for each variable. 

Re-segmentation is a common practice in the development of crash prediction models.  

Re-segmentation is the process of defining the roadway facility of interest in terms of 

homogeneous segments.  Instead of re-segmentation, Zheng et al. (17) used basic freeway 

segments in Liaoning, China, with heterogeneous characteristics (geometric and operational) to 

develop models.  Some of the variables include cumulative curvature, cumulative longitudinal 

gradient, side clearance, and density of traffic signs. 

Haq et al. (18) developed SPFs for truck crashes along I-80 in Wyoming.  Influential 

variables in the modeling technique included traffic, road geometry characteristics, and weather 

parameters.  Using both continuous count station data and disaggregate INRIX® speed data, 

Dutta et al. (19) assessed the relationship between crashes and quality of flow at different levels 

of temporal aggregation from rural freeway (four-lane) and urban freeway (six-lane) segments in 

Virginia.  Traffic and speed information at 15-min, hourly, and annual aggregation intervals were 

used to determine the best-fit measures.  Additionally, this study examined the suitability of 

using speed data to enhance model performance and the data quality between continuous count 

station and INRIX® data. 
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Das et al. (20) used speed and weather data to develop safety performance functions for 

rural roadways.  They used weather data from the National Oceanic and Atmospheric 

Administration and 5-minute interval operating speed data from the National Performance 

Management Research Data Set to develop the models for different rural facility types.  Crash 

data from the Highway Safety Information System were collected for the states of Washington 

and Ohio.  For rural interstate models, traffic volume, presence of curve, and average hourly 

speed showed significance. 

Real-Time Crash Prediction Models 

Real-time crash risk assessment is an emergent analysis topic that can identify risk-prone 

traffic circumstances and facilitate the implementation of active traffic safety management 

systems on roadways.  The instantaneous crash probability, measured from these models, can be 

used to inform road users about road hazard information in real-time as a proactive safety 

measure.  Hossain and Muromachi (21) developed a real-time crash prediction model for urban 

expressways in Tokyo, Japan, using Bayesian network modeling.  Exploration of surrogate 

safety measures for traffic collisions in the vicinity of recurring bottlenecks can be used in 

developing dynamic traffic control methods to prevent crashes.  Chen et al. (22) investigated the 

association between real-time traffic flow rate parameters and the traffic collisions risk at 

recurring bottleneck areas on freeways in California.  Xu et al. (23) evaluated the application of 

the genetic programming model for real-time crash prediction on freeways in California.  Along 

with traffic, weather, and crash data, this study utilized the receiver operating characteristic curve 

to evaluate performance of the models.  Using crash data on a 31-mile-long expressway in 

China, Ma et al. (24) applied both the NB model and random effect negative binomial (RENB) 

model to estimate crashes.  The maximum likelihood (ML) method was used to determine the 

parameters, and the mixed stepwise procedure was applied to examine the significance of 

explanatory variables.  The significant contributing factors were longitudinal grade, width of the 

roadway, and ratio of longitudinal grade to curve radius. 

Roy et al. (25) considered one-minute aggregated loop detector data along with detector 

layouts as input.  They applied a cell transmission model (CTM) to incorporate states of traffic 

flow variables for a pre-defined hypothetical detector layout.  To improve upon the conventional 

real-time crash prediction models, this study developed several models using Bayesian networks 

(BNs) and dynamic Bayesian networks (DBNs) for the network.  Yang et al. (26) introduced the 

Bayesian dynamic logistic regression (LR) to develop the real-time crash model on urban 

expressways, where the model constraints could dynamically change by effectively incorporating 

a new occurrence with prior knowledge upon arrival. 

In recent years, many researchers developed machine-learning models to improve the 

precision of crash counts on freeway segments.  Sun et al. (27) developed a support vector 

machine (SVM) with two penalty parameters to estimate real-time crash risk on urban 

expressway segments in Shanghai, China, by using dual-loop detector data.  Many studies use 

traffic variables (i.e., speed, volume, density) to predict crash likelihoods, which are not suitable 

for roads where the traffic conditions are estimated using speed data extracted from sampled 

floating cars or smart phones.  Sun and Sun (28) proposed a DBN model of time sequence traffic 

data to examine the association between crash occurrence and dynamic speed condition data 

using data from Shanghai, China.  A close association between traffic states and crashes on 
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expressways is usually anticipated, and the occurrence of crashes may be influenced by the 

interaction of different groupings of traffic states upstream and downstream from the crash 

location.  Based on the crash data and the corresponding traffic flow detector data collected on 

expressways in Shanghai, Sun and Sun (29) proposed a hybrid model combining an SVM model 

with a k-means clustering algorithm to predict the likelihood of crashes. 

Wang and Kim (30) considered the probability of crash occurrence as a class variable 

(output) and applied an artificial neural network (ANN) classifier to predict a crash occurrence 

within a given area in the network up to three hours into the future.  Wang and Feng (31) 

analyzed the real-time crash risk for expressway ramps using roadway, traffic, and demographic 

data. They developed two Bayesian logistic regression models to identify crash precursors and 

developed four SVMs that were applied to predict crash occurrence.  Both modeling frameworks 

show that the socio-demographic and trip generation variables outperform their counterparts 

without those parameters. 

STATISTICAL MODELING METHODS AND ISSUES 

Model parameters as used in the HSM and discussed so far are referred to as fixed effects 

in a broad statistical sense.  In general, the coefficients obtained from GLMs can be considered 

as fixed effects.  The variables corresponding to fixed effects are understood to have time-

invariant effects or are assumed to affect all sites similarly (e.g., assuming that increasing lane 

width will reduce crash frequency at all sites), and their effects are estimated and interpreted as 

metrics of underlying parameters from a latent data-generating process. 

In contrast, random effects estimate the influence of factors that are deemed the observed 

realizations of a random variable.  As such, it is typically not of interest to quantify how the 

response variables shift with the observed realizations in the dataset, but rather to account for the 

impact of such variations in the model.  Consistently with the above definitions, mixed-effects 

models are those that include both fixed and random effects (16).  Mixed-effects models can 

handle repeated measures in cross-sectional data accounting for each unit of data aggregation as 

random effects (i.e., the blocking units in the data, such as individual study locations with more 

than one datum in the analysis).  This approach allows the inclusion of locations that have 

experienced changes in their cross section over the period of evaluation.  Otherwise, data from 

such locations would have been partially reduced only in the framework of fixed effects.  

However, the use of random effects in models adds a longitudinal dimension to the otherwise 

cross-sectional data structure. 

The use of a mixed-effects model has a measurable impact on the point estimate 

prediction (a right bias) and in the dispersion estimate (underestimation) and thus corrections are 

needed.  After the necessary adjustments, it can be shown (32) that the resulting models are 

compatible with the HSM predictive method framework.  Figure 10 demonstrates the improved 

prediction of a mixed model after adjusting for right bias and underestimated dispersion from a 

crash prediction application at a large network of highways.  The top plot in Figure 10 shows 

inadequate crash predictive performance of the unadjusted mixed-effects model.  Specifically, 

the dispersion of the predictions is narrower than the dispersion in the observations.  In contrast, 

the middle plot shows the adjusted mixed model with improved dispersion in the prediction.  
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This performance is very comparable to the simpler NB model shown in the bottom row in 

Figure 10. 

 
Figure 10.  Predictive Performance of Unadjusted and Adjusted Poisson-Lognormal 

Mixed-Model Compared to Negative Binomial. 

Safety analyses in the literature have employed a wide variety of modeling approaches.  

Table 3 provides a list of modeling approaches that differed from the commonly used regression 

models that yielded the safety prediction models like those in the HSM, the Workbook, and 

TxDOT Research Projects 0-6811 and 5-9052.  More detailed discussion of the advantages and 

disadvantages of the various modeling approaches is available elsewhere (16, 33). 
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Any model development effort must be evaluated with goodness-of-fit statistics.  Several 

statistics can be used to evaluate model fit.  These measures include the following statistics: 

• Pearson product-moment correlation coefficient (R) and coefficient of determination (R2). 

• Mean prediction bias (MPB). 

• Mean absolute deviation (MAD). 

• Mean square prediction error (MSE). 

• Over dispersion parameter-based criterion (Ra
2). 

• Modified chi-squared statistic (Xm
2). 

The first four statistics listed are described by Washington and Cheng (34) and have been 

used by many researchers in highway safety.  The fifth statistic was developed by Miaou (35) 

and is well-suited to assessing the fit of safety data prediction models based on a NB error 

structure.  The last statistic was used by Pilko et al. (36) to evaluate the suitability of merging 

data from multiple states.  Other candidate statistics will be identified during this step. 

In addition to the statistics, cumulative residual (CURE) plots can be used to evaluate 

model fit over the range of each independent variable.  These plots are useful for evaluating 

whether the functional form chosen for the SPF is accurate for all values of the independent 

variable or whether it over/under predicts for certain ranges (16). 

Table 3.  Summary of Safety Analysis Modeling Topics. 
Topic Source Data Source and Type Modeling Approach 
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Hossain et al. 

(21) 

Traditional variables BN 

Chen et al. 

(22) 

Traditional variables LR modeling technique 

Xu et al. (23) Traditional variables Genetic programming 

Ma et al. (24) Traditional variables RENB 

Roy et al. (25) Traditional variables BNs, DBNs, CTM 

Yang et al. 

(26) 

Traditional variables Bayesian dynamic LR  
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Sun et al. (27) Traditional variables SVM 

Sun et al. (28) Traditional variables DBN 

Sun et al. (29) Traditional variables Hybrid SVM 

Wang and 

Kim (30) 

Traditional variables ANN 

Wang et al. 

(31) 

Traditional variables Bayesian LR and four SVM 
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CHAPTER 3: FREEWAY SAFETY DATABASE PREPARATION 

INTRODUCTION 

Safety prediction models currently exist in TxDOT’s Roadway Safety Design Workbook 

(1) and the HSM (2, 3) for urban freeway segments with 4–10 general-purpose lanes.  These lane 

counts represent a large portion of the urban freeway centerline mileage in Texas.  However, the 

models in the Roadway Safety Design Workbook were published in 2009.  The models in the 

HSM were published in 2012 and contain variables for more site conditions, such as high-

volume hours and lane changes (affected by volume and distance to nearest ramp entrance and 

exit), but they were calibrated using data from the states of California, Maine, and Washington.  

A research effort is needed to calibrate the HSM models to Texas conditions. 

Additionally, neither the Roadway Safety Design Workbook nor the HSM contain models 

for urban freeways with 11 or more lanes or freeways with managed lanes (e.g., high-occupancy-

vehicle or high-occupancy-toll lanes).  These facilities represent a small but growing proportion 

of the urban freeway mileage in Texas, and planning and design for these facilities is often 

complex because of the tradeoffs that have to be made between capacity, right-of-way 

constraints, community impacts, and cost, in addition to safety performance.  There is a need to 

develop models for these facilities so safety performance can be considered in addition to the 

other factors often considered in the project development process. 

This chapter describes efforts undertaken to build a database to develop local calibration 

factors and new safety prediction models for urban freeway facilities of interest.  The chapter is 

divided into two parts.  The first part discusses the database preparation efforts for local 

calibration factors for urban freeways with 4–10 general-purpose lanes.  The second part 

discusses the database preparation efforts for urban freeways with 12 general-purpose lanes and 

urban freeways with managed lanes. 

