

Presenter: Tom Schwerdt

Carrasco | Leon Flournoy | Seth Franks | Joshua Gutzwiller

Introduction

Motivation

More than 45,000 bridges are structurally deficient in U.S **□**Annual cost of upgrading the U.S bridge system: \$24.7 billion • Nearly 40 years to retrofit the backlog of deficient bridges

Technical Challenges

Structural deformation measurements are necessary to optimize load capacity evaluations and reduce cost

Conventional bridge deformation instruments:

- Expensive and time-consuming
- Require contact with the structure
- Require working at heights from scaffolding

Civil Infrastructure Vision (CIV) System

Integrated hardware/software system developed at UTSA Principles of Digital Image Correlation and spatial triangulation Monitors structural deformations at all scales

Bridge Load Test using CIV system

- Position cameras for desired field of view
- 2. Attach High Contrast Physical Targets (if needed using extension and from ground)
- 3. Start recording position of selected targets on bridge surface and/or HCPT
- 4. Move loaded truck into position
- 5. Full test can be done in less than 2 hours

Evaluating Bridge Behavior Using Digital Image Correlation (DIC)

Conducted by:

Civil and Environmental Engineering

Sample accuracy results at 70ft distance

0.05		0.03		0.08
0.04		0.025		
0.03		0.02		0.06
		0.015		0.04
0.02		0.01		
0.01		0.005		0.02
0	Mean Absolute Error (inch)	0		•
inch)	Mean Absolute Error (Inch)		Mean Absolute Error (inch)	

	Cogo	Y direction	Z Direction	
Image Quadrant	Gage Block Size (in.)	Mean Absolute Error (in.)	Mean Absolute Error (in.)	
Top Left	0.5 1	0.0085	0.0851	
Middle Left	0.5 1	0.0146	0.2292	
Bottom Left	0.5 1	0.0046	0.0761	
Top Center	0.5 1	0.0383	0.1476	
Middle Center	0.5 1	0.0068	0.0602	
Bottom Center	0.5 1	0.0139	0.1451	
Top Right	0.5 1	0.0052	0.2685	
Middle Right	0.5 1	0.0137	0.2122	
Bottom Right	0.5 1	0.0351	0.1098	

Application on Steel Continuous Multi-Girder Bridge

- Location: Farm Rd 1047, Lometa, TX
- Three continuous spans (60' 75' 60')

Fixed-location test-path 1 (midspan deflection)

Girders CIV (in.) **Displacement transducer (in.)** Difference (in.)

Fixed-location test-path 2 (midspan deflection)

- Girders
- CIV (in.) Displacement transducer (in.)
- Difference (in.)

□ Fast load tests: hours instead of days using contact instruments □ Safety improved for the driving public by elimination of lane closures **Lane closure for measurement for only a few minutes** □ Significant cost savings (fraction of traditional methods costs)

Next steps: Implementation

UTSA and TxDOT will evaluate up to 10 bridges by the end of FY2022 □ Improve efficiencies of the load testing process. Achive load test at fraction of cost of conventional evaluation

Acknowledgement

Dr. Mary Beth Hueste at Texas A&M University for sharing displacement transducers measurement data for system validation

Field Demonstration

-	-		_
G1	G2	G3	G4
0.055	0.256	0.515	0.689
0.049	0.280	0.526	0.755
0.006	0.024	0.011	0.066

G1	G2	G3	G4
0.729	0.510	0.281	0.072
0.692	0.556	0.298	0.077
0.037	0.046	0.017	0.005

Scaffolding for contact instruments used for validation

Concluding Remarks

- Safety improved for highway workers with reduced exposure to traffic and working at heights