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ABSTRACT 

Almost every constructed road develops distresses randomly in different subsections of the 
pavement.  One reason for the random development of distress is the variability in construction 
quality.  As such the goal in this project is to devise a tool that can be used to identify and 
minimize variability in material properties that impact the performance of the pavement to 
ensure a performance period compatible with the expected life of the pavement.  With that 
framework, structural models that predict performance of pavements and material models that 
relate construction parameters to primary design parameters were identified.  Finally, a statistical 
algorithm that relates the impact of each construction parameter to the performance of a 
pavement is incorporated into the algorithm.   
 
The implementation of an effective performance-based construction quality management 
requires a tool for determining impacts of construction quality on the life-cycle performance of 
pavements.  This report present the final efforts in the development of a statistical-based 
algorithm that reconciles the results from several pavement performance models used in the state 
of practice with systematic process control techniques. Guidelines for the short- and long-term 
implementation of this methodology are included in this report. 
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EXECUTIVE SUMMARY 
 
 
 
The ability of a flexible or rigid pavement to perform adequately throughout its design life is one 
of the biggest challenges that transportation agencies face.  One factor that has a large impact on 
the performance of a pavement is the quality of construction.  The implementation of an effective 
performance-based construction quality management program is one way of ensuring that 
pavements are meeting their expected service life.  As a part of that program a tool for 
determining impact of construction quality on life-cycle performance of pavements is required. 
 
Ideally, if a pavement section is designed with the same cross section and constructed with the 
same materials, its performance should be uniform throughout the section.  This is not the case in 
the real world.  Almost every constructed road develops distresses randomly in different 
subsections of the pavement.  One reason for the random development of distress is the 
variability in construction quality.  As such the goal in this project is to devise a tool that can be 
used to identify and minimize variability in material properties that impact the performance of 
the pavement to ensure a performance period compatible with the expected life of the pavement.  
With that framework, structural models that predict performance of pavements and material 
models that relate construction parameters to primary design parameters were identified.  Finally, 
a statistical algorithm that relates the impact of each construction parameter to the performance 
of a pavement is incorporated into the algorithm.  Guidelines for the short- and long-term 
implementation of this methodology are included in this report. 
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IMPLEMENTATION STATEMENT 
 
 
 
At this stage of the project the tools developed can be used for limited implementation.  The 
software has undergone major changes to increase its flexibility and expand its ability to identify 
and minimize variability in material properties that impact the performance of the pavement to 
ensure a performance period compatible with the expected life of the pavement.  The software is 
called Rational Estimation of Construction Impact on Pavement Performance (RECIPPE).  It can 
be used to reconcile the results from existing pavement-performance models with statistical 
process control techniques and uncertainty analysis methods, to determine project-specific 
parameters that should be used in construction quality management.  Several options for the 
implementation of the software are provided. 
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CHAPTER ONE - INTRODUCTION 

The quality of construction is a very important factor in the life-cycle performance of flexible 
pavements.  This is particularly true of the individual characteristics of construction and their 
relative effect on life-cycle performance of the pavement.  It is crucial to determine both what 
these characteristics are and, to what degree their variability from the desired value affects the 
life-cycle performance of pavements.  Knowing this will enable the transportation agencies to 
apply its ever increasingly limited resources (inspection forces) in the most effective manner.  
Therefore, the goal of this research was to identify construction parameters that have the greatest 
effect on the life-cycle performance of the pavement.  In the long term, the results of this 
research should enable TxDOT to write more effective performance-based specifications for 
construction of pavements and determine the cost effectiveness of innovations in construction 
practices.  This research was carried out in three phases. 
 
The first phase consisted of determining the characteristics of construction, which have a 
significant effect on the life-cycle performance of pavements, and whether these characteristics 
are observable and measurable.   
 
The second phase consisted of the prediction of how the variability of these characteristics of 
construction affects the life-cycle performance of pavements by using mechanistic analysis.  The 
mechanistic analysis should enable the engineers to predict the life-cycle performance of the 
pavement as the characteristics are varied. 
 
The third phase consisted of field measurements to verify the predictions of the second phase.  A 
list of characteristics of construction and the methodology to measure and analyze these 
characteristics available to TxDOT were developed. 
 
The first two years of this project, which are documented in Research Report 0-4046-1 (Abdallah 
et al., 2004a) were focused on addressing the following items: 
 

a) Information search on existing mechanistic models and ways that they can be used in 
developing an algorithm to relate the impact of construction parameters to performance 
was carried out.  After a national search, several material models were identified, and 
feasible models were selected.  Several popular and well-established performance-based 
models were also selected.   
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b) A probabilistic analysis tool was developed.  The probabilistic approach differs from a 
deterministic approach by explicitly accounting for the variability of a parameter.  A 
random parameter can take a range of values and can be represented by different types of 
probability distributions.  The Monte Carlo simulation method, a common probabilistic 
method for simulating and accounting for the variability of a parameter, was used.  Since 
many parameters are used in the analysis, the two-point mass method (TPM, 
Rosenblueth, 1981) was combined with the Monte Carlo method to accelerate the 
process.  The TPM method can be used to approximate mean and standard deviation of 
random variables.  The detail of both methods is provided in Chapter 2 of Report 0-4046-
1 (Abdallah et al., 2004a). 

 
c) Once the models were selected and the flow of probabilistic algorithm was defined, a 

prototype algorithm was developed.  Figure 1.1 shows the general flow of information 
used in the mechanistic algorithm with the probabilistic methods.  The detail and a case 
study of how to use the program were also provided in (Abdallah et al., 2004a). 

 

Figure 1.1 - Flowchart Depicting the Process of Utilizing A Probabilistic Approach in a 
Mechanistic Analysis 

 
d) The mechanistic models selected provide a number of parameters that are used as a 

measure of construction practices.  To optimize the process, a sensitivity analysis was 
conducted to primarily identify the relative importance of construction parameters on 
performance indicators.  The results of this study, as presented in Abdallah et al. (2004a), 
provided an indication of important parameters for pavements with different traffic 
levels. 
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e) Based on results of the sensitivity study, a search to document methods on measuring 
important parameters was carried out.  The document was embedded into software 
package RECIPPE.  In that manner, the users can easily access the different ways to 
measure any given parameter.  Another advantage of including the document into the 
program is that when new parameters are added, the document can be easily amended or 
updated.  This document is included in Appendix A of Research Report 0-4046-2 
(Abdallah et al, 2004b). 

 
The third year of the research effort under this project focused on developing a document for 
validation using few of construction parameters and demonstrating the validation process using 
selected parameters.  The details of these tasks were documented in Research Report 0-4046-2 
(Abdallah et al, 2004b).  The efforts are summarized below: 
 

a) A validation of the algorithm to quantify the impact of construction parameters on 
performance is the initial step before being able to utilize RECIPPE with confidence.  
Three types of models make up the mechanistic algorithm developed: a) the material 
models, b) the structural models and c) the performance models.  The material models 
were calibrated with information from existing databases and from field data collected at 
several sites in Texas.  The structural and performance models incorporated into the 
algorithm are well-established.  The structural model is based on a nonlinear model using 
equivalent linear algorithm.  The equivalent linear model was developed under TXDOT 
Project 0-1780 (Ke et al., 2000, and Abdallah et al., 2003).  The calibration and 
validation of these models are outside the scope of this project. Research Report 4046-2 
(Abdallah et al, 2004b) provides the validation strategy to calibrate and validate the 
material models that are being incorporated into RECIPPE.  The efforts in extracting data 
from the Long-Term Pavement Performance (LTPP) database for the asphalt-concrete 
(AC) layer material model were discussed.  The protocol for targeting sites and collecting 
data for base and subgrade material models were presented.  The calibration of the AC 
material model using data extracted from LTPP database for Texas sites was also 
presented in that report. 

 
b) The probabilistic process to obtain the variability of performance based on the 

uncertainty in construction parameters using mechanistic analysis was also validated.  
Two techniques were used in the probabilistic process.  The advantages and 
disadvantages of each technique and a comparison of their effect on producing the Impact 
Chart (a chart used to identify significant parameters) were documented in that report. 

 
c) The calibration of the AC material model using data collected from Texas sites was 

performed in three different ways.  The first method was based on least squares single 
variable calibration.  The second equation was based on modifying the existing 
coefficients of the current Witczak equation.  The final approach was to develop a new 
model using similar parameters used by the Witczak equation.  Summary of the results 
are presented in Research Report 0-4046-2 (Abdallah et al, 2004b). 

 
d) A case study showing a limited implementation of the validation process was also 

presented in Research Report 0-4046-2 (Abdallah et al, 2004b).  The validation process is 
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presented by demonstrating the impact variability of one construction variable on the 
variability of performance. 

