

Civil Infrastructure Vision CIV Bridge[©] v1.0

Instructional Video Wassim Ghannoum, PhD, PE, F.SEI

Workshop Outline

- 1. Capabilities
- 2. CIV Bridge hardware and software
- 3. DIC principles
- 4. Accuracy validation
- 5. Conducting a Live Test
- 6. Post-processing images/data
 - Reprocess Existing Images
 - Interpolate Existing Data
 - Smooth Existing Data
 - Calculate from Data

1. Capabilities

Capabilities

- 1. Measures three-dimensional movement of targets in space
 - Uses two high-resolution / low-noise digital cameras
 - Digital Image Correlation algorithms and triangulation principles
- 2. Bridge edition calibrated for a large measurement volume (MV)
 - 1. Distance range 40 to 110ft
 - 2. Horizontal field of view 17 To 47ft
- 3. Measurement accuracy on the order of 1/100th inch over full MV
 - System accuracy achieved for *small relative movements*
 - System *not intended* to deliver high accuracy for large movements that are greater than a few inches

The University of Texas at San Antonio[™]

- 1. Two high-resolution / low-noise digital cameras
 - Cameras attached to a hollow aluminum bar and protected by aluminum cases
 - ["] Cameras spaced 30 inches
 - ["] Relative positioning of cameras is key to measurements
 - *MUST NOT* bump the cameras
 - " Protectives cases do not contact the cameras
 - ["] Cables are bolted to the cases so any tugging on them would only affect the cases
 - ⁶ But there is only so much abuse they can take without cameras being moved relative to the bar
- 2. Surveying tripod

Hardware

- 3. Laptop computer and PCIe expansion box
 - PCIe expansion box with dual GigE ports to connect both cameras
 - PCIe box connects to laptop through Thunderbolt wire
 - Laptop has dual hard-drives
 - C: drive is high-speed SSD PCIe drive
 - D: drive is regular spinning drive with higher capacity
 - USE the C: drive to save images during a Live Test to avoid image queues
 - D: drive is for backup and other storage

Hardware

4. High Contrast Physical Targets (HCPT)

- Foam core aluminum targets
- Three sizes (4x4"), (7x7"), (10x10"); 40 HCT of each size are provided
- Attached to aluminum angles
- To be used in places where contrasting features are limited on bridge surface or where it is desired to have reference points when selecting targets
- NOTE: in most cases, the CIV software does not require HCPT

5. Double-sided high-strength tape

- High-strength double-sided tape is provided
- Attach double-sided tape on back and over full width of target
- Tape will stick target to most surfaces
- Wiping surface is recommended before attaching HCPT, but in many cases is not necessary
- It is important that targets be attached firmly so they do not move or fall during a test
- At the end of a test, the targets can easily be knocked off

6. Extension rod

- A telescoping extension rod is provided to help attach HCPT
- Rod maximum length 30 ft
- Can use double-sided tape to temporarily attach targets to rod

Pælå, æl^ÁÇ[ÓÅ `]] |ã\åDÁ

7. Portable power source

- " Can be a generator or battery pack
- Please make sure the power supply provides a complete sinusoidal shape and not a step function

8. Distance measuring device

- To make sure targets are within the measurement volume distance range a measuring device is needed
- ["] Tape measures or laser measuring devices can be used

Pælå, æl^ÁÇ] cáj }æþÁ

1. Optional lights

The University of Texas at San Antonio™

- Optional flood lights can be used in low light conditions (e.g., dark under bridge location)
- ["] Any lights can be used. If halogen lights are used, do not place in line of sight as air ripples from heat rising from the lights can add noise to data
- " Optional lights are not supplied with the system

Hardware Connectivity

- 1. Laptop Computer and PCIe expansion box
 - Regular laptop; only requires power supply
 - The PCIe box connects to the computer using a Thunderbolt cable
 - The PCIe box need to be plugged into the power source using its power supply
 - The cameras plug into the dual GiGE Ethernet ports on the PCIe box
- 2. Cameras

The University of Texas at San Antonio

- Each camera needs to be plugged into a power source (110V alternating current)
- Each camera draws about 6 watts of power
- Each camera connects to the PCIe expansion box through an Ethernet cable (minimum Category 5e, maximum 100ft long)
- **DO NOT** use the separate Ethernet port on the back of the computer
- Make sure Ethernet cables are not damaged, otherwise replace (if replacing, be careful not to shift the camera position)
- Always use identical (same length and type) Ethernet cables

