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CHAPTER 1 

INTRODUCTION 
 

1.1 Overview of Research 
The idea of prestressing concrete structures was first applied in 1928 by Eugene Freyssinet 

(1956) in his effort to save the Le Veurdre Bridge over the Allier River near Vichy, France. The 
primary purpose of using prestressed concrete was to eliminate/reduce cracking at service load 
and to fully utilize the capacity of high-strength steel. After the Second World War, prestressed 
concrete became prevalent due to the needs of reconstruction and the availability of high-strength 
steel. Today, prestressed concrete has become the predominant material in highway bridge 
construction. It is also widely used in the construction of buildings, underground structures, TV 
towers, floating storages and offshore structures, power stations, nuclear reactor vessels, etc. 

This research intends to solve one of the most troublesome problems in prestressed concrete, 
namely shear. The problem arises from the lack of a rational model to predict the behavior of 
prestressed concrete structures under shear action and the various modes of shear failures. 
Because of this deficiency, all the guidelines for shear design, such as ACI Codes and AASHTO 
Specifications, are empirical and have severe limitations. 

Hsu (2002) pointed out the deficiency in the shear design guidelines for reinforced and 
prestressed concrete bridge girders. By comparing the fixed-angle model with the rotating-angle 
model, he showed that the “concrete contribution” Vc for the shear resistance can be derived from 
the shear resistance of cracked concrete, rather than from the tensile strength of concrete as 
assumed in ACI Codes (2005) or the tensile stress of cracked concrete in AASHTO Specifications 
(2004). 

In Loov’s “shear friction” theory (Loov, 1978, 1997, and 2002) for girders, Vc was derived 
from the shear resistance of cracked concrete along a shear failure plane. Based on the “shear 
friction” principle, Loov established a shear design method and illustrated it with a detailed 
example. However, the determination of Vc by a “shear friction” principle was not widely 
accepted. Hsu (2002) noted that Loov’s method can be modified and be applicable to prestressed 
concrete girders, as long as the constitutive laws of prestressed concrete membrane elements are 
clarified. These constitutive laws would allow us to understand the effect of prestress on the 
“concrete contribution” Vc. 

Similar to reinforced concrete structures, wall-type or shell-type prestressed concrete 
structures can be visualized as assemblies of membrane elements subjected to normal and shear 
stresses in the plane of elements. Taking bridge girders as examples, Fig. 1.1.1(a) to (c) show 
three main types of prestressed bridge girders: I-girder, box girder, and trapezoidal girder. The 
webs of the girders, which are shear-governed, can be analyzed using finite element methods if 
there is a rational shear model for plane stress elements (Fig. 1.1.1(d)). Therefore, the key to 
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solving the shear problem of prestressed concrete structures is to thoroughly understand the shear 
behavior of prestressed concrete membrane elements. 

Figure 1.1.2(a) shows a typical I-girder used in highway bridges. The girder may encounter 
two major kinds of shear failure modes: (1) web shear failure near the supports where the shear 
force is large and the bending moment is small, and (2) flexural-shear failure near the one-third or 
quarter point of the span where both the shear force and the bending moment are large. A typical 
membrane element subjected to in-plane stresses can be isolated from the failure region of the 
girder, as shown in Fig. 1.1.2(b). The research in this project focuses on the shear behavior of 
prestressed concrete membrane elements (panels).  

Many researchers have developed various types of analytical models of reinforced concrete, 
such as truss models, orthotropic models, nonlinear elastic models, plastic models, micro models, 
etc. As compared with the other models, the orthotropic model stands out both in accuracy and in 
efficiency. Over the past 20 years, extensive experimental and theoretical studies on the shear 
behavior of reinforced concrete have been carried out by a research group at the University of 
Houston (UH). A series of analytical models was established to predict the nonlinear shear 
behavior of reinforced concrete membrane elements. These models are: the Rotating-Angle 
Softened Truss Model (RA-STM) by Hsu (1993), Belarbi and Hsu (1995), and Pang and Hsu 
(1995); the Fixed-Angle Softened Truss Model (FA-STM) by Pang and Hsu (1996) and Hsu and 
Zhang (1997); and the Softened Membrane Model (SMM) by Hsu and Zhu (2002). All these 
models are rational because they satisfy Navier’s three principles of mechanics of materials: stress 
equilibrium, strain compatibility, and constitutive relationships of materials. 