 
The fourth year of the research effort under this project focused on adjustments to be made to the 
prototype of RECIPPE to provide optimal results.  This includes: 

a) enhancing the reliability analysis process,  
b)  automating the optimization algorithm, 
c) incorporating a sampling frequency algorithm (including control charts), 
d) incorporating a cost allocation algorithm and 
e) incorporating a cost allocation equation. 

 
These efforts also included replacing the programming platform from MS Excel to Borland C++. 
 
In the fourth year of the project, new material models were developed and the existing models 
were calibrated.  Data from sites collected throughout the research efforts of this project and 
from databases of previous research such as 0-1336 were used to calibrate existing models or to 
develop new base and subgrade material models.  The outcomes of the fourth year efforts of this 
project were documented in Research Report 0-4046-3 (Haggerty et al., 2005). 
 
The remaining Tasks of this project are addressed in this report. 
 
 
ORGRANIZATION OF REPORT 
 
 
Chapter 2 provides background on the methodology that illustrates the use of construction 
parameter variability to estimate variability on pavement performance.  Also included in Chapter 
2 is the description of the methodology used in RECIPPE in pre-construction mode to identify 
significant impacting parameters on variability of pavement performance, and in post-
construction mode, which provides inspectors with tool for quality control.   
 
Chapter 3 focuses on presenting the models for pavement performance and focusing on the 
material models that were identified in the literature and that are incorporated into the software.  
The validation of material models developed and calibrated under this project is also presented.  
The last part of the chapter discusses the flexibility of RECIPPE to incorporate both new 
performance and material models. 
 
Chapter 4 covers the strategy to utilize RECIPPE for quality management.  Several scenarios are 
presented that illustrate the input level for RECIPPE and recommendation of which level in most 
suitable for analysis. 
 
Finally, Chapter 5 contains the summary, conclusion and future recommendations for this 
project. 
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CHAPTER TWO - BACKGRAOUND 

METHODOLOGY 
 
 
The methodology developed under this project provides a link between construction and 
performance.  Figure 2.1a provides a conceptual representation of the methodology starting from 
the center, or inner circle and moving to the outer circle.  The three circles presented in the figure 
represent the main features in the methodology.  The process starts from construction 
parameters, which is represented by the inner circle.  These parameters are used to estimate the 
layer moduli via material models for the different layers of a pavement system.  The material 
characteristic models, represented by the middle circle, are the links between the construction 
and pavement performance. Pavement performance is represented by the outer circle, which is 
based on the layer moduli and other pavement properties so that the pavement system 
performance can be determined. 
 
In Figure 2.1b the process is further clarified.  The core of this methodology is based on 
mechanistic analysis.  The structural model is based on a nonlinear model using equivalent-linear 
algorithm.  The equivalent-linear model was developed under TXDOT Project 0-1780 (Ke et al. 
2000, and Abdallah et al., 2003).  The structural model, designated as (1) in Figure 2.1b serves as 
the engine that performs all numerical calculations such as determining the nonlinear layer 
moduli and appropriate stresses and strains in the pavement analysis process.  The next process 
illustrates the link of the inner circle and the middle circle (2).  Construction parameters are used 
in material models to determine the moduli of the layers.  For example, the modulus of ACP is 
estimated using a model that incorporates as input construction parameters such as air voids, 
asphalt content, asphalt viscosity, etc.  The last step illustrated in the process shows the link 
between the middle circle, material models, and the outer circle, performance models (3).  This 
step depicts the process of estimating the critical strains based on the layer properties (thickness, 
modulus, etc…) to determine performance of the pavement using the structural model.  The 
process described thus far allows the estimation of pavement performance based on construction 
parameters.  As such, this analysis only represents a deterministic analysis.  The uncertainties 
that are associated with the input parameters are not accounted for.  However, engineering 
measurement associated with a construction parameter demonstrates a certain variation.  
Therefore, a probabilistic approach is a more rational approach and was incorporated into the 
process. 
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Figure 2.1 - Conceptual Framework of Methodology and Process for Determining Pavement 
Performance from Construction Parameters 

 
Probabilistic Approach and Generation of Impact Chart 
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each construction parameter on the remaining life.  The probabilistic analysis employed in this 
project is based on two methods: 1) Monte Carlo Simulation and 2) Two Point Mass (TPM) 
Simulation. 

Example: Asphalt content,
compaction,
dry density,

moisture content,
Aagg. passing #200

Example: Witczak or 
Hirsch model for moduli 

of asphalt layer and 
constitutive model for 

base and subgrade

Construction & 
Process Control 

Parameters

Nd =f4 / ( εc)f5

Nf =f1 / (εt)f2 / (EAC)f3

Example: Rutting, 
Fatigue Cracking

(2) Regression equations relate 
construction parameters to estimate 

layer moduli

(3) Critical structural responses 
such as critical strains are used to 

estimate remaining life

(1) Equivalent linear 
analysis is used as the 
structural model to 

analyze the pavement 
system

Base 

Subgrade

AC 

Example: Asphalt content,
compaction,
dry density,

moisture content,
Aagg. passing #200

Example: Witczak or 
Hirsch model for moduli 

of asphalt layer and 
constitutive model for 

base and subgrade

Construction & 
Process Control 

Parameters

Nd =f4 / ( εc)f5

Nf =f1 / (εt)f2 / (EAC)f3

Example: Rutting, 
Fatigue Cracking

(2) Regression equations relate 
construction parameters to estimate 

layer moduli

(3) Critical structural responses 
such as critical strains are used to 

estimate remaining life

(1) Equivalent linear 
analysis is used as the 
structural model to 

analyze the pavement 
system

Base 

Subgrade

AC 

Fatigue Cracking
& Rutting

Layer Moduli

compaction,
moisture content

& dry density

Fatigue Cracking
& Rutting

Layer Moduli

compaction,
moisture content

& dry density

a) Conceptual framework of 
Methodology

b) Process



 

 7

Monte Carlo simulations technique randomly generates values to represent variables with 
uncertainty.  For this case, the construction parameters are randomly created multiple times to 
simulate a continuous model.  Similarly, the TPM simulation is used to approximate low-order 
moments of functions (e.g., mean and coefficient of variation, COV) for construction parameters 
(Rosenblueth, 1981).  This is achieved by replacing continuously randomly-generated values 
with two discrete values. 
 
The major difference between the Monte Carlo and TPM simulations is the number of iterations 
it takes to complete a simulation.  With a Monte Carlo simulation, 500 simulations are 
considered adequate enough to model a normal distribution in this study (Abdallah et al., 2004a), 
while the number of iterations for TPM varies with the number of random variables represented 
by: 
 

VariablesRandomofNumber2IterationsTPM =  (2.1) 
 
For the algorithm developed in this research, two types of statistical analyzes are performed: 1) 
varying values for a single construction parameter and 2) varying all parameters at once.  Figure 
2.2 illustrates the concept of the simulation process.  Any input parameter is described with a 
normal distribution represented by a mean and a coefficient of variation (COV).  As illustrated in 
part one of Figure 2.2, each parameter is simulated individually and is processed through the 
system to determine its impact on the variation of pavement performance.  This process is 
repeated for each parameter, and as such, for each construction parameter, the impact of that 
parameter can be determined.   
 
The impact of each parameter does not account for the joint effect of all parameters impacting 
performance.  Therefore, processing of all input parameters simultaneously through the system is 
required (the second part illustrated in Figure 2.2).  The program developed in this project uses 
Monte Carlo simulation and TPM simulations in unison.  The TPM simulations can be used to 
calculate the variance of the remaining life when one parameter is varied, and the Monte Carlo 
simulations can be used when all of the construction parameters are varied together.   
 
