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Abstract 

Most mechanistic-empirical methods for determining the remaining life of an existing pavement 
rely on the use of deflection-based nondestructive evaluation (NDE) devices. This report describes a 
methodology based on Artificial Neural Networks (ANN) techniques to estimate moduli of different 
layers in a composite pavement. The inputs to all the models are the best estimates of the thickness 
of each layer and the surface deflections obtained from a Falling Weight Deflectometer test. The 
outcome of the study is a computer program that estimates the moduli of different pavement layers 
in a more robust manner. 
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Executive Summary 

One of the most common nondestructive evaluation (NDE) methods to collect pavement 
performance data is the Falling Weight Deflectometer (FWD) test. The seven peak-deflections, 
otherwise referred to collectively as a deflection bowl, provide some of the input used to 
determine the pavement layers' moduli, usually through a backcalculation process. Once the 
layer moduli of the pavement have been computed, the pavement's remaining life, using one of 
the many available models, can be estimated. 

This report describes an alternative approach to the computation of the layers' moduli of a given 
composite pavement section. The methodology is based on Artificial Neural Networks (ANN) 
techniques and statistical concepts. In the proposed approach, the traditional backcalculation process 
is omitted. In addition, it only uses data readily available to pavement engineers, such as the 
measured deflection bowls and the section layers' thickness. 

The objectives of this project were modified due to the lack of mechanistic models for a composite 
pavement sections. The new objectives were 1) to develop ANN models to compute the modulus of 
each of the layers of a composite ~ection and 2) to create a software tool that can integrate the future 
models as they become available .. 

The Artificial Neural Network theory is a branch of the more general field called Artificial 
Intelligence. The ANN theory aims at understanding the way the information is processed in the 
brain and to develop the mathem;itical relationships that would reproduce that process. To develop 
an ANN, it is necessary to have a set of examples that show specific values of the independent 
variables and the corresponding values of the dependent variable(s). The examples are used to train 
and test the ANN model. In this work, each example consists of an input vector with nine elements 
that represent the thickness of the AC and base layers and the seven FWD readings and an output 
vector, whose only element is one of the three-layer moduli. 

In the absence of a comprehensive database containing the required properties of actual pavements, 
a synthetic database was generated to simulate and cover a wide range of possible pavement 
sections. FWD tests on the pavement were simulated to obtain the deflection basin in a number of 
composite pavement sections. At the end, a database with 10,000 exemplars was compiled. The 
data sets for training, testing and validating the ANN models developed were sampled from this 
database. 
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Four ANN models were developed for a three-layer composite pavement. One model predicts the 
modulus of the AC layer, the second the modulus of the base layer, and the last two models the 
modulus of the subgrade layer, one when the depth to rigid layer is known and one when the 
location of rigid layer is not known. When the depth to bedrock is introduced to the model, the 
modulus of the sub grade is predicted more accurately. 

All the models and algorithms developed have been integrated into a software tool. The latest 
version of the software, developed using c++ development-programming language, works in 
Windows 95/98/00/NT environment. 

Artificial Neural Network technology has proven to be a feasible and practical modeling approach 
in the development of models to assess the integrity of pavements using data that is readily available 
to the pavement engineer. This is particularly advantageous because other approaches require 
information from laboratory tests, making the assessment more tedious and time consuming. 
Another advantage of an ANN model over the traditional backcalculation approach is that the 
moduli can be calculated for a large number of pavement sections at one time. 
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Implementation Statement 

The software developed is ready for limited implementation. We recommend that staff members of 
the Pavement Section utilize this program along with the existing methodologies for evaluation 
purposes and for providing recommendations for future improvements. 
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Chapter 1 

Introduction 

One of the most common nondestructive evaluation (NDE) methods to estimate pavement 
performance data is the falling weight deflectometer (FWD). The seven peak deflections, referred 
to collectively as a deflection bowl, provide some of the input used to determine the pavement 
layers' moduli, usually through a backcalculation process. Once the layer moduli of the pavement 
have been computed, it will be then possible to estimate the pavement's remaining life using any 
available model (Huang, 1993). Despite the straightforwardness of this approach, several concerns 
still exist over its rationality. One of those concerns is the weakness in the existing backcalculation 
procedures. Another concern is the applicability of the current models developed to predict the 
performance of a pavement section. For instance, in the case of flexible pavements, the cracking of 
the pavement is related to the tangential strain at the bottom of the AC. These critical strains are 
typically calculated using layered theory and backcalculated moduli. 

In its simplest definition, backcalculation is an iterative process that requires varying a set of moduli 
until a best match between the measured FWD deflection bowl and calculated deflection bowl is 
obtained. The problem with the backcalculation process is the nonuniqueness of the results. A good 
match between the deflections does not guarantee that the backcalculated moduli are reasonable for 
that section and, as a consequence, the remaining life of the section could be grossly under or over 
estimated. 

This report presents an alternative approach to the computation of the moduli of a given composite 
section. In our methodology, which is based on artificial neural networks (ANN), the traditional 
backcalculation process is omitted. The input data are parameters readily available to pavement 
engineers, such as the measured deflection bowls, and the section layers thickness. 



Objectives 

One of the objectives of the last year of Project 0-1711 was to extend the capabilities of Program 
REPP 2000 (Rational Estimation of Pavement Performance) to estimate the remaining life of 
composite sections. As a reference, REPP 2000 is a software that combines artificial neural 
network (ANN) technology with uncertainty analysis to determine the performance of a flexible 
pavement using measurements from the FWD. The software integrates a series of artificial neural 
network models developed for a wide range of three- and four-layer flexible pavement sections with 
variable depth to rigid layer. The ANN models compute the following items: 

Depth to rigid layer (if not input) 
Compressive strain at the top of the sub grade 
Tensile strain at the bottom of the AC layer 
Modulus of the AC layer for sections with AC layers thicker than 3 in. (75 mm) 

The software provides the following capabilities: 

Provide data input from a FWD .fi\e automatically 
Process ANN models developed for estimating modulus, strains, and depth to rigid layer 
Predicted remaining life using tiie Asphalt Institute, Shell or any user defined models under 
rutting and fatigue cracking faiiure modes 
Account for uncertainty in the iuJiut parameters and determine a range of remaining life 
Incorporate information from traffic reports and condition surveys to develop and graphically 
display a pavement performance.curve (PPC) 
Provide an automatic and real time report 
Provide graphical presentation of the variation in remaining life along the pavement section with 
relevant statistics 
Establish confidence bounds for the PPC's and the profile of the test section. 