The Softened Membrane Model has been proven to be successful in predicting the entire 
shear behavior of reinforced concrete panels including both the pre-peak and the post-peak 
regions. In this research, the SMM is extended to prestressed concrete panels. Ten prestressed 
concrete panels were tested to obtain the constitutive laws of concrete and prestressing strands. 
These constitutive laws, which take into account the effect of prestress, were then incorporated 
into the SMM. The new model established in this dissertation will be called the Softened 
Membrane Model for Prestressed Concrete (SMM-PC). 

Another major part of this project involved development of a new simple shear design 
equation for girders. For this a series of five prestressed concrete I-beams were designed, cast, and 
tested to study their behavior in web shear as well as flexural shear failure modes. The results 
obtained from these tests were analyzed and a new simple equation was developed for the shear 
design of prestressed concrete girders. Results from other tests available in the literature 
(Lyngberg, 1976; Elzanaty et al., 1986; and Rangan, 1991) were used to verify the new design 
equation and make necessary modifications to the same. The new design equation was also 
extended to include non-prestressed girders. 
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1.2 Objectives of Research 
The objectives of this research can be summarized as follows: 
(1) To investigate experimentally the behavior of prestressed concrete panels subjected to 

sequential loading and proportional loading (pure shear). 
(2) To develop the constitutive laws of concrete in tension and compression and prestressing 

strands in panels under pure shear, focusing particularly on the effect of prestress on the 
stress-strain relationship of concrete in compression. 

(3) To establish a shear model (SMM-PC) to predict the shear behavior of prestressed 
concrete membrane elements (panels). 

(4) To perform tests on prestressed concrete beams subjected to shear so that the analytical 
model developed in this research can be validated. 

(5) To propose a practical equation for shear design of prestressed concrete beams based on 
tests performed in this project and those from literature. 

 

1.3 Outline of Report 
This report is divided into 10 chapters, which include parts: (I) Prestressed Concrete 

Elements and (II) Shear in Prestressed Concrete Beams. Part I covers Chapters 2 through 6 and 
Part II covers Chapters 7 through 9. 

Chapter 1 introduces the overview of the research, the objectives of the research, and the 
outline of this report. 

Chapter 2 describes a literature study on the shear models of reinforced concrete panels with 
emphasis on the models developed at the University of Houston. A background survey on shear 
behavior of prestressed concrete panels is also included in this chapter. 

Chapter 3 describes the crack simulation tests that were conducted in this project to simulate 
the effect of pre-tensioned tendons using grouted post-tensioned strands. Ten axially prestressed 
beams were cast with different types of grouts to find the optimal method of prestressing and 
grouting the tendons in the laboratory. 

Chapters 4 and 5 describe the experimental program on 10 prestressed concrete panels. To 
analyze the responses of prestressed concrete structures using finite element methods, it is 
necessary to fully understand the behavior of prestressed concrete membrane elements subjected 
to various types of loading. According to the orientation of the steel grids and the loading 
procedure, the panels were divided into two groups: TE and TA. Chapter 4 describes the TE 
panels, which are subjected to sequential loading and are used to determine the constitutive laws 
of materials taking into account the effect of prestress. Chapter 5 describes the TA panels, which 
are subjected to proportional loading and are used to study the shear behavior of prestressed 
concrete membrane elements, including the effects of the percentages of mild steel bars and 
prestressing tendons. 

