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Chapter 1 Introduction 

The Texas Department of Transportation (TxDOT) started to use an automated/semi-automated 
method utilizing 3D laser technology and high-resolution cameras to collect pavement condition 
data on over 197,000 lane miles since Fiscal Year (FY) 2017. However, the local experience also 
shows that there are still accuracy and precision issues associated with the reliability of the 
existing automated/semi-automated data collection methods. Therefore, TxDOT has used a 
quality management plan (QMP) for pavement data collection to control the quality of automated 
pavement data collection and processing. The QMP includes equipment calibration before data 
collection and weekly verification during data collection for QC. For QA of automated data, 
TxDOT has a data validation process that uses certified raters from an independent third party to 
visually evaluate about 6% of Texas roadbed miles for surface distresses and TxDOT personnel 
to recheck profile measurements on selected sections (TxDOT 2018a). The minimum tolerance 
for data quality of the surface distress audit is distress scores of 15 points in error for no more 
than 10% of the pavement sections. Nevertheless, with a review of the pavement condition 
reports over the last few years, it is quite evident that the existing data validation method has 
failed to reliably locate the pavement sections with low accuracy and/or precision in data. 
Therefore, the development of data quality assurance procedures is vital to guarantee the quality 
and reliability of the pavement management information system (PMIS) data. 

This study developed quality assurance procedures for TxDOT in accepting automated pavement 
condition data. By following national quality management guides and good experience from 
state or provincial highway agencies in the US, the research team developed data quality 
assurance procedures for TxDOT by establishing data analysis/modeling capabilities, data audit 
sampling method, data quality tolerance values (data quality thresholds), implementation 
framework of data quality check, and data quality check validation procedures in PMIS. The 
main components of the research included the development of a cost-efficient audit sampling 
method and a set of data-enabled quality acceptance criteria. The cost-efficient audit sampling 
method can assist TxDOT in locating the pavement sections with potential data quality issues. 
The data-enabled quality acceptance criteria can provide TxDOT with minimum quality 
tolerances/thresholds and acceptance decision support to ensure the data quality of the delivered 
automated pavement condition data. In the project, a pilot study for a selected TxDOT District 
was implemented with the developed procedures to evaluate the effectiveness of the proposed 
data quality assurance procedures for pavement condition data quality improvement. This project 
enabled TxDOT to enhance the accuracy, precision, and reliability of the automated pavement 
condition data which would eventually help the State of Texas improve its pavement 
performance condition.  

The investigation detailed within this study is articulated through a structured exposition across 
seven chapters, each dedicated to a specific facet as delineated below: 

Chapter 2 delves into the deployment of automated pavement condition data collection, 
elucidating data quality intricacies sourced from the United States. It encompasses an analysis of 
the questionnaire survey results pertaining to the data quality management plan, as well as an 
examination of the challenges inherent in the current automated data collection framework. 
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Chapter 3 engages in a meticulous examination of historical pavement condition data, 
encompassing normality testing and an initial analysis of accuracy and precision concerning 
comprehensive scores and individual distress parameters. 

Chapter 4 expounds upon the proposed sampling methodology devised for conducting an audit 
on the quality of automated pavement condition data. 

Chapter 5 introduces the components essential for verifying the consistency of automated 
pavement condition data quality, alongside the delineation of associated thresholds. The rationale 
behind threshold selection is explicated, along with its application in data quality assessments. 
Additionally, this chapter elaborates on the operationalization of these thresholds through the use 
of flowcharts to implement data quality consistency checks. 

Chapter 6 showcases a pilot study that employs the developed data quality indexes and 
thresholds in accordance with the prescribed flowcharts. To substantiate the proposed data 
quality assessment indexes, thresholds, and protocols, raw image inspections are undertaken to 
address data quality discrepancies in sections that failed the initial data quality assessment. 

Chapter 7 culminates in a synthesis of the conclusions derived from the data quality analysis and 
proffers recommendations aimed at enhancing the quality of automated pavement condition data. 
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Chapter 2 Literature Review on Quality Assurance of Automated Pavement Condition 
Data Collection 

2.1 Implementation of Automated Pavement Condition Data Collection 

2.1.1 Automated Pavement Condition Data Collection 

The traditional manual pavement condition survey is based on walking or traveling at a slow 
speed and noting the existing surface distress (Pierce and Weizel 2019). It is quite a labor-
intensive and time-consuming process which is hard to cover the entire roadway length. To 
overcome the challenges of the manual survey, high-speed automated data collection 
technologies were widely adopted at network-level pavement condition data collection by many 
highway agencies. The automated data collection is a process of collecting pavement condition 
data using imaging technologies or other sensor equipment (McGhee 2004). Data and images 
collected through automated data collection require processing using either fully or semi-
automated methods. For the semi-automated data processing, the collected image and data are 
processed using imaging technologies or other sensor equipment but involving significant human 
input during the processing and/or recording of the data (Flintsch and McGhee 2009). The semi-
automated method usually processes images at workstations by personnel trained to rate visible 
cracks and other distresses (Pierce et al. 2013). For the fully automated data processing, the 
pavement condition is identified and quantified through techniques that require either no or very 
minimal human intervention (Flintsch and McGhee 2009). The current fully automated uses 
video and/or laser technology to detect and classify pavement cracking in real-time at highway 
speeds. Alternatively, the data collection vendors use systems to capture the pavement image 
first and then detect and classify the cracks using automated post-processing (Pierce and Weizel 
2019). 

Recently investigators have confirmed that automated data collection technologies have pushed 
forward the innovation of pavement performance quality assessment (Flintsch and McGhee 
2009; McGhee 2004; Pierce et al. 2013; Pierce and Weizel 2019). The automated pavement 
condition survey has become a commonly acceptable data collection method because of its 
benefits of minimal impact on traffic, a significant increase in safety, more time efficiency, and 
the possibility of 100% network coverage. A recent survey of highway transportation agencies 
by the National Cooperative Highway Research Program (NCHRP) shows that 45 out of 57 
responses (46 U.S. highway agencies and 11 Canadian provincial and territorial governments) 
are using automated data collection methods exclusively, 6 agencies using both manual and 
automated condition surveys, and only 6 agencies using manual pavement condition surveys 
(Pierce and Weizel 2019). With the wide application of automated pavement condition surveys, 
it is important to capture the agencies’ experience in their implementation of automated 
pavement condition data collection.  

2.1.2 Data Quality Management Program 

High-quality pavement performance data can provide critical information to support decisions 
involving the Federal-aid program for highway pavements (FHWA 2018). To enhance the 
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quality of the important pavement performance data, the Federal Highway Administration 
(FHWA) promulgated a rule, the National Performance Management Measures: Assessing 
Pavement Condition for the National Highway Performance Program and Bridge Condition for 
the National Highway Performance Program (PM2) (FHWA 2018). The rule PM2, which was 
effective in 2017, established ride (IRI), rutting, faulting, and cracking percent, or present 
serviceability rating (PSR) as the pavement condition metrics. The state highway agencies were 
required to collect and report these pavement condition metrics to the FHWA Highway 
Performance Monitoring System (HPMS) to determine the pavement performance condition in 
terms of good, fair, and poor per 23 CFR 490.309(c) (FHWA 2018). 

To collect the pavement condition metrics accurately and report the entire highway pavement 
performance comparably, each state highway agency was required to develop a Data Quality 
Management Program (DQMP) following the requirements of FHWA and their own states 
according to 23 CFR 490.319(c). The DQMP is also required by the Moving Ahead for Progress 
in the 21st Century Act (MAP-21) and Fixing America’s Surface Transportation (FAST) Act to 
evaluate the pavement performance for highway agencies (Simpson et al 2018). A DQMP is a 
document that defines the acceptable level of data quality and describes how the data collection 
process will ensure this level of quality in its deliverables and processes (FHWA 2018). 
Specifically, the DQMP includes methods and processes of five components: 1) data collection 
equipment calibration and certification; 2) certification process for persons performing manual 
data collection; 3) data quality control measures to be conducted before data collection begins 
and periodically during the data collection program; 4) data sampling, review and checking 
processes; and 5) error resolution procedures and data acceptance criteria (Simpson et al 2018). 
For state agencies, the DQMP aims to address the errors that occurred due to data collection 
equipment malfunction, unintended mistakes by operators, computer glitches, mechanical 
failures, and other issues that can result in poor data and the need for expensive recollection 
efforts (FHWA 2018). Reviewing state highway agencies’ DQMPs could be an efficient way to 
understand how state highway agencies collect and report their pavement condition data. 
However, the data metrics vary by agencies. According to state highway agencies’ data 
collection manuals, the data definitions are also unique. Therefore, the DQMPs are good 
resources to better understand the way that state highway agencies collect the pavement 
condition data and enhance the data quality. 

2.1.3 Automated Data Collection Protocols and Standards  

A data collection protocol/standard is a description of the procedures for consistently collecting 
and recording the pavement condition data in the same manner (FHWA 2018). In accordance 
with 23 CFR 490.309(c), the pavement condition metrics shall be collected and reported 
following the standardized HPMS format on an annual cycle for the Interstate roadways and on a 
2-year maximum cycle for all other required sections. The HPMS format conforms to ten 
AASHTO (American Association of State Highway and Transportation Officials) Standards with 
some modifications specified in the HPMS Field Manual for IRI, cracking percent, rutting for 
asphalt pavements, and faulting for jointed concrete pavements (FHWA 2018). However, the 
automated data collection standards are not limited to the HPMS Field Manual associated with 
the AASHTO Standards. A previous survey shows that some state agencies also use ASTM 
standards in their automated data collection, especially in measuring profile, macrotexture, and 
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analyzing precision and bias (Pierce and Weitzel 2019). Meanwhile, the Long-term Pavement 
Performance (LTPP) Distress Identification Manual is also adopted by a few state agencies. 
Some state highway agencies such as the California Department of Transportation (Caltrans), 
Pennsylvania Department of Transportation (PennDOT), TxDOT, etc. have their own standards 
for automated data collection which serve their state-level data collection, analysis, and decision 
making, Hence, a review of the automated data collection protocols and standards being used by 
state highway agencies will be included in this study.  

2.2 Quality Improvement of Automated Pavement Data Collection 

2.2.1 Data Quality Control  

According to the AASHTO R10-06, QC includes the activities needed to adjust production 
processes toward achieving the desired level of quality of pavement condition data (AASHTO 
2006). QC contains sampling, testing, inspection, and corrective action (where required) to 
maintain continuous control of a production process (FHWA 2018). The activities for QC are 
required by state highway agencies’ DQMP and primarily implemented by the data collection 
team to monitor, assess, and adjust data collection processes (Chang et al 2020). The QC 
activities may include equipment calibration, software checks and control, verification, or blind 
site data collection, which are performed during data collection (Pierce and Weitzel 2019). The 
pavement performance indicators for QC control, verification, or blind site check mainly focus 
on IRI, rutting, faulting, cracking, location, etc., but the specific requirements/tolerances for the 
control site checks vary among state highway agencies.  

2.2.2 Data Quality Assurance 

After data processing and vendor’s internal quality check, the pavement condition data are 
submitted to the agency. The agency team conducts a final data acceptance check for QA. Data 
acceptance criteria for QA at the agency’s final data quality assessment are defined in the state 
highway agency’s DQMP. A review of highway agencies’ DQMPs shows that each state agency 
has its own data sampling rate and method to select samples and conduct QA. The QA criteria 
are in a wide range depending on state agencies’ different needs. However, the major contents of 
QA include IRI, rutting, faulting, cracking, image, etc. If the submitted pavement condition data 
does not pass the data acceptance for QA, there are corrective actions for the data collection team 
to take to prevent erroneous data collection or data analysis procedures from being proceeded 
(FHWA 2017).  

Even with both QC and QA procedures, the state agencies are still struggling with data quality 
issues during applying the automated data collection technologies. The quality of the automated 
data varies due to the factors in equipment, algorithms, operation procedures, human 
interventions, etc. The reason that caused this problem could be the deficient QC and QA during 
and after the data collection. Therefore, this study aims to review the successful practices and 
discuss issues that the state highway agencies are using in evaluating the quality of the 
automated pavement condition data. 
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2.3 Questionnaire Result of Automated Pavement Data Collection 

2.3.1 Data Collection Methods 

The questionnaire survey result shows that automated and semi-automated pavement data 
collection methods have been widely adopted by state highway agencies in the United States. 
Figure 2.1 summarizes the pavement condition data collection methods currently used by the 
agencies. As shown in the figure, 32 over the 33 agencies who responded have used automated 
or semi-automated data collection methods. Among these 32 agencies, 12 of them use automated 
or semi-automated data collection technologies for more than 10 years, 8 of them have 5 to 10 
years of experience, and 5 of them have at least 1 to 4 years of experience (7 state agencies did 
not respond to this question). This result indicates that each state may be at a different stage of 
using automated/semi-automated data collection technologies. Specifically, the automated data 
collection in the California Department of Transportation (Caltrans) still needs manual 
interventions for QC/QA. Florida DOT uses fully automated Laser Crack Measurement System 
(LCMS) for HPMS. But for the pavement condition survey, they are still in a transition from 
manual distress data collection to fully automated ratings. Mississippi DOT uses manual data 
collection instead of automated for concrete pavement cracking evaluation, which is 3% of the 
lane miles. Nevada DOT and South Dakota DOT use manual data collection for distress and 
automated technologies for profile, rutting, and faulting. Alaska DOT uses semi-automated for 
patching and raveling evaluation.  

Figure 2.1 Summary of Agency Data Collection Methods (Total # of Responses = 33) 

2.3.2 Data Collection Service Provider 

The questionnaire survey result summarized in Figure 2.2 shows that there are three ways for 
state highway agencies to collect pavement condition data. First of all, 20 out of the 33 
respondents contract with vendors for pavement condition surveys. Contracting with a vendor is 
a usual way for state highway agencies which can save a lot of time for engineers and staff. 
However, some state highway agencies still take additional actions to enhance the quality of 
vendor’s services. For instance, Caltrans has a field crew to perform QC/QA. Indiana 
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Department of Transportation (INDOT) and Pennsylvania Department of Transportation 
(PennDOT) collect the project-level pavement condition data by their own staff. Meanwhile, the 
price of contracting with a vendor can be quite different from that of using in-house staff in 
conducting the data collection. Secondly, 11 out of the 33 respondents collect the data by their 
own staff. Some of these state agencies own data collection vehicles. For example, the 
Minnesota Department of Transportation (MnDOT), Maryland DOT, and Washington DOT. 
Thirdly, 2 out of the 33 respondents use both the vendor and staff for data collection. For 
example, Florida DOT collects Interstate highways using LCMS while a vendor collects non-
Interstate roads. 

Figure 2.2 Summary of Data Collection Service Providers (Total # of Responses = 33) 

2.3.3 Data Collection Protocols 

Before the implementation of automated data collection, a state highway agency should specify 
its data collection metrics and protocol. As mentioned in the background part, the data standards 
and protocols vary by agencies. Although FHWA requires states to collect and report pavement 
condition data following the HPMS field manual, generally a state agency has more than one 
data collection protocol to use. The commonly used protocols include various ASTM standards, 
AASHTO standards, and the LTPP standard. Furthermore, a lot of agencies have standards of 
their own design, such as Delaware DOT, Florida DOT, Illinois DOT, MnDOT, Mississippi 
DOT, Nevada DOT, Nebraska DOT, Ohio DOT, Oregon DOT, South Dakota, TxDOT, 
Washington DOT, and Wyoming DOT. Specifically, Alabama DOT has a “Network-level 
Pavement Condition Data Collection Procedure,” Caltrans has an “Automated Pavement 
Condition Survey Manual”, and PennDOT has its Publication 336 “Automated Pavement 
Condition Survey Field Manual.”   

2.3.4 Data Collection Items 

The data items collected by state agencies using automated/semi-automated data collection 
methods primarily include distress data (different kinds of cracking), roughness (IRI), rutting, 
and faulting according to FHWA’s data report requirements. Some state highway agencies also 
collect additional items. For example, Arkansas DOT collects macro texture; Caltrans collects 
mean profile depth (MPD); Florida DOT plans to expand raveling as a separate distress category; 
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Louisiana Department of Transportation and Development (LAODTD) collects friction texture, 
macrotexture, horizontal alignment and vertical alignment data, and fill quantity; Mississippi 
DOT collects friction data; TxDOT collects skid number.  

2.3.5 Data Collection Length and Cycle 

The data collection length which is collected every cycle depends on the state’s roadway network 
length. Figure 2.3 summarizes the survey results about the state’s data collection length and 
frequency. Out of the 32 respondents, 26 collect the pavement condition data by roadbed miles, 4 
states collect pavement data by lane miles (Caltrans, Florida DOT, Georgia DOT, and Montana 
DOT), and 2 states collect pavement data by centerline miles (Delaware DOT, Ohio DOT, and 
Tennessee DOT). The centerline mile is defined as the distance measured between the beginning 
point and the end point shown on the design plan regardless of the number of lanes or roadbeds, 
and the roadbed mile is defined as the distance along each roadbed regardless of the number of 
lanes. Among the 32 states that use automated or semi-automated data collections, Texas holds 
the biggest automated data collection network. Caltrans has the second-longest roadway length 
conducted with automated pavement condition data collection.  

Figure 2.3 Data Collection Lengths and Cycles of State Highway Agencies (32 Responses 
with Automated or Semi-Automated Data Collection) 

In the 2016 Field Manual, FHWA specified that the data collection frequency for Interstate 
System pavement is annual and for non-Interstate National Highway System (NHS) pavement is 
biennial (Simpson et al 2020). Both the annual data collection frequency for Interstate System 
pavement and the biennial data collection frequency for non-Interstate NHS require annual data 
reporting to HPMS making the most recently collected data replacing the data from the previous 
data collection cycle. To manage the state roadway network and meet FHWA’s data reporting 
requirements, 21 of the 32 respondent states (blue bars in Fig. 3.) collect all state-maintained 
roads in their system annually. The rest of the 11 state highway agencies collect the Interstate or 
both the Interstate and non-Interstate NHS annually but collect the other state-maintained roads 
biennially.  



9 
 

2.3.6 QC/QA Processes 

During a virtual interview, a senior pavement engineer from AgileAssets Inc. highlighted that 
“Pavement survey accuracy is really important because it concerns multi-million-dollar 
maintenance plan.” However, the accuracy of the existing automated survey technologies can be 
easily affected by survey equipment. Therefore, the QC before and during the data collection and 
QA after the data collection are crucial to enhance the quality of the pavement condition data.  

The QC activities include automated data collection equipment certification, verification, and 
calibration. Table 2.1 lists the QC activities taken by the 32 responding state highway agencies 
using automated or semi-automated data collections. The result shows that most of the state 
highway agencies conduct equipment certification, verification, and calibration for cracking, IRI, 
and rutting by vendors and staff. Some of the state highway agencies contract with an 
independent third party for equipment certification, but very few agencies use a third party for 
verification and calibration. The result also indicates that some state highway agencies only 
apply verification and calibration for IRI and rutting, but not for cracking.  

Table 2.1 Quality control of automated pavement data collection at state highway agencies 
 Vendor/contractor Agency staff A third 

party 
Who does 
the 
equipment 
certification 
for 

distress 
data 
(cracking) 

AK, CO, DE, GA, IL, 
IN, KY, LA, MD, MI, 
NE, NY, NM, WY 

AL, AR, IL, KY, MD, 
MN, MS, MT, NV, 
NH, SD 

AL, CA, FL, 
GA, TX, WA  

roughness 
(IRI) 

AK, AR, CO, DE, GA, 
IL, IN, KY, LA, MI, 
NE, NY, NM, WY 

AR, IL, MD, MI, 
MN, MS, MT, ND, 
NV, NH, OR, PA, SD 

AL, AK, CA, 
FL, GA, NH, 
NJ, TN, TX 

rutting CO, DE, GA, IL, IN, 
KY, LA, MD, MI, NE, 
NY, NM, TN, WY 

AL, AR, IL, MD, 
MN, MS, NV, NH, 
PA, SD, WA, 

CA, FL, GA, 
TX 

Who does 
the 
equipment 
*verification 
for 

distress 
data 
(cracking)  

AL, AK, CO, DE, GA, 
IL, IN, KY, LA, MD, 
MI, NY, NM, OR, TN, 
TX, WY 

AR, CA, FL, IL, MD, 
MI, MN, MT, NV, 
NE, NH, PA, SD, WA 

FL, NJ 

roughness 
(IRI)  

AL, AK, CO, DE, GA, 
IL, IN, KY, LA, MD, 
MI, NY, NM, OR, TN, 
TX, WY 

AR, CA, FL, IL, MD, 
MI, MN, MS, MT, 
ND, NV, NE, NH, 
NM, PA, SD, WA 

FL, NJ 

rutting  AL, AK, CO, DE, GA, 
IL, IN, KY, LA, MD, 
MI, NY, NM, OR, PA, 
TN, TX, WY 

AR, CA, FL, IL, MD, 
MI, MN, MS, MT, 
NE, NH, NJ, SD, 
WA, 

FL 

Who does 
the 
equipment 

distress 
data 
(cracking)  

AL, FL, GA, IL, IN, 
KY, LA, MI, NE, NH, 
NY, NJ, NM, WY 

AK, AR, CA, FL, IL, 
MD, MI, MN, NE, 
NH, OR, PA, SD, TN, 

FL, NJ, TX 



10 
 

**calibration 
for 

WA, 

roughness 
(IRI)  

CO, GA, IL, IN, KY, 
LA, MI, NE, NH, NY, 
NM, WY 

AK, AR, CA, IL, 
MD, MI, MN, MS, 
MT, ND, NV, NE, 
NH, OR, PA, SD, TN, 
TX 

AL, NJ 

rutting  CO, FL, GA, IL, IN, 
KY, LA, MD, MI, NE, 
NH, NY, NJ, NM, WY 

AL, AK, AR, CA, FL, 
IL, MD, MI, MN, 
MS, NV, NE, NH, 
OR, PA, SD, TN, TX, 
WA 

FL 

who does the data 
acceptance check 

MD, NH, TN, TX AL, AK, CA, CO, 
DE, FL, GA, IL, KY, 
MD, MI, ND, NV, 
NE, NH, NY, NJ, 
NM, OR, PA, SD, 
TN, TX, WA, WY 

DE, NM, TX 

Note. *Verification: weekly check that the inertial profiler for IRI measurements and the 3D systems for rut 
measurements are in good operating conditions; **calibration: comparison of data collected using an inertial profiler 
and skid trucks with those of a reference device (TxDOT 2018). 

The QA activities are involved in the data acceptance check process which includes data 
allowable range check, data quality validation, and data sampling checks with a specific 
sampling rate and method for the automated pavement condition survey. Table 2.2 shows the QA 
activities taken by the 32 respondents using automated or semi-automated data collection. The 
result indicates that most of the state highway agencies have data allowable range checks as well 
as data quality validation processes for distress data, IRI, rutting, and faulting. These state 
highway agencies also conduct data sampling processes with different sampling rates and 
sampling methods. The sampling rates for distress data are mainly in the range of 0.5%-10%. In 
some states, the sampling rates for distress data can be 25%, 35%, and even 100%. For IRI, 
rutting, and faulting, more states are exercising a sampling rate of 100% of the collected network 
length, than the states that apply sampling rates of 0.5%-10% (except for Illinois DOT who uses 
a sampling rate of 50% for IRI and rutting). The most commonly used sampling method is 
random sampling by picking a desired sample size (% of the surveyed state network pavement 
sections, or population) and selecting observations from the population. Systematic sampling and 
stratified sampling are also used by many state highway agencies. Systematic sampling is 
conducted by selecting sample units or elements (pavement sections) of a population at a regular 
interval determined in advance. Stratified sampling is applied by dividing the sample elements 
(pavement sections) of a population (all the pavement sections in the state-maintained network) 
into subgroups or strata, and then randomly selecting elements from each of these strata. 
Generally, there are more similarities between elements within a stratum than elements in 
different strata. Different from other states, Caltrans uses cluster sampling, which is very similar 
to the stratified sampling, by dividing the population into multiple groups or clusters, and then 
selecting random elements from these clusters.  
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Table 2.2 Quality assurance of automated pavement condition data at state highway 
agencies 

 Distress data 
(cracking) 

Roughness 
(IRI) 

Rutting Faulting 

Are there any 
data 
allowable 
range checks 

AL, AK, CA, CO, 
DE, FL, IN, KY, 
LA, MD, MS, ND, 
NV, NE, NY, NJ, 
NM, OR, PA, SD, 
TN, TX, WA, WY 

AK, CA, CO, 
DE, FL, GA, IL, 
IN, KY, LA, 
MD, MI, MS, 
ND, NV, NE, 
NH, NY, NJ, 
NM, OR, PA, 
SD, TN, TX, 
WA, WY 

AK, CA, CO, 
DE, FL, GA, IL, 
IN, KY, LA, 
MD, MI, MS, 
NV, NE, NH, 
NY, NM, OR, 
PA, SD, TN, 
TX, UT, WA, 
WY 

CA, DE, FL, IL, 
IN, KY, LA, MI, 
MS, NV, NE, 
NY, NM, PA, 
SD, TN, UT, 
WY 

Does your 
agency have 
any data 
quality 
validation 
process 

AL, AK, CA, CO, 
DE, FL, GA, IL, IN, 
KY, LA, MD, MI, 
ND, NE, NH, NY, 
NJ, NM, OR, PA, 
SD, TN, TX, UT, 
WA, WY 

AL, AK, CA, 
CO, DE, FL, 
GA, IL, IN, KY, 
LA, MD, MI, 
MS, ND, NE, 
NH, NY, NJ, 
NM, OR, PA, 
SD, TN, UT, 
WY 

AL, AK, CA, 
CO, DE, FL, 
GA, IL, IN, KY, 
LA, MD, MI, 
MS, NE, NH, 
NY, NM, OR, 
PA, SD, TN, 
WY 

AL, DE, FL, IL, 
IN, KY, LA, MI, 
MS, NE, NY, 
NM, PA, SD, 
TN, WY 

Does your 
agency have 
any data 
sampling 
process and 
what is the 
sampling rate 

AL (3%), AK (5%), 
CA (0.5-1%), CO 
(1%), FL (5%), GA 
(5%), IL (25-35%), 
KY (10%), LA 
(5%), MD (100%), 
MI (1%), ND (2%), 
NV (10%), NE 
(100%), NH (25%), 
NY (10%), NJ 
(5%), PA (2.5%), 
SD (100%), TN 
(2%), TX (6%), UT 
(5-10%), WA (5%), 
WY 

AK (5%), CA 
(0.5-5%), FL 
(10%), GA 
(5%), IL (50%), 
KY (100%), MD 
(100%), MS 
(100%), NE 
(100%), NH 
(100%), NY 
(10%), NJ (5%), 
PA (2.5%), SD 
(100%), TN 
(2%), UT (5-
10%), WY 

AK (5%), CA 
(0.5-5%), FL 
(10%), GA 
(5%), IL (50%), 
KY (100%), MD 
(100%), MS 
(100%), NE 
(100%), NH 
(100%), NY 
(10%), SD 
(100%), TN 
(2%), WY 

FL (10%), GA 
(5%), KY 
(100%), MS 
(100%), NE 
(100%), NY 
(10%), PA 
(2.5%), SD 
(100%), WY 

What is the 
sampling 
method 

AL (stratified), AK (systematic), CA (cluster), CO (random and stratified), FL 
(random), GA (random), IL (random), KY (systematic), LA (random), MD 
(systematic), MI (stratified, random, and systematic), ND (stratified), NV 
(random, and systematic), NH (systematic), NY (random), PA (random), TN 
(systematic), TX (random), UT (stratified), WA (random), WY (random) 

Furthermore, these QA activities for data acceptance checks are mainly conducted by the agency 
staff which generally take much of their time. Only a few state highway agencies are working 
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together with a vendor or a third party to conduct the data acceptance process.  

One of the open questions in the questionnaire is about the data quality issues that the state 
highway agencies are facing. Table 2.3 summarizes some typical data quality issues and possible 
reasons from the responses of the state highway agencies. Eight states mentioned issues about 
cracking data, e.g., cracking identification/determination, cracking detection, and cracking 
classification. Some state agencies have data quality issues with specific pavement types, such as 
jointed concrete pavement (JCP). The IRI data collection has caused issues in some state 
agencies, especially within the urban areas. The IRI sensors are very sensitive to the traffic 
environment, and the reasons that cause the IRI issues could be the low vehicle speeds and 
frequent stops due to traffic signals. In addition, another issue that has been raised is alignment 
of the vendor collected data with the state referencing systems and standards. Potentially, there 
could be more data quality issues from the states that did not respond to the questionnaire survey.  

Table 2.3 Data quality issues of state highway agencies 
State highway 
agency 

Data quality issues and possible reasons 

Alabama DOT 1) Cracking data has been underreported by vendor since the beginning. It's 
getting better.  

2) OGFC remains a challenge. The vendor may have trouble rating it. 
Alaska DOT 1) Low speed IRI collection, which is likely a challenge in most states in urban 

areas.   
2) Occasionally vendor’s cracking identification misses some cracks, but that has 

not been a large issue overall and is normally very isolated.   
3) The largest issue is probably aligning the vendor collected data to states linear 

referencing system for HPMS reporting. 
Caltrans 1) Vendors turn over.  

2) Accurate execution of automated pavement data collection is a major issue.  
3) At network-level, we need to accept imperfection for localized issues; but 

focus on project development. 
4) Accurate cracking determination appears to be the most challenging. 

Colorado DOT 1) Corner Breaks are interpreted manually.   
2) The vendor collected data did not align with the Long-term Pavement 

Performance (LTPP) definition but was corrected. 
Maryland DOT 1) Data quality issues do arise, but sophisticated data quality assurance and 

quality control checks are in place to address them.  
2) These issues arise due to the nature of the data collection procedures, 

personnel changes in equipment operations and data processing.  
3) Continuous refinement of the processes, training of new staff, and well 

documented Standard Operating Procedures (SOPs) allow for effective 
resolution of issues. 

Minnesota DOT The biggest issue we have with automated distress classification is on JCP.   
Mississippi 
DOT 

We are aware that the pavement type is crucial in the distress classification. 
The contractor may have issues to classify the pavement type.  

Nevada DOT 1) Certain types of distress data are less reliable because so many people are 
involved in the collection effort.   

2) We are slowly transitioning to a more centralized approach that should make 
it more reliable. 
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New Jersey 
DOT 

Traffic lights and traffic congestion impact the quality of the IRI data in 
those locations. 

Oregon DOT 1) Distresses rated manually from the pavement images are more likely to have 
problems.   

2) For concrete pavement, separating important cracks from unimportant map 
cracking is an issue.  

3) For asphalt pavement, patching, potholes, and raveling can be an issue, 
especially with regard to capturing the proper severity level. 

PennDOT 1) Data quality is mostly limited to right edge deterioration and left edge joint 
distress on asphalt pavements.   

2) Due to the limitation of the imaging system to capture the full extent of the 
lane in some cases. Also due to limitations of the crack detection software in 
identifying these two distresses. 

South Dakota There have been isolated issues from time to time.  Usually, an equipment 
malfunction has been to blame. 

Tennessee DOT Data variability. The reason could be operation issues and the quality of the 
downward 3-D images. 

Utah DOT 1) One of the biggest headaches was matching the Location Referencing System. 
2) Another was how to handle routes that were closed/under construction as well 

as any need to recollect data. 
Wyoming DOT Consistency of automated crack detection on JCP. 

In addition, the lack of a standard for the format of automated pavement condition surveys has 
been another problem in QC afflicting pavement engineers for a long time. AASHTO has 
recently approved a new standard specification (Pavement Standard Image, or PSI) to define the 
2-Dimensional and 3-Dimensional (2D/3D) pavement image data format for pavement surface 
condition and profile surveys. This standard provides a uniform format for automated pavement 
condition surveys across the country which could decrease the unit price of the automated 
pavement condition survey. Therefore, for state highway agencies, there are some federal 
regulations to specify how automated pavement survey should be conducted and how the data 
quality should be handled. However, for municipal governments, there is no standard for 
automated data collection. The requirements are quite loose as the municipal governments have 
no clear expectations for their data collection vendors. 

2.3.7 Data Collection Cost 

Cost is a big concern when the state and local agencies switch to automated data collection. 
Many interviewees from both the government and industry believed that the current automated 
data collection services are too expensive. An engineer from NCE company shared that the cost 
of manual data collection is as low as $15 per hour. However, the price of high-quality 
automated data collection could be $100-$150 per mile. VDOT spends about $100-$200 per mile 
for an automated pavement condition survey which includes an independent third party for QA 
by manually reading the image data. The cost of automated data collection is quite sensitive for 
the customers (agencies) such as small cities and counties. For the City of Nevada at Iowa, there 
were five vendors bidding for the contract of city-level automated pavement condition survey. 
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After an evaluation of the price and the service quality, the price of the pavement condition 
survey from the chosen vendor was at $105/mile. Different from other state and local agencies, 
MnDOT conducts automated pavement condition data collection by itself. One significant 
advantage is cost reduction. The current cost is approximately $40/mile for the annual survey at 
MnDOT. MnDOT replaces their survey vans every 5-6 years, and in an average the total data 
collection cost is around $55/mile. 

The final contract with a data collection vendor includes a per mile based cost and a fixed price 
cost for the project. The unit cost of the network-level pavement condition data collection 
depends on the state agency’s requirements on collected network length, measurement items, 
featured information, QC/QA, and timing. Therefore, in many cases, the price for high-quality 
pavement condition data is unpredictable. An engineer from Applied Pavement Technology, Inc. 
(AP Tech) mentioned that they adopted a couple of procedures to make sure the survey data is 
accurate. Each procedure would add a certain amount of cost to the total cost. If survey data is 
proved acceptable without manual intervention, only 10% more cost would be added. If not, an 
unpredictable cost may be needed to make the data acceptable to the end-user. Therefore, many 
engineers suggested that reducing data collection costs and data processing time be urgent needs 
for automated data collection.  

2.4 Problems with Existing Automated Data Collection 

2.4.1 Data Quality of Automated Data Collection Technologies 

Most of the interviewees agreed that automated data collection is the right direction to improve 
the work efficiency of pavement engineers. However, the current automated pavement data 
collection technologies still have a lot of room for improvement, especially for the image data 
processing algorithms. Many pavement engineers claimed that data quality is a serious issue with 
the current automated data collection technologies. Some interviewees pointed out that data 
inconsistency and discrepancy are the main issues for state and local agencies after switching to 
automated data collection. Take as an example, a Pavement Management supervisor at TxDOT 
said “Data inconsistency and false-positive cost us extra time for data validation, and it also 
creates troubles for us to serve the other functional departments in TxDOT.”  

Inconsistency means the unexpected differences between two or more repeated runs of 
automated data collection at the same pavement sections. Discrepancy stands for the unaccepted 
differences between the true distress values and the collected data at the same pavement 
locations. A typical manifestation of discrepancy is false-positive which is the result of 
inaccurate pavement distress detection. An engineer from Roadway Asset Services (RAS) 
concluded that the inconsistency between different pavement condition survey systems and the 
inconsistency between human rating and automated systems are currently among the biggest 
challenges. As an example, the City of Austin used 3 vendors to collect data at different times, 
and the data consistency has been a big issue. The main reason is the vendors all use proprietary 
image data formats that literally prevent sharing and cross-check of data among vendors. Several 
pavement engineers mentioned that the current automated pavement survey technologies tend to 
raise the rate of false-positive, which has caused a significant discrepancy problem.  
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Meanwhile, some highway agencies are also having troubles in matching automated data with 
historical data that were collected manually. This data continuity issue was also mentioned by 
many engineers from state and local agencies in interviews. In addition, an engineer from 
Quality Engineering Solution Inc. (QES) mentioned that the current technologies have trouble in 
concrete pavement surveys for patch/sealed cracking detection, crack type classification, and 
crack severity quantification. The positive aspect is that the vendors all have provided timely and 
effective technical support services when the data quality issues were reported.  

In contrast, several engineers acknowledged that they are quite satisfied with the current 
automated data collection technologies, especially during the Covid-19 lockdown time. These 
engineers also believed the data inconsistency and discrepancy issues were just normal and 
acceptable. Meanwhile, FHWA checks the annual report submitted by state highway agencies. 
Most of the annual reports are based on automated data and only a small percentage of the 
reports are found to have data issues. 

2.4.2 Promoting Automated Data Collection Technologies 

One pavement engineer with experience in state highway agency, industry, and academia shared 
that the current automated data collection technologies are at the entry-level to fully automated 
data collection (without human interruption). Another senior pavement engineer from 
AgileAssets Inc. commented that the current automated pavement survey is not fully automated. 
For instance, patches still need manual labor work in detection. More pavement engineers’ 
feedback shows that the semi-automation of pavement survey still requires a huge amount of 
manual labor for pavement inspection. Therefore, the current automated and semi-automated 
pavement survey technologies still are not yet fully automated and have limitations.  

The information gained from the interviews shows that the current data accuracies for automated 
pavement survey companies are around 70-80%, but 95% accuracy is expected. The engineers 
from survey companies insisted that the current automated technologies need to be innovated, 
and the artificial intelligence (AI) technologies should be applied to improve the data quality. 
There are some companies that started using AI technologies for automated pavement data 
processing. For example, deep learning algorithms have been used for automated data detection, 
classification, and quantification. However, the interviewees from academia pointed out that the 
current deep learning method being used in the automated data collection technologies still needs 
data pre-treatment. The lack of training data due to low availability of annotated ground truth 
image data and difficulties in sharing data in the public domain has caused delays in developing 
and using AI in the technologies. Furthermore, the current AI-driven automated pavement 
condition survey technologies are not able to detect all types of pavement distresses. An 
important reason is that the current distress definition standard is designed for human raters but 
not for computer visions, therefore, some of the distresses can hardly be detected or measured by 
the current automated technologies.  

2.4.3 Implementation of QA 

As mentioned above, the main issues with current automated data collection technologies are 
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data inconsistency and discrepancy. Manual correction is needed to make the data usable. This 
incompetency has been brought up in many interviews with pavement management engineers at 
state agencies. The vendors have internal QA processes, but still could not satisfy highway 
agencies' data quality requirements. Several pavement engineers from state and local highway 
agencies would not trust the survey data before validation. Many interviewees from state 
highway agencies indicated that they spent a lot of staff time doing image checks for data QA 
after receiving the automated pavement condition data. In several states, it even took engineers 
months to validate the yearly pavement survey data. For instance, a district engineer at TxDOT 
mentioned that it is always hard to verify the data from the whole network since it would cost 
months of time for engineers to go over all the data. In Mississippi DOT, the IT staff and 
pavement engineers check the image data and the historical Pavement Management System 
(PMS) data and make corrections to the information in the PMS. A pavement engineer shared 
that the data validation in Caltrans is conducted manually by three engineers working full time. It 
is time-consuming and labor-intensive, and there is a lot of subjectivity too. This feedback 
mirrors the findings learned from the reviews of state highway agencies’ DQMPs in that the 
most labor-intensive checks were image checks, though the manual image checks only 
represented a subset of the data. 

After interviewing with engineers from the government and industry, we found many state and 
local agencies contracted with third parties to examine the survey data which was delivered from 
the data collection vendors. For instance, VDOT is contracting with QES. It shows that the state 
and local agencies are spending lots of budget just to make the data right. In addition, some state 
highway agencies and municipal governments separate the automated data collection, data 
processing, and QA as individual services contracting with different entities to conduct the 
pavement condition evaluation work.  

More suggestions for the implementation of QA are about quantifying QA. An engineer from 
Applied Research Associates, Inc. shared that a threshold could be used to define the data quality 
for QA purposes, but the value of the threshold depends on the needs of different highway 
agencies. 
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Chapter 3. Pavement Condition Historical Data Analysis 

3.1 Data Cleansing and Overview 

3.1.1 Dataset from 25 Districts 

Table 3.1 lists each district’s pavement sections under three pavement types (ACP, CRCP, and 
JCP) from TxDOT’s PMIS annual rating data. These data are collected from FY 2017 to FY 
2021. FY 2017 is the first year that TxDOT contracted with a vendor to collect the network level 
pavement condition data using automated pavement data collection technologies. Pavement 
condition data in FY 2021 is the most recently collected pavement condition data recorded in the 
PMIS. 

Table 3.1 PMIS annual rating dataset in different pavement types (25 districts) 
RESPONSIBLE 
DISTRICT 

CRCP JCP ACP Sum CRCP_% JCP_% ACP_% 

01 - PARIS 815 588 35607 37010 2.202 1.589 96.209 
02 - FORT 
WORTH 

7737 183 32965 40885 18.924 0.448 80.629 

03 - WICHITA 
FALLS 

1441 253 30762 32456 4.440 0.780 94.781 

04 - AMARILLO 2284 15 44432 46731 4.888 0.032 95.080 
05 - LUBBOCK 2508 2 57806 60316 4.158 0.003 95.839 
06 - ODESSA 29 51 40331 40411 0.072 0.126 99.802 
07 – SAN 
ANGELO 

27 37 36495 36559 0.074 0.101 99.825 

08 - ABILENE 87 27 42011 42125 0.207 0.064 99.729 
09 - WACO 2442 400 35888 38730 6.305 1.033 92.662 
10 - TYLER 348 149 41338 41835 0.832 0.356 98.812 
11 - LUFKIN 319 88 30696 31103 1.026 0.283 98.691 
12 - HOUSTON 19953 1507 20522 41982 47.528 3.590 48.883 
13 - YOAKUM 337 39 40421 40797 0.826 0.096 99.078 
14 - AUSTIN 2283 6 37925 40214 5.677 0.015 94.308 
15 - SAN 
ANTONIO 

296 40057 10134 50487 0.586 79.341 20.072 

16 - CORPUS 
CHRISTI 

4 0 34617 34621 0.012 0.000 99.988 

17 - BRYAN 511 130 35462 36103 1.415 0.360 98.225 
18 - DALLAS 9189 7194 30380 46763 19.650 15.384 64.966 
19 - ATLANTA 925 421 28848 30194 3.064 1.394 95.542 
20 - 
BEAUMONT 

1452 2681 23356 27489 5.282 9.753 84.965 

21 - PHARR 79 26 27810 27915 0.283 0.093 99.624 
22 - LAREDO 184 101 24804 25089 0.733 0.403 98.864 
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23 - 
BROWNWOOD 

95 6 28476 28577 0.332 0.021 99.647 

24 - EL PASO 4223 6 18758 22987 18.371 0.026 81.603 
25 - CHILDRESS 651 222 26782 27655 2.354 0.803 96.843 
Total 58219 54189 816626 929034 6.267 5.833 87.901 

3.1.2 Overview of 25 Districts 

At the third stage, the research team started to analyze the PMIS annual rating data and audit data 
for all 25 districts. Figure 3.1 to Figure 3.6  present an overview of the PMIS annual rating data 
of 25 districts based on various aspects. 

Figure 3.1 Total Data Sections for Each District 
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Figure 3.2 Data Collection Sections of 25 Districts 
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Figure 3.3 Data Collection Sections of Each Pavement Type 

Figure 3.4 Data Collection Sections of Pavement Types For 25 Districts 
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Figure 3.5 Data Collection Sections of Each Pavement Condition 

Figure 3.6 Data Collection Sections of Different Pavement Condition for Each Year 

3.2 Data Normality Test 

3.2.1 Normality Test Rule 

In statistical analysis, many methods require a precondition of the data follow a normal 
distribution. Therefore, the normality test is important before the data analysis. There are two 
kinds of skewed distributions that are different from the normal distribution. 1) Negative skew: 
The left tail is longer; the mass of the distribution is concentrated on the right of the figure. The 
distribution is said to be left-skewed, left-tailed, or skewed to the left, and the mean is skewed to 
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the left of a typical center of the data. 2) Positive skew: The right tail is longer; the mass of the 
distribution is concentrated on the left of the figure. The distribution is said to be right-skewed, 
right-tailed, or skewed to the right, and the mean is skewed to the right of a typical center of the 
data. Figure 3.7 shows the typical shapes of the normal distribution and the two skewed 
distributions.  

Figure 3.7 Three Kinds of Distributions 

3.2.2 Normality Test 

In order to find appropriate methods for data analysis, the normality test was conducted to check 
the PMIS annual rating data. Figure 3.8 presents the distress score histograms of all the 25 
districts from FY 2014-2020. The results show that the distress scores from individual sections 
do not follow a normal distribution. Figure 3.9  shows every two years’ distress score differences 
of all the 25 districts from FY 2014-2020, the results indicate that histograms of two years’ 
distress score differences follow a normal distribution. Therefore, the changes of distress score, 
ride score, and condition score will be used in future study.  
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Figure 3.8 Distress Score Histograms of all the 25 Districts from FY 2014-2020 
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Figure 3.9 Distress Score Change Histograms of all the 25 Districts from FY 2014-2020 

3.3 Automated Data Accuracy and Precision 

3.3.1 Data Preparation for Accuracy and Precision Analysis 

For accuracy calculation, the research team merged PMIS annual rating data with audit data by 
following the features of 'FISCAL YEAR', 'RESPONSIBLE DISTRICT', 'SIGNED HWY AND 
ROADBED ID', 'DIRECTION', 'LANE CODE', 'BEGINNING TRM NUMBER', 'BEGINNING 
TRM DISPLACEMENT', 'ENDING TRM NUMBER', and 'ENDING TRM DISPLACEMENT'. 



25 
 

The data were merged following the rule of the “merge” function in python. Figure 3.10 shows 
the way how the data were merged. If the right matrix finds one row that has the same values of 
key1 and key2 as row 0 in the left matrix, column C and column D of row 0 in the right matrix 
will be added to the left matrix. If the right matrix finds two rows that have the same values of 
key1 and key2 as row 2 in the left matrix, row 2 will be duplicated and column C and column D 
of rows 1 and 2 in the right matrix will be added to the left matrix. 

Figure 3.10 Rule of the “Merge” Function in Python 

3.3.2 Methodology of Accuracy and Precision Analysis 

Precision and accuracy are two ways that scientists think about error. Accuracy refers to how 
close a measurement is to the true or accepted value. Precision refers to how close measurements 
of the same item are to each other. Precision is independent of accuracy. That means it is 
possible to be very precise but not very accurate, and it is also possible to be accurate without 
being precise. The best quality scientific observations are both accurate and precise. 

A classic way of demonstrating the difference between precision and accuracy is with a 
dartboard. Think of the bulls-eye (center) of a dartboard as the true value. The closer darts land 
to the bulls-eye, the more accurate they are (Figure 3.11).  