DATABASE PREPARATION FOR LOCAL CALIBRATION FACTORS 

Chapter 18 of the HSM contains freeway safety prediction models, and Appendix B of 

the HSM contains guidance on developing local calibration factors for these models.  The 

guidance calls for new calibration factors to be developed at least every 2–3 years using at least 

30–50 sites.  The HSM provides separate SPFs for the following crash types: 

• Multiple-vehicle (MV) FI crashes. 

• MV PDO crashes. 

• Single-vehicle (SV) FI crashes. 

• SV PDO crashes. 

For the FI crash SPFs, the HSM also provides an SDF to distribute predicted FI crashes 

between the K, A, B, and C categories in the KABCO scale. 

The research team queried several TxDOT-maintained databases that are essential to the 

calibration of local calibration factors.  These databases include the Texas Reference Marker 

(TRM) database, which is the state’s roadlog database, and the Crash Record Information 
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System (CRIS) database, which archives records of crashes on state-maintained roadways.  The 

query of freeway segments in TRM yielded the sample described in Table 4. 

Table 4.  Preliminary Distribution of Urban Freeway Mileage in Texas. 

Segment Category 

Number of Lanes Number of 

Segments 

Total 

Length (mi) General-Purpose Managed 

General-Purpose Lanes Only 

4 0 7725 2034.6 

5–6 0 3889 992.6 

7–8 0 1205 337.9 

9–10 0 470 101.1 

11–12 0 64 12.6 

13–14 0 25 1.9 

General-Purpose Lanes and HOV Lanes 
Any 1 462 97.9 

Any 2 124 34.8 

General-Purpose Lanes and Toll Lanes Any Any 406 137.3 

The research team used the geolocation data for these freeway segments to plot the 

segments on aerial photographs and then visually reviewed the segments to verify the segment 

categories (see the first column of Table 4).  An example plotting of six-lane freeway segments 

in the Dallas/Fort Worth area is shown as the red lines in Figure 11. 

 
Figure 11.  Example Plotting of Freeway Segments. 

The research team re-categorized the segments by lane count and type.  The following 

lane types were counted: general-purpose, auxiliary, and managed lanes.  Auxiliary lanes are 

identified based on the presence of wide dotted white lane lines as shown in the red box in  

Figure 12.  Managed lanes include HOV, HOT, or toll lanes.  Table 5 provides the revised count 

of urban freeway segments in Texas based on the review of aerial photographs.  The totals in 

Table 5 include segments with no auxiliary or managed lanes and with “typical” geometry.  

Segments with complex geometry, such as those within system interchanges, are excluded.  The 
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research team obtained the crash counts in Table 5 by merging the TRM data records with CRIS 

database records for the years 2015–2019. 

 
Figure 12.  Auxiliary Lane Markings (37, Figure 3B-10). 

Table 5.  Revised Count of Urban Freeway Segments without Managed Lanes in Texas. 

Number 

of Lanes 

Number of 

Segments 

Centerline 

Miles 

Lane-

Miles 

Crash Count (2015–2019) 

Total MV FI MV PDO SV FI SV PDO 

4 785 280.5 1190.7 13,285 2533 5476 1667 3609 

5–6 850 292.8 1765.9 30,693 7169 15,083 3018 5423 

7–8 553 154.9 1195.9 34,521 9198 18,151 2688 4484 

9–10 188 36.5 325.1 14,317 3619 8487 762 1449 

11–12 24 3.8 33.4 1521 405 854 86 176 

The distributions in Table 5 show that freeway segments with 4–6 lanes are the most 

abundant in terms of centerline mileage and lane-mileage.  As expected, wider segments are less 

common, but the wider segments have a larger number of crashes due to the higher traffic 

volumes on these segments. 

For all segments in the dataset, the research team was able to obtain the key exposure 

variables (i.e., traffic volume and segment length) and the five-year crash count.  These variables 

alone are sufficient to compute local calibration factors for SPFs.  The research team further 
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identified a subset sample of 50 segments each with 4, 6, 8, and 10 general-purpose lanes for the 

purpose of conducting more detailed examinations including the geometric and traffic control 

variables that are used to apply the CMFs that accompany the SPFs.  Table 6 lists the SPFs, their 

corresponding CMFs, and the primary sources for obtaining the data needed to apply the CMF. 

Table 6.  Freeway SPFs and Corresponding CMFs. 
SPF CMF Description Primary Data Source 

MV or SV crashes Horizontal curve Aerial photographs 

Lane width TRM database 

Inside shoulder width TRM database 

Median width TRM database 

Median barrier Aerial photographs, street-level photographs 

High volume Traffic Management Center data 

MV crashes Lane change Aerial photographs 

SV crashes Outside shoulder width TRM database 

Shoulder rumble strip Street-level photographs 

Outside clearance Aerial photographs 

Outside barrier Aerial photographs, street-level photographs 

Ramp-related crashes Ramp entrance/exit Aerial photographs 

The research team plotted the subset sample segments and reviewed aerial photographs to 

obtain and plot the locations of features relevant to some of the CMFs.  These features included 

longitudinal barriers (median or outside) and the presence of ramp entrances or exits.  Figure 13 

shows plotted placemarks that identify the locations of several barrier pieces on a six-lane 

freeway segment. 

 
Figure 13.  Longitudinal Barrier Presence. 

DATABASE PREPARATION FOR NEW SAFETY PREDICTION MODELS 

The HSM contains safety prediction models for urban freeway segments with up to 10 

general-purpose lanes and no managed lanes.  Since there are a growing number of segments 
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with more than 10 general purpose lanes or segments with managed lanes, the research team 

assembled datasets to describe these segments for the purpose of developing new safety 

prediction models.  The following subsections describe the research team’s efforts to develop 

these datasets. 

Wide Segments without Managed Lanes 

The research team identified a small sample of segments with more than 10 general-

purpose lanes.  These segments are listed in the bottom row of Table 5.  As shown, the number 

of these segments is small—16 segments, totaling 2.2 centerline miles.  However, even with a 

small sample, a notable number of crashes (1086) was observed on these segments in the queried 

years (2015–2019) because of the high volumes on these segments.  Because the number of wide 

segments is small, the research team included all these identified segments in the subset sample 

for detailed analysis (i.e., to extract all geometric and traffic control variables from aerial and 

street-level photography sources). 

Segments with Managed Lanes 

Site Identification 

The research team queried the TRM database and reviewed data sources from a previous 

analysis conducted by TTI for TxDOT’s Dallas District to identify 35 continuous sections of 

urban freeway with managed lanes.  These sections are listed in Table 7.  Most of the sections 

are located in the Dallas/Fort Worth or Houston areas, with one (SL 1) located in the Austin area.  

The research team included all sections in the subsequent data assembly efforts except the SL 1 

section in Austin and four others for which traffic volume data were unavailable.  In total, the 

research team included 29 sections totaling about 222 centerline miles. 

Previous efforts to analyze the safety of managed-lane facilities focused on the overall 

facility, analyzing the general-purpose lanes and managed lanes as a single facility (6).  The 

research team examined the crash and traffic volume data sources to determine if it would be 

possible to develop separate safety prediction models for the general-purpose lanes and managed 

lanes.  This type of analysis would require separate traffic volumes for the two lane groups and a 

method to assign crashes to the two lane groups. 

Traffic Volume Data 

The research team obtained archived traffic counts for the Houston-area managed-lane 

facilities (38).  These counts included quarterly inbound and outbound volumes for the various 

facilities at several key locations along the facility length, hourly volumes for December 2019, 

and the distribution of volumes by vehicle type (i.e., carpool, vanpool, bus, or motorcycle) for 

December 2019.  The research team obtained similar data for the Dallas-area managed-lane 

facilities for the years 2017, 2018, or 2019 from TxDOT’s Toll Operations Division or the 

operators of the managed-lane facilities. 
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Table 7.  Freeway Sections with Managed Lanes. 

 Highway 

Cross Streets Length 

(mi) 

Buffer 

Type 

Managed 

Lane Type From To 

D
al

la
s/

F
o

rt
 W

o
rt

h
 

US 75 W Bethany Dr Ruisseau Dr 3.5 Pylons HOV 

US 75 Galatyn Midpark 4.2 Pylons HOV 

US 75 Midpark I-635 1 Barrier HOV 

I-635 Oates Dr/I-30 Greenville Ave 9 Pylons HOT 

I-635 Greenville Ave Luna Rd 9 Barrier HOT 

I-35E Turbeville Rd PGB Turnpike 12 Barrier HOT 

I-35E PGB Turnpike I-635 5.5 Barrier HOT 

I-35E I-635 LP 12 3.5 Barrier HOT 

I-35W N Tarrant Pkwy SH 183 7.5 Barrier HOT 

I-35W SH 183 US 280 2.5 Barrier HOT 

SH 114 SH 26 Main St 1.1 Barrier HOT 

SH 114 Main St Texan Trail 1 Barrier HOT 

SH 114 Texan Trail International Pkwy 1 Barrier HOT 

SH 114 International Pkwy PGB Turnpike 4.5 Barrier HOT 

SH 114 PGB Turnpike NW Highway 1.5 Barrier HOT 

SH 114 NW Highway Rochelle Blvd 2 Barrier HOT 

I-820 SH 183 I-35W 6 Barrier HOT 

SH 183 I-820 Industrial Blvd 6 Barrier HOT 

SH 183 Industrial Blvd McArthur Blvd 8 Barrier HOT 

SH 183 McArthur Blvd Regal Row 5 Barrier HOT 

SL 12 NW Hwy SH 183 2 Barrier HOT 

I-30 Duncan Perry Rd Postal Way 10 Barrier HOT 

I-30 Postal Way Hardwick St 2.4 Barrier HOT 

I-30 I-45 NW Highway 10 
Barrier 

(movable) 
HOV 

H
o
u
st

o
n
 

I-10 Westgreen Blvd SH 6 5.5 Pylons HOV 

I-10 SH 6 1-610 12 Pylons HOT 

I-45 River Plantation Parramatta Ln 15.5 Stripe HOV 

I-45 Parramatta Ln I-10 18.5 Barrier HOT 

I-45 Emancipation Ave Rogers Dr 20 Barrier HOT 

I-45 Medical Center Blvd S Texas Ave 1 Stripe HOV 

I-69 Riverbrook Dr W Airport Blvd 13 Stripe HOV 

I-69 W Airport Blvd Alabama St 14 Barrier HOT 

I-69 Hamblen Rd I-10 20 Barrier HOT 

US 290 Mason Rd I-610 22 Barrier HOT 

A
u

st
in

 

SL 1 Lake Austin Blvd Parmer Ln 11 Pylons HOT 

Crash Data 

The research team analyzed the CRIS records and determined that additional information 

would be needed to assign the crashes to general-purpose lanes or managed lanes.  The research 

team obtained the crash reports for the crashes on these facilities, including the narratives, so 

they could determine which crashes involved managed lanes.  The research team obtained more 
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than 22,000 crash reports for the Dallas-area facilities and more than 33,000 crash reports for the 

Houston-area facilities. 

The research team analyzed the CRIS records using an automated algorithm that searches 

the narratives for keywords that identify the crash as being related to the managed lanes.   