Chapter 6 presents the analytical model to predict the behavior of prestressed concrete panels. 
To analyze the responses of prestressed concrete structures using finite element methods, the 
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Softened Membrane Model (SMM) for reinforced concrete (RC) was extended for the application 
to prestressed concrete (PC). This generalized analytical model includes the following three new 
constitutive laws: (1) A new constitutive relationship of concrete in tension, which includes the 

decompression stage; (2) A new prestress factor pW  for incorporation into the softening 

coefficient for the constitutive relationship of concrete in compression; and (3) A new smeared 
(average) stress-strain relationship of prestressing tendons embedded in concrete. To verify the 
model SMM for PC, the predictions of the model are compared with the test results for prestressed 
concrete panels subjected to shear. 

Chapter 7 describes the full-scale load tests of five I-beams to study the structural behavior 
with regard to ultimate shear strength, ductility, and failure mechanism. The results obtained from 
the tests are also presented in this chapter. 

Chapter 8 presents two analytical models to predict the behavior of prestressed concrete 
beams. The first one is used to predict the flexural behavior, and the second one is used to predict 
the shear behavior. 

Chapter 9 presents a new and simple equation for shear in prestressed concrete beams. The 
development of this equation is based on the results of the beams tested at UH and the results from 
other beam tests available in literature (Lyngberg, 1976; Elzanaty et al., 1986; and Rangan, 1991). 
The shear capacities predicted by the new equation are compared to those predicted by the ACI 
Code and the AASHTO Specifications. Four design examples are included to illustrate the 
practical use of the new equation for design of prestressed girders. Four design examples were 
prepared to illustrate the application of the new shear equation for prestressed concrete girders. 
The shear equation was also extended for application to non-prestressed girders, including an 
example showing the design of a non-prestressed girder. 

Chapter 10 provides the conclusions of this research and suggests further studies in the area. 
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CHAPTER 2 

BACKGROUNDS ON SHEAR THEORIES OF REINFORCED AND 

PRESTRESSEED CONCRETE PANELS 

 

2.1 Introduction 
Section 2.2 of this chapter reviews the shear models for reinforced concrete in the literature. 

Section 2.3 summarizes a series of the shear models developed at the University of Houston in the 
past 20 years with emphasis on the Softened Membrane Model (SMM). The last section 2.4 
contains a literature survey on shear behavior of prestressed concrete panels. 

 

2.2 Shear Theories of Reinforced Concrete in Literature 
The post cracking behavior of a reinforced concrete member subjected to shear and bending 

was first simulated by a truss model more than a century ago by Ritter (1899) and Morsch (1902). 
The model assumed that the concrete was separated by diagonal cracks into a series of concrete 
struts. The shear resistance of the reinforced concrete beams was provided by an internal truss 
mechanism, consisting of two longitudinal parallel chords connected to a composite web made of 
web steel bars and diagonal concrete struts. The diagonal concrete struts were assumed to be 
subjected to direct axial compression, while the web steel bars were treated as the tensile web 
members of the truss. Since the cracks were assumed to be inclined at 45 degrees with respect to 
the longitudinal reinforcement, this model was referred to as the “45-degree truss model.” 

Robinson and Demorieux (1968) realized that a reinforced concrete element subjected to 
shear stresses was actually subjected to biaxial compression-tension stresses in the 45-degree 
direction. Viewing the shear action as a two dimensional problem, they discovered that the 
compressive strength in one direction was reduced by cracking due to tension in the perpendicular 
direction. Applying this softening effect of concrete struts to the webs of eight tested beams with 
I-section, they were able to explain the equilibrium of stresses in the webs according to the truss 
model. However, they were not able to quantify this reduction of strength in the concrete struts. 