Software

- 1. One software: already installed on the computer
- Run executable "CIV BRIDGE.exe" or shortcut on desktop
- 3. Two main modules (with sub-modules)
 - 1. Live Test
 - 2. Post-Processing
 - 1. Reprocess Existing Images
 - 2. Interpolate Existing Data
 - 3. Smooth Existing Data
 - 4. Calculate from Data
 - 5. Plot Processed Data
- 4. System is delivered pre-calibrated with calibration files

 \leq

Instruction Manuals

- 1. User Manual
 - Provides more detail for content in this presentation
 - Pdf file provided in folder on computer desktop
- 2. Calibration Validation Manual
 - Provides more detail on the Validation method described in this presentation
 - Pdf file provided in folder on computer desktop

3. DIC Principles

3. DIC Principles

 $\emptyset [\{ AQ \approx ^{\bullet} AQ \approx ^{\bullet$

- FÈ ÖÔÔÁset*[¦ão@@ •Á•^åÁş[Áð] åÁsek/sæd*^c+Áş] Á*æ&@á&æq{ ^¦æáş[æ*^ ~ V@ Áæt*^óÆi Á[&æ*^åÁşi Ás[œ4Š^-óÆs] åÄÜä @á&æt ^¦æ Áş[æ*^• @ Væt*^óÆs[}•ã; e Áşi -ÁseÁ*`àËqi æ*^Á&'[]]^åÁ'; [] Åá@ Á*]|/Áşi æ*^
- HÈ Væl*^œ/Áæl^Á[&ææl^å/ÁjÃ; Ájã¢^|Á&[[¦åðjææl•ÁjÁ,Á``^}}cãælÁjæði•Áj~ &æl{^¦æÁj æti^•Ájç^¦Áæákor•oÁÇãc@ár`àËjã¢^|Áæ&&`¦æ&îD ″Væl*^œ/á;`•oáj[oá&@æj*^Áæj]^ælæj&^Á`à•cæjcãælj^Ás`¦ðj*Áæákor•c
- IÈ Š^~~Áse)åÁÜðf@oÁ&æe{^¦æÁjã¢(^¦&&[]]&À|^3¢(^å&{Åse}^Åse}^Áse}Åse}Å&{@}}Á&[}ç^¦c^åÅ{[Á+HÖ &[[¦åãjæe^•Á•ãj*Áj¦āj&a]|^••Á[Æse]š*[ææāj]}
 - ‴V@\Á&æqáãa¦ææāį}Áj¦[&^∙•Á[&ææ^•Áo@\Á&æq{^¦æ•Ájão@Á\^•]^&oÁq[Á>æ&@Ajo@\¦
 - ″V@ǎÁ§j-{Á§rÁc@}}Á`•^åÁ[Á:ãæ)*`|æe^Ác@Á+ЮÁ[&ææā]}}Á;~Áæ⇔*^œ

Measurement Accuracy and Noise

- 1. The accuracy of the CIV system over the full measurement volume is on the order of 1/100th inch (see validation section)
- 2. Accuracy is better in the XY plane of the cameras sensors
- 3. It is not as good in the Z direction (out-of-plane; towards or away from cameras)
- 4. Accuracy is typically better closer to the cameras
- 5. Set up system such that movement is mainly in the XY plane
- 6. Noise in the measurement is relatively low in the XY plane and increases in the Z direction
- 7. Noise gets larger the farther a target is away from the cameras

3. DIC Principles

Target Quality Considerations

The University of Texas at San Antonio

1. Target quality depends on the amount of contrasting features it contains

More features = better tracking / lower noise Higher contrast (i.e., black over white) = better tracking / lower noise

- 2. CIV algorithms robust and only require minimal features to track targets
 - A single line on a plain surface suffices
- 3. Target size should be no less than 60x60 pixels
 - Recommended size 100x100 pixels
 - Larger targets do not yield improvements in readings

High Contrast Target (HCT)

UTSA. The University of Texas at San Antonio[®] 3. DIC Principles

Lighting Considerations

- 1. Target location depends on DIC perception of features in the target
- 2. Lighting variations during a test can generate fictitious movement of targets
- 3. CIV algorithms are robust with respect to light variations but best avoid them
- If *light variations* are expected (moving clouds), *HCPT are best* (black on white minimizes light shift)