• If the darts are neither close to the bulls-eye, nor close to each other, there is low accuracy 
and low precision. 

• If all the darts land very close together, but far from the bulls-eye, there is high precision, but 
low accuracy.  

• If the darts are all about an equal distance from and spaced equally around the bulls-eye there 
is mathematical accuracy because the average of the darts is in the bulls-eye. This represents 
data that is highly accurate, but low precise. 

• If the darts land close to the bulls-eye and close together, there is both high accuracy and 
high precision.  
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Figure 3.11 Dartboards Showing Different Accuracy and 
Precision Scenarios 

Figure 3.12 Confusion Matrix Showing Accuracy and Precision 

To extract more information about model performance the confusion matrix is used. The 
confusion matrix helps us visualize whether the model is "confused" in discriminating between 
the two classes. As seen in Figure 3.12, it is a 2×2 matrix. The labels of the two rows and 
columns are Positive and Negative to reflect the two class labels. In this example, the row labels 
represent the ground-truth labels, while the column labels represent the predicted labels. The 
accuracy and precision can be calculated using the following equations. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                                                                                           (2) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                                                                                       (3) 
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3.3.2 Examples of Precision and Accuracy Analysis for Automated Data 

The precision and accuracy analyses of the automated pavement condition data follow the 
methodology introduced above. There are two scenarios in precision and accuracy analyses 
based on the data availability. 

Scenario I: Precision 
The data used in Scenario I for data precision include the PMIS annual rating data of the 25 
districts from FY 2014 to FY 2020 (will include 2021 in the future). The rule to determine the 
confusion matrix is by comparing every two years’ PMIS annual rating data of the same section. 
If the distress score difference of two years’ PMIS annual rating data (e.g., FY2015-FY2014) in 
one pavement section is less than 15 points, this section can be considered as True Positive (TP). 
If the distress score difference of two years’ PMIS annual rating data is larger than 15 points in a 
pavement section, this section can be considered as False Negative (FN). If the distress score 
difference of two years’ PMIS annual rating data is smaller than -15 points in a pavement 
section, this section can be considered as False Positive (FP). In this definition, there is no True 
Negative (TN), so the TP represents both the TP and TN in the precision equation. The data used 
for distress score precision analysis in Scenario I are presented in Figure 3.13. The histogram of 
distress score difference of two years’ PMIS annual rating data is shown in Figure 3.14. The 
precision analysis is presented in Table 3.2. The distress score precision is 90.88% in the period 
of FY 2014-2020. 

Figure 3.13 PMIS Annual Rating Data Two-Year Comparison (2014-2020) 
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Figure 3.14 Tolerance: Two Years’ Distress Score within 15 points (2014-2020) 

Table 3.2 Confusion matrix of automated data precision (distress score) 
Two-year 

comparison 
P N 

P 563,099 
(TP) 

50,389 
(FN) 

N 56,490 
(FP) 

-- 
(TN) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 = 563099
563099+56490

= 90.88% 

Scenario II:  
The data used in Scenario II for accuracy include the PMIS annual rating data and audit data of 
the 25 districts from FY 2017 to FY 2021. The rule to determine the confusion matrix is 
comparing the PMIS annual rating data and audit data of the same section. If the distress score 
difference of the PMIS annual rating data and audit data (PMIS annual rating value – audit 
value) in one pavement section is less than 15 points, this section can be considered as True 
Positive (TP). If the distress score difference of the PMIS annual rating data is 15 points larger 
than that of the audit data in a pavement section, this section can be considered as False Negative 
(FN). If the distress score difference of the PMIS annual rating data is 15 points smaller than that 
of the audit data in a pavement section, this section can be considered as False Positive (FP). In 
this definition, there is no True Negative (TN), so the TP represents both the TP and TN in the 
accuracy equation. The data used for distress score accuracy analysis in Scenario II is presented 
in Figure 3.15. The histogram of distress score difference of PMIS annual rating data and audit 
data of the same section is shown in Figure 3.16. The accuracy analysis is presented in Table 3.3. 
The distress score accuracy is 81.76% in the period of FY 2017-2021. 
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Figure 3.15 PMIS Annual Rating Data and Audit Data Comparison (2017-2021) 

Figure 3.16 Tolerance: Auto and Audit Data Distress Score within 15 Points (2017-2021) 

Table 3.3 Confusion matrix of automated data accuracy (distress score) 
Two-year 

comparison 
P N 

P 29,819 
(TP) 

1,419 
(FN) 

N 5,233 
(FP) 

-- 
(TN) 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 = 29819+0
29819+0+5233+1419

= 81.76% 

3.4 Individual Distress Analysis for Automated Data Collection 

3.4.1 Overall Dataset for Individual Distress Analysis 

The overall dataset used for individual distress analysis is the PMIS annual rating data and the 
audit data from FY 2017 to 2021 shown in Table 3.4.  
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Table 3.4 Dataset for individual distress analysis 

Pavement Type Sections after merging  
Sections used 
for analysis 

CRCP 1368 1325 
JCP 322 310 
ACP 34781 34533 

The distress types of ACP, CRCP, and JCP included in the individual distress analysis are the 
following.  

• ACP: alligator cracking (ACP ALLIGATOR CRACKING PCT), longitudinal cracking (ACP 
LONGITUDE CRACKING), transverse cracking (ACP TRANSVERSE CRACKING QTY), 
patching (ACP PATCHING PCT). 

• CRCP: CRCP SPALLED CRACKS, CRCP PUNCHOUT, CRCP ACP PATCHES, CRCP 
PCC PATCHES, CRCP AVG CRACK SPACING. 

• JCP: JCP FAILED JNTS CRACKS QTY, JCP FAILURES QTY.  

3.4.2 Individual Distress Analysis for ACP 

The individual distress analysis for ACP was conducted by comparing the PMIS annual rating 
data (auto data) using automated data collection technology and manual audit data. A confusion 
matrix was used to analyze the pavement sections with/without individual distress measurement 
values from both the auto and audit data, where “0” means the measurement values were 0 (no 
distress) and “! =0” means the measurement values were not 0 (distress appears). The confusion 
matrix results are shown in Table 3.5, Table 3.7, Table 3.9, and Table 3.11. 

Table 3.5 Confusion matrix of ACP alligator cracking 
  Auto data 
  0 !=0 

Audit data 
0 23981 5315 

!=0 2703 2554 

Table 3.6, Table 3.8, Table 3.10, and Table 3.12 show the rates of the automatically 
measured individual distress by comparing with the audit data in the same data sections. This 
analysis includes six parameters listed in the tables below. “=” means the auto data and audit 
data results have the same distress measurement values which are not equal to 0. “s” means the 
auto data distress measurement values are larger than the values of audit data and not equal to 0, 
this parameter indicates the “sensitivity” of the automated data collection technology comparing 
with the manual data collection. “ns” means the auto data distress measurement values are 
smaller than the values of audit data and not equal to 0, this parameter indicates the “non-
sensitivity” of the automated data collection technology comparing with the manual data 
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collection. “0” means both auto data and audit data distress measurement values are equal to 0. 
“FP” means the auto data have distress measurement values, but the audit data distress 
measurement values are equal to 0. “FN” is the opposite, the auto data distress measurement 
values are equal to 0, but the audit data have distress measurement values. Histograms of the 
individual distress measurements under “s”, “ns”, “FP”, and “FN” conditions are presented in 
Figure 3.17 to Figure 3.20.  

Table 3.6 Data quality analysis of ACP alligator cracking 
  Section Rate 

ACP Alligator Cracking !=0 2554 1 
"=" auto = audit 674 0.01950627 
s auto > audit 638 0.01846439 
ns auto < audit 1242 0.03594478 
0 auto = 0, audit = 0 0.69403525 
FP  auto !=0, audit = 0 0.153821665 
FN audit !=0, auto = 0 0.07822765 
FP+s auto !=0, audit = 0, auto > audit 0.172286053 
FN+ns audit !=0, auto = 0, auto < audit 0.114172431 
0 & "=" auto = audit 0.713541516 

Figure 3.17 Histogram Analysis of ACP Alligator Cracking 

FP FN 

S ns 
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Table 3.7 Confusion matrix of ACP longitudinal cracking 
  Auto data 
  0 !=0 

Audit data 
0 10471 11475 
!=0 1862 10745 

Table 3.8 Data quality analysis of ACP longitudinal cracking 
  Section Rate 

ACP Longitudinal Cracking !=0 10745 1 
"=" auto = audit 1656 0.04792637 
s auto > audit 4306 0.12462015 
ns auto < audit 4783 0.13842503 
0 auto = 0, audit = 0 0.303041704 
FP  auto !=0, audit = 0 0.332098515 
FN audit !=0, auto = 0 0.05388823 
FP+s auto !=0, audit = 0, auto > audit 0.456718664 
FN+ns audit !=0, auto = 0, auto < audit 0.192313258 
0 & "=" auto = audit 0.350968078 

Figure 3.18 Histogram Analysis of ACP Longitudinal Cracking 

FP FN 

S ns 
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Table 3.9 Confusion matrix of ACP transverse cracking 
  Auto data 
  0 !=0 

Audit data 
0 27103 1994 
!=0 2847 2609 

Table 3.10 Data quality analysis of ACP transverse cracking 
  Section Rate 

ACP Transverse Cracking 
!=0 2609 1 

"=" auto = audit 1027 0.02972246 
s auto > audit 343 0.00992678 
ns auto < audit 1239 0.03585796 
0 auto = 0, audit = 0 0.784389199 
FP  auto !=0, audit = 0 0.057708448 
FN audit !=0, auto = 0 0.082395161 
FP+s auto !=0, audit = 0, auto > audit 0.067635227 
FN+ns audit !=0, auto = 0, auto < audit 0.118253118 
0 & "=" auto = audit 0.814111655 

Figure 3.19 Histogram Analysis of ACP Transverse Cracking 

FP FN 

S ns 
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Table 3.11 Confusion matrix of ACP patching 
  Auto data 
  0 !=0 

Audit data 
0 30396 1175 
!=0 1201 1781 

Table 3.12 Data quality analysis of ACP patching 
    Section Rate 

ACP Patching !=0 1781 1 

"=" 
auto = 
audit 612 0.01771192 

S 
auto > 
audit 373 0.01079501 

Ns 
auto < 
audit 796 0.02303707 

0 auto = 0, audit = 0 0.879692067 
FP  auto !=0, audit = 0 0.03400573 
FN audit !=0, auto = 0 0.034758198 
FP+s auto !=0, audit = 0, auto > audit 0.044800741 
FN+ns audit !=0, auto = 0, auto < audit 0.057795271 
0 & "=" auto = audit 0.897403988 

Figure 3.20 Histogram Analysis of ACP Patching 

FP FN 

s ns 
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3.4.3 Individual Distress Analysis for CRCP 

The individual distress analysis for CRCP was conducted by comparing the PMIS annual rating 
data (auto data) using automated data collection technology and the manual audit data, the 
confusion matrix results are shown in Table 3.13, Table 3.15,Table 3.17, Table 3.19, and Table 
3.21. The rates of the automatically measured individual distress by comparing with the audit 
data in the same data sections are listed in Table 3.14, Table 3.16, Table 3.18, Table 3.20, and 
Table 3.22. Histograms of the individual distress measurements under “s”, “ns”, “FP”, and “FN” 
conditions are presented in Figure 3.21 to Figure 3.25.  

Table 3.13 Confusion matrix of CRCP SPALLED CRACKS 
  Auto data 
  0 !=0 

Audit data 
0 1009 121 
!=0 110 85 

Table 3.14 Data quality analysis of CRCP SPALLED CRACKS 
  Section Rate 

ACP Alligator Cracking 
!=0 85 1 

"=" auto = audit 33 0.02490566 
s auto > audit 16 0.01207547 
ns auto < audit 36 0.02716981 
0 auto = 0, audit = 0 0.761509434 
FP  auto !=0, audit = 0 0.091320755 
FN audit !=0, auto = 0 0.083018868 
FP+s auto !=0, audit = 0, auto > audit 0.103396226 
FN+ns audit !=0, auto = 0, auto < audit 0.110188679 
0 & "=" auto = audit 0.786415094 

FP FN 
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Figure 3.21 Histogram Analysis of CRCP SPALLED CRACKS 

s ns 

Table 3.15 Confusion matrix of CRCP PUNCHOUT 
  Auto data 
  0 !=0 

Audit data 
0 1152 51 
!=0 87 35 

Table 3.16 Data quality analysis of CRCP PUNCHOUT 
  Section Rate 

ACP Longitudinal Cracking 
!=0 35 1 

"=" auto = audit 17 0.01283019 
s auto > audit 7 0.00528302 
ns auto < audit 11 0.00830189 
0 auto = 0, audit = 0 0.869433962 
FP  auto !=0, audit = 0 0.038490566 
FN audit !=0, auto = 0 0.065660377 
FP+s auto !=0, audit = 0, auto > audit 0.043773585 
FN+ns audit !=0, auto = 0, auto < audit 0.073962264 
0 & "=" auto = audit 0.882264151 
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Figure 3.22 Histogram Analysis of CRCP PUNCHOUT 

FP FN 

s ns 

Table 3.17 Confusion matrix of CRCP ACP PATCHES 
  Auto data 
  0 !=0 

Audit data 
0 1201 69 
!=0 23 32 

Table 3.18 Data quality analysis of CRCP ACP PATCHES 
  Section Rate 

ACP Transverse Cracking 
!=0 32 1 

"=" auto = audit 14 0.01056604 
s auto > audit 13 0.00981132 
ns auto < audit 5 0.00377358 
0 auto = 0, audit = 0 0.906415094 
FP  auto !=0, audit = 0 0.052075472 
FN audit !=0, auto = 0 0.017358491 
FP+s auto !=0, audit = 0, auto > audit 0.061886792 
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FN+ns audit !=0, auto = 0, auto < audit 0.021132075 
0 & "=" auto = audit 0.916981132 

Figure 3.23 Histogram Analysis of CRCP ACP PATCHES 

FP FN 

s ns 

Table 3.19 Confusion matrix of CRCP PCC PATCHES 
  Auto data 
  0 !=0 

Audit data 
0 963 75 
!=0 92 195 

Table 3.20 Data quality analysis of CRCP PCC PATCHES 
  Section Rate 

ACP Patching !=0 195 1 
"=" auto = audit 97 0.07320755 
s auto > audit 56 0.04226415 
ns auto < audit 42 0.03169811 
0 auto = 0, audit = 0 0.726792453 
FP  auto !=0, audit = 0 0.056603774 
FN audit !=0, auto = 0 0.069433962 
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FP+s auto !=0, audit = 0, auto > audit 0.098867925 
FN+ns audit !=0, auto = 0, auto < audit 0.101132075 
0 & "=" auto = audit 0.8 

Figure 3.24 Histogram Analysis of CRCP PCC PATCHES 

FP FN 

s ns 

Table 3.21 Confusion matrix of CRCP AVG CRACK SPACING 
  Auto data 
  0 !=0 

Audit data 
0 0 10 
!=0 0 1315 

Table 3.22 Data quality analysis of CRCP AVG CRACK SPACING 
  Section Rate 

ACP Patching !=0 1315 1 
"=" auto = audit 549 0.41433962 
s auto > audit 640 0.48301887 
ns auto < audit 126 0.09509434 
0 auto = 0, audit = 0 0 
FP  auto !=0, audit = 0 0.00754717 
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FN audit !=0, auto = 0 0 
FP+s auto !=0, audit = 0, auto > audit 0.490566038 
FN+ns audit !=0, auto = 0, auto < audit 0.09509434 
0 & "=" auto = audit 0.414339623 

Figure 3.25 Histogram Analysis of CRCP AVG CRACK SPACING 

FP FN 

N/A 

s ns 

3.4.4 Individual Distress Analysis for JCP 

The individual distress analysis for JCP was conducted by comparing the PMIS annual rating 
data (auto data) using automated data collection technology and the manual audit data, the 
confusion matrix results are shown in Table 3.23 and Table 3.25. The rates of the automatically 
measured individual distress by comparing with the audit data in the same data sections are listed 
in Table 3.24 and Table 3.26. Histograms of the individual distress measurements under “s”, 
“ns”, “FP”, and “FN” conditions are presented in Figure 3.26 and Figure 3.27.  

Table 3.23 Confusion matrix of JCP FAILED JNTS CRACKS QTY 
  Auto data 
  0 !=0 

Audit data 
0 151 53 
!=0 47 59 
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Table 3.24 Data quality analysis of JCP FAILED JNTS CRACKS QTY 
  Section Rate 

ACP Alligator Cracking 
!=0 59 1 

"=" auto = audit 23 0.07419355 
s auto > audit 20 0.06451613 
ns auto < audit 16 0.0516129 
0 auto = 0, audit = 0 0.487096774 
FP  auto !=0, audit = 0 0.170967742 
FN audit !=0, auto = 0 0.151612903 
FP+s auto !=0, audit = 0, auto > audit 0.235483871 
FN+ns audit !=0, auto = 0, auto < audit 0.203225806 
0 & "=" auto = audit 0.561290323 

Figure 3.26 Histogram Analysis of JCP FAILED JNTS CRACKS QTY 

FP FN 

s ns 

Table 3.25 Confusion matrix of JCP FAILURES QTY 
  Auto data 
  0 !=0 

Audit data 
0 136 55 
!=0 33 86 
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Table 3.26 Data quality analysis of JCP FAILURES QTY 
  Section Rate 

ACP Longitudinal Cracking 
!=0 86 1 

"=" auto = audit 34 0.10967742 
s auto > audit 37 0.11935484 
ns auto < audit 15 0.0483871 
0 auto = 0, audit = 0 0.438709677 
FP  auto !=0, audit = 0 0.177419355 
FN audit !=0, auto = 0 0.106451613 
FP+s auto !=0, audit = 0, auto > audit 0.296774194 
FN+ns audit !=0, auto = 0, auto < audit 0.15483871 
0 & "=" auto = audit 0.548387097 

Figure 3.27 Histogram Analysis of JCP FAILURES QTY 

FP FN 

S ns 
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Chapter 4 Sampling Method for Data Quality Audit 

To sample more units to have higher accuracy in sampling when there is high variability among 
units (or elements) of a population, Stratified Sampling divides the population into several strata 
with similarities among units or smaller variability within each stratum. The design of a stratified 
sample constitutes three steps: Step I Defining strata; Step II Optimal allocating sample sizes to 
strata; and Step III Rechecking and iterative updating sample sizes. 

Figure 4.1 Flowchart of Stratified Sampling Method 

However, the design of a stratified sample to be used for the audit (or validation) of the 
automated pavement condition data would be an iterative process, as shown in Figure 4.1. An 
initial sample size n would be used, for example, the 6% roadbed miles or a certain number of 
sections. In defining the strata, the population or TxDOT-maintained pavement network is to be 
divided into different layers or strata. Then the initial sample size is allocated to the strata using 
an optimal allocation method. The stratified sample is rechecked for sample accuracy or error 
tolerance and a new sample size is generated. With budget constraints, engineering judgment, 
and past good experience all considered, an appropriate new sample size nstr would be used to 
replace the initial sample size n and the sample sizes for the strata would be allocated again. 

Step I: Defining Strata 

Stratified sampling can provide higher precisions than a simple random sampling method. 



44 
 

However, the stratification needs a data-enabled preparation procedure before a stratified 
sampling method can be successfully implemented. The first step is defining strata for the 
stratified sampling method. The major considerations for setting up the potential influencing 
factors in defining the strata are the engineers’ practical experience as well as the available data.  

The statistical test model ANOVA (Analysis of Variance) and visualization comparison are used 
to check the distress score, condition score, and ride score of the automated collected PMIS 
annual rating data (auto data)  

Based on statewide data from 2017 to 2021, the selected influencing factors for defining strata 
are 1) Pavement Type, 2) Pavement Surface Age, and 3) Highway Service Level.  

1) Pavement Type: asphalt concrete pavement (ACP), Continuously Reinforced Concrete 
Pavement (CRCP), and Jointed Concrete Pavement (JCP) 
2) Pavement Surface Age: old (surface age more than 3 years) and young (surface age less 
than 3 years) 
3) Highway service level: Interstate Highway (IH), U.S. Highway (US), State Highway 
(SH), and Farm to Market Road (FM) 

Therefore, the designed stratified sampling method for audit sample selection has three strata 
based on the statistical analysis using the currently available data.  

When we divide the population of N elements into H  layers or strata, with hN  units in stratum 
h . For stratified sampling to work, we must know the values of 1 2, ,..., HN N N , and must have 

1 2 ... HN N N N+ + + = . If hn observations are taken from hN population units in the stratum h , 
then the total sample size of the stratified sample is 1 2 ... Hn n n n= + + + .  

The following notations are defined for the stratified sampling method. 

 value of the th unit in stratum hjy j h=

1 = population mean in stratum 

hN

hj
j

hU
h

y
y h

N
==
∑

( )2

12  = population variance in stratum 
1
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hj hU
j

h
h

y y
S h

N
=

−
=

−

∑
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1 = sample mean in stratum 
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h
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y h
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( )2

12  = sample variance in stratum 
1
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∑
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1
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h
h h

Nn S S
n N

ν
=

 =  
 

∑

Step II: Optimal Allocating Sample Sizes to Strata  

The calculation of the sample sizes follows a proportional allocation process in which the 
number of sample units for each stratum nh is proportional to the size of the stratum Nh. By using 
the proportional allocation, the true percentage of each stratum in the network population can be 
well represented. For example, 90% of ACP, and 10% of CRCP and JCP in TxDOT’s pavement 
network could be well represented in the stratified sample.  

Stratum variance should be considered in sample size allocation for each stratum. If the 
variances are more or less equal across all strata, then the proportional allocation would probably 
be the best allocation strategy. In cases where stratum variances vary significantly from each 
other, An optimal allocation considering the variance differences among strata can result in 
smaller sampling cost or better sampling efficiency. In practice, when sampling units are quite 
different from each other, these units in a stratum with higher variability would be sampled with 
a higher sampling rate than the units of a stratum with lower variability.  

Data collection cost is an important factor to be considered in allocation of sample sizes to strata 
in a stratified sampling method. As envisioned by researchers of this project, the total cost of 
audit data collection is mainly impacted by the data collection labor cost, data collection 
equipment cost, and data collection travel cost. The subtotal costs associated with a stratum 
might be different from each other based on the characteristics of the stratum.  

The objective of optimal allocation is to gain the most information for the least cost. A simple 
cost function is given below: Let C represent the total cost, 𝑐𝑐0 represent overhead costs such as 
maintaining a team for auditing, and 𝑐𝑐ℎ represent the cost of taking an observation in stratum h 
which includes data collection labor cost, data collection equipment cost, and data collection 
travel cost, so that  

𝐶𝐶 = 𝑐𝑐0 +  ∑ 𝑐𝑐ℎ𝑛𝑛ℎ𝐻𝐻
ℎ=1                                                                                                   (4) 

In the sampling method, we want to allocate observations to strata so as to minimize the 
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estimated variance for a given total cost C, or equivalently, to minimize C for a fixed variance. 
Suppose that the costs 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐻𝐻 are known. To minimize the total cost for a fixed variance, 
we can prove using calculus that the optimal allocation has 𝑛𝑛ℎ proportional to  

   𝑁𝑁ℎ𝑆𝑆ℎ
�𝑐𝑐ℎ

                                                                                                                      (5) 

for each h. Thus, the optimal sample size for stratum h is calculated in the following equation 

𝑛𝑛ℎ =  �
𝑁𝑁ℎ𝑆𝑆ℎ
�𝑐𝑐ℎ

∑ 𝑁𝑁𝑙𝑙𝑆𝑆𝑙𝑙
�𝑐𝑐𝑙𝑙

𝐻𝐻
𝑙𝑙=1

� 𝑛𝑛                                                                                                   (6) 

Where, 𝑛𝑛ℎ is the sample size in stratum h; 
𝑁𝑁ℎ is the population of units in stratum h; 
𝑆𝑆ℎ is the standard deviation of units in stratum h; 
𝑐𝑐ℎ is the cost of collecting an audit sample unit in stratum h; 
H is the number of strata in the population;  
𝑁𝑁𝑙𝑙 is the population of units in stratum l; 
𝑆𝑆𝑙𝑙 is the standard deviation of units in stratum l; 
𝑐𝑐𝑙𝑙 is the cost of collecting an audit sample unit in stratum l; 
𝑛𝑛 is the size of the overall stratified sample.  

In the practice of implementing a stratified sampling to the pavement sections of TxDOT’s 
network for audit of the automated pavement condition data, the stratum should be more heavily 
sampled if  

• The stratum accounts for a larger part of the network population. 
• The variance within the stratum is larger. That is to say to sample more heavily in the 
stratum to compensate for the heterogeneity. 
• Sampling in the stratum is inexpensive. 

Sometimes applying the above optimal allocation formula results in one or more of the “optimal” 
𝑛𝑛ℎ’s being larger than the population size 𝑁𝑁ℎ in those strata. In that case, take a sample size of 
𝑁𝑁ℎ in those strata, and then apply the above equation to the remaining strata.  

Overall, in calculating the optimal sample sizes, the percentage of each stratum in the population, 
data collection cost, and population variance are included as factors in allocating an optimal 
sample size to each stratum.  

Step III: Rechecking and Iterative Updating Sample Sizes 

With a random sampling method, the total sample size n  (sections or miles, over TxDOT’s 
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maintained overall network denoted as N sections or miles) used for the audit is currently 6% of 
the roadbed miles, and the current audit tolerance e  for measurement error in Distress Score is 
15 points. Based on the overall network variance 2S ,  tolerance e for the measurement error of 
pavements in the network, and the Zα  value ( /2Zα for two tails) of the standard normal 
distribution, sample size n  can be calculated using the following equation for the associated 
confidence interval and the confidence level (1 )α−  , which is quality assurance of the pavement 
condition data.    

2
/2Z Sn
e
α =  

 
                                                                                                                                             (7) 

Although an initial sample size n is used in implementing Steps I and II, we are able to recheck 
the validity of the initial use of the sample size. In fact, in allocating sample sizes to the strata, 
we are able to calculate the allocation rate

h

n
n

 at each stratum h. Therefore we may assess the 

population variance 2S with the following formula, i.e., 

2
2 2

1
 = sample estimate for population variance 

H
h

h
h h

Nn S S
n N

ν
=

 =  
 

∑

Therefore, the sample size of a stratified sample with H layers or strata could be recalculated as:   

2
/2

str
Zn

e
α ν⋅ =  

 
                                                                                                                                        (8) 

The validity of the new sample size nstr needs to be carefully evaluated before a possible 
adoption for implementation. It should be noted that the newly calculated sample size should be 
compared with the existing 6% (roadbed miles) sample size n, with considerations of an 
available budget as well as engineering judgement learned from the successful experience of 
pavement engineers in the Pavement Preservation Branch and TxDOT Districts, along with any 
other relevant limiting constraints. Once an acceptable new sample size nstr is agreed by the 
stakeholders, Step II “Optimal Allocating Sample Sizes to Strata” needs to be conducted again to 
reallocate the sample sizes to the sampling strata. 
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Chapter 5 Development of Data Quality Consistency Check Indexes and Threshold 

5.1 Data Quality Consistency Check Components 

5.1.1 Yearly Change of Sections with Distress Decrease 

Deterioration of constructed asphalt and concrete pavement is natural. It is natural because over 
time the materials begin to break down and become affected by elements such as traffic loading, 
rain, sunlight, and chemicals that encounter the pavement surface. The index type of yearly 
change of sections with distress decrease is based on the characteristics of pavement 
deterioration. Affecting by the elements, the pavement performance should deteriorate which 
presents as distress occurs or distress measurements increase. If there are sections with distress 
disappearance or distress measurements decrease over time, these sections can be considered to 
have data quality issues. However, the decision of sections with data quality issues should be 
made by considering the engineer's experience.  

Table 5.1 No. of sections with yearly distress decrease 

Fiscal year ACP CRCP JCP 

2017 36445 1035 2543 
2018 36429 1040 2552 
2019 38525 1078 2306 
2020 38410 1054 2297 
2021 40464 1086 275 

The dataset (number of sections) used for the yearly change of sections with distress decrease is 
presented in Table 5.1. 

1) Indexes 

The data quality check indexes for yearly change of sections with distress decrease or 
disappearance include four types of distresses in ACP, five types of distress in CRCP, and two 
types of distress in JCP. The data used are the PMIS annual rating data (auto data) using 
automated data collection technology. All the sections with maintenance in FY 2017-2020 
recorded in TxDOT’s database are removed from the dataset to make sure all the pavement 
sections are under natural deterioration.  

The distress types in ACP are the percentage of wheel-path length with alligator cracking (ACP 
ALLIGATOR CRACKING PCT), the length in feet per station of visually observed longitudinal 
cracking (ACP LONGITUDE CRACKING), the number of visually observed transverse cracks 
per station (ACP TRANSVERSE CRACKING QTY), and the percentage of lane area with 
patching (ACP PATCHING PCT) in the rated lane of the data collection section.  
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The distress types in CRCP are spalled transverse cracks in quantity (CRCP SPALLED 
CRACKS QTY), the number of punchouts and failures (CRCP PUNCHOUT QTY), the number 
of asphalt patches (CRCP ACP PATCHES QTY), the number of visually observed concrete 
(PCC) patches (CRCP PCC PATCHES QTY), and the average observed pacing, in feet, between 
transverse cracks (CRCP AVG CRACK SPACING QTY) in the rated lane of the data collection 
section.  

The distress types in JCP are the number of visually observed transverse spalled cracks or failed 
joints and cracks (JCP FAILED JNTS CRACKS QTY) and the number of visually observed 
failures in the rated lane of the data collection section. 

2) Thresholds 

The threshold for the yearly change of sections with a distress decrease or disappearance is 0 
tolerance, which means every section with a distress decrease or disappearance compared to the 
previous year should be considered to have data quality issues. These sections should be selected 
and go through the QA processes by re-checking with pavement images and re-evaluating by 
TxDOT pavement engineers. Based on the TxDOT provided data from FY 2017-2020, the 
research team conducted data analysis to find the pavement sections with individual distress 
decrease or disappearance. The number and percentage of sections are listed in Table 5.2.  

Table 5.2 Yearly changes of sections with distress decrease 
Pavement 
type Distress type 

FY 2018 vs 2017 FY 2019 vs 2018 FY 2020 vs 2019 FY 2021 vs 2020 
sections % sections % sections % sections % 

ACP 

ACP 
ALLIGATOR 
CRACKING 
PCT 

10944 30.04 230 0.60 5009 13.04 2180 5.39 

ACP 
LONGITUDE 
CRACKING 

15576 42.76 648 1.68 10502 27.34 5560 13.74 

ACP 
TRANSVERSE 
CRACKING 
QTY 

5876 16.13 86 0.22 1445 3.76 821 2.03 

ACP 
PATCHING 
PCT 

2033 5.58 125 0.32 1214 3.16 1289 3.19 

CRCP 

CRCP 
SPALLED 
CRACKS QTY 

16 1.54 17 1.58 41 3.89 50 4.60 

CRCP 
PUNCHOUT 
QTY 

29 2.79 0 0.00 9 0.85 32 2.95 

CRCP ACP 
PATCHES 
QTY 

9 0.02 0 0.00 21 1.99 25 2.30 
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CRCP PCC 
PATCHES 
QTY 

70 6.73 36 3.34 60 5.69 31 2.85 

CRCP AVG 
CRACK 
SPACING 
QTY 

64 6.15 21 1.95 129 12.24 135 12.43 

JCP 

JCP FAILED 
JNTS 
CRACKS QTY 

26 1.02 45 1.95 21 0.91 68 24.73 

JCP 
FAILURES 
QTY 

37 1.45 22 0.95 37 1.61 43 15.64 

5.1.2 Individual Distress Change 

The individual distress change analysis for ACP, CRCP, and JCP was conducted and presented 
in Chapter 3 of this report. The data used are the PMIS annual rating data (auto data) using 
automated data collection technology and the manual audit data. The dataset includes the 
sections with maintenance. Based on the comments and suggestions of eliminating the impacts of 
pavement performance from regular maintenance provided in Project Update Meeting # 4, the 
research team reanalyzed the individual distress change using a new dataset. In the new dataset, 
all the sections with maintenance in FY 2017-2020 recorded in TxDOT’s database are removed 
from PMIS annual rating data, but the manual audit data remains the same. The indexes included 
in the individual distress change analysis are the same distress types of ACP, CRCP, and JCP as 
a yearly change of sections with distress decrease, which are listed as follows.  

• ACP: alligator cracking (ACP ALLIGATOR CRACKING PCT), longitudinal cracking 
(ACP LONGITUDE CRACKING), transverse cracking (ACP TRANSVERSE 
CRACKING QTY), patching (ACP PATCHING PCT). 

• CRCP: CRCP SPALLED CRACKS, CRCP PUNCHOUT, CRCP ACP PATCHES, 
CRCP PCC PATCHES, CRCP AVG CRACK SPACING. 

• JCP: JCP FAILED JNTS CRACKS QTY, JCP FAILURES QTY.  

The overall dataset used for individual distress analysis is the paired PMIS annual rating data 
with the audit data from FY 2017 to 2021 shown in. Further, the confusion matrix was used to 
analyze the pavement sections with/without individual distress measurement values from both 
the auto and audit data, where “0” means the measurement values were 0 (no distress) and “!=0” 
means the measurement values were not 0 (distress appears). In the confusion matrix, TP 
represents the number of sections with both auto data and audit data not equal to 0, FN represents 
the number of sections with auto data equal to 0 and audit data not equal to 0, FP represents the 
number of sections with auto data not equal to 0 and audit data equal to 0, and TN represents the 
number of sections with auto data equal to 0 and audit data not equal to 0. The explanation of the 
confusion matrix is shown in Figure 5.1. 
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Table 5.3 Dataset for individual distress analysis 
Pavement type Sections after merging Sections used for analysis 

CRCP 1368 1325 
JCP 322 310 
ACP 3655 3488 

Figure 5.1 Confusion Matrix for Auto Data and Audit Data Comparison 

a) Individual distress changes for ACP 
The updated individual distress analysis for ACP was conducted by comparing the PMIS annual 
rating data (auto data) without construction sections using automated data collection technology 
and manual audit data. The confusion matrix results are shown in Table 5.4 to Table 5.7. 

Table 5.4 Confusion matrix of ACP alligator cracking 
  Auto data 
  0 !=0 

Audit data 
0 2563 405 

!=0 262 258 

Table 5.5 Confusion matrix of ACP longitudinal cracking 
  Auto data 
  0 !=0 

Audit data 
0 1338 707 

!=0 297 1146 

Table 5.6 Confusion matrix of ACP transverse cracking 
  Auto data 
  0 !=0 

Audit data 
0 2760 110 

!=0 368 250 
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Table 5.7 Confusion matrix of ACP patching 
  Auto data 
  0 !=0 

Audit data 
0 3043 105 

!=0 112 228 

Table 5.8 to Table 5.11 show the rates of the automatically measured individual distresses by 
comparing with the audit data in the same data sections. This analysis includes six parameters 
listed in the tables below. “=” means the auto data and audit data results have the same distress 
measurement values which are not equal to 0. “s” means the auto data distress measurement 
values are larger than the values of audit data and not equal to 0, this parameter indicates the 
“sensitivity” of the automated data collection technology comparing with the manual data 
collection. “ns” means the auto data distress measurement values are smaller than the values of 
audit data and not equal to 0, this parameter indicates the “non-sensitivity” of the automated data 
collection technology comparing with the manual data collection. “0” means both auto data and 
audit data distress measurement values are equal to 0. “FP” means the auto data have distress 
measurement values, but the audit data distress measurement values are equal to 0. “FN” is the 
opposite, the auto data distress measurement values are equal to 0, but the audit data have 
distress measurement values.  

Table 5.8 Data quality analysis of ACP alligator cracking 
  Section Rate 

ACP Alligator Cracking !=0 258 7.40% 
"=" auto = audit 37 1.06% 
S auto > audit 90 2.58% 
Ns auto < audit 131 3.76% 
0 auto = 0, audit = 0 73.48% 
FP  auto !=0, audit = 0 11.61% 
FN audit !=0, auto = 0 7.51% 
FP+s auto !=0, audit = 0, auto > audit 14.19% 
FN+ns audit !=0, auto = 0, auto < audit 11.27% 
0 & "=" auto = audit 74.54% 
Accuracy Accuracy for distress detection  80.88% 

Table 5.9 Data quality analysis of ACP longitudinal cracking 
 Section Rate 

ACP Longitudinal Cracking !=0 1146 32.86% 
"=" auto = audit 51 1.46% 
s auto > audit 501 14.36% 
ns auto < audit 594 17.03% 
0 auto = 0, audit = 0 38.36% 
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FP auto !=0, audit = 0 20.27% 
FN audit !=0, auto = 0 8.51% 

FP+s auto !=0, audit = 0, auto > audit 34.63% 
FN+ns audit !=0, auto = 0, auto < audit 25.54% 
0 & "=" auto = audit 39.82% 

Accuracy Accuracy for distress detection  71.22% 

Table 5.10 Data quality analysis of ACP transverse cracking 
  Section Rate 

ACP Transverse Cracking !=0 250 7.17% 
"=" auto = audit 71 2.04% 
S auto > audit 25 0.72% 
Ns auto < audit 154 4.42% 
0 auto = 0, audit = 0 79.13% 
FP  auto !=0, audit = 0 3.15% 
FN audit !=0, auto = 0 10.55% 
FP+s auto !=0, audit = 0, auto > audit 3.87% 
FN+ns audit !=0, auto = 0, auto < audit 14.97% 
0 & "=" auto = audit 81.16% 
Accuracy Accuracy for distress detection  86.30% 

Table 5.11 Data quality analysis of ACP patching 
    Section Rate 

ACP Patching !=0 228 6.54% 
"=" auto = audit 27 0.77% 
S auto > audit 68 1.95% 
Ns auto < audit 133 3.81% 
0 auto = 0, audit = 0 87.24% 
FP  auto !=0, audit = 0 3.01% 
FN audit !=0, auto = 0 3.21% 
FP+s auto !=0, audit = 0, auto > audit 4.96% 
FN+ns audit !=0, auto = 0, auto < audit 7.02% 
0 & "=" auto = audit 88.02% 
Accuracy Accuracy for distress detection  93.78% 

b) Individual distress changes for CRCP 
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The individual distress analysis for CRCP was conducted by comparing the PMIS annual 
rating data (auto data) without construction sections using automated data collection 
technology and the manual audit data, the confusion matrix results show in Table 5.12, 
Table 5.14, Table 5.16, Table 5.18, and Table 5.20. The rates of the automatically measured 
individual distress by comparing with the audit data in the same data sections are listed in 
Table 5.13, Table 5.15, Table 5.17, Table 5.19, and Table 5.21.  

Table 5.12 Confusion matrix of CRCP SPALLED CRACKS 
  Auto data 
  0 !=0 

Audit data 
0 1009 121 
!=0 110 85 

Table 5.13 Data quality analysis of CRCP SPALLED CRACKS 
  Section Rate 

CRCP SPALLED CRACKS !=0 85 6.42% 
"=" auto = audit 24 1.81% 
S auto > audit 17 1.28% 
Ns auto < audit 44 3.32% 
0 auto = 0, audit = 0 76.15% 
FP  auto !=0, audit = 0 9.13% 
FN audit !=0, auto = 0 8.30% 
FP+s auto !=0, audit = 0, auto > audit 10.42% 
FN+ns audit !=0, auto = 0, auto < audit 11.62% 
0 & "=" auto = audit 77.96% 
Accuracy Accuracy for distress detection  82.57% 

Table 5.14 Confusion matrix of CRCP PUNCHOUT 
  Auto data 
  0 !=0 

Audit data 
0 1152 51 
!=0 87 35 

Table 5.15 Data quality analysis of CRCP PUNCHOUT 
  Section Rate 

CRCP PUNCHOUT !=0 35 2.57% 
"=" auto = audit 16 1.21% 
s auto > audit 7 0.53% 
ns auto < audit 11 0.83% 
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0 auto = 0, audit = 0 86.94% 
FP  auto !=0, audit = 0 3.85% 
FN audit !=0, auto = 0 6.57% 
FP+s auto !=0, audit = 0, auto > audit 4.38% 
FN+ns audit !=0, auto = 0, auto < audit 7.40% 
0 & "=" auto = audit 88.15% 
Accuracy Accuracy for distress detection  89.58% 

Table 5.16 Confusion matrix of CRCP ACP PATCHES 
  Auto data 
  0 !=0 

Audit data 
0 1201 69 
!=0 23 32 

Table 5.17 Data quality analysis of CRCP ACP PATCHES 
  Section Rate 

CRCP ACP PATCHES 
!=0 32 2.42% 

"=" auto = audit 8 0.60% 
s auto > audit 14 1.06% 
ns auto < audit 10 0.75% 
0 auto = 0, audit = 0 90.64% 
FP  auto !=0, audit = 0 5.21% 
FN audit !=0, auto = 0 1.74% 
FP+s auto !=0, audit = 0, auto > audit 6.26% 
FN+ns audit !=0, auto = 0, auto < audit 2.49% 
0 & "=" auto = audit 91.25% 
Accuracy Accuracy for distress detection  93.06% 

Table 5.18 Confusion matrix of CRCP PCC PATCHES 
  Auto data 
  0 !=0 

Audit data 
0 963 75 
!=0 92 195 

Table 5.19 Data quality analysis of CRCP PCC PATCHES 
  Section Rate 

CRCP PCC PATCHES 
!=0 195 14.72% 

"=" auto = audit 59 4.45% 
s auto > audit 78 5.89% 
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ns auto < audit 58 4.38% 
0 auto = 0, audit = 0 72.68% 
FP  auto !=0, audit = 0 5.66% 
FN audit !=0, auto = 0 6.94% 
FP+s auto !=0, audit = 0, auto > audit 11.55% 
FN+ns audit !=0, auto = 0, auto < audit 11.32% 
0 & "=" auto = audit 77.13% 
Accuracy Accuracy for distress detection  87.40% 

Table 5.20 Confusion matrix of CRCP AVG CRACK SPACING 
  Auto data 
  0 !=0 

Audit data 
0 0 10 
!=0 0 1315 

Table 5.21 Data quality analysis of CRCP AVG CRACK SPACING 
  Section Rate 

CRCP AVG CRACK SPACING 
!=0 1315 99.25% 

"=" auto = audit 65 4.91% 
s auto > audit 1041 78.57% 
ns auto < audit 209 15.77% 
0 auto = 0, audit = 0 0.00% 
FP  auto !=0, audit = 0 0.75% 
FN audit !=0, auto = 0 0.00% 
FP+s auto !=0, audit = 0, auto > audit 79.32% 
FN+ns audit !=0, auto = 0, auto < audit 15.77% 
0 & "=" auto = audit 4.91% 
Accuracy Accuracy for distress detection  99.25% 

c) Individual distress analysis for JCP 
The individual distress analysis for JCP was conducted by comparing the PMIS annual 
rating data (auto data) without construction sections using automated data collection 
technology and the manual audit data, the confusion matrix results are shown in Table 5.22 
and Table 5.24. The rates of the automatically measured individual distress by comparing 
with the audit data in the same data sections are listed in Table 5.23 and Table 5.25. 
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Table 5.22 Confusion matrix of JCP FAILED JNTS CRACKS QTY 
  Auto data 
  0 !=0 

Audit data 
0 151 53 
!=0 47 59 

Table 5.23 Data quality analysis of JCP FAILED JNTS CRACKS QTY 
  Section Rate 

ACP Alligator Cracking !=0 59 20.00% 
"=" auto = audit 23 7.42% 
s auto > audit 20 6.45% 
ns auto < audit 19 6.13% 
0 auto = 0, audit = 0 48.71% 
FP  auto !=0, audit = 0 17.10% 
FN audit !=0, auto = 0 15.16% 
FP+s auto !=0, audit = 0, auto > audit 23.55% 
FN+ns audit !=0, auto = 0, auto < audit 21.29% 
0 & "=" auto = audit 56.13% 
Accuracy Accuracy for distress detection  67.74% 

Table 5.24 Confusion matrix of JCP FAILURES QTY 
  Auto data 
  0 !=0 

Audit data 
0 136 55 
!=0 33 86 

Table 5.25 Data quality analysis of JCP FAILURES QTY 
  Section Rate 

ACP Longitudinal Cracking 
!=0 86 27.74% 

"=" auto = audit 21 6.77% 
s auto > audit 43 13.87% 
ns auto < audit 22 7.10% 
0 auto = 0, audit = 0 43.87% 
FP  auto !=0, audit = 0 17.74% 
FN audit !=0, auto = 0 10.65% 
FP+s auto !=0, audit = 0, auto > audit 31.61% 
FN+ns audit !=0, auto = 0, auto < audit 17.74% 
0 & "=" auto = audit 50.65% 
Accuracy Accuracy for distress detection  71.61% 
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5.1.3 Accuracy of the Annual Rating Data Compared with the Audit Data 

The accuracy analysis of the annual rating data compared with the audit data in this section was 
conducted using the data retrieved from the Annual Audit Detail Rating Comparison report.  

1) Accuracy analysis of Distress Score based on a 15-point Threshold 

The accuracy of the distress score based on the TxDOT’s currently used 15-point threshold was 
calculated by comparing the distress scores from the annual rating data and audit data. The 
accuracy can be used to evaluate how close the automated pavement condition data (annual 
rating data) is to the ground truth (audit data). The 15-point threshold-based accuracy of the 
distress score is one of the indexes in Task 5 to evaluate the quality of the automated pavement 
condition data and the performance of the currently used automated pavement condition data 
collection technology. The distress score accuracy analysis results are shown in Table 5.26.  

After analyzing the data, the accuracy of the distress score for ACP in Fiscal Year (FY) 2017 is 
88.824%. It shows that 88.824% of the annual rating data collected using automated data 
collection technology are correct compared to the audit data in FY 2017. From FY 2017 to 2019, 
the accuracy of distress scores for ACP increased continually. However, from FY 2019 to 2020, 
the distress score accuracies have a significant decrease, which means the quality of the 
automated data collected in FY 2019 is lower than that of FY 2020. In FY 2021, the distress 
score accuracy increased to 95.218% which is the highest distress score in the recent 5 years. The 
overall distress score accuracy of 91.472% from FY 2017 to 2021 for ACP passed the TxDOT 
data quality requirement of 90%. Therefore, the automated data quality based on the ACP 
distress score is acceptable for TxDOT.  