Vecchio and Collins (1981) built a so-called “shear rig,” used to quantify a softening 
coefficient for the compressive stress-strain curve of concrete and then developed the 
compression field theory (CFT), which was applicable throughout the post-cracking range up to 
the ultimate. CFT assumed that the inclination of the principal compressive stress in concrete 
coincided with the inclination of the principal compressive strain, and cracks developed in the 
principal direction of concrete (rotating-crack model). CFT satisfied the three fundamental 
principles of mechanics of materials and represented a major breakthrough in the prediction of 
shear behavior of RC elements. However, the compression field theory assumed that no tensile 
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stress of concrete exists after cracking. This assumption is contradicted by many tests, which 
demonstrated that concrete stresses in tension increased significantly the stiffness of the cracked 
reinforced concrete structures. By taking into account the tensile strength of concrete, Vecchio 
and Collins (1986) further developed the modified compression field theory (MCFT) so it could 
predict the post-cracking stiffness. However, the theory had two deficiencies as pointed out by 
Hsu (1998). First, the MCFT violated the basic principle of mechanics by imposing concrete shear 
stresses in the principal directions. Second, it used the local stress-strain curve of steel bars 
embedded in concrete, rather than the smeared (average) stress-strain curves. 

Balakrishnan and Murray (1988c) also applied a rotating crack model to predict the 
monotonic behavior of shear panels and deep beams using their own constitutive relationships 
(Balakrishnan and Murray, 1988a and 1988b). Poisson’s ratio was set to be zero when the 
concrete cracking began. The model was used to predict the behavior of a number of reinforced 
concrete panels tested by Vecchio and Collins (1982). 

Crisfield and Wills (1989) performed analyses of a number of reinforced concrete panels 
tested by Vecchio and Collins (1982) using different material models. The models included a 
fixed crack model, a swinging-crack model, and a simple plasticity model. In the fixed crack 
model, the directions of orthogonal cracks were governed by the direction of the first principal 
stress that exceeded the tensile stress of the uncracked concrete. The swinging-crack model was a 
rotating crack model. The plasticity model had a square yield surface in compression in which no 
tension was allowed. The authors conducted extensive studies of the three proposed models on the 
panels and compared the analytical results with the experimental results. The authors also 
demonstrated the differences between the fixed crack and the swinging crack models. 

A Rotating-Angle Softened Truss Model (RA-STM) was developed at the University of 
Houston (Belarbi and Hsu, 1994 and 1995; Pang and Hsu, 1995), which truly treated the cracked 
reinforced concrete as a smeared, continuous material. In this model, a new smeared (average) 
stress-strain curve of steel bars embedded in concrete (Belarbi and Hsu, 1994) was proposed. 
Moreover, a new algorithm was developed to significantly improve the iteration procedure in 
solving the 11 equilibrium, compatibility, and constitutive equations. As a result this model has 
two advantages. First, it produces a single and unique solution instead of multiple solutions as in 
the case of the modified compression field theory. Second, there is no need to perform the 
so-called “crack check,” which is difficult to apply in finite element methods. 

These studies also showed that all theories that are based on rotating-angle could not logically 
produce the “concrete contribution” Vc because shear stresses could not exist along the 
rotating-angle cracks. In order to predict the “concrete contribution,” Hsu and his colleagues 
(Pang and Hsu, 1996; Hsu and Zhang, 1997; Zhang and Hsu, 1998) proposed the Fixed-Angle 
Softened Truss Model (FA-STM). In the FA-STM, the direction of cracks is assumed to be 
perpendicular to the applied principal tensile stresses at initial cracking rather than following the 
rotating cracks. The constitutive laws of concrete were set in the principal coordinate of the 
applied stresses at initial cracking. The only shortcoming of the FA-STM is that it is more 
complicated than the RA-STM because of the complexity in the stress-strain relationship of 
concrete in shear. 
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Ayoub and Filippou (1998) presented a rotating crack model that was an extension of the 
orthotropic models by Vecchio (1990) and Balakrishnan and Murray (1988a, 1988b, and 1988c). 
The panels tested by Vecchio and Collins (1982) were used in the correlation studies. Reasonable 
comparison was obtained between the analytical and experimental results. 