3. DIC Principles

 $X \hat{a} = \hat{a} + \hat{O} = \hat{a} + \hat{O} = \hat{a} + \hat{O} = \hat{a} + \hat{O} = \hat{A}$

- 1. Vibration of cameras and bridge induce noise in data
- 2. Minimizing vibrations
 - ["] For cameras
 - " stiff tripod
 - " locate on "non-vibrating" surface when possible
 - " Avoid high wind areas
 - " For bridge
 - " test on less windy days if possible

4. Accuracy Validation

4. Accuracy Validation

The CIV system is only as accurate as its calibration

- 1. Laboratory gage-block verification/validation of calibration accuracy
- 2. In-field validation during bridge load-test

Gage-Block Validation of Calibration

- As with all measurement instruments, *drift occurs with time*
- Cameras may also be bumped accidentally
- A method is provided for users to verify accuracy at regular intervals
 - A *Calibration Validation Manual* is provided to describe the process
 - Also supplied: a gage-block measurement device and a spreadsheet that simplifies error calculations

• Should calibration accuracy come into question, please contact UTSA for re-calibration

4. Accuracy Validation / Gage Blocks

Gage-Block Validation of Calibration

- The supplied gage-block device issued to verify accuracy of displacement measurements over the full measurement volume of the system
- 2. Gage blocks with certified lengths are inserted into the device to translate a center target by their length
- Comparison between measured target translation and gage-block length provides measurement accuracy
 - A supplied spreadsheet does the accuracy calculations for validation tests conducted per *Calibration Validation Manual*

Gage-Block Validation of Calibration

- Tests performed across entire measurement volume
- Measurement distance range: 40 feet 110 feet
- Three validation test distances
 - 40 feet
 - 75 feet
 - 110 feet
- Field of view at each distance is divided into 9 quadrants
- Two translation direction
 - Y-axis : in plane of camera sensors
 - Z-axis : perpendicular to plane of camera sensors (out-of-plane)
- Total number of accuracy tests necessary : 54

4. Accuracy Validation / gage blocks

Additional Hardware Requirements for Validation Test

UISA. The University of Texas at San Antonio"

NIST certified gage blocks

Gage Block Test Device with HCPT attached

4. Accuracy Validation / gage blocks

Test setup in measurement directions

UTSA The University of Texas at San Antonio"

Gage Block Test device setup for acquiring translation data in Y-direction

Gage Block Test device setup for acquiring translation data in Z-direction

UTSA. The University of Texas at San Antonio[®] 4. Accuracy Validation / Gage Blocks

Gage Block Test Device Setup in Fields of View Middle Left Quadrant

Left Camera Image

Right Camera Image

4. Accuracy Validation / Gage Blocks

Acquiring Translation Data

- 1. Setup CIV system in desired location (preferably indoor)
- 2. Place gage-block test device in desired orientation (Y or Z axis direction)
- 3. Start a new Live Test in CIV software and follow steps described in the *Calibration Validation Manual*
- 4. Select reference axis system and Center Target for which translation data is required
 - Use 100x100 pixel target size
- 5. Track target locations before gage block is inserted and after
 - Do not move the device while inserting and removing gage blocks
- 6. Repeat for each of the 9 quadrants, two directions, and three distances to cover the measurement volume
- 7. Spot checking for a couple of distances and a single quadrant can also be done as a quick check

4. Accuracy Validation / Gage Blocks

Calculation Sheet

- Sample: Y-direction accuracy calculations at one distance
- A total of 6 sheets are needed for the full measurement volume
 - Sheets delivered with system for Factory Calibration
- Data needed to populate one table is from 9 Live Tests (one for each image quadrant)
- Similar sheets can be populated for each of the three distances and for the Y and Z directions
 - Errors on the order of 1/100th of an inch
 - Errors tend to be smaller in the center of the field of view as opposed to the edges
 - Errors tend to be smaller at shorter measurement distances