Figure 14 shows a screenshot of the user interface for the algorithm.  The algorithm uses optical 

character recognition technology to digitize the crash narratives, searches the narratives for 

keywords of interest that are specified by the user, and flags narratives that contain one or more 

of the keywords.  The algorithm is not case-sensitive and is able to find keywords within larger 

words (e.g., the abbreviation HOV could be identified within the word “shove”). 

 
Figure 14.  Crash Report Analysis Algorithm Interface. 

The research team identified a list of keywords for the managed-lane facilities and ran the 

algorithm to flag crashes that were managed lane–related.  Some of these keywords apply to 

managed lanes in general (e.g., HOV or HOT), others are specific to the facilities (e.g., 

TEXpress for Dallas-area facilities), and others are bigrams or multiple-word phrases.  The 

bigrams in the query are shown in Figure 14.  The count of identified keywords is provided in 

Table 8.  For US 75, the query included three years of crash data; for the rest of the facilities, the 

query included one year of crash data.  There were a small number of cases where the algorithm 

could not read the crash narrative, such as if the police officer handwrote the narrative, it was an 

older-style crash narrative, there was a blank page at the beginning of the narrative, or the crash 
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narrative was on a separate attached page.  The research team manually checked the crash 

narratives in all these cases. 

Table 8.  Managed Lane–Related Crash Keyword Counts. 

Keywords 

Crash Narrative Keyword Occurrences by Facility 

I-30 I-35E I-635 US 75 

Duncan 

Perry—

Postal 

Way 

Postal 

Way—

Beckley 

President 

George 

Bush 

Turnpike 

(PGBT)— 

I-635 

Greenville—

Oates 

E Luna 

Rd—

Greenville 

I-635—

Gatalyn, 

Park 

Blvd—

Bethany 

1 HOV, H.O.V. 2 0 11 239 26 589 

2 HOT, H.O.T. 0 0 0 0 0 0 

3 Toll 4 0 4 1 22 0 

4 Managed lane 0 0 0 1 0 0 

5 ML 0 0 0 0 0 0 

6 Express, 

expres 
11 0 33 13 83 12 

7 Express lane 8 0 30 8 7 1 

8 Texpress, 

txpress, 

txpres, tx 

press, tx pres 

3 0 2 3 54 1 

9 Diamond 0 0 0 0 0 0 

10 Carpool,  

car pool 
0 0 0 0 0 0 

11 Pylon 0 0 0 16 0 159 

12 Bigram 29 7 17 32 38 63 

Total: 57 7 97 314 230 825 

The research team compared the results in Table 8 with the results of an earlier analysis 

conducted for TxDOT’s Dallas District in a different project (39).  The previous analysis was 

conducted by merging CRIS records with archived incident data from the Traffic Management 

Center to pre-filter crashes that may be managed lane–related and then reviewing the pre-filtered 

crash narratives manually to verify that they occurred in the managed lanes or the adjacent 

general-purpose lane.  Table 9 provides a comparison of the crash counts obtained from the 

algorithm-based method and the previously used manual methods.  Note that the totals for 

keywords 1–12 in Table 9 are smaller than the totals in the bottom row of Table 8 because a 

crash would be counted more than once in Table 8 if its narrative contains more than one of the 

keywords. 

The last two rows of Table 9 show the differences between the processes when only 

using keywords 1–11 or all keywords 1–12.  The comparisons are reasonable for the I-30 and  

I-35E facilities.  Somewhat larger differences are apparent for the I-635 facilities and the US 75 

facility.  Examination of the differences revealed that there were some errors in the manual 

method with the assignment of crashes between the two I-635 facilities and potentially many 

overlooked crashes at the US 75 facility. 
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Table 9.  Comparison of Algorithm and Manual Crash Identification Methods. 

Crash Count 

Managed Lane–Related Crash Count by Facility 

I-30 I-35E I-635 US 75 

Duncan 

Perry—

Postal 

Way 

Postal 

Way—

Beckley 

PGBT—

I-635 

Greenville

—Oates 

E Luna 

Rd—

Greenville 

I-635—

Gatalyn, 

Park 

Blvd—

Bethany 

Keywords 1–11 16 0 35 249 128 599 

Keyword 12 29 7 14 19 30 33 

Keywords 1–12 45 7 49 268 158 632 

Manual method 19 2 33 303 91 151 

Difference  

(keywords 1–11—

manual) −3 −2 2 −54 37 448 

Difference  

(keywords 1–12—

manual) 26 5 16 −35 67 481 

The research team concluded that the keyword-based algorithm process produces reliable 

results.  However, it should be used carefully and with the following considerations: 

• Keywords should be adjusted to include local street and facility names such as TEXpress, 

TX press, etc., as needed. 

• Spot checks/investigations should be done when there is a high concentration of 

occurrences (i.e., higher crashes/mile) or possibly when there is little to no crashes over a 

longer distance/period of time when they are expected. 

The research team applied this process to managed-lane corridors in the Dallas and 

Houston areas.  The corridors are listed in Table 10.  The results of the crash assignment process 

are shown in Table 11. 
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Table 10.  Managed-Lane Corridor Locations. 
Corridor 

Number 

Highway 

Number Corridor Start Corridor End Crash Data Range 

1 US 75 W Bethany Dr. Ruisseau Dr 2015–2019 

2 US 75 Galatyn Midpark 2015–2019 

3 US 75 Midpark I-635 2015–2019 

4 I-635  Oates Dr/I-30 Greenville Ave 2015–2019 

5 I-635  Greenville Ave Luna Rd 2015–2019 

6 I-35E Turbeville Rd PGBT 5/20/2017–2019 

7 I-35E PGBT I-635 2015–2019 

8 I-35E I-635 LP 12 12/8/2015–2019 

9 I-35W N Tarrant Pkwy SH 183 7/20/2017–2019 

10 I-35W SH 183 US 280 4/5/2018–2019 

13 SH 114 Texan Trail International Pkwy 2015–2019 

14 SH 114 International Pkwy PGBT 11/4/2017–2019 

15 SH 114 PGBT NW Hwy 11/4/2017–2019 

16 SH 114 NW Hwy Rochelle Blvd 11/4/2017–2019 

17 I-820 SH183 I-35W 2015–2019 

18 SH-183 I-820 Industrial Blvd 10/27/2018–2019 

19 SH-183 Industrial Blvd McArthur Blvd 10/27/2018–2019 

20 SH-183 McArthur Blvd Regal Row 10/27/2018–2019 

21 SL 12 NW Hwy SH 183 10/27/2018–2019 

22 I-30 Duncan Perry Rd Postal Way 2015–2019 

23 I-30 Postal Way Hardwick St 2015–2019 

25 I-10 Westgreen Blvd SH-6 2015–2019 

26 I-10 SH 6 I-610 2015–2019 

27 I-45 River Plantation  Parramatta Ln 11/1/2016–2019 

28 I-45 Parramatta Ln  I-10 2015–2019 

29 I-45 Emancipation Ave Rogers Dr 2015–2019 

31 I-69 Riverbrook Dr W Airport Blvd 2015–2019 

32 I-69 W Airport Blvd Alabama St 2015–2019 

33 I-69 Hamblen Rd I-10 2015–2019 
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Table 11.  Managed-Lane Crash Allocation Analysis Results. 

Corridor 

Number 

Crash Totals 

Preliminary 

(all lanes) 

Flagged for 

Manual Check 

Identified as False Positive 

(not in managed lanes) 

True Managed-

Lane Crashes 

1 931 51 37 207 

2 1852 5 22 772 

3 305 17 19 28 

4 3921 366 55 1280 

5 4836 8 128 551 

6 693 2 31 46 

7 2011 149 49 83 

8 1886 1008 155 32 

9 693 2 28 52 

10 574 0 18 29 

13 319 1 10 8 

14 122 1 3 12 

15 64 0 6 22 

16 61 0 0 1 

17 964 29 23 67 

18 97 0 14 20 

19 384 6 20 45 

20 154 2 10 17 

21 69 4 4 5 

22 1855 312 22 53 

23 663 393 34 4 

25 1361 2 7 182 

26 5162 138 79 361 

27 2852 35 213 196 

28 9750 40 40 185 

29 7958 31 114 106 

31 290 99 11 42 

32 4439 10 110 100 

33 1878 65 39 58 

Total 56,144 2776 1301 4564 

The research team assigned the managed-lane crashes to the TRM-defined segments for 

modeling.  Table 12 shows the distribution of crashes across the analysis segments by type and 

severity. 

Geometric Data 

The research team obtained geometric variables for the managed-lane segments from the 

TRM database and aerial photography sources.  Table 13 shows the distribution of values for key 

geometric variables.  The research team collected additional variables but found that they lacked 

sufficient variation to be useful in modeling efforts. 
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Table 12.  Managed-Lane Crash Distribution. 

Facility Type 

Number of 

Segments 

Crash Type 

and Severity 

Crash Count Statistic 

Mean Standard Deviation Range 

Non-reversible 262 

SV-FI 0.72 1.97 0–18 

SV-PDO 1.08 2.94 0–33 

MV-FI 0.89 1.96 0–19 

MV-PDO 1.38 3.12 0–24 

Reversible 230 

SV-FI 0.35 0.80 0–5 

SV-PDO 0.49 0.97 0–6 

MV-FI 0.58 1.76 0–15 

MV-PDO 0.80 1.86 0–13 

Table 13.  Managed-Lane Geometric Variable Distribution. 

Facility Type Geometric Variable 

Variable Statistic 

Mean Standard Deviation Range 

Non-reversible 

Inside shoulder width (ft) 6.2 5.2 0.0–23.5 

Outside shoulder width (ft) 4.6 4.7 0.0–20.0 

Access weaving section density 

(sections/mi) 
0.1 0.5 0.0–3.9 

Access ramp density (gores/mi) 0.6 2.0 0.0–13.2 

Reversible 
Average shoulder width (ft) 2.5 1.3 0.0–7.0 

Access ramp density (gores/mi) 0.5 1.7 0.0–16.1 

Figure 15 shows two types of access weaving sections on an example freeway segment.  

The managed lanes are accessed via weaving sections in both directions of travel, with the 

weaving occurring in the general-purpose lanes on the top portion of the drawing and in the 

managed lanes on the bottom portion of the drawing.  Both weaving sections are counted toward 

the total, and they would be counted even if they extended past the segment endpoints.  The four 

circled gores are counted toward the total number of access ramp gores.  Access ramp gores in 

the managed lanes are not counted if they connect to an access weaving section in the managed 

lanes, as shown in the bottom portion of the drawing. 

 
Figure 15.  Example Access Weaving Sections.

Access ramp gore Access weaving section

General-purpose lanes

General-purpose lanes

Managed lanes

Managed lanes
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CHAPTER 4: FREEWAY SAFETY DATA ANALYSIS 

INTRODUCTION 

Safety prediction models in sources like TxDOT’s Roadway Safety Design Workbook (1) 

and the HSM (2, 3) can be used to predict crash frequency for urban freeway segments with 4–10 

general-purpose lanes.  These lane counts represent a large portion of the urban freeway 

centerline mileage in Texas.  Neither of these sources contains models for urban freeways with 

11 or more lanes or freeways with managed lanes (e.g., high-occupancy-vehicle or high-

occupancy-toll lanes).  These facilities represent a small but growing proportion of the urban 

freeway mileage in Texas.  There is a need to develop models for these facilities so safety 

performance can be considered in addition to the other factors often considered in the project 

development process. 