Kaufmann and Marti (1998) proposed the Cracked Membrane Model (CMM), which was a 
combination of CFT (Vecchio and Collins, 1981) and a concrete tension stiffening model. The 
tension stiffening of concrete was modeled using a stepped, rigid-perfectly plastic concrete-steel 
bond slip relationship between the cracks with equilibrium maintained at the crack faces. Foster 
and Marti (2003) implemented the CMM into a finite element formulation and compared its 
predictions against experimental data from the shear panel tests by Meyboom (1987) and Zhang 
(1992). 

Vecchio (2000 and 2001a) developed the Disturbed Stress Field Model (DSFM) based on the 
rotating crack model. The DSFM was a partially smeared model, which included shear slips along 
crack surfaces and required a “crack check” as in MCFT. The DSFM was more complicated when 
compared with the MCFT (Vecchio and Collins 1986). The predictions by the DSFM were 
compared to the experimental results of their panels and to the analytical results by MCFT 
(Vecchio et al., 2001b). The predictions using the DSFM and MCFT were found to be close in 
most cases. 

Belletti et al. (2001) proposed a fixed crack model by adopting the stress-strain relationships 
of concrete and steel, aggregate interlock, and dowel action. The softening coefficient ζ proposed 
by Pang and Hsu (1995) was adopted in the model, which represented the softening effect of 
tensile strains on the perpendicular compression behavior of concrete. The panels tested at the 
University of Toronto (Vecchio and Collins 1982 and 1986; Collins et al., 1985; Bhide and Collins, 
1989) and the panels tested at the University of Houston (Belarbi and Hsu, 1995; Pang and Hsu, 
1995 and 1996; Hsu and Zhang, 1996) were analyzed. The predictions of the proposed model 
showed good agreement with the test results. 

Although the rational models given above were able to predict the pre-peak behavior of shear 
elements, none of them could explain the existence of the post-peak load-deformation curves 
(descending branches). The Softened Membrane Model (SMM) (Hsu and Zhu, 2002) was 
therefore developed to predict the entire monotonic shear stress-strain curves of reinforced 
concrete panels including the descending branches. The capability of SMM to predict the 
descending branches was achieved by taking into account the Poisson effect (mutual effects of the 
two normal strains) of cracked reinforced concrete. This Poisson effect is characterized by two 
Hsu/Zhu ratios (Zhu and Hsu, 2002). In addition, a very simple stress-strain equation for concrete 
in shear was also derived using the equilibrium and compatibility equations and then incorporated 
in the model (Zhu, Hsu, and Lee, 2001). This new shear modulus significantly simplified the 
solution algorithm of fixed model theories, including SMM and FA-STM. It also increased the 
accuracy of these models. 

To date, SMM has been proven to be capable of successfully predicting the entire behavior of 
RC panels under pure shear. In this research, SMM will be extended to predict the behavior of 
prestressed concrete panels. 
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2.3 Previous Studies by Research Group at UH 
In the past 20 years, Hsu and his colleagues performed over 130 panel tests using the 

Universal Panel Tester (Hsu, Belarbi, and Pang, 1995) at the University of Houston. A series of 
three rational models for the monotonic shear behavior of the reinforced concrete elements 
(panels) was developed. 

A reinforced concrete membrane element subjected to in-plane shear and normal stresses is 
shown in Fig. 2.3.1(a). The directions of the longitudinal and the transverse steel bars are 
designated as −l  and −t  axes, respectively, constituting the t−l  coordinate system. The 
normal stresses are designated as σl and σt  in the −l  and the −t  directions, respectively, and 
the shear stresses are represented by τlt in the t−l  coordinate system. For Mohr’s circles, a 
positive shear stress τlt  is the one that causes clockwise rotation of a reinforced concrete element 
(Hsu, 1993). 