The last part of the figure depicts the use of the impact values to develop the impact chart.  To 
prioritize the significance of different construction parameters relative to one another, the 
approach described next is followed.  When the simulation is carried out for a single construction 
parameter, it is possible to create pie charts showing how each parameter impacts the variability 
of a performance model with respect to the other construction parameters.  The values that are 
entered into the pie charts are called normalized impact values, shown in Equation 2.2: 
 

∑
=

= n

i 1
i

i
i

COV

COV
NIV  (2.2) 

 
where NIV is the normalized impact value for construction parameter i and the COVi is the 
coefficient of variation of the pavement performance model for construction parameter i.  By 
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Figure 2.2 - Probabilistic Analysis Process used in Developing the Impact Chart 
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Pre-Construction Process - Optimization Process to Identify Significant Parameters  
 
The process presented thus far illustrates the procedure to determine the impact of construction 
variability on the variability of performance using the impact chart.  The next step is to 
demonstrate the optimization process in the program.   
 
Figure 2.3 illustrates the use of the impact chart to identify significant parameters through an 
optimization process.  Initially, input information, as shown in Figure 2.3, is based on the mean 
and variance of each construction constituent found either in historical data or required 
specifications.  These constituents are then simulated in the statistics-based algorithm by varying 
the inputs according to a normal distribution and using the simulated values in material models 
to estimate layer moduli.  The results from the material models are then used to estimate 
pavement performance.  The output is the pavement performance based on the input values and 
the performance variance based on the variability of the input.  If the simulated pavement life 
meets the design specifications, the algorithm terminates and significant impact values are 
identified from the impact chart, and provided to those involved in the construction and 
inspection.  If the variability in the performance is larger than specified, the COV values for 
parameters that are identified as significant are reduced, and the analysis is repeated.  This 
process continues until the pavement performance specifications are met.  The program provides 
means to adjust the number of significant parameters that are reduced, the increment of reduced 
variability after each iteration, and constraint of the minimum value of variability. The process is 
the pre-construction phase of this program.  The next phase is post-construction. 
 
 
 

 
 

Figure 2.3 - General Flow of Optimization Process 
 

Enter in mean and coefficient of variation 
(COV) values for all relevant parameters 

Run statistics-based algorithm 

Analyze pavement performance model results and variabilities 

Are the results 
acceptable?

Analyze the impact 
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Adjust mean 
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impactful 

parameters 

END
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Post-Construction Process - Quality Control Process 
 
In pre-construction, the optimization process identifies the significant parameters for inspectors 
to focus on.  Along with identifying significant parameters, the number of necessary samples for 
each parameter is determined based on the optimization process.  
 
Number of Samples and Sampling Frequencies 
 
The process of developing the number of samples based on the COV of each parameter is 
thoroughly documented in Research Report 0-4046-3 (Haggerty et al., 2005).  Equation 2.3 
represents the sample size equation used in the program. 
 

( ) 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×+
=

e
COVZZ

n βα  (2.3) 

 
where n is the sample size, e represents the tolerable error or tolerance, COV represents the 
coefficient of variation for an individual construction parameter, Zα defines the normalized 
standard deviation value based upon the level of significant (α), and Zβ defines the normalized 
standard deviation value based upon the level of significant (β) found as the standard deviation 
divided by the mean. 
 
For the purpose of this report, α and β are related to confidence level of the seller (contractor) 
and buyer (TxDOT), respectively.  Zhang et al. (2001) presents definitions of those parameters 
as follows:  
 

 Seller’s Risk (α): The risk of rejecting “good” material. In highway construction this 
is associated with the risk of a contractor having good material rejected by the owner. 

 Buyer’s Risk (β): The risk of accepting “bad” material at reduced or full payment. In 
highway construction, this risk is associated with the owner’s risk of accepting what 
is actually bad material. 

 
The α-risk affects the contractor because it is probable that the agency may reject, what is in fact, 
acceptable work. The β-risk affects the agency because it is probable that the agency may accept, 
what is in fact, unacceptable work. The true meaning of risk is how much one is willing to lose 
in terms of dollars if an action is taken.  
 
After determining the sample size, the testing frequencies can be determined.  Zhang et al. 
(2001) shows example of two ways of determining testing frequency: 
 

a) Time-based testing frequency: TF = daily production / sample size  
b) Quantity-based testing frequency: TF = batch quantity / sample size 

 
Once the testing frequency is determined, control charts can be used to provide quality control by 
the inspector. 
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Control Charts 
 
Control chart is one way of conducting inspection.  Control charts help identify instability and 
unusual circumstances in production processes.  This implies that, based upon allowable 
variances, inspectors can randomly sample road specimens and determine whether or not the 
pavement, statistically, will be stable over time (in-control or out-of-control, respectively).   
 
To assist in monitoring the important parameters during construction, the program provides 
control charts (CC) for the mean and COV of a specified parameter.  The CC based on the mean 
has three limits: a) the center line (CL) defined by the mean and b) upper and lower control 
limits (UCL, LCL) defined by one deviation from the mean.  The CC for the COV shows the 
trend of the QC variability with respect to the allowable COV value specified in preconstruction.  
Research Report 0-4046-3 (Haggerty et al., 2005) depicts the development, rules and examples 
of using control charts. 
 
Cost Analysis 
 
With the information that has been described, thus far, a quantitative value can be provided for 
inspection costs, which will be discussed in this section.  Production expenditures, due to 
rehabilitation and maintenance, are intuitively calculated in a qualitative manner, because the 
basic concept of the program is to minimize variability thereby increasing the longevity of 
pavement.   
 
The program estimates the minimum number of tests to be run for inspecting a single parameter.  
Hence, for each test run there is a corresponding cost, which can be related as a unit price (i.e. 
$10.00/Nuclear Density Gauge).  If the unit price is known for each test to be run, then the total 
inspection costs can be found using a simple mathematical operation: 

∑
=

=
m

i
iiinspection nCTotalCost

1

 (2.4) 

where Ci is the unit price for parameter i and ni is the sample size for parameter i.  Typical costs 
for some parameters of ACP, base and subgrade layers in Texas are shown in Table 1.  These 
costs are estimated for the entire state of Texas.  The program can modify this program if 
necessary.   
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Table 2.1 - Typical Inspection Tests & Costs for Texas Pavements 
STATEWIDE AVG. STANDARD TEST Unit 
FY 2002 FY 2003 

2 Year Avg. 

Tex 103 Moisture Content each $6.00 $27.00 $16.50 
Tex 106 Plasticity Index each $33.75 $71.00 $52.38 
Tex 110, Pt1 Gradation each $32.50 $60.00 $46.25 
Tex 110, Pt2 Gradation each - $150.00 $150.00 
Tex 113 M-D Curve for Base each $162.50 $330.00 $246.25 
Tex 114 M-D Curve for Base each $155.00 $330.00 $242.50 
Tex 115 Nuclear Density hour $31.50 $37.50 $34.50 
Tex 116 Wet Ball each $135.00 $200.00 $167.50 
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CHAPTER THREE - VALIDATION OF METHODOLOGY 

The methodology developed to quantify the impact of construction parameters on performance 
needed to be validated.  Since several algorithms encompass the methodology, several types of 
validation processes were carried out.  The objective of the validating a process is to identify its 
effectiveness. 
 
The sensitivity analyses, using the algorithms developed in this project, demonstrated the types 
of trends one can expect from the impact of the construction parameters on performance.  These 
analyses were carried out by varying the COV of each parameter, and then computing the level 
of variability of performance indicators.  In that manner, the relative sensitivity of construction 
parameters could be determined.  The level of sensitivity or impact of parameters is detailed in 
the Research Report 0-4046-1 (Abdallah et al., 2004a). 
 