This chapter describes efforts to analyze a database developed to compute local 

calibration factors and new safety prediction models for urban freeway facilities of interest.  This 

chapter is divided into three parts.  The first part discusses efforts to compute local calibration 

factors to apply the HSM models to urban freeways with 4–10 general-purpose lanes and to 

extend these models to urban freeways with up to 12 general-purpose lanes.  The second part 

discusses efforts to calibrate new safety prediction models for managed-lane facilities on urban 

freeways.  The third part provides guidance for applying the local calibration factors and new 

models. 

COMPUTATION OF LOCAL CALIBRATION FACTORS 

Chapter 18 of the HSM contains freeway safety prediction models for the following crash 

types: 

• MV FI crashes. 

• MV PDO crashes. 

• SV FI crashes. 

• SV PDO crashes. 

For the FI crash SPFs, the HSM also provides an SDF to distribute predicted FI crashes 

between the K, A, B, and C categories in the KABCO scale. 

Calculation Method 

Appendix B of the HSM contains guidance on developing local calibration factors for 

these models.  The guidance calls for new calibration factors to be developed at least every 2–3 

years using at least 30–50 sites.  This procedure involves assembling a set of segments, obtaining 

the observed crash count on the segments for a given time period, computing the predicted crash 

count for the same time period using the HSM models, and computing the ratio of observed to 

predicted crashes.  A separate ratio C is computed for each SPF using the following equation: 
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 𝐶 =
∑ 𝑦𝑖

𝑛
𝑖=1

∑ 𝑦�̂�
𝑛
𝑖=1

 ( 13) 

where: 

yi = observed annual crash frequency for site i; 

ŷi = predicted annual crash frequency for site i; and 

n = number of sites. 

The predicted crashes are then adjusted to calculate the calibrated predicted crash 

frequency µi: 

 𝜇𝑖 = 𝐶𝑦�̂� ( 14) 

Others, including Alluri et al. (40), have suggested a larger sample for calibration factor 

development. 

For this research project, the research team applied a three-stage SPF calibration 

approach as follows: 

1. Assemble a database of all available segments with each lane count (4, 6, 8, or 10 

general-purpose lanes) and use these segments to calibrate the base SPFs without 

applying their corresponding CMFs. 

2. Assemble a sample of up to 550 segments with each lane count and use these segments to 

calibrate the base SPFs with their CMFs that require data that is readily available in the 

state roadlog database (e.g., lane and shoulder width). 

3. Assemble a sample of up to 50 segments with each lane count and use these segments to 

calibrate the base SPFs with all their CMFs, including those that require data from 

supplemental data sources (e.g., longitudinal barrier or rumble strip presence).  Also use 

these segments to compute local calibration factors for the SDFs. 

The research team queried several TxDOT-maintained databases that are essential to the 

calculation of local calibration factors.  These databases included the TRM database, which is the 

state’s roadlog database, and the CRIS database, which archives records of crashes on state-

maintained roadways.  The research team categorized the segments by lane count and type (i.e., 

general-purpose, auxiliary, or managed lanes).  Managed lanes included HOV, HOT, and toll 

lanes.  Table 14 provides the summary statistics for the urban freeway segments in Texas based 

on the TRM database query and review of aerial photographs, including segments with no 

auxiliary or managed lanes and with “typical” geometry.  Segments that had general-purpose 

lanes and one or more managed lanes are listed as “x–y w/ML” in the first column of  

Table 14, where x–y is the range for the number of general-purpose lanes. 

Table 15 provides the count of segments with managed lanes by lane counts.  Most 

freeway segments with managed lanes have one or two managed lanes built as one reversible 

lane or one lane in each direction of travel. 
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Table 14.  Urban Freeway Segment Summary Statistics (All Segments). 

Number 

of 

Lanes 

Number 

of 

Segments 

Variable Range 

AADT, 

veh/day 

Segment 

Length, mi 

Crash Count by Type and Severity 

MV-FI MV-PDO SV-FI SV-PDO Total 

4 785 
2363–

202,376 

0.018–

5.192 
0–100 0–177 0–51 0–115 0–391 

4 w/ML 38 
43,299–

153,523 

0.004–

1.058 
0–52 0–80 0–14 0–22 0–166 

5–6 850 
10,217–

227,952 

0.001–

3.076 
0–135 0–269 0–79 0–88 0–470 

5–6 

w/ML 
75 

99,338–

250,224 

0.002–

1.283 
0–42 0–140 0–15 0–27 0–218 

7–8 553 
27,201–

253,067 

0.002–

3.701 
0–252 0–824 0–118 0–262 

0–

1456 

7–8 

w/ML 
253 

99,338–

314,266 

0.001–

2.392 
0–297 0–602 0–92 0–111 0–967 

9–10 188 
44,278–

267,936 

0.001–

2.266 
0–438 0–1071 0–41 0–82 

0–

1565 

9–10 

w/ML 
131 

99,338–

314,266 

0.001–

3.621 
0–447 0–1140 0–69 0–135 

0–

1764 

11–12 24 
168,142–

267,131 

0.006–

0.611 
0–107 0–249 0–11 0–28 0–391 

11–12 

w/ML 
24 

164,375–

330,096 

0.011–

1.386 
0–219 0–509 0–31 0–103 0–862 

Table 15.  Distribution of Segments by Lane Count (Segments with Managed Lanes). 

Number of  

General-Purpose Lanes 

Segment Count by Number of Managed Lanes 

1 2 3 4 6 Total 

4 0 10 2 25 1 38 

5 0 1 0 8 1 10 

6 5 44 7 9 0 65 

7 17 9 2 4 0 32 

8 74 131 0 11 5 221 

9 19 15 0 5 1 40 

10 38 23 8 21 1 91 

11 7 2 1 6 0 16 

12 4 0 0 0 0 4 

13 1 0 2 1 0 4 

Total 165 235 22 90 9 521 

Table 16 provides the distribution of managed-lane segment characteristics, including the 

buffer type and the presence or absence of reversible operations.  The bulk of the segments have 

barriers to separate the managed lane(s) from the adjacent general-purpose lanes. 
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Table 16.  Managed-Lane Segment Count. 
Number of  

General-Purpose Lanes 

(one-way total) 

Buffer Type Reversible? 

Total Barrier Stripe Pylons No Yes 

1 162 2 1 14 151 165 

2 124 61 50 162 73 235 

3 11 0 11 22 0 22 

4 71 0 19 82 8 90 

6 8 0 1 9 0 9 

Total 376 63 82 289 232 521 

The research team used the Stage 3 dataset to compute SDF calibration factors.  The SDF 

calibration procedure is described in detail in Appendix B of the HSM and summarized by 

Equations 15–17: 

 𝑃𝑜,𝐾𝐴𝐵 =
𝑁𝑜,𝐾𝐴𝐵

𝑁𝑜,𝐾𝐴𝐵𝐶
 ( 15) 

 𝑃𝑝,𝐾𝐴𝐵 =
𝑁𝑝,𝐾𝐴𝐵

𝑁𝑝,𝐾𝐴𝐵𝐶
 ( 16) 

 𝐶𝑆𝐷𝐹 =
𝑃𝑜,𝐾𝐴𝐵

1 − 𝑃𝑜,𝐾𝐴𝐵
 ×  

1 − 𝑃𝑝,𝐾𝐴𝐵

𝑃𝑝,𝐾𝐴𝐵𝐶
 ( 17) 

where: 

No_KABC = observed number of KABC crashes; 

No_KAB = observed number of KAB crashes; 

Np_KABC = predicted number of KABC crashes; 

Np_KAB = predicted number of KAB crashes; 

Po,KAB = observed probability of a severe crash; 

Pp,KAB = predicted probability of a severe crash; and 

CSDF = SDF local calibration factor. 

Calculation Results 

To compute calibration factors, the research team used the segments without managed 

lanes as grouped by lane count in Table 14.  The research team included segments with odd-

numbered lane counts to obtain a small increase in the sample size for each category. 

Table 17 provides the results of the Stage 1 calibration factor analysis for the SPFs.  As 

previously stated, this stage included the exposure variables (i.e., traffic volume and segment 

length); however, the research team also included rumble strip presence data and applied the 

rumble strip CMFs.  These calibration factors suggest that the HSM SPFs for multiple-vehicle 

crashes on 10-lane segments are a poor fit for Texas segments (i.e., C values greater than 2.0). 

Table 18 provides the results of the Stage 2 calibration factor analysis.  This stage 

included the exposure variables, geometric variables available in the TRM database (e.g., cross-

sectional widths), variables to describe rumble strip presence, Type B weaving section presence 
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and length, and horizontal curve presence and length.  The Stage 2 calibration factors were not 

notably different from the Stage 1 calibration factors. 

Table 17.  Local Calibration Factors—Stage 1 Results. 

Number of 

Lanes 

Crash Type 

and Severity 

Crash Count Local SPF  

Calibration Factor C Observed Predicted 

4 SV-FI 1446 1796.94 0.80 

SV-PDO 3167 3357.84 0.94 

MV-FI 2159 2076.58 1.04 

MV-PDO 4613 4383.76 1.05 

5–6 SV-FI 2666 3082.97 0.86 

SV-PDO 4765 5586.35 0.85 

MV-FI 6229 5155.07 1.21 

MV-PDO 13,048 11,638.68 1.12 

7–8 SV-FI 2355 2361.75 1.00 

SV-PDO 3923 3935.55 1.00 

MV-FI 7980 5551.74 1.44 

MV-PDO 15,667 13,022.45 1.20 

9–10 SV-FI 672 682.68 0.98 

SV-PDO 1278 1079.68 1.18 

MV-FI 3087 1416.03 2.18 

MV-PDO 7303 3413.51 2.14 

Table 18.  Local Calibration Factors—Stage 2 Results. 

Number of 

Lanes 

Crash Type 

and Severity 

Crash Count Local SPF  

Calibration Factor C Observed Predicted 

4 SV-FI 752 1025.14 0.73 

SV-PDO 1635 1955.48 0.84 

MV-FI 1047 1109.9 0.94 

MV-PDO 2255 2270.67 0.99 

5–6 SV-FI 1625 1798.31 0.90 

SV-PDO 2736 3414.45 0.80 

MV-FI 3573 2990.55 1.19 

MV-PDO 7060 6672.2 1.06 

7–8 SV-FI 1598 1525.71 1.05 

SV-PDO 2544 2717.79 0.94 

MV-FI 5219 3807.46 1.37 

MV-PDO 10,230 8938.12 1.14 

9–10 SV-FI 578 593.20 0.97 

SV-PDO 1121 960.48 1.17 

MV-FI 2862 1279.16 2.24 

MV-PDO 6783 3101.64 2.19 

Table 19 provides the results of the Stage 3 calibration factor analysis.  This stage 

included all previously-used variables (i.e., exposure variables, geometric variables available in 

the TRM database, rumble strip presence, Type B weaving section presence and length, and 

horizontal curve presence and length) plus variables to describe the following characteristics: 

continuous median barrier presence and type; length and offset of roadside and short median 
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barrier pieces; clear zone width; and entrance and exit ramp presence, location, and volume.  