For composite pavements, an extensive literature search and personal interviews either yielded 
performance models that were not mechanistic, required a large number of laboratory-derived 
parameters as opposed to using the FWD, or were proprietary. As such, it was decided to limit the 
scope of the project to estimating moduli of different layers instead of estimating the remaining 
lives. These ANN models were np(incorporated into the software for flexible pavements REPP 
2000, rather they were incorporated}ri.to a separate program to facilitate their execution. As soon as 
suitable models are developed, they can be incorporated in the REPP 2000 program. In this report, 
the results from such effort are summarized. The ongoing success of this project has been due to the 
cooperative effort between UTEP and TxDOT personnel. TxDOT personnel have provided 
valuable input at several stages of the project to keep the methodology practical. 

Organization 

Chapter 2 of this report introduces the background information on FWD, ANN models, and 
remaining life models as related to composite pavements. In Chapter 3, the process of generating 
databases for training, testing and validating the ANN models is described. Chapter 4 provides an 
overview of the process of creating artificial neural networks models that estimate the modulus of 
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each layer. This chapter also presents the results of the ANN models developed. Chapter 5 
describes the software developed to estimate the modulus. The last chapter contains the conclusions 
of the research effort in this project. Appendix A contains an overview of the software, which 
contains a detailed description of the windows in the software and their features. This appendix is 
equivalent to the online help of the software. 
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Chapter 2 

Background 

Falling Weight Deflectometer 

The Falling Weight Deflectometer, as shown in Figure 2.1, is an evaluation instrument designed to 
monitor structural pavement condition. The FWD produces a transient impulse loading force on the 
pavement and seven seismic deflection transducers, usually placed 305 mm (12 in.) apart on the 
surface of the pavement, to measure the resulting pavement deflections. 

The impulse load is produced by dropping a mass from various heights. The seven seismic 
transducers (geophones ), which are controlled by the data acquisition equipment that is integrated 
within the FWD, measure the time histories of deflections. Extracted from the time histories are 
seven peak deflections that define the deflection basin. These deflections provide part of the input 
to the methodology developed under this project. 

Figure 2.1 - Schematic of Falling Weight Deflectometer 
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Artificial Neural Networks in Pavement Engineering 

The Artificial Neural Network (ANN) theory is a branch of the more general field called Artificial 
Intelligence. The ANN theory aims at understanding the way the information is processed in the 
brain and to develop the mathematical relationships that would reproduce that process (Smith, 
1993). An artificial neural network is modeled to resemble the human's brain capability to think 
and learn through perception, reasoning and interpretation. A brain is composed of networks of 
neurons that receive input signals from other neurons. When a certain level of excitation is reached, 
a neuron "fires" an output signal that acts as an input to other connecting neurons. The type of 
relationship between the input and the output of a neuron can be described mathematically using a 
number of algorithms (Freeman and Skapura, 1991 ). 

Figure 2.2 graphically shows a model for an ANN and its main components. In an analogy to a 
biological neural network, the neurons are replaced by artificial neurons also called processing 
elements (PEs ). In general, an ANN consists of at least three layers of interconnected PEs: the input, 
hidden, and output layers. The number of PEs in the input layer is the same as the number of input 
variables that are used to predict the desired output (independent variables). The PEs in the output 
layer represent the variables to be predicted ( dependent variables). The input and output layers are 
connected through one or several intermediate layers of PEs, also called hidden layers. The number 
of hidden PEs within these layers is decided by trial and error depending on the complexity of the 
problem. 

Input Layer 

Input 
From 
Other 
PE's 

n 

Output 

Output = Transfer ( L XiWi ) 
i=l 

Figure 2.2 - Components of an Artificial Neural Network 

In most types of ANN, the PEs between two adjacent layers are usually interconnected. The 
strength of each connection is expressed by a numerical value called a weight. The weights are 
determined through a "training" process that consists of presenting input and output examples to the 
network. The ANN is supposed to learn the relationship between the input and the output by 
adapting the weights of the connections. A number of algorithms have been developed to conduct 
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the training process (NeuralWare, 1993). In this work the commonly used "backpropagation" model 
was implemented. 

During the training of a backpropagation neural network, information is transferred in two phases: 
the forward phase and the backward phase. In the forward phase, the input is presented and 
propagated forward through the network to compute an output value for each PE. In the backward 
phase, for each PE in the network, the current output is compared to the desired output and the 
difference or error is computed. Starting at the output layer and ending at the input layer, the error is 
gradually propagated back through each node in the network using a predefined learning rule. 
During this process, the weights of the connections are also modified until the error is minimized 
(NeuralWare, 1993). Once the network is trained, the development process is completed. 

The use of ANN is not new in pavement engineering. Several applications have already been 
published in the specialized literature. Some of those applications include: 1) Meier and Rix (1994) 
and Gucunski et al. (2000 and 1995) for parameter determination, such as the pavement section 
moduli; 2) Garrick et al. (1994) and Eldin and Senouci (1995a and 1995b) for assessment of the 
condition of the pavement and 3) Alsugair and Sharaf (1994) and Taha and Awad (1995) for 
selection of maintenance strategies. 

Remaining Life Models in Composite Pavements 

The most important failure mode that composite pavements can develop is reflection cracking. 
The primary mechanisms that lead to the development of reflection cracks are (a) the horizontal 
movement due to temperature and (b) moisture changes and the differential vertical movement 
due to traffic loadings. Both failure modes occur at the joints and cracks, with the horizontal 
movement being considered more critical. 