The accuracy of the distress score for CRCP in FY 2017 is 86.195%. From FY 2017 to FY 2018, 
the accuracy of distress scores for CRCP increased gradually, but from FY 2018 to 2020, the 
distress score accuracy showed a significant decrease. It indicates that the quality of the 
automated data collected in FY 2019 and FY 2020 is lower than that of FY 2018. In FY 2021, 
the distress score accuracy increased to 90.456% which is the highest distress score in 5 years. 
The overall distress score accuracy of 86.744% from FY 2017 to FY 2021 for CRCP does not 
pass the TxDOT data quality requirement of 90%. Therefore, the automated data quality based 
on the CRCP distress score is not acceptable for TxDOT. 

The accuracy of distress score for JCP in FY 2017 is 81.463% which is the highest distress score 
in 5 years. From FY 2017 to FY 2018, the distress score accuracy showed a massive decrease. It 
indicates that the quality of the automated data collected in FY 2018 was lower than that of FY 
2017. The accuracy of distress score continued to decrease till FY 2020 which is the lowest 
distress score in five years. In FY 2021, the distress score accuracy increased to 76.296%. The 
overall distress score accuracy for JCP is 77.366% from FY 2017 to FY 2021. It does not pass 
the TxDOT data quality requirement of 90%. Hence, the automated data quality based on the 
JCP distress score is not acceptable for TxDOT. 



59 
 

Table 5.26 Data quality analysis of JCP FAILURES QTY 
Pavement 
Types 

Fiscal Year 
2017 2018 2019 2020 2021 Overall 

ACP 88.824% 89.749% 92.863% 90.92% 95.218% 91.472% 
CRCP 86.195% 89.384% 87.217% 83.433% 90.456% 86.744% 
JCP 81.463% 75.214% 76.351% 75.0% 76.296% 77.366% 

2) Population analysis of Distress Score differences 

a) Percentage of data within the 15-point Distress Score threshold 

The percentage of data within the 15-point distress score threshold was calculated by checking 
the population of distress score differences and calculating the percentage of data that is within 
the range of -15 points and +15 points of the distress score. This data range is the requirement of 
TxDOT to check if the comparison of the distress scores from the annual rating data and audit 
data passes the data accuracy requirement. The percentage of data within 15-point Distress Score 
results are presented in Table 5.27. 

After analyzing the data, the percentage of data between 15-point of the distress score for ACP in 
FY 2017 is 82.86%. It shows that 82.86% of the annual rating data collected using automated 
data collection technology are within the 15-point threshold compared to the audit data in FY 
2017. From FY 2017 to FY 2019, the percentage of data between 15-point Distress Score 
increased significantly. It indicates that the data collected using automated technology shows 
correct data compared to the audit data. From FY 2019 to FY 2020, the percentage of data 
decreased significantly. The percentage of data for FY 2021 is 96.038% which is the highest 
percentage of data that is within 15-point Distress Score compared to the audit data. Overall, the 
percentage is 87.088% from FY 2017 to FY 2021. 

The percentage of data between 15 points of the distress score for CRCP in FY 2017 is 73.345%. 
From FY 2017 to FY 2018, the percentage of data with 15-points distress score increased 
significantly. It indicates that the data collected using automated technology shows more correct 
data compared to the audit data. From FY 2018 to FY 2020, the percentage of data decreased 
drastically. The percentage of data for FY 2021 is 84.652% which is the highest percentage of 
data within 15-point distress score compared to the audit data. Overall, the percentage is 
74.405% from FY 2017 to FY 2021. 

The percentage of data between 15 points of the distress score for JCP in FY 2017 is 53.107%. 
From FY 2017 to FY 2018, the percentage of data between 15-point distress scores decreased 
significantly. From FY 2018 to FY 2019, the percentage of data increased, but it decreased in FY 
2020. The percentage of data for FY 2021 is 57.66% which is the highest percentage of data that 
is within a 15-point distress score compared to the audit data. Overall, the percentage is 48.7% 
from FY 2017 to FY 2021. 
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Table 5.27 Percentage of data within15-point Distress Score 
Pavement 
Types 

Fiscal Year  

2017 2018 2019 2020 2021 Overall 

ACP 82.86% 83.204% 90.007% 84.503% 96.038% 87.088% 
CRCP 73.745% 81.095% 76.353% 66.642% 84.652% 74.405% 

JCP 53.107% 42.348% 46.756% 44.337% 57.66% 48.7% 

b) Develop the point-based threshold based on 𝜇𝜇 ∓ 2𝜎𝜎  

The range of distress score differences was calculated by checking the population of distress 
score differences and calculating the points that hold 95% of the data or within two standard 
deviations from the mean. This data range is generally accepted by many highway agencies to 
check the range of the distress score differences between the annual rating data and audit data. 
The distress score difference thresholds are shown in Table 5.28.  

The range of distress score difference in points holding 95% of the data for ACP in FY 2017 is (-
21, 23). It indicates that 95% of the data collected using automated technology (annual data) and 
audit data falls within the range. From FY 2017 to FY 2018, the range did not change. From FY 
2018 to FY 2019, the range of distress score difference decreased and then increased in FY 2020. 
The range of distress score difference for FY 2021 is (-15, 15) which is the lowest Distress Score 
range in 5 years. Overall, the range of distress score difference is (-19, 21) from FY 2017 to FY 
2021. 

The range of distress score difference in points holding 95% of the data for CRCP in FY 2017 is 
(-29, 22). From FY 2017 to FY 2018, the distress score difference range decreased significantly. 
From FY 2018 to FY 2020, the range of distress score differences increased. The range for FY 
2021 is (-21, 21) which is the lowest Distress Score range in 5 years. Overall, the distress score 
difference range is (-26, 26) from FY 2017 to FY 2021. 

The range of distress score difference in points holding 95% of the data for JCP in FY 2017 is (-
46, 32). From FY 2017 to FY 2018, the range decreased significantly. From FY 2018 to FY 
2019, the range of distress score difference decreased and then increased in FY 2020. The range 
for FY 2021 is (-41, 32) which is the lowest Distress Score range in 5 years. Overall, the range of 
distress score difference is (-26, 26) from FY 2017 to FY 2021. 
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Table 5.28 Distress Score difference thresholds of the data (within 2 standard deviations) 
Pavement 
Types 

Fiscal Year  

2017 2018 2019 2020 2021 Overall 

ACP (-21, 23) (-21, 23) (-17, 19) (-19, 22) (-15, 15) (-19, 21) 
CRCP (-29, 22) (-23, 22) (-25, 25) (-27, 34) (-21, 21) (-26, 26) 

JCP (-46, 32) (-60, 40) (-53, 37) (-55, 46) (-41, 32) (-50, 37) 

c) Individual distress measurement difference analysis -- 𝜇𝜇 ∓ 2𝜎𝜎 based threshold and 
accuracy for each distress type 

The thresholds for each pavement distress type are calculated based on mean plus or minus two 
standard deviations, and the dataset used for thresholds development is from the overall data (FY 
2017 to FY 2021). The thresholds are determined to check the accuracy of each distress type on 
the respective Fiscal Year and overall. The results are presented in Table 5.29. 

After analyzing the data, the threshold for ACP patching difference between the auto data and 
audit data is (-9.516, 9.27). It indicates that 95% of the ACP patching differences recorded from 
FY 2017 to FY 2021 are within this range. Based on this threshold, the accuracy of the distress-
type Patching for ACP in FY 2017 is 95.849%. It shows that 95.849% of Patching data recorded 
are within the difference threshold in FY 2017. From FY 2017 to 2019, the accuracy of Patching 
for ACP increased continually. However, from FY 2019 to 2020, the accuracy of ACP Patching 
has a slight decrease. In FY 2021, the accuracy increased to 97.949% which is the highest 
accuracy for ACP patching in the recent 5 years. The overall ACP Patching accuracy from FY 
2017 to 2021 is 97.23%. 

The threshold of the quantity differences for ACP Failure is (-1.55, 1.51) based on the data from 
FY 2017 to 2021. The accuracy of ACP Failure for FY 2017 is 99.813% which is the highest 
accuracy in five years. From FY 2017 to FY 2018, the accuracy of ACP Failure decreased 
significantly. From FY 2018 to 2019, the accuracy increased, but from FY 2019 to FY 2020, 
there is a massive drop in the accuracy. From FY 2020 to FY 2021, the accuracy increased to 
99.246%. The overall accuracy for ACP Failure is 95.5% for FY 2017 to FY 2021. 

The threshold of the quantity differences for ACP Block Cracking is (-4.81, 4.84). The accuracy 
of ACP Block Cracking in FY 2017 is 91.035%. From FY 2017 to FY 2018, the accuracy 
increased significantly which is the highest accuracy in five years. From FY 2018 to FY 2020, 
the accuracy decreased significantly. In FY 2020, the accuracy of ACP Block Cracking is 
91.49% which is the lowest in five years. From FY 2020 to FY 2021, the accuracy increased to 
95.361%. The overall accuracy for ACP Block Cracking is 95.46% for FY 2017 to FY 2021. 

The threshold for ACP Alligator Cracking difference between the auto data and audit data is (-
12.29, 11.51). Based on the threshold, the accuracy of ACP Alligator Cracking for FY 2017 is 
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93.292%. From FY 2017 to FY 2018, the accuracy of ACP Alligator Cracking decreased 
significantly. From FY 2018 to FY 2019, the accuracy increased significantly but from FY 2019 
to FY 2020, the accuracy decreased to 95.065%. The accuracy for ACP Alligator cracking in FY 
2021 is 99.943% which is the highest accuracy for ACP Alligator Cracking in five years. The 
overall accuracy for ACP Alligator Cracking is 95.45% for FY 2017 to FY 2021.  

The threshold for ACP Longitudinal Cracking difference is (-41.99, 46.14). Based on the 
threshold, the accuracy of ACP Longitudinal Cracking for FY 2017 is 86.954%. From FY 2017 
to FY 2020, the accuracy of ACP Longitudinal Cracking increased significantly to 97.933% 
which is the highest accuracy in five years. From FY 2020 to FY 2021, the accuracy decreased 
significantly. The overall accuracy of ACP Longitudinal Cracking from FY 2017 to FY 2021 is 
95.45%. 

The threshold of the quantity differences for ACP Transverse Cracking is (-3.48, 3.18). Based on 
the threshold, the accuracy of ACP Transverse Cracking for FY 2017 is 93.167%. From FY 2017 
to FY 2018, the accuracy for ACP Transverse Cracking decreased significantly. From FY 2018 
to FY 2019, the accuracy increased to 98.952%. From FY 2019 to FY 2020, ACP Transverse 
cracking accuracy decreased again. From 2020 to FY 2021, the accuracy increased to 99.233% 
which is the highest accuracy for ACP Transverse Cracking in five years. The overall accuracy 
for ACP Transverse Cracking from FY 2017 to FY 2021 is 95.45% 

After analyzing the data of CRCP, the threshold for CRCP Spalled Cracks quantity difference 
between the annual data and audit data is (-11.61, 10.72). Based on the threshold, the accuracy of 
CRCP Spalled Cracks for FY 2017 is 100%. It shows that 100% of the data recorded are within 
the difference threshold in FY 2017. From FY 2017 to FY 2019, the accuracy of CRCP Spalled 
Cracks decreased drastically to 76.83% which is the lowest accuracy in five years. From FY 
2019 to FY 2020, the accuracy increased to 99.913%. The accuracy of CRCP Spalled Cracks for 
FY 2020 is the highest in five years. From FY 2020 to FY 2021, the accuracy decreased 
significantly. The overall accuracy of CRCP Spalled Cracks from FY 2017 to FY 2021 is 
95.446%. 

The threshold for CRCP Punchout difference is (-1.79, 1.66). Based on the threshold, the 
accuracy of CRCP Punchout for FY 2017 is 98.28%. From FY 2017 to FY 2018, the accuracy of 
CRCP Punchout increased slightly. From FY 2018 to FY 2019, the accuracy decreased 
drastically to 88.148%. The accuracy of CRCP Punchout for FY 2021 is 99.821% which is the 
highest accuracy in five years. The overall accuracy of CRCP Punchout from FY 2017 to FY 
2021 is 95.46%. 

The threshold for CRCP ACP Patches difference is (-6.41, 7.03). The accuracy of CRCP ACP 
Patches for FY 2017 based on the threshold is 100%. From FY 2017 to FY 2019, the accuracy 
for CRCP ACP Patches decreased drastically to 70.014% which is the lowest accuracy in five 
years. From FY 2019 to FY 2021, the accuracy of CRCP ACP Patches increased significantly to 
100%. The overall accuracy of CRCP ACP Patches from FY 2017 to FY 2021 is 95.437%. 
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The threshold for CRCP PCC Patches difference is (-6.57, 6.55). The accuracy of CRCP PCC 
Patches for FY 2017 is 94.573%. From FY 2017 to FY 2018, the accuracy of CRCP PCC 
Patches decreased significantly. From FY 2018 to FY 2019, the accuracy decreased significantly 
to 87.894%. From FY 2019 to FY 2021, the accuracy of CRCP PCC Patches increased 
significantly to 99.36% which is the highest accuracy in five years. The overall accuracy of 
CRCP PCC Patches from FY 2017 to FY 2021 is 95.45%. 

Based on the data, the threshold for CRCP Average Crack Spacing difference is (-32.11, 61.83). 
The accuracy of CRCP Average Crack Spacing for FY 2017 is 99.347%. From FY 2017 to FY 
2018, the accuracy of CRCP Average Crack Spacing increased significantly. From FY 2018 to 
FY 2021, the accuracy decreased significantly to 86.455% which is the lowest accuracy for 
CRCP Average Crack Spacing in five years. The overall accuracy of CRCP Average Crack 
Spacing from FY 2017 to FY 2021 is 95.45% 

After analyzing the data of JCP, the threshold for JCP Failed Joint and Cracks quantity 
difference between the annual data and audit data is (-17.22, 20.73). Based on the threshold, the 
accuracy of JCP Failed Joint and Cracks for FY 2017 is 90.578%. It shows that 90.578% of the 
data recorded are within the difference threshold in FY 2017. From FY 2017 to FY 2019, the 
accuracy of JCP Failed Joint and Cracks increased significantly to 100%. From FY 2019 to FY 
2020, the accuracy decreased to 82.342% which is the lowest accuracy in five years. From FY 
2020 to FY 2021, the accuracy of JCP Failed Joint and Cracks increased significantly. The 
overall accuracy of JCP Failed Joint and Cracks from FY 2017 to FY 2021 is 95.471%. 

The threshold for JCP Failures difference is (-28.62, 33.3). The accuracy of JCP Failures for FY 
2017 is 100%. From FY 2017 to FY 2018, the accuracy of JCP Failures decreased significantly. 
From FY 2018 to FY 2021, the accuracy increased significantly to 100%. The overall accuracy 
of JCP Failures from FY 2017 to FY 2021 is 95.447%. 

The threshold for JCP Shattered Slabs difference is (-12.35, 13.53). Based on the threshold, the 
accuracy of JCP Shattered Slabs for FY 2017 is 100%. From FY 2017 to FY 2018, the accuracy 
of JCP Shattered Slabs decreased drastically to 58.949% which is the lowest accuracy in five 
years. From FY 2018 to FY 2021, the accuracy increased to 100% and remained the same for 
three years. The overall accuracy of JCP Shattered Slabs from FY 2017 to FY 2021 is 95.45%. 

The threshold for JCP Slabs with Longitudinal Cracks difference is (-13.73, 12.1). The accuracy 
of JCP Slabs with Longitudinal Cracks for FY 2017 is 99.631%. From FY 2017 to FY 2018, the 
accuracy of JCP Slabs with Longitudinal Cracks increased significantly to 100% which is the 
highest accuracy for JCP Slabs with Longitudinal Cracks. From FY 2018 to FY 2020, the 
accuracy decreased significantly to 84.682% which is the lowest accuracy in five years From FY 
2020 to FY 2021, the accuracy of JCP Slabs with Longitudinal Cracks increased significantly. 
The overall accuracy of JCP Slabs with Longitudinal Cracks from FY 2017 to FY 2021 is 
95.452%. 

The threshold for JCP PCC Patches difference is (-14.84, 15.4). The accuracy of JCP PCC 
Patches for FY 2017 is 85.435%. From FY 2017 to FY 2019, the accuracy of JCP PCC Patches 
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increased significantly to 99.96% which is the highest accuracy for JCP PCC Patches in five 
years. From FY 2019 to FY 2020, the accuracy decreased significantly to 97.28%. From FY 
2020 to FY 2021, the accuracy of JCP PCC Patches increased significantly. The overall accuracy 
of JCP PCC Patches from FY 2017 to FY 2021 is 95.45%. 

The threshold for JCP Apparent Joint Spacing difference is (-21.38, 23.98). The accuracy of JCP 
Apparent Joint Spacing for FY 2017 is 97.132%. From FY 2017 to FY 2018, the accuracy of 
JCP Apparent Joint Spacing decreased. From FY 2018 to FY 2019, the accuracy increased 
significantly to 99.17% which is the highest accuracy of JCP Apparent Joint Spacing in five 
years. From FY 2019 to FY 2021, the accuracy of JCP Apparent Joint Spacing decreased 
significantly. The overall accuracy of JCP Apparent Joint Spacing from FY 2017 to FY 2021 is 
95.45%. 

Table 5.29  μ∓2σ based threshold and accuracy for each distress type 
Pavement 
Types 

Distress Type Fiscal Year  Threshold 

2017 2018 2019 2020 2021 Overall 

ACP ACP PATCHING 
(PCT) 

82.544% 96.268% 99.76% 96.804% 99.273% 95.45% (-9.52,9.27) 

ACP FAILURE 
(QTY) 

99.813% 96.114% 97.205% 88.081% 99.246 
% 

95.5% (-1.55,1.51) 

ACP BLOCK 
CRACKING 
(PCT) 

91.035% 99.546% 98.02% 91.49% 95.361% 95.46% (-4.81,4.84) 

ACP 
ALLIGATOR 
CRACKING 
(PCT) 

93.292% 90.432% 95.816% 95.065% 99.943% 95.45% (-12.29,11.51) 

ACP 
LONGITUDE 
CRACKING 
(Feet) 

86.954% 96.475% 97.397% 97.933% 97.726% 95.45% (-41.99,46.14) 

ACP 
TRANSVERSE 
CRACKING 
(QTY) 

93.167% 92.68% 98.952% 91.502% 99.233% 95.45% (-3.48,3.18) 

CRCP CRCP SPALLED 
CRACKS (QTY) 

100% 87.376% 76.83% 99.913% 98.402% 95.446% (-11.61,10.72) 

CRCP 
PUNCHOUT 
(QTY) 

98.28% 98.332% 99.67% 88.148% 99.821% 95.46% (-1.79,1.66)  

CRCP ACP 
PATCHES (QTY) 

100% 91.762% 70.014% 99.963% 100% 95.437% (-6.41,7.03) 

CRCP PCC 
PATCHES (QTY) 

94.573% 99.231% 87.894% 96.205% 99.36% 95.45% (-6.57,6.55) 
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CRCP AVG 
CRACK 
SPACING (QTY) 

99.347% 99.662% 98.64% 88.541% 86.455% 95.45% (-32.11,61.83) 

JCP JCP FAILED 
JNTS CRACKS 
(QTY) 

90.578% 95.77% 100% 82.342% 100% 95.471% (-17.22,20.73) 

JCP FAILURES 
(QTY) 

100% 64.564% 97.598% 100% 100% 95.447% (-28.62,33.3) 

JCP 
SHATTERED 
SLABS (QTY) 

100% 58.949% 100% 100% 100% 95.45% (-12.35,13.53) 

JCP SLABS 
WITH 
LONGITUDINAL 
CRACKS (QTY) 

99.631% 100% 85.611% 84.682% 98.91% 95.452% (-13.73,12.1) 

JCP PCC 
PATCHES (QTY) 

85.435% 92.418% 99.96% 97.28% 99.92% 95.45% (-14.84,15.4) 

JCP APPARENT 
JOINT 
SPACE(Feet) 

97.132% 95.563% 99.17% 93.93% 88.28% 95.45% (-21.38,23.98) 

5.1.4 Precision of the Annual Rating Data 

Precision is the degree to which an instrument or process will repeat the same value. The 
precision comparison of the annual rating data is conducted by comparing every two years’ auto 
data in the specific same sections using automated data collection technology. Based on the 
confusion matrix in Figure 33, the precision is equal to TP/(TP+FP).  
 
1) Indexes 

The indexes included in the annual rating data analysis are 11 distress types of ACP, CRCP, and 
JCP, which are listed as follows.  

ACP: alligator cracking (ACP ALLIGATOR CRACKING PCT), longitudinal cracking (ACP 
LONGITUDE CRACKING), transverse cracking (ACP TRANSVERSE CRACKING QTY), 
patching (ACP PATCHING PCT). 

CRCP: CRCP SPALLED CRACKS, CRCP PUNCHOUT, CRCP ACP PATCHES, CRCP PCC 
PATCHES, CRCP AVG CRACK SPACING. 

JCP: JCP FAILED JNTS CRACKS QTY, JCP FAILURES QTY.  

The overall dataset used for individual distress analysis is the paired PMIS annual rating data 
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with the audit data from FY 2017 to 2021 shown in Table 5.30.  

Table 5.30 Dataset for individual distress analysis 
Pavement Type Sections used  Pairs for two years' comparison   
JCP 8661 2846 
CRCP 4967 1142 
ACP 185356 64636 

b) Thresholds 

The precision analysis of the annual rating data was conducted by comparing every two years’ 
PMIS annual rating data (auto data) without construction sections using automated data 
collection technology. For the precision analysis, every two years, 15% of the distress 
measurements were considered an acceptable bias from the automated data collection equipment. 
A confusion matrix was used to analyze the results of the 2-year difference in the distress 
measurements. In the confusion matrix, TP represents the number of sections with that 2-year 
difference of the distress measurements within the range of 0% to 15%, FN represents the 
number of sections with that 2-year difference of the distress measurements less than -15%, FP 
represents the number of sections with that 2-year difference of the distress measurements more 
than 15%, and TN represents the number of sections with that 2-year difference of the distress 
measurements within the range of -15% to 0%. The explanation of the confusion matrix is shown 
in Figure 5.2.  

Figure 5.2 Confusion Matrix for 2-Year Difference in the Distress Measurements 

a) Precision analysis of annual rating data for ACP 

The updated precision analysis of annual rating data for ACP was presented in Table 5. 31 to 
Table 5.34. 
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Table 5. 31 Precision analysis of ACP alligator cracking 
Result counts Rate 
FN 710 1.10% 
T- 15870 24.55% 

0 37605 58.18% 
T+ 10012 15.49% 
FP 439 0.68% 
Precision: -- 99.31% 

 
Table 5.32 Precision analysis of ACP longitudinal cracking 

Result counts Rate 
FN 22 0.03% 
T- 30016 46.44% 

0 10582 16.37% 
T+ 24004 37.14% 
FP 12 0.02% 
Precision: --  99.98% 

 
Table 5.33 Precision analysis of ACP transverse cracking 

Result_1 counts Rate 
FN 6 0.01% 
T- 7124 11.02% 

0 53324 82.50% 
T+ 4182 6.47% 
FP 0 0.00% 
Precision: --  100% 

 
Table 5.34 Precision analysis of ACP patching 

Result_1 counts Rate 
FN 891 1.38% 
T- 3452 5.34% 

0 54443 84.23% 
T+ 4884 7.56% 
FP 966 1.49% 
Precision: --  98.48% 

b) Precision analysis of annual rating data for CRCP 

The updated precision analysis of annual rating data for CRCP was presented in Table 5.35 to 
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Table 5.39. 

Table 5.35 Precision analysis of CRCP SPALLED CRACKS 
Result_1 counts Rate 
FN 0 0.00% 
T- 103 9.02% 

0 899 78.72% 
T+ 140 12.26% 
FP 0 0.00% 
Precision: --  100% 

Table 5.36 Precision analysis of CRCP PUNCHOUT 
Result_1 counts Rate 
FN 0 0.00% 
T- 52 4.55% 

0 1017 89.05% 
T+ 73 6.39% 
FP 0 0.00% 
Precision: --  100% 

Table 5.37 Precision analysis of CRCP ACP PATCHES 
Result_1 counts Rate 
FN 0 0.00% 
T- 52 4.55% 

0 1053 92.21% 
T+ 37 3.24% 
FP 0 0.00% 
Precision: --  100% 

Table 5.38 Precision analysis of CRCP PCC PATCHES 
Result_1 counts Rate 
FN 0 0.00% 
T- 132 11.56% 

0 842 73.73% 
T+ 168 14.71% 
FP 0 0.00% 
Precision: --  100% 
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Table 5.39 Precision analysis of CRCP AVG CRACK SPACING 
Result_1 counts Rate 
FN 99 8.67% 
T- 182 15.94% 

0 124 10.86% 
T+ 393 34.41% 
FP 344 30.12% 
Precision: -- 67.02% 

c) Precision analysis of annual rating data for JCP 

The updated precision analysis of annual rating data for JCP was presented in Table 5.40 and 
Table 5.41. 

Table 5.40 Precision analysis of JCP FAILED JNTS CRACKS 
Result_1 counts Rate 
FN 0 0.00% 
T- 98 3.44% 

0 2639 92.73% 
T+ 109 3.83% 
FP 0 0.00% 
Precision: -- 100% 

Table 5.41 Precision analysis of JCP FAILURES 
Result_1 counts Rate 
FN 0 0.00% 
T- 88 3.09% 

0 2643 92.87% 
T+ 115 4.04% 
FP 0 0.00% 
Precision: -- 100% 

5.2 Data Quality Consistency Check Thresholds 

The Performing Agency proposed three methods to determine the data quality thresholds based 
on the data quality consistency check components developed in TM5:  

• Index 1: Yearly change of sections with distress decrease 
• Index 2: Individual distress change 
• Index 3: Accuracy of the annual rating data comparing with the audit data 
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• Index 4: Precision of the annual rating data  
• Index 5: Yearly change of each section DS, CS, and RS 

The traditional method that is used for threshold development is based on the two-sigma method. 
The two-sigma method has been used by many other state DOTs in their data quality program. 
The threshold development of these data quality consistency check components/indexes for each 
distress type applied stratified factors of highway service level (IH, US, SH, and FM).   

5.2.1 Sigma method for data quality index threshold development 

The research team selected sigma-based method as an alternative of data quality check indexes 
threshold development method. The data pre-analysis results show that the data in indexes 2, 3, 
4, and 5 follow the normal distribution. Therefore, the research team first developed 2-sigma 
thresholds based on engineers’ experience.  

Index #1: No. of sections with yearly distress decrease 
The threshold value of yearly change of sections with a distress value decrease or distress value 
disappearance is zero tolerance, which means the sections which have distress decrease or 
distress disappearance will be considered as having data quality issues and shall be flagged for 
re-evaluation. However, based on the data analysis, the zero tolerance of sections with yearly 
distress decrease is too tight, the research team will only recommend for internal evaluation for 
annual data quality check.  
Index #2 Individual distress change 
The individual thresholds of each distress type were determined by comparing the annual PMIS 
rating data using automated data collection technology and the manual audit data. The research 
team determined the threshold using the audit dataset retrieved from the Annual Audit Detail 
Rating Comparison report. The threshold of each distress type was calculated by checking the 
measurement differences between the annual rating data and the audit data and determining the 
points that hold 95% of the data or within two standard deviations of the mean. 
Based on the threshold, the sections that are within and above the threshold are selected. Based 
on the threshold, ‘FN’ represents the number of sections that are outside of the threshold range in 
negative values of the difference in distress measurement values when comparing the annual data 
and audit data. ‘FP’ represents the number of sections that are out of the threshold range in 
positive values of the difference in measurement values. ‘T-’ represents the number of sections 
that are within the threshold range in negative values comparing the annual data with the audit 
data. ‘T+’ represents the number of sections that are within the threshold range in positive values 
comparing the annual data with the audit data. ‘0’ represents the number of sections that 
exhibited no change in comparison of annual data and audit data.  
The thresholds are determined following two stratified factors (Pavement type and highway 
service level). The pavement types are categorized as: Asphalt Concrete Pavement (ACP), 
Continuously Reinforced Concrete Pavement (CRCP), and Jointed Concrete Pavement (JCP). 
There are four types of highway service levels: Interstate Highway (IH), US Highway (US), 
State Highway (SH), and Farm to Market Road (FM). The pavement surface age data is not 
included due to unavailability of sufficient data for analysis.  



71 
 

Table 5.42 shows the thresholds of each distress type of ACP for a specific highway service 
level. The threshold is in the format of the difference in the distress measurement value 
comparing the annual rating data and audit data. A total of 24 thresholds have been determined. 

Table 5.42 Thresholds for individual analysis for ACP 
Distress Type  Highway service 

level 
No. of Sections Threshold 

ACP Alligator 
Cracking (Percentage 
of Wheel path Length) 

IH  Sections % 
FN 74 0.024866 
T- 359 0.120632 
0 2134 0.717070 
T+ 378 0.127016 
FP 31 0.010417 

(-11.62, 10.59) 

US            Sections           % 
FN 248 0.025585 
T- 1087 0.112143 
0 6800 0.701537 
T+ 1468 0.151449 
FP 90 0.009285 

(-15.81, 14.37) 

SH  Sections % 
FN 315 0.028553 
T- 1274 0.115482 
0 7639 0.692440 
T+ 1702 0.154278 
FP 102 0.009246 

(-14.49, 13,01) 

FM            Sections % 
FN 615 0.022141 
T- 2572 0.092598 
0 18971 0.683000 
T+ 5257 0.189264 
FP 361 0.012997 

(-9.83, 9.6) 

ACP Longitudinal 
Cracking (Length in 
Feet per station). 

IH  Sections % 
FN 81 0.027227 
T- 820 0.275630 
0 885 0.297479 
T+ 1134 0.381176 
FP 55 0.018487 

(-64.0, 60.59) 

US            Sections % 
FN 364 0.037553 
T- 2048 0.211286 
0 3241 0.334365 
T+ 3777 0.389663 
FP 263 0.027133 

(-50.51, 49.91) 

SH  Sections % 
FN 369 0.033451 
T- 2256 0.204515 

(-45.69, 47.48) 
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0 3465 0.314115 
T+ 4649 0.421449 
FP 292 0.026471 

FM            Sections % 
FN 670 0.024122 
T- 4557 0.164062 
0 7741 0.278694 
T+ 13939 0.501836 
FP 869 0.031286 

(-33.72, 41.34) 

ACP Transverse 
Cracking (Quantity) 

IH            Sections % 
FN 69 0.023185 
T- 318 0.106855 
0 2350 0.789651 
T+ 210 0.070565 
FP 29 0.009745 

(-3.91, 3.62) 

US            Sections % 
FN 242 0.024966 
T- 1636 0.168782 
0 6956 0.717631 
T+ 752 0.077582 
FP 107 0.011039 

(-4.04, 3.44) 

SH              Sections % 
FN 197 0.017857 
T- 1682 0.152466 
0 8143 0.738125 
T+ 927 0.084028 
FP 83 0.007524 

(-4.91, 4.47) 

FM      Sections % 
FN 589 0.021205 
T- 1950 0.070204 
0 23248 0.836982 
T+ 1695 0.061024 
FP 294 0.010585 

(-2.38, 2.24) 

ACP Patching 
(Percentage of Lane 
Area) 

IH            Sections % 
FN 45 0.015121 
T- 93 0.031250 
0 2693 0.904906 
T+ 97 0.032594 
FP 48 0.016129 

(-7.29, 7.44) 

US  Sections % 
FN 104 0.010729 
T- 381 0.039307 
0 8798 0.907665 
T+ 312 0.032188 
FP 98 0.010110 

(-9.62, 9.39) 

SH            Sections % (-9.41, 9.04) 
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FN 180 0.016316 
T- 570 0.051668 
0 9786 0.887056 
T+ 384 0.034808 
FP 112 0.010152 

FM            Sections % 
FN 448 0.016129 
T- 1564 0.056308 
0 24188 0.870824 
T+ 1165 0.041943 
FP 411 0.014797 

(-9.73, 9.49) 

ACP Block Cracking 
(Percentage of Lane 
Area) 

IH          Sections         % 
FN 10 0.003360 
T- 6 0.002016 
0 2931 0.984879 
T+ 17 0.005712 
FP 12 0.004032 

(-7.71, 7.6) 

US  Sections % 
FN 31 0.003198 
T- 16 0.001651 
0 9481 0.978129 
T+ 86 0.008872 
FP 79 0.008150 

(-5.08, 5.26) 

SH             Sections % 
FN 36 0.003263 
T- 31 0.002810 
0 10766 0.975888 
T+ 131 0.011875 
FP 68 0.006164 

(-6.75, 6.68) 

FM            Sections % 
FN 52 0.001872 
T- 21 0.000756 
0 27446 0.988119 
T+ 137 0.004932 
FP 120 0.004320 

(-3, 3.03) 

ACP Failure 
(Quantity) 

IH            Sections % 
FN 42 0.014113 
T- 74 0.024866 
0 2826 0.949597 
T+ 26 0.008737 
FP 8 0.002688 

(-1.37, 1.28) 

US            Sections % 
FN 45 0.004643 
T- 102 0.010523 
0 9464 0.976375 
T+ 47 0.004849 

(-1.39, 1.38) 
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FP 35 0.003611 
SH            Sections % 

FN 216 0.019579 
T- 0 0.000000 
0 10709 0.970722 
T+ 0 0.000000 
FP 107 0.009699 

(-0.92, 0.88) 

FM             Sections % 
FN 232 0.008353 
T- 626 0.022537 
0 26386 0.949957 
T+ 381 0.013717 
FP 151 0.005436 

(-1.8, 1.75) 

Table 5.43 shows the thresholds of each distress type of CRCP (Continuously Reinforced 
Concrete Pavement) for a specific highway service level. The threshold will be in the format of 
the difference in the distress measurement value comparing the annual rating data and audit data. 
A total of 20 thresholds are determined. 

Table 5.43 Thresholds for individual analysis for CRCP 
Distress Type   Highway service level  No. of Sections Threshold  
CRCP Spalled 
Cracks (Quantity)  

IH             Sections % 
FN 32 0.019988 
T- 122 0.076202 
0 1293 0.807620 
T+ 136 0.084947 
FP 18 0.011243 

( -3.88, 3.6) 

US             Sections % 
FN 6 0.008982 
T- 63 0.094311 
0 539 0.806886 
T+ 57 0.085329 
FP 3 0.004491 

 ( -10.4, 9.75) 

SH   Sections % 
FN 13 0.016993 
T- 76 0.099346 
0 618 0.807843 
T+ 58 0.075817 
FP 0 0.000000 

 ( -21.56, 18.99) 

FM              Sections % 
FN 3 0.012658 
T- 20 0.084388 
0 194 0.818565 
T+ 20 0.084388 
FP 0 0.000000 

 ( -2.26, 2.07) 
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CRCP Punchout 
(Quantity) 

IH             Sections % 
FN 30 0.018738 
T- 105 0.065584 
0 1399 0.873829 
T+ 51 0.031855 
FP 16 0.009994 

 ( -2.2, 1.98) 

US   Sections % 
FN 10 0.014970 
T- 32 0.047904 
0 597 0.893713 
T+ 20 0.029940 
FP 9 0.013473 

 ( -1.27, 1.21) 

SH   Sections % 
FN 18 0.023529 
T- 38 0.049673 
0 665 0.869281 
T+ 28 0.036601 
FP 16 0.020915 

 ( -1.47, 1.41) 

FM             Sections % 
FN 11 0.046414 
T- 0 0.000000 
0 219 0.924051 
T+ 0 0.000000 
FP 7 0.029536 

 ( -0.7, 0.64) 

CRCP ACP Patches 
(Quantity)  

IH             Sections % 
FN 8 0.004997 
T- 43 0.026858 
0 1500 0.936914 
T+ 29 0.018114 
FP 21 0.013117 

 ( -3.1, 3.26) 

US             Sections % 
FN 3 0.004491 
T- 16 0.023952 
0 617 0.923653 
T+ 19 0.028443 
FP 13 0.019461 

 ( -4.45, 4.97) 

SH             Sections % 
FN 0 0.000000 
T- 28 0.036601 
0 695 0.908497 
T+ 21 0.027451 
FP 21 0.027451 

 ( -11.05, 12.95) 

FM             Sections % 
FN 2 0.008439 
T- 10 0.042194 
0 221 0.932489 

 ( -4.83, 4.68) 
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T+ 2 0.008439 
FP 2 0.008439 

CRCP PCC 
Patches (Quantity) 

IH             Sections % 
FN 38 0.023735 
T- 115 0.071830 
0 1251 0.781387 
T+ 146 0.091193 
FP 51 0.031855 

 ( -4.97, 5.33) 

US             Sections % 
FN 11 0.016467 
T- 73 0.109281 
0 521 0.779940 
T+ 53 0.079341 
FP 10 0.014970 

 ( -7.91, 7.27) 

SH             Sections % 
FN 8 0.010458 
T- 58 0.075817 
0 636 0.831373 
T+ 59 0.077124 
FP 4 0.005229 

 ( -8.1, 7.63) 

FM             Sections % 
FN 2 0.008439 
T- 27 0.113924 
0 171 0.721519 
T+ 29 0.122363 
FP 8 0.033755 

 ( -6.78, 7.42) 

CRCP Average Crack 
Spacing (Average 
observed spacing in feet) 

IH             Sections % 
FN 26 0.016240 
T- 140 0.087445 
0 103 0.064335 
T+ 1215 0.758901 
FP 117 0.073079 

( -31.3, 57.61) 

US              Sections % 
FN 8 0.011976 
T- 76 0.113772 
0 49 0.073353 
T+ 484 0.724551 
FP 51 0.076347 

 ( -29.18, 51.48) 

SH             Sections % 
FN 10 0.013072 
T- 90 0.117647 
0 39 0.050980 
T+ 566 0.739869 
FP 60 0.078431 

 ( -31.94, 67.92) 

FM    Sections % 
FN 3 0.012658 

 ( -32.81, 86.72) 
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T- 32 0.135021 
0 11 0.046414 
T+ 191 0.805907 
FP 0 0.000000 

Table 5.44 shows the thresholds of each distress type of JCP (Jointed Concrete Pavement) for a 
specific highway service level. The threshold is in the format of the difference in the distress 
measurement value comparing the annual rating data and audit data. A total of 24 thresholds 
have been determined. 

Table 5.44 Thresholds for individual analysis for JCP 
Distress Type   Highway service level  No. of Sections Threshold  
JCP Failed Joint Cracks 
(Quantity) 

IH             Sections % 
FN 0 0.000000 
T- 18 0.120000 
0 80 0.533333 
T+ 47 0.313333 
FP 5 0.033333 

 ( -22.62, 28.65) 

US   Sections % 
FN 0 0.000000 
T- 52 0.191176 
0 130 0.477941 
T+ 79 0.290441 
FP 11 0.040441 

( -19.48, 24.77) 

SH             Sections % 
FN 5 0.023923 
T- 44 0.210526 
0 88 0.421053 
T+ 64 0.306220 
FP 8 0.038278 

 ( -10.61, 11.77) 

FM              Sections % 
FN 4 0.040816 
T- 18 0.183673 
0 57 0.581633 
T+ 15 0.153061 
FP 4 0.040816 

 ( -3.51, 3.3) 

JCP Failures (Quantity) IH   Sections % 
FN 0 0.000000 
T- 18 0.120000 
0 72 0.480000 
T+ 58 0.386667 
FP 2 0.013333 

 ( -54.07, 65.0) 

US             Sections % 
FN 1 0.003676 
T- 45 0.165441 

 ( -18.19, 21.86) 
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0 125 0.459559 
T+ 98 0.360294 
FP 3 0.011029 

SH              Sections % 
FN 5 0.023923 
T- 35 0.167464 
0 77 0.368421 
T+ 86 0.411483 
FP 6 0.028708 

 ( -13.71, 16.26) 

FM   Sections % 
FN 1 0.010204 
T- 17 0.173469 
0 47 0.479592 
T+ 28 0.285714 
FP 5 0.051020 

 ( -7.18, 9.65) 

JCP PCC Patches 
(Quantity) 

IH   Sections % 
FN 3 0.020000 
T- 28 0.186667 
0 85 0.566667 
T+ 27 0.180000 
FP 7 0.046667 

 ( -12.28, 12.73) 

US   Sections % 
FN 4 0.014706 
T- 68 0.250000 
0 156 0.573529 
T+ 39 0.143382 
FP 5 0.018382 

 ( -19.66, 19.22) 

SH   Sections % 
FN 4 0.019139 
T- 25 0.119617 
0 151 0.722488 
T+ 22 0.105263 
FP 7 0.033493 

 ( -11.43, 12.06) 

FM             Sections % 
FN 0 0.000000 
T- 9 0.091837 
0 65 0.663265 
T+ 21 0.214286 
FP 3 0.030612 

 ( -9.03, 12.32) 

JCP Shattered 
Slabs (Quantity) 

IH             Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 140 0.933333 
T+ 7 0.046667 
FP 3 0.020000 

 ( -25.45, 29.65) 

US  Sections %  ( -1.39, 1.56) 
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FN 0 0.000000 
T- 0 0.000000 
0 266 0.977941 
T+ 3 0.011029 
FP 3 0.011029 

SH               Sections % 
FN 0 0.000000 
T- 2 0.009569 
0 189 0.904306 
T+ 13 0.062201 
FP 5 0.023923 

 ( -4.81, 5.66) 

FM   Sections % 
FN 1 0.010204 
T- 1 0.010204 
0 93 0.948980 
T+ 2 0.020408 
FP 1 0.010204 

 ( -2.63, 2.75) 

JCP Slabs with 
Longitudinal 
Cracks (Quantity)  

IH  Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 140 0.933333 
T+ 7 0.046667 
FP 3 0.020000 

( -25.45, 29.65) 

US  Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 266 0.977941 
T+ 3 0.011029 
FP 3 0.011029 

 ( -1.39, 1.56) 

SH  Sections % 
FN 0 0.000000 
T- 2 0.009569 
0 189 0.904306 
T+ 13 0.062201 
FP 5 0.023923 

 ( -4.81, 5.66) 

FM  Sections % 
FN 1 0.010204 
T- 1 0.010204 
0 93 0.948980 
T+ 2 0.020408 
FP 1 0.010204 

 ( -2.63, 2.75) 

JCP Apparent Joint 
Space 

IH  Sections % 
FN 0 0.000000 
T- 17 0.113333 
0 115 0.766667 
T+ 13 0.086667 

 ( -9.36, 11.1) 
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FP 5 0.033333 
US  Sections % 

FN 7 0.025735 
T- 36 0.132353 
0 180 0.661765 
T+ 42 0.154412 
FP 7 0.025735 

 ( -20.88, 21.09) 

SH  Sections % 
FN 0 0.000000 
T- 44 0.210526 
0 112 0.535885 
T+ 36 0.172249 
FP 17 0.081340 

 ( -28.46, 36.76) 

FM              Sections % 
FN 4 0.040816 
T- 9 0.091837 
0 68 0.693878 
T+ 15 0.153061 
FP 2 0.020408 

 ( -10.02, 8.49) 

Index #3 Accuracy of the annual rating data compared with the audit data 

The accuracy of the annual rating data compared with the audit data in index 3 was determined 
using the dataset retrieved from the Annual Audit Detail Rating Comparison report. The 
accuracy is determined to check the similarity of the annual rating data compared to the ground 
truth. The accuracy is equal to (TP+TN)/(TP+TN+FP+FN).  
Table 5.45 shows the accuracy thresholds of the Distress Score of the annual rating compared 
with the audit data. The accuracy is determined using the population of Distress Score 
differences and calculating the points that hold 95% of the data or within two standard deviations 
from the mean. This data range calculation is a frequent practice among highway agencies to 
check the range of Distress Score differences between the annual data and audit data. The 
accuracy of Distress Scores is determined for each pavement type on a specific highway service 
level.  
In Table 5.45, for JCP IH and FM levels, the number of sections available for the accuracy 
threshold analysis is low. We can suggest that the DS threshold used to calculate the accuracy 
threshold of the Distress Score needs further evaluation due to an insufficient amount of data. 

Table 5.45 Accuracy thresholds of the annual rating compared with the audit data for the 
Distress Score 

Pavement Type  Highway service 
level  

DS Range No. of Sections Accuracy 
thresholds of 
Distress 
Score 



81 
 

ACP  IH  (-18.77, 22.6)            Sections % 
FN 49 0.016465 
T- 337 0.113239 
0 1890 0.635081 
T+ 563 0.189180 
FP 137 0.046035 

93.75% 
 

SH  (-18.9, 21.9)            Sections % 
FN 262 0.023747 
T- 1370 0.124173 
0 6893 0.624762 
T+ 1984 0.179824 
FP 524 0.047494 

92.88% 

US  (-19.02, 22.13)  Sections % 
FN 177 0.018261 
T- 1211 0.124936 
0 6161 0.635613 
T+ 1722 0.177654 
FP 422 0.043537 

93.82% 
 

FM  (-18.44, 19.28)            Sections % 
FN 699 0.025165 
T- 4286 0.154300 
0 18130 0.652698 
T+ 3637 0.130936 
FP 1025 0.036901 

93.79% 

CRCP  IH  ( -26.47,26.71)            Sections % 
FN 58 0.036227 
T- 189 0.118051 
0 1103 0.688944 
T+ 186 0.116177 
FP 65 0.040600 

92.32% 

SH  ( -25.86, 24.92)            Sections % 
FN 33 0.043137 
T- 84 0.109804 
0 533 0.696732 
T+ 93 0.121569 
FP 22 0.028758 

92.81% 

US  ( -24.63, 24.6)            Sections % 
FN 25 0.037425 
T- 69 0.103293 
0 468 0.700599 
T+ 83 0.124251 
FP 23 0.034431 

92.81% 

FM  ( -32.77, 32.56)            Sections % 
FN 10 0.042194 
T- 30 0.126582 
0 158 0.666667 

91.98% 
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T+ 30 0.126582 
FP 9 0.037975 

JCP  IH  ( -59.59, 40.25)            Sections % 
FN 10 0.066667 
T- 47 0.313333 
0 74 0.493333 
T+ 18 0.120000 
FP 1 0.006667 

92.67% 

SH  ( -52.64, 41.03)            Sections % 
FN 8 0.038278 
T- 78 0.373206 
0 86 0.411483 
T+ 31 0.148325 
FP 6 0.028708 

93.3% 

US  ( -46.23, 34.29)            Sections % 
FN 14 0.051471 
T- 82 0.301471 
0 119 0.437500 
T+ 55 0.202206 
FP 2 0.007353 

94.12% 

FM  ( -41.31, 30.31)   Sections % 
FN 7 0.071429 
T- 22 0.224490 
0 55 0.561224 
T+ 13 0.132653 
FP 1 0.010204 

91.84% 
 

 

Based on the two standard deviation thresholds of each distress type on a specific highway 
service level determined in Table 5.43, Table 5.44 and Table 5.45, the accuracy in measurement 
value differences of each distress type is presented in Table 5.46, Table 5.47 and Table 5.48.  
Table 5.46 shows the accuracy thresholds for each distress type of ACP. The accuracy will be 
calculated by comparing the measurement values of the annual rating data and audit data. For the 
distress type of ACP Failure at the SH level, the difference in distress measurement value of 
annual data compared with the audit data shows a discrepancy because most sections have no 
change and are within the threshold range as the difference in measurement value is zero. Some 
sections are out of the threshold range. The threshold must be evaluated further with more data.  