Once all these additional variables were included in the calibration analysis, all the calibration 

factors were found to be within the range of 0.5–1.5.  In particular, the factors for multiple-

vehicle FI and PDO crashes on 10-lane segments decreased to 1.41 and 1.30, respectively, 

suggesting that the inclusion of the variables needed to compute the lane change CMF value 

resulted in a notable improvement in the model quality. 

Table 19.  Local Calibration Factors—Stage 3 Results. 

Number of 

Lanes 

Crash Type 

and Severity 

Crash Count Local SPF  

Calibration Factor C Observed Predicted 

4 SV-FI 74 95.68 0.77 

SV-PDO 144 211.71 0.68 

MV-FI 96 148.55 0.65 

MV-PDO 178 312.02 0.57 

5–6 SV-FI 137 194.74 0.70 

SV-PDO 214 384.55 0.56 

MV-FI 449 474.14 0.95 

MV-PDO 785 1104.81 0.71 

7–8 SV-FI 305 244.94 1.25 

SV-PDO 507 487.12 1.04 

MV-FI 935 735.81 1.27 

MV-PDO 2083 1734.36 1.20 

9–10 SV-FI 93 91.49 1.02 

SV-PDO 156 164.88 0.95 

MV-FI 368 260.63 1.41 

MV-PDO 833 638.66 1.30 

Evaluation of Calibration Factor Quality 

To evaluate the quality of calibration factors, various goodness-of-fit measures were 

used, as described below.  These measures included cumulative residual plots, error-based 

methods, dispersion parameters, and coefficients of variation. 

Cumulative Residual Plot 

A CURE plot is a graph of cumulative residuals (i.e., observed crashes minus predicted 

crashes) plotted against a variable of interest in ascending order.  The variable of interest is often 

AADT or predicted crashes.  The visual presentation of a CURE plot shows the concerning areas 

that may require improvement of SPFs such as percent areas increasing confidence limits, long 

trends, and vertical changes (41). 

The CURE plots for each segment type are constructed using the following steps. 

1. The variables of interest are sorted in ascending order. 

2. For each site, the residual is calculated as the difference between observed and predicted 

crashes. 

3. The cumulative of residuals is then calculated as the sum of residuals 1 to n, where n is 

the total number of sites. 
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4. The square of residuals is calculated, followed by the calculation of cumulative squared 

residuals. 

5. The 95-percent confidence interval (CI) limits are then calculated for each site: 

 𝐶𝐼 = ±1.96√𝜎2 ( 18) 

where: 

𝜎2 = the variance of the random walk. 

Error-Based Methods 

Two error-based methods are used to analyze goodness of fit (33, 41).  These methods 

include MAD, which calculates the absolute difference between the predicted number of crashes 

and observed number of crashes, and mean squared prediction error (MSPE), which calculates 

the square of the difference between the predicted and observed number of crashes.  These 

methods are described by the following equations: 

 𝑀𝐴𝐷 =  
1

𝑛
∑|𝜇𝑖 − 𝑦𝑖| 

𝑛

𝑖=1

 ( 19) 

 𝑀𝑆𝑃𝐸 =  
1

𝑛
∑(𝜇𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 ( 20) 

Dispersion Parameter 

A dispersion parameter (k) shows the spread of observed crashes about predicted value of 

crashes.  Since the SPFs were recalibrated, the dispersion parameter also needed to be 

recalibrated.  The dispersion parameter was estimated for the recalibrated SPFs using the 

weighted regression analysis proposed by Cameron and Trivedi (42).  By forcing the intercept to 

be zero, a straight line was fitted as follows: 

 𝑌 = 𝑘 × 𝜇𝑖
2 ( 21) 

with: 

 𝑌 =  (𝑦𝑖 − 𝜇𝑖)
2 − 𝑦𝑖 ( 22) 

Coefficient of Variation of Calibration Factor 

The coefficient of variation (CV) is calculated as the standard deviation of the calibration 

factor divided by the predicted calibration factor as follows: 

 𝐶𝑉 =
√𝑉(𝐶)

𝐶
 ( 23) 
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with: 

 𝑉(𝐶) =  
∑ (𝑦𝑖 + 𝑘𝑦𝑖

2)𝑖

(∑ 𝑦�̂�)𝑖
2  ( 24) 

where: 

V(C) = variance of the calibration factor; 

ŷi = uncalibrated predicted annual crash frequency for site i; and 

k = recalibrated dispersion parameter. 

An SPF is deemed to be acceptable when one of the following conditions is true (41): 

• Five percent or less of CURE plot ordinates for the calibrated predicted values exceed the 

2σ limits. 

• The CV of the calibration factor is less than 0.15. 

Evaluation Results 

Table 20 summarizes the calibration factors by the number of freeway lanes.  The results 

show that the calibration factors vary from 0.56 to 1.41. 

Table 20.  Calibration Factors, Tabular Format. 

No. of Lanes Crash Type and Severity Local SPF Calibration Factor C Standard Error 

4 SV-FI 0.77 0.12 

SV-PDO 0.68 0.14 

MV-FI 0.65 0.13 

MV-PDO 0.57 0.12 

6 SV-FI 0.70 0.10 

SV-PDO 0.56 0.08 

MV-FI 0.95 0.10 

MV-PDO 0.71 0.08 

8 SV-FI 1.25 0.13 

SV-PDO 1.04 0.11 

MV-FI 1.27 0.11 

MV-PDO 1.20 0.09 

10 SV-FI 1.02 0.13 

SV-PDO 0.95 0.11 

MV-FI 1.41 0.09 

MV-PDO 1.30 0.07 

4–10 SV-FI 1.02 0.08 

SV-PDO 0.95 0.06 

MV-FI 1.41 0.07 

MV-PDO 1.30 0.07 
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The factors are also shown in graphical format in Figure 16.  The x-axis gridline for a 

factor value of 1.0 is shown as a green line to denote the ideal case of an HSM model’s 

predictions exactly matching the observed crashes in Texas.  The factors from the fourth column 

of Table 20 are shown as blue bars, and the standard error ranges from the fifth column of Table 

20 are shown as red bars.  Note the following observations: 

• Two of the four calibration factors for 4–10 lanes shown on the bottom portion of  

Figure 16 are close to 1.0, indicating that the HSM models closely matched Texas 

conditions.  These models are for SV-FI crashes and MV-PDO crashes.  Conversely, the 

SV-PDO model notably under-predicts for Texas, and the MV-FI model slightly over-

predicts for Texas. 

• The calibration factors for smaller lane counts (4 or 6 lanes) are lower than 1.0, 

suggesting that the HSM models for these lane counts over-predict for Texas conditions. 

• The calibration factors for larger lane counts (8 or 10 lanes) are higher than 1.0, 

suggesting that the HSM models for these lane counts under-predict for Texas conditions. 

 
Figure 16.  Calibration Factors, Graphical Format. 
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The following figures show plots for the various combinations of lane count, crash type, 

and crash severity: 

• Figure 17.  CURE Plots for Crashes on 4-Lane Freeways. 

• Figure 18.  CURE Plots for Crashes on 6-Lane Freeways. 

• Figure 19.  CURE Plots for Crashes on 8-Lane Freeways. 

• Figure 20.  CURE Plots for Crashes on 10-Lane Freeways. 

• Figure 21.  CURE Plots for Crashes on 4-10-Lane Freeways. 

The figures show that, except for a few sites, the re-calibrated models predict crashes 

accurately. 

  
a.  SV-FI Crashes b.  SV-PDO Crashes 

  
c.  MV-FI Crashes b.  MV-PDO Crashes 

Figure 17.  CURE Plots for Crashes on 4-Lane Freeways. 
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a.  SV-FI Crashes b.  SV-PDO Crashes 

  
c.  MV-FI Crashes b.  MV-PDO Crashes 

Figure 18.  CURE Plots for Crashes on 6-Lane Freeways. 

  
a.  SV-FI Crashes b.  SV-PDO Crashes 

  
c.  MV-FI Crashes b.  MV-PDO Crashes 

Figure 19.  CURE Plots for Crashes on 8-Lane Freeways. 
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a.  SV-FI Crashes b.  SV-PDO Crashes 

  
c.  MV-FI Crashes b.  MV-PDO Crashes 

Figure 20.  CURE Plots for Crashes on 10-Lane Freeways. 

  
a.  SV-FI Crashes b.  SV-PDO Crashes 

  
c.  MV-FI Crashes b.  MV-PDO Crashes 

Figure 21.  CURE Plots for Crashes on 4-10-Lane Freeways. 
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Table 21 shows the results for the different goodness-of-fit measures, as described above.  

The table reports the values for MAD, MSPE, re-calibrated dispersion parameter, and percentage 

of the CURE plot lines that fall beyond the 95-percent confidence intervals.  Except for three 

SPFs, the CV is within 0.15 for all SPFs, which shows that the calibrated SPFs can accurately 

estimate crashes in Texas.  Out of those three SPFs whose CV values are greater than 0.15, two 

of them exceed 6 percent or less of CURE plot ordinates for calibrated predicted values.  This 

means those calibrated SPFs can accurately estimate crashes.  Note that models for SV-PDO 

crashes tend to have the largest percent of CURE plot exceeding the 95-percent confidence 

intervals.  These crashes tend to be the least common crash types on urban freeways.  The trend 

with the CURE plots for these crashes may be due to differences in crash reporting practices for 

these types of crashes between Texas and the states originally used to calibrate the HSM models 

(i.e., Washington, California, and Maine). 

Table 21.  Goodness-of-Fit Measures for the Re-Calibrated Models. 
No. of 

Lanes 

Crash Type 

and Severity 

Calibration 

Factor MAD MSPE 

Overdispersion 

Parameter CV 

Exceeding 

95% CI 

4 

SV-FI 0.77 1.57 6.21 0.14 0.15 19% 

SV-PDO 0.68 4.15 48.20 0.42 0.20 32% 

MV-FI 0.65 2.49 22.32 0.24 0.20 3% 

MV-PDO 0.57 4.59 108.94 0.37 0.22 6% 

6 

SV-FI 0.70 1.89 8.87 0.21 0.15 0% 

SV-PDO 0.56 3.00 21.86 0.45 0.15 64% 

MV-FI 0.95 4.92 70.32 0.16 0.11 0% 

MV-PDO 0.71 8.94 279.14 0.18 0.11 0% 

8 

SV-FI 1.25 4.11 65.74 0.10 0.10 8% 

SV-PDO 1.04 6.39 109.11 0.11 0.11 8% 

MV-FI 1.27 11.65 334.01 0.09 0.11 3% 

MV-PDO 1.20 21.77 1138.65 0.07 0.07 0% 

10 

SV-FI 1.02 2.75 17.29 0.05 0.13 17% 

SV-PDO 0.95 4.53 36.24 0.06 0.11 13% 

MV-FI 1.41 10.54 184.08 0.01 0.06 17% 

MV-PDO 1.30 19.90 612.58 0.01 0.05 4% 

4–10 

SV-FI 0.97 2.63 25.82 0.17 0.08 7% 

SV-PDO 0.81 4.49 64.09 0.21 0.08 60% 

MV-FI 1.14 7.38 162.01 0.13 0.07 7% 

MV-PDO 1.02 15.47 719.17 0.16 0.07 0% 

Figure 22 shows a graphical comparison of the calibrated SPFs for urban freeways with 

4–6 general-purpose lanes.  These SPFs show that for a given traffic volume, SV-FI crash 

frequency and PDO crash frequency will decrease slightly as the number of lanes increases from 

four to six, while MV-FI crash frequency will increase slightly.  In all cases, the magnitudes of 

the changes in crash frequency are small.  For example, at a traffic volume of 100,000 veh/day, 

the difference in MV-FI crash frequency between a six-lane segment and a four-lane segment is 

about one crash per mile per year. 
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a.  SV-FI Crashes b.  SV-PDO Crashes 

  

  
c.  MV-FI Crashes d.  MV-PDO Crashes 

Figure 22.  Calibrated SPFs for Urban Freeways with 4–6 Lanes. 