The applied principal stresses for the reinforced concrete element are defined as σ1 and σ2 
based on the 21−  coordinate system as shown in Fig. 2.3.1(d). The angle between the direction 
of the applied principal tensile stress ( −1 axis) and the direction of the longitudinal steel ( −l axis) 
is defined as the fixed-angle α1, because this angle does not change when the three in-plane 
stresses, σl, σt, and τlt, increase proportionally. This angle α1 is also called the steel bar angle 
because it defines the direction of the steel bars with respect to the applied principal stresses. 
 The principal stresses in concrete coincide with the applied principal stresses σ1 and σ2 before 

cracking. When the principal tensile stress 1σ  reaches the tensile strength of concrete, cracks 

will form and the concrete will be separated by the cracks into a series of concrete struts in the 
−2 direction as shown in Fig. 2.3.1(f). If the element is reinforced with different amounts of steel 

in the −l  and the −t  directions, i.e., tt ff ρρ ≠ll  in Fig. 2.3.1(c), the direction of the 

principal stresses in concrete after cracking will deviate from the directions of the applied 
principal stresses. The new directions of the post-cracking principal stresses in concrete are 
defined by the dr −  coordinate system shown in Fig. 2.3.1(e). Accordingly, the principal tensile 
stress and the principal compressive stress in the cracked concrete are defined as σr and σd, 
respectively. 

The angle between the direction of the principal tensile stress in the cracked concrete 
( −r axis) and the direction of the longitudinal steel ( −l axis) is defined as the rotating-angle α. 
The angle α is dependent on the relative amount of “smeared steel stresses,” ρlfl and ρtft, in the 

longitudinal and the transverse directions as shown in Fig. 2.3.1(c). When tt ff ρρ >ll , the 

dr −  coordinate gradually rotates away from the 12 −  coordinate and α  becomes smaller 
with increasing load. With increasing applied proportional stresses (σl, σt, and τlt), the deviation 
between the angle α and the angle α1 increases. This deviation angle β is defined as α− α1. The 
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angle was determined by Hsu, Zhu and Lee (2001) for reinforced concrete and extended by Wang 
(2006) to prestressed concrete, as shown in Eq. 2.3-1.  

  ( )






−

= −

21

121tan
2
1

εε
γ

β                (2.3-1) 

where ε1, ε2, and γ12 are the strains in the 21−  coordinate of the applied principal stresses. 
When the percentages of reinforcement are the same in the −l  and the −t  directions, the 
rotating angle α is equal to the fixed-angle α1. 

The Rotating-Angle Softened Truss Model is based on the assumption that the direction of 
cracks coincides with the direction of the principal compressive stress in the cracked concrete, as 
shown in Fig. 2.3.1(g). The derivations of all the equilibrium and compatibility equations are 
based on the rotating-angle α. In contrast, the Fixed-Angle Softened Truss Model is based on the 
assumption that the direction of the cracks coincides with the direction of the applied principal 
compressive stress as shown in Fig. 2.3.1(f). In the fixed-angle softened-truss model, all the 
equations are derived based on the fixed-angle α1.  

The three stress components σl, σt, and τlt shown in Fig. 2.3.1(a) are the applied stresses on the 
reinforced concrete element viewed as a whole. The stresses on the concrete struts are denoted as 

c
lσ , c

tσ , and c
tlτ  as shown in Fig. 2.3.1(b). The longitudinal and the transverse  
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Fig. 2.3.1 Reinforced Concrete Membrane Elements Subjected to In-Plane Stresses 
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steel provide the smeared (average) stresses of ρlfl and ρtft as shown in Fig. 2.3.1(c). The 
reinforcements are assumed to take only axial stresses, neglecting any possible dowel action. 
Summing the concrete stresses and the steel stresses in the −l  and the −t  directions and 
maintaining the equilibrium of forces and moments give the following equations:  

llll fc ρσσ +=  (2.3-2) 

tt
c
tt fρσσ +=  (2.3-3) 

c
tt ll ττ =  (2.3-4) 

Eqs. 2.3-2 to 2.3-4 are the basic equilibrium equations for both RA-STM and FA-STM. When 

the three concrete stresses ( ,  , c
t

c σσ l and c
tlτ ) in the t−l  coordinate are transformed to the 

principal dr −  coordinate of concrete, Fig. 2.3.1(g), we obtain the RA-STM derived in Section 

2.3.1. When the three concrete stresses ( ,  , c
t

c σσ l and c
tlτ ) are transformed to the principal 21−  

coordinate of the applied stresses, Fig. 2.3.1(f), we obtain the FA-STM derived in Section 2.3.2. 
 