Image Quadrant	Gage	Location of	Error(inch)	Mean Absolute
	Block	Center		Error (inch)
	Length	Target in Y-		
	(inch)	axis (inch)		
Top Left	0			
	0.75			
	2.0			
Middle Left	0			
	0.75			
	2.0			
Bottom Left	0			
	0.75			
	2.0			
Top Center	0			
	0.75			
	2.0			
Middle Center	0	4.44750	0.00000	0.010896
	0.75	5.18499	-0.01251	
	2.0	6.43822	-0.00928	
Bottom Center	0			
	0.75			
	2.0			
Top Right	0			
	0.75			
	2.0			
Middle Right	0			
	0.75			
	2.0			
Bottom Right	0			
	0.75			
	2.0			
Overall Mean				
Absolute Error				
Standard Deviation				
Co-efficient of				
Variance(C.O.V)				

Bridge Load-Test Validation

Farm Rd 1047, Lometa, TX Latitude: 31°18'50.31"N Longitude: 98°18'24.66"W

The University of Texas at San Antonio[™]

- Three continuous spans 60' - 75' - 60'
- ➢ Height ~26'
- Creek crossing
- Load test organized by A&M as part of another TxDOT Project
- Monitored using traditional instrumentation

Steel Continuous Multi-Girder Bridge

Bridge Load-Test Validation

Setup only takes about 2 hours

UISA. The University of Texas at San Antonio"

Including placement of optional HCPT

System about 100ft from bridge

Bridge Load-Test Validation

Fixed Truck - Path 1

UTSA The University of Texas at San Antonio

Deflections (in.)

Girders	G1	G2	G3	G4
A&M	0.049	0.280	0.526	0.755
UTSA	0.051	0.346	0.561	0.697
Difference	-0.002	-0.066	-0.035	0.058

- Noise increases with distance (G1 farthest)
- Noise increases with decreasing target size (G1 target smaller in pixels)

 \leq

Bridge Load-Test Validation

Fixed Truck - Path 2

Deflections (in.)

The University of Texas at San Antonio™

Girders	G1	G2	G3	G4
A&M	0.692	0.556	0.298	0.077
UTSA	0.739	0.551	0.287	0.067
Difference	-0.047	0.005	0.011	0.010

- Noise increases with distance (G1 farthest)
- Noise increases with decreasing target size (G1 target smaller in pixels)

Bridge Load-Test Validation

Moving Truck - Path 1

UTSA. The University of Texas at San Antonio[™]

4. Accuracy Validation

Disclaimer

- We have made every effort to provide accurate measures of target movement
- · As with all measurement instruments, drift may occurs with time
- Cameras may be bumped accidentally
- Should calibration accuracy come into question, please contact UTSA for re-calibration
- UTSA does not assume any responsibility for the accuracy of measurements

5. Live Test

5. Live Test

1. Main Menu

CIV-BRIDGE.vi	– 0 ×
	Image Plot 1 Plot 2 Plot 3 Plot 4 Plot 5
Live Test Post-Processing	A Left image
	Right image

- Each Live Test and Post-Processing module will guide the user through a series of screens
- At any point the program can be exited by clicking the X in the top right corner.
 CAUTION: this will terminate the program and any data not saved until that point will be lost.

UTSA. The University of Texas at San Antonio"

5. Live Test

2.Camera Detection

- Click on the Search for Cameras button to start the camera detection process
- Next screen is disabled unless the cameras are detected

UTSA. The University of Texas at San Antonio"

5. Live Test

3.Camera Detection

- When the cameras are detected, the two circular markers will turn on. If not, the markers will remain dark green.
- Next Screen is activated for user to proceed to next steps

4.Folder Selection

All provided information will be reproduced at the beginning of the output files.

A folder with the project name specified by the user will be created under the parent folder.

All the output files will be saved in the project folder.

5.Camera setup

The region of interest (ROI) changes the size of the images being acquired to only the region of interest.

UISA The University of Texas at San Antonio"

5. Live Test

5.Camera setup

- When the cameras are on, the user cannot make any changes on the front panel.
- If changes need to be made, turn OFF cameras, make changes and then turn ON cameras.

6.Load Calibration

- Loading Calibration file is essential. User cannot Move to Next screen unless the Calibration is loaded
- Provide the location of the provided calibration files.
- C:\CIV Bridge\2020-12_TxDOT Factory Calibration

 \leq

UTSA. The University of Texas at San Antonio[™]

5. Live Test

6.Load Calibration

7.Target Selection

It is highly advisable to select a few targets for every test and plot their movement live to monitor progress and make sure everything is working well.