According to Huang (1993), hot mix asphalt (HMA) overlays on PCC pavements are most 
difficult to analyze mechanistically because it involves two different types of materials. Finite 
element programs can model HMA as the top layer and PCC as the bottom layer. However, the 
bottom slab is difficult to model if cracks are present. Elastic layer programs may also be used 
to analyze this type of composite pavements if stress adjustment factors for edge and comer 
loads are known. 

Usually the procedure for overlay design is similar to that of new pavements, except that the 
condition or remaining life of the existing pavement at the time of the overlay is taken into 
consideration. The thickness of the overlay is determined so that the damages in either the 
existing pavement or the new overlay will be within allowable limits. This mechanistic 
procedure has been used by Portland Cement Association (PCA) for the design of PCC overlays 
on PCC pavements. 

Huang states that certain distresses particular to rigid pavements should also be considered in the 
design of composite sections, such as pumping, cracking, spalling, and faulting. However, no 
remaining life models or equations for the failure modes mentioned above are presented. 
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A thorough literature review was performed in search of remaining life or performance models 
for composite pavements. The following is a brief summary of the most relevant papers found, 
presented in chronological order. 

Fernando et al. (1986) present a simplified pavement evaluation and AC overlay flexible 
pavement design procedure. The procedure models the pavement as a three-layer structure 
(typical in Pennsylvania) and requires FWD deflections for estimating remaining life and 
appropriate overlay thickness. Linear elastic program BISAR was used to develop strain vs. 
deflection relationships for asphalt tensile and compressive strains from measured FWD 
deflections taken at a load level of 9000 lbs ( 44 kN). This approach was believed to be a simpler 
and more straightforward approach than backcalculation of layer moduli and subsequent 
calculation of stresses and strains. Pavement performance predictions that were calculated using 
strains from the deflection relationships were compared with those from deflection basin-fitting 
algorithms. Results from field data indicated that the performance predictions based on tensile 
strain using laboratory-determined moduli are more realistic than those obtained from 
backcalculation and asphalt strain - deflection relationships. Also, they concluded that 
performance estimates based on subgrade strain were more stable and less sensitive to the 
procedure used to analyze the pavement. Relationships for designing overlay thickness were 
developed by evaluating the variation in pavement strains due to the addition of an overlay. 

The development of mathematical models for the performance prediction of asphalt concrete 
overlays of flexible pavements in Ontario is addressed by Hajek et al. (1987). The objective was 
to develop reliable empirical performance prediction models using the long-term pavement 
performance (L TPP) data from an existing pavement management system. Their models could (a) 
estimate the immediate effect of an overlay on pavement serviceability and (b) estimate its life 
cycle period. Because the pavement information databank was not yet fully functional, 
additional data were obtained from a variety of sources including pavement performance records, 
contract drawings, and traffic files. The duration of overlay life cycle for a predetermined 
terminal serviceability (PCR of 55 years) was estimated as a function of overlay thickness, 
traffic, maintenance patching, and life cycle duration of the initial pavement. The latter variable 
was included in the model to capture the influence of local field conditions and to characterize 
the strength of the underlying support structure. The overall conclusion was that the proposed 
models were preliminary and should be updated when more data became available. 

Foxworthy and Darter (1989) presented a concept for the backcalculation of layer moduli from 
FWD data as part of the overall process ofNDT and NDE of rigid airfield pavements. The ILLI­
SLAB finite-element model was used to backcalculate the dynamic Young's modulus (E) of the 
PCC surface and a composite dynamic modulus of subgrade reaction (k) for the supporting layers 
of the system from FWD-generated deflections. FWD field-testing was conducted at three Air 
Force installations in Texas, New York, and North Carolina to provide representative cross­
sections and environmental conditions. The deflection basin is described in terms of the 
maximum deflection under the FWD loading plate (DO) and the cross sectional "area" of the 
basin. These two variables found critical to the uniqueness of the backcalculated parameters. 
The "area" concept combines all the measured deflections in the basin into a single number to 
minimize the effect of an erroneous geophone reading. In addition, to eliminate the effect of 
variable loads and to restrict the maximum and minimum values of the area, each deflection 
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reading is normalized with respect to the maximum deflection (D0). A correlation is presented 
that relates dynamic k values to traditional static k values determined from plate-bearing tests. A 
similar model is suggested to correlate dynamic E with static E to use in static analysis of 
pavement structures where a dynamic analysis is not appropriate. 

Pierce et al. (1993) reported on a mechanistic, empirically based flexible pavement overlay 
design method developed by Washington DOT using the information contained in their 
pavement management system and deflection data obtained from FWD. The design criterion for 
overlay design was primarily based on Monismith' s fatigue cracking (Monismith and Epps, 
1969) and Chevron's rutting models. EVERCALC (based on CHEVRON N-LAYER) was used 
for the backcalculation of layer moduli using FWD measurements. EVERP A VE a mechanistic, 
empirically based overlay design program was used to calculate overlay thickness by comparing 
the pavement performance lives for fatigue cracking and rutting, using projected design traffic 
volume (ESALs). The solution converges when the maximum distress performance period 
exceeds the design traffic volume. 

Huang (1993) has a chapter that presents several overlay design methodologies that depend on 
the type of overlay and existing pavement. The chapter concludes that layer elastic programs can 
be used as mechanistic design models if both the overlay and the existing pavements are flexible. 
However, for HMA overlays on PCC pavements, stress adjustment factors for edge and corner 
loadings should be applied. According to Huang, three general methods can be used for overlay 
design: the effective thickness approach, the deflection approach,. and the mechanistic-empirical 
approach. The Asphalt Institute employs both the effective thickness and the deflection methods 
for the design of HMA overlays on both flexible and rigid pavements. The AASHTO Design 
Guide provides the most comprehensive overlay design procedure based on the effective 
thickness approach. For flexible overlays on rigid pavements, the design methods can be divided 
into two categories: (a) the normal structural overlay method and (b) the break and seat overlay 
method. The overlay thickness obtained by the normal structural overlay method must be 
checked against a minimum thickness to minimize reflection cracking. 