The research team used the Stage 2 data to apply the 10-lane freeway models to freeways 

with 12 lanes.  Table 22 provides the model coefficients and goodness-of-fit measures.   

Figure 23 shows CURE plots for crashes on 12-lane freeways.  These plots show that the re-

calibrated model predicts crashes accurately. 

Table 22.  Goodness-of-Fit Measures for Re-Calibrated Models for 12-Lane Freeways. 

Crash Type 

and Severity 

Local SPF 

Calibration Factor MAD MSPE 

Overdispersion 

Parameter CV 

Exceeding 

95% CI 

SV-FI 1.01 1.56 4.83 0.09 0.11 0% 

SV-PDO 0.77 1.71 4.77 0.03 0.15 4% 

MV-FI 1.13 2.32 10.12 0.02 0.08 4% 

MV-PDO 1.04 4.93 40.14 0.01 0.06 0% 
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a.  SV-FI Crashes b.  SV-PDO Crashes 

  
c.  MV-FI Crashes b.  MV-PDO Crashes 

Figure 23.  CURE Plots for Crashes on 12-Lane Freeways. 

Figure 24 shows a graphical comparison of the calibrated SPFs for urban freeways with 

8–12 general-purpose lanes.  These SPFs show that for a given traffic volume, crash frequency 

will decrease as the number of lanes increases.  This trend is consistent with the SPFs for 

segments with 4–10 lanes, reported in the Workbook (1) and the HSM (2) without local 

calibration and extending to segments with more than 10 lanes.  However, when the trend for 8-

lane segments is compared with the trend for 6-lane segments, a notable increase in crash 

frequency is observed as the lane count increases.  This trend may be due to differences in land 

development and area type.  Segments with 4–6 lanes tend to be located in areas that are 

classified as urban but tend to be smaller in population and population density (e.g., suburban or 

exurban), while segments with 8–12 lanes tend to be located in urbanized or metropolitan areas 

that have a higher and denser population. 

Table 23 provides the observed and predicted number of crashes, observed and predicted 

probability of severe crashes, and SDF local calibration factor by number of lanes.  The 

calibration factors are in the bottom row of the table.  For every lane count and for the overall 

dataset, the observed probability of a severe crash was higher than the predicted probability of a 

severe crash. 

The research team used the Stage 3 dataset to compute the SDF local calibration factors 

because the SDFs account for longitudinal barrier presence (among other variables), and the 

variables to account for longitudinal barriers were only available in the Stage 3 dataset.  Since 

the sample size (in terms of number of segments) was so small for segments with 12 lanes, the 

research team could not directly compute an SDF local calibration factor for these segments.  
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Instead, the research team recommends applying the SDF local calibration factor for segments 

with 10 lanes to the SDF for segments with 12 lanes. 

  
a.  SV-FI Crashes b.  SV-PDO Crashes 

  

  
c.  MV-FI Crashes d.  MV-PDO Crashes 

Figure 24.  Calibrated SPFs for Urban Freeways with 8–12 Lanes. 

Table 23.  SDF Calibration Results. 

Variable Variable Value by Number of Lanes 

4 5–6 7–8 9–10 4–10 

No_KABC 186 668 1444 572 2870 

No_KAB 100 293 555 226 1174 

Np_KABC 244.23 668.88 980.74 371.07 2264.92 

Np_KAB 84.93 197.59 270.13 98.97 651.62 

Po,KAB 0.54 0.44 0.38 0.40 0.41 

Pp,KAB 0.35 0.30 0.28 0.27 0.29 

CSDF 2.18 1.86 1.64 1.80 1.71 
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CALIBRATION OF MODELS FOR URBAN MANAGED-LANE FACILITIES 

The research team calibrated new safety prediction models for managed-lane facilities on 

urban freeway segments.  These models apply to crashes inside or involving the managed lanes, 

including crashes at access points where ramps or weaving sections connect the managed lanes 

to the adjacent general-purpose lanes or other roadways.  The previously documented models 

and local calibration factors are used to predict crash frequency in the general-purpose lanes. 

The new models apply to managed lanes that are separated from the adjacent general-

purpose lanes by the following buffer types: 

• Barrier—longitudinal positive barriers, typically concrete. 

• Pylons—a continuous row of plastic pylons. 

• Stripe—pavement markings, typically two solid white lines. 

The research team calibrated one set of models for non-reversible managed lanes, which 

can be separated from the adjacent general-purpose lanes using any of the listed buffer types, and 

an additional model for reversible managed lanes, which are separated from general-purpose 

lanes using barriers and are typically located in the median.  These models account for the safety 

effect of key geometric variables, including inside and outside shoulder width and access point 

density.  Access point density accounts for the number and type of access points, differentiating 

between weaving sections and ramps. 

Model Functional Form 

The predictive model calibration process consisted of simultaneous calibration of 

multiple-vehicle and single-vehicle crash models and CMFs using an aggregate model.  The 

simultaneous calibration approach was needed because several CMFs are common to multiple-

vehicle and single-vehicle crash models.  The database assembled for calibration included two 

replications of the original database.  The dependent variable in the first replication was set equal 

to the multiple-vehicle crash count.  The dependent variable in the second replication was set 

equal to the single-vehicle crash count.  The predicted average crash frequency in the managed 

lanes of a freeway was calculated as follows: 

 𝑁𝑖,𝑗 = (𝑁𝑖,𝑠𝑣𝐼𝑖,𝑠𝑣 + 𝑁𝑖,𝑚𝑣𝐼𝑖,𝑚𝑣) ( 25) 

where: 

Ni,j = predicted annual crash frequency for configuration i (buffer type = barrier, 

pylons, or pavement stripes; operation = non-reversible or reversible) and 

crash type j (single-vehicle or multiple-vehicle); 

Ni,sv = predicted annual single-vehicle crash frequency for configuration i; 

Ii,sv = indicator variable for single-vehicle crashes and configuration i (= 1.0 for 

single-vehicle crash data, 0.0 otherwise); 

Ni,mv = predicted annual multiple-vehicle crash frequency for configuration i; and 

Ii,mv = indicator variable for multiple-vehicle crashes and configuration i (= 1.0 for 

multiple-vehicle crash data, 0.0 otherwise). 
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For non-reversible managed lanes with barrier or pylon buffers, the predicted annual 

single- and multiple-vehicle crash frequencies were calculated as follows: 

 𝑁𝑠𝑣 = 𝑁𝑠𝑝𝑓,𝑠𝑣𝐶𝑀𝐹𝑖𝑠,𝑠𝑣𝐶𝑀𝐹𝑟𝑎𝑚𝑝 ( 26) 

 𝑁𝑚𝑣 = 𝑁𝑠𝑝𝑓,𝑚𝑣𝐶𝑀𝐹𝑜𝑠,𝑚𝑣𝐶𝑀𝐹𝑤𝑒𝑣𝐶𝑀𝐹𝑟𝑎𝑚𝑝 ( 27) 

with: 

 𝑁𝑠𝑝𝑓,𝑠𝑣 = 𝐿 𝑒𝑏𝑠𝑣,0+𝑏𝑠𝑣,1 ln(𝐴𝐴𝐷𝑇) ( 28) 

 𝑁𝑠𝑝𝑓,𝑚𝑣 = 𝐿 𝑒𝑏𝑚𝑣,0+𝑏𝑚𝑣,1 ln(𝐴𝐴𝐷𝑇) ( 29) 

 𝐶𝑀𝐹𝑖𝑠,𝑠𝑣 = 𝑒𝑏𝑖𝑠,𝑠𝑣(𝑊𝑖𝑠−4) ( 30) 

 𝐶𝑀𝐹𝑜𝑠,𝑚𝑣 = 𝑒𝑏𝑜𝑠,𝑚𝑣(𝑊𝑜𝑠−4) ( 31) 

 𝐶𝑀𝐹𝑤𝑒𝑣 = 𝑒(𝑏𝑤𝑒𝑣[𝑛𝑤𝑒𝑣 𝐿⁄ ]) ( 32) 

 𝐶𝑀𝐹𝑟𝑎𝑚𝑝 = 𝑒(𝑏𝑟𝑎𝑚𝑝[𝑛𝑟𝑎𝑚𝑝 𝐿⁄ ]) ( 33) 

where: 

Nspf,sv = base predicted annual single-vehicle crash frequency, cr/yr; 

Nspf,mv = base predicted annual multiple-vehicle crash frequency, cr/yr; 

CMFis,sv = inside shoulder width CMF for single-vehicle crashes; 

CMFos,mv = outside shoulder width CMF for multiple-vehicle crashes; 

CMFwev = access weaving section density CMF; 

CMFramp = access ramp density CMF; 

L = segment length, mi; 

AADT = annual average daily traffic in the managed lanes, veh/day; 

Wis = inside shoulder width, ft; 

Wos = outside shoulder width, ft; 

nwev = number of access weaving sections in the managed lanes (the weaving section 

may extend beyond the segment endpoints); 

nramp = number of access ramp gores in the managed lanes (not including ramp gores 

connected to weaving sections in the managed lanes, as shown in Figure 15); 

and 

bi = calibration coefficient for variable i. 

For non-reversible managed lanes with striped buffers, the predicted annual single- and 

multiple-vehicle crash frequencies were calculated as follows: 

 𝑁𝑠𝑣 = 𝑁𝑠𝑝𝑓,𝑠𝑣𝐶𝑀𝐹𝑖𝑠,𝑠𝑣 ( 34) 

 𝑁𝑚𝑣 = 𝑁𝑠𝑝𝑓,𝑚𝑣𝐶𝑀𝐹𝑜𝑠,𝑚𝑣 ( 35) 

For reversible managed lanes, the predicted annual single- and multiple-vehicle crash 

frequencies were calculated as follows: 

 𝑁𝑠𝑣 = 𝑁𝑠𝑝𝑓,𝑠𝑣𝐶𝑀𝐹𝑛𝑙,𝑠𝑣𝐶𝑀𝐹𝑟𝑎𝑚𝑝 ( 36) 
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 𝑁𝑚𝑣 = 𝑁𝑠𝑝𝑓,𝑚𝑣𝐶𝑀𝐹𝑛𝑙,𝑚𝑣𝐶𝑀𝐹𝑠,𝑚𝑣𝐶𝑀𝐹𝑟𝑎𝑚𝑝 ( 37) 

with: 

 𝐶𝑀𝐹𝑛𝑙,𝑗 = 𝑒𝑏𝑛𝑙,𝑗𝐼𝑛𝑙  ( 38) 

 𝐶𝑀𝐹𝑠,𝑚𝑣 = 𝑒𝑏𝑠,𝑚𝑣(𝑊𝑠−2) ( 39) 

where: 

CMFnl,j = number of lanes CMF for crash type j (single-vehicle or multiple-vehicle); 

CMFs,mv = shoulder width CMF for multiple-vehicle crashes; 

Inl = indicator variable for number of lanes (= 1.0 if number of lanes is 2 or more, 

0.0 otherwise); and 

Ws = average shoulder width, ft. 