PERFORMANCE MODELS 
 
The three performance models investigated in the study were: 
 

1) Permanent deformation in the ACP layer (Finn et al., 1984):   
 

ACP layers that are less than 6 in. thick 

cNwRR σlog118.1)log(167.0log343.4617.5log 180 −−+−=                        (3.1) 
ACP layers equal to or greater than 6 in. in thickness: 

cNwRR σlog666.0)log(658.0log717.0173.1log 180 +−+−=                     (3.2) 
where RR is the rate of rutting in micro-inches (1 µin. =10-6 in.) per axle load repetition, 
wo is the surface deflection in mil (1 mil=10-3 in.), σc is the vertical compressive stress 
within the AC layer in psi, and N18 is the equivalent 18-kip single-axle load in 105 ESALS. 
 

2) Permanent deformation in the subgrade (Huang, 1993):   

                                        5)(4
f

cd fN −= ε                                                           (3.3) 

where Nd is the allowable number of load repetitions to prevent rutting, εc is the 
compressive strain at the top of subgrade and parameters f4 and f5 are design constants. 
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3) Pavement failure as a result of fatigue cracking (Huang, 1993): 

                                        32 )()(1
f

ACP
f

tf EfN −−= ε                                                   (3.4) 

where Nf  is the allowable number of load repetitions to prevent fatigue cracking, εt is the 
tensile strain at the bottom of the ACP layer, EACP is the elastic modulus of asphalt-
concrete layer (in psi), and parameters f1 through f3 are design constants. 

 
Table 3.1 provide a list of coefficients for performance models in Equations 3.3 and 3.4.  These 
models can be used in the mechanistic analysis developed for this project and can be 
incorporated into the program.  The calibration and validation of these models are outside the 
scope of this project.   
 

Table 3.1- Fatigue Cracking Model and Rutting Model Parameters used to 
Determine Remaining Life of a Flexible Pavement 

Fatigue Cracking Model 
Nf = f1 ( εt) –f2 (EAC)-f3

 

Subgrade Rutting 
Model 

Nd = f4 ( εc) -f5 
Model 

f1 f2 f3 f4 f5 
Asphalt Institute 0.0796 3.291 0.854 1.365x10-9 4.477 

Shell 0.0685 5.671 2.363 6.15x10-7 4.0 

Shell (50% reliability) - - - 6.15x10-7 4 

Shell (85% reliability) - - - 1.94x10-7 4 

Shell (95% reliability) - - - 1.05x10-7 4 

Illinois Dept. of Transportation 5E-6 3 - 3 - 

Transport and Road Research Laboratory 1.66*10-10 4.32 - 4.32 - 
U.K Research & Road Research Laboratory (85% 
reliability) - - - 6.18x10-8 3.95 

University of Nottingham - - - 1.13x10-6 3.571 

Belgian Road Research Center 4.92*10-14 4.76 - 3.05x10-9 4.35 
New Mechanistic Design Guide (MDG) 
(National Calibration Factors1) 
for top –bottom cracking 

( )AChe

k
49.302.11

1
*

1
003602.0000398.0

1

−+
+

=
 

for bottom-top cracking, 

( )AChe

k
8186.2676.15

1
*

1
003602.0000398.0

1

−+
+

=
 

hAC is thickness of ACP layer and C is laboratory to field 
adjustment factor 

0.00432k*
1C 3.9492 1 - - 

Note: constants are for US customary units 
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MATERIAL MODELS 
 
As illustrated in Chapter Two, the methodology of the program depends on the material 
characteristics models and pavement performance models.  Throughout the research of this 
project, several material models were identified that could be used in the program.   
 
ACP Models 
 
The material models selected for the ACP layer are summarized the Table 3.2.  The Witczak 
1982 model was first used in the study to determine the feasibility in the use of the methodology 
developed in this project.  The other models were subsequently added to the software package 
RECIPPE. 
 
Base and Subgrade Models 
 
Several material models were discovered during the literature review phase of this project for the 
base and subgrade layers.  Some of the models are summarized in Table 3.3.  All these models 
can be generalized by the following constitutive model:  
 

32

1

k

a

oct

k

a
aR PP

PkM ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

τθ  (3.5) 

 
where 321 σσσθ ++= = bulk stress; τoct  = octahedral shear stresses; Pa = atmospheric pressure, 
and k1, k2 and k3 are multiple regression constants evaluated from resilient modulus test data from 
equations developed from a regression procedure that relate the regression constants to 
construction parameters. 
 
One of the biggest challenges in this study was finding regression constants that relate 
construction parameters.  The first success in finding such parameters was from a study carried 
out for Georgia DOT.  Santha (1994) presented equations for regression constants defined for 
both granular and cohesive soils.  Those equations were used in most part of the research study 
and are set as the default values in the program.  At the latter part of the study, regression 
equations from Minnesota and Indiana DOTs were found.  The regression equations for the 
material model parameters are summarized in Table 3.4 and 3.5. 
 
CALIBRATION OF MATERIAL MODELS 
 
The above material models were calibrated using data collected from Texas sites.  The detail and 
results of the calibration process are included in Research Report 0-4046-3. (Haggerty et al., 
2005) 
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Table 3.2 - Summary of Material Models for ACP Layer 
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EAC = dynamic modulus of AC mix (in 10^5 psi), η = bitumen viscosity (in 106 poise) at 70oF, f = 
load frequency (in Hz), Va = percent air voids in the mix by volume, Vbeff = percent effective bitumen 
content by volume, and P200 = percent passing No. 200 sieve by total aggregate weight, P4 = 
cumulative percent retatined No. 4 sieve by total aggregate weight, P34 = cumulative percent retatined 
No. 3/4 sieve by total aggregate weight, and P3/8 = cumulative percent retatined No. 3/8 sieve by total 
aggregate weight. 
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Table 3.3 - Summary of Material Models  
for Base and Subgrade Layers (Thompson et al., 1998) 
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where σ3 = confining stress; k3a and k3b are multiple regression constants
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)( 231 daR kkkM σ−+=  when σd < k2 

)( 231 kkKM dbR −+= σ  when σd > k2 

 
ACP Models 
 
The Long-Term Pavement Performance (LTPP) database was used in the calibration process.  
The research effort was first focused on SPS sites and later expanded to other Texas sections.  
The required information extracted from the LTPP database was: 

 
− Asphalt content 
− Viscosity 
− Percent of aggregate passing sieve #200 
− Percent air voids 
− Backcalculated layer modulus of the ACP 

 
The backcalculated moduli were assumed as the desired modulus values and the modulus 
calculated from the other parameters were used to calibrate the models. The result of the 
calibration process showed:  
 

Witczakatedbackcalcul EE 34.2=  (3.6) 
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Table 3.4 - Summary of Regression Equations 
for k-Parameters of Equation 3.5 Developed for GaDOT 
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Another attempt to calibrate the models was carried out by modifying the coefficients of the 
Witczak model.  The new equation is as follows: 
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Table 3.5 - Regression Equations of Material Models for Subgrade Layers Developed 
Based on Research of Transportation Agencies of Minnesota and Indiana 
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A third approach was carried to develop an independent regression equation for estimating the 
modulus of ACP using the data extracted from the LTPP database.  The best equation was 
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The performance of the three models is presented in Figure 3.1.  Four sets of results are 
compared with the backcalculated layer moduli (depicted by the line of equality).  The four sets 
of results are based on 1982 Witczak model, Equation 3.6 (linear calibration of Witczak model), 
Equation 3.7 (modified coefficients of Witczak model), and Equation 3.8 (a new nonlinear 
model).  From the limited set of data used in the models development, the results of the new 
models show an improvement to the original Witczak model.   
 
Few sets of data were set aside to test the validity of the models.  The results of the models tested 
with data not used in calibration are presented in Figure 3.2.  The original Witczak model 
showed consistent to those results shown in Figure 3.1.  The modulus was under-predicted.  The 
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linearly calibrated model, although showed promise with calibrated data, still under-predicted the 
layer moduli as compared to the backcalculated moduli.  On the other hand, Equation 3.7, with 
modified coefficients of the Witczak model, shows estimates of layer moduli on both sides of the 
equality line.  The last model developed (Equation 3.8) over-predicted the layer moduli.  With 
this limited database, the best behaved model from these results seems to be the model listed in 
Equation 3.7.  This seems to suggest that if more data were available, the format of the Witczak 
equation could be used to develop a suitable model to predict the modulus of ACP layer.  The 
1995 and 2000 Witczak models and the Hirsch model were not used in calibration.  The models 
were not identified at the time the research was carried out. 
 