Hall and Darter (1994) presented a procedure that has been developed for backcalculation of a 
concrete slab and foundation moduli from deflections measured on composite pavements. The 
AREA method advocated by Hoffman and Thompson (1981) was used to backcalculate the PCC 
slab elastic modulus and the subgrade k-value. According to Hall and Darter, the most difficult 
aspect of the structural evaluation of composite pavements is the assessment of the overall 
condition of the PCC slab in its current state, which requires the most experienced and expert 
judgment. In the backcalculation process, the PCC moduli should be considered in conjunction 
with the type, quantity, and severity of visible distress. One possible option to relate PCC moduli 
to distress is to conduct FWD testing in both cracked and intact areas. Testing in cracked areas 
poses several practical difficulties since no guidelines are available for how to conduct deflection 
testing in cracked areas. The second approach is to test intact areas only. The disadvantage of this 
approach is that the engineer must consider the backcalculation results and distress survey results 
separately in assessing the condition of the slab. 

Mc Peak and Khazanovich ( 1997) presented a procedure for backcalculating strength parameters 
of the PCC, AC and underlying layers from deflections collected by a FWD. They also describe 
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the advantages and disadvantages of using elastic layers and Winkler foundations in the 
backcalculation process. As a rule of thumb, backcalculation programs based on elastic layer 
theory are used for AC pavements and Winkler foundation for PCC pavements. According to 
this paper, the major drawback of elastic layered based backcalculation is that it may be 
influenced by the chosen seed moduli and the experience of the engineer performing the 
backcalculation. Another drawback is that in the analysis and design of PCC and composite 
pavements, the subgrade layer is modeled with the Winkler (springs) model, which is not directly 
correlated to the elastic layer model parameters. On the other hand, plate theory has been used 
in the analysis of PCC slab-on-grade pavement systems assuming that there is no compression on 
the upper layer. All deflections are attributed to compression of the sub grade and bending of the 
plate. This assumption is particularly poor for composite pavements. In addition, the AC and 
PCC have to be modeled as one layer. These two limitations render regular plate theory 
unusable for AC/PCC pavement structures. 

McPeak abnd Khazanovich evaluated three backcalculation procedures to determine their 
applicability and accuracy for asphalt-overlaid composite pavements. The three procedures 
consisted of program DIPLOBACK (Khazanovich, 1994) that is based on elastic layered theory 
and procedures based on AREA (Hoffinan and Thompson, 1981) and Best Fit (Smith et al., 
1995) that are based on Winkler foundation. The last two programs are not applicable to the 
deflection measured directly under the load. When that deflection was ignored in the analysis, 
the structural properties of the pavement system were more closely predicted. DIPLOBACK, 
which treats the overlay as an elastic layer rather than a plate, predicted the moduli of the 
composite layers better than the other two programs for thin and thick AC layers. 

A number of empirical models have been developed for predicting reflective cracking in AC 
overlaid pavements. Some models relate several pavement, environmental, and traffic loading 
variables to the amount of reflective cracking. Examples of some of the variables include 
cumulative 18 kip ESALS, overlay thickness, age of overlay, freezing index, and some measure of 
condition of the PCC pavement prior to overlay with an AC layer. 

Owusu-Antwi et al. (1998) developed a model for predicting the "real-life" behavior of composite 
(AC/PCC) pavements using the principles of fracture mechanics. The model estimates the amount 
of reflective cracking using data that is routinely available. The proposed model relates the damage 
caused by temperature and traffic loads to the total amount of reflective cracking in AC/PCC 
pavements, using Miner's cumulative damage approach and distress data from the LTPP database 
for calibration. For 33 LTPP AC overlaid PCC pavement sections, the number ofload applications 
to failure and the total damage caused by traffic and temperature loading were determined. After a 
sensitivity analysis was performed on the model, it was concluded that the approach could be used 
to obtain a model that reasonably predicts reflective cracking. However, the model can be expanded 
for use in pavement management applications and as design checks. The drawback of this model is 
that the FWD deflections are not used to determine any of the input parameters. 

Asphalt Institute (2000) provides the state-of-the-practice for evaluating and designing asphalt 
overlays for concrete pavements. Two procedures for evaluating the structural capacity of existing 
rigid pavements and for computing the thickness of the overlay are suggested. The primary method 
used by the Asphalt Institute is the effective thickness procedure, in which the actual thickness of 
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each layer is converted to an equivalent thickness based on the condition of the layer. The 
conversion factors are based on a visual description of the material. As such this method cannot be 
considered as a mechanistic approach. The manual briefly discusses the different factors involved 
in the design of overlays. However, performance models are not addressed. 

In general, as indicated before, at this time suitable models for predicting the remaining life of 
composite pavements that use FWD as a direct input do not exist. However, several models that 
utilize backcalculated moduli, amongst other parameters do exist. Therefore, the focus of the 
project was shifted from estimating remaining life to estimating the moduli of different layers. 

II 
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Chapter 3 

Database of Pavement Section Parameters 

The main ingredients for developing an ANN model are a set of examples that show specific values 
of the independent variables and the corresponding values of the dependent variable(s). These 
examples are necessary to create an ANN model by training and testing. Specific to the work 
presented in this report, each example consists of an input vector with ten elements that represent 
the thickness of the AC, and base layers (t1, t2), depth to rigid layer, and the seven FWD readings 
( do ... dt;), and an output vector, whose only element defines the quantity that the model will predict. 
In this case, that quantity is the modulus value of any of the three layers. An overview of the ANN 
development process is discussed in Chapter 4. 

Ideally, a database of examples is obtained from actual field data that has been collected and "fed" 
into a PMS database. Nevertheless, this type of information is limited at the present time. 
Therefore, a comprehensive synthetic database was generated to simulate and cover a wide range of 
possible three-layer pavement systems. 