Table 5.46 Accuracy thresholds of the annual rating compared with the audit data for the 
Distress Score 

Distress Type  Highway service 
level 

No. of Sections Accuracy 

ACP Alligator 
Cracking (Percentage 
of Wheel path Length) 

IH  Sections % 
FN 74 0.024866 
T- 359 0.120632 
0 2134 0.717070 

96.47% 
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T+ 378 0.127016 
FP 31 0.010417 

US            Sections           % 
FN 248 0.025585 
T- 1087 0.112143 
0 6800 0.701537 
T+ 1468 0.151449 
FP 90 0.009285 

96.51% 

SH  Sections % 
FN 315 0.028553 
T- 1274 0.115482 
0 7639 0.692440 
T+ 1702 0.154278 
FP 102 0.009246 

96.22% 

FM            Sections % 
FN 615 0.022141 
T- 2572 0.092598 
0 18971 0.683000 
T+ 5257 0.189264 
FP 361 0.012997 

96.49% 
 

ACP Longitudinal 
Cracking (Length in 
Feet per station). 

IH  Sections % 
FN 81 0.027227 
T- 820 0.275630 
0 885 0.297479 
T+ 1134 0.381176 
FP 55 0.018487 

95.43% 
 

US            Sections % 
FN 364 0.037553 
T- 2048 0.211286 
0 3241 0.334365 
T+ 3777 0.389663 
FP 263 0.027133 

93.53% 

SH  Sections % 
FN 369 0.033451 
T- 2256 0.204515 
0 3465 0.314115 
T+ 4649 0.421449 
FP 292 0.026471 

94.01% 
 

 

FM            Sections % 
FN 670 0.024122 
T- 4557 0.164062 
0 7741 0.278694 
T+ 13939 0.501836 
FP 869 0.031286 

94.46% 
 

ACP Transverse 
Cracking (Quantity) 

IH            Sections % 
FN 69 0.023185 

96.71% 
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T- 318 0.106855 
0 2350 0.789651 
T+ 210 0.070565 
FP 29 0.009745 

US            Sections % 
FN 242 0.024966 
T- 1636 0.168782 
0 6956 0.717631 
T+ 752 0.077582 
FP 107 0.011039 

96.4% 
 

SH              Sections % 
FN 197 0.017857 
T- 1682 0.152466 
0 8143 0.738125 
T+ 927 0.084028 
FP 83 0.007524 

97.46% 
 
 

FM      Sections % 
FN 589 0.021205 
T- 1950 0.070204 
0 23248 0.836982 
T+ 1695 0.061024 
FP 294 0.010585 

96.82% 
 

 

ACP Patching 
(Percentage of Lane 
Area) 

IH            Sections % 
FN 45 0.015121 
T- 93 0.031250 
0 2693 0.904906 
T+ 97 0.032594 
FP 48 0.016129 

96.88% 

US  Sections % 
FN 104 0.010729 
T- 381 0.039307 
0 8798 0.907665 
T+ 312 0.032188 
FP 98 0.010110 

97.92% 
 
 

SH            Sections % 
FN 180 0.016316 
T- 570 0.051668 
0 9786 0.887056 
T+ 384 0.034808 
FP 112 0.010152 

97.35% 

FM            Sections % 
FN 448 0.016129 
T- 1564 0.056308 
0 24188 0.870824 
T+ 1165 0.041943 
FP 411 0.014797 

96.91% 
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ACP Block Cracking 
(Percentage of Lane 
Area) 

IH          Sections         % 
FN 10 0.003360 
T- 6 0.002016 
0 2931 0.984879 
T+ 17 0.005712 
FP 12 0.004032 

99.26% 

US  Sections % 
FN 31 0.003198 
T- 16 0.001651 
0 9481 0.978129 
T+ 86 0.008872 
FP 79 0.008150 

98.87% 
 

SH             Sections % 
FN 36 0.003263 
T- 31 0.002810 
0 10766 0.975888 
T+ 131 0.011875 
FP 68 0.006164 

99.06% 

FM            Sections % 
FN 52 0.001872 
T- 21 0.000756 
0 27446 0.988119 
T+ 137 0.004932 
FP 120 0.004320 

99.38% 

ACP Failure 
(Quantity) 

IH            Sections % 
FN 42 0.014113 
T- 74 0.024866 
0 2826 0.949597 
T+ 26 0.008737 
FP 8 0.002688 

98.32% 

US            Sections % 
FN 45 0.004643 
T- 102 0.010523 
0 9464 0.976375 
T+ 47 0.004849 
FP 35 0.003611 

99.17% 

SH            Sections % 
FN 216 0.019579 
T- 0 0.000000 
0 10709 0.970722 
T+ 0 0.000000 
FP 107 0.009699 

97.07% 
 

 

FM             Sections % 
FN 232 0.008353 
T- 626 0.022537 
0 26386 0.949957 

98.62% 
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T+ 381 0.013717 
FP 151 0.005436 

Table 5.47 shows the accuracy thresholds of each distress type of CRCP. The accuracy will be 
calculated by comparing the measurement values of the annual rating data and audit data.  
For the distress type of CRCP Punchout at the FM level, the quantity threshold value is a decimal 
number. The difference in distress measurement value of annual data compared with the audit 
data shows a discrepancy because most sections have no change and are within the threshold 
range. Some sections are out of the threshold range. The threshold must be evaluated further with 
more data. 

Table 5.47 Accuracy thresholds of the annual rating compared with the audit data for 
CRCP 

Distress Type   Highway service 
level  

No. of Sections Accuracy 

CRCP Spalled 
Cracks (Quantity)  

IH             Sections % 
FN 32 0.019988 
T- 122 0.076202 
0 1293 0.807620 
T+ 136 0.084947 
FP 18 0.011243 

96.88% 

US             Sections % 
FN 6 0.008982 
T- 63 0.094311 
0 539 0.806886 
T+ 57 0.085329 
FP 3 0.004491 

98.65% 

SH   Sections % 
FN 13 0.016993 
T- 76 0.099346 
0 618 0.807843 
T+ 58 0.075817 
FP 0 0.000000 

98.3% 

FM              Sections % 
FN 3 0.012658 
T- 20 0.084388 
0 194 0.818565 
T+ 20 0.084388 
FP 0 0.000000 

98.73% 

CRCP Punchout 
(Quantity) 

IH             Sections % 
FN 30 0.018738 
T- 105 0.065584 
0 1399 0.873829 
T+ 51 0.031855 
FP 16 0.009994 

97.13% 
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US   Sections % 
FN 10 0.014970 
T- 32 0.047904 
0 597 0.893713 
T+ 20 0.029940 
FP 9 0.013473 

97.16% 
 

SH   Sections % 
FN 18 0.023529 
T- 38 0.049673 
0 665 0.869281 
T+ 28 0.036601 
FP 16 0.020915 

95.56% 

FM             Sections % 
FN 11 0.046414 
T- 0 0.000000 
0 219 0.924051 
T+ 0 0.000000 
FP 7 0.029536 

92.41% 
 

CRCP ACP Patches 
(Quantity)  

IH             Sections % 
FN 8 0.004997 
T- 43 0.026858 
0 1500 0.936914 
T+ 29 0.018114 
FP 21 0.013117 

98.19% 

US             Sections % 
FN 3 0.004491 
T- 16 0.023952 
0 617 0.923653 
T+ 19 0.028443 
FP 13 0.019461 

97.6% 

SH             Sections % 
FN 0 0.000000 
T- 28 0.036601 
0 695 0.908497 
T+ 21 0.027451 
FP 21 0.027451 

97.25% 

FM             Sections % 
FN 2 0.008439 
T- 10 0.042194 
0 221 0.932489 
T+ 2 0.008439 
FP 2 0.008439 

98.31% 
 

CRCP PCC 
Patches (Quantity) 

IH             Sections % 
FN 38 0.023735 
T- 115 0.071830 
0 1251 0.781387 

94.44% 
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T+ 146 0.091193 
FP 51 0.031855 

US             Sections % 
FN 11 0.016467 
T- 73 0.109281 
0 521 0.779940 
T+ 53 0.079341 
FP 10 0.014970 

96.86% 
 

SH             Sections % 
FN 8 0.010458 
T- 58 0.075817 
0 636 0.831373 
T+ 59 0.077124 
FP 4 0.005229 

98.43% 
 

FM             Sections % 
FN 2 0.008439 
T- 27 0.113924 
0 171 0.721519 
T+ 29 0.122363 
FP 8 0.033755 

95.78% 

CRCP Average Crack 
Spacing (Average 
observed spacing in feet) 

IH             Sections % 
FN 26 0.016240 
T- 140 0.087445 
0 103 0.064335 
T+ 1215 0.758901 
FP 117 0.073079 

91.07% 

US              Sections % 
FN 8 0.011976 
T- 76 0.113772 
0 49 0.073353 
T+ 484 0.724551 
FP 51 0.076347 

91.17% 

SH             Sections % 
FN 10 0.013072 
T- 90 0.117647 
0 39 0.050980 
T+ 566 0.739869 
FP 60 0.078431 

90.85% 

FM    Sections % 
FN 3 0.012658 
T- 32 0.135021 
0 11 0.046414 
T+ 191 0.805907 
FP 0 0.000000 

98.73% 
 

Table 5.48 shows the accuracy thresholds of each distress type of JCP. The accuracy will be 
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calculated by comparing the measurement values of the annual rating data and audit data. 
For JCP Shattered Slabs and JCP Slabs with Longitudinal Cracks in all highway service levels, 
the quantity threshold value is a decimal number. The difference in distress measurement value 
of annual data compared with the audit data shows a discrepancy because most sections have no 
change and are within the threshold range. Some sections are out of the threshold range. The 
thresholds must be evaluated further with more data. 

Table 5.48 Accuracy thresholds of the annual rating compared with the audit data for JCP 
Distress Type   Highway service 

level  
No. of Sections Accuracy 

JCP Failed Joint Cracks 
(Quantity) 

IH             Sections % 
FN 0 0.000000 
T- 18 0.120000 
0 80 0.533333 
T+ 47 0.313333 
FP 5 0.033333 

96.67% 

US   Sections % 
FN 0 0.000000 
T- 52 0.191176 
0 130 0.477941 
T+ 79 0.290441 
FP 11 0.040441 

95.96% 

SH             Sections % 
FN 5 0.023923 
T- 44 0.210526 
0 88 0.421053 
T+ 64 0.306220 
FP 8 0.038278 

93.78% 

FM              Sections % 
FN 4 0.040816 
T- 18 0.183673 
0 57 0.581633 
T+ 15 0.153061 
FP 4 0.040816 

91.84% 
 

JCP Failures (Quantity) IH   Sections % 
FN 0 0.000000 
T- 18 0.120000 
0 72 0.480000 
T+ 58 0.386667 
FP 2 0.013333 

98.67% 

US             Sections % 
FN 1 0.003676 
T- 45 0.165441 
0 125 0.459559 
T+ 98 0.360294 
FP 3 0.011029 

98.53% 
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SH              Sections % 
FN 5 0.023923 
T- 35 0.167464 
0 77 0.368421 
T+ 86 0.411483 
FP 6 0.028708 

94.74% 

FM   Sections % 
FN 1 0.010204 
T- 17 0.173469 
0 47 0.479592 
T+ 28 0.285714 
FP 5 0.051020 

93.88% 

JCP PCC Patches 
(Quantity) 

IH   Sections % 
FN 3 0.020000 
T- 28 0.186667 
0 85 0.566667 
T+ 27 0.180000 
FP 7 0.046667 

93.3% 

US   Sections % 
FN 4 0.014706 
T- 68 0.250000 
0 156 0.573529 
T+ 39 0.143382 
FP 5 0.018382 

96.69% 

SH   Sections % 
FN 4 0.019139 
T- 25 0.119617 
0 151 0.722488 
T+ 22 0.105263 
FP 7 0.033493 

94.74% 
 

FM             Sections % 
FN 0 0.000000 
T- 9 0.091837 
0 65 0.663265 
T+ 21 0.214286 
FP 3 0.030612 

96.94% 

JCP Shattered 
Slabs (Quantity) 

IH             Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 140 0.933333 
T+ 7 0.046667 
FP 3 0.020000 

98% 

US  Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 266 0.977941 

98.9% 
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T+ 3 0.011029 
FP 3 0.011029 

SH               Sections % 
FN 0 0.000000 
T- 2 0.009569 
0 189 0.904306 
T+ 13 0.062201 
FP 5 0.023923 

97.61% 

FM   Sections % 
FN 1 0.010204 
T- 1 0.010204 
0 93 0.948980 
T+ 2 0.020408 
FP 1 0.010204 

97.96% 

JCP Slabs with 
Longitudinal 
Cracks (Quantity)  

IH  Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 140 0.933333 
T+ 7 0.046667 
FP 3 0.020000 

98% 
 

US  Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 266 0.977941 
T+ 3 0.011029 
FP 3 0.011029 

98.9% 
 

SH  Sections % 
FN 0 0.000000 
T- 2 0.009569 
0 189 0.904306 
T+ 13 0.062201 
FP 5 0.023923 

97.61% 

FM  Sections % 
FN 1 0.010204 
T- 1 0.010204 
0 93 0.948980 
T+ 2 0.020408 
FP 1 0.010204 

97.96% 

JCP Apparent Joint 
Space 

IH  Sections % 
FN 0 0.000000 
T- 17 0.113333 
0 115 0.766667 
T+ 13 0.086667 
FP 5 0.033333 

96.67% 

US  Sections % 
FN 7 0.025735 

94.85% 
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T- 36 0.132353 
0 180 0.661765 
T+ 42 0.154412 
FP 7 0.025735 

 

SH  Sections % 
FN 0 0.000000 
T- 44 0.210526 
0 112 0.535885 
T+ 36 0.172249 
FP 17 0.081340 

91.87% 
 

FM              Sections % 
FN 4 0.040816 
T- 9 0.091837 
0 68 0.693878 
T+ 15 0.153061 
FP 2 0.020408 

93.88% 
 

Index #4: Precision of the annual rating data 
The precision of each distress type measurement value is determined by comparing two years’ 
annual data in the same section. Precision is equal to TP/(TP+FP). The dataset used for precision 
analysis of the annual rating is the paired PMIS annual rating data of the same section from 
FY2017 to FY2021.  
Table 5.49 shows the precision threshold for ACP. The precision is calculated by comparing the 
measurement values of two years’ annual rating data in the same section. The threshold format is 
the difference of each distress measurement value in two years. 
For ACP Block Cracking distress type at the IH level, there are no fixed threshold range for 
precision as there is no data available for precision analysis (marked in Table 5.49). Furthermore, 
for ACP Block Cracking at US level, there is not enough data available for analysis, so we 
cannot say that the threshold range used to calculate the precision for ACP Block Cracking at US 
level is correct. Therefore, the threshold range must be further evaluated with sufficient data. 
For ACP Failure at IH and US highway service levels, the quantity threshold value is a decimal 
number. The difference in distress measurement value of annual data compared with the audit 
data shows a discrepancy because most sections have no change and are within the threshold 
range as the difference in measurement value is zero. Some sections are out of the threshold 
range. Therefore, the precision calculated for these levels may not be usable for the analysis 
framework of PMIS data. The thresholds must be evaluated further with more data. 

Table 5.49 Precision threshold for individual distress type for ACP 
Distress Type  Highway 

service 
level 

Threshold 
range 

No. of Sections Threshold 

ACP Alligator 
Cracking 
(Percentage of 

IH ( -5.01, 5.53)  Sections % 
FN 5 0.010989 
T- 29 0.063736 

97.11% 
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Wheel path 
Length) 

0 369 0.810989 
T+ 39 0.085714 
FP 13 0.028571 

US ( -8.84, 7.23)              Sections % 
FN 24 0.053812 
T- 68 0.152466 
0 308 0.690583 
T+ 41 0.091928 
FP 5 0.011211 

98.82% 
 

SH ( -11.0, 10.64)   Sections % 
FN 179 0.020672 
T- 1798 0.207645 
0 5342 0.616930 
T+ 1184 0.136736 
FP 156 0.018016 

98.16% 
 

FM ( -8.97, 8.45)             Sections % 
FN 2879 0.027966 
T- 22619 0.219715 
0 60277 0.585515 
T+ 15018 0.145881 
FP 2154 0.020923 

97.85% 
 

 

ACP 
Longitudinal 
Cracking 
(Length in Feet 
per station). 

IH ( -30.58, 43.64)               Sections % 
FN 8 0.017582 
T- 85 0.186813 
0 121 0.265934 
T+ 222 0.487912 
FP 19 0.041758 

95.75% 
 

US ( -47.54, 46.3)             Sections % 
FN 11 0.024664 
T- 208 0.466368 
0 43 0.096413 
T+ 169 0.378924 
FP 15 0.033632 

96.55% 
 

SH ( -43.9, 42.87)   Sections % 
FN 275 0.031759 
T- 3582 0.413674 
0 1322 0.152674 
T+ 3239 0.374062 
FP 241 0.027832 

97.13% 
 

FM ( -41.3, 39.05)             Sections % 
FN 3103 0.030142 
T- 43460 0.422159 
0 18665 0.181307 
T+ 34888 0.338893 
FP 2831 0.027500 

97.16% 

ACP IH ( -2.12, 2.01)             Sections % 98.39% 
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Transverse 
Cracking 
(Quantity) 

FN 21 0.046154 
T- 28 0.061538 
0 346 0.760440 
T+ 53 0.116484 
FP 7 0.015385 

US ( -1.69, 1.5)             Sections % 
FN 25 0.056054 
T- 58 0.130045 
0 306 0.686099 
T+ 45 0.100897 
FP 12 0.026906 

97.15% 

SH ( -2.9, 2.67)               Sections % 
FN 300 0.034646 
T- 1081 0.124841 
0 6315 0.729299 
T+ 813 0.093891 
FP 150 0.017323 

98.21% 

FM ( -1.84, 1.64)      Sections % 
FN 4211 0.040905 
T- 6360 0.061779 
0 86677 0.841958 
T+ 4058 0.039418 
FP 1641 0.015940 

98.34% 
 

 

ACP Patching 
(Percentage of 
Lane Area) 

IH ( -16.25, 20.67)            Sections % 
FN 0 0.000000 
T- 17 0.037363 
0 389 0.854945 
T+ 27 0.059341 
FP 22 0.048352 

95.16% 

US ( -10.52, 10.38)   Sections % 
FN 12 0.026906 
T- 34 0.076233 
0 359 0.804933 
T+ 29 0.065022 
FP 12 0.026906 

97.24% 

SH ( -11.55, 11.53)             Sections % 
FN 151 0.017439 
T- 449 0.051854 
0 7401 0.854718 
T+ 513 0.059245 
FP 145 0.016746 

98.3% 

FM ( -12.3, 12.33)            Sections % 
FN 1746 0.016960 
T- 5442 0.052862 
0 87045 0.845532 
T+ 6754 0.065607 

98.06% 
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FP 1960 0.019039 
ACP Block 
Cracking 
(Percentage of 
Lane Area) 

IH No data   
US (0.0, 0.0)  Sections % 

FN 0 0.0 
0 42        1.0 
FP 0 0.0 

100% 

SH ( -7.45, 9.09)            Sections % 
FN 4 0.012821 
T- 6 0.019231 
0 257 0.823718 
T+ 30 0.096154 
FP 15 0.048077 

95.13% 

FM ( -6.25, 6.99)            Sections % 
FN 7 0.002205 
T- 14 0.004411 
0 2996 0.943919 
T+ 88 0.027725 
FP 69 0.021739 

97.82% 

ACP Failure 
(Quantity) 

IH ( -0.33, 0.33)              Sections % 
FN 5 0.010989 
T- 0 0.000000 
0 446 0.980220 
T+ 0 0.000000 
FP 4 0.008791 

99.11% 
 

US ( -0.82, 0.81)      Sections % 
FN 2 0.004484 
T- 0 0.000000 
0 438 0.982063 
T+ 0 0.000000 
FP 6 0.013453 

98.65% 
 

SH ( -1.38, 1.4)             Sections % 
FN 57 0.006583 
T- 101 0.011664 
0 8304 0.959002 
T+ 129 0.014898 
FP 68 0.007853 

99.21% 
 

FM ( -1.43, 1.45)             Sections % 
FN 1002 0.009733 
T- 1886 0.018320 
0 96593 0.938279 
T+ 2214 0.021506 
FP 1252 0.012162 

98.77% 

Table 5.50 shows the precision threshold (Change in measurement values) for individual distress 
types of CRCP.  
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For each CRCP distress type at IH and US levels, the number of sections used for the precision 
threshold analysis is exceptionally low. Hence, the threshold ranges need further evaluation 
because the threshold might be incorrect due to the low available data.  

Table 5.50 Precision threshold for individual distress type for CRCP 
Distress Type   Highway 

service 
level  

Threshold range No. of Sections Threshold  

CRCP Spalled 
Cracks (Quantity)  

IH  ( -3.8, 3.53)             Sections % 
FN 1 0.083333 
T- 2 0.166667 
0 7 0.583333 
T+ 1 0.083333 
FP 1 0.083333 

90.91% 

US  ( -7.2, 4.76)              Sections % 
FN 1 0.111111 
T- 1 0.111111 
0 7 0.777778 
T+ 0 0.000000 
FP 0 0.000000 

100% 

SH  ( -5.23, 5.46)             Sections % 
FN 5 0.002600 
T- 175 0.091004 
0 1507 0.783671 
T+ 231 0.120125 
FP 5 0.002600 

 99.74% 

FM  ( -2.18, 2.3)             Sections % 
FN 7 0.010029 
T- 38 0.054441 
0 589 0.843840 
T+ 49 0.070201 
FP 15 0.021490 

 97.83% 
  

CRCP Punchout 
(Quantity) 

IH  ( -2.41, 2.25)           Sections % 
FN 1 0.083333 
T- 1 0.083333 
0 8 0.666667 
T+ 2 0.166667 
FP 0 0.000000 

 100% 

US  ( -8.56, 6.11)            Sections % 
FN 1 0.111111 
T- 0 0.000000 
0 8 0.888889 
T+ 0 0.000000 
FP 0 0.000000     

100% 

SH  ( -1.27, 1.31)  Sections % 
FN 28 0.014561 

 98.36% 
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T- 78 0.040562 
0 1690 0.878835 
T+ 96 0.049922 
FP 31 0.016121 

FM  ( -0.82, 0.85)            Sections % 
FN 20 0.028653 
T- 0 0.000000 
0 648 0.928367 
T+ 0 0.000000 
FP 30 0.042980 

 95.58% 
  

CRCP ACP Patches 
(Quantity)  

IH  ( -0.85, 0.85)           Sections             % 
FN 1 0.083333 
T- 0 0.000000 
0 10 0.833333 
T+ 0 0.000000 
FP 1 0.083333 

90.91% 

US  ( -0.78, 0.56)            Sections % 
FN 1 0.111111 
T- 0 0.000000 
0 8 0.888889 
T+ 0 0.000000 
FP 0 0.000000 

100% 

SH  ( -2.29, 2.22)            Sections % 
FN 21 0.010920 
T- 56 0.029121 
0 1776 0.923557 
T+ 57 0.029641 
FP 13 0.006760 

99.32% 
  

FM  ( -9.42, 9.85)            Sections % 
FN 3 0.004298 
T- 7 0.010029 
0 666 0.954155 
T+ 16 0.022923 
FP 6 0.008596 

99.14% 

CRCP PCC 
Patches (Quantity) 

IH  ( -14.28, 19.12)            Sections % 
FN 0 0.000000 
T- 2 0.166667 
0 8 0.666667 
T+ 1 0.083333 
FP 1 0.083333 

91.67% 
  

US  ( -0.56, 0.78)            Sections % 
FN 0 0.000000 
T- 0 0.000000 
0 8 0.888889 
T+ 0 0.000000 
FP 1 0.111111 

88.89% 
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SH  ( -5.95, 6.53)            Sections % 
FN 36 0.018721 
T- 134 0.069683 
0 1503 0.781591 
T+ 196 0.101924 
FP 54 0.028081 

97.14%  

FM  ( -6.49, 6.66)            Sections % 
FN 15 0.021490 
T- 62 0.088825 
0 539 0.772206 
T+ 66 0.094556 
FP 16 0.022923 

97.66% 

CRCP Average 
Crack Spacing 
(Average observed 
spacing in feet) 

IH  ( -27.13, 22.96)             Sections % 
FN 1 0.083333 
T- 3 0.250000 
0 2 0.166667 
T+ 6 0.500000 
FP 0 0.000000 

 100% 

US  ( -41.74, 40.18)  Sections % 
FN 0 0.000000 
T- 4 0.444444 
0 2 0.222222 
T+ 3 0.333333 
FP 0 0.000000 

 100% 
  

SH  ( -36.17, 46.83)            Sections % 
FN 52 0.027041 
T- 542 0.281851 
0 297 0.154446 
T+ 915 0.475819 
FP 117 0.060842 

93.75% 

FM  ( -38.88, 57.33)   Sections % 
FN 19 0.027221 
T- 170 0.243553 
0 101 0.144699 
T+ 376 0.538682 
FP 32 0.045845 

95.29% 

Table 5.51 shows the precision threshold (Change in measurement values) for individual distress 
types of JCP. For each JCP distress type at IH, US, and FM levels, the number of sections used 
for the precision threshold analysis is exceptionally low. Hence, the threshold ranges need 
further evaluation because the threshold may provide incorrect data. 
For each JCP distress type at the IH level, there is no data available for analysis after merging. 
The threshold cannot be calculated for JCP at the IH level. 
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Table 5.51 Precision threshold for individual distress type for JCP 
Distress Type   Highway 

service 
level  

Threshold range No. of Sections Threshold  

JCP Failed Joint 
Cracks (Quantity) 

IH  No data                
US  ( -4.64, 5.95)  Sections % 

FN 0 0.00000 
T- 9 0.28125 
0 10 0.31250 
T+ 10 0.31250 
FP 3 0.09375 

 90.63% 

SH  ( -8.03, 8.38)            Sections % 
FN 10 0.024510 
T- 84 0.205882 
0 170 0.416667 
T+ 135 0.330882 
FP 9 0.022059 

 97.74% 

FM  ( -2.87, 3.25)            Sections % 
FN 4 0.037383 
T- 20 0.186916 
0 47 0.439252 
T+ 34 0.317757 
FP 2 0.018692 

 98.06% 
  

JCP Failures 
(Quantity) 

IH  No data      
US  ( -18.62, 22.25)            Sections % 

FN 0 0.00000 
T- 9 0.28125 
0 13 0.40625 
T+ 9 0.28125 
FP 1 0.03125 

96.88% 

SH  ( -13.29, 13.38)             Sections % 
FN 9 0.022059 
T- 98 0.240196 
0 173 0.424020 
T+ 121 0.296569 
FP 7 0.017157 

98.25% 
  

FM  ( -7.45, 7.92)  Sections % 
FN 4 0.037383 
T- 32 0.299065 
0 38 0.355140 
T+ 27 0.252336 
FP 6 0.056075 

94.17% 

JCP PCC Patches 
(Quantity) 

IH  No data    
 

US  ( -36.42, 30.86)  Sections % 
FN 2 0.06250 
T- 7 0.21875 

96.67% 
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0 14 0.43750 
T+ 8 0.25000 
FP 1 0.03125 

SH  ( -16.93, 16.68)             Sections % 
FN 10 0.024510 
T- 58 0.142157 
0 278 0.681373 
T+ 56 0.137255 
FP 6 0.014706 

98.49% 

FM  ( -6.79, 4.94)            Sections % 
FN 7 0.065421 
T- 23 0.214953 
0 64 0.598131 
T+ 10 0.093458 
FP 3 0.028037 

 97% 
 

  

JCP Shattered 
Slabs (Quantity) 

IH  No data    
US  ( -0.77, 0.83)            Sections % 

FN 2 0.06250 
T- 0 0.00000 
0 27 0.84375 
T+ 0 0.00000 
FP 3 0.09375 

 90% 

SH  ( -2.85, 2.74)            Sections % 
FN 10 0.024510 
T- 13 0.031863 
0 377 0.924020 
T+ 2 0.004902 
FP 6 0.014706 

 98.49% 

FM  ( -0.5, 0.52)  Sections % 
FN 2 0.018692 
T- 0 0.000000 
0 103 0.962617 
T+ 0 0.000000 
FP 2 0.018692 

 98.1% 
  

JCP Slabs with 
Longitudinal 
Cracks (Quantity)  

IH  No data    
US  ( -5.72, 7.66)  Sections % 

FN 0 0.00000 
T- 3 0.09375 
0 21 0.65625 
T+ 7 0.21875 
FP 1 0.03125 

 96.88% 

SH  ( -7.0, 6.09)             Sections % 
FN 15 0.036765 
T- 65 0.159314 
0 264 0.647059 
T+ 58 0.142157 

 98.47% 
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FP 6 0.014706 
FM  ( -4.53, 3.92)            Sections % 

FN 4 0.037383 
T- 14 0.130841 
0 78 0.728972 
T+ 10 0.093458 
FP 1 0.009346 

 99.03% 
 

  

JCP Apparent Joint 
Space 

IH  No data    
US  ( -2.71, 2.31)            Sections % 

FN 1 0.03125 
T- 15 0.46875 
0 8 0.25000 
T+ 6 0.18750 
FP 2 0.06250 

 93.55% 

SH  ( -6.85, 7.17)            Sections % 
FN 10 0.024510 
T- 101 0.247549 
0 150 0.367647 
T+ 136 0.333333 
FP 11 0.026961 

97.24% 
  

FM  ( -10.08, 11.25)             Sections % 
FN 2 0.018692 
T- 40 0.373832 
0 23 0.214953 
T+ 33 0.308411 
FP 9 0.084112 

91.43% 
 

  

Index #5 Yearly change of each section DS, CS, and RS 
The threshold of yearly change of DS, CS, and RS in the same section is presented. Threshold 
values are determined by calculating the DS, CS, and RS differences of the same section 
compared with the following year determining the points that hold 95% of the data or within two 
standard deviations of the mean. 
Table 5.52 shows the thresholds of Distress Score for yearly change of each section based on the 
two determining factors (pavement type and highway service level). The threshold is in the 
format of two years’ DS differences. A total of 12 thresholds are determined in this table. In 
Table 81, for CRCP pavement type in IH and US levels, the number of sections used for the DS 
threshold range analysis is extremely low. Hence, the threshold ranges for DS need further 
evaluation because the threshold might be incorrect. For JCP pavement type at US and FM 
levels, the number of sections used for DS range analysis is extremely low. Hence, the thresholds 
may also be flagged for further evaluation with sufficient data. For the JCP pavement type at the 
IH level, there is no data available for analysis after merging. Hence, the threshold cannot be 
calculated for JCP at the IH level. 
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Table 5.52 Thresholds of DS yearly change of section 
Pavement 
Type 

Highway 
service 
level  

DS range No. of Sections Threshold 

ACP IH  ( -18.56, 
13.55) 

            Sections % 
FN 28 0.061538 
T- 175 0.384615 
0 162 0.356044 
T+ 82 0.180220 
FP 8 0.017582 

98.13% 
 

SH  ( -21.5, 21.55)            Sections % 
FN 258 0.029796 
T- 2664 0.307657 
0 2969 0.342880 
T+ 2475 0.285830 
FP 293 0.033838 

96.51% 
 

US  ( -19.02, 18.8)             Sections % 
FN 13 0.029148 
T- 170 0.381166 
0 103 0.230942 
T+ 145 0.325112 
FP 15 0.033632 

96.54% 

FM  ( -22.3, 23.62)             Sections % 
FN 2964 0.028792 
T- 30767 0.298863 
0 28348 0.275365 
T+ 37159 0.360953 
FP 3709 0.036028 

96.29% 
 

 

CRCP IH  ( -61.18, 
53.34) 

           Sections % 
FN 1 0.083333 
T- 2 0.166667 
0 6 0.500000 
T+ 3 0.250000 
FP 0 0.000000 

100% 

SH  ( -28.17, 26.3)  Sections % 
FN 90 0.046802 
T- 258 0.134165 
0 1308 0.680187 
T+ 198 0.102964 
FP 69 0.035881 

96.24% 

US  ( -46.63, 
63.74) 

            Sections % 
FN 0 0.000000 
T- 1 0.111111 
0 7 0.777778 
T+ 0 0.000000 
FP 1 0.111111 

88.89% 



103 
 

FM  ( -32.55, 
30.72) 

             Sections % 
FN 31 0.044413 
T- 90 0.128940 
0 480 0.687679 
T+ 75 0.107450 
FP 22 0.031519 

96.7% 

JCP IH  No data   

SH  ( -42.67, 40.8)              Sections % 
FN 20 0.049020 
T- 96 0.235294 
0 189 0.463235 
T+ 86 0.210784 
FP 17 0.041667 

95.62% 

US  ( -19.51, 
15.64) 

             Sections % 
FN 2 0.06250 
T- 5 0.15625 
0 18 0.56250 
T+ 7 0.21875 
FP 0 0.00000 

100% 
 

FM  ( -45.77, 
45.96) 

 Sections % 
FN 4 0.037383 
T- 28 0.261682 
0 38 0.355140 
T+ 30 0.280374 
FP 7 0.065421 

93.2% 

In Table 5.53, for CRCP pavement type at IH and US levels, the number of sections used for the 
CS threshold analysis is extremely low. Hence, the threshold ranges for CS need further 
evaluation because we cannot say the threshold can be used for future analysis of PMIS annual 
rating data of each Fiscal Year. The threshold may provide incorrect data. 
For JCP pavement type at US and FM levels, the number of sections used for CS threshold 
analysis is extremely low. Hence, the thresholds may also be flagged for further evaluation with 
sufficient data. For the JCP pavement type at the IH level, there is no data available for analysis 
after merging. Hence, the threshold cannot be calculated for JCP at the IH level. 

Table 5.53 Thresholds of CS yearly change of section 
Pavement Type Highway 

service 
level  

CS range No. of Sections Threshold 

ACP IH  ( -19.93, 14.28)  Sections % 
FN 29 0.063736 
T- 180 0.395604 
0 157 0.345055 
T+ 84 0.184615 
FP 5 0.010989 

98.83% 
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SH  ( -27.25, 26.4)  Sections % 
FN 275 0.031906 
T- 2820 0.327184 
0 2769 0.321267 
T+ 2512 0.291449 
FP 243 0.028194 

97.09% 

US  ( -20.39, 19.93)  Sections % 
FN 13 0.029148 
T- 175 0.392377 
0 101 0.226457 
T+ 140 0.313901 
FP 17 0.038117 

96.07% 

FM  ( -26.3, 26.86)              Sections % 
FN 3058 0.029792 
T- 32276 0.314443 
0 26841 0.261493 
T+ 37168 0.362102 
FP 3302 0.032169 

96.68% 

CRCP IH  ( -61.97, 54.47)               Sections % 
FN 1 0.083333 
T- 4 0.333333 
0 1 0.083333 
T+ 6 0.500000 
FP 0 0.000000 

100% 

SH  ( -28.94, 27.46)  Sections % 
FN 92 0.047967 
T- 348 0.181439 
0 1048 0.546403 
T+ 364 0.189781 
FP 66 0.034411 

96.39% 

US  ( -51.27, 67.49)           Sections           % 
FN 0 0.000000 
T- 3 0.333333 
0 3 0.333333 
T+ 2 0.222222 
FP 1 0.111111 

88.89% 

FM  ( -33.16, 32.26)            Sections % 
FN 31 0.044928 
T- 163 0.236232 
0 307 0.444928 
T+ 167 0.242029 
FP 22 0.031884 

96.66% 

JCP IH  No data   
SH  ( -38.29, 36.11)  Sections % 

FN 17 0.041975 
T- 135 0.333333 

97.68% 
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0 90 0.222222 
T+ 154 0.380247 
FP 9 0.022222 

US  ( -35.25, 34.81)            Sections % 
FN 1 0.03125 
T- 10 0.31250 
0 11 0.34375 
T+ 9 0.28125 
FP 1 0.03125 

96.77% 

FM  ( -38.95, 39.53)            Sections % 
FN 4 0.037383 
T- 43 0.401869 
0 13 0.121495 
T+ 42 0.392523 
FP 5 0.046729 

95.15% 

Table 5.54 shows the thresholds of Ride Score for yearly change of each section based on the 
two determining factors. The threshold is in the format of two years’ RS differences. A total of 
12 thresholds are determined in this table. 
In Table 5.54, for CRCP pavement type at IH and US levels, the number of sections used for the 
RS range analysis is extremely low. Hence, the threshold ranges for DS need further evaluation 
because the threshold might be incorrect. For JCP pavement type at US and FM levels, the 
number of sections used for RS threshold analysis is extremely low. Hence, the thresholds may 
also be flagged for further evaluation with sufficient data. For the JCP pavement type at the IH 
level, there is no data available for analysis after merging. Therefore, the threshold cannot be 
calculated for JCP at IH levels. 

Table 5.54 Thresholds of RS yearly change of section 
Pavement Type Highway 

service 
level  

RS range No. of Sections Threshold 

ACP IH  ( -0.54, 0.38)            Sections % 
FN 15 0.032967 
T- 303 0.665934 
0 28 0.061538 
T+ 101 0.221978 
FP 8 0.017582 

98.18% 

SH  ( -0.67, 0.64)  Sections % 
FN 192 0.022276 
T- 4705 0.545887 
0 298 0.034575 
T+ 3183 0.369300 
FP 241 0.027961 

97.14% 
 

US  ( -0.47, 0.49)             Sections % 
FN 7 0.015695 

96.36% 
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T- 208 0.466368 
0 21 0.047085 
T+ 194 0.434978 
FP 16 0.035874 

FM  ( -0.6, 0.58)           Sections           % 
FN 1914 0.018645 
T- 53243 0.518660 
0 2603 0.025357 
T+ 42397 0.413005 
FP 2498 0.024334 

97.52% 

CRCP IH  ( -0.77, 0.66)              Sections % 
FN 1 0.083333 
T- 5 0.416667 
0 0 0.000000 
T+ 6 0.500000 
FP 0 0.000000 

100% 

SH  ( -0.55, 0.63)  Sections % 
FN 19 0.009886 
T- 880 0.457856 
0 57 0.029657 
T+ 899 0.467742 
FP 67 0.034860 

96.48% 

US  ( -0.92, 1.3)             Sections % 
FN 0 0.000000 
T- 4 0.444444 
0 0 0.000000 
T+ 4 0.444444 
FP 1 0.111111 

88.89% 

FM  ( -0.5, 0.56)             Sections % 
FN 20 0.028694 
T- 276 0.395983 
0 27 0.038737 
T+ 357 0.512195 
FP 17 0.024390 

97.49% 
 

JCP IH  No data   
SH  ( -0.69, 0.64)  Sections % 

FN 11 0.027160 
T- 177 0.437037 
0 18 0.044444 
T+ 194 0.479012 
FP 5 0.012346 

98.73% 

US  ( -0.93, 0.9)             Sections % 
FN 1 0.03125 
T- 17 0.53125 
0 0 0.00000 
T+ 14 0.43750 

100% 



107 
 

FP 0 0.00000 
FM  ( -0.53, 0.6)             Sections % 

FN 4 0.037383 
T- 43 0.401869 
0 7 0.065421 
T+ 47 0.439252 
FP 6 0.056075 

94.17% 
 

5.3 Threshold development method selection 

The research team decided to apply a sigma-based method for threshold development. To 
compare with the thresholds of different sigma values, the research team compared the 
thresholds of 1 sigma, 1.25 sigma, 1.5 sigma, and 2 sigma-based methods. By using the auto and 
audit data, the research team developed index #2 threshold and accuracy. Table 5.55, Table 5.57, 
and Table 5.59 list the measurement value thresholds based on 1 sigma, 1.25 sigma, 1.5 sigma, 
and 2 sigma methods of different distress types in IH, US, SH, and FM highway network levels 
for three pavement types (ACP, CRCP, and JCP). Table 5.56, Table 5.58, and Table 5.60 list 
accuracies of each distress type based on 1 sigma, 1.25 sigma, 1.5 sigma, and 2 sigma methods in 
IH, US, SH, and FM highway network levels for three pavement types (ACP, CRCP, and JCP).  

Table 5.55 Comparison of sigma-based methods for measurement threshold development 
in ACP 

Distress Type   Network 
Level  

Thresholds 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

ACP Alligator Cracking 
(Percentage of Wheel path 
Length)  

IH  (-6.07,5.04) (-7.46,6.42) (-8.85,7.81) (-11.62,10.59)      
US  (-8.26,6.83) (-10.15,8.71) (-12.04,10.6) (-15.81,14.37) 

      
SH  (-7.61,6.14) (-9.33,7.85) (-11.05,9.57) (-14.49,13.01) 

      
FM  (-4.97,4.74) (-6.19,5.95) (-7.4,7.17) (-9.83,9.6) 

      
ACP Longitudinal 
Cracking (Length in Feet 
per station).  

IH  (-32.85,29.44) (-40.64,37.23) (-48.43,45.02) (-64.0,60.59) 
      

US  (-25.41,24.8) (-31.68,31.08) (-37.96,37.35) (-50.51,49.91) 
      

SH  (-22.4,24.18) (-28.22,30.01) (-34.05,35.83) (-45.69,47.48) 
      

FM  (-14.96,22.57) (-19.65,27.27) (-24.34,31.96) (-33.72,41.34) 
      

ACP Transverse 
Cracking (Quantity)  

IH  (-2.03,1.74) (-2.5,2.21) (-2.97,2.68) (-3.91,3.62) 
      

US  (-2.17,1.57) (-2.64,2.03) (-3.11,2.5) (-4.04,3.44) 
      

SH  (-2.56,2.13) (-3.15,2.71) (-3.73,3.3) (-4.91,4.47) 
      

FM  (-1.23,1.08) (-1.52,1.37) (-1.81,1.66) (-2.38,2.24) 
      

ACP Patching 
(Percentage of Lane Area)  

IH  (-3.61,3.76) (-4.53,4.68) (-5.45,5.6) (-7.29,7.44) 
      

US  (-4.87,4.64) (-6.05,5.82) (-7.24,7.01) (-9.62,9.39) 
      

SH  (-4.8,4.43) (-5.95,5.58) (-7.1,6.73) (-9.41,9.04) 
      

FM  (-4.93,4.68) (-6.13,5.89) (7.33 ,7.09) (-9.73,9.49) 
      

ACP Block Cracking 
(Percentage of Lane Area)  

IH  (-3.88,3.77) (-4.84,4.73) (-5.8,5.69) (-7.71,7.6) 
      

US  (-2.5,2.67) (-3.14,3.32) (-3.79,3.96) (-5.08,5.26) 
      

SH  (-3.39,3.32) (-4.23,4.16) (-5.07,5) (-6.75,6.68) 
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FM  (-1.5,1.52) (-1.87,1.9) (-2.25,2.27) (-3,3.03) 
 

ACP Failure (Quantity)  IH  (-0.71,0.62) (-0.87,0.78) (-1.04,0.95) (-1.37,1.28) 
      

US  (-0.7,0.69) (-0.87,0.86) (-1.05,1.03) (-1.39,1.38) 
      

SH  (-0.47,0.43) (-0.58,0.54) (-0.69,0.66) (-0.92,0.88) 
      

FM  (-0.91,0.86) (-1.14,1.08) (-1.36,1.31) (-1.8,1.75) 
      

Table 5.56 Comparison of sigma-based methods for accuracy check in ACP 
Distress Type  Network 

Level 
Accuracy 

1 Sigma 1.25 
Sigma 

1.5 
Sigma 

2 Sigma 

ACP Alligator 
Cracking 
(Percentage of 
Wheel path Length) 

IH 93.08% 94.15% 95.09% 96.47%      
US 93.31% 94.57% 95.30% 96.51% 

      
SH 92.17% 93.38% 94.76% 96.22% 

      
FM 91.66% 93.84% 95.24% 96.49% 

      
ACP Longitudinal 
Cracking (Length 
in Feet per station). 