2.3.1 Rotating-Angle Softened Truss Model (RA-STM) 
 
Equilibrium and Compatibility Equations 

In the Rotating-Angle Softened-Truss Model (RA-STM), the direction of cracks is defined by 
the rotating-angle α in the principal dr −  coordinate of concrete as shown previously in Fig. 
2.3.1(e). The three equilibrium equations are obtained from Eqs. 2.3-2 to 2.3-4 by expressing the 

concrete stresses ( ,  , c
t

c σσ l and c
tlτ ) in terms of concrete stresses (σr and σd) in the principal 

dr −  direction through transformation (Hsu, 1993): 

lll fdr ρασασσ ++= 22 sincos  (2.3-5) 

ttdrt fρασασσ ++= 22 cossin  (2.3-6) 

αασστ cossin)( drt +−=l  (2.3-7) 

where 
σr, σd = smeared (average) principal tensile and compressive stresses of cracked 

concrete in −r  and −d directions, respectively, 
ρl, ρt = steel ratio in −l  and −t  directions, respectively, 
fl, ft = smeared (average) stresses of steel bars in −l  and −t  directions, 

respectively, and  
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α = angle of principal tensile concrete stress ( −r axis) with respect to longitudinal 
steel bars ( −l axis). 

The three compatibility equations, which represent the relationship through transformation 
between the strains (εl, εt, and γlt) in the t−l  coordinate of the reinforcement and the strains (εr 

and εd) in the dr −  coordinate of the concrete, are expressed as follows: 

αεαεε 22 sincos dr +=l  (2.3-8) 

αεαεε 22 cossin drt +=  (2.3-9) 

ααεεγ cossin)(
2 dr

t +−=l  (2.3-10) 

where 
εr,  εd = smeared (average) principal tensile and compressive strains in −r  and −d  

directions, respectively. 
The solution of the above six equilibrium and compatibility equations requires constitutive 

laws of materials for concrete and reinforcements. 
 

Constitutive Relationship of Cracked Concrete in Compression 
The softened compressive stress-strain relationship of concrete is established in the dr −  

coordinate as follows (Zhang and Hsu, 1998): 


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
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ε d  (2.3-11a) 

or  



















−

−
−′=

2
0

14
1

1
ζ
ζεε

ζσ d
cd f , 1

0

>
ζε
ε d  (2.3-11b) 

where 
( )

9.0
4001
18.5

≤
+′

=
rcf ε

ζ  (2.3-12) 

 
Constitutive Relationship of Cracked Concrete in Tension 

The tensile stress-strain relationship of concrete in the dr −  coordinate is given as follows 
(Belarbi and Hsu, 1994): 

rcr E εσ = , crr εε ≤  (2.3-13a) 

or  
4.0









=

r

cr
crr f

ε
ε

σ , crr εε >  (2.3-13b) 

where 

cE  = elastic modulus of concrete taken as cf ′3875  ( cf ′  and cf ′  are in MPa), 



 17

εcr = concrete cracking strain taken as 0.00008, and 

fcr = concrete cracking stress taken as cf ′31.0  ( cf ′  and cf ′  are in MPa). 

 
Constitutive Relationship of Steel Bars Embedded in Cracked Concrete  

The smeared (average) tensile stress-strain relationship of steel embedded in concrete in the 
t−l  coordinate can be expressed as follows (Pang and Hsu, 1995): 

sss Ef ε= , ns εε ≤  (2.3-14a) 












++−=

y

s
ys BBff

ε
ε

)25.002.0()291.0( , ns εε >  (2.3-14b) 

where  )293.0( Byn −= εε  (2.3-15) 

and  
5.1

1










=

y

cr

f
f

B
ρ

 (2.3-16) 

In the above equations, l  replaces s in the subscript of symbols for the longitudinal steel, 
and t  replaces s for the transverse steel.  