Database Generation 

The overall process employed to generate a synthetic database is similar to previous work presented 
for this project. Chapter 3 of Report 1711-1 (Ferregut et al., 1999) and Report 1711-2 (Abdallah et 
al., 2000) illustrate graphically the database generation process. Basically, the feasible range for 
each pavement parameter was established. Table 3.1 shows the minimum and maximum values for 
the thickness and moduli that were used. The table also shows the increment used for each of the 
parameters. To randomly simulate pavement within these ranges, a Monte Carlo simulation was 
conducted (Ang and Tang, 1984) using the following assumptions: 1) the variables were not 
correlated and 2) the pavement section variables were simulated using a discrete uniform 
distribution. A total of 10,000 pavement sections were generated. For each pavement section 
defined, a FWD test on the section was simulated using the five-layer linear elastic program 
WESLEA. The seven FWD readings were computed under a static load of9000 lb (40 KN) acting 
over a 6 in. (152 mm) radius and with a uniform 12 in. (305 mm) spacing for the seven sensors. 
This completed the number of variables required for a comprehensive database. The thickness and 

13 



seven deflections constituted the input vector for the ANNs. And as stated earlier, the variables that 
define the output vector were each of the three layer moduli. 

Table 3.1- Ranges of Pavement Section Variables Used in ANN Model Development 

Pavement Variables Units 
Value 

Minimum Maximum 

Asphalt Thickness (t1) in. (mm) 0.5 (12) 10 (250) 

Stabilized Base Thickness (t2) in. (mm) 4 (100) 24 (600) 

SubgradeThickness (t3) in. (mm) 60 (1500) 200 (5100) 

Asphalt Modulus (EAc) ksi (GPa) 200 (1.4) 1000 (7) 

Base Modulus (EBASE) ksi (GPa) 1000 (7) 8000 (55) 

Subgrade Modulus (EsUBGRADE) ksi (GPa) 5 (34) 45 (300) 

Data Processing 

A very important step in developing ANN models is data pre-processing. In many engineering 
applications, raw data should be pre-processed to ensure that the ANN learning process is not 
inhibited. Thus, the data extracted from the database was subjected to mathematical transformations 
before being used in the training of ANN models. 

A combinatorial analysis was conducted to select a suitable set of transformations for each of the 
input and output variables. The analysis involved replacing each of the raw input and output 
variables with one or more transformed variables during the ANN training process. The final 
transformations were selected from a pool of candidate transformation chosen a priori. A genetic 
algorithm was implemented to choose the best set of transformations. The criteria used to select the 
transformation, was the minimization of the root mean square (RMS) error of the output. Table 3.1 
in the Report 1771-1 includes the pool of candidate transformations that were also used for 
improving the quality of data in the ANN development process. A different set of transformations 
was used depending on the performance of each model developed. 

Report 1711-1 showed the importance of pre-processing before training a neural network model. 
The figure from that report is reproduced in Figure 3.1. The results of two Artificial Neural 
Network models, one trained with the raw data and the other trained with pre-processed data are 
shown. The improvements in model gained by pre-processing of the data is evident. 
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Chapter 4 

Artificial Neural Network Models 

ANN Development 

All the ANN models developed during this project have been based on a multi-layer feed-forward 
backpropagation algorithm. A Kalman filter (Puskorius and Feldkamp, 1991) was selected as the 
learning rule to estimate the weights for the links that join the processing elements between two 
adjacent layers. The sigmoid function was selected as the transfer function of the processing 
elements. The sigmoid transfer function is used in the output layer to transfer the weighted sum, as 
shown in Figure 2.2, to fit within certain specified bounds (Smith, 1993). The architecture (number 
of hidden layers and their corresponding number of PEs in each of them) was chosen based on the 
RMS error of the output. The model with the best architecture was then evaluated with a validating 
data file (file was sampled randomly from the comprehensive database). The architectures for the 
final models consisted of three layers. However, the number of PE' s in the input and hidden layers 
were different for each model. The number of PE's in the input layer depended on the data 
transformations used for the model. Likewise, the number of PE's in the hidden layer depended on 
the model's performance. In the development of the ANN architecture, it is always desirable to 
keep the number of PEs to a minimum. The smaller the architecture is, the more robust the ANN 
model will be (Neura!Ware, 1993). 

ANN Models 

Four ANN models were developed for a three-layer composite pavement. Three of the models 
predict the modulus of each of the three layers of the pavement section. The three models use as 
input the thickness of the AC and the stabilized base layers and the FWD deflection readings. 
Predictions of the AC and base moduli were reasonably accurate; however the modulus of the 
subgrade was predicted with more variability. To improve on the prediction of this modulus, a 
fourth ANN model that uses the depth to bedrock as an additional variable was developed. This 
model predicts the modulus of the subgrade with greater accuracy than the previous model. All four 
models are based on the ranges of pavement sections shown in Table 3. I. These ranges were based 
on surveys conducted by TxDOT personnel. 

17 



The ANN models developed during this phase of the project are summarized in Table 4.1. The 
table contains the best and final architecture, the bounds of the prediction range, and the root mean 
square (RMS) error of each model. These models are valid for pavement sections listed in Table 
3.1, and should not be used for pavement sections with values outside those ranges. 

Table 4.1 - Specifications and Architectures of the Three-Layer ANN Models 

Number of PEs Prediction Bounds RMS ANN Model 
(Input/Hidden/Output) Upper Lower Error 

Modulus of AC 36-29-1 1000 ksi 200 ksi 
0.031 (7 GPa) (1.4 GPa) 

Modulus of Stabilized Base 37-30-1 
8000 ksi 1000 ksi 

0.054 (55 GPa) (7 GPa) 

Modulus of Subgrade 37-29-1 
45 ksi 5 ksi 

0.06 (300MPa) (35 MPa) 

Modulus of Subgrade with 
40-16-1 45 ksi 5 ksi 

0.01 depth to rigid layer input (300 MPa) (35 MPa) 

Modulus of AC 

Figure 4. la compares the AC moduli results from the ANN model with the expected values. A total 
of 350 data points are presented. The bounds for the ±10% absolute error are also shown. 95% of 
the predicted values are contained within these limits. Figure 4.lb is a chart that shows the 
frequency with which predictions were made within a given error. The chart contains three separate 
sets of data: training, testing and validation sets. Each set contained 1000, 350, and 350 cases, 
respectively. This figure also shows the cumulative frequency plots for each data set. According to 
the plot corresponding to the validation set, the model predicts 95% of the desired values with a 
margin of error of 10% or less. Similar levels of accuracy were obtained for the other two data sets. 