IH 86.42% 89.88% 92.67% 95.43% 
      

US 84.41% 87.70% 90.04% 93.53% 
      

SH 84.87% 88.32% 90.71% 94.01% 
      

FM 85.67% 89.16% 91.35% 94.46% 
      

ACP Transverse 
Cracking (Quantity) 

IH 93.45% 94.93% 94.93% 96.71% 
      

US 89.95% 91.89% 94.10% 96.40% 
      

SH 92.63% 94.63% 95.60% 97.46% 
      

FM 93.22% 93.22% 93.22% 96.82% 
      

ACP Patching 
(Percentage of Lane 
Area) 

IH 95.23% 95.67% 96.07% 96.88% 
      

US 95.96% 96.87% 97.20% 97.92% 
      

SH 94.82% 95.54% 96.17% 97.35% 
      

FM 94.31% 95.33% 95.98% 96.91% 
      

ACP Block 
Cracking 
(Percentage of Lane 
Area) 

IH 98.86% 99.03% 99.09% 99.26% 
      

US 98.50% 98.57% 98.57% 98.87% 
      

SH 98.66% 98.77% 98.90% 99.06% 
      

FM 99.14% 99.14% 99.31% 99.38% 
      

ACP Failure 
(Quantity) 

IH 94.96% 94.96% 97.45% 98.32% 
      

US 97.64% 97.64% 99.17 99.17% 
      

SH 97.07% 97.07% 97.07% 97.07% 
      

FM 95% 98.62% 98.62% 98.62% 
      

Table 5.57 Comparison of sigma-based methods for measurement threshold development 
in CRCP 

Distress Type   Network 
Level  

Thresholds 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

CRCP Spalled 
Cracks (Quantity)  

IH  (-2.01,1.73) (-2.48,2.2) (-2.95,2.66) (-3.88, 3.6)      
US  (-5.36,4.71) (-6.62,5.97) (-7.88,7.23)  (-10.4, 9.75) 

      
SH  (-11.42,8.86) (-13.95,11.39) (-16.49,13.92)  (-21.56, 18.99) 

      
FM  (-1.18,0.99) (-1.45,1.26) (-1.72,1.53)  (-2.26, 2.07) 

      
CRCP Punchout IH  (-1.16,0.93) (-1.42,1.19) (-1.68,1.46)  (-2.2, 1.98) 
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(Quantity) US  (-0.65,0.59) (-0.81,0.75) (-0.96,0.9)  (-1.27, 1.21) 
   

SH  (-0.75,0.69) (-0.93,0.87) (-1.11,1.05)  ( -1.47, 1.41) 
      

FM  (-0.37,0.31) (-0.45,0.39) (-0.53,0.48)  ( -0.7, 0.64) 
      

CRCP ACP Patches 
(Quantity)  

IH  (-1.51,1.67) (-1.91,2.07) (-2.3,2.47)  ( -3.1, 3.26) 
      

US  (-2.09,2.62) (-2.68,3.2) (-3.27,3.79)  ( -4.45, 4.97) 
      

SH  (-5.05,6.95) (-6.55,8.45) (-8.05,9.95)  ( -11.05, 12.95) 
      

FM  (-2.45,2.3) (-3.05,2.9) (-3.64,3.49)  ( -4.83, 4.68) 
      

CRCP PCC 
Patches (Quantity) 

IH  (-2.4,2.75) (-3.04,3.4) (-3.68,4.04) (-4.97,5.33) 
      

US  (-4.12,3.48) (-5.07,4.43) (-6.02,5.38) (-7.91,7.27) 
      

SH  (-4.16,3.7) (-5.15,4.68) (-6.13,5.66) (-8.1,7.63) 
      

FM  (-3.23,3.87) (-4.12,4.76) (-5.01,5.65) (-6.78,7.42) 
      

CRCP Average Crack 
Spacing (Average 
observed spacing in feet) 

IH  (-9.07,35.38) (-14.63,40.94) (-20.19,46.5) ( -31.3, 57.61) 
      

US  (-9.02,31.32) (-14.06,36.36) (-19.1,41.4)  ( -29.18, 51.48) 
      

SH  (-6.97,42.95) (-13.21,49.19) (-19.45,55.44)  ( -31.94, 67.92) 
      

FM  (-2.93,56.84) (-10.4,64.31) (-17.87,71.78)  ( -32.81, 86.72) 
      

Table 5.58 Comparison of sigma-based methods for accuracy check in CRCP 
Distress Type   Network 

Level  
Accuracy 

1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 
CRCP Spalled 
Cracks (Quantity)   

IH  93.63% 95.44% 95.44% 96.88% 

US  97.16% 97.46% 98.35% 98.65% 

SH  97.91% 98.04% 98.17% 98.30% 

FM  88.61% 96.20% 96.20% 98.73% 

CRCP Punchout 
(Quantity)  

IH  92.88% 96.07% 96.07% 97.13% 
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US  89.37% 89.37% 89.37% 97.16% 

SH  86.93% 86.93% 95.56% 95.56% 

FM  92.41% 92.41% 92.41% 92.41% 

CRCP ACP Patches 
(Quantity)   

IH  96.81% 97.19% 97.75% 98.19% 

US  96.56% 97.16% 97.16% 97.60% 

SH  96.99% 96.99% 96.99% 97.25% 

FM  96.62% 98.31% 98.31% 98.31% 
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CRCP PCC 
Patches (Quantity)  

IH  90.51% 92.57% 93.19% 94.44% 

US  94.61% 95.36% 95.96% 96.86% 

SH  95.56% 96.21% 97.25% 98.43% 

FM  91.14% 92.83% 94.09% 95.78% 

CRCP Average Crack 
Spacing (Average 
observed spacing in 
feet)  

IH  82.32% 85.01% 86.45% 91.07% 

US  85.33% 86.68% 88.02% 91.17% 

SH  78.56% 81.57% 84.44% 90.85% 

FM  63.71% 80.59% 97.47% 98.73% 
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Table 5.59 Comparison of sigma-based methods for measurement threshold development 
in JCP 

Distress Type   Network 
Level  

Thresholds 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

JCP Failed Joint 
Cracks (Quantity) 

IH  (-9.8,15.83) (-13.01,19.04) (-16.21,22.24) (-22.62,28.65)      
US  (-8.42,13.71) (-11.18,16.48) (-13.95,19.24) ( -19.48, 24.77) 

      
SH  (-5.02,6.17) (-6.42,7.57) (-7.81,8.97)  ( -10.61, 11.77) 

      
FM  (-1.8,1.6) (-2.23,2.03) (-2.65,2.45)  ( -3.51, 3.3) 

      
JCP Failures 
(Quantity) 

IH  (-24.3,35.24) (-31.74,42.68) (-39.19,50.12)  ( -54.07, 65.0) 
      

US  (-8.18,11.85) (-10.68,14.35) (-13.18,16.85)  ( -18.19, 21.86) 
      

SH  (-6.21,8.77) (-8.09,10.64) (-9.96,12.51)  ( -13.71, 16.26) 
      

FM  (-2.97,5.44) (-4.03,6.49) (-5.08,7.55)  ( -7.18, 9.65) 
      

JCP PCC Patches 
(Quantity) 

IH  (-6.03,6.48) (-7.59,8.04) (-9.15,9.6)  ( -12.28, 12.73) 
      

US  (-9.94,9.5) (-12.37,11.93) (-14.8,14.36)  ( -19.66, 19.22) 
      

SH  (-5.56,6.19) (-7.02,7.65) (-8.49,9.12)  ( -11.43, 12.06) 
      

FM  (-3.7,6.98) (-5.03,8.32) (-6.36,9.65)  ( -9.03, 12.32) 
      

JCP Shattered 
Slabs (Quantity) 

IH  (-11.68,15.88) (-15.12,19.32) (-18.57,22.77)  ( -25.45, 29.65) 
      

US  (-0.65,0.82) (-0.84,1.01) (-1.02,1.19) ( -1.39, 1.56) 
      

SH  (-2.19,3.04) (-2.85,3.7) (-3.5,4.35)  ( -4.81, 5.66) 
      

FM  (-1.28,1.41) (-1.62,1.74) (-1.96,2.08)  ( -2.63, 2.75) 
      

JCP Slabs with 
Longitudinal 
Cracks (Quantity)  

IH  (-10.78,9.65) ( -13.33,12.2) (-15.89,14.75) (-20.99,19.86) 
      

US  (-5.72,4.04) (-6.94,5.26) (-8.16,6.48) (-10.6,8.92) 
      

SH  (-5.91,4.54) (-7.21,5.85) (-8.52,7.15) (-11.13, 9.76) 
      

FM  (-6.63,3.79) (-7.93,5.09) (-9.23,6.39) (-11.83,9.0) 
      

JCP Apparent Joint 
Space 

IH  (-4.25,5.98) (-5.53,7.26) (-6.8,8.54)  ( -9.36, 11.1) 
      

US  (-10.39,10.59) (-13.01,13.22) (-15.63,15.84) (-20.88,21.09) 
      

SH  (-12.16,20.45) (-16.23,24.53) (-20.31,28.6) (-28.46,36.76) 
      

FM  (-5.39,3.86) (-6.55,5.02) (-7.71,6.18)  ( -10.02, 8.49) 
      

Table 5.60 Comparison of sigma-based methods for accuracy check in JCP 
Distress Type   Network 

Level  
Accuracy 

1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 
JCP Failed Joint 
Cracks (Quantity) 

IH  95.33% 96% 96.67% 96.67%      
US  92.65% 93.75% 94.49% 95.96% 

      
SH  88.52% 89.95% 90.43% 93.78% 

      
FM  78.57% 87.76% 87.76% 91.84% 

      
JCP Failures IH  97.33% 98.67% 98.67% 98.67% 
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(Quantity) US  95.59% 96.69% 97.43% 98.53% 
   

SH  90.91% 91.87% 93.78 94.74% 
      

FM  88.78% 90.82% 91.84% 93.88% 
      

JCP PCC Patches 
(Quantity) 

IH  86.67% 88.67% 91.33% 93.30% 
      

US  93.01% 94.12% 94.85% 96.69% 
      

SH  91.39% 92.34% 92.82% 94.74% 
      

FM  87.76% 91.84% 96.94% 96.94% 
      

JCP Shattered 
Slabs (Quantity) 

IH  97.33% 98% 98% 98% 
      

US  97.79% 98.90% 98.90% 98.90% 
      

SH  97.13% 97.13% 97.13% 97.61% 
      

FM  96.94% 96.94% 97.96% 97.96% 
      

JCP Slabs with 
Longitudinal 
Cracks (Quantity)  

IH  92.67% 94.67% 96% 96.67% 
      

US  88.60% 89.71% 91.18% 94.85% 
      

SH  89.47% 90.43% 92.82% 95.22% 
      

FM  85.71% 87.76% 89.80% 93.88% 
      

JCP Apparent Joint 
Space 

IH  90.67% 94% 94.67% 96.67% 
      

US  91.54% 93.01% 93.38% 94.85% 
      

SH  85.17% 86.60% 88.04% 91.87% 
      

FM  89.80% 90.82% 90.82% 93.88% 
      

By using the auto and audit data, the research team developed index #3 distress score threshold 
and accuracy. Table 5.61 lists the distress score thresholds based on 1 sigma, 1.25 sigma, 1.5 
sigma, and 2 sigma methods of different distress types in IH, US, SH, and FM highway network 
levels for three pavement types (ACP, CRCP, and JCP). Table 5.62 lists accuracies of each 
distress type based on 1 sigma, 1.25 sigma, 1.5 sigma, and 2 sigma methods in IH, US, SH, and 
FM highway network levels for three pavement types (ACP, CRCP, and JCP).  
 

Table 5.61 Comparison of sigma-based methods for distress score threshold development 
Pavement 
Type  

Network 
Level  

DS Range 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

ACP  IH  (-8.43,12.25) (-11.01,14.84) (-13.6,17.42) (-18.77,22.6)       
SH  (-8.7,11.7) (-11.25,14.25) (-13.8,16.8) (-18.9,21.9)  

      
US  (-8.73,11.84) (-11.31,14.41) (-13.88,16.99) (-19.02,22.13)  

      
FM  (-9.01,9.85) (-11.37,12.21) (-13.73,14.57) (-18.44,19.28)  

      
CRCP  IH  (-13.17,13.42) (-16.5,16.74) (-19.82,20.07) (-26.47,26.71)  

      
SH  (-13.17,12.22) (-16.34,15.4) (-19.52,18.57) (-25.86,24.92)  

      
US  (-12.32,12.3) (-15.4,15.37) (-18.48,18.45) (-24.63,24.6)  

      
FM  (-16.44,16.23) (-20.52,20.31) (-24.6,24.39) (-32.77,32.56)  

      
JCP  IH  (-34.63,15.29) (-40.87,21.53) (-47.11,27.77) (-59.59,40.25)  

      
SH  (-29.23,17.61) (-35.08,23.46) ( -40.94,29.32) (-52.64,41.03) 

      
US  (-26.1,14.16) (-31.13,19.2) (-36.16, 24.23) (-46.23,34.29)  

      
FM  (-23.4,12.4) (-27.88,16.88) (-32.36,21.36) (-41.31,30.31)  
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Table 5.62 Comparison of sigma-based methods for distress score accuracy check 
Pavement Type  Network Level  Accuracy 

1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 
ACP  IH  86.59% 89.08% 90.66% 93.75%      

SH  85.52% 88.78% 90.18% 92.88% 
      

US  85.75% 89.13% 90.73% 88.30% 
      

FM  85.24%% 89.52% 91.07% 93.79% 
      

CRCP  IH  85.51% 88.01% 90.07% 92.32% 
      

SH  85.62% 87.06% 92.81% 92.81% 
      

US  86.23% 88.47% 90.87% 92.81% 
      

FM  83.12% 87.76% 90.30% 91.98% 
      

JCP  IH  84% 85.33% 86% 92.67% 
      

SH  84.69% 87.56% 88.52% 93.30% 
      

US  84.19% 87.50% 89.71% 94.12% 
      

FM  83.67% 84.69% 86.73% 91.84% 
      

By comparing every two years' auto data, the research team developed index #4 two-year distress 
measurement difference threshold and precision. Table 5.63, Table 5.65, and Table 5.67 list the 
two years’ measurement difference thresholds based on 1 sigma, 1.25 sigma, 1.5 sigma, and 2 
sigma methods of different distress types in IH, US, SH, and FM highway network levels for 
three pavement types (ACP, CRCP, and JCP). Table 5.64, Table 5.66, and Table 5.68 list 
precisions of each distress type based on 1 sigma, 1.25 sigma, 1.5 sigma, and 2 sigma methods in 
IH, US, SH, and FM highway network levels for three pavement types (ACP, CRCP, and JCP).  

Table 5.63 Comparison of sigma-based methods for measurement difference threshold 
development in ACP 

Distress Type Network 
Level  

Threshold 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

ACP Alligator 
Cracking 
(Percentage of 
Wheel path 
Length) 

IH  (-4.74,5.23) (-5.98,6.48) ( -7.23, 7.72) ( -9.72，10.22)      
US (-5.0,5.77) (-6.34,7.12) ( -7.69, 8.46) ( -10.38, 11.16) 

      
SH (-5.41,6.11) (-6.85,7.55) ( -8.29, 8.99) ( -11.17, 11.87) 

      
FM  (-4.28,5.3) (-5.47,6.5) ( -6.67, 7.69) ( -9.07, 10.09) 

      
All (-4.68,5.54) (-5.96,6.82) (-7.24, 8.1) (-9.8, 10.65) 

      
ACP 
Longitudinal 
Cracking 
(Length in Feet 
per station). 

IH  (-22.77,28.36) (-29.16,34.75) (-35.55, 41.14) (-48.33, 53.92) 
      

US (-21.35,26.22) (-27.29,32.17) ( -33.24, 38.12) ( -45.13, 50.01) 
      

SH (-19.04,23.01) (-24.3,28.26) ( -29.55, 33.52) ( -40.06, 44.03) 
      

FM  (-19.11,24.13) (-24.51,29.53) ( -29.92, 34.94) ( -40.73, 45.74) 
      

All (-19.88,24.72) (-25.45,30.3)  (-31.03, 35.87) (-42.18, 47.02) 
      

ACP 
Transverse 
Cracking 
(Quantity) 

IH  (-1.32,1.87) (-1.72,2.27) (-2.12, 2.67) (-2.92, 3.47) 
      

US (-1.23,1.88) (-1.62,2.27) ( -2, 2.66) ( -2.78, 3.44) 
      

SH (-1.03,1.57) (-1.36,1.89) ( -1.69, 2.22) ( -2.34, 2.87) 
      

FM  (-0.8,1.11) (-1.04,1.35) ( -1.28, 1.58) ( -1.75, 2.06) 
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All (-1.0,1.43) (-1.3,1.73) (-1.61, 2.04) (-2.21, 2.65) 
   

ACP Patching 
(Percentage of 
Lane Area) 

IH  (-5.78,6.14) (-7.27,7.63) (-8.76, 9.12) (-11.74, 12.1) 
      

US (-8.78,10.16) (-11.15,12.52) ( -13.52, 14.89) ( -18.25, 19.62) 
      

SH (-6.54,6.79) (-8.2,8.46) ( -9.87, 10.12) ( -13.2, 13.45) 
      

FM  (-6.16,5.94) (-7.67,7.45) ( -9.18, 8.96) ( -12.2, 11.98) 
      

All (-6.64,6.8) (-8.32,8.48) (-10, 10.16) (-13.36, 13.52) 
      

ACP Block 
Cracking 
(Percentage of 
Lane Area) 

IH  (-4.07,4.61) (-5.15, 5.7) (-6.24, 6.78) (-8.41, 8.95) 
      

US (-13.94,10.77) (-17.02,13.86) ( -20.11, 16.95) ( -26.29, 23.13) 
      

SH (-4.46,3.23) (-5.42,4.19) ( -6.39, 5.15) ( -8.31, 7.07) 
      

FM  (-5.44,4.84) (-6.72,6.12) ( -8.01, 7.41) ( -10.57, 9.98) 
      

All (-7.43,6.34) (-9.15,8.06) (-10.87, 9.78) (-14.31, 13.23) 
      

ACP Failure 
(Quantity) 

IH  (-1.34,1.29) (-1.67,1.62) (-2.0, 1.95) (-2.66, 2.61) 
      

US (-0.82,0.8) (-1.02,1.0) ( -1.23, 1.2) ( -1.63, 1.6) 
      

SH (-0.51,0.52) (-0.64,0.65) ( -0.77, 0.78) ( -1.03, 1.04) 
      

FM  (-0.71,0.69) (-0.89,0.86) ( -1.07, 1.04) ( -1.42, 1.39) 
      

All (-0.8,0.77) (-0.99,0.97) (-1.19, 1.16) (-1.58, 1.56) 
      

Table 5.64 Comparison of sigma-based methods for precision check in ACP 
Distress Type Network 

Level  
Precision 

1 Sigma 1.25 
Sigma 

1.5 
Sigma 

2 Sigma 

ACP Alligator 
Cracking 
(Percentage of 
Wheel path Length) 

IH  95.05% 95.89% 96.55% 97.82%      
US 95.31% 96.44% 96.91% 97.87% 

      

SH 95.77% 96.43% 96.86% 97.83% 
      

FM  93.71% 94.92% 95.75% 97.41% 
      

All 94.35% 95.35% 96.65% 97.05% 
      

ACP Longitudinal 
Cracking (Length in 
Feet per station). 

IH  89.59% 91.98% 93.75% 96.01% 
      

US 90.05% 92.45% 94.23% 96.53% 
      

SH 90.78% 92.86% 94.35% 95.59% 
      

FM  90.13% 92.48% 94.20% 96.48% 
      

All 89.93% 92.56% 94.16% 96.50% 
      

ACP Transverse 
Cracking (Quantity) 

IH  90.90% 94.38% 94.47% 96.20% 
      

US 88.71% 93.72% 93.72% 96.22% 
      

SH 91.28% 91.28% 94.87% 94.96% 
      

FM  94.37% 94.61% 94.61% 97.49% 
      

All 92.33% 92.69% 96.07% 96.13% 
      

ACP Patching 
(Percentage of Lane 
Area) 

IH  97.15% 97.41% 97.79% 98.23% 
      

US 97.88% 98.06% 98.22% 98.56% 
      

SH 97.55% 97.95% 98.26% 98.56% 
      

FM  96.81% 97.36% 97.62% 98.16% 
      

All 97.24% 97.69% 98.03% 98.43% 
      

ACP Block 
Cracking 
(Percentage of Lane 

IH  96.81% 97.87% 97.87% 97.87% 
      

US 96.64% 97.06% 97.35% 97.60% 
      

SH 96.59% 96.60% 97.38% 97.78% 
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Area) FM  99.22% 99.48% 99.49% 99.62% 
 

All 98.64% 98.74% 98.92% 99.23% 
      

ACP Failure 
(Quantity) 

IH  98.96% 98.96% 98.96% 99.44% 
      

US 99.15% 99.66% 99.66% 99.66% 
      

SH 98.88% 98.88% 98.88% 99.60% 
      

FM  97.52% 97.52% 99.12% 99.12% 
      

All 98.01% 98.01% 99.27% 99.27% 
      

Table 5.65 Comparison of sigma-based methods for measurement difference threshold 
development in CRCP 

Distress Type Network 
Level  

Threshold range 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

CRCP Spalled 
Cracks (Quantity) 

IH  (-4.28,4.05) (-5.32,5.09) ( -6.36, 6.13) ( -8.44, 8.22)      
US (-7.48,7.96) (-9.41,9.89) ( -11.34, 11.82) ( -15.21, 15.68) 

      
SH (-3.95,4.01) (-4.95,5.01) ( -5.94, 6) ( -7.93, 7.99) 

      
FM  (-3.34,3.04) (-4.14,3.84) ( -4.94, 4.64) ( -6.54, 6.23) 

      
All (-4.64,4.53) (-5.79,5.68) ( -6.93, 6.82) ( -9.23, 9.11) 

      
CRCP Punchout 
(Quantity) 

IH  (-0.74,0.79) (-0.93,0.99) ( -1.13, 1.18) ( -1.51, 1.56) 
      

US (-1.02,1.23) (-1.3,1.51) ( -1.58, 1.79) ( -2.14, 2.35) 
      

SH (-0.55,0.53) (-0.68,0.66) ( -0.82, 0.8) ( -1.09, 1.07) 
      

FM  (-0.48,0.47) (-0.6,0.59) ( -0.72, 0.71) ( -0.95, 0.94) 
      

All (-0.74,0.79) (-0.93,0.98) ( -1.12, 1.17) ( -1.5, 1.55) 
      

CRCP ACP 
Patches (Quantity) 

IH  (-2.62,2.76) (-3.29,3.43) ( -3.96, 4.1) ( -5.31, 5.45) 
      

US (-2.69,2.79) (-3.37,3.47) ( -4.06, 4.16) ( -5.43, 5.53) 
      

SH ( -4.64,3.99) (-5.72,5.07) ( -6.79, 6.15) ( -8.95, 8.31) 
      

FM  (-3.95,3.52) (-4.88,4.46)  ( -5.82, 5.39) ( -7.68, 7.26) 
      

All (-3.13,3.09) (-3.91,3.87) ( -4.69, 4.65) ( -6.25, 6.21) 
      

CRCP PCC 
Patches (Quantity) 

IH  (-2.91,2.85) (-3.63,3.57) ( -4.35, 4.29) ( -5.78, 5.73) 
      

US (-2.3,2.17) (-2.86,2.73) ( -3.42, 3.29) ( -4.54, 4.41) 
      

SH (-2.7,2.73) (-3.38,3.41) ( -4.06, 4.09) ( -5.41, 5.45) 
      

FM  (-3.11,2.79) (-3.85,3.53) ( -4.59, 4.27) ( -6.07, 5.74) 
      

All (-2.84,2.76) (-3.54,3.46) ( -4.24, 4.16) ( -5.64, 5.56) 
      

CRCP Average 
Crack Spacing 
(Average observed 
spacing in feet) 

IH  (-22.32,14.8) (-26.96,19.44) ( -31.6, 24.08) ( -40.88, 33.36) 
      

US (-17.95,14.21) (-21.97,18.23) ( -25.98, 22.25) ( -34.02, 30.29) 
      

SH (-29.17,17.03) (-34.94,22.81) ( -40.71, 28.58) ( -52.26, 40.13) 
      

FM  (-30.11,16.47) (-35.93,22.29) ( -41.75, 28.11) ( -53.39, 39.76) 
      

All (-23.87,15.43) (-28.79,20.34) ( -33.7, 25.26) ( -43.53, 35.08) 
      

Table 5.66 Comparison of sigma-based methods for precision check in CRCP 
Distress Type Network 

Level 
Precision 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

CRCP Spalled 
Cracks (Quantity) 

IH 99% 99.36% 99.53% 99.70%      
US 98.55% 98.55% 98.55% 98.75% 

      
   



117 
 

SH 98.41% 98.55% 98.70% 98.77% 
   

FM 99.20% 99.20% 99.40% 99.60% 
      

All 98.89% 99.15% 99.30% 99.54% 
      

CRCP Punchout 
(Quantity) 

IH 93.69% 93.69% 97.68% 97.68% 
      

US 97.77% 97.77% 97.77% 98.34% 
      

SH 96.32% 96.32% 96.32% 98.98% 
      

FM 94.79% 94.79% 94.79% 94.79% 
      

All 94.27% 94.27% 98% 94.79% 
      

CRCP ACP Patches 
(Quantity) 

IH 98.41% 98.75% 99.05% 99.17% 
      

US 98.23% 98.53% 98.63% 98.73% 
      

SH 98% 98.60% 98.60% 98.68% 
      

FM 98.38% 98.69% 99.20% 99.20% 
      

All 98.58% 98.58% 98.85% 99.12% 
      

CRCP PCC Patches 
(Quantity) 

IH 95% 96.34% 97.18% 97.68% 
      

US 95.27% 95.27% 97.02% 97.94% 
      

SH 93.95% 95.43% 96.67% 97.50% 
      

FM 94.07% 95.32% 97.02% 97.47% 
      

All 94.77% 96.17% 97.17% 97.70% 
      

CRCP Average Crack 
Spacing (Average observed 
spacing in feet) 

IH 90.41% 92.66% 94.67% 97.07% 
      

US 89.87% 92.04% 94.31% 97.27% 
      

SH 88.02% 90.52% 93.88% 96.47% 
      

FM 87.79% 90.68% 93.05% 96.45% 
      

All 89.82% 92.35% 94.33% 97.01% 
      

Table 5.67 Comparison of sigma-based methods for measurement difference threshold 
development in JCP 

Distress Type Network 
Level  

Threshold range 
1 Sigma 1.25 Sigma 1.5 Sigma Threshold range 

JCP Failed Joint 
Cracks (Quantity) 

IH  (-22.67,12.13) (-27.02,16.48) ( -31.37, 20.83) ( -40.07, 29.53)      
US (-6.97,7.06) (-8.72,8.81) ( -10.48, 10.57) ( -13.98, 14.07) 

      
SH (-4.65,2.91) (-5.6,3.86) ( -6.54, 4.8) ( -8.43, 6.69) 

      
FM  (-15.31,13.27) (-18.88,16.84) ( -22.45, 20.41) ( -29.6, 27.56) 

      
All (-13.22,9.4) (-16.04,12.23) ( -18.87, 15.06) ( -24.52, 20.71) 

      
JCP Failures 
(Quantity) 

IH  (-9.03,7.44) (-11.09,9.49) ( -13.14, 11.55) ( -17.26, 15.67) 
      

US (-4.98,4.52) (-6.17,5.71) ( -7.36, 6.9) ( -9.74, 9.28) 
      

SH (-6.48,6.15) (-8.06,7.73) ( -9.64, 9.31) ( -12.8, 12.46) 
      

FM  (-3.88,5.07) (-5.0,6.19) ( -6.12, 7.31) ( -8.36, 9.55) 
      

All (-6.69,6.2) (-8.3,7.81) ( -9.91, 9.43) ( -13.13, 12.65) 
      

JCP PCC Patches 
(Quantity) 

IH  (-4.45,5.27) (-5.66,6.49) ( -6.87, 7.7) ( -9.3, 10.13) 
      

US (-5.46,5.54) (-6.84,6.91) ( -8.21, 8.29) ( -10.96, 11.04) 
      

SH (-7.45,9.63) (-9.58,11.76) ( -11.72, 13.9) ( -15.98, 18.17) 
      

FM  (-3.87,4.81) (-4.95,5.89) ( -6.04, 6.98) ( -8.2, 9.15) 
      

All (-6.04,7.31) (-7.71,8.98) ( -9.38, 10.6) ( -12.71, 13.98) 
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JCP Shattered 
Slabs (Quantity) 

IH  (-0.73,0.62) (-0.9,0.79) ( -1.07, 0.96) ( -1.41, 1.3) 
 

US (-0.33,0.29) (-0.41,0.37) ( -0.49, 0.44) ( -0.64, 0.6) 
      

SH (-1.2,1.37) (-1.52,1.69) ( -1.85, 2.01) ( -2.49, 2.66) 
      

FM  (-0.8,0.72) (-0.99,0.91) ( -1.18, 1.1) ( -1.56, 1.49) 
      

All (-0.94,0.96) (-1.18,1.2) ( -1.42, 1.44) ( -1.89, 1.92) 
      

JCP Slabs with 
Longitudinal 
Cracks (Quantity) 

IH  (-3.42 ,4.37) (-4.39,5.35) ( -5.36, 6.32) ( -7.31, 8.27) 
      

US (-3.76,2.23) (-4.5,2.98) ( -5.25, 3.73) ( -6.75, 5.22) 
      

SH (-3.57,4.82) (-4.61,5.87) ( -5.66, 6.92) ( -7.76, 9.02) 
      

FM  (-8.18,11.77) (-10.67,14.26) ( -13.17, 16.76) ( -18.16, 21.74) 
      

All (-4.69,5.68) (-5.99,6.98) ( -7.29, 8.28) ( -9.88, 10.87) 
      

JCP Apparent 
Joint Space 

IH  (-10.59,4.16) (-12.43,6.0) (-14.27, 7.85) (-17.96,11.53) 
      

US (-5.86,5.4) (-7.27,6.8) ( -8.68, 8.21) ( -11.49, 11.03) 
      

SH (-4.21,3.5) (-5.17,4.46) ( -6.14, 5.43) ( -8.07, 7.35) 
      

FM  (-7.43,7.33) (-9.27,9.17) ( -11.11, 11.02) ( -14.8, 14.7) 
      

All (-7.02,4.9) (-8.51,6.39) ( -10, 7.88) ( -12.98, 10.86) 
      

Table 5.68 Comparison of sigma-based methods for precision check in JCP 
Distress Type Network 

Level  
Precision 

1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 
JCP Failed Joint Cracks 
(Quantity) 

IH  98.91% 99.45% 100% 100%      
US 98.51% 99.25% 99.25% 99.25% 

      
SH 95.17% 96.23% 96.30% 97.32% 

      
FM  94.85% 94.85% 94.90% 95.92% 

      
All 98.06% 98.48% 98.62% 99.03% 

      
JCP Failures (Quantity) IH  95.72% 97.37% 98.98% 99.49% 

      
US 93.33% 95.28% 95.31% 96.95% 

      
SH 95.29% 96.01% 97.68% 98.36% 

      
FM  89.13% 90.82% 92.08% 96.08% 

      
All 94.34% 95.27% 97.23% 98.51% 

      
JCP PCC Patches (Quantity) IH  91.19% 93.26% 94.33% 96.94% 

      
US 92.13% 93.02% 93.80% 96.15% 

      
SH 93.42% 94.12% 95.13% 97.41% 

      
FM  92.78% 93.94% 95% 97.03% 

      
All 93.40% 94.37% 95.63% 97.56% 

      
JCP Shattered 
Slabs (Quantity) 

IH  97.41% 97.41% 97.47% 98.99% 
      

US 98.46% -- 98.46% 98.46% 
      

SH 96.41% 96.41% 97.71% 97.71% 
      

FM  97.03% 97.03% 97.71% 98.04% 
      

All 96.97% 97.84% 97.84% 97.84% 
      

JCP Slabs with Longitudinal 
Cracks (Quantity) 

IH  96.97% 97.47% 97.47% 97.98% 
      

US 93.22% 93.39% 96.88% 98.45% 
      

SH 91.13% 92.59% 93.98% 95.71% 
      

FM  93.88% 93.94% 95.96% 96.04% 
      

All 94.67% 95.57% 96.16% 96.99% 
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JCP Apparent Joint Space IH  97.27% 98.91% 98.93% 98.96% 
 

US 99.25% 99.25% 99.25% 99.25% 
      

SH 94.50% 95.59% 95.99% 97% 
      

FM  97% 97.03% 98.04% 98.04% 
      

All 97.19% 97.35% 97.92% 98.48% 
      

By comparing every two years' auto data, the research team developed index #5 two-year distress 
score, condition score, and ride score difference threshold and precision. Table 5.69 lists the two 
years’ distress score difference thresholds based on 1 sigma, 1.25 sigma, 1.5 sigma, and 2 sigma 
methods of different distress types in IH, US, SH, and FM highway network levels for three 
pavement types (ACP, CRCP, and JCP). Table 5.70 lists distress score precisions of each distress 
type based on 1 sigma, 1.25 sigma, 1.5 sigma, and 2 sigma methods in IH, US, SH, and FM 
highway network levels for three pavement types (ACP, CRCP, and JCP).  

Table 5.69 Comparison of sigma-based methods for distress score difference threshold 
development 

Pavement 
Type 

Network 
Level  

DS range 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

ACP IH  (-12.8,12.0) (-15.9,15.1) ( -19, 18.19) ( -25.20, 24.39) 
SH  (-11.54,10.71) (-14.33,13.5) ( -16.31, 15.67) ( -21.64, 21.0) 
US  (-10.98,10.34) (-13.64,13.01) ( -17.11, 16.28) ( -22.67, 21.84) 
FM  (-12.96,10.84) (-15.94,13.82) ( -18.92, 16.8) ( -22.87, 22.75) 
All (-12.35,10.88) (-15.26,13.78) (-18.16, 16.69) (-23.97, 22.5) 

CRCP IH  (-13.1,12.34) (-16.28,15.51) ( -19.46, 18.69) ( -25.82, 25.05) 
SH  (-12.71,11.46) (-15.73,14.48) ( -21.21, 22.06) ( -28.42, 29.27) 
US  (-14.0,14.85) (-17.61,18.45) ( -18.75, 17.5) ( -24.79, 23.55) 
FM  (-14.13,15.33) (-17.81,19.02) ( -21.5, 22.7) ( -28.86, 30.06) 
All (-13.33,12.97) (-16.62,16.25) (19.91, 19.54) (26.48, 26.12) 

JCP IH  (-21.19,29.92) (-27.58,36.31) (-33.97, 42.69) (-46.75, 55.47) 
SH  (-16.42,16.67) (-20.56,20.81) ( -31.71, 31.66) ( -42.27, 42.22) 
US  (-21.15,21.1) (-26.43,26.38) ( -24.69, 24.94) ( -32.96, 33.22) 
FM  (-25.32,19.59) (-30.93,25.2) ( -36.54, 30.81) ( -47.77, 42.04) 
All (-21.18,22.75) (-26.67,28.24) (-32.16, 33.73) (-43.14, 44.71) 

Table 5.70 Comparison of sigma-based methods for distress score precision check 

Pavement Type Network Level  Precision 
1 Sigma 1.25 Sigma 1.5 Sigma 2 Sigma 

ACP 

IH  91.19% 93.38% 94.94% 97.05%      
SH  91.19% 93.37% 94.77% 97.06% 

     
 

US  91.19% 93.30% 95.11% 97.03% 
     
 

FM  91.19% 92.90% 94.72% 97.04% 
     
 

All 91.19% 92.98% 94.81% 97.09% 
     
 

CRCP 
IH  91.19% 93.82% 95.07% 96.59% 

     
 

SH  91.19% 94.54% 93.59% 95.52% 
     
 

US  91.19% 93.10% 96.04% 96.47% 
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FM  91.19% 92.39% 93.59% 96.11% 
   
 

All 91.19% 93.82% 96.80% 96.44% 
     
 

JCP IH  91.19% 87.57% 93.68% 95.88% 
      

SH  91.19% 92.97% 93.79% 95.62% 
      

US  91.19% 92.96% 94.62% 96.92% 
      

FM  91.19% 89.13% 91.40% 98.95% 
      

All 91.19% 90.54% 92.60% 96.24%  

5.2.2 Threshold comparison and selection using FY 2021 and FY 2022 data  

With the developed four sigma-based thresholds, the research team applied FY 2021 and FY 
2022 auto and audit data to evaluate the pavement condition using 1.0 sigma, 1.5 sigma, and 2.0 
sigma thresholds. Based on the analysis results from 1.0 sigma, 1.5 sigma, and 2.0 sigma 
thresholds, the research team decided to use 1.5 sigma as the recommended threshold method. 
The details of 1.5 sigma analysis for Index #2, Index #3, Index #4, and Index #5 are discussed 
subsequently. 

1) 1.5 sigma analysis 

Index #2 
As shown in Table 5.71, CRCP Average Crack Spacing (SH, ALL), JCP Failed Joint Cracks 
(SH), JCP Slabs with Longitudinal Cracks (IH, US, FM), and JCP Apparent Joint Space (US, 
SH, FM, ALL) show an accuracy difference more than 10%. Those distresses may have issues 
by using the FY17-21 thresholds to locate inaccurate measurements. JCP Failed Joint Cracks 
(ALL), and JCP Slabs with Longitudinal Cracks (ALL) do not present a high accuracy 
difference, which indicates that the high difference could be caused by the limited amount of 
data while highway level was used as a filter. CRCP Average Crack Spacing (ALL) and JCP 
Apparent Joint Space (ALL) present an accuracy difference of more than 10%, which indicates 
that the FY17-21 thresholds of CRCP Average Crack Spacing and JCP Apparent Joint Space 
may have the most severe problem. The evaluation results for ACP data are good. 

Table 5.71 Evaluation results on FY 2022 distress data (1.5 Sigma) 
Pavement 
Type 

Distress Type Network 
Level  

No. of 
data 

Accuracy_FY1721 Accuracy_FY22 Difference 

ACP ACP Alligator 
Cracking 
(Percentage of 
Wheel path 
Length) 

IH  84 0.950941 0.976344 3% 
US 343 0.952956 0.979045 3% 
SH 421 0.947607 0.984552 4% 
FM  1177 0.952369 0.979054 3% 
All 2041 0.952688 0.980607 3% 

ACP 
Longitudinal 
Cracking (Length 
in Feet per 
station). 

IH  302 0.926411 0.929032 0% 
US 1206 0.900444 0.909357 1% 
SH 1255 0.907088 0.931395 2% 
FM  3386 0.913486 0.922716 1% 
All 6186 0.912223 0.923010 1% 

ACP Transverse 
Cracking 

IH  118 0.949261 0.948387 -0% 
US 513 0.940988 0.946881 1% 
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(Quantity) SH 460 0.956037 0.971831 2% 
FM  793 0.932208 0.938967 1% 
All 1894 0.948742 0.952196 0% 

ACP Patching 
(Percentage of 
Lane Area) 

IH  43 0.960685 0.948387 -1% 
US 156 0.972042 0.985867 1% 
SH 182 0.961748 0.972285 1% 
FM  650 0.959785 0.968942 1% 
All 1041 0.961740 0.970232 1% 

ACP Block 
Cracking 
(Percentage of 
Lane Area) 

IH  3 0.990927 0.997849 1% 
US 36 0.985660 0.988791 0% 
SH 45 0.989032 0.990459 0% 
FM  85 0.993052 0.988805 -0% 
All 170 0.990522 0.989431 -0% 

ACP Failure 
(Quantity) 

IH  13 0.974462 0.991398 2% 
US 46 0.991747 0.994639 0% 
SH 68 0.970722 0.969105 -0% 
FM  325 0.986211 0.986096 -0% 
All 459 0.988046 0.989140 0% 

CRCP CRCP Spalled 
Cracks (Quantity) 

IH  71 0.954403 0.952941 -0% 
US 29 0.983533 0.973822 -1% 
SH 47 0.981699 0.996241 1% 
FM  7 0.962025 0.952381 -1% 
All 154 0.986561 0.988372 0% 

CRCP Punchout 
(Quantity) 

IH  45 0.960650 0.967647 1% 
US 25 0.893713 0.869110 -2% 
SH 38 0.955556 0.939850 -2% 
FM  5 0.924051 0.920635 -0% 
All 113 0.963653 0.963953 0% 

CRCP ACP 
Patches 
(Quantity) 

IH  30 0.977514 0.979412 0% 
US 12 0.971557 0.994764 2% 
SH 33 0.969935 0.996241 3% 
FM  5 0.983122 0.968254 -1% 
All 80 0.978619 0.987209 1% 

CRCP PCC 
Patches 
(Quantity) 

IH  99 0.931918 0.941176 1% 
US 36 0.959581 0.973822 1% 
SH 53 0.972549 0.977444 0% 
FM  14 0.940928 0.984127 4% 
All 202 0.945021 0.958140 1% 

CRCP Average 
Crack Spacing 
(Average 
observed spacing 
in feet) 

IH  312 0.864460 0.879412 1% 
US 177 0.880240 0.790576 -9% 
SH 256 0.844444 0.533835 -31% 
FM  63 0.974684 1.000000 3% 
All 808 0.857666 0.724419 -13% 

JCP JCP Failed Joint 
Cracks (Quantity) 

IH  8 0.966667 1.000000 3% 
US 27 0.944853 0.983051 4% 
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SH 26 0.904306 1.000000 10% 
FM  8 0.877551 0.857143 -2% 
All 69 0.958848 0.992424 3% 

JCP Failures 
(Quantity) 

IH  6 0.986667 1.000000 1% 
US 33 0.974265 0.932203 -4% 
SH 26 0.937799 0.951220 1% 
FM  7 0.918367 0.928571 1% 
All 72 0.976680 0.969697 -1% 

JCP PCC 
Patches 
(Quantity) 

IH  8 0.913333 0.944444 3% 
US 15 0.948529 0.983051 3% 
SH 18 0.928230 0.951220 2% 
FM  4 0.928571 1.000000 7% 
All 45 0.941015 0.977273 4% 

JCP Shattered 
Slabs (Quantity) 

IH  0 0.980000 1.000000 2% 
US 2 0.988971 1.000000 1% 
SH 4 0.971292 1.000000 3% 
FM  0 0.979592 1.000000 2% 
All 6 0.990398 1.000000 1% 

JCP Slabs with 
Longitudinal 
Cracks (Quantity) 

IH  13 0.960000 0.833333 -13% 
US 34 0.911765 0.813559 -10% 
SH 19 0.928230 0.975610 5% 
FM  4 0.897959 1.000000 10% 
All 70 0.938272 0.901515 -4% 

JCP Apparent 
Joint Space 

IH  2 0.946667 1.000000 5% 
US 46 0.933824 0.457627 -48% 
SH 25 0.880383 0.609756 -27% 
FM  10 0.908163 0.357143 -55% 
All 83 0.924554 0.583333 -34% 

Index #3 

As shown in Table 5.72, JCP DISTRESS SCORE (US, SH, ALL) shows an accuracy difference 
of more than 10%. Those distresses may have issues by using the FY17-21 thresholds to locate 
inaccurate measurements. JCP DISTRESS SCORE (ALL) presents an accuracy difference of 
more than 10%, which indicates that the FY17-21 thresholds of JCP DISTRESS SCORE may 
have the most severe problem. The evaluation results for ACP and CRCP data are good. 

Table 5.72 Evaluation results on FY 2022 DISTRESS SCORE data (1.5 Sigma) 
Pavement 
Type 

Distress 
Type 

Network 
Level  

No. of 
data 

Accuracy_FY1721 Accuracy_FY22 Difference 

ACP DISTRESS 
SCORE 

IH  152 0.906586 0.920430 1% 
US 601 0.907253 0.954678 5% 
SH 622 0.901840 0.955475 5% 
FM  1587 0.910718 0.941676 3% 
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All 2984 0.907139 0.945894 4% 
CRCP DISTRESS 

SCORE 
IH  124 0.900687 0.870588 -3% 
US 58 0.908683 0.895288 -1% 
SH 85 0.900654 0.838346 -6% 
FM  20 0.902954 0.873016 -3% 
All 287 0.899817 0.859302 -4% 

JCP DISTRESS 
SCORE 

IH  11 0.860000 0.888889 3% 
US 30 0.897059 0.779661 -12% 
SH 28 0.885167 0.609756 -28% 
FM  5 0.867347 0.857143 -1% 
All 74 0.884774 0.750000 -13% 

Index #4 

As shown in Table 5.73, CRCP Average Crack Spacing (US), and JCP Failed Joint Cracks (FM) 
show an accuracy difference of more than 10%. Those distresses may have issues by using the 
FY17-21 thresholds to locate inaccurate measurements. However, CRCP Average Crack Spacing 
(ALL), and JCP Failed Joint Cracks (ALL) do not present a high accuracy difference, which 
indicates that the high difference could be caused by the limited amount of data while highway 
level was used as a filter. 

Table 5.73 Evaluation results on FY 2022 distress data (1.5 Sigma) 
Pavement 
Type 

Distress Type Network 
Level  

No. of 
data 

Precision_FY1721 Precision 
_FY22 

Difference 

ACP ACP Alligator 
Cracking (Percentage 
of Wheel path Length) 

IH  2277 0.940100 0.951302 1% 
US 5496 0.941290 0.965433 2% 
SH 5562 0.944109 0.966786 2% 
FM  8511 0.929390 0.961689 3% 
All 21846 0.941210 0.964973 2% 

ACP Longitudinal 
Cracking (Length in 
Feet per station). 

IH  6734 0.898269 0.914914 2% 
US 16890 0.900113 0.914764 1% 
SH 14607 0.901246 0.908153 1% 
FM  22462 0.899679 0.925414 3% 
All 60693 0.901332 0.916045 1% 

ACP Transverse 
Cracking (Quantity) 

IH  1603 0.929657 0.970694 4% 
US 4430 0.908316 0.962335 5% 
SH 3935 0.925346 0.963642 4% 
FM  3807 0.931261 0.967496 4% 
All 13775 0.939996 0.968385 3% 

ACP Patching 
(Percentage of Lane 
Area) 

IH  934 0.958639 0.975596 2% 
US 2022 0.974050 0.987241 1% 
SH 2039 0.965458 0.975422 1% 
FM  3585 0.950182 0.967885 2% 
All 8580 0.959163 0.975408 2% 

ACP Failure IH  469 0.975183 0.977775 0% 
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(Quantity) US 291 0.991261 0.995924 0% 
SH 348 0.978419 0.984589 1% 
FM  1140 0.979683 0.988477 1% 
All 2248 0.983394 0.991126 1% 

CRCP CRCP Spalled 
Cracks (Quantity) 

IH  670 0.988924 0.990364 0% 
US 302 0.984601 0.994465 1% 
SH 457 0.979211 0.975172 -0% 
FM  75 0.983251 0.996890 1% 
All 1504 0.986820 0.988210 0% 

CRCP Punchout 
(Quantity) 

IH  317 0.959054 0.979795 2% 
US 119 0.969201 0.986470 2% 
SH 174 0.918280 0.908082 -1% 
FM  59 0.896552 0.908243 1% 
All 669 0.964711 0.981569 2% 

CRCP ACP Patches 
(Quantity) 

IH  353 0.982883 0.968604 -1% 
US 130 0.973051 0.969865 -0% 
SH 281 0.962007 0.969361 1% 
FM  38 0.972414 0.995334 2% 
All 802 0.976084 0.968830 -1% 

CRCP PCC Patches 
(Quantity) 

IH  854 0.944286 0.907056 -4% 
US 409 0.940327 0.899139 -4% 
SH 471 0.935484 0.919176 -2% 
FM  172 0.929064 0.931571 0% 
All 1906 0.942921 0.914352 -3% 

CRCP Average 
Crack Spacing 
(Average observed 
spacing in feet) 

IH  2772 0.866756 0.854523 -1% 
US 1437 0.876805 0.723247 -15% 
SH 1647 0.857348 0.782356 -7% 
FM  474 0.844335 0.892691 5% 
All 6330 0.861820 0.812305 -5% 

JCP JCP Failed Joint 
Cracks (Quantity) 

IH  201 0.910448 0.949640 4% 
US 428 0.985185 0.955994 -3% 
SH 321 0.922581 0.926829 0% 
FM  102 0.894231 0.994286 10% 
All 1052 0.950667 0.978803 3% 

JCP Failures 
(Quantity) 

IH  198 0.965174 0.920863 -4% 
US 423 0.903704 0.825493 -8% 
SH 356 0.951613 0.894309 -6% 
FM  122 0.894231 0.868571 -3% 
All 1099 0.937333 0.888404 -5% 

JCP PCC Patches 
(Quantity) 

IH  120 0.910448 0.935252 2% 
US 342 0.896296 0.827011 -7% 
SH 291 0.945161 0.896341 -5% 
FM  70 0.913462 0.868571 -4% 
All 823 0.933333 0.888404 -4% 

JCP Shattered IH  16 0.960199 0.953237 -1% 
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Slabs (Quantity) US 35 0.948148 0.946889 -0% 
SH 37 0.964516 0.975610 1% 
FM  11 0.961538 0.982857 2% 
All 99 0.965333 0.978180 1% 

JCP Slabs with 
Longitudinal 
Cracks (Quantity) 

IH  107 0.960199 0.931655 -3% 
US 342 0.918519 0.839150 -8% 
SH 242 0.906452 0.926829 2% 
FM  101 0.931373 0.988571 6% 
All 792 0.937166 0.943267 1% 

JCP Apparent Joint 
Space 

IH  192 0.920398 0.985612 7% 
US 403 0.985185 0.966616 -2% 
SH 297 0.925806 0.936992 1% 
FM  96 0.961538 0.988571 3% 
All 988 0.941333 0.973192 3% 

Index #5 

As shown in Table 5.74, JCP DISTRESS SCORE (US), and JCP RIDE SCORE (FM) show an 
accuracy difference of more than 10%. Those distresses may have issues by using the FY17-21 
thresholds to locate inaccurate measurements. JCP DISTRESS SCORE (ALL), and JCP RIDE 
SCORE (ALL) do not present a high accuracy difference, which indicates that the high 
difference could be caused by the limited amount of data while highway level was used as a 
filter. The evaluation results for ACP and CRCP data are good. 