 
2.3.2 Fixed-Angle Softened Truss Model (FA-STM) 
 
Equilibrium and Compatibility Equations 

In the Fixed-Angle Softened Truss Model (FA-STM), the direction of cracks is defined by the 
fixed angle α1 in the principal 21−  coordinate of the applied stresses as shown in Fig. 2.3.1(d). 
The three equilibrium equations are obtained from Eqs. 2.3-2 to 2.3-4 by expressing the concrete 

stresses ( ,  , c
t

c σσ l and c
tlτ ) in terms of concrete stresses ( c

1σ , c
2σ  and c

12τ ) in the principal 21−  

direction through transformation (Pang and Hsu, 1996): 

lll fccc ραατασασσ +++= 11121
2

21
2

1 cossin2sincos  (2.3-17) 

tt
ccc

t fραατασασσ +−+= 11121
2

21
2

1 cossin2cossin  (2.3-18) 

)sin(coscossin)( 1
2

1
2

121121 ααταασστ −++−= ccc
tl  (2.3-19) 

where 
c
1σ , c

2σ  = smeared (average) stresses of concrete in −1  and −2 directions, respectively, 

c
12τ  = smeared (average) shear stress of concrete in 21−  coordinate, and 



 18

α1 = angle of applied principal tensile stress ( −1 axis) with respect to longitudinal 
steel bars ( −l axis). 

The three compatibility equations, which represent the relationship through transformation 
between the strains (εl, εt, and γlt) in the t−l  coordinate of the reinforcement and the strains (ε1, 
ε2, and γ12) in the 21−  coordinate of the applied principal stresses, are expressed as follows 
(Pang and Hsu, 1996): 

11
12

1
2

21
2

1 cossin2
2

sincos αα
γ

αεαεε ++=l  (2.3-20) 

11
12

1
2

21
2

1 cossin2
2

cossin αα
γ

αεαεε −+=t  (2.3-21) 

)sin(cos
2
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2 1

2
1

212
1121 αα

γ
ααεε

γ
−++−=tl  (2.3-22) 

where 

1ε , 2ε , = smeared (average) strains in 21−  directions, respectively, and 

12γ  = smeared (average) shear strain in 21−  coordinate. 

 
Constitutive Relationship of Cracked Concrete in Compression 

The softened compressive stress-strain relationship of concrete is established in the 21−  
coordinate as follows (Zhang and Hsu, 1998): 
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and  
ll σρ

σρ
η

−

−
=

ly

ttyt

f
f

, 52.0 << η  (2.3-25) 

η′  in Eq. 2.3-24 is η or its reciprocal whichever is less than unity. 
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Constitutive Relationship of Cracked Concrete in Tension 
The tensile stress-strain relationship of concrete in the 21−  coordinate is given as follows 

(Belarbi and Hsu, 1994): 

11 εσ cE= , crεε ≤1  (2.3-26a) 

or  
4.0

1
1 








=

ε
ε

σ cr
crf , crεε >1  (2.3-26b) 

where 

cE  = elastic modulus of concrete taken as cf ′3875  ( cf ′  and cf ′  are in MPa), 

εcr = concrete cracking strain taken as 0.00008, and 

crf  = concrete cracking stress taken as cf ′31.0  ( cf ′  and cf ′  are in MPa). 

 
Constitutive Relationship of Steel Bars Embedded in Cracked Concrete 

The smeared (average) tensile stress-strain relationship of steel embedded in concrete is the 
same as that given in RA-STM in Section 2.3.1. 
 
Constitutive Relationship of Cracked Concrete in Shear 

The constitutive law of concrete in shear in the 21−  coordinate is quite complicated as 
given below: 






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
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




−−=

6

120

12
1212 11

γ
γ

ττ c
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c  (2.3-27) 

where c
m12τ  and 120γ  are the