•

- Target consist of sub-images taken from the main images.
- The DIC algorithms track the sub-image location in successive images.

7. Target Selection

- The Match Score number indicates how well a target is located by the DIC algorithms.
- Targets with more contrasting features have higher Match Scores.
- The Match Scores range from 700 to 1000, where 700 equals the minimum match required for target to be found and 1000 equals a perfect match.
- Try to select targets with a Match Score of at least 900.
- The lower the Match Score, the more likely the target will be lost during a test.

7. Target Selection

7. Target Selection

- From the selected targets, a user-defined reference axis can be assigned.
- The software will provide 3D spatial coordinates of targets both relative to the Left camera and relative to the User Coordinate Axis.

8. Reference Images

- Reference Images provide the baseline for all other measurements.
- Target X,Y,Z coordinates determined from the reference images will be averaged and those averaged locations will be used to represent the initial state.
- At least 30 Reference Images are recommended.
- Next Screen is not Enabled unless Reference Images are captured.

9.Plotting

- This screen is optional and can be used to setup plots of data quantitates that can be viewed live during a test
- A maximum of 5 plots can be viewed live during a test

9.Plotting

The User can select *Frame Number, Time, Strain and Displacement* for all the targets selected to plot

All plots types are XY line plots

Multiple lines can be plotted on the same plot

9.Plotting

10.Run Test

- Before the test is started the cameras are off. This feature is provided since a long wait period may be needed before a test can be started.
- This keeps the cameras cool until the test.

UTSA The University of Texas at San Antonio[™]

5. Live Test

10.Run Test

UTSA The University of Texas at San Antonio"

5. Live Test

RUNING A LIVE TEST

10. Run Test

Output Folder and File Structure

Reprocess Existing Images Interpolate Existing Data Smooth Existing Data Calculate from Data Plot Processed Data

1.Main Menu

The goal of having post processing data modules is to allow user to process test images or data

- Extract additional data
- Selected different targets
- Select different coordinate axes
- etc....

2. Post-Processing options

- Reprocess Existing Images
- Interpolate Existing Data

- Smooth Existing Data
- Calculate from Data
- Plot Processed Data

3. Folder Selection

3. Folder Selection

Project Folder

^	Name		^		Date mod	Date modified		Туре		Size	
	Reference Images			8/10/2020 5:38 PM		File folder					
	Test Images				8/10/2020 4:59 PM		File folder				
	Project_info.dat				8/3/2020 11:07 AM		DAT File			1 KB	
	Left.728.bmp	Left.728.dat	Left.729.bmp	Left.729.dat	Left.730.bmp	Left.730.dat	Left.731.bmp	Left.731.dat			
	Left.732.bmp	Left.732.dat	Left.733.bmp	Left.733.dat	Left.734.bmp	Left.734.dat	Left.735.bmp	Left.735.dat		F	
	Left.736.bmp	Left.736.dat	Left.737.bmp	Left.737.dat	Left.738.bmp	Left.738.dat	Left.739.bmp	Left.739.dat		F	
	Left 740 hmc	Left 740 dat									

- The Project folder is the main folder provided in the Live Test.
- This folder at a minimum *MUST* contain Reference Images and Test Images. Reference Images including Left and Right camera folders contain the pairs of images saved in Live Test

 \leq

• DO NOT change folder or filenames

For each .bmp image file, a data file .dat is provided with the exact time of acquisition.

3. Folder Selection

Test Images and Reference Images with the project Information including Project Name, GPS, Date and Time, Aperture and Focus Distance of lenses are loaded.

4.Load Calibration

- Loading Calibration file is essential. User cannot Move to Next screen unless the Calibration is loaded
- Provide the location of the provided calibration files.
 - C:\CIV Bridge\2020-12_TxDOT Factory Calibration

5.Target Selection

Same process as Target Selection in the Live Test

6<u>6</u>

UTSA. The University of Texas at San Antonio[™]

6. Post-Processing: Reprocess Existing Images

6. Simulate Test

- The user needs to select the Image Range for the images to be reprocessed and then click on Process Images
- Output data files for the newly selected targets and image range will be produced within the Data Analysis folder

Reprocess Existing Images Interpolate Existing Data Smooth Existing Data Calculate from Data Plot Processed Data

6. Post-Processing: Interpolate

2.Post-Processing options

- Reprocess Existing Images
- Interpolate Existing Data

- Smooth Existing Data
- Calculate from Data
- Plot Processed Data

6. Post-Processing: Interpolate

3.Interpolate Existing Data

- The CIV program might lose targets intermittently.
- The interpolation function uses linear interpolation to fill in target location data for frames where a target is lost, basing itself on the target locations bounding the frames in which the target was lost.
- The user can indicate the maximum acceptable number of frames over which interpolation will be performed. If a target is lost for more sequential frames then the interpolation will not fill in the missing data.