A few sections at a site in Euless, Texas were visited and data were collected to determine the 
accuracy of the ACP models (see Figure 3.3).  The site was tested at three sections with 2 in. 
ACP and two sections with 8 in. ACP.  The data collected at this site was part of a quality 
assurance-quality control (QA/QC) project of hot mix asphalt.  The Portable Seismic Pavement 
Analyzer (PSPA) device was used to collect modulus data from the site.  Also, the modulus 
values from the V-meter were obtained.  The PSPA is a tool that is based on seismic technology 
and directly measures the modulus of ACP layer and the V-meter is a velocity measuring device 
that can also be used to directly estimate the elastic moduli of a core specimen.  The modulus 
data from both methods were processed and the design moduliwere estimated based on Equation 
3.9. 

( )( )32-t0.0078 - 1.352.3
 E  seismic=DesignE  (3.9) 

 
Cores and raw materials were retrieved from the site for laboratory testing to determine air voids, 
asphalt content, and gradation.  The viscosity for PG64-22 was assumed at 5217 Poise and the 
temperature and frequency were set at 70oF and 18 Hz respectively.  Table 3.5 lists the values of 
the parameters used in the models.  For this site no FWD data was collected, therefore, the 
design modulus results from the seismic test were used as a baseline for comparing estimated 
layer moduli from the ACP material models.   
 
Figure 3.4 shows the results of the comparison.  The two models that were closest to the desired 
results, were those estimated from the Witczak model and the model with the modified 
coefficients of the Witczak model.  The remaining models failed to estimate the desired design 
moduli by either largely over-estimating or largely under-estimating the layer moduli.  Again, 
the results seem to suggest that with a large enough database, the coefficients of the Witczak 
model could be determine to produce a reasonable material model for the ACP layer. 
 

Table 3.6 - Laboratory Data for the Euless Test Sections 

Air Voids, 
% 

Asphalt 
Content, % 

Percent 
Passing # 

200 

Percent 
Retained # 

4 

Percent 
Retained # 

3/8 

Percent 
Retained # ¾ 

7.8 4.2 4.2 44.9 26.0 3.1 
4.5 4.4 4.1 58.9 38.4 8.3 
13.7 4.4 3.1 42.8 24.4 2.3 
11.0 4.4 4.2 47.5 26.3 0.6 
9.6 4.3 3.4 41.2 23.5 1.2 
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Figure 3.1 - Comparison of Results for the ACP Models with Data Used in Calibration 
 

Figure 3.2 - Comparison of Results to Test ACP Models 
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Figure 3.3 - Location of Site for Validation of the ACP Material Model 

Figure 3.4 - Comparison of Results to Test ACP Models 
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Base and Subgrade Models 
 
Since these empirical equations, listed in Table 3.3, were not developed based on section found 
in Texas, similar types of equations (estimating the k parameters based on construction 
parameters) were generated for pavement sections in Texas.  Unfortunately, the LTPP database 
could not be used to for this task.  The parameters required for base and subgrade materials were 
not comprehensively available in the LTPP database.  As such a matrix of test sections that 
represents flexible pavements in Texas was developed.  With the help of TxDOT personnel, a 
protocol was developed to allow for a comprehensive data collection scheme from Texas sites.  
Data were collected according to an adjusted guide schedule that specifies the frequency and 
location for gathering sample information for each required construction parameter.  The 
adjustments to the guide schedule were developed by UTEP and TxDOT personnel for more 
practical testing frequencies.  The protocol is includeded in Appendix A of Research Report 0-
4046-3 (Haggerty et al., 2005).  For the most part the protocol was followed.  As a result, field 
and laboratory tests were performed on eleven sites.  The eleven sites were located in six 
different counties, representative of the major climate differences of the environments found 
within the state of Texas.  The location and pertinent information for the sites are also provided 
in Research Report 0-4046-3.   
 
For this task, limited number of sections were identified and visited due to the time frame 
allocated.  Data and raw materials were collected at each site and necessary laboratory test were 
carried out.  Research report 0-4046-3 (Haggerty et al., 2005) contains the detail of the sites and 
data collection process. Since there was limited data, an innovative technique was used to 
populate the database using data from the limited sections.  The process involved utilizing the 
values of the parameters collected from the sites and simulating hundreds of possible values for 
those parameters with similar attributes.  To capture the attributes for each pavement layer, new 
values for each parameter were simulated considering their correlation to other parameters.  The 
regression equations were then developed using the simulated data.  The new regression 
equations are: 
 
For base: 

( )[ ]( ) ( )[ ] ( )( )
( )( ) ( ) ( )[ ] ( )( )
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For subgrade: 
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02 =k  (3.14) 
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The results of the equations for both base and subgrade material models are presented in Figures 
3.5 through 3.9.  The figure compared the desired values of k-parameters obtained from resilient 
modulus testing with three estimated results from regression models: a) data from the sites used 
in populating the database for developing the regression equations, b) data from sites collected 
for validating the models, and c) the results of the GADOT regression equations.  Data for 
validating the models were based from two sources. Several ongoing projects that required 
similar laboratory testing was being carried out for five Texas bases and two subgrades.  Also, 
two sites (one for the base and one for the subgrade) were visited for the purpose of validating 
the models. 
 
Figure 3.5 compares the results for the parameter k1.  The line of equality represents the target 
values estimated using the resilient modulus laboratory test.  The results show that the new 
regression model (represented the results with by the symbols “square” and “triangle”) was a 
better predictor of k1 than the results of the GaDOT regression model.  The GaDOT 
underestimated the k1 parameter in most cases.  This is because the new model was developed 
and tested “validated” with empirical data from sites across Texas. 
 
Figure 3.6 compares the results for the parameter k2.  The results show that the new regression 
model estimated well the data that was used on developing the model.  However, the validation 
results were generally overestimated.  This is contradictory to results of the parameter k1.  But a 
closer look at the data used to populate the database and development of the model shows that 
the data seems to be clustered in three zones (highlighted by the dashed-circles).  This permits a 
narrow range for model development.  This suggests the need to expand the database to cover the 
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Figure 3.5 - Comparison of Results from Different Base Layer Models for Parameter k1  

Figure 3.6 - Comparison of Results from Different Base Layer Models for Parameter k2 
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range of parameter k2.  The GaDOT model results are also compared in the figure, and as 
expected the results are not well estimated.  In some cases, the estimated values were negative. 
 
Figure 3.7 compares the results for the parameter k3.  The results of the new regression model 
were generally underestimated.  Similarly to reasoning for improving the parameter k2, an 
expansion of the database range would improve the model predictions.  Again, the GaDOT 
model does not estimate satisfactorily the values of the parameter k3. 
 
Figures 3.8 and 3.9 compare the results for the k1 and k3 parameters for the subgrade, 
respectively.  The results of both models show similar outcomes.  The models seem to estimate 
the k-parameters very well for data used to develop the models.  However, the database for the 
subgrade was very limited and as the results indicate, a much larger sample needs to be used for 
developing better regression models. 
 
The overall process of developing and validating the new regression equations showed the need 
to have a large database.  In certain cases, where the range of output used for developing a model 
was wide and evenly spread, the models behave well.  In other cases, the output was clustered 
which led to poor model predictions when being validated.  In both instances, the process of 
developing the model, by means of populating the database, seemed promising and in the future 
when more data is collected and tested better models can be easily developed.  In this project the 
goal of generating a large database was hoped for, but under the time constraints was not 
fulfilled.   

Figure 3.7 - Comparison of Results from Different Base Layer Models for Parameter k3 
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Figure 3.8 - Comparison of Results from Different Subgrade Models for Parameter k1 

Figure 3.9 - Comparison of Results from Different Subgrade Models for Parameter k3 
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CHAPTER FOUR - STRATEGY TO UTILIZE RECIPPE FOR 
QUALITY ASSURANCE 

The methodology presented in this research provides a means of assessing construction 
consistency for a flexible pavement system.  Thus far, the methodology and the algorithms were 
discussed and documented.  Also, material model development, calibration and development 
were presented.  To assist in utilizing RECIPPE, a strategy is provided in this chapter.   
 