Modulus of Stabilized Base 

Results for the modulus of the stabilized base layer are shown in Figure 4.2. Predictions of base 
moduli may also be considered accurate for engineering purposes. Figure 4.2b shows that, unlike 
the previous case, only 82% of the base moduli in the validation set wer7e predicted within a 
margin of error of I 0% or less. Results for the other two sets also experienced a drop in accuracy 
with respect to the previous case. 

18 



] 
"1000 
~ ... 
" = 
0 800 u 
' = ~ 600 · 

Q. 

"' < 
~ 400 · 
"' ..e = 200 "Cl 

i 

a) Predictions 

• 

• 

• 

0 ··1---...--------------------1 
1 51 101 151 201 251 301 351 

Validation Case Number 

-Target Values • Predicted Values --+/-10% Ern!r 

0.6r77-:;:--;------:::-;·~·~-;_;·;·~·:.:-i5·~"""-·aa·····= .... --.... -r 
b) Performance + :: .: 

100% 

.., 0.5 

" = " §. 0.4 
i: 

i;.. 
-c:, 0.3 · · 
" . ~ 
'; e 0.2 .. ... 
~ 

0.1 

0% 1% 

Training 

. . ~ .... 
. '·. <¥··~ ••••••••••••••• 

. ..·· .. . ·· .. · .. . . 
. ,' ~ l 97°/o - Training \ 

•... •· : : 96% - Testing • 
+ 

\. :,: • 95% - Validating • 
+ • 

.. 90% 

80% 

70% 

· · 60% 

50% 
.. 40% 

:~ ~ -' , .. "_ + • . ~ 

.. .\ + •• • • •• 

,'. ( .... . ............. . 30% 

20% 

10% 
. 0% 

5% 10% 20% 50% More 

Absolute Error 

-+-Validating 

Figure 4.1 - Quality of ANN Models Developed for Predicting Modulus of 
AC Layer 

.., 
" = " = O" 

" ... 
i;.. 

" .r: .... 
" -= e 
= u 

19 



20 

9000 -r-~~~~~~~~~~~~~~~~~~~~---, 

•f;; 8000 
.::.: 
:i 7000 .. 
: 6000 
"' ~ 5000 · .. 

,.Q 

~ 4000 
.... 
~ 3000 · 
= 

'.:g 2000 • 
0 

~ 1000 

a) Predictions 

• 
• • 

• • 
• 

• 
01---,---,---,---,---,---,----,---,---,.1 

1 51 101 151 201 251 301 351 401 451 

Validation Case Number 

-Target Values • Predicted Values --+/- 10% Error 

,.., 0.5 
" = "' & 0.4 
~ ... 

"C 0.3 
"' N .• -~ 0.2 · · 
0 

z 0.1 

0% 1% 

· ·,A··· Training 

5% 10% 20% 

Absolute Error 

·--,,.-· Testing 

100% 

90% 
.. 80% 

70% 

60% 
.. 50% 

40% 

30% 
.. 20% 

10% 

0% 

50% More 

_._ Validating 

Figure 4.2 - Quality of ANN Models Developed for Predicting Modulus 
of Base Layer 

;., 

" = "' = O" 

"' .. ... 
"' .. .• .... .. -= s 
= u 



Modulus of Subgrade 

Unlike the previous two cases, the results of the original ANN model that predicts the subgrade 
modulus without regards to the depth to rigid layer were less accurate. Figure 4.3 shows the 
corresponding plots. Figure 4.3a shows that a large number of cases that fall outside the I 0% error 
bounds. Also, from Figure 4.3b, the results from the validation set shows the percentage of subgrade 
moduli predicted within an error of I 0% is a low 63%. 
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To improve on these results, a modified ANN model was developed. In addtion to the thickness of 
the layers and the FWD deflections, the thickness of subgrade layer was included in the model's 
input. Prediction of the subgrade modulus was improved significantly when this variable was 
considered. Results are shown in Figure 4.4. The frequency of the predictions within a 10% error 
improved from 63% to 98% for the validation set. The training and testing sets experienced similar 
improvements. To use the modified model, the user needs to input the thickness of subgrade in 
additional to the nine input parameters of thickness and deflections. 
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Chapter 5 

Description of Software 

This chapter contains a description of the software developed to predict the layer moduli of 
composite sections. The software is named "M.E. Program" which stands for Modulus Estimation. 
The M.E. Program uses artificial neural network technology to determine the layer moduli using 
layer thickness and measurements of deflections from the Falling Weight Deflectometer. 

The software integrates a series of neural network models developed for a wide range of three-layer 
composite pavement sections with variable subgrade thickness. The ANN models compute: 

I. the modulus of asphalt-concrete 
2. the modulus of stabilized base 
3. the modulus of subgrade 

The software includes algorithms: 

to read deflections automatically from an FWD file 
to apply temperature correction to FWD deflections 
to read from a text file prepared as input to ANN models 
to process ANN models and obtain layer moduli 
to save all information in a database file 
and to plot the profile of an entire test section for modulus of each layer 

The major benefit of this software tool is that the estimation of the moduli is instantaneous; 
therefore a large amount of data can be processed at once. 

The software was developed under the assumption that thickness and FWD readings are precise 
measures, no uncertainty in the input is considered. 
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Software Architecture 

This is the first version of the software and is developed under Windows 95/98/00/NT operating 
systems. The development environment is based on C++ programming language, which allows 
object oriented programming. The major benefit of object oriented programming is the capability 
of developing programs with a modular architecture. 

The software was designed around three main routines: a) Processing of FWD data, b) Execution of 
Artificial Neural Networks and c) Viewing of the results graphically and numerically. The three 
routines are organized in three levels. Figure 5.1 shows the main architecture of the software. The 
first level contains the processes used to prepare the input file from the FWD data and section 
thicknesses. The second level is estimating the layer moduli using the ANN models. The third 
level is to extract the results and display the information numerically and graphically. The later two 
levels are self-explanatory; however, the first level is further detailed in Figure 5.2. The figure 
illustrates two choices that are available for the user. They are a) to automatically extract data from 
FWD file and generate a text file as input to the ANN model and b) to use a text file directly as 
input to the ANN models. The first option allows for deflection normalization with temperature 
based on a study by Scullion (1987). After extracting FWD data from files generated by the FWD 
operating program version 20, the program normalizes the deflections based on load and 
temperature as indicated in the figure. The advantage of this option is that the user's interaction 
with the FWD file is minimized. The second option allows the user to produce any number of 
thicknesses and deflection sets in the input file. 