6. Post-Processing: Interpolate

Interpolation function output

Original File

Interpolated File

Reprocess Existing Images Interpolate Existing Data **Smooth Existing Data** Calculate from Data Plot Processed Data

6. Post-Processing: Smooth

2. Post-Processing options

Reprocess Existing Images

500

- Interpolate Existing Data
- Smooth Existing Data
- Calculate from Data
- Plot Processed Data

6. Post-Processing: Smooth

Smoothing Existing Data

74

6. Post-Processing: Smooth

Smoothing Function Output

UISA The University of Texas at San Antonio[™]

It is recommended to run the interpolation function before running the smoothing function.

Original File

Smoothed File

6. Post-Processing

Reprocess Existing Images Interpolate Existing Data Smooth Existing Data **Calculate from Data** Plot Processed Data

2.Post-Processing options

- Reprocess Existing Images
- Interpolate Existing Data
- Smooth Existing Data
- Calculate from Data
- Plot Processed Data

Calculate from Data

Calculate from Data

Calculate from Data

Project Name	Bun-1					
Data Analusis Folder Name		1				
Analusis Date	10/7/2020	1				
ranaysis bare	101112020					
Project lefe						
Cea	29 1920	-99 1979				
Anne	23.103	-33.1313				
Aperture		10.1.0.1				
Lens Focus Distance	Infinity	10-infinity				
Exposure time	15000	J				
Frame Hate		8				
Coordinate system target numbers						
Origin Target	()				
X axis Target		1				
V avis Target		· · · · · · · · · · · · · · · · · · ·				
, and rager						
Calibration Info						
Calibration Name	Calibration50mmLensesForCulvertTest	Calibration Date	10/7/2020			
Calibration Unit	Inch					
Calibration Distance Range	35feet	45feet				
Calibration Apeture	8	3				
Lenses Focus Distance(m)	Left Came infinity	Right Cam 10-infinity				
Calibration exposure time(microsecond)	15000	1				
Frame #	Time	Absolute Distance between Taxante/V/Taxant0-Taxan	Abash to Bistopeo baluan Tarasta/VITarast2-Taras	Palatius Mayor ant between Targets MITarget 6-Target 7	Straine/W7/Target9-Target9	Strain WIT avant 12-Taxant 12
i rane *	E02 09/21/2020 AM 10.42.19 940	-E 79046	-20 1E007	nerative movement between nargets in nargeto narget	Strainsix r 2 raigeto-raigeto	-1 E4E022
	503 001312020 AM 10:43:10:340	-0.10040 E 704E0	-33, 13001	10.555055		1 5450022
	504 00131/2020 AM 10:43:13:200	-0.10400	-33, 13333	10.500103		1 540100
	505 00/3 I/2020 AM 10:43: 13.005	-5. (3233	-33, 15003	10.561203		-1.546120
	506 08/31/2020 AM 10:43:19.965	-5.73358	-33.14367	10.558103		-1.546025
	507 08/31/2020 AM 10:43:20.268	-5.79812	-39.14984	10.557003		-1.546069
	508 08/31/2020 AM 10:43:20.620	-5.794	-39.15037	10.558833		-1.545974
	509 08/31/2020 AM 10:43:20.974	-5.79192	-39.15711	10.558933		-1.546019
	510 08/31/2020 AM 10:43:21.304	-5.79439	-39.14908	10.558863		-1.545967
	511 08/31/2020 AM 10:43:21.608	-5.79925	-39.1604	10.559053		-1.546033
	512 08/31/2020 AM 10:43:21.935	-5.79757	-39.14785	10.557963		-1.54598