The main purpose of this research was developing a tool to ultimately optimize effectiveness of 
inspection and testing resources during construction given TxDOT limited resources by:  

1. Estimating if variability of construction parameters meets the owner’s expectations for a 
reasonably uniform pavement life. 

2. Identifying the construction parameters to focus on during construction inspection, in 
order to reduce pavement life variance and increase reliability. 

3. Tracking and identifying out of control procedures during construction. 
4. Improving construction practices through process control. 

 
Figure 4.1 outlines the overall purpose of RECIPPE.  The first part of the figure shows a 
representation of pavement performance.  As depicted in the figure, pavement performance can 
be specified based on level of damage with time.  Therefore, for a certain specified time period, a 
pavement is designed to withstand a certain level of damage caused be traffic loading and 
environmental factors.  However, due to inconsistencies in construction practices along the 
length of the pavement, the pavement quality varies from one section to the next, and as a result 
damage is accumulated faster than estimated in the inferior sections, and therefore, the life of the 
pavement is shortened.   
 
The primary objective for this research was to develop a tool to minimize variability of 
performance to ensure that pavement life is achieved based on design specification (listed in the 
right side of Figure 4.1).  To address this objective, the strategy was to develop a tool that can be 
used to identify and track pavement properties for quality control.  In this case, pavement 
properties are the layer thickness and layer moduli.  These parameters are the main components 
used in estimating the pavement performance.  For each of these parameters, certain variability 
exists, and depending on the pavement system, these parameters can contribute differently to 
performance.  This means that by identifying which of these parameters is found significant and 
by controlling the variability of those parameters, variability of performance can be managed.  
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To address this strategy and meet the objective, RECIPPE was developed to identify significant 
pavement properties and provide a process control tool for quality assurance. 
 

Figure 4.1 - Process of using RECIPPE to Ensure Uniform Pavement by Monitoring 
Pavement Layer Information 

 
In order to present different ways that RECIPPE can be utilized, it is beneficial to first 
summarize the different types and levels of input that can be incorporated into the program.  
Table 4.1 provides a summary of inputs categorized by levels according to the type of data used.  
In this table the input levels are divided into three categories for each of the pavement layer 
properties.  Level 1 is designated for design values.  This is data that is easily obtainable and 
requires neither field nor laboratory efforts.  This type of input is best used when no other 
information is provided or to supplement the input to RECIPPE since pavement layer 
information for all layers is required to carryout the analysis.  Level 2 and Level 3 inputs require 
field and laboratory measurements.  Both these levels of input are necessary when a significant 
pavement property is identified.  In most cases, Level 2 input indicate direct measurements of 
layer property and Level 3 input requires the use of material models that is based on construction 
parameters to estimate layer properties.   
 
For the layer thickness, the ACP layer can be measured from cores and or Ground Penetrating 
Radar (GPR), and the base and subgrade layer can be measured form cores or Dynamic core 
penetrometer (DCP).  For the ACP modulus the information can be provided based on V-meter 
test using cores and or PSPA field measurements (Level 2) and material model such as those 
presented in Table 3.2.  Finally, the base and subgrade modulus can be measured using devices 
such as the Dirt Seismic Pavement Analyzer (DSPA) or an equivalent system in the field and or 

D
am

ag
e

Time

Pavement
Performance

D
am

ag
e

Time

Pavement
Performance

t2

tn

E2

En

E1

t1

Pavement Properties

Layer1

Layer2

Layern

Objective: minimize variability of 
performance to ensure that pavement 
life is achieved based on design 
specification.

Strategy: Identify and track pavement 
properties for quality control.

RECIPPE: Help execute the strategy to meet 
objective by identifying significant pavement 
properties and provide a process control tool for 
quality assurance.

Material Models

Laboratory Testing

Field Testing

Nominal/Design

Field Testing

Nominal/Design



 

 31

laboratory testing such as resilient modulus with in-situ material from the field (Level 2).  The 
DSPA is one tool that can be used for quality control to measure the elastic moduli of base and 
subgrade layers.  For Level 3 input, material models, such as those presented in Figures 3.3 
through 3.5, can be used for estimating the layer moduli. 
 

Table 4.1 - Input Levels for Estimating Pavement Layer Properties 

 
RECIPPE is separated into two phases: pre-construction and post construction.  Figure 4.2 is a 
flowchart of the progression of utilizing different levels of inputs in RECIPPE.  For the pre-
construction phase, a dry-run can be initially carried out based on Level 1 input.  Level 1 input is 
based on the pavement system design values with their associated variability, which can be 
assumed base on experience and or historical information.  Based on results of the dry-run, 
significant pavement parameters can be identified.  This allows users to decide on the input 
levels to use when stating the analysis is pre-construction mode.  Level 1 inputs can be used for 
the parameters not found significant.  The inputs for the more significant parameters can be 
measured based on the Levels 2 and 3 protocols.  Once the levels of inputs are defined, 
RECIPPE can be processed in pre-construction mode followed by post-construction mode. 
 
In the post-construction phase, the parameters that are identified as significant are used to 
determine a set of sampling frequencies for inspectors to use in control charts to ensure quality of 
the construction process in an optimized manner. 
 

Material Property Input Type of Data Methods  
Level 1 Design Nominal 
Level 2 Cores ACP Thickness 
Level 3 Measured GPR 
Level 1 Design Nominal 
Level 2 Cores Base and Subgrade 

Thickness 
Level 3 Measured DCP 
Level 1 Design Nominal 

Cores (V-Meter) Level 2 Measured PSPA ACP Modulus 

Level 3 Material Model 
Construction parameters such as 

Gradation and volumetric 
information 

Level 1 Design Nominal 
Measured DSPA 

Material Model DSPA and assumed material 
parameters Level 2 

Measured & 
Material Model DPSA & Resilient Modulus 

Base and Subgrade 
Modulus 

Level 3 Material Model 
Construction parameters such as 

Gradation and volumetric 
information 



 

 32 

 
Figure 4.2 - Flowchart of RECIPPE to Ensuring Uniform Pavement Construction 

 
Three general scenarios are presented to illustrate how RECIPPE can be used at different stages 
and with different levels of input.  Table 4.2 presents a general scenario for a pavement where 
the subgrade layer properties were identified as significant.  The information in the table presents 
the levels of input for the layer moduli.  For this scenario, the input to the RECIPPE for the top 
layers can be provided as Level 1 input.  However, the input for the subgrade layer moduli can 
be provided either based on Level 2 input or Level 3 input.  Based on Table 4.2, Level 2 input 
could be a direct field measurement using a device such as the DSPA.  This would measure the 
elastic modulus of the layer and thereby uses the linear elastic algorithm in the program for the 
subgrade layer.  The other Level 2 option is to combine the field measurements from DSPA with 
laboratory tests such as the resilient modulus test that is used for determining the k-parameters of 
the nonlinear model.  The modulus from the DSPA can be used to calculated k1 and the results of 
the resilient modulus for k2 and k3 parameters.  This allows the constitutive model listed in Table 
4.2 as the material model for the analysis.  The last input level is Level 3, which requires the use 
of constitutive models that uses regression equations to estimate the k-parameters.  These 
regression equations are functions of construction parameters.  Chapter 3 provides a list of 
regression equations from various regions in the country that can be used to estimate the k-
parameters.  Also, Equations 3.12 through 3.14 developed under this project with a limited 
database can be used for Level input.  At the present time, due to the lack of comprehensive 
models for Texas, it is not recommended to use Level 3 input.   
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Table 4.2 - Input Levels of Design Parameters for Subgrade Layer 

Note:  1) ACP and Base layer information are based on design values.  
 
The next scenario is for a pavement system where base layer properties were identified as 
significant.  In this case, the input to RECIPPE for the top layer can be provided as Level 1 input, 
and input to the subgrade layer could be the results from scenario one represented as a mean and 
standard deviation.  For the base layer moduli (significant parameter) information from either 
Level 2 input or Level 3 input can be used.  The information in Table 4.3 presents the levels of 
input for both the layer thickness and the layer moduli.  The two main properties for the base 
layer are the thickness and layer moduli.  For the base layer thickness, the monitoring tool can 
either be to measure cores directly (Level 2) or DCP field testing (Level 3).   
 