Calibration Results 

The following subsections provide the results of the model calibration for non-reversible 

and reversible managed lanes on urban freeways. 

Non-Reversible Lanes 

Table 24 contains the calibrated coefficients for non-reversible managed lanes.  The SPF 

coefficients bsv,0, bmv,0, bsv,1, and bmv,1 show that for both single-vehicle and multiple-vehicle 

crashes, the base crash frequency for barrier-separated managed lanes is the lowest, followed by 

stripe-separated managed lanes and then pylon-separated managed lanes.  This trend is shown 

graphically in Figure 25. 

Table 24.  Calibrated Coefficients for Non-Reversible Managed Lanes. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑠𝑣,0 Intercept, SV crashes, barrier buffer −4.4765 1.7225 −2.6 0.0096 

𝑏𝑚𝑣,0 Intercept, MV crashes, barrier buffer −5.5873 1.8356 −3.04 0.0025 

𝑏𝑠𝑣,0 Intercept, SV crashes, pylon buffer −3.1353 1.6533 −1.9 0.0585 

𝑏𝑚𝑣,0 Intercept, MV crashes, pylon buffer −4.797 1.7636 −2.72 0.0068 

𝑏𝑠𝑣,0 Intercept, SV crashes, striped buffer −3.8811 1.5508 −2.5 0.0126 

𝑏𝑚𝑣,0 Intercept, MV crashes, striped buffer −4.9585 1.6813 −2.95 0.0033 

𝑏𝑠𝑣,1 AADT, SV crashes 0.4401 0.1685 2.61 0.0093 

𝑏𝑚𝑣,1 AADT, MV crashes 0.6055 0.181 3.35 0.0009 

𝑏𝑖𝑠,𝑠𝑣 Inside shoulder width, SV crashes −0.01856 0.01512 −1.23 0.22 

𝑏𝑜𝑠,𝑚𝑣 Outside shoulder width, MV crashes −0.04018 0.02005 −2 0.0456 

𝑏𝑤𝑒𝑣  Access weaving section density 0.2721 0.1164 2.34 0.0198 

𝑏𝑟𝑎𝑚𝑝 Access ramp gore density 0.04173 0.02938 1.42 0.156 

𝛿𝑠𝑣 Overdispersion parameter, SV crashes 0.3039 0.1014 3 0.0029 

𝛿𝑚𝑣 Overdispersion parameter, MV crashes 0.4634 0.1054 4.4 < 0.0001 

Fit Statistics 

Akaike’s Information Criterion (AIC): 1404.2 Bayesian Information Criterion (BIC): 1463.5 

Corrected Akaike’s Information Criterion (AICC): 1405.0 −2 Log Likelihood: 1376.2 
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a.  Single-Vehicle Crashes b.  Multiple-Vehicle Crashes 

Figure 25.  Non-Reversible Managed Lane SPFs. 

Figure 26a illustrates the shoulder width CMFs.  Inside and outside shoulder widths were 

found to have a similar effect on crash frequency, but with inside shoulder width affecting 

single-vehicle crashes and outside shoulder width affecting multiple-vehicle crashes. 

  
a.  Shoulder Width b.  Access Point Density 

Figure 26.  Non-Reversible Managed Lane CMFs. 

Figure 26b illustrates the access point density CMFs.  Both types of access points are 

shown to increase crash frequency, with higher CMF values for access weaving sections than for 

access ramp gores.  The analysis did not show a difference in safety effects between the two 

types of access weaving sections (weaving in the general-purpose lanes or in the managed lanes 

as shown in Figure 15).  The trends in these CMFs were affected by both access type and access 

point volume, the latter of which was not available to the research team.  The selection of access 

type (i.e., weaving section versus ramp) was primarily affected by considerations of operations 

and geometry, particularly the origins and destinations of the managed-lane users. 
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The calibrated non-reversible managed lane SPFs for barrier buffers are described in 

equation form as follows: 

 𝑁𝑠𝑝𝑓,𝑠𝑣 = 𝐿 𝑒−4.4765+0.4401 ln(𝐴𝐴𝐷𝑇) ( 40) 

 𝑁𝑠𝑝𝑓,𝑚𝑣 = 𝐿 𝑒−5.5873+0.6055 ln(𝐴𝐴𝐷𝑇) ( 41) 

The calibrated non-reversible managed lane SPFs for pylon buffers are described in 

equation form as follows: 

 𝑁𝑠𝑝𝑓,𝑠𝑣 = 𝐿 𝑒−3.1353+0.4401 ln(𝐴𝐴𝐷𝑇) ( 42) 

 𝑁𝑠𝑝𝑓,𝑚𝑣 = 𝐿 𝑒−4.7970+0.6055 ln(𝐴𝐴𝐷𝑇) ( 43) 

The calibrated non-reversible managed lane SPFs for striped buffers are described in 

equation form as follows: 

 𝑁𝑠𝑝𝑓,𝑠𝑣 = 𝐿 𝑒−3.8811+0.4401 ln(𝐴𝐴𝐷𝑇) ( 44) 

 𝑁𝑠𝑝𝑓,𝑚𝑣 = 𝐿 𝑒−4.9585+0.6055 ln(𝐴𝐴𝐷𝑇) ( 45) 

The CMFs for the non-reversible managed lane models are described in equation form as 

follows: 

 𝐶𝑀𝐹𝑖𝑠,𝑠𝑣 = 𝑒−0.01856(𝑊𝑖𝑠−4) ( 46) 

 𝐶𝑀𝐹𝑜𝑠,𝑚𝑣 = 𝑒−0.04018(𝑊𝑜𝑠−4) ( 47) 

 𝐶𝑀𝐹𝑤𝑒𝑣 = 𝑒(0.2721[𝑛𝑤𝑒𝑣 𝐿⁄ ]) ( 48) 

 𝐶𝑀𝐹𝑟𝑎𝑚𝑝 = 𝑒(0.04173[𝑛𝑟𝑎𝑚𝑝 𝐿⁄ ]) ( 49) 

Reversible Lanes 

Table 25 contains the calibrated coefficients for reversible managed lanes.  The SPF 

coefficients bsv,0, bmv,0, bsv,1, and bmv,1 show that reversible-lane facilities with one lane will have 

more single-vehicle crashes but fewer multiple-vehicle crashes than facilities with two or more 

lanes.  This trend is shown graphically in Figure 27.  Note that the y-axis scales show that 

multiple-vehicle crashes are far more frequent than single-vehicle crashes on reversible 

managed-lane facilities. 

Figure 28a illustrates the average shoulder width CMF for multiple-vehicle crashes on 

reversible managed-lane facilities.  The trend of this CMF suggests that average shoulder width 

has a notable effect on multiple-vehicle crash frequency.  Figure 28b illustrates the access ramp 

density CMF for reversible managed-lane facilities.  The trend of this CMF shows an increase in 

crash frequency as access ramp density increases.  This increase is similar in magnitude to the 

increase associated with access ramps on non-reversible facilities (see Figure 26b). 
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Table 25.  Calibrated Coefficients for Reversible Managed Lanes. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑠𝑣,0 Intercept, SV crashes −7.2209 2.3675 −3.05 0.0024 

𝑏𝑚𝑣,0 Intercept, MV crashes −15.3049 3.0881 −4.96 < 0.0001 

𝑏𝑠𝑣,1 AADT, SV crashes 0.7047 0.2603 2.71 0.007 

𝑏𝑚𝑣,1 AADT, MV crashes 1.6653 0.3383 4.92 < 0.0001 

𝑏𝑛𝑙,𝑠𝑣 Number of lanes, SV crashes 0.2782 0.2101 1.32 0.1862 

𝑏𝑛𝑙,𝑚𝑣 Number of lanes, MV crashes −0.7606 0.2621 −2.9 0.0039 

𝑏𝑠,𝑚𝑣  Shoulder width, MV crashes −0.3369 0.1043 −3.23 0.0013 

𝑏𝑟𝑎𝑚𝑝 Access ramp density 0.0503 0.03999 1.26 0.2091 

𝛿𝑠𝑣 Overdispersion parameter, SV crashes 0.3767 0.1515 2.49 0.0133 

𝛿𝑚𝑣 Overdispersion parameter, MV crashes 0.5512 0.1627 3.39 0.0008 

Fit Statistics 

Akaike’s Information Criterion (AIC): 953.4 Bayesian Information Criterion (BIC): 994.5 

Corrected Akaike’s Information Criterion (AICC): 953.9 −2 Log Likelihood: 933.4 

  

a.  Single-Vehicle Crashes b.  Multiple-Vehicle Crashes 

Figure 27.  Reversible Managed Lane SPFs. 

  
a.  Shoulder Width (MV crashes) b.  Access Ramp Density 

Figure 28.  Reversible Managed Lane CMFs. 
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The calibrated reversible managed lane SPFs and CMFs are described in equation form 

as follows: 

 𝑁𝑠𝑝𝑓,𝑠𝑣 = 𝐿 𝑒−7.2209+0.7047 ln(𝐴𝐴𝐷𝑇) ( 50) 

 𝑁𝑠𝑝𝑓,𝑚𝑣 = 𝐿 𝑒−15.3049+1.6653 ln(𝐴𝐴𝐷𝑇) ( 51) 

 𝐶𝑀𝐹𝑛𝑙,𝑠𝑣 = 𝑒0.2782𝐼𝑛𝑙  ( 52) 

 𝐶𝑀𝐹𝑛𝑙,𝑚𝑣 = 𝑒−0.7606𝐼𝑛𝑙 ( 53) 

 𝐶𝑀𝐹𝑠,𝑚𝑣 = 𝑒−0.3369(𝑊𝑠−2) ( 54) 

 𝐶𝑀𝐹𝑟𝑎𝑚𝑝 = 𝑒(0.0503[𝑛𝑟𝑎𝑚𝑝 𝐿⁄ ]) ( 55) 

APPLICATION 

Using the Local Calibration Factors 

Table 21 and Table 23, respectively, contain the local SPF and SDF calibration factors to 

be used with the HSM safety prediction models for urban freeways with 4–10 general-purpose 

lanes.  The research team recommends pairing the calibration factors with the HSM models as 

shown in Table 26.  Table 22 contains local calibration factors that can be used with the HSM 

10-lane model to analyze urban freeway segments with 12 general-purpose lanes.  These factors 

are provided in the bottom row of Table 26.  The calibration factors can apply to the models for 

segments or speed-change lanes. 