Table 5.74 Evaluation results on FY 2022 DISTRESS SCORE, CONDITION SCORE, and 
RIDE SCORE data (1.5 Sigma) 

Pavement 
Type 

Distress Type Network 
Level  

No. of 
data 

Precesion_FY1721 Precision_FY22 Difference 

ACP DISTRESS 
SCORE 

IH  5603 0.886594 0.917638 3% 
US 15545 0.894590 0.916273 2% 
SH 14455 0.892429 0.904787 1% 
FM  21625 0.885185 0.930173 4% 
All 57228 0.890426 0.922634 3% 

CONDITION 
SCORE 

IH  5692 0.889868 0.919184 3% 
US 15781 0.895403 0.917560 2% 
SH 14748 0.896838 0.912747 2% 
FM  22091 0.893903 0.932611 4% 
All 58312 0.897229 0.929002 3% 

RIDE SCORE IH  8606 0.921876 0.943548 2% 
US 23429 0.926621 0.921885 -0% 
SH 21729 0.934112 0.927777 -1% 
FM  32302 0.929701 0.941106 1% 
All 86066 0.929936 0.933185 0% 

CRCP DISTRESS 
SCORE 

IH  1172 0.902333 0.883121 -2% 
US 518 0.909528 0.883764 -3% 
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SH 700 0.878853 0.893291 1% 
FM  222 0.876847 0.877138 0% 
All 2612 0.896471 0.882233 -1% 

CONDITION 
SCORE 

IH  1469 0.896255 0.892657 -0% 
US 713 0.905679 0.878695 -3% 
SH 937 0.876712 0.896351 2% 
FM  385 0.878698 0.899687 2% 
All 3504 0.891332 0.888286 -0% 

RIDE SCORE IH  3082 0.927972 0.944963 2% 
US 1519 0.916266 0.903941 -1% 
SH 1792 0.928212 0.966173 4% 
FM  600 0.931953 0.974922 4% 
All 6993 0.927143 0.947354 2% 

JCP DISTRESS 
SCORE 

IH  186 0.885572 0.884892 -0% 
US 411 0.911111 0.813354 -10% 
SH 353 0.877419 0.859756 -2% 
FM  118 0.817308 0.868571 5% 
All 1068 0.868000 0.865337 -0% 

CONDITION 
SCORE 

IH  199 0.865672 0.888489 2% 
US 471 0.874074 0.881279 1% 
SH 414 0.883117 0.899796 2% 
FM  144 0.875000 0.914286 4% 
All 1228 0.866310 0.893058 3% 

RIDE SCORE IH  264 0.935323 0.967626 3% 
US 624 0.866667 0.948250 8% 
SH 462 0.941558 0.963190 2% 
FM  168 0.884615 0.982857 10% 
All 1518 0.919786 0.958099 4% 

5.3 Implementation of Data Quality Consistency Check Components 

5.3.1 Implementation of Data Accuracy Check for Distresses 

Figure 5.4 shows the flowchart for FY2022 Data Quality Check Using the Thresholds of Index 2 
and Index 3 computed from FY2017-2021. To facilitate comparisons between the automated and 
audit data, the measurements of both sources are first matched within the same pavement section. 
Subsequently, the matched data are subjected to data quality analysis after being filtered by county 
level, pavement section numbers, comprehensive index measurements (DS), and pavement 
distress measurements. The flowchart then proceeds to assess all pavement section data within 
each county and applies three thresholds to evaluate the selected pavement section: Index 3 
threshold (corresponding to IH, SH, US, FM), Index 2 threshold (for all highway levels combined), 
and Index 3 accuracy threshold (for all highway levels combined). The results of the Index 3 and 
Index 2 threshold evaluations are stored as 'Fail' or 'Pass', where the former identifies pavement 
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sections with potential data quality issues, and the latter helps identify which pavement distress 
causes the data quality issue. The Index 3 accuracy threshold (for all highway levels combined) is 
applied after all pavement sections in a county are evaluated. The percentage of pavement sections 
that pass the Index 3 threshold (corresponding to IH, SH, US, FM) is then computed and compared 
with the Index 3 accuracy threshold (for all highway levels combined). Finally, a 'Fail' or 'Pass' 
label is assigned to each county. 

(a) Section level analysis 
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Figure 5.3 Flowchart for FY2022 Data Quality Check Using the Thresholds of Index 2 and 
Index 3 

(b) County level analysis 

5.3.2 Implementation of Data Precision Check for Distresses 

Figure 5.5 shows the flowchart for FY2022 Data Quality Check Using the Thresholds of Index 4 
and Index 5 computed from FY2017-2021. To facilitate comparisons between the automated and 
audit data, the measurements of both sources are first matched within the same pavement section. 
Subsequently, the matched data are subjected to data quality analysis after being filtered by county 
level, pavement section numbers, comprehensive index measurements (DS, RS, CS), and 
pavement distress measurements. The flowchart then proceeds to assess all pavement section data 
within each county and applies three thresholds to evaluate the selected pavement section: Index 
4 threshold (corresponding to IH, SH, US, FM), Index 4 threshold (for all highway levels 
combined), and Index 5 accuracy threshold (for all highway levels combined). The results of the 
Index 5 and Index 4 threshold evaluations are stored as 'Fail' or 'Pass', where the former identifies 
pavement sections with potential data quality issues, and the latter helps identify which pavement 
distress causes the data quality issue. The Index 5 accuracy threshold (for all highway levels 
combined) is applied after all pavement sections in a county are evaluated. The percentage of 
pavement sections that pass the Index 5 threshold (corresponding to IH, SH, US, FM) is then 
computed and compared with the Index 5 accuracy threshold (for all highway levels combined). 
Finally, a 'Fail' or 'Pass' label is assigned to each county. 
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(a) Section level analysis 
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Figure 5.4 Flowchart for FY2022 Data Quality Check Using the Thresholds of Index 4 and 
Index 5 

(b) County level analysis 

5.3.3 Implementation of Data Accuracy Check for Rutting and IRI 

Figure 5.6 shows the flowchart for FY2022 Data Quality Check Using the Thresholds of Index 2 
(Rutting & IRI) and Index 3 (Rutting & IRI) computed from FY2017-2021. To facilitate 
comparisons between the automated and audit data, the measurements of both sources are first 
matched within the same pavement section. Subsequently, the matched data are subjected to data 
quality analysis after being filtered by county level, pavement section numbers, comprehensive 
index measurements (RS), and pavement distress measurements. The flowchart then proceeds to 
assess all pavement section data within each county and applies three thresholds to evaluate the 
selected pavement section: Index 3 threshold (corresponding to IH, SH, US, FM), Index 2 
threshold (for all highway levels combined), and Index 3 accuracy threshold (for all highway levels 
combined). The results of the Index 3 and Index 2 threshold evaluations are stored as 'Fail' or 'Pass', 
where the former identifies pavement sections with potential data quality issues, and the latter 
helps identify which pavement distress causes the data quality issue. The Index 3 accuracy 
threshold (for all highway levels combined) is applied after all pavement sections in a county are 
evaluated. The percentage of pavement sections that pass the Index 3 threshold (corresponding to 
IH, SH, US, FM) is then computed and compared with the Index 3 accuracy threshold (for all 
highway levels combined). Finally, a 'Fail' or 'Pass' label is assigned to each county. 
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(a) Section level analysis 
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Figure 5.5 Flowchart for FY2022 Data Quality Check using the Thresholds of Index 2 
(Rutting & IRI) and Index 3 (Rutting & IRI) 

(b) County level analysis 

5.3.4 Implementation of Data Precision Check for Rutting and IRI 

Figure 5.7 shows the flowchart for FY2022 Data Quality Check Using the Thresholds of Index 4 
(Rutting & IRI) and Index 5 (Rutting & IRI) computed from FY2017-2021. To facilitate 
comparisons between the automated and audit data, the measurements of both sources are first 
matched within the same pavement section. Subsequently, the matched data are subjected to data 
quality analysis after being filtered by county level, pavement section numbers, comprehensive 
index measurements (RS), and pavement distress measurements. The flowchart then proceeds to 
assess all pavement section data within each county and applies three thresholds to evaluate the 
selected pavement section: Index 4 threshold (corresponding to IH, SH, US, FM), Index 4 
threshold (for all highway levels combined), and Index 5 accuracy threshold (for all highway levels 
combined). The results of the Index 5 and Index 4 threshold evaluations are stored as 'Fail' or 'Pass', 
where the former identifies pavement sections with potential data quality issues, and the latter 
helps identify which pavement distress causes the data quality issue. The Index 5 accuracy 
threshold (for all highway levels combined) is applied after all pavement sections in a county are 
evaluated. The percentage of pavement sections that pass the Index 5 threshold (corresponding to 
IH, SH, US, FM) is then computed and compared with the Index 5 accuracy threshold (for all 
highway levels combined). Finally, a 'Fail' or 'Pass' label is assigned to each county. 
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(a) Section level analysis 
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Figure 5.6 Flowchart for FY2022 Data Quality Check using the Thresholds of Index 4 
(Rutting & IRI) and Index 5 (Rutting & IRI) 

(b) County level analysis 
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Chapter 6 Pilot Study Results of Data Quality Assurance 

6.1 Data Quality Check 

In this chapter, the image check result of the pilot study district San Antonio is presented to 
validate the data quality check procedure result of precision. The image check processes used the 
images from San Antonio district which were collected from FY 2021 and 2022. There are a 
total of three distress results per image, 1st one is the Pathway automatically processed distress 
result technically recorded in the PMIS database, 2nd one is the manual audit result, and 3rd one is 
the distress result from manually reviewing Pathway images conducted by the research team’s 
well-trained raters. The sections selected for the image check are those with potential data 
quality issues from the pilot study using the data quality validation procedures. The image check 
result in this chapter is presented by each distress types and Fiscal Year. Based on the data 
availability, only typical distress types of alligator cracking, longitudinal cracking, transverse 
cracking, patching, and failure from asphalt pavement are included.  

6.1.1 Data Quality Check for Index #2 

Table 6.1 presents the data quality check results for San Antonio on Index 2. For ACP, the table 
reveals the accuracy of ACP Block Cracking, ACP Alligator Cracking, ACP Transverse 
Cracking, and ACP Failure are in good data quality. ACP Patching shows slightly lower 
accuracy compared to the Index 2 threshold, which suggests a minor data quality concern. ACP 
Longitude Cracking shows severe lower accuracy compared to the Index 2 threshold, which may 
suggest a strong data quality concern. The primary data quality issue identified in this analysis is 
FN. This finding implies that the annual data might tend to underestimate the severity of distress 
on the pavement. 

For CRCP, the table reveals the accuracy of CRCP Spalled Cracks, CRCP Punchout, CRCP ACP 
Patches, CRCP PCC Patches, and CRCP AVG Crack Spacing are in good data quality. CRCP 
PCC Patches show slightly lower accuracy compared to the Index 2 threshold, which suggests a 
minor data quality concern. CRCP AVG Crack Spacing shows severe lower accuracy compared to 
the Index 2 threshold, which may suggest a strong data quality concern. The primary data quality 
issue identified in this analysis is FP. This finding implies that the annual data might tend to 
overestimate the severity of distress on the pavement. 

For JCP, only a few of the pavement section data was involved in the pilot study for Index 2. 
Consequently, the evaluation results may not reflect the actual condition. 

Table 6.1 Evaluation results on FY 2022 DISTRESS SCORE, CONDITION SCORE, and 
RIDE SCORE data (1.5 Sigma) 

Pavement 
Type  

Distress Type Network 
Level 

No. of Sections Accuracy Threshold 

ACP ACP 
PATCHING 
PCT 

All  sections 96.17% 95.60% 96.17% 
FN 20 0.0259067 
T- 24 0.0310881 
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0 684 0.8860104 
T+ 30 0.0388601 
FP 14 0.0181347 

ACP FAILURE 
QTY 
 

All  sections 98.80% 99.74% 98.80% 
FN 1 0.0012953 
T- 11 0.0142487 
0 752 0.9740933 
T+ 7 0.0090674 
FP 1 0.0012953 

ACP BLOCK 
CRACKING PCT 
 

All  sections 99.05% 99.22% 99.05% 
FN 0 0.0000000 
T- 0 0.0000000 
0 758 0.9818653 
T+ 8 0.0103627 
FP 6 0.0077720 

ACP 
ALLIGATOR 
CRACKING PCT 
 

All  sections 95.27% 95.98% 95.27% 
FN 23 0.0297927 
T- 78 0.1010363 
0 569 0.7370466 
T+ 94 0.1217617 
FP 8 0.0103627 

ACP 
LONGITUDE 
CRACKING 
 

All  sections 91.22% 85.88% 91.22% 
FN 65 0.0841969 
T- 198 0.2564767 
0 246 0.3186528 
T+ 219 0.2836788 
FP 44 0.0569948 

ACP 
TRANSVERSE 
CRACKING QTY 
 

All  sections 94.87% 95.85% 94.87% 
FN 29 0.0375648 
T- 114 0.1476684 
0 595 0.7707254 
T+ 31 0.0401554 
FP 3 0.0038860 

CRCP CRCP SPALLED 
CRACKS QTY 
 

All  sections % 100.00% 98.65% 
FN 0 0.0000000 
T- 0 0.0000000 
0 11 0.8461538 
T+ 2 0.1538462 
FP 0 0.0000000 

CRCP 
PUNCHOUT 
QTY 
 

All  sections % 100.00% 96.37% 
FN 0 0.0000000 
T- 0 0.0000000 
0 13 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 
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CRCP ACP 
PATCHES QTY 
 

All  sections % 100.00% 97.86% 
FN 0 0.0000000 
T- 0 0.0000000 
0 13 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

CRCP PCC 
PATCHES QTY 
 

All  sections % 92.31% 94.50% 
FN 1 0.0769231 
T- 0 0.0000000 
0 12 0.9230769 
T+ 0 0.0000000 
FP 0 0.0000000 

CRCP AVG 
CRACK 
SPACING QTY 
 

All  sections % 61.54% 85.77% 
FN 0 0.0000000 
T- 0 0.0000000 
0 1 0.0769231 
T+ 7 0.5384615 
FP 5 0.3846154 

JCP JCP FAILED 
JNTS CRACKS 
QTY 
 

All  sections % 100.00% 95.88% 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 2 1.0000000 
FP 0 0.0000000 

JCP FAILURES 
QTY 
 

All  sections % 50.00% 97.67% 
FN 0 0.0000000 
T- 1 0.5000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 1 0.5000000 

JCP 
SHATTERED 
SLABS QTY 
 

All  sections % 100.00% 99.04% 
FN 0 0.0000000 
T- 0 0.0000000 
0 2 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP SLABS 
WITH 
LONGITUDINAL 
CRACKS 
 

All  sections % 100.00% 93.83% 
FN 0 0.0000000 
T- 0 0.0000000 
0 2 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP PCC 
PATCHES QTY 
 

All  sections % 100.00% 94.10% 
FN 0 0.0000000 
T- 1 0.5000000 
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0 0 0.0000000 
T+ 1 0.5000000 
FP 0 0.0000000 

JCP APPARENT 
JOINT SPACE 
 

All  sections % 0.00% 92.46% 
FN 2 1.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

A thorough examination was conducted for the pavement sections flagged for data quality issues. 
The findings of this visual check are summarized in Table 6.2. Upon reviewing the results, it 
becomes evident that a total of 105 pavement sections exhibit data quality issues as per the 
automated measurements. Additionally, 105 pavement sections were identified as having data 
quality issues based on the audit measurements. Remarkably, among these sections, 52 pavement 
sections were found to have data quality issues according to both the automated and audit 
measurements. 

Table 6.2 Visual check results of pavement sections with data quality issues for San 
Antonio 

Pavement 
Type 

Distress Type Pavement sections with quality 
issues 

Automated Audit Both 

ACP 

ACP ALLIGATOR CRACKING PCT 13 9 3 
ACP FAILURE QTY 0 1 0 
ACP LONGITUDE CRACKING 70 56 40 
ACP PATCHING PCT 8 21 0 
ACP TRANSVERSE CRACKING QTY 12 16 9 
ACP BLOCK CRACKING PCT 2 2 0 

Total 105 105 52 

Figure 6.1 visually presents the outcomes of the automated data detection/identification process. 
It becomes apparent that certain discrepancies exist in the automated analysis. Specifically, FP 
cracks are observed in the detection of longitudinal cracking, while FN cracks are apparent in the 
identification of alligator cracking, transverse cracking, block cracking, and patching. Regarding 
failures, the audit rating incorrectly identifies overlay as failures. This misclassification requires 
attention and correction. 
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(1) SAN ANTONIO_BEXAR_SL1604_576+0.54 (ACP ALLIGATOR CRACKING PCT) 

(2) SAN ANTONIO_BEXAR_FM1957_480+0.61 (ACP LONGITUDE CRACKING) 
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(3) SAN ANTONIO_BEXAR_SH0016_586+0.071 (ACP TRANSVERSE CRACKING QTY) 

(4) SAN ANTONIO_BEXAR_IH0010_480+0.035 (ACP PATCHING PCT) 
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Figure 6.1 Visualization of the Distress Detection/Identification Errors 

(5) SAN ANTONIO_BEXAR_SL1604_576+0.689 (ACP BLOCK CRACKING PCT) 

(6) SAN ANTONIO_BEXAR_IH0410_9+0.309 (ACP FAILURE QTY) 

6.1.2 Data Quality Check for Index #3 

Table 6.3 presents the data quality check results for San Antonio on Index 3. For ACP, the table 
reveals the accuracy of Distress Score under SH network level, and US network level, indicating 
that they exhibit good data quality. Distress Score under FM network level shows slightly lower 
accuracy compared to the Index 3 threshold, which suggests a minor data quality concern. 
Distress Score under IH network level shows severe lower accuracy compared to the Index 3 
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threshold, which may suggest a strong data quality concern. The primary data quality issue 
identified in this analysis is FP. This finding implies that the annual data might tend to 
overestimate the severity of the Distress Score. 

For CRCP, the table reveals the accuracy of the Distress Score under the IH network level, 
indicating that they exhibit good data quality. No CRCP Distress Score data under FM network 
level, SH network level, and US network level were included in the Index 3 polit study in FY 
2022. 

For JCP, only a few of the Distress Score data were involved in the pilot study for Index 3. 
Consequently, the evaluation results may not reflect the actual condition. 

Table 6.3 Index 3 Data quality check for San Antonio 
Pavement 
Type  

Distress 
Type 

Network 
Level 

No. of Sections Accuracy Threshold 

ACP Distress 
Score 

FM  sections % 88.53% 91.07% 
FN 15 0.0537634 
T- 38 0.1362007 
0 181 0.6487455 
T+ 28 0.1003584 
FP 17 0.0609319 

Distress 
Score 

SH  sections % 92.74% 90.18% 
FN 7 0.0299145 
T- 18 0.0769231 
0 162 0.6923077 
T+ 37 0.1581197 
FP 10 0.0427350 

Distress 
Score 

US  sections % 96.61% 90.73% 
FN 0 0.0000000 
T- 11 0.0932203 
0 86 0.7288136 
T+ 17 0.1440678 
FP 4 0.0338983 

Distress 
Score 

IH  sections % 85.96% 90.66% 
FN 4 0.0350877 
T- 14 0.1228070 
0 64 0.5614035 
T+ 20 0.1754386 
FP 12 0.1052632 

CRCP Distress 
Score 

FM  sections % Nan 90.30% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 
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Distress 
Score 

SH  sections % Nan 90.07% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

Distress 
Score 

US  sections % Nan 90.87% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

Distress 
Score 

IH  sections % 92.30% 90.07% 
FN 0 0 
T- 0 0 
0 12 0.9230769 
T+ 0 0 
FP 1 0.0769231 

JCP Distress 
Score 

FM  sections % 50.00% 86.73% 
FN 1 0.5000000 
T- 0 0.0000000 
0 1 0.5000000 
T+ 0 0.0000000 
FP 0 0.0000000 

Distress 
Score 

SH  sections % Nan 88.52% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

Distress 
Score 

US  sections % Nan 89.71% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

Distress 
Score 

IH  sections % Nan 86.00% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 
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6.1.3 County-level analysis for Index 2 & Index 3 

Table 6.4 presents the county-level analysis results for San Antonio. For ACP, there are 7 
counties from the San Antonio district were selected for the data audit. The table reveals the 
accuracy of Comal, Guadalupe, Kerr, and McMullen, indicating that they exhibit good data 
quality. Wilson shows slightly lower accuracy compared to the Index 3 threshold, which 
suggests a minor data quality concern. Bandera and Bexar show severe lower accuracy compared 
to the Index 3 threshold, which may suggest a strong data quality concern. The primary data 
quality issue identified in this analysis is FP. This finding implies that the annual data might tend 
to slightly underestimate the severity of overall pavement condition. 

For CRCP, there are 1 county from San Antonio district were selected for the data audit. The 
table reveals the accuracy of Bexar, indicating that they exhibit good data quality.  

For JCP, only a few of the Distress Score data was involved in the pilot study for Index 2 and 
Index 3. Consequently, the evaluation results may not reflect the actual condition. 

Table 6.4 County-level data quality check for San Antonio 
Distress 
Type  

County No. of Sections Accuracy Threshold Decisions 

ACP 10 - 
BANDERA 

 sections % 78.43% 90.71% Fail 
FN 3 0.0697674 
T- 6 0.1395349 
0 27 0.6279070 
T+ 7 0.1627907 
FP 0 0.0000000 

15 - BEXAR  sections % 82.28% 90.71% Fail 
FN 8 0.0269360 
T- 34 0.1144781 
0 182 0.6127946 
T+ 44 0.1481481 
FP 29 0.0976431 

46 - COMAL  sections % 94.74% 90.71% Pass 
FN 0 0.0000000 
T- 3 0.0394737 
0 53 0.6973684 
T+ 16 0.2105263 
FP 4 0.0526316 

95 - 
GUADALUPE 

 sections % 91.07% 90.71% Pass 
FN 4 0.0357143 
T- 17 0.1517857 
0 70 0.6250000 
T+ 15 0.1339286 
FP 6 0.0535714 

133 - KERR  sections % 93.18% 90.71% Pass 
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FN 3 0.0340909 
T- 3 0.0340909 
0 69 0.7840909 
T+ 10 0.1136364 
FP 3 0.0340909 

162 - 
MCMULLEN 

 sections % 100.00% 90.71% Pass 
FN 0 0.0000000 
T- 2 0.0500000 
0 35 0.8750000 
T+ 3 0.0750000 
FP 0 0.0000000 

247 - 
WILSON 

 sections % 89.89% 90.71% Fail 
FN 8 0.0898876 
T- 16 0.1797753 
0 57 0.6404494 
T+ 7 0.0786517 
FP 1 0.0112360 

CRCP 15 - BEXAR  sections % 92.31% 89.98% Pass 
FN 0 0.0000000 
T- 0 0.0000000 
0 12 0.9230769 
T+ 0 0.0000000 
FP 1 0.0769231 

JCP 46 - COMAL  sections % 50.00% 88.48% Fail 
FN 1 0.5000000 
T- 0 0.0000000 
0 1 0.5000000 
T+ 0 0.0000000 
FP 0 0.0000000 

6.1.4 Data Quality Check for Index #4 

Table 6.5 presents the data quality check results for San Antonio on Index 4. For ACP, the table 
reveals the accuracy of ACP Patching, ACP Failure, ACP Alligator Cracking, ACP Longitude 
Cracking, and ACP Transverse Cracking, indicating that they exhibit good data quality. There 
are similar amounts of pavement sections with FP and FN. This finding implies that both 
unexpected decreasing and increasing in distress measurements could be equally observed. 

For CRCP, the table reveals the accuracy of CRCP Spalled Cracks, CRCP Punchout, CRCP ACP 
Patches, CRCP PCC Patches, and CRCP Avg Crack Spacing, indicating that they exhibit good 
data quality.  

For JCP, only a few of the pavement section data were involved in the pilot study for Index 4. 
Consequently, the evaluation results may not reflect the actual condition. 
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Table 6.5 Index 4 data quality check for San Antonio 
Pavement 
Type  

Distress Type Network 
Level 

No. of Sections Precision Threshold 

ACP ACP 
PATCHING 
PCT 

All  sections % 

98.71% 95.92% 

FN 200 0.0204351 
T- 435 0.0442253 
0 8716 0.8859292 
T+ 361 0.0367019 
FP 124 0.0127084 

ACP FAILURE 
QTY 
 

All  sections % 

98.72% 98.34% 

FN 71 0.0072184 
T- 123 0.0125051 
0 9388 0.954453 
T+ 129 0.0131151 
FP 125 0.0127084 

ACP BLOCK 
CRACKING 
PCT 
 

All   sections % 

Nan 95.68% 

FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

ACP 
ALLIGATOR 
CRACKING PCT 
 

All  sections % 

98.05% 94.12% 

FN 277 0.0285685 
T- 1318 0.1339976 
0 6700 0.6807645 
T+ 1355 0.1377593 
FP 186 0.0189101 

ACP 
LONGITUDE 
CRACKING 
 

All  sections % 

95.00% 90.13% 

FN 381 0.0390403 
T- 2457 0.2497967 
0 3311 0.3362139 
T+ 3214 0.3267588 
FP 473 0.0481903 

ACP 
TRANSVERSE 
CRACKING QTY 
 

All  sections % 

99.03% 94.00% 

FN 98 0.0099634 
T- 228 0.0231802 
0 8707 0.8852176 
T+ 709 0.0720821 
FP 94 0.0095567 

CRCP CRCP SPALLED 
CRACKS QTY 
 

All  sections % 100.00% 98.68% 
FN 0 0.0000000 
T- 0 0.0000000 
0 79 0.9753086 
T+ 2 0.0246914 
FP 0 0.0000000 
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CRCP 
PUNCHOUT 
QTY 
 

All  sections % 100.00% 96.47% 
FN 1 0.0123457 
T- 0 0.0000000 
0 80 0.9876543 
T+ 0 0.0000000 
FP 0 0.0000000 

CRCP ACP 
PATCHES QTY 
 

All  sections % 100.00% 97.61% 
FN 1 0.0123457 
T- 1 0.0123457 
0 79 0.9753086 
T+ 0 0.0000000 
FP 0 0.0000000 

CRCP PCC 
PATCHES QTY 
 

All  sections % 98.75% 94.29% 
FN 0 0.0000000 
T- 1 0.0123457 
0 71 0.8765432 
T+ 8 0.0987654 
FP 1 0.0123457 

CRCP AVG 
CRACK 
SPACING QTY 
 

All  sections % 92.31% 86.18% 
FN 20 0.2469136 
T- 22 0.2716049 
0 17 0.2098765 
T+ 19 0.2345679 
FP 3 0.0370370 

JCP JCP FAILED 
JNTS CRACKS 
QTY 
 

All  sections % 100.00% 95.07% 
FN 0 0.0000000 
T- 1 0.2500000 
0 1 0.2500000 
T+ 2 0.5000000 
FP 0 0.0000000 

JCP FAILURES 
QTY 
 

All  sections % 50.00% 93.73% 
FN 0 0.0000000 
T- 2 0.5000000 
0 1 0.2500000 
T+ 0 0.0000000 
FP 1 0.2500000 

JCP 
SHATTERED 
SLABS QTY 
 

All  sections % 100.00% 96.53% 
FN 1 0.2500000 
T- 0 0.0000000 
0 3 0.7500000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP SLABS 
WITH 

All  sections % 100.00% 93.72% 
FN 0 0.0000000 
T- 0 0.0000000 
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LONGITUDINAL 
CRACKS 
 

0 4 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP PCC 
PATCHES QTY 
 

All  sections % 100.00% 93.33% 
FN 0 0.0000000 
T- 2 0.5000000 
0 1 0.2500000 
T+ 1 0.2500000 
FP 0 0.0000000 

JCP APPARENT 
JOINT SPACE 
 

All  sections % 100.00% 94.13% 
FN 0 0.0000000 
T- 1 0.2500000 
0 1 0.2500000 
T+ 2 0.5000000 
FP 0 0.0000000 

6.1.5 Data Quality Check for Index #5 

Table 6.6 presents the ACP data quality check results for San Antonio on Index 5. For Distress 
Score, the table reveals the precession of Distress Score under FM network level, and US 
network level, indicating that they exhibit good data quality. Distress Score under SH network 
level and IH network level show slightly lower precision compared to the Index 5 threshold, 
which suggests a minor data quality concern. The primary data quality issue identified in this 
analysis is FP. This finding implies that the dominant pavement sections with data quality issues 
show an unexpected increase in distress measurements. 

For Condition Score, the table reveals the accuracy of Condition Score under the FM network 
level, indicating that they exhibit good data quality. Condition Score under SH network level, US 
network level, and IH network level show slightly lower precision compared to the Index 5 
threshold, which suggests a minor data quality concern. The primary data quality issue identified 
in this analysis is FP. This finding implies that the dominant pavement sections with data quality 
issues show an unexpected increase in distress measurements. 

For Ride Score, Ride Score under FM network level shows slightly lower precision compared to 
the Index 5 threshold, which suggests a minor data quality concern. Ride Score under SH 
network level, US network level, and IH network level show severe lower precision compared to 
the Index 5 threshold, which may suggest a strong data quality concern. The primary data quality 
issue identified in this analysis is FP. This finding implies that the dominant pavement sections 
with data quality issues show an unexpected increase in distress measurements. 

Table 6.6 Index 5 Data quality check for San Antonio (ACP) 
Distress Type Network Level No. of Sections Precision Threshold 
Distress Score FM  sections % 89.98% 88.52% 

FN 175 0.0443487 
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T- 1705 0.4320831 
0 757 0.1918398 
T+ 1102 0.2792701 
FP 207 0.0524582 

SH  sections % 85.56% 89.24% 
FN 109 0.0459334 
T- 872 0.3674673 
0 642 0.2705436 
T+ 549 0.2313527 
FP 201 0.0847029 

US  sections % 89.59% 89.46% 
FN 50 0.0462535 
T- 426 0.3940796 
0 271 0.2506938 
T+ 271 0.2506938 
FP 63 0.0582794 

IH  sections % 87.58% 88.66% 
FN 125 0.0513136 
T- 830 0.3407225 
0 706 0.2898194 
T+ 591 0.2426108 
FP 184 0.0755337 

CONDITION 
SCORE 

FM  sections % 89.80% 89.39% 
FN 180 0.0457433 
T- 1706 0.4335451 
0 662 0.1682338 
T+ 1178 0.2993647 
FP 209 0.0531131 

SH  sections % 86.15% 89.68% 
FN 105 0.0443038 
T- 879 0.3708861 
0 588 0.2481013 
T+ 606 0.2556962 
FP 192 0.0810127 

US  sections % 87.89% 89.54% 
FN 51 0.0471785 
T- 419 0.3876041 
0 260 0.2405180 
T+ 277 0.2562442 
FP 74 0.0684551 

IH  sections % 88.04% 88.99% 
FN 126 0.0517241 
T- 863 0.3542693 
0 651 0.2672414 
T+ 623 0.2557471 



150 
 

FP 173 0.0710181 
RIDE SCORE FM  sections % 88.20% 92.97% 

FN 105 0.0266836 
T- 1940 0.4930114 
0 101 0.0256671 
T+ 1566 0.3979670 
FP 223 0.0566709 

SH  sections % 86.24% 93.41% 
FN 56 0.0236287 
T- 1108 0.4675105 
0 61 0.0257384 
T+ 979 0.4130802 
FP 166 0.0700422 

US  sections % 82.23% 92.66% 
FN 23 0.0212766 
T- 546 0.5050879 
0 22 0.0203515 
T+ 399 0.3691027 
FP 91 0.0841813 

IH  sections % 81.86% 92.19% 
FN 98 0.0402299 
T- 993 0.4076355 
0 38 0.0155993 
T+ 1063 0.4363711 
FP 244 0.1001642 

Table 6.7 presents the CRCP data quality check results for San Antonio on Index 5. Only a few 
of the pavement section data were involved in the pilot study for Index 5. Consequently, the 
evaluation results may not reflect the actual condition. 

Table 6.7 Data quality check for San Antonio (CRCP) 
Distress Type Network Level No. of Sections Precision Threshold 
Distress Score FM  sections % Nan 87.68% 

FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

SH  sections % 85.71% 87.88% 
FN 0 0.0000000 
T- 0 0.0000000 
0 6 0.8571429 
T+ 0 0.0000000 
FP 1 0.1428571 

US  sections % 100.00% 90.95% 
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FN 0 0.0000000 
T- 0 0.0000000 
0 5 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

IH  sections % 98.33% 90.23% 
FN 1 0.0144928 
T- 8 0.1159420 
0 57 0.8260870 
T+ 2 0.0289855 
FP 1 0.0144928 

CONDITION 
SCORE 

FM  sections % Nan 87.87% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

SH  sections % 80.00% 87.67% 
FN 0 0.0000000 
T- 2 0.2857143 
0 4 0.5714286 
T+ 0 0.0000000 
FP 1 0.1428571 

US  sections % 80.00% 90.57% 
FN 0 0.0000000 
T- 0 0.0000000 
0 3 0.6000000 
T+ 1 0.2000000 
FP 1 0.2000000 

IH  sections % 94.34% 89.63% 
FN 1 0.0144928 
T- 15 0.2173913 
0 46 0.6666667 
T+ 4 0.0579710 
FP 3 0.0434783 

RIDE SCORE FM  sections % Nan 93.20% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

SH  sections % 100.00% 92.82% 
FN 0 0.0000000 
T- 7 1.0000000 
0 0 0.0000000 
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T+ 0 0.0000000 
FP 0 0.0000000 

US  sections % 50.00% 91.63% 
FN 0 0.0000000 
T- 1 0.2000000 
0 0 0.0000000 
T+ 2 0.4000000 
FP 2 0.4000000 

IH  sections % 90.48% 92.80% 
FN 1 0.0144928 
T- 26 0.3768116 
0 8 0.1159420 
T+ 30 0.4347826 
FP 4 0.0579710 

Table 6.8 presents the JCP data quality check results for San Antonio on Index 5. Only a few of 
the pavement section data were involved in the pilot study for Index 5. Consequently, the 
evaluation results may not reflect the actual condition. 

Table 6.8 Index 5 Data quality check for San Antonio (JCP) 
Distress Type Network Level No. of Sections Precision Threshold 
Distress Score FM  sections % 100.00% 81.73% 

FN 1 0.2500000 
T- 0 0.0000000 
0 2 0.5000000 
T+ 1 0.2500000 
FP 0 0.0000000 

SH  sections % Nan 87.74% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

US  sections % Nan 91.11% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

IH  sections % Nan 88.56% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 
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CONDITION 
SCORE 

FM  sections % 50.00% 87.50% 
FN 1 0.2500000 
T- 2 0.5000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 1 0.2500000 

SH  sections % Nan 88.31% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

US  sections % Nan 87.41% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

IH  sections % Nan 86.57% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

RIDE SCORE FM  sections % 75.00% 88.46% 
FN 0 0.0000000 
T- 3 0.7500000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 1 0.2500000 

SH  sections % Nan 94.16% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

US  sections % Nan 86.67% 
FN Nan Nan 
T- Nan Nan 
0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

IH  sections % Nan 93.53% 
FN Nan Nan 
T- Nan Nan 
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0 Nan Nan 
T+ Nan Nan 
FP Nan Nan 

6.1.6 County-level analysis for Index 4 & Index 5 

Table 6.9 presents the county-level analysis results of the Distress Score for San Antonio. For 
ACP, there are 15 counties from the San Antonio district were selected for the data audit. The 
table reveals the accuracy of Guadalupe, Wilson, Comal, Uvalde, Bandera, Kerr, Gillespie, and 
La Salle, indicating that they exhibit good data quality. Bexar, Atascosa, Mcmullen, and Kendall 
show slightly lower accuracy compared to the Index 5 threshold, which suggests a minor data 
quality concern. Frio, Medina, and Caldwell show severe lower accuracy compared to the Index 
5 threshold, which may suggest a strong data quality concern. The primary data quality issue 
identified in this analysis is FP. This finding implies that the dominant pavement sections with 
data quality issues show an unexpected increase in Distress Score measurements. 

For CRCP, there are 3 counties from the San Antonio district were selected for the data audit. 
The table reveals the accuracy of Bexar, Kendall, and Uvalde, indicating that they exhibit good 
data quality. There are similar amounts of pavement sections with FP and FN. This finding 
implies that both unexpected decreasing and increasing in Distress Score measurements could be 
equally observed. However, the number of Distress Score data involved in the pilot study for 
Index 4 and Index 5 may not be sufficient. Consequently, the evaluation results may not reflect 
the actual condition. 

For JCP, only a few of the Distress Score data was involved in the pilot study for Index 4 and 
Index 5. Consequently, the evaluation results may not reflect the actual condition. 

Table 6.9 County-level data quality check for San Antonio (Distress Score) 
Distress 
Type  

County No. of Sections Accuracy Threshold Determination 

ACP  95 - 
GUADALUPE 

 sections % 90.27% 89.04% Pass 
FN 39 0.0421622 
T- 421 0.4551351 
0 164 0.1772973 
T+ 250 0.2702703 
FP 51 0.0551351 

247 - 
WILSON 

 sections % 91.08% 89.04% Pass 
FN 24 0.0345324 
T- 272 0.3913669 
0 200 0.2877698 
T+ 161 0.2316547 
FP 38 0.0546763 

 46 - COMAL  sections % 92.10% 89.04% Pass 
FN 17 0.0268562 
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T- 208 0.3285940 
0 186 0.2938389 
T+ 189 0.2985782 
FP 33 0.0521327 

 15 - BEXAR  sections % 88.47% 89.04% Fail 
FN 122 0.0473419 
T- 980 0.3802872 
0 772 0.2995731 
T+ 528 0.2048894 
FP 175 0.0679084 

232 - 
UVALDE 

 sections % 93.34% 89.04% Pass 
FN 12 0.0169972 
T- 238 0.3371105 
0 171 0.2422096 
T+ 250 0.3541076 
FP 35 0.0495751 

 83 - FRIO  sections % 82.31% 89.04% Fail 
FN 53 0.0694626 
T- 251 0.3289646 
0 176 0.2306684 
T+ 201 0.2634338 
FP 82 0.1074705 

  7 - 
ATASCOSA 

 sections % 85.35% 89.04% Fail 
FN 74 0.0747475 
T- 451 0.4555556 
0 224 0.2262626 
T+ 170 0.1717172 
FP 71 0.0717172 

163 - 
MEDINA 

 sections % 82.73% 89.04% Fail 
FN 60 0.0803213 
T- 325 0.4350736 
0 120 0.1606426 
T+ 173 0.2315930 
FP 69 0.0923695 

 10 - 
BANDERA 

 sections % 96.10% 89.04% Pass 
FN 6 0.0155844 
T- 144 0.3740260 
0 91 0.2363636 
T+ 135 0.3506494 
FP 9 0.0233766 

162 - 
MCMULLEN 

 sections % 87.18% 89.04% Fail 
FN 14 0.0448718 
T- 128 0.4102564 
0 72 0.2307692 
T+ 72 0.2307692 
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FP 26 0.0833333 
131 - 
KENDALL 

 sections % 86.59% 89.04% Fail 
FN 24 0.0585366 
T- 154 0.3756098 
0 55 0.1341463 
T+ 146 0.3560976 
FP 31 0.0756098 

133 - KERR  sections % 93.12% 89.04% Pass 
FN 14 0.0214067 
T- 254 0.3883792 
0 125 0.1911315 
T+ 230 0.3516820 
FP 31 0.0474006 

 28 - 
CALDWELL 

 sections % 63.64% 89.04% Fail 
FN 0 0.0000000 
T- 0 0.0000000 
0 6 0.5454545 
T+ 1 0.0909091 
FP 4 0.3636364 

 87 - 
GILLESPIE 

 sections % 100.00% 89.04% Pass 
FN 0 0.0000000 
T- 4 0.1666667 
0 14 0.5833333 
T+ 6 0.2500000 
FP 0 0.0000000 

142 - LA 
SALLE 

 sections % 100.00% 89.04% Pass 
FN 0 0.0000000 
T- 3 0.7500000 
0 0 0.0000000 
T+ 1 0.2500000 
FP 0 0.0000000 

CRCP  15 - BEXAR  sections % 96.20% 89.65% Pass 
FN 1 0.0126582 
T- 8 0.1012658 
0 66 0.8354430 
T+ 2 0.0253165 
FP 2 0.0253165 

131 - 
KENDALL 

 sections % 100.00% 89.65% Pass 
FN 0 0.0000000 
T- 0 0.0000000 
0 1 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

232 - 
UVALDE 

 sections % 100.00% 89.65% Pass 
FN 0 0.0000000 
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T- 0 0.0000000 
0 1 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP  46 - COMAL  sections % 75.00% 86.80% Fail 
FN 1 0.2500000 
T- 0 0.0000000 
0 2 0.5000000 
T+ 1 0.2500000 
FP 0 0.0000000 

Table 6.10 presents the county-level analysis results of Condition Score for San Antonio. For 
ACP, there are 15 counties from the San Antonio district were selected for the data audit. The 
table reveals the accuracy of Guadalupe, Wilson, Comal, Uvalde, Bandera, Kerr, Gillespie, and 
La Salle, indicating that they exhibit good data quality. Bexar, Atascosa, Mcmullen, and Kendall 
show slightly lower accuracy compared to the Index 5 threshold, which suggests a minor data 
quality concern. Frio, Medina, and Caldwell show severe lower accuracy compared to the Index 
5 threshold, which may suggest a strong data quality concern. The primary data quality issue 
identified in this analysis is FP. This finding implies that the dominant pavement sections with 
data quality issues show an unexpected increase in Condition Score measurements. 

For CRCP, there are 3 counties from the San Antonio district were selected for the data audit. 
The table reveals the accuracy of Bexar, Kendall, and Uvalde, indicating that they exhibit good 
data quality. There are similar amounts of pavement sections with FP and FN. This finding 
implies that both unexpected decreasing and increasing on Condition Score measurements could 
be equally observed. However, the number of Condition Score data involved in the pilot study 
for Index 4 and Index 5 may not be sufficient. Consequently, the evaluation results may not 
reflect the actual condition. 

For JCP, only a few of the Condition Score data was involved in the pilot study for Index 4 and 
Index 5. Consequently, the evaluation results may not reflect the actual condition. 