Figure 5.1 - Software Architecture: Main Modules 
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Figure 5.2 - Selecting and Processing of Input File 

The main features of the M.E. Program are illustrated in the next three figures. Figure 5.3 shows the 
main menu window of the software. This form, which is the core of the software, allows the user to 
select the file type and to view the results. Figure 5 .4 shows the window that appears if the user 
selects to process an FWD file. In this form, the user inputs the section properties and selects an 
FWD file to extract the deflection information. The window that displays the results is shown in 
Figure 5.5. In this window, the results can be viewed either numerically in a data grid or 
graphically depicting the section profile. A detailed description of the features in each window is 
provided in Appendix A (Software Overview), which is equivalent to the online help of the 
software. 
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Chapter 6 

Summary and Conclusions 

This report summarizes the efforts to develop a methodology based on the Artificial Neural 
Networks to process data from the Falling Weight Deflectometer to estimate the layer moduli of a 
pavement. The project is completed with close cooperation between TxDOT and UTEP. 

Artificial neural network models were developed, which rapidly and reliably predict the layer 
moduli of AC, base and subgrade of composite sections. Four ANN models were developed. Three 
of the models require only the thicknesses of the AC and stabilized base and normalized FWD 
deflections. The fourth model was developed for predicting the modulus of the subgrade using the 
thickness of subgrade as additional input. A modular software that incorporates all algorithms 
described in this report was also developed. 

Artificial Neural Network technology has proven to be a feasible and practical approach in the 
development of models to assess the integrity of pavements using data that is readily available to the 
pavement engineer. 
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Appendix A 

Software Overview 

This section provides a detailed illustration of the forms used in the program. Each window that 
appears in the software is demonstrated followed by a description of that window. 
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MODULI ESTIMATION PROGRAM USING ARTIFICIAL NEURAL NETWORKS -­
This software uses artificial neural network (ANN) technology to determine the layer moduli 
using layer thickness and measurements of deflections from the Falling Weight 
Deflectometer. The software integrates a series of artificial neural network models 
developed for a wide range of three-layer composite pavement sections with variable 
subgrade thicknesses. 

A) MAIN MENU - From the Main Menu section three options are available: 
a. Process FWD File - guides the user through a set of procedures that uses data from 

the FWD file to estimate layer moduli. 
b. Process Text File - guides the user through a set of procedures that uses data from a 

text file( s) the user prepares to estimate layer moduli. 
c. View Results - guides the user to view results generated by the ANN for either of the 

two previous options. 
After selecting any of these options press the [RUN] button to carry out the process. 

B) CHECK IF DEPTH TO BEDROCK WILL BE USED TO ESTIMATE SUBGRADE 
MODULUS CHECKBOX - When processing an FWD file, if this option is checked, a 
space is provided in the next window that prompts to input the depth to bedrock. When 
processing a text file, if this option is checked, two warning messages will appear. The 
first message informs the user that the first input file that will be selected will be used to 

36 



estimate the AC and base moduli. The second message informs the user that a second 
input file will be required to estimate the modulus of the subgrade. The reason for two 
input files is that the ANN models that estimate the AC and base moduli, do not require 
the thickness of the subgrade as input, therefore, the file needs to be prepared without 
that parameter. The second file however, will contain the thickness of the sub grade as an 
input. 

C) HELP BUTTON AND EXIT PROGRAM BUTTON -
a. Help Button - Clicking on the [HELP] button in any window will access the "Online 

Help" window. The "Online Help" window is used to access information that assist 
in understanding how this program works. More detailed information is provided in 
the next section. 
The Online Help feature works simply by clicking on any of the topics. This will 
hyperlink to a detailed explanation that pops up on the right hand side of the window. 

b. Exit Program Button - Clicking on the [EXIT PROGRAM] button simply terminates 
the process. 

D) IMAGE -- The image to the right of the window graphically represents an abstract of this 
program. On the top half of the image a symbol of the ANN models is represented 
showing the inputs and the outputs used by each model. The bottom half of the image 
shows the range of section properties used when developing the ANN models. 

E) ST A TUS BAR - The status bar is located at the bottom of each window in the program, 
displaying the current status. 
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Help Window 
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1. the modulus of asphalt-concrete 
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3. the modulus of subgrade 
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A) "ONLINE HELP" MENU - This menu appears when the [HELP] button is clicked. It 
lists seven topics that explain in detail how the program works. Clicking on each topic 
will display the explanation on the right hand side of the window thus having the topics 
menu always available. 
Clicking on the [BACK] button will terminate the help window and return to the previous 
window where the online help was accessed. 

B) "ONLINE HELP" DISPLAY - This space displays the contents of each topic explaining 
in detail about how the program works, If the same topic is clicked twice, the main 
window image appears hiding the contents of the topic, 
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Naming of the Project File Dialog Box 

by defa;(.llt the project file name is 
thf san\e as I.he inp\.lt file name. 

Project File Name: 

lc:\b 1 ovelay\11 Oeast.DBF 

This dialog box appears: 
• after clicking the [Select FWD File] button under the process FWD file window, 
• after selecting the input text file(s) when selecting the "Process Text file" option, 
prompting the user to enter and save the project filename. 

NOTE: By default the project file name is the same as the input file name. However the user 
can change the name of the project file. After the project file name is selected the user presses 
the [CONTINUE] button to proceed. 
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Process FWD File Window 
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A) SECTION THICKNESS - This section allows the user to enter the thickness of the 
following layers: 

a. Asphalt-Concrete (AC), 
b. Stabilized Base, 
c. Depth to bedrock (if necessary). 