Table 26.  Summary of Recommended Local Calibration Factors for HSM Models. 
Number 

of Lanes 

HSM 

Model 

Local SPF Calibration Factor by Crash Type and Severity Local SDF 

Calibration Factor SV-FI SV-PDO MV-FI MV-PDO 

4 4 lanes 0.77 0.68 0.65 0.57 2.18 

6 6 lanes 0.70 0.56 0.95 0.71 1.86 

8 8 lanes 1.25 1.04 1.27 1.20 1.64 

10 10 lanes 1.02 0.95 1.41 1.30 1.80 

12 10 lanes 1.01 0.77 1.13 1.04 1.80 

The research team included some segments with odd-numbered lane counts in the 

calibration datasets but does not recommend directly applying the models to segments with odd-

numbered lane counts.  Instead, the research team recommends applying the HSM guidance for 

analyzing such segments.  Specifically, if a segment has an odd number of lanes, x, it should be 

analyzed as if it had x – 1 lanes and again as if it had x + 1 lanes, and the predicted crash 

frequencies obtained from those two analyses should be averaged.  This method can only be 

applied if the number of lanes in the two directions of travel differs by no more than one lane. 

Analyzing an Urban Freeway with Managed Lanes 

The calibrated safety prediction models for managed lanes on urban freeways are 

described by Equations 40–55.  These models, including their SPFs and accompanying CMFs, 

are summarized in Table 27.  These models require the traffic volume for the managed lanes and 

apply to all crashes associated with the managed lanes, including crashes involving crossing 
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buffers or accessing the managed lanes (e.g., crashes in or associated with access weaving 

sections, whether the weaving sections are located in the managed lanes or in the general-

purpose lanes, as shown in Figure 15).  Safety performance in the adjacent general-purpose lanes 

is analyzed using the appropriate models and local calibration factors from Table 26.  When 

applying the models for the general-purpose lanes, the managed-lane space in the median should 

be considered as non-traversable median space if a barrier or pylon buffer is present, or 

traversable median space if a stripe buffer is present. 

Table 27.  Summary of Urban Freeway Managed-Lane Safety Prediction Models. 
Facility Type Crash 

Type 

SPF 

Equation 

Number 

CMF CMF  

Base 

Condition 

CMF 

Equation 

Number 

Non-reversible, barrier-

separated 

SV 40 Inside shoulder width 4 ft 46 

Access ramp None present 49 

MV 41 Outside shoulder width 4 ft 47 

Access weaving section None present 48 

Access ramp None present 49 

Non-reversible, pylon-separated SV 42 Inside shoulder width 4 ft 46 

Access ramp None present 49 

MV 43 Outside shoulder width 4 ft 47 

Access weaving section None present 48 

Access ramp None present 49 

Non-reversible, stripe-separated SV 44 Inside shoulder width 4 ft 46 

MV 45 Outside shoulder width 4 ft 47 

Reversible SV 50 Number of lanes 1 lane 52 

Access ramp None present 55 

MV 51 Number of lanes 1 lane 53 

Average shoulder width 2 ft 54 

Access ramp None present 55 

Applying Empirical Bayes Adjustments 

Table 28 contains the overdispersion parameters obtained from the model calibration 

efforts.  These parameters can be used to apply the empirical Bayes method along with the 

calibrated safety prediction models to obtain estimated crash frequency. 

Table 28.  Overdispersion Parameters for Empirical Bayes Applications. 
Urban Freeway Facility Type Overdispersion Parameter by Crash Type and Severity Source 

Table SV-FI SV-PDO MV-FI MV-PDO 

General-purpose lanes, 4 lanes 0.14 0.42 0.24 0.37 Table 21 

General-purpose lanes, 6 lanes 0.21 0.45 0.16 0.18 

General-purpose lanes, 8 lanes 0.10 0.11 0.09 0.07 

General-purpose lanes, 10 lanes 0.05 0.06 0.01 0.01 

General-purpose lanes, 12 lanes 0.09 0.03 0.02 0.01 Table 22 

Managed lanes, non-reversible 0.30 0.46 Table 24 

Managed lanes, reversible 0.38 0.55 Table 25 
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APPENDIX: VALUE OF RESEARCH ANALYSIS 

OVERVIEW 

The research team conducted a value of research (VOR) analysis to produce an estimate 

of the benefit that the project will likely yield for TxDOT.  The temporal scope for this analysis 

was an eleven-year period (labeled as years 0–10) starting with the beginning of the two-year 

project.  The value of the project was described in terms of net present value (NPV) and cost-

benefit ratio (CBR), which are computed using economic discounting formulas. 

The primary objectives of TxDOT Research Project 0-7067 are to derive local calibration 

factors for the HSM models for urban freeways and to calibrate new safety prediction models for 

managed-lane facilities on urban freeways.  Hence, the research team focused the VOR analysis 

on the safety benefits of widening urban freeways and barrier-separating managed lanes and the 

resulting cost savings that can be obtained by improving this safety knowledge. 

METHODOLOGY 

The research team used a VOR template provided by TxDOT to compute the NPV and 

CBR measures.  The template required the following items: 

• Project budget: $275,000 ($92,141 in year 0, $155,797 in year 1, and $27,062 in year 2). 

• Project duration: 2.5 years. 

• Expected value duration: 10 years (convention chosen by TxDOT). 

• Discount rate: 3 percent (default value assumed by TxDOT). 

• Expected value per year: to be computed. 

The project’s expected value per year must be estimated based on a quantifiable analysis 

method that accounts for the benefit of the improved safety knowledge to be obtained through 

the research, as well as the number of curve sites expected to be treated and the cost of a 

pavement friction treatment.  The analysis method is described in the following sections. 

Concept 

An analysis method that can be used to estimate the benefit of conducting a research 

project on a safety treatment is documented in NCHRP Report 756 (43, 44).  The analysis 

method is summarized in the following paragraphs.  This method is based on the following 

premise: there are numerous safety treatments available that can reduce crash frequency.  

Knowledge of the effectiveness of these treatments is typically expressed in terms of a CMF.  

Practitioners must apply CMFs to assess the potential effectiveness of a safety treatment before 

installing it in the field.  To prioritize the many competing safety research project ideas (which 

yield new or improved CMFs), it is necessary to conduct a VOR analysis. 

To conduct a VOR analysis, it is necessary to conduct the following steps: 

1. Identify target sites where a treatment can be implemented. 

2. Determine the distribution of target crashes for these sites. 
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3. Determine the mean and standard deviation of a CMF for the treatment (i.e., describe the 

certainty of the safety knowledge of the treatment) based on previous research. 

4. Determine the expected standard deviation of the CMF (i.e., estimate the degree to which 

knowledge of the treatment’s effectiveness can be improved) after the proposed new 

research project is completed. 

5. Apply the procedure to estimate the expected value of the research. 

For TxDOT Research Project 0-7067, the treatments of interest are widening urban 

freeways and barrier-separating managed-lane facilities that are currently stripe- or pylon-

separated.  Conducting this research project yielded improved knowledge of the base crash 

frequencies observed on the various types of urban freeways.  This improved knowledge will 

reduce losses that TxDOT would otherwise incur by: 

• Installing a treatment at a site where the treatment is not justified based solely on safety 

considerations. 

• Failing to install a treatment at a site where the treatment is justified, thereby missing an 

opportunity to reduce the frequency and/or severity of crashes. 

Input Data 

The VOR analysis method documented in NCHRP Report 756 is implemented using a 

spreadsheet program called Safety Research Prioritization Worksheet (SRPW), which is 

available from NCHRP and described in a user manual (45).  The required input data, values, 

and sources are listed in Table 29.  The input data provide information about the candidate sites 

for treatment, safety knowledge of the treatment, crash cost, and treatment cost. 

The research team queried the TRM database (see Table 4) to obtain an estimate of the 

total mileage of urban freeway segments in Texas by lane count.  Based on the obtained 

distribution, the research team assumed that 50 miles of 8-lane urban freeway could be identified 

for widening to 10 lanes to improve safety performance, and another 50 miles of managed lanes 

with pylon or stripe buffer could have barrier buffers added to improve safety performance.  The 

effect on safety performance for these two treatments was estimated as CMF values of 0.85 and 

0.75, respectively, based on the SPF values for the facilities at their average AADT values of 

250,000 veh/day and 20,000 veh/day, respectively. 

To estimate the costs of crashes on rural highway curves, the research team chose 2021 as 

the analysis year and obtained the consumer price index (46) and employment cost index (47) 

values for that year.  These values are 279 and 148, respectively.  The research team queried the 

merged TRM-CRIS dataset used in the modeling efforts to obtain crash severity distributions and 

applied crash cost values from TxDOT’s Highway Safety Improvement Program (HSIP) 

guidelines and National Safety Council estimates. 
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Table 29.  VOR Analysis Input Data and Sources. 
Topic Input Data Value(s) Source/Notes 

S
it

es
 

Target highway miles 50 8-lane freeway segments to have two lanes added 

50 Pylon- or stripe-separated managed lanes to have 

barrier buffers added 

Average AADT, veh/day 250,000 Query of managed-lane volume data from operators 

20,000 Query of TRM database 

S
af

et
y

 

k
n

o
w

-

le
d

g
e 

Mean CMF value (effect of 

countermeasure) 

0.85 “Typical” value based on calibrated SPFs 

0.75 

Lowest and highest likely 

CMF values 

0.595, 1.148 Used default assumptions of 70 percent and 135 

percent of mean value for SRPW 0.525, 1.013 

C
ra

sh
 c

o
st

 

Analysis year 2021 Assumed (most recent completed year) 

Consumer price index 279 US Department of Labor (46) 

Employment cost index 148 US Department of Labor (47) 

Crash distribution by severity K = 0.006,  

A = 0.021,  

B = 0.105,  

C = 0.218, 

PDO = 0.650 

Query of merged TRM-CRIS database,  

8-lane urban freeway segments 

K = 0.009,  

A = 0.033,  

B = 0.187,  

C = 0.261, 

PDO = 0.510 

Query of merged TRM-CRIS database,  

non-reversible managed-lane segments 

Cost of K, A, B crash $3.7 million, 

$3.7 million, 

and $520,000, 

respectively 

TxDOT’s HSIP guidelines (48) 

Costs of C and PDO crashes $160,000, and 

$52,700, 

respectively 

National Safety Council 2020 estimates (49) 

T
re

at
m

en
t 

co
st

 

Treatment implementation 

level 

All sites Assumed 

Countermeasure service life 25 years Assumed 

Initial cost of project $5,000,000/mi Assumed based on similar construction projects 

$1,000,000/mi 

Annual maintenance cost of 

project 

$0 per mile Assumed no added maintenance cost due to 

treatment 

The research team assumed a service life of 25 years for both treatments and treatment 

costs of $5 million per mile and $1 million per mile, respectively, for the two treatments.  The 

research team used an annual maintenance cost of $0 for analysis based on the assumption that 

maintenance costs would not increase following the installation of the treatments. 

RESULTS 

The research team conducted the VOR analysis using the SRPW program and obtained 

an annual VOR estimate of $237,154.  This value represents the benefit that can be obtained if 

(1) the research project is conducted, (2) the results of the research project are used to analyze all 

relevant urban freeway segments that were identified in the TRM database query, and (3) the 

treatment is installed at all sites found to be “deserving” of treatment.  A site is considered to 
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“deserve” treatment if the cost of treatment is less than the cost of the crashes that would be 

reduced over the service life of the treatment if the treatment were installed. 

A summary of the VOR calculations is shown in Figure 29.  The payback period for 

Research Project 0-7067 was found to be 1.16 years, and the cost-benefit ratio was found to be 

5.38.  These findings account for the construction costs and safety benefits incurred by TxDOT. 

 
Figure 29.  VOR Analysis Results. 
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