	513 08/31/2020 AM 10:43:22.267	-5.79858	-39.15702	10.560073		-1.546039
	514 08/31/2020 AM 10:43:22.609	-5.79423	-39.15555	10.558493		-1.546049
	515 08/31/2020 AM 10:43:22.941	-5.79763	-39.15527	10.563383		-1545981
	516 08/31/2020 AM 10:43:23 275	-5.79742	-33 15669	10.560853		-1545936
	517 08/31/2020 AM 10:43:23 601	-5 79385	-39 1529	10 558003		-154593
	518 08/31/2020 AM 10:43:23 935	-5 78953	-39 15165	10.558693		-1546348
	519 08/31/2020 AM 10:43:24 269	-5.10333	-33.13103	10.550055		-1546340
	E20 09/31/2020 AM 10:43:24:203	-5.13430	-33.15040	10.501503		-1.040000
	520 001312020 AM 10:43:24:042	-5. (3002	-33, 15230	10.500153		-1545332
	521 00131/2020 AM 10:43:24:350	-5.73422	-33.15036	10.553163		-1.545362
	522 U073 I/2020 AM 10:43:25.261	-5.73335	-33.1531	10.561313		-1.545535
	523 U073 I/2U2U AMI 10:43:25.601	-5.79536	-39.15714	10.559053		-1.546048
	524 U8/31/2020 AM 10:43:25.935	-5.79603	-39.15111	10.558543		-1.545925
	525 U8/31/2020 AM 10:43:26.268	-5.79485	-39.15203	10.559013		-1.545975
	E26 09/21/2020 AM 10, 42, 26 601	-5 79619	-39.15276	10.559823		-1.545983
	520 U0r3 I/2020 AM 10:43:20.001	-0.10010				1540047
	526 06/31/2020 AM 10:43:26.001	-5.79877	-39.15285	10.560713		-1.546047
	528 08/31/2020 AM 10:43:26.001 527 08/31/2020 AM 10:43:26.936 528 08/31/2020 AM 10:43:27.268	-5.79877 -5.79334	-39.15285 -39.15388	10.560713 10.560173		-1.545047
	526 06/31/2020 AM 10:43:26:50 527 08/31/2020 AM 10:43:26:536 528 08/31/2020 AM 10:43:27:668 529 08/31/2020 AM 10:43:27:603	-5.79877 -5.79334 -5.79716	-39.15285 -39.15388 -39.14708	10.560713 10.560173 10.560793		-1.545981 -1.545985
	520 06/31/2020 AM 10:43:26, 936 529 06/31/2020 AM 10:43:27, 938 529 06/31/2020 AM 10:43:27, 938 530 06/31/2020 AM 10:43:27, 939	-5.73877 -5.7334 -5.7334 -5.7872	-39.15285 -39.15388 -39.14708 -39.1555	10,560713 10,560173 10,560733 10,560153		-1.545047 -1.545981 -1.545956 -1.545955
	520 00/31/2020 AM 10:43:28 601 527 00/31/2020 AM 10:43:27 268 528 08/31/2020 AM 10:43:27 268 529 08/31/2020 AM 10:43:27 603 530 08/31/2020 AM 10:43:28 289 531 08/31/2020 AM 10:43:28 289	-5.78872 -5.7876 -5.7876 -5.78872 -5.78872	-33,15285 -33,15388 -33,14708 -33,14708 -33,15528 -33,15528	10,560713 10,56073 10,56073 10,56073 10,56073 10,56123		-1.54598 -1.545981 -1.545956 -1.545975 -1.54598
	260 003 8/2020 API 04-3:26 300 527 08/3/2020 API 04-3:27 268 528 08/3/2020 API 04-3:27 268 530 08/3/2020 API 04-3:27 633 530 08/3/2020 API 04-3:27 333 531 08/3/2020 API 04-3:28 269	-5.73977 -5.73374 -5.73716 -5.73716 -5.78872 -5.78872 -5.73872 -5.73872	-33 15265 -33 15368 -33 14708 -33 14708 -33 15526 -33 15528 -33 15528 -33 15037	10.560713 10.560173 10.560173 10.560173 10.560153 10.561283 10.551283		-1.545981 -1.545981 -1.545956 -1.545975 -1.545975 -1.545936

Wassim Ghannoum: <u>wassim.ghannoum@utsa.edu</u> <u>Co-PI</u>: Manuel Diaz

Students: Suman Banjade, Biswash Chapagain, Graham Hogsett, Shima Rajae