Also included are two buttons: [UPDATE] and [RESET]. The [UPDATE] button is 
used to accept the information after the user enters the thickness values. The 
[ RESET] button is used to clear the values if the user wishes to replace them with the 
previous set of values. 
NOTE : Since this model requires the thickness of subgrade layer as input and 
pavement engineers are more familiar dealing with depth to bedrock or depth to rigid 
layer, the software requires the user to input the depth to bedrock and then calculates 
the thickness of the sub grade and uses that value as input to the fourth ANN model. 

B) FWD FILE AND PROJECT FILE NAME - This section contains: 
a. a button which allows the user to select an FWD file, 
b. and a textbox display of the project file path. 

C) DATABASE GRID-This database grid displays all data from the input file and the 
results generated by the program. The database is displayed after the FWD file is 



processed. This database can also be accessed from the Project Database tab when 
the "View Results" option in the main menu is selected. 

D) NAVIGATION TOOL - This four-button tool allows the user to scroll the different 
cases reported in the database table. 

41 



FWD Normalization Window 
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A) SELECT DROP NUMBER - This section contains a drop-list that allows the user to 
choose a specific drop height from which the corresponding FWD readings will be used. 

B) FWD FILE DOES/ DOES NOT CONTAIN AC TEMPERATURE - This section 
displays a message that informs the user when the selected FWD file does not contain the 
temperature of the AC layer. 

C) NORMALIZE DEFLECTION UNDER THE LOAD WITH AC TEMPERATURE 
CORRECTION FACTORS FOR TEXAS DISTRICTS- Checking this box allows the 
user to define temperature normalization options. This displays section D (To Normalize 
By Temperature) and section E (the Texas Districts). 

D) TO NORMALIZE BY TEMPERATURE - In this section, the user enters the AC 
temperature in degrees Fahrenheit and selects the FWD testing month from the drop 
down list. 

E) TEXAS DISTRICT SELECTION - In this section, the user selects the Texas District 
where the FWD test was performed using the navigation tools at the bottom of the list. 
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Main Menu Window (For Selecting Text File) 
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A) PROCESS TEXT FILE - Before choosing this option, the user should be aware that the 
text file must be prepared before using this program in the proper format for the ANN 
models to process them. After selecting this option in the main menu, click the [RUN] 
button to continue. The user should also check/ uncheck the depth to bedrock option. 

B) INPUT FILE WARNING - When the depth to bedrock option is checked a warning 
message appears informing the user that the first input text file that will be selected will 
be used to estimate the AC and base moduli. A second input file will be asked for to 
estimate the modulus of the subgrade. After pressing the [ OK] button on each message 
box, the user is prompted to provide the name of the project file. 
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Results of Artificial Neural Network Model Window (Part I) 

- ~final 
~-QSQLOOO.DBF 
~-QSQL663.D8F 
~ac.DBF 
~ALLDBF 
~all5i.D8F 

• 
File nciine: I __ 

~ALL-tesLDBF 
~ ALL -test2.D8 F 
~base.DBF 
~ basetxt.DBF 
~ Flex_pav.DBF 
~ llOeast.DBF 

Files of l}ope: J DB F File 

r.-: Op~-n :~s' r:~~9-0·11~ 

Project·.DataBase 

~imad.D8F 
~input.DBF 
~ input21.D8F 
~ inputac. DB F 
J3 inputc.DBFA 
~ inputcc.08 

~ inputsg.DE 
~KE.DBF 
~KEm.DBF 
~ sgwt3.D8F 
~ textres.08 
~ZONE0.0( 

_>J 

.1 Opea ! 
iJ Cancel [ · 

!Status·· 

44 

A) SELECT PROJECT FILE TO VIEW RESULTS - After selecting the View results 
option and the [RUN] button in the main window, the Results of Artificial Neural 
Networks window appears in the background and an open file dialog box in the 
foreground where the user is prompted to select and open a project file. 

B) PROJECT FILE- The Project File textbox displays the name of the project file 
selected for viewing. 

C) SECTION PROFILE - The Section Profile tab shows a graph that presents the neural 
network estimation of the modulus profile 

D) PROJECT DAT ABASE - Under this tab, the project database table displays data 
read from the input file as well as the computed results in numerical format. 

NOTE: Navigation buttons allow the user to scroll through the database. 



Results of Artificial Neural Networks Window (Part II) 
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A) SELECT MODULUS PROFILE - Use the drop-list to select the desired modulus profile 
among the following layers: 

a. Asphalt-Concrete, 
b. Stabilized Base, or 
c. Subgrade. 

The user can switch back and forth between layer profiles. 

B) GRAPH- This graph presents the neural network estimation of the modulus profile. The 
vertical axis shows the layer modulus, and the horizontal axis show the case number. 
The graphical view of the modulus profile also contains a toolbar that allows the user to: 

save the graph, 
take a snap shot of the graph, 
print the graph, and 
manipulate the graph's appearance. 

C) VALUES -- This section shows the statistical parameters (average, standard deviation, 
and coefficient of variation) of the set of computed moduli for the selected layer. A 
scroll down-list shows the estimations of the layer modulus per case. 

NOTE: The Navigation buttons allow the user to scroll the database through each case back 
and forth, pointing out the selected case in the scroll down-list and highlighting in "black" 
the corresponding point in the graph. 
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Results of Artificial Neural Networks Window (Part III) 
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A) DATABASE GRID - The grid under the "Project Database" tab shows the results of the 
selected project file. If the project file is based on a FWD file, the table will contain all 
the information from that process. However, if the project file is based on a text file, the 
table will only contain the inputs and outputs of the ANN models 
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Typical Graphs of Results (Section Profile) 
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A) PROFILE FOR THE MODULUS OF AC- This graph depicts the profile of the modulus 
of asphalt-concrete (in ksi units) versus the corresponding case number. 

B) PROFILE FOR THE MODULUS OF BASE- This graph depicts the profile of the 
modulus of the stabilized base (in ksi units) versus the corresponding case number. 

C) PROFILE FOR THE MODULUS OF SUBGRADE - This graph depicts the profile of 
the modulus of the subgrade (in psi units) versus the corresponding case number. 
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