Based on Table 4.3, Level 2 input for the base layer moduli is similar to the Level 2 input for the 
subgrade layer.  This can be a direct field measurement using DSPA (or an equivalent device) or 
a combined field measurements from DSPA and laboratory tests using the resilient modulus 
results.  Also, Level 3 input is same as that presented in for Level 3 input of the subgrade layer, 
which is to use regression equations to estimate the k-parameters of the constitutive model.   
 
The last scenario presented involves an analysis where ACP layer properties were identified as 
significant.  Input levels for the top layer are summarized in Table 4.4.  The thickness of the top 
layer can be monitored either by cores or GPR, which are designated as Levels 2 and 3, 
respectively.  For the layer moduli Level 2 input, two options are presented: a) V-meter 
measurements of cores to estimate layer moduli directly and b) direct measurement of the 
modulus in the field using the PSPA or an equivalent system.  For Level 3 input the material 
models listed in Table 3.2 can be selected to estimate the layer moduli based on construction 
parameters.  The input for the lower layers in this scenario can be provided as Level 1 input.  If 
any parameter of the lower  

Parameter Input Material Type Methods 
Thickness Level 3 - Cores 

Linear Elastic 
DSPA used in the field for quality 
control to measure layer moduli 

directly 
- DSPA is used to Estimate k1 
- k2, and k3 are assume from 

literature based on material quality Level 2 

Nonlinear based on Constitutive 
Model 

- DSPA is used to Estimate k1 
- Resilient Modulus performed in 

the laboratory on in-situ material to 
determine k2, and k3 

Modulus 

Level 3 
Nonlinear based on Constitutive 

Model 
(same as equation in Level 2) 

 
k1, k2, k3 are estimated based on 

regression equations that are 
functions of construction 

parameters 
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Table 4.3 - Input Levels of Design Parameters for Base Layer 

Note:  1) ACP layer information are based on design values. 
 2) Subgrade layer information is based on either design values or actual field data estimated in 

Scenario 1 from either level 2 or level 3 inputs. 
 
layers was found significant, then the statistics from that analysis can be incorporated into this 
scenario. 
 
As demonstrated from the three scenarios presented, RECIPPE can be used at different stages of 
a construction project and at different levels of input to monitor variability of construction.  At 
this stage of the program, a combination of Level 1 and Level 2 inputs are recommended in the 
analysis until more elaborate material models can be developed and calibrated for Texas.  
However, Level 3 inputs provided in the program should be investigated further since for that 
level, construction parameters can be related directly to performance.  A user’s guide for 
RECIPPE is included in Appendix A.  Also, a training web site located at http://ctis.utep.edu 
makes available training modules for the program. 
 

Parameter Input Material Type Methods 

Level 2 Cores 

Thickness 
Level 3 

- 
DCP can be used to estimate 

thickness value 

Linear Elastic 
DSPA used in the field for quality 
control to measure layer moduli 

directly 
- DSPA is used to Estimate k1 
- k2, and k3 are assume from 
literature based on material 

quality 
Level 2 

Nonlinear based on Constitutive 
Model  

 
 

- DSPA is used to Estimate k1 
- Resilient Modulus performed in 
the laboratory on in-situ material 

to determine k2, and k3 

Modulus 

Level 3 

Nonlinear based on Constitutive 
Model 

(same as equation in Level 2) 
 

k1, k2, k3 are estimated based on 
regression equations that are 

functions of construction 
parameters 
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Table 4.4 - Input Levels of Design Parameters for ACP Layer 

Note:  1) Base and subgrade layer information is based on either design values, level 1input, or actual field 
data estimated in Scenarios 1 and 2 from either level 2 or level 3 input.   

 

Parameter Input Material Type Methods 
Level 2 Cores Thickness Level 3 - GPR 

V-Meter to measure layer elastic 
moduli directly from cores 

Lab testing to determine the 
viscous properties of the material 

Level 2 Linear Visco-elastic PSPA used in the field for quality 
control to measure layer moduli 

directly 
Lab testing to determine the 

representative viscous properties 
of the material 

Modulus 

Level 3 

Linear Visco-elastic 
(Material Model such as 

regression equations based on 
Master Curve) 

Construction parameters such as 
Gradation and volumetric 

information 
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CHAPTER FIVE - SUMMARY AND CONCLUSION 

SUMMARY 
 
 
The goal of this project was to develop a rational algorithm that can be used in practice for the 
quality control of construction of pavements.  As such, a method was developed, which for a 
given project, will guide TxDOT personnel to determine what parameters would significantly 
impact the performance, what parameters will moderately impact and those that are of small 
importance.  The level of acceptable deviations from the target design value for each parameter 
is established based on quantification of the variability of the construction parameters introduced 
by: (a) the construction processes, (b) the material properties, (c) the models used to predict 
pavement performance and those used for data analysis, and (d) the resolution of the procedures 
used in the field for quality control.  
 
The software developed utilizing the algorithm is called Rational Estimation of Construction 
Impact on Pavement Performance (RECIPPE).  It can be used to reconcile the results from 
pavement-performance models used in the state of practice, or those widely accepted by state 
agencies, with statistical process control techniques and uncertainty analysis methods, to 
determine project-specific parameters that should be used in construction quality management. 
 
This is the fourth report in this project.  The first report introduced the algorithm and the link 
between the construction processes and performance parameters.  The second report provided a 
limited validation of the methodology.  The third report focused on presenting the enhanced 
features of the program RECIPPE and the calibration and development of the material models.  
This report discusses the final phase of the project.  The validation of the models is presented and 
the application of RECIPPE based on different input levels is discussed. 
 
CONCLUSIONS 
 
RECIPPE presents a process that can be used in a practical manner to optimize pavement 
performance. Furthermore, the latest version of the process is versatile and avails complete 
modularity, which allows for new material and performance models to be inputted and/or 
calibrated as needed.  Even though a limited number of sites were used to develop calibrated 
material models the results from RECIPPE and the methodology presented in this study is a step 
towards a more rational estimation of pavement remaining life from construction parameters. 
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The current RECIPPE program can be used to: 
 

• Generate constructions parameter values that will meet owner’s needs for pavement 
life 

• Identify the construction parameters to focus on, in order to reduce pavement life 
variance and increase reliability 

• Track and identify out of control procedures during construction 
• Reduce sampling costs by optimizing the frequency of testing 
• Create databases that can be used in future projects 
• Lower variability of construction practices 
• Perform quality control and/or quality assurance of construction practices 
• Focus manpower on specific parameters and reduce costs 

 
RECOMMENDATIONS FOR FUTURE STUDY 
 
The proposed methodologies for predicting pavement performance, and their corresponding 
variations, have been completed and somewhat calibrated.  The tools are deemed ready for 
shadow implementation.  Shadow implementation would allow for RECIPPE to be validated by 
comparing its results to current methods.  The results from the shadow implementation would 
provide the limitations/advantages of practically using the program in the real world. 
 