Table 6.10 County-level data quality check for San Antonio (Condition Score) 
Distress 
Type  

County No. of Sections Accuracy Threshold Determination 

ACP  95 - 
GUADALUPE 

 sections % 88.11% 89.72% Fail 
FN 39 0.0422535 
T- 422 0.4572048 
0 149 0.1614301 
T+ 244 0.2643554 
FP 69 0.0747562 

247 - WILSON  sections % 90.36% 89.72% Pass 
FN 29 0.0417867 
T- 269 0.3876081 
0 193 0.2780980 
T+ 166 0.2391931 
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FP 37 0.0533141 
 46 - COMAL  sections % 88.15% 89.72% Fail 

FN 30 0.0474684 
T- 198 0.3132911 
0 170 0.2689873 
T+ 190 0.3006329 
FP 44 0.0696203 

 15 - BEXAR  sections % 88.86% 89.72% Fail 
FN 113 0.0438665 
T- 1020 0.3959627 
0 689 0.2674689 
T+ 581 0.2255435 
FP 173 0.0671584 

232 - 
UVALDE 

 sections % 93.06% 89.72% Pass 
FN 18 0.0255319 
T- 237 0.3361702 
0 153 0.2170213 
T+ 267 0.3787234 
FP 30 0.0425532 

 83 - FRIO  sections % 84.40% 89.72% Fail 
FN 47 0.0615990 
T- 239 0.3132372 
0 173 0.2267366 
T+ 232 0.3040629 
FP 72 0.0943644 

  7 - 
ATASCOSA 

 sections % 87.27% 89.72% Fail 
FN 51 0.0517241 
T- 446 0.4523327 
0 201 0.2038540 
T+ 217 0.2200811 
FP 71 0.0720081 

163 - 
MEDINA 

 sections % 84.20% 89.72% Fail 
FN 60 0.0803213 
T- 340 0.4551539 
0 111 0.1485944 
T+ 178 0.2382865 
FP 58 0.0776439 

 10 - 
BANDERA 

 sections % 93.77% 89.72% Pass 
FN 17 0.0442708 
T- 158 0.4114583 
0 74 0.1927083 
T+ 129 0.3359375 
FP 6 0.0156250 

162 - 
MCMULLEN 

 sections % 87.18% 89.72% Fail 
FN 14 0.0448718 
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T- 115 0.3685897 
0 66 0.2115385 
T+ 91 0.2916667 
FP 26 0.0833333 

131 - 
KENDALL 

 sections % 85.61% 89.72% Fail 
FN 28 0.0684597 
T- 148 0.3618582 
0 55 0.1344743 
T+ 148 0.3618582 
FP 30 0.0733496 

133 - KERR  sections % 92.81% 89.72% Pass 
FN 16 0.0245399 
T- 269 0.4125767 
0 107 0.1641104 
T+ 231 0.3542945 
FP 29 0.0444785 

 28 - 
CALDWELL 

 sections % 72.73% 89.72% Fail 
FN 0 0.0000000 
T- 0 0.0000000 
0 6 0.5454545 
T+ 2 0.1818182 
FP 3 0.2727273 

 87 - 
GILLESPIE 

 sections % 100.00% 89.72% Pass 
FN 0 0.0000000 
T- 4 0.1666667 
0 14 0.5833333 
T+ 6 0.2500000 
FP 0 0.0000000 

142 - LA 
SALLE 

 sections % 100.00% 89.72% Pass 
FN 0 0.0000000 
T- 2 0.5000000 
0 0 0.0000000 
T+ 2 0.5000000 
FP 0 0.0000000 

CRCP  15 - BEXAR  sections % 92.41% 89.13% Pass 
FN 1 0.0126582 
T- 16 0.2025316 
0 52 0.6582278 
T+ 5 0.0632911 
FP 5 0.0632911 

131 - 
KENDALL 

 sections % 100.00% 89.13% Pass 
FN 0 0.0000000 
T- 0 0.0000000 
0 1 1.0000000 
T+ 0 0.0000000 
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FP 0 0.0000000 
232 - 
UVALDE 

 sections % 100.00% 89.13% Pass 
FN 0 0.0000000 
T- 1 1.0000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP  46 - COMAL  sections % 50.00% 86.63% Fail 
FN 1 0.2500000 
T- 2 0.5000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 1 0.2500000 

Table 6.11 presents the county-level analysis results of Ride Score for San Antonio. For ACP, 
there are 15 counties from the San Antonio district were selected for the data audit. The table 
reveals the accuracy of Atascosa and La Salle, indicating that they exhibit good data quality. 
Guadalupe, Bexar, Frio, Medina, and Bandera show slightly lower accuracy compared to the 
Index 5 threshold, which suggests a minor data quality concern. Wilson, Comal, Uvalde, 
Mcmullen, Kendall, Kerr, Caldwell, and Gillespie show severe lower accuracy compared to the 
Index 5 threshold, which may suggest a strong data quality concern. The primary data quality 
issue identified in this analysis is FP. This finding implies that the dominant pavement sections 
with data quality issues show an unexpected increase in Ride Score measurements. 

For CRCP, there are 3 counties from the San Antonio district were selected for the data audit. 
The table reveals the accuracy of Kendall and Uvalde, indicating that they exhibit good data 
quality. Bexar shows slightly lower accuracy compared to the Index 5 threshold, which suggests 
a minor data quality concern. The primary data quality issue identified in this analysis is FP. This 
finding implies that the dominant pavement sections with data quality issues show an unexpected 
increase in Ride Score measurements. However, the number of Ride Score data involved in the 
pilot study for Index 4 and Index 5 may not be sufficient. Consequently, the evaluation results 
may not reflect the actual condition. 

For JCP, only a few of the Ride Score data was involved in the pilot study for Index 4 and Index 
5. Consequently, the evaluation results may not reflect the actual condition. 

Table 6.11 County-level data quality check for San Antonio (Ride Score) 

Distress 
Type  

County No. of Sections Accuracy Threshold Determination 

ACP  95 - 
GUADALUPE 

 sections % 92.32% 92.99% Fail 
FN 34 0.0368364 
T- 490 0.5308776 
0 23 0.0249187 
T+ 341 0.3694475 
FP 35 0.0379198 
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247 - 
WILSON 

 sections % 86.47% 92.99% Fail 
FN 17 0.0244957 
T- 279 0.4020173 
0 24 0.0345821 
T+ 298 0.4293948 
FP 76 0.1095101 

 46 - COMAL  sections % 83.41% 92.99% Fail 
FN 35 0.0553797 
T- 270 0.4272152 
0 15 0.0237342 
T+ 243 0.3844937 
FP 69 0.1091772 

 15 - BEXAR  sections % 92.05% 92.99% Fail 
FN 70 0.0271739 
T- 1191 0.4623447 
0 60 0.0232919 
T+ 1121 0.4351708 
FP 134 0.0520186 

232 - 
UVALDE 

 sections % 86.97% 92.99% Fail 
FN 18 0.0255319 
T- 377 0.5347518 
0 23 0.0326241 
T+ 214 0.3035461 
FP 73 0.1035461 

83 - FRIO  sections % 88.34% 92.99% Fail 
FN 15 0.0196592 
T- 264 0.3460026 
0 8 0.0104849 
T+ 402 0.5268676 
FP 74 0.0969856 

  7 - 
ATASCOSA 

 sections % 95.66% 92.99% Pass 
FN 10 0.0101420 
T- 464 0.4705882 
0 22 0.0223124 
T+ 461 0.4675456 
FP 29 0.0294118 

163 - 
MEDINA 

 sections % 89.83% 92.99% Fail 
FN 34 0.0455154 
T- 418 0.5595716 
0 15 0.0200803 
T+ 238 0.3186078 
FP 42 0.0562249 

 10 - 
BANDERA 

 sections % 90.91% 92.99% Fail 
FN 12 0.0312500 
T- 235 0.6119792 
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0 7 0.0182292 
T+ 108 0.2812500 
FP 22 0.0572917 

162 - 
MCMULLEN 

 sections % 85.90% 92.99% Fail 
FN 8 0.0256410 
T- 96 0.3076923 
0 3 0.0096154 
T+ 169 0.5416667 
FP 36 0.1153846 

131 - 
KENDALL 

 sections % 85.85% 92.99% Fail 
FN 20 0.0488998 
T- 201 0.4914425 
0 10 0.0244499 
T+ 141 0.3447433 
FP 37 0.0904645 

133 - KERR  sections % 85.93% 92.99% Fail 
FN 9 0.0138037 
T- 302 0.4631902 
0 12 0.0184049 
T+ 248 0.3803681 
FP 81 0.1242331 

 28 - 
CALDWELL 

 sections % 54.55% 92.99% Fail 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 6 0.5454545 
FP 5 0.4545455 

 87 - 
GILLESPIE 

 sections % 54.17% 92.99% Fail 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 13 0.5416667 
FP 11 0.4583333 

142 - LA 
SALLE 

 sections % 100.00% 92.99% Pass 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 4 1.0000000 
FP 0 0.0000000 

CRCP  15 - BEXAR  sections % 91.14% 92.71% Fail 
FN 1 0.0126582 
T- 33 0.4177215 
0 7 0.0886076 
T+ 32 0.4050633 
FP 6 0.0759494 
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131 - 
KENDALL 

 sections % 100.00% 92.71% Pass 
FN 0 0.0000000 
T- 0 0.0000000 
0 1 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

232 - 
UVALDE 

 sections % 100.00% 92.71% Pass 
FN 0 0.0000000 
T- 1 1.0000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP  46 - COMAL  sections % 75.00% 91.98% Fail 
FN 0 0.0000000 
T- 3 0.7500000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 1 0.2500000 

6.1.7 Index 2 (Rutting & IRI) 

Table 6.12 presents the data quality check results for San Antonio on Index 2. For ACP, the table 
reveals the accuracy of ACP Rut Auto Severe, IRI Left Score, IRI Right Score, and IRI Average 
Score, indicating that they exhibit good data quality. ACP Rut Auto Deep shows slightly lower 
accuracy compared to the Index 2 threshold, which suggests a minor data quality concern. ACP 
Rut Auto Shallow shows severe lower accuracy compared to the Index 2 threshold, which may 
suggest a strong data quality concern. The primary data quality issue identified in this analysis is 
FP. This finding implies that the annual data might tend to overestimate the severity of Rutting & 
IRI in the pavement. 

No CRCP and JCP section data was delivered in the pilot study for Index 2. 

Table 6.12 Index 2 (Rutting & IRI) Data quality check for San Antonio 
Pavement 
Type  

Distress Type Network 
Level 

No. of Sections Accuracy Threshold 

ACP ACP RUT 
AUTO 
SHALLOW 
AVG PCT 

All  sections % 55.50% 75.86% 
 FN 0 0.0000000 

T- 4 0.0065681 
0 42 0.0689655 
T+ 292 0.4794745 
FP 271 0.4449918 

ACP RUT 
AUTO DEEP 
AVG PCT  

All  sections % 92.45% 94.64% 
 FN 0 0.0000000 

T- 0 0.0000000 
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0 382 0.6272578 
T+ 181 0.2972085 
FP 46 0.0755337 

ACP RUT 
AUTO 
SEVERE 
AVG PCT  

All  sections % 99.84% 99.86% 
 FN 0 0.0000000 

T- 0 0.0000000 
0 602 0.9885057 
T+ 6 0.0098522 
FP 1 0.0016420 

IRI LEFT 
SCORE 
(IN/MILE) 

All  sections % 96.72% 93.80% 
 FN 8 0.0131363 

T- 417 0.6847291 
0 25 0.0410509 
T+ 147 0.2413793 
FP 8 0.0131363 

IRI RIGHT 
SCORE 
(IN/MILE) 

All  sections % 95.24% 93.19% 
 FN 12 0.0197044 

T- 398 0.6535304 
0 19 0.0311987 
T+ 163 0.2676519 
FP 12 0.0197044 

IRI 
AVERAGE 
SCORE 
(IN/MILE) 

All  sections % 95.57% 93.45% 
FN 10 0.0164204 
T- 418 0.6863711 
0 26 0.0426929 
T+ 138 0.2266010 
FP 11 0.0180624 

6.1.8 Index 3 (Rutting & IRI) 

Table 6.13 presents the data quality check results for San Antonio on Index 3. For ACP, the table 
reveals the accuracy of the Distress Score under FM network level, SH network level, and US 
network level, indicating that they exhibit good data quality. Distress Score under IH network 
level shows severe lower accuracy compared to the Index 3 threshold, which may suggest a 
strong data quality concern. There are similar amounts of pavement sections with FP and FN. 
This finding implies that both unexpected decreasing and increasing in Distress Score 
measurements could be equally observed. 

No CRCP and JCP section data was delivered in the pilot study for Index 3. 
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Table 6.13 Index 3 (Rutting & IRI) Data quality check for San Antonio 
Pavement 
Type  

Distress 
Type 

Network 
Level 

No. of Sections Accuracy Threshold 

ACP Distress 
Score 

FM  sections % 94.12% 92.73% 
FN 13 0.0332481 
T- 80 0.2046036 
0 2 0.0051151 
T+ 286 0.7314578 
FP 10 0.0255754 

Distress 
Score 

SH  sections % 94.03% 92.57% 
FN 4 0.0298507 
T- 35 0.2611940 
0 0 0.0000000 
T+ 91 0.6791045 
FP 4 0.0298507 

Distress 
Score 

US  sections % 96.20% 94.13% 
FN 3 0.0379747 
T- 33 0.4177215 
0 1 0.0126582 
T+ 42 0.5316456 
FP 0 0.0000000 

Distress 
Score 

IH  sections % 80.00% 92.85% 
FN 0 0.0000000 
T- 1 0.2000000 
0 0 0.0000000 
T+ 3 0.6000000 
FP 1 0.2000000 

6.1.9 County-level Index 2 & Index 3 (Rutting & IRI) 

Table 6.14 presents the county-level analysis results for San Antonio. For ACP, 7 counties from 
the Dallas district were selected for the data audit. The table reveals the accuracy of Medina and 
Guadalupe, indicating that they exhibit good data quality. Bandera, Uvalde, Comal, Kendall, and 
Bexar show severe lower accuracy compared to the Index 2 and Index 3 thresholds, which may 
suggest a strong data quality concern. There are similar amounts of pavement sections with FP 
and FN. This finding implies that both unexpected decreasing and increasing on Distress Score 
measurements could be equally observed. There are similar amounts of pavement sections with 
FP and FN. This finding implies that both unexpected decreasing and increasing on Distress 
Score measurements could be equally observed. However, the number of pavement sections 
involved in the pilot study for Index 2 and Index 3 may not be sufficient for some of the 
counties. Consequently, the evaluation results may not reflect the actual condition. 

No CRCP and JCP sections from Dallas were included in the Index 2 and Index 3 pilot study in 
FY 2022. 
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Table 6.14 County-level data quality check for San Antonio 
Distress 
Type  

County No. of Sections Accuracy Threshold Determination 

ACP  10 - 
BANDERA 

 sections % 33.33% 93.33% Fail 
FN 1 0.3333333 
T- 0 0.0000000 
0 0 0.0000000 
T+ 1 0.3333333 
FP 1 0.3333333 

163 - 
MEDINA 

 sections % 95.02% 93.33% Pass 
FN 17 0.0292096 
T- 142 0.2439863 
0 3 0.0051546 
T+ 408 0.7010309 
FP 12 0.0206186 

232 - 
UVALDE 

 sections % 0.00% 93.33% Fail 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 1 1.0000000 

 46 - COMAL  sections % 83.33% 93.33% Fail 
FN 1 0.1666667 
T- 1 0.1666667 
0 0 0.0000000 
T+ 4 0.6666667 
FP 0 0.0000000 

 95 - 
GUADALUPE 

 sections % 100.00% 93.33% Pass 
FN 0 0.0000000 
T- 4 0.5714286 
0 0 0.0000000 
T+ 3 0.4285714 
FP 0 0.0000000 

131 - 
KENDALL 

 sections % 80.00% 93.33% Fail 
FN 0 0.0000000 
T- 1 0.2000000 
0 0 0.0000000 
T+ 3 0.6000000 
FP 1 0.2000000 

 15 - BEXAR  sections % 80.00% 93.33% Fail 
FN 1 0.2000000 
T- 1 0.2000000 
0 0 0.0000000 
T+ 3 0.6000000 
FP 0 0.0000000 
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6.1.10 Index 4 (Rutting & IRI) 

Table 6.15 presents the data quality check results for San Antonio on Index 4. For ACP, the table 
reveals the precision of ACP Rut Auto Severe, IRI Left Score, IRI Right Score, and IRI Average 
Score, indicating that they exhibit good data quality. ACP Rut Auto Deep shows slightly lower 
accuracy compared to the Index 4 threshold, which suggests a minor data quality concern. ACP 
Rut Auto Shallow shows severe lower accuracy compared to the Index 4 threshold, which may 
suggest a strong data quality concern. There are similar amounts of pavement sections with FP 
and FN. This finding implies that both unexpected decreases and increases in Rutting and IRI 
measurements could be equally observed.  

For CRCP, the table reveals the precision of the IRI Left Score, IRI Right Score, and IRI 
Average Score, indicating that they exhibit good data quality. There are similar amounts of 
pavement sections with FP and FN. This finding implies that both unexpected decreasing and 
increasing in Rutting and IRI measurements could be equally observed. However, the number of 
pavement sections involved in the pilot study for Index 4 may not be sufficient. Consequently, 
the evaluation results may not reflect the actual condition. 

For JCP, only a few of the pavement section data were involved in the pilot study for Index 4. 
Consequently, the evaluation results may not reflect the actual condition. 

Table 6.15 Index 4 (Rutting & IRI) data quality check for San Antonio 
Pavement 
Type  

Distress Type Network 
Level 

No. of Sections Precision Threshold 

ACP ACP RUT 
AUTO 
SHALLOW 
AVG PCT 

All  sections % 82.17% 90.95% 
FN 786 0.0799105 
T- 2173 0.2209231 
0 1602 0.1628711 
T+ 4049 0.4116511 
FP 1226 0.1246442 

ACP RUT 
AUTO DEEP 
AVG PCT  

All  sections % 95.94% 96.58% 
FN 288 0.0292802 
T- 975 0.0991257 
0 6893 0.7007930 
T+ 1332 0.1354209 
FP 348 0.0353802 

ACP RUT 
AUTO 
SEVERE 
AVG PCT  

All  sections % 99.37% 93.33% 
FN 54 0.0054900 
T- 0 0.0000000 
0 9720 0.9882066 
T+ 0 0.0000000 
FP 62 0.0063034 

IRI LEFT All  sections % 97.69% 95.07% 



168 
 

SCORE 
(IN/MILE) 

FN 169 0.0172063 
T- 4375 0.4454286 
0 452 0.0460191 
T+ 4704 0.4789249 
FP 122 0.0124211 

IRI RIGHT 
SCORE 
(IN/MILE) 

All  sections % 95.08% 93.83% 
FN 414 0.0421503 
T- 4466 0.4546935 
0 369 0.0375687 
T+ 4330 0.4408471 
FP 243 0.0247404 

IRI 
AVERAGE 
SCORE 
(IN/MILE) 

All  sections % 97.27% 94.53% 
FN 280 0.0285074 
T- 4378 0.4457341 
0 458 0.0466300 
T+ 4565 0.4647730 
FP 141 0.0143555 

CRCP IRI LEFT 
SCORE 
(IN/MILE) 

All  sections % 97.67% 94.36% 
FN 0 0.0000000 
T- 38 0.4691358 
0 6 0.0740741 
T+ 36 0.4444444 
FP 1 0.0123457 

IRI RIGHT 
SCORE 
(IN/MILE) 

All  sections % 97.56% 95.74% 
FN 3 0.0370370 
T- 37 0.4567901 
0 5 0.0617284 
T+ 35 0.4320988 
FP 1 0.0123457 

IRI 
AVERAGE 
SCORE 
(IN/MILE) 

All  sections % 97.87% 95.13% 
FN 2 0.0246914 
T- 32 0.3950617 
0 8 0.0987654 
T+ 38 0.4691358 
FP 1 0.0123457 

JCP IRI LEFT 
SCORE 
(IN/MILE) 

All  sections % 100.00% 98.25% 
FN 0 0.0000000 
T- 1 0.2500000 
0 0 0.0000000 
T+ 3 0.7500000 
FP 0 0.0000000 

IRI RIGHT 
SCORE 
(IN/MILE) 

All  sections % 66.67% 95.87% 
FN 0 0.0000000 
T- 1 0.2500000 
0 0 0.0000000 
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T+ 2 0.5000000 
FP 1 0.2500000 

IRI 
AVERAGE 
SCORE 
(IN/MILE) 

All  sections % 66.67% 97.44% 
FN 0 0.0000000 
T- 1 0.2500000 
0 0 0.0000000 
T+ 2 0.5000000 
FP 1 0.2500000 

6.1.11 County-level analysis for Index 4 & Index 5 (Rutting & IRI)  

Table 6.16 presents the county-level analysis results of Ride Score for San Antonio. For ACP, 
there are 15 counties from the San Antonio district were selected for the data audit. The table 
reveals the accuracy of Atascosa and La Salle, indicating that they exhibit good data quality. 
Guadalupe, Bexar, Frio, Medina, and Bandera show slightly lower accuracy compared to the 
Index 5 threshold, which suggests a minor data quality concern. Wilson, Comal, Uvalde, 
McMullen, Kendall, Kerr, Caldwell, and Gillespie show severe lower accuracy compared to the 
Index 5 threshold, which may suggest a strong data quality concern. The primary data quality 
issue identified in this analysis is FP. This finding implies that the dominant pavement sections 
with data quality issues show an unexpected increase in Ride Score measurements. 

For CRCP, there are 3 counties from the San Antonio district were selected for the data audit. 
The table reveals the accuracy of Kendall and Uvalde, indicating that they exhibit good data 
quality. Bexar shows slightly lower accuracy compared to the Index 5 threshold, which suggests 
a minor data quality concern. The primary data quality issue identified in this analysis is FP. This 
finding implies that the dominant pavement sections with data quality issues show an unexpected 
increase in Ride Score measurements. However, the number of Ride Score data involved in the 
pilot study for Index 4 and Index 5 may not be sufficient. Consequently, the evaluation results 
may not reflect the actual condition. 

For JCP, only a few of the Ride Score data was involved in the pilot study for Index 4 and Index 
5. Consequently, the evaluation results may not reflect the actual condition. 

Table 6.16 County-level data quality check for San Antonio (Ride Score) 
Distress 
Type  

County No. of Sections Accuracy Threshold Determination 

ACP  95 - 
GUADALUPE 

 sections % 92.32% 92.99% Fail 
FN 34 0.0368364 
T- 490 0.5308776 
0 23 0.0249187 
T+ 341 0.3694475 
FP 35 0.0379198 

247 - WILSON  sections % 86.47% 92.99% Fail 
FN 17 0.0244957 
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T- 279 0.4020173 
0 24 0.0345821 
T+ 298 0.4293948 
FP 76 0.1095101 

 46 - COMAL  sections % 83.41% 92.99% Fail 
FN 35 0.0553797 
T- 270 0.4272152 
0 15 0.0237342 
T+ 243 0.3844937 
FP 69 0.1091772 

 15 - BEXAR  sections % 92.05% 92.99% Fail 
FN 70 0.0271739 
T- 1191 0.4623447 
0 60 0.0232919 
T+ 1121 0.4351708 
FP 134 0.0520186 

232 - 
UVALDE 

 sections % 86.97% 92.99% Fail 
FN 18 0.0255319 
T- 377 0.5347518 
0 23 0.0326241 
T+ 214 0.3035461 
FP 73 0.1035461 

 83 - FRIO  sections % 88.34% 92.99% Fail 
FN 15 0.0196592 
T- 264 0.3460026 
0 8 0.0104849 
T+ 402 0.5268676 
FP 74 0.0969856 

  7 - 
ATASCOSA 

 sections % 95.66% 92.99% Pass 
FN 10 0.0101420 
T- 464 0.4705882 
0 22 0.0223124 
T+ 461 0.4675456 
FP 29 0.0294118 

163 - 
MEDINA 

 sections % 89.83% 92.99% Fail 
FN 34 0.0455154 
T- 418 0.5595716 
0 15 0.0200803 
T+ 238 0.3186078 
FP 42 0.0562249 

 10 - 
BANDERA 

 sections % 90.91% 92.99% Fail 
FN 12 0.0312500 
T- 235 0.6119792 
0 7 0.0182292 
T+ 108 0.2812500 
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FP 22 0.0572917 
162 - 
MCMULLEN 

 sections % 85.90% 92.99% Fail 
FN 8 0.0256410 
T- 96 0.3076923 
0 3 0.0096154 
T+ 169 0.5416667 
FP 36 0.1153846 

131 - 
KENDALL 

 sections % 85.85% 92.99% Fail 
FN 20 0.0488998 
T- 201 0.4914425 
0 10 0.0244499 
T+ 141 0.3447433 
FP 37 0.0904645 

133 - KERR  sections % 85.93% 92.99% Fail 
FN 9 0.0138037 
T- 302 0.4631902 
0 12 0.0184049 
T+ 248 0.3803681 
FP 81 0.1242331 

 28 - 
CALDWELL 

 sections % 54.55% 92.99% Fail 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 6 0.5454545 
FP 5 0.4545455 

 87 - 
GILLESPIE 

 sections % 54.17% 92.99% Fail 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 13 0.5416667 
FP 11 0.4583333 

142 - LA 
SALLE 

 sections % 100.00% 92.99% Pass 
FN 0 0.0000000 
T- 0 0.0000000 
0 0 0.0000000 
T+ 4 1.0000000 
FP 0 0.0000000 

CRCP  15 - BEXAR  sections % 91.14% 92.71% Fail 
FN 1 0.0126582 
T- 33 0.4177215 
0 7 0.0886076 
T+ 32 0.4050633 
FP 6 0.0759494 

131 - 
KENDALL 

 sections % 100.00% 92.71% Pass 
FN 0 0.0000000 
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T- 0 0.0000000 
0 1 1.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

232 - 
UVALDE 

 sections % 100.00% 92.71% Pass 
FN 0 0.0000000 
T- 1 1.0000000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 0 0.0000000 

JCP  46 - COMAL  sections % 75.00% 91.98% Fail 
FN 0 0.0000000 
T- 3 0.7500000 
0 0 0.0000000 
T+ 0 0.0000000 
FP 1 0.2500000 

Further, the image check was performed for the road sections in San Antonio for FY 2021 and 
FY 2022 to check the precision. The details about image checks for various distresses such as 
ACP alligator cracking, ACP longitudinal cracking, ACP transverse cracking, ACP patching, and 
ACP failure are discussed in the subsequent sections. 

6.2 Image Check Result for Accuracy 

6.2.1 Alligator Cracking Image Check Result for Accuracy 

ACP Alligator Cracking from FY 2022 

A) Observation: None correct (3 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

IH0037 
R 133 0.5 133 1 1 19 11 14 

15-
Bexar 

SL1604
K 576 0.5 576 1 8 18 8 13 

46-
Comal 

FM0306 
R 524 0 524 0.5 1 11 1 0 

B) Observation: Audit correct (12 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

10-
Bandera SH0173 K 484 0 484 0.5 15 29 0 29 
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15-
Bexar 

FM1346 
K 508 0 508 0.5 3 14 3 14 

15-
Bexar 

FM1346 
K 508 0.5 508 1 6 33 6 33 

15-
Bexar 

FM1346 
K 508 1 508 1.5 1 17 1 17 

15-
Bexar IH0035 R 138 0 138 0.5 11 0 11 0 

C) Observation: Both the Annual Rating and Software are correct (3 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

FM1535 
R 490 0 490 1 0 19 0 0 

15-
Bexar 

SH0016 
L 580 1.5 580 2 0 13 0 0 

15-
Bexar 

SH0016 
L 586 0.5 586 1 0 20 0 0 

Summary: 
The alligator cracking road surface images data for FY 2022 was obtained for various counties in 
San Antonio district of Texas. The image analysis is performed for the road sections using Path 
view software and manual observation. Throughout the section image analysis, manual 
observation is assumed to be correct. Additionally, several significant findings are noted 
concerning the ACP alligator cracking distress rating. 
The distress ratings are classified into four categories: a) Annual rating, b) Audit rating, c) 
Software detection, and d) Manual observation. Based on the mentioned categories, there are three 
cases, which are enlisted as follows: 

1) None of the four distress rating categories are correct (Annual rating ≠ Audit rating ≠ 
Software detection ≠ Manual observation) 

2) Audit rating is correct (Audit = Manual observation) 
3) Both annual rating and software detection are correct (Annual rating = Software detection 

= Manual observation) 

The following is a detailed discussion of the three cases: 
1) None of the 4 distress rating categories are correct (Annual rating ≠ Audit rating ≠ 

Software detection ≠ Manual observation) 

It has been observed that the distress rating varies for each category of observation based on an 
image analysis. This is mostly because the manual observation rating differs from the other three 
categories. For some sections, the annual rating and software detected less distress than manual 
observation. This was primarily caused by the software's inadequacy to correctly detect the 
alligator cracking on the images of the pavement surface. In this situation, the manual observation 
rating exceeded the software and annual rating results. Additionally, audit rating reported more 
alligator cracking than the other three categories. This might be caused due to incorrect distress 
identification, mistaking longitudinal cracking, or raveling for alligator cracking.  

2) Audit rating is correct (Audit rating = Manual observation) 
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Based on the image analysis, it has been observed that the ACP alligator cracking rating was the 
same for both audit rating and manual observation. From this, it can be concluded that the audit 
rating is correct since it has accounted for all the ACP alligator cracking for that road section. 

3) Both annual rating and software detection are correct (Annual rating = Software detection = 
Manual observation) 

Based on the image analysis, the annual rating and software detection of ACP alligator cracking 
was found to be the same as manual observation. From this, it can be concluded that the annual 
rating and software detection are correct since both have detected all the ACP alligator cracking 
that was identified manually for that road section. 
Overall, for most of the sections with the alligator cracking, the audit rating and manual 
observation distress ratings are the same. Also, it is to be noted that the manual rating could be 
lesser than the other three categories due to the poor quality of images for the road sections. 
Furthermore, there is a need to improve the software capabilities to precisely detect the distress 
types. 

6.2.2 Longitudinal Cracking Image Check Result for Accuracy 

ACP Longitudinal Cracking from FY 2022 

A) Observation: None correct (33 sections)  

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

FM0078 
K 500 1.5 500 2 49 105 84 95 

15-
Bexar 

FM1303 
K 498 1.5 498 2 60 9 60 12 

15-
Bexar 

FM1535 
R 490 0.3 490 0.5 91 152 43 55 

15-
Bexar 

IH0410 
R 21 0.5 21 0.8 70 208 18 26 

15-
Bexar 

PA1502 
L 490 1.5 490 2 59 3 12 20 

B) Observation: Audit correct (29 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

IH0037 
R 135 0.5 135 1.1 5 39 5 39 

15-
Bexar 

IH0037 
L 136 0.5 136 1 6 59 6 59 

15-
Bexar 

IH0410 
R 12 0 12 0.5 4 71 4 71 

15- IH0410 41 0 41 0.5 8 67 8 67 
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Bexar R 
15-

Bexar 
IH0410 

L 11 0 11 0.5 9 48 9 48 

C) Observation: Annual rating correct (1 section) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

10-
Bander

a 

SH0173 
K 484 0.5 484 1 3 44 0 3 

D) Observation: Software correct (6 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

FM1303 
K 498 0 498 0.5 130 56 85 85 

15-
Bexar 

FM1535 
K 486 0 486 0.5 4 55 0 0 

15-
Bexar 

FM1957 
K 

 
480 1 480 1.5 110 174 110 110 

15-
Bexar 

SH0218 
K 502 0.6 502 1 52 8 27 27 

15-
Bexar 

SH0218 
L 502 0.4 502 0.6 65 0 38 38 

E) Observation: Both the Annual Rating and Software are correct (16 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

FM1957 
K 480 0 480 0.5 52 95 52 52 

15-
Bexar 

IH0410 
R 26 5 26 5.5 0 41 0 0 

15-
Bexar 

IH0035 
R 150 0 150 0.5 66 111 66 66 

15-
Bexar 

SH0016 
L 580 1.5 580 2 79 153 79 79 

15-
Bexar 

SH0016 
L 582 0 582 0.5 9 50 9 9 

Summary: 
The distress ratings are classified into four categories: a) Annual rating, b) Audit rating, c) 
Software detection, and d) Manual observation. Based on the mentioned categories, there are five 
cases, which are enlisted as follows: 

1) None of the four distress rating categories are correct (Annual rating ≠ Audit rating ≠ 
Software detection ≠ Manual observation) 

2) Audit rating is correct (Audit = Manual observation) 
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3) Annual rating is correct (Annual rating = Manual observation) 
4) Software detection is correct (Software detection = Manual observation) 
5) Both annual rating and software detection are correct (Annual rating = Software detection 

= Manual observation) 

The following is a detailed discussion of the five cases: 
1) None of the 4 distress rating categories are correct (Annual rating ≠ Audit rating ≠ 

Software detection ≠ Manual observation) 

It has been observed that the distress rating for longitudinal cracking varies for each category of 
observation based on an image analysis. This is mostly because the manual observation rating 
differs from the other three categories. For majority of the sections, the audit rating reported more 
distress than manual observation. Additionally, the annual rating and software reported more 
longitudinal cracking as compared to manual observation. This was mostly caused by software 
and annual ratings that incorrectly identified distress, mistaking lane strip, road markings, crack 
sealing (maintenance activities) or raveling for the longitudinal cracking. On another note, in some 
instances, longitudinal cracking was not reported both by the software as well as the annual rating. 
This was primarily caused by the software's inadequacy to correctly detect the longitudinal 
cracking on the images of the pavement surface. In this situation, the manual observation rating 
exceeded the software and annual ratings results.  
 

2) Audit rating is correct (Audit rating = Manual observation) 

Based on the image analysis, it has been observed that the ACP longitudinal cracking rating was 
the same for both audit rating and manual observation. From this, it can be concluded that the audit 
rating is correct since it has accounted for all the ACP longitudinal cracking for that road section. 
In this case, the annual rating and software reported less distress ratings due to their inadequacy to 
detect all the longitudinal cracks on the pavement surface. 
 

3) Annual rating is correct (Annual rating = Manual observation) 

Based on the image analysis, only for one section it has been observed that the longitudinal 
cracking rating was same for both annual rating and manual observation. From this, it can be 
concluded that the annual rating is correct since it has accounted for all the ACP longitudinal 
cracking for that road section. 
 

4) Software detection is correct (Software detection = Manual observation) 

Based on the image analysis, it has been observed that the ACP longitudinal cracking rating was 
the same for both software detection and manual observation. From this, it can be concluded that 
the software rating is correct since it has detected all the locations of longitudinal cracking for that 
road section. But this was mainly observed for the road sections with zero distress. 
 

5) Both annual rating and software detection are correct (Annual rating = Software 
detection = Manual observation) 

Based on the image analysis for year 2022, the annual rating and software detection of ACP 
longitudinal cracking was found to be the same as manual observation. From this, it can be 
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concluded that the annual rating and software detection are correct since both detected all the 
longitudinal cracking that was identified manually for that road section. However, in this case, the 
audit reported more longitudinal cracking than the other three rating categories. 

6.2.3 Transverse Cracking Image Check Result for Accuracy 

ACP Transverse Cracking from FY 2022 
A) Observation: None correct (3 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

IH0037 
R 135 0 135 0.5 3 10 3 1 

15-
Bexar 

IH0037 
R 49 0.6 49 1 0 5 0 1 

15-
Bexar 

SH0016 
L 580 1 580 1.5 2 5 2 3 

B) Observation: Audit correct (3 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

15-
Bexar 

SL0353 
K 506 0 506 0.2 4 1 1 1 

15-
Bexar 

SL0353 
K 506 0.2 506 0.7 2 5 5 5 

15-
Bexar 

SL1604 
K 580 1 580 1.5 4 1 1 1 

C) Observation: Software correct (4 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

10-
Bander

a 

SH0016 
K 560 1.5 560 2 0 3 2 2 

15-
Bexar 

IH0035 
R 150 0 150 0.5 1 4 2 2 

15-
Bexar 

SH0016 
L 586 0 586 0.5 0 5 1 1 

95-
Guadal

upe 

FM0464 
L 520 0 520 0.5 0 8 1 1 

95-
Guadal

upe 

UA0090 
K 520 0 520 0.5 2 7 3 3 

D) Observation: Both the Annual Rating and Software are correct (7 sections) 
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County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

247-
Wilson 

SH0097 
K 538 1.5 538 2 0 38 0 0 

15-
Bexar 

IH0410 
R 50 0 50 0.5 2 7 2 2 

15-
Bexar 

IH0410 
R 50 0.5 50 1 1 7 1 1 

15-
Bexar 

SH0016 
L 580 1.5 580 2 4 10 4 4 

15-
Bexar 

SH0016 
L 586 0.5 586 1 1 9 1 1 

Summary: 
Like ACP alligator cracking and longitudinal cracking, the distress ratings for transverse cracking 
are also divided into four categories: a) Annual rating, b) Audit rating, c) Software detection, and 
d) Manual observation. Also, based on the mentioned categories, there are four cases same as that 
for alligator and longitudinal cracking. The detailed discussion of the four cases is as follows: 

1) None of the 4 distress rating categories are correct (Annual rating ≠ Audit rating ≠ 
Software detection ≠ Manual observation) 

It has been observed that the distress rating varies for each category of observation based on an 
image analysis. This is mostly because the manual observation rating differs from the other three 
categories. For some sections, the annual rating reported more transverse cracking than manual 
observation. This was mostly caused by incorrect distress identification, mistaking sealed cracks 
(maintenance activities) or raveling for the transverse cracking. On another note, for one section, 
the software could not detect the distress on the pavement surface images and hence the ratings 
based on software was zero due to its inadequacy to correctly detect the transverse cracking. 

2) Audit rating is correct (Audit rating = Manual observation) 

Based on the image analysis, it has been observed that the ACP transverse cracking rating was the 
same for both audit rating and manual observation. From this, it can be concluded that the audit 
rating is correct since it has accounted for all the ACP transverse cracking for that road section. 

3) Software detection is correct (Software detection = Manual observation) 

In this case, it has been observed that the transverse cracking rating was the same for both software 
detection and manual observation. From this, it can be concluded that the software rating is correct 
since it has detected all the locations of longitudinal cracking for that road section.  

4) Both annual rating and software detection are correct (Annual rating = Software 
detection = Manual observation) 

Based on the image analysis for the year 2022, the annual rating and software detection of ACP 
transverse cracking were found to be the same as manual observation. From this, it can be 
concluded that the annual rating and software detection are correct since both detected all the 
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transverse cracking that was identified manually for the road sections.  

6.2.4 Patching Image Check Result for Accuracy 

ACP Patching from FY 2022 

A) Observation: Both Audit and software are correct (7 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

247-
Wilson 

SH0123 
K 518 0 518 0.5 27 0 0 0 

247-
Wilson 

SH0123 
K 518 0.5 518 1 21 0 0 0 

247-
Wilson 

US0087 
K 716 0.5 716 1 13 0 0 0 

95-
Guadal

upe 

IH0010 
L 594 0.2 594 0.7 49 0 0 0 

B) Observation: Annual rating correct (4 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending  
TRM 

Displacement 

Annual 
rating Audit Software Manual 

observation 

247-
Wilson 

FM2505 
K 530 0 530 0.5 10 0 0 10 

247-
Wilson 

FM2505 
K 530 0.5 530 1 22 0 0 22 

247-
Wilson 

FM2579 
K 518 1 518 1.5 11 0 0 11 

247-
Wilson 

FM2579 
K 518 1.5 518 2 14 0 0 14 

Summary: 
The distress ratings for ACP patching are divided into four categories: a) Annual rating, b) Audit 
rating, c) Software detection, and d) Manual observation. Likewise, based on the stated categories, 
there are two cases, which are discussed as follows: 

1) Both Audit rating and Software detection rating are correct (Audit rating = Software 
detection = Manual observation) 

Based on the image analysis, it has been observed that the ACP patching ratings from both audit 
rating and software detection are the same as that of the manual observation ratings. From this, it 
can be concluded that the audit and software ratings are correct since it has reported all the ACP 
patching locations on the road sections wherein suitable maintenance activities have been 
performed. 

2) Annual is correct (Annual rating = Manual observation) 
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This case has been observed for the majority of the pavement sections wherein the ACP patching 
rating was the same for annual rating and manual observation. Additionally, in this case, the audit 
and software were inadequate to detect the patching on the pavement surface. 

In summary, the distress ratings for pavement conditions are evaluated through annual ratings, 
audit ratings, software detection, and manual observation methods. The analysis indicates that 
annual ratings, audit ratings, and software detection can either underestimate or overestimate ACP 
(alligator, longitudinal, and transverse) cracking and patching when compared to manual 
observations. This discrepancy might arise from difficulties in accurately identifying the type of 
distress or from misinterpretations among the various distress types. Additionally, overestimation 
can result from the incorrect identification of lane stripes and raveling as cracking.  
Moreover, the ratings generated by software detection are not consistently aligned with those from 
annual ratings, audit ratings, and manual observations. These inaccuracies in distress identification 
can significantly impact maintenance and rehabilitation strategies, leading to incorrect budget 
allocations over the pavement service lives. 

6.3 Image Check Result for Precision 

6.3.1 Alligator Cracking Image Check Result for Precision 

1. ACP Alligator Cracking from FY 2022 
A) Observation: None correct (174 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95 - 
Guadalupe 

BS0123B
K (899) 492 0 492 0.152 11 0 4 

15 - Bexar US0281 L 
(940) 520 0 520 0.5 11 14 5 

163 – 
Medina 

FM1250 K 
(595) 450 0.5 450 1 51 53 48 

7 - Atascosa SH0173 K 
(463) 544 0 544 0.5 2 2 9 

83 – Frio SS0581 K 
(234) 614 0.5 614 1 14 14 44 

B) Observation: Annual rating (correct) (15 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 - Bexar IH0035 R 
(463) 142 0 142 0.5 24 20 24 

95 - 
Guadalupe 

SH0080 K 
(78) 490 1.5 490 1.98 22 34 22 



181 
 

15 - Bexar US0087 R 
(199) 704 0.5 704 1 18 25 18 

133 - Kerr SH0027 K 
(822) 482 0.5 482 1 9 14 9 

163 - 
Medina 

IH0035 A 
(442) 128 0 128 0.5 3 5 3 

C) Observation: Software (correct) (33 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 – Bexar US0090 X 
(580) 556 0 556 0.209 5 0 0 

95 – 
Guadalupe 

IH0010 L 
(897) 613 0 613 0.5 8 12 12 

163 – 
Medina 

FM0462 K 
(597) 500 0.5 500 1 39 6 6 

15 – Bexar IH0410 A 
(1344) 46 0 46 0.5 2 4 4 

15 – 
BEXAR 

FM1516 K 
(1269) 500 0.5 500 1 13 16 16 

D) Observation: Both the Annual Rating and Software are correct (83 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95 – 
Guadalupe 

FM1339 K 
(1048) 526 0.5 526 1 0 0 0 

15 – Bexar IH0035 R 
(412) 141 0.5 141 1.093 23 23 23 

162 - 
Mcmullen 

SH0016 K 
(49) 658 0.5 658 1 0 0 0 

15 - Bexar IH0410 X 
(1354) 31 0.678 31 1.203 24 24 24 

83 – Frio FM0140 K 
(480) 462 1 462 1.5 1 1 1 

E) Observation: Annual Rating > Software and Manual observation (170 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95 - 
Guadalupe 

FM0725 K 
(995) 482 0 482 0.5 13 1 3 

15 - Bexar IH0010 A 
(1340) 580 0 580 0.5 25 20 7 

95 - 
Guadalupe 

IH0010 A 
(84) 612 0 612 0.5 15 5 3 
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163 - 
Medina 

FM0462 K 
(599) 488 0 488 0.5 24 3 7 

163 - 
Medina 

FM0462 K 
(599) 486 1.543 486 1.984 32 5 3 

F) Observation: Software > Annual Rating and Manual observation (38 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163 - 
Medina 

FM1250 K 
(595) 450 0 450 0.5 46 95 46 

46 - Comal FM2673 K 
(886) 506 0 506 0.5 7 9 4 

83 – Frio IH0035 X 
(402) 88 0 88 0.5 12 14 2 

15 - Bexar IH0410 A 
(1344) 44 0 44 0.5 9 21 4 

15 - Bexar FM0078 K 
(1274) 504 0.5 504 1 21 24 11 

G) Observation: Manual observation > Software and Annual Rating (80 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95 - 
Guadalupe 

FM0466 K 
(189) 544 0 544 0.103 3 3 10 

15 - Bexar IH0035 R 
(412) 135 0 135 0.5 10 14 32 

163 - 
Medina 

FM0462 K 
(596) 506 1.5 506 1.937 11 13 21 

15 - Bexar FM1346 K 
(151) 504 0 504 0.5 11 15 20 

163 - 
Medina 

FM0462 K 
(599) 488 1 488 1.5 1 4 8 

The road surface image data (for 2021 and 2022) was obtained for various counties in the San 
Antonio district of Texas. The image analysis is performed for the road sections using Path view 
software and manual observation. Throughout the section on image analysis, manual observation 
is assumed to be correct. Additionally, several significant findings are noted concerning the ACP 
alligator cracking distress rating. 

The distress ratings are classified into three categories: a) Annual rating, b) Software detection, 
and c) Manual observation. Based on the mentioned categories, there are seven cases, which are 
enlisted as follows: 

1) None of the three distress rating categories are correct (Annual rating ≠ Software 
detection ≠ Manual observation) 

2) Annual rating is correct (Annual rating = Manual observation) 
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3) Software detection is correct (Software detection = Manual observation) 
4) Both annual rating and software detection are correct (Annual rating = Software 

detection = Manual observation) 
5) Annual Rating > Software and Manual observation 
6) Software > Annual Rating and Manual observation 
7) Manual observation > Software and Annual Rating 

The following is a detailed discussion of the seven cases: 
1) None of the 3 distress rating categories are correct (Annual rating ≠ Software detection ≠ 

Manual observation) 

It has been observed that the distress rating varies for each category of observation based on an 
image analysis. This is mostly because the manual observation rating differs from the other two 
categories. For some sections in the year 2022, the annual rating and software detected more 
distress than manual observation. This was mostly caused by software and annual ratings that 
incorrectly identified distress, mistaking longitudinal cracking, or raveling for alligator cracking. 
Also, in some instances, less alligator cracking was reported by the software and annual rating. 
This was primarily caused by the software's inadequacy to correctly detect the alligator cracking 
on the images of the pavement surface. In this situation, the manual observation rating exceeded 
the software and annual ratings results. 

2) Annual rating is correct (Annual rating = Manual observation) 

Based on the image analysis, it has been observed that the ACP alligator cracking rating was the 
same for both annual rating and manual observation. From this, it can be concluded that the 
annual rating is correct since it has accounted for all the ACP alligator cracking for that road 
section. 

3) Software detection is correct (Software detection = Manual observation) 

Based on the image analysis for the year 2022, it has been observed that the ACP alligator 
cracking rating was the same for both software detection and manual observation. From this, it 
can be concluded that the software rating is correct since it has detected all the ACP alligator 
cracking for that road section. However, for the year 2021, the software detection was correct 
most of the time when there was zero distress present for the road section. 

4) Both annual rating and software detection are correct (Annual rating = Software detection 
= Manual observation) 

Based on the image analysis, the annual rating and software detection of ACP alligator cracking 
was found to be the same as manual observation. From this, it can be concluded that the annual 
rating and software detection are correct since both have detected all the ACP alligator cracking 
that was identified manually for that road section. 

5) Annual Rating > Software and Manual observation 

This case is a sub-type of case 1 where none of the annual rating and software detection are 
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correct. In this scenario, the annual rating for ACP alligator cracking was more than both 
software and manual observation. The reason for this difference may be due to incorrect distress 
identification or misinterpretation among distress types. 

6) Software > Annual Rating and Manual observation 

This case is also a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this case, the software detects more locations for ACP alligator cracking because the 
software could not differentiate between the ACP alligator cracking and raveling distresses. 
Additionally, the software also detects longitudinal or transverse cracking as alligator cracks. 
This leads to higher distress ratings by the software as compared to annual ratings and manual 
observation. 

7) Manual observation > Software and Annual Rating 

This case is also a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this case, the ACP alligator cracking was accurately identified manually at all 
locations. However, all the locations were not detected by the software and annual rating for the 
precise alligator cracking distress identification. 

Overall, for most of the sections especially with the longitudinal cracking, there is a difference 
among annual rating, software detection, and manual observation distress ratings. It is also to be 
noted that the manual rating could be lesser due to the poor quality of images for the road 
sections. Furthermore, there is a need to improve the software capabilities to precisely detect the 
distress types. 

2. ACP Alligator Cracking from FY 2021 

ACP alligator cracking of FY 2021 has a similar result as FY 2021, the results are listed below.  
A) Observation: None correct (111 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163 - 
Medina 

FM0462 K 
(849) 494 0 494 0.5 4 0 11 

15 - Bexar US0090 X 
(1103) 566 0 566 0.5 9 0 1 

163 - 
Medina 

FM0462 K 
(849) 490 1.5 490 1.979 0 0 4 

95 - 
Guadalupe 

IH0010 A 
(1463) 612 0 612 0.5 72 0 1 

163 - 
Medina FM0462 K 486 0.043 486 0.543 59 0 15 
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B) Observation: Annual rating (correct) (10 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163 – 
Medina 

FM0462 K 
(849) 492 0 492 0.5 2 0 2 

95 – 
Guadalupe 

US0090 K 
(1461) 662 0 662 0.5 8 0 8 

15 – Bexar FM1560 K 
(510) 494 0 494 0.5 5 0 5 

163 – 
Medina 

FM1250 K 
(1441) 450 0 450 0.5 30 0 30 

131 – 
Kendall 

RM1376 K 
(925) 476 1 476 1.5 8 0 8 

C) Observation: Software (correct) (164 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

83 – Frio IH0035 X 
(787) 87 0.5 87 1 1 0 0 

95 – 
Guadalupe 

SH0080 K 
(1409) 492 1.5 492 1.995 11 0 0 

15 – Bexar SL0353 K 
(1443) 504 1.5 504 1.954 25 0 0 

15 – Bexar FM1346 K 
(1152) 504 1.5 504 2.002 21 0 0 

95 – 
Guadalupe 

FM0078 K 
(157) 522 1 522 1.5 10 0 0 

D) Observation: Both the Annual Rating and Software are correct (32 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 – Bexar IH0035 R 
(800) 139 0 139 0.5 0 0 0 

247 – 
Wilson 

US0181 R 
(358) 530 1.261 530 2.027 0 0 0 

46 – Comal US0281 L 
(760) 504 1 504 1.5 0 0 0 

232 – 
Uvalde 

RM2690 K 
(1298) 506 0.5 506 1 0 0 0 

15 – Bexar IH0035 X 
(1039) 134 0.5 134 1.035 0 0 0 

E) Observation: Annual Rating > Software and Manual observation (129 sections) 
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County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 - Bexar IH0035 L 
(770) 142 0.5 142 1.048 17 0 0 

133 – Kerr SH0027 K 
(950) 482 0.5 482 1 24 0 6 

162 – 
Mcmullen 

SH0016 K 
(76) 658 0.5 658 1 9 3 1 

15 – Bexar IH0410 A 
(1167) 31 0.98 31 1.203 50 0 31 

15 – Bexar SH0151 L 
(1313) 480 1 480 1.5 30 23 3 

F) Observation: Software > Annual Rating and Manual observation (2 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 – Bexar SH0211 K 
(833) 486 0 486 0.5 10 14 0 

7 – Atascosa IH0037 R 
(29) 114 0 114 0.5 6 22 9 

G) Observation: Manual observation > Software and Annual Rating (32 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163 – 
Medina 

FM0462 K 
(849) 494 0 494 0.5 4 0 11 

163 – 
Medina 

FM0462 K 
(848) 500 0.5 500 1 0 0 4 

95 – 
Guadalupe 

SH0123 K 
(1089) 476 0 476 0.5 2 0 5 

83 – Frio SS0581 K 
(1052) 616 0 616 0.5 20 0 43 

15 – Bexar IH0037 A 
(390) 128 0 128 0.5 1 0 6 

6.3.2 Longitudinal Cracking Image Check Result for Precision 

1. ACP Longitudinal Cracking from FY 2022 
A) Observation: None correct (165 sections)  
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County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 – Bexar FM0078 K 
(1273) 504 0 504 0.5 63 69 79 

46 – Comal FM0306 K 
(974) 504 0 504 0.5 13 20 49 

15 - Bexar US0281 X 
(1180) 522 0 522 0.478 1 1 6 

163 – 
Medina 

IH0035 X 
(421) 130 0 130 0.542 3 3 0 

15 - Bexar US0181 L 
(309) 514 0 514 0.5 12 6 8 

B) Observation: Annual rating (correct) (2 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

 46-Comal FM0306 K 
(975) 

500 0 500 0.5 1 2 1 

15-Bexar IH0410 A 
(1341) 

34 0 34 0.5 46 50 46 

C) Observation: Software (correct) (34 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 - Bexar IH0010 X 
(1088) 589 0 589 0.5 8 12 12 

15 - Bexar IH0035 R 
(1333) 152 0 152 0.5 77 71 71 

95 - 
Guadalupe 

IH0010 A 
(84) 612 0 612 0.5 7 2 2 

131 – 
Kendall 

IH0010 X 
(859) 524 0 524 0.578 55 4 4 

15 - Bexar US0181 R 
(296) 516 0 516 0.202 88 0 0 

D) Observation: Both the Annual Rating and Software are correct (37 sections) 

County 
Highway 

And 
Roadbed 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 



188 
 

ID 
95 - 

Guadalupe 
IH0010 L 

(1068) 600 0 600 0.5 0 0 0 

15 - Bexar US0281 A 
(1172) 524 0 524 0.5 70 70 70 

15 - Bexar US0181 R 
(296) 508 0 508 0.5 39 39 39 

163 – 
Medina 

IH0035 L 
(368) 126 0.5 126 1.01 0 0 0 

15 - Bexar US0090 R 
(1232) 564 0 564 0.5 19 19 19 

E) Observation: Annual Rating > Software and Manual observation (84 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 - Bexar IH0035 R 
(412) 141 0 141 0.5 143 124 60 

15 - Bexar IH0035 R 
(413) 146 0 146 0.5 75 70 48 

15 - Bexar IH0035 L 
(365) 141 0 141 0.5 78 40 18 

95 - 
Guadalupe 

IH0010 A 
(77) 628 0 628 0.267 44 38 21 

15 - Bexar IH0010 A 
(1340) 579 0 579 0.5 172 143 71 

F) Observation: Software > Annual Rating and Manual observation (13 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95 - 
Guadalupe 

US0090 K 
(912) 662 0 662 0.5 147 150 25 

46 - Comal US0281 L 
(941) 510 0 510 0.5 144 149 41 

15 - Bexar IH0010 L 
(1069) 594 0 594 0.184 93 109 67 

15 - Bexar IH0035 L 
(365) 139 0 139 0.5 166 190 28 

15 - Bexar IH0035 R 
(412) 137 0 137 0.5 150 175 89 

G) Observation: Manual observation > Software and Annual Rating (13 sections) 

County 
Highway 

And 
Roadbed 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 
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ID 

83 - Frio IH0035 R 
(407) 117 0 117 0.5 70 74 78 

15 - Bexar IH0035 R 
(413) 143 0 143 0.5 66 66 91 

15 - Bexar IH0035 L 
(364) 142 0 142 0.5 1 49 62 

95 - 
Guadalupe 

IH0010 L 
(1067) 605 0 605 0.5 15 15 75 

95 - 
Guadalupe 

IH0010 R 
(1078) 605 0 605 0.5 7 19 49 

The road surface images data (for 2021 and 2022) was obtained for various counties in San 
Antonio district of Texas. The image analysis is performed for the road sections using Path view 
software and manual observation. Throughout the section image analysis, manual observation is 
assumed to be correct. Additionally, several significant findings are noted concerning the rating 
of ACP longitudinal cracking. 
Like the ACP alligator cracking, the longitudinal cracking distress ratings are also classified into 
three categories: a) Annual rating, b) Software detection, and c) Manual observation. Based on 
the mentioned categories, there are seven cases, which are enlisted as follows: 

1) None of the three distress rating categories are correct (Annual rating ≠ Software 
detection ≠ Manual observation) 

2) Annual rating is correct (Annual rating = Manual observation) 
3) Software detection is correct (Software detection = Manual observation) 
4) Both annual rating and software detection are correct (Annual rating = Software detection 

= Manual observation) 
5) Annual Rating > Software and Manual observation 
6) Software > Annual Rating and Manual observation 
7) Manual observation > Software and Annual Rating 

The following is a detailed discussion of the seven cases: 
1) None of the 3 distress rating categories are correct (Annual rating ≠ Software 

detection ≠ Manual observation) 

It has been observed that the distress rating varies for each category of observation based on an 
image analysis. This is mostly because the manual observation rating differs from the other two 
categories. For the majority of the sections for the year 2022, the annual rating and software 
detected more distress than manual observation. This was mostly caused by software and annual 
ratings that incorrectly identified distress, mistaking lane strip, road markings, crack sealing 
(maintenance activities) or raveling for the longitudinal cracking. On another note, at some 
instances, longitudinal cracking was not reported both by the software as well as the annual 
rating. This was primarily caused by the software's inadequacy to correctly detect the 
longitudinal cracking on the images of the pavement surface. In this situation, the manual 
observation rating exceeded the software and annual ratings results. For the year 2021, the 
software could not detect the distress on the section images and hence the ratings based on 
software were always zero. 

2) Annual rating is correct (Annual rating = Manual observation) 
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Based on the image analysis, for very few sections it has been observed that the longitudinal 
cracking rating was the same for both annual rating and manual observation. From this, it can be 
concluded that the annual rating is correct since it has accounted for all the ACP longitudinal 
cracking for that road section. 

3) Software detection is correct (Software detection = Manual observation) 

Based on the image analysis, it has been observed that the ACP longitudinal cracking rating was 
the same for both software detection and manual observation. From this, it can be concluded that 
the software rating is correct since it has detected all the locations of longitudinal cracking for 
that road section. But this was mainly observed for the road sections with zero distress. 

4) Both annual rating and software detection are correct (Annual rating = Software 
detection = Manual observation) 

Based on the image analysis for the year 2022, the annual rating and software detection of ACP 
longitudinal cracking were found to be the same as manual observation. From this, it can be 
concluded that the annual rating and software detection are correct since both detected all the 
longitudinal cracking that was identified manually for that road section. This was true for 2021 
road sections only with zero distress. 

5) Annual Rating > Software and Manual observation 

This case is a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this scenario, the annual rating for longitudinal cracking was more than both software 
and manual observation. The reason for this difference may be due to incorrect distress 
identification or misinterpretation among distress types. 

6) Software > Annual Rating and Manual observation 

This case is also a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this case, the software detects more locations for ACP longitudinal cracking because 
the software could not differentiate among the ACP longitudinal cracking, lane strips, road 
markings, and raveling. Additionally, the software also detects alligator or transverse cracking as 
longitudinal cracks. This leads to higher distress ratings by the software as compared to annual 
rating and manual observation. 

7) Manual observation > Software and Annual Rating 

This case is also a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this case, the ACP longitudinal cracking was accurately identified manually for all 
locations. However, all these locations were not detected by the software and annual rating for 
the precise longitudinal cracking distress identification. 

2. ACP Longitudinal Cracking from FY 2021 
Longitudinal cracking from FY 2021 image check results are shown below. 

A) Observation: None correct (95 sections) 
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County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 - Bexar IH0010 X 
(1088) 589 0 589 0.5 40 0 11 

15 - Bexar IH0035 R 
(412) 141 0 141 0.5 65 4 10 

15 - Bexar IH0035 L 
(365) 140 0 140 0.5 237 0 3 

15 - Bexar IH0035 L 
(364) 142 0 142 0.5 96 0 50 

95 - 
Guadalupe 

IH0010 A 
(1083) 610 0 610 0.292 23 0 5 

B) Observation: Software (correct) (117 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

83 - Frio IH0035 R 
(795) 117 0 117 0.5 30 0 0 

15 - Bexar IH0035 L 
(771) 136 0 136 0.5 258 0 0 

95 - 
Guadalupe 

IH0010 L 
(462) 600 0 600 0.5 36 0 0 

232 - Uvalde US0090 K 
(414) 488 0 488 0.5 111 0 0 

15 - Bexar US0281 R 528 0 528 0.5 51 0 0 

C) Observation: Both the Annual Rating and Software are correct (21 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15 – Bexar US0281 L 
(36) 526 0 526 0.5 0 0 0 

133 – Kerr IH0010 R 
(600) 517 0 517 0.5 0 0 0 

95 – 
Guadalupe 

IH0010 R 
(460) 608 0 608 0.5 0 0 0 

133 – Kerr IH0010 R 
(599) 511 0 511 0.5 0 0 0 

232 – 
Uvalde 

RM2690 K 
(1298) 504 1.5 504 1.978 0 0 0 

D) Observation: Annual Rating > Software and Manual observation (183 sections) 

County 
Highway 

And 
Roadbed 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 
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ID 

46 - Comal FM0306 K 
(820) 504 0 504 0.5 47 0 19 

163 - 
Medina 

IH0035 L 
(774) 125 0 125 0.5 84 0 11 

15 - Bexar US0090 L 
(469) 570 0 570 0.5 67 0 11 

15 - Bexar US0090 X 
(1103) 560 0 560 0.5 30 0 2 

46 - Comal US0281 L 
(759) 512 0 512 0.5 106 3 18 

E) Observation: Manual observation > Software and Annual Rating (13 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

131 - 
Kendall 

IH0010 X 
(894) 524 0 524 0.578 2 0 12 

15-Bexar IH0010 X 
(1169) 579 0.5 579 1.034 0 0 12 

95-
Guadalupe 

IH0010 R 
(460) 608 0.5 608 0.998 0 0 1 

15-Bexar FM0078 K 
(154) 504 0.5 501 1 24 4 48 

15-Bexar IH0010 A 
(546) 567 0.5 567 1.011 9 0 29 

6.3.3 Transverse Cracking Image Check Result for Precision 

1. ACP Transverse Cracking from FY 2022 
A) Observation: None correct (48 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar US0090 L 
(1416) 570 0 570 0.5 5 5 4 

95-
Guadalupe 

IH0010 R 
(892) 612 0 612 0.5 5 5 3 

15-Bexar IH0010 X 
(1087) 591 0 591 0.5 3 4 0 

15-Bexar IH0010 X 
(1087) 590 0 590 0.5 3 5 1 

95-
Guadalupe UA0090 K 0 0 0 0.096 2 7 4 

B) Observation: Annual rating (correct) (12 sections) 

County Highway Beginning Beginning Ending Ending TRM Annual Software Manual 
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And 
Roadbed 

ID 

TRM 
Number 

TRM 
Displacement 

TRM 
Number 

Displacement rating observation 

15-Bexar US0181 L 
(309) 512 0 512 0.5 3 4 3 

15-Bexar US0281 A 
(1172) 524 0 524 0.5 3 4 3 

15-Bexar IH0010 A 
(1340) 579 0 579 0.5 3 5 3 

15-Bexar IH0035 L 
(364) 144 0 144 0.5 1 4 1 

15-Bexar US0087 R 
(200) 706 0 706 0.5 0 1 0 

C) Observation: Software (correct) (12 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

46-Comal FM0725 K 
(1000) 0 0 0 0.009 13 0 0 

15-Bexar IH0035 L 
(364) 142 0 142 0.5 0 1 1 

95-
Guadalupe 

FM1979 K 
(918) 532 0 532 0.211 1 0 0 

15-Bexar SS0122 K 
(1428) 506 0 506 0.5 1 2 2 

15-Bexar IH0410 L 4 0 4 0.5 3 6 6 

D) Observation: Both the Annual Rating and Software are correct (31 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

46-Comal BS0046CR 
(1008) 0 0 0 0.037 0 0 0 

232-Uvalde FM0030 K 
(688) 0 0 0 0.042 0 0 0 

15-Bexar US0281 X 
(1179) 524 0 524 0.5 4 4 4 

15-Bexar US0090 X 
(1224) 568 0 568 0.348 0 0 0 

15-Bexar US0090 R 572 0 572 0.5 6 6 6 

E) Observation: Annual Rating > Software and Manual observation (9 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

46-Comal FM0725 K 0 0 0 0.009 13 0 0 
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(1000) 

15-Bexar IH0010 X 
(1337) 580 0 580 0.153 6 5 3 

95-
Guadalupe 

FM1979 K 
(918) 532 0 532 0.211 1 0 0 

15-Bexar IH0010 A 
(1208) 566 0.688 566 0.973 5 4 4 

15-Bexar SL1604 A 
(1115) 538 0.932 538 1.432 5 2 3 

F) Observation: Software > Annual Rating and Manual observation (19 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar US0181 L 
(309) 512 0 512 0.5 3 4 3 

15-Bexar IH0010 A 
(1340) 579 0 579 0.5 3 5 3 

95-
Guadalupe 

IH0010 L 
(897) 613 0 613 0.5 5 6 4 

15-Bexar IH0035 L 
(364) 144 0 144 0.5 1 4 1 

15-Bexar IH0035 R 
(413) 147 0 147 0.5 0 2 1 

G) Observation:  Manual observation > Annual Rating and Software (1 section) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar IH0010 X 593 0 593 0.592 5 5 9 

Like ACP alligator cracking and longitudinal cracking, the distress ratings for transverse 
cracking are also divided into three categories: a) Annual rating, b) Software detection, and c) 
Manual observation. Also, based on the mentioned categories, there are seven cases same as that 
for alligator and longitudinal cracking. The detailed discussion of the seven cases is as follows: 

1) None of the 3 distress rating categories are correct (Annual rating ≠ Software 
detection ≠ Manual observation) 

It has been observed that the distress rating varies for each category of observation based on an 
image analysis. This is mostly because the manual observation rating differs from the other two 
categories. For the majority of the sections for the year 2022, the annual rating and software 
detected more transverse cracking than manual observation. This was mostly caused by software 
and annual ratings that incorrectly identified distress, mistaking sealed cracks (maintenance 
activities) or raveling for the transverse cracking. On another note, for the year 2021, the 
software could not detect the distress on the pavement surface images and hence the ratings 
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based on the software were always zero due to its inadequacy to correctly detect the transverse 
cracking. 

2) Annual rating is correct (Annual rating = Manual observation) 

Based on the image analysis, for very few sections it has been observed that the transverse 
cracking rating was the same for both annual rating and manual observation. From this, it can be 
concluded that the annual rating is correct since it has reported all the ACP transverse cracking 
for the road sections. 

3) Software detection is correct (Software detection = Manual observation) 

In this case, it has been observed that the transverse cracking rating was the same for both 
software detection and manual observation. From this, it can be concluded that the software 
rating is correct since it has detected all the locations of longitudinal cracking for that road 
section. However, this condition has been mainly reflected in many road sections with zero 
distress in the year 2021. 

4) Both annual rating and software detection are correct (Annual rating = Software 
detection = Manual observation) 

Based on the image analysis for the year 2022, the annual rating and software detection of ACP 
transverse cracking was found to be the same as manual observation. From this, it can be 
concluded that the annual rating and software detection are correct since both detected all the 
transverse cracking that was identified manually for the road sections. This condition was true 
for 2021 road sections only with zero transverse cracks. 

5) Annual Rating > Software and Manual observation 

This case is a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this situation, the annual rating for transverse cracking was more than both software 
and manual observation. This was observed for many sections (2021) and the reason for this 
difference may be due to incorrect distress identification or misinterpretation among distress 
types. 

6) Software > Annual Rating and Manual observation 

This case is also a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this case, the software detects more locations for ACP transverse cracking because the 
software could not differentiate between the ACP transverse cracking and raveling for some road 
sections. This leads to higher distress ratings by the software as compared to annual rating and 
manual observation. 

7) Manual observation > Software and Annual Rating 

This scenario is a subtype of case 1, where both the annual rating and software detection are 
incorrect. In this instance, ACP transverse cracking was manually identified accurately at all 
locations. However, the software and annual rating failed to detect the transverse cracking 
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distress at these locations. 

2. ACP Transverse Cracking from FY 2021 
Transverse cracking image check results are listed below.  

A) Observation: None correct (26 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar US0090 X 
(1224) 568 0 568 0.348 5 5 0 

95-
Guadalupe 

IH0010 L 
(897) 613 0 613 0.5 7 0 1 

15-Bexar IH0035 L 
(364) 143 0 143 0.5 3 0 2 

15-Bexar IH0010 A 
(1208) 567 0 567 0.5 0 0 2 

15-Bexar SS0122 K 
(1428) 506 0 506 0.5 3 0 5 

B) Observation: Annual rating (correct) (9 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar US0090 L 
(1416) 570 0 570 0.5 2 0 2 

131 - 
Kendall 

IH0010 R 
(1381) 523 0 523 0.5 2 0 2 

95-
Guadalupe 

UA0090 K 
(173) 0 0 0 0.096 4 0 4 

15-Bexar SL0353 K 
(1253) 502 0 502 0.5 1 0 1 

15-Bexar US0181 L 
(309) 512 0.5 512 1 1 0 1 

C) Observation: Software (correct) (54 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

46-Comal BS0046CR 
(1008) 0 0 0 0.037 2 0 0 

232-Uvalde FM0030K 
(688) 0 0 0 0.042 2 0 0 

46-Comal FM0725 K 
(1000) 0 0 0 0.009 6 0 0 

15-Bexar US0281 X 
(1179) 524 0 524 0.5 1 0 0 
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15-Bexar US0281 X 
(1180) 522 0 522 0.478 2 0 0 

D) Observation: Both the Annual Rating and Software are correct (13 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar US0181 L 
(309) 512  0 512 0.5 0 0 0 

15-Bexar IH0010 A 
(1340) 579 0 579 0.5 0 0 0 

15-Bexar IH0035 R 
(412) 141 0 141 0.5 0 0 0 

15-Bexar IH0010 X 
(1337) 580 0 580 0.153 0 0 0 

15-Bexar IH0010 X 
(1337) 579 0 579 0.5 0 0 0 

E) Observation: Annual Rating > Software and Manual observation (62 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

46-Comal BS0046CR 
(1008) 0  0 0 0.037 2 0 0 

46-Comal FM0725 K 
(1000) 0 0 0 0.009 6 0 0 

15-Bexar US0281 K 
(1180) 522 0 522 0.478 2 0 0 

95-
Guadalupe 

IH0010 R 
(892) 612 0 612 0.5 2 0 0 

95-
Guadalupe 

IH0010 L 
(897) 613 0 613 0.5 7 0 1 

F) Observation: Software > Annual Rating and Manual observation (0 sections) 

G) Observation:  Manual observation > Annual Rating and Software (15 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar US0090 R 
(1417) 568 1.951 568 2.39 0 0 2 

15-Bexar SL0013 K 
(1439) 492 1.944 492 1.97 0 0 3 

15-Bexar FM2696 L 
(932) 484 1.578 484 1.916 0 0 1 

15-Bexar SS0122 K 
(1428) 504 1 504 1.5 4 0 6 
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15-Bexar IH0010 A 
(1208) 566 0.688 566 0.973 0 0 3 

6.3.4 Patching Image Check Result for Precision 

1. ACP Patching from FY 2022 
A) Observation: None correct (14 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar FM0078 K 
(1273) 508 0 508 0.5 6 0 1 

15-Bexar IH0035 L 
(364) 143 0 143 0.5 13 0 21 

7-Atascosa FM0791 K 
(229) 514 0 514 0.5 22 0 18 

83-Frio FM2779 K 
(474) 530 0 530 0.5 14 0 33 

7- Atascosa FM2924 K 
(224) 514 0 514 0.5 2 0 6 

B) Observation: Annual rating (correct) (8 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

46-Comal FM2779 K 
(474) 528 1 528 1.5 22 0 22 

232-Uvalde US0090 K 
(732) 484 1 484 1.5 14 0 14 

15-Bexar IH0035 R 
(413) 146 0.5 146 1.006 37 0 37 

83-Frio FM2779 K 
(474) 528 0.5 528 1 17 0 17 

247-Wilson FM1681 K 
(18) 530 0 530 0.5 2 0 2 

C) Observation: Software (correct) (46 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95-
Guadalupe 

IH0010 R 
(1077) 600 0 600 0.5 20 0 0 

15-Bexar IH0035 R 
(413) 145 0 145 0.5 2 0 0 

15-Bexar FM1628 K 
(158) 502 0 502 0.5 13 0 0 
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247-Wilson FM3161 K 
(101) 526 0 526 0.5 28 0 0 

162-
Mcmullen 

FM1962 K 
(28) 496 0 496 0.5 1 0 0 

D) Observation: Both the Annual Rating and Software are correct (82 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95-
Guadalupe 

Fm0020 k 
(1017) 530 0 530 0.5 0 0 0 

10-Bandera FM0470 K 
(692) 446 0 446 0.5 0 0 0 

247-Wilson FM0537 K 
(68) 522 0 522 0.5 0 0 0 

46-Comal FM0311 K 
(876) 502 0 502 0.5 0 0 0 

15-Bexar US0090 X 
(1224) 568 0 568 0.348 0 0 0 

E) Observation: Annual rating > Software and Manual observation (51 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar FM0078 K 
(1273) 508 0 508 0.5 6 0 1 

95-
Guadalupe 

IH0010 R 
(1077) 600 0 600 0.5 20 0 0 

15-Bexar IH0035 R 
(413) 145 0 145 0.5 2 0 0 

15-Bexar FM1628 K 
(158) 502 0 502 0.5 13 0 0 

7-Atascosa FM0791 K 
(229) 514 0 514 0.5 22 0 18 

F) Observation: Software > Annual Rating and Manual observation (0 section) 

G) Observation: Manual observation > Annual Rating and Software (5 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar IH0035 L 
(364) 143 0 143 0.5 13 0 21 

7-Atascosa FM0791 K 
(228) 510 0 510 0.5 13 0 18 

83-Frio FM2779 K 
(474) 530 0 530 0.5 14 0 33 
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7-Atascosa FM2924 K 
(224) 514 0 514 0.5 2 0 6 

247-Wilson FM1344 K 
(221) 528 0 528 1.5 10 0 14 

Similar to ACP cracking (alligator, longitudinal, and transverse), the distress ratings for ACP 
patching are divided into three categories: a) Annual rating, b) Software detection, and c) Manual 
observation. Likewise, based on the stated categories, there are seven cases same as that for ACP 
cracking. The detailed discussion of the seven cases is as follows: 

1) None of the 3 distress rating categories are correct (Annual rating ≠ Software 
detection ≠ Manual observation) 

It has been observed that the distress rating varies for each category of observation based on an 
image analysis. This is mostly because the manual observation rating differs from the other two 
categories. For the years 2021 and 2022, the software could not detect the distress on the section 
images and hence the ratings based on the software were always zero due to its inadequacy to 
correctly detect the patching on the pavement surface. 

2) Annual rating is correct (Annual rating = Manual observation) 

Based on the image analysis, for a very few sections, it has been observed that the ACP patching 
rating was the same for both annual rating and manual observation. From this, it can be 
concluded that the annual rating is correct since it has reported all the ACP patching locations on 
the road sections wherein suitable maintenance activities have been performed. 

3) Software detection is correct (Software detection = Manual observation) 

This case has been observed for the majority of the pavement sections wherein the ACP patching 
rating was the same for both software detection and manual observation. However, this condition 
has been mainly reflected for many road sections with zero patching in both years. The software 
was inadequate to detect the patching on the pavement surface. 

4) Both annual rating and software detection are correct (Annual rating = Software 
detection = Manual observation) 

Based on the image analysis, the annual rating and software detection of ACP patching were 
found to be the same as manual observation. This was true for 2021 and 2022 road sections only 
with zero patching. 

5) Annual Rating > Software and Manual observation 

This case is a sub-type of case 1 where none of the annual rating and software detection are 
correct. In this situation, the annual rating for ACP patching was more than both software and 
manual observation. This was observed for many sections (2021 and 2022) and the reason for 
this difference could be due to incorrect distress identification or misinterpretation among 
distress types. 

6) Software > Annual Rating and Manual observation 
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This case has not been observed for ACP patching for both 2021 and 2022 pavement sections. 

7) Manual observation > Software and Annual Rating 

This scenario is a subtype of case 1, where both the annual rating and software detection are 
incorrect. In this instance, ACP patching was manually identified accurately at all locations. 
However, the software and annual rating failed to detect the patching at these locations. This 
case was observed only for five sections for 2021 and 2022. 

2. ACP Patching from FY 2021 

The ACP patching image check results are presented below.  
A) Observation: None correct (18 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

10-Bandera FM0470 K 
(1030) 446 0 446 0.5 18 0 9 

247-Wilson FM0537 K 
(365) 522 0 522 0.5 18 0 1 

15-Bexar IH0035 L 
(770) 143 0 143 0.5 0 0 1 

247-Wilson FM1681 K 
(1165) 530 0 530 0.5 14 0 1 

83-Frio FM1582 K 
(189) 554 0 554 0.5 11 0 2 

B) Observation: Annual rating (correct) (3 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

247-Wilson FM1344 K 
(351) 532 0 532 0.5 16 0 16 

131-Kendall FM3351 K 
(828) 468 0.5 468 1 3 0 3 

46-Comal FM1863 K 
(969) 496 1.5 496 1.9 10 0 10 

C) Observation: Software (correct) (89 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95-
Guadalupe 

FM0020 K 
(1396) 530 0 530 0.5 18 0 0 

15-Bexar FM0078 K 
(154) 508 0 508 0.5 16 0 0 
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95-
Guadalupe 

FM0020 K 
(1397) 540 0 540 0.261 12 0 0 

46-Comal FM0311 K 
(1340) 502 0 502 0.5 11 0 0 

15-Bexar US0090 X 
(1311) 568 0 568 0.348 21 0 0 

D) Observation: Both the Annual Rating and Software are correct (39 Sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95-
Guadalupe 

IH0010 R 
(459) 600 0 600 0.5 0 0 0 

15-Bexar FM1628 K 
(1144) 502 0 502 0.5 0 0 0 

7-Atascosa FM0791 K 
(250) 514 0 514 0.5 0 0 0 

7-Atascosa FM0791 K 
(250) 510 0 510 0.5 0 0 0 

247-Wilson FM3161 K 
(347) 526 0 526 0.5 0 0 0 

E) Observation: Annual rating > Software and Manual observation (104 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

95-
Guadalupe 

FM0020 K 
(1396) 530 0 530 0.5 18 0 0 

15-Bexar FM0078 K 
(154) 508 0 508 0.5 16 0 0 

95-
Guadalupe 

FM0020 K 
(1397) 540 0 540 0.261 12 0 0 

46-Comal FM0311 K 
(1340) 502 0 502 0.5 11 0 0 

15-Bexar US0090 X 
(1311) 568 0 568 0.348 21 0 0 

F) Observation: Software > Annual Rating and Manual observation (0 sections) 

G) Observation: Manual observation > Annual Rating and Software (5 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

10-Bandera FM0470 K 
(1029) 436 0 436 0.5 10 0 18 

15-Bexar IH0035 L 
(770) 143 0 143 0.5 0 0 1 
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232-Uvalde RM0187 K 
(1019) 520 0 520 0.5 17 0 26 

232-Uvalde US0090 K 
(414) 484 1 484 1.5 0 0 6 

83-Frio FM2779 K 
(1202) 528 1 528 1.5 0 0 8 

6.3.5 Failure Check Result for Precision 

1. ACP Failure from FY 2022 
A) Observation: None correct (32 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

7-Atascosa FM0140 K 
(272) 490 0 490 0.37 8 0 2 

163-Medina FM0462 K 
(596) 508 0 508 0.5 3 0 8 

7-Atascosa IH0035 A 
(443) 132 0 132 0.739 3 1 5 

163-Medina FM1796 K 
(701) 448 0 448 0.5 8 0 13 

232-Uvalde FM1052 K 
(753) 514 0 514 0.5 0 0 1 

B) Observation: Annual rating (correct) (6 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

7-Atascosa FM1099 K 
(227) 508 0 508 0.5 4 0 4 

163-Medina FM2200 K 
(535) 506 0 506 0.5 3 0 3 

15-Bexar IH0037 X 
(1423) 127 0 127 0.5 3 0 3 

7-Atascosa FM2924 K 
(224) 514 0.5 514 1 13 0 13 

163-Medina FM0462 K 
(597) 500 0.5 500 1 4 0 4 

C) Observation: Software (correct) (33 sections) 

County 
Highway 

And 
Roadbed 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 
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ID 
95-

Guadalupe 
IH0010 R 

(892) 613 0 613 0.5 5 0 0 

95-
Guadalupe 

IH0010 A 
(84) 612 0 612 0.5 9 0 0 

15-Bexar IH0035 A 
(444) 136 0 136 0.5 2 0 0 

15-Bexar FM1518 K 
(206) 494 0 494 0.5 2 0 0 

131-Kendall FM1621 K 
(825) 470 0 470 0.5 1 0 0 

D) Observation: Both the Annual Rating and Software are correct (40 Sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar FM0327 K 
(212) 508 0 508 0.5 0 0 0 

163-Medina IH0035 A 
(442) 129 0 129 0.5 0 0 0 

15-Bexar IH0035 A 
(444) 137 0 137 0.5 0 0 0 

7-Atascosa IH0037 R 
(1319) 106 0 106 0.5 0 0 0 

83-Frio IH0035 X 
(401) 93 0 93 0.5 0 0 0 

E) Observation: Annual rating > Software and Manual observation (45 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

7-Atascosa FM0140 K 
(272) 490 0 490 0.37 8 0 2 

95-
Guadalupe 

IH0010 R 
(892) 613 0 613 0.5 5 0 0 

95-
Guadalupe 

IH0010 A 
(84) 612 0 612 0.5 9 0 0 

163-Medina IH0035 A 
(440) 122 0 122 0.79 9 0 1 

163-Medina FM2200 K 
(535) 510 0 510 0.5 12 0 5 

F) Observation: Software > Annual Rating and Manual observation (0 sections) 

G) Observation: Manual observation > Annual Rating and Software (30 sections) 

County Highway 
And 

Roadbed 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating 

Software Manual 
observation 
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ID 
163-Medina FM0462 K 

(596) 
508 0 508 0.5 3 0 8 

7-Atascosa IH0035 A 
(443) 

132 0 132 0.739 3 1 5 

163-Medina FM1796 K 
(701) 

448 0 448 0.5 8 0 13 

232-Uvalde FM1052 K 
(753) 

514 0 514 0.5 0 0 1 

163-Medina FM0462 K 
(596) 

504 0 504 0.5 2 0 16 

Similar to ACP cracking (alligator, longitudinal, and transverse) and patching, the rating for ACP 
failure quantity is divided into three categories: a) Annual rating, b) Software detection, and c) 
Manual observation. Based on these listed categories, there are seven cases same as that for ACP 
cracking and patching. The detailed discussion of the seven cases is as follows: 

1) None of the 3 distress rating categories are correct (Annual rating ≠ Software 
detection ≠ Manual observation) 

It has been observed that the distress rating varies for each category of observation based on an 
image analysis. This is mostly because the manual observation rating differs from the other two 
categories. For the years 2021 and 2022, the software could not detect the failure quantity on the 
section images and hence the ratings based on software were always zero (except only for one 
section) due to its inadequacy to correctly detect the failure quantity on the pavement surface. 

2) Annual rating is correct (Annual rating = Manual observation) 

Based on the image analysis, for a very few sections, it has been observed that the ACP failure 
rating was the same for both annual rating and manual observation. From this, it can be 
concluded that the annual rating is correct since it has reported all the ACP failure quantity on 
the road sections. 

3) Software detection is correct (Software detection = Manual observation) 

This case has been observed for the pavement sections wherein the ACP failure rating was the 
same for both software detection and manual observation. However, this condition has been 
mainly reflected for many road sections with zero failure in both years. The software was 
incapable to detect the failure quantity on the pavement surface. 

4) Both annual rating and software detection are correct (Annual rating = Software 
detection = Manual observation) 

Based on the image analysis, the annual rating and software detection of ACP failure were found 
to be the same as manual observation. This was true for 2021 and 2022 road sections only with 
zero failure. 

5) Annual Rating > Software and Manual observation 

This case is a sub-type of case 1 where none of the annual rating and software detection are 
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correct. In this situation, the annual rating for ACP failure was more than both software and 
manual observation. This was observed for many sections (2021 and 2022) and the reason for 
this difference may be due to incorrect distress identification. 

6) Software > Annual Rating and Manual observation 

This case has not been observed for ACP failure for both 2021 and 2022 pavement sections. 

7) Manual observation > Software and Annual Rating 

This scenario is a subtype of case 1, where both the annual rating and software detection are 
incorrect. In this case, ACP failure was manually identified accurately at all locations. However, 
the annual rating failed to detect all the failure locations. Also, the software could not detect the 
failure locations on the pavement surface images for both years. This situation leads to 
underestimation of the failure quantity by the annual rating and software. 

2. ACP Failure from FY 2021 
The ACP failure image check results are listed below. 

A) Observation: None correct (20 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163-Medina FM0462 K 
(849) 492 0 492 0.5 0 0 2 

15-Bexar FM0327 K 
(1370) 508 0 508 0.5 3 0 1 

95-
Guadalupe 

IH0010 R 
(1466) 613 0 613 0.5 0 0 2 

15-Bexar IH0035 A 
(1040) 137 0 137 0.5 2 0 1 

131-Kendall  FM1621 K 
(899) 470 0 470 0.5 3 0 5 

B) Observation: Annual rating (correct) (9 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163-Medina FM1796 K 
(1436) 448 0 448 0.5 10 0 10 

163-Medina FM2200 K 
(1434) 506 0 506 0.5 1 0 1 

83-Frio IH0035 X 83 0 83 0.5 2 0 2 

10-Bandera RM1077 K 
(1252) 480 0 480 0.5 2 0 2 

95-
Guadalupe 

BS0123B
K (1469) 488 0 488 1 3 0 3 
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C) Observation: Software (correct) (22 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

7-Atascosa FM0140 K 
(207) 490 0 490 0.37 4 0 0 

163-Medina IH0035 A 
(1236) 129 0 129 0.5 2 0 0 

7-Atascosa FM1099 K 
(253) 508 0 508 0.5 1 0 0 

95-
Guadalupe 

FM1150 K 
(1398) 540 0 540 0.5 4 0 0 

7-Atascosa FM2924 K 
(255) 514 0 514 0.5 5 0 0 

D) Observation: Both the Annual Rating and Software are correct (40 Sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163-Medina FM0462 K 
(847) 508 0 508 0.5 0 0 0 

95-
Guadalupe 

IH0010 A 
(1463) 612 0 612 0.5 0 0 0 

7-Atascosa IH0035 A 132 0 132 0.739 0 0 0 
163-Medina IH0035 A 122 0 122 0.79 0 0 0 

15-Bexar FM1518 K 
(746) 494 0 494 0.5 0 0 0 

E) Observation: Annual rating > Software and Manual observation (30 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

15-Bexar FM0327 K 
(1370) 508 0 508 0.5 3 0 1 

163-Medina IH0035 A 
(1236) 129 0 129 0.5 2 0 0 

15-Bexar IH0035 A 
(1040) 137 0 137 0.5 2 0 1 

7-Atascosa FM0140 K 
(207) 490 0 490 0.37 4 0 0 

7-Atascosa FM1099 K 
(253) 508 0 508 0.5 1 0 0 

F) Observation: Software > Annual Rating and Manual observation (0 sections) 
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G) Observation: Manual observation > Annual Rating and Software (14 sections) 

County 

Highway 
And 

Roadbed 
ID 

Beginning 
TRM 

Number 

Beginning 
TRM 

Displacement 

Ending 
TRM 

Number 

Ending TRM 
Displacement 

Annual 
rating Software Manual 

observation 

163-Medina FM0462 K 
(849) 492 0 492 0.5 0 0 2 

163-Medina FM0462 K 
(847) 504 0 504 0.5 0 0 13 

95-
Guadalupe 

IH0010 R 
(1466) 613 0 613 0.5 0 0 2 

131-Kendall FM1621 K 
(899) 470 0 470 0.5 3 0 5 

163-Medina FM1250 K 
(1441) 450 0 450 0.5 1 0 12 

In summary, the distress ratings for pavement conditions are evaluated through annual ratings, 
software detection, and manual observation methods. The analysis indicates that annual ratings 
and software detection can either underestimate or overestimate ACP (alligator, longitudinal, and 
transverse) cracking and failure when compared to manual observations. This discrepancy might 
arise from difficulties in accurately identifying the type of distress or from misinterpretations 
among the various distress types. Additionally, overestimation can result from the incorrect 
identification of lane stripes and raveling as cracking.  
Moreover, the ratings generated by software detection are not consistently aligned with those 
from annual ratings and manual observations. These inaccuracies in distress identification can 
significantly impact maintenance and rehabilitation strategies, leading to incorrect budget 
allocations over the pavement service lives. 
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 

This study aimed to understand the data quality of automated pavement condition data by 
evaluating the accuracy and reliability of automated pavement condition data. To implement the 
data quality evaluation, the research team selected data quality check indexes, developed data 
quality thresholds, designed implementation procedures, and validated the data quality check 
results using raw images. The primary focus was on developing data quality thresholds and 
designing data quality consistency check procedures to locate the pavement data with potential 
data quality issues and then correct the pavement condition to improve the accuracy and 
precision of the automated pavement condition data.  

Based on the analysis conducted, the following conclusions are drawn: 

1. Problems with Existing Automated Pavement Condition Data Collection: the 
literature review and questionnaire survey indicate that automated pavement condition 
data collection is the commonly accepted data collection method that employed by 
highway agencies. Automated pavement data collection technologies encounter data 
quality issues such as inconsistency, discrepancy, and false positives, impacting data 
validation and vendor collaboration. Despite not being fully automated, these 
technologies rely heavily on manual labor for inspection, achieving accuracies of 70-80% 
instead of the desired 95%. While AI applications like deep learning algorithms show 
potential, challenges like data pre-treatment and limited ground truth data hinder 
progress. Manual validation remains essential, with state agencies investing resources and 
time in this process, often outsourcing to third-party contractors. Implementing 
measurable QA procedures and establishing data quality benchmarks are recommended 
to enhance operational efficacy. Addressing these obstacles is imperative for optimizing 
the effectiveness of automated data collection technologies in pavement engineering. 

2. A comprehensive analysis of historical pavement condition data: the historical data 
analysis focuses on 25 districts and three pavement types (ACP, CRCP, and JCP) 
spanning FY 2017 to FY 2021. Utilizing automated data collection technologies, the 
dataset offers a detailed breakdown of pavement sections per district. The normality test 
on distress scores across five districts indicated deviation from a normal distribution, 
though the distress score differences over two years followed a normal distribution, 
hinting at the potential for future analysis. Through merging PMIS annual ratings with 
audit data, accuracy and precision analyses were conducted, defining accuracy as 
proximity to the true value and precision as measurement consistency. The chapter 
elucidates the application of confusion matrices for model performance visualization and 
metric calculation, illustrating the significance of accuracy and precision in interpreting 
pavement condition data for informed decision-making in pavement management. 
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3. Stratified Sampling Method highlights the importance of using this method for data 
quality audits, especially in cases of high variability among population units. The process 
involves defining strata based on key factors, allocating sample sizes optimally to each 
stratum to minimize costs and maximize information gain, and iteratively updating 
sample sizes as needed. By carefully considering population characteristics, variance, and 
cost implications, researchers can design a stratified sampling method that accurately 
represents the population and enhances the accuracy and reliability of audit results in 
pavement condition assessments. 

4. Threshold Development of Data Consistency Check: the accuracy check was designed 
using automated data comparing with audit data of distresses and DS in the same fiscal 
year. Similarly, precision analysis was conducted by examining the disparities in 
individual distress and comprehensive scores across two consecutive years. The 
establishment of thresholds was achieved by scrutinizing the variation in distress 
measurements between annual ratings and audits/two consecutive years, with a focus on 
identifying data points encompassing 87% of the dataset or falling within 1.5 standard 
deviations from the mean. Procedures were devised for executing the data quality check 
process based on the established thresholds. 

5. Pilot Study of Data Quality Assurance: The San Antonio district was chosen as the site 
for a pilot study on pavement condition data quality assurance, which employed the 
established thresholds and devised procedures. A raw image inspection of the roadway 
sections was performed to validate the suggested data quality thresholds and procedures. 
The findings indicate that the proposed data quality assurance approach effectively 
identifies sections with potential data quality concerns. 

7.2 Recommendations 

Based on the conclusions derived from the questionnaire survey, historical pavement condition 
data analysis, sampling method development, and implementation of data quality assurance, the 
following recommendations are proposed to enhance the quality of automated pavement 
condition data collection.  

1. Development of a Unified Rating System: Establishing a unified rating system that 
integrates both automated and manual observations can help minimize discrepancies. 
This system should incorporate the strengths of both methods to provide a more accurate 
and consistent evaluation of pavement conditions. 

2. Regular Audits and Validation Checks: Conducting regular audits and validation 
checks of the collected data is crucial. Implementing a systematic approach to auditing 
can help identify and rectify data quality issues promptly. This includes using the 
developed cost-efficient audit sampling method and data-enabled quality acceptance 
criteria. 

3. Continuous Improvement of Data Quality Management Plans: Updating and 
continuously improving the data quality management plans based on the latest research 
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and technological advancements is vital. This ensures that the data collection methods 
remain effective and reliable over time. 

By implementing these recommendations, TxDOT can significantly improve the accuracy, 
precision, and reliability of automated pavement condition data. This will ultimately lead to 
better maintenance and rehabilitation strategies, optimal resource allocation, and improved 
pavement performance across the state. 

These conclusions and recommendations form a comprehensive strategy to address the identified 
challenges and enhance the overall effectiveness of automated pavement condition data 
collection in Texas.  
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Appendix: Image Examples 

There are differences in the distress detection by the software based on the following cases: 

Case 1: Software identified alligator cracking as longitudinal cracking (blue box) 

Case 2: Software identified longitudinal cracking as alligator cracking (red box) 
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Case 3: Software identified raveling as longitudinal cracking (blue box) 

Case 4: Software identified transverse cracking as alligator cracking (red box) 
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Case 5: Software identified transverse cracking as longitudinal cracking (blue box) 

Case 6: Software failed to detect alligator cracking  
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Case 7: Software failed to detect longitudinal cracking  

Case 8: Software failed to detect ACP failure  
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