Also, an additional cost/benefit analysis can be incorporated to show the life cycle cost analysis, 
based on the results from RECIPPE.  To be specific, the present cost/benefit analysis 
concentrates on only the price of sampling and not the cost of future rehabilitation.  Due to the 
fact that RECIPPE finds the amount of pavement that will withstand a set number of ESALs (in 
the form of the reliability), it could be expanded to find the amount of pavement that will not 
withstand a set number of ESALs.  Hence, predicting how much pavement will need to be 
rehabilitated before the expected design life. 
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Figure A.1 - Slide 1 of Introduction 

Figure A.2 - Slide 2 of Introduction 
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Figure A.3 - Slide 3 of Introduction 

 
Figure A.4 - Slide 4 of Introduction 
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Figure A.5 - Slide 5 of Introduction 

 
Figure A.6 - Slide 6 of Introduction 
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Figure A.7 - Slide 7 of Introduction 

 
Figure A.8 - Slide 8 of Introduction 
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Figure A.9 - Slide 9 of Introduction 

  
Figure A.10 - Slide 10 of Introduction 
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Figure A.11 - Slide 1 of Exercise 1 

 
Figure A.12 - Slide 2 of Exercise 1  
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Figure A.13 - Slide 3 of Exercise 1 

 
Figure A.14 - Slide 4 of Exercise 1 
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Figure A.15 - Slide 5 of Exercise 1 

 
Figure A.16 - Slide 6 of Exercise 1 
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Figure A.17 - Slide 7 of Exercise 1 

 
Figure A.18 - Slide 8 of Exercise 1 
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Figure A.19 - Slide 9 of Exercise 1 

 
Figure A.20 - Slide 10 of Exercise 1 
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Figure A.21 - Slide 11 of Exercise 1 

 
Figure A.22 - Slide 12 of Exercise 1 
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Figure A.23 - Slide 13 of Exercise 1 

 
Figure A.24 - Slide 14 of Exercise 1 
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Figure A.25 - Slide 15 of Exercise 1 

 
Figure A.26 - Slide 16 of Exercise 1 
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Figure A.27 - Slide 17 of Exercise 1 

 
Figure A.28 - Slide 18 of Exercise 1 
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Figure A.29 - Slide 19 of Exercise 1 

 
Figure A.30 - Slide 20 of Exercise 1 
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Figure A.31 - Slide 21 of Exercise 1 

 
Figure A.32 - Slide 22 of Exercise 1 
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Figure A.33 - Slide 23 of Exercise 1 

 
Figure A.34 - Slide 24 of Exercise 1 
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Figure A.35 - Slide 25 of Exercise 1 

 
Figure A.36 - Slide 26 of Exercise 1 
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Figure A.37 - Slide 27 of Exercise 1 

 
Figure A.38 - Slide 28 of Exercise 1 
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Figure A.39 - Slide 29 of Exercise 1 

 
Figure A.40 - Slide 30 of Exercise 1 
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Figure A.41 - Slide 31 of Exercise 1 

 
Figure A.42 - Slide 32 of Exercise 1 
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Figure A.43 - Slide 33 of Exercise 1 

 
Figure A.44 - Slide 34 of Exercise 1 
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Figure A.45 - Slide 35 of Exercise 1 

 
Figure A.46 - Slide 36 of Exercise 1 
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Figure A.47 - Slide 37 of Exercise 1 

 
Figure A.48 - Slide 38 of Exercise 1 
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Figure A.49 - Slide 39 of Exercise 1 

 
Figure A.50 - Slide 40 of Exercise 1 
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Figure A.51 - Slide 41 of Exercise 1 

 
Figure A.52 - Slide 42 of Exercise 1 
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Figure A.53 - Slide 43 of Exercise 1 

 
Figure A.54 - Slide 44 of Exercise 1 
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Figure A.55 - Slide 1 of Exercise 2  

 
Figure A.56 - Slide 2 of Exercise 2 
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Figure A.57 - Slide 3 of Exercise 2 

 
Figure A.58 - Slide 4 of Exercise 2 
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Figure A.59 - Slide 5 of Exercise 2 

 
Figure A.60 - Slide 6 of Exercise 2 
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Figure A.61 - Slide 7 of Exercise 2 

 
Figure A.62 - Slide 8 of Exercise 2 
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Figure A.63 - Slide 9 of Exercise 2 

 
Figure A.64 - Slide 10 of Exercise 2 
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Figure A.65 - Slide 11 of Exercise 2 

  
Figure A.66 - Slide 12 of Exercise 2 



 

 76 

 
Figure A.67 - Slide 1 of Exercise 3 

 
Figure A.68 - Slide 2 of Exercise 3 
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Figure A.69 - Slide 3 of Exercise 3 

 
Figure A.70 - Slide 4 of Exercise 3 
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Figure A.71 - Slide 5 of Exercise 3 

 
Figure A.72 - Slide 6 of Exercise 3 
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Figure A.73 - Slide 7 of Exercise 3 

 
Figure A.74 - Slide 8 of Exercise 3 
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Figure A.75 - Slide 1 of Exercise 4  

 
Figure A.76 - Slide 2 of Exercise 4 
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Figure A.77 - Slide 3 of Exercise 4 

 
Figure A.78 - Slide 4 of Exercise 4 
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Figure A.79 - Slide 5 of Exercise 4 

 
Figure A.80 - Slide 6 of Exercise 4 
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Figure A.81 - Slide 7 of Exercise 4 

 
Figure A.82 - Slide 8 of Exercise 4 
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Figure A.83 - Slide 9 of Exercise 4 

 
Figure A.84 - Slide 10 of Exercise 4 
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Figure A.85 - Slide 11 of Exercise 4 

 
Figure A.86 - Slide 1 of Exercise 5  
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Figure A.87 - Slide 2 of Exercise 5 

 
Figure A.88 - Slide 3 of Exercise 5 
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Figure A.89 - Slide 4 of Exercise 5 

 
Figure A.90 - Slide 5 of Exercise 5 
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Figure A.91 - Slide 6 of Exercise 5 

 
Figure A.92 - Slide 7 of Exercise 5 
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Figure A.93 - Slide 8 of Exercise 5 

 
Figure A.94 - Slide 9 of Exercise 5 
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Figure A.95 - Slide 10 of Exercise 5 

 
Figure A.96 - Slide 11 of Exercise 5 
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Figure A.97 - Slide 1 of Exercise 6  

 
Figure A.98 - Slide 2 of Exercise 6 
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Figure A.99 - Slide 3 of Exercise 6 

 
Figure A.100 - Slide 4 of Exercise 6 
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Figure A.101 - Slide 5 of Exercise 6 

 
Figure A.102 - Slide 6 of Exercise 6 
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Figure A.103 - Slide 7 of Exercise 6 

 
Figure A.104 - Slide 8 of Exercise 6 
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Figure A.105 - Slide 9 of Exercise 6 

 
Figure A.106 - Slide 10 of Exercise 6 
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Figure A.107 - Slide 11 of Exercise 6 

 
Figure A.108 - Slide 12 of Exercise 6 
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Figure A.109 - Slide 13 of Exercise 6 

 
Figure A.110 - Slide 14 of Exercise 6 
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Figure A.111 - Slide 15 of Exercise 6 

 
Figure A.112 - Slide 16 of Exercise 6 
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Figure A.113 - Slide 17 of Exercise 6 

 
Figure A.114 - Slide 18 of Exercise 6 
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Figure A.115 - Slide 19 of Exercise 6 

 
Figure A.116 - Slide 1 of Exercise 7  
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Figure A.117 - Slide 2 of Exercise 7 

 
Figure A.118 - Slide 3 of Exercise 7 
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Figure A.119 - Slide 4 of Exercise 7 

 
Figure A.120 - Slide 5 of Exercise 7 
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Figure A.121 - Slide 6 of Exercise 7 

 
Figure A.122 - Slide 7 of Exercise 7 
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Figure A.123 - Slide 8 of Exercise 7 

 
Figure A.124 - Slide 9 of Exercise 7 
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Figure A.125 - Slide 10 of Exercise 7 

 
Figure A.126 - Slide 11 of Exercise 7 
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Figure A.127 - Slide 12 of Exercise 7 

 
Figure A.128 - Slide 13 of Exercise 7 
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Figure A.129 - Slide 14 of Exercise 7 

 
Figure A.130 - Slide 15 of Exercise 7 
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Figure A.131 - Slide 16 of Exercise 7 

 
Figure A.132 - Slide 17 of Exercise 7 
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Figure A.133 - Slide 18 of Exercise 7 

 
Figure A.134 - Slide 19 of Exercise 7 
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Figure A.135 - Slide 20 of Exercise 7 

 
Figure A.136 - Slide 21 of Exercise 7 
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Figure A.137 - Slide 22 of Exercise 7 

 
Figure A.138 - Slide 23 of Exercise 7 
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Figure A.139 - Slide 24 of Exercise 7 

 
Figure A.140 - Slide 25 of Exercise 7 
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Figure A.141 - Slide 26 of Exercise 7 

 
Figure A.142 - Slide 27 of Exercise 7 
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Figure A.143 - Slide 28 of Exercise 7 

 
Figure A.144 - Slide 29 of Exercise 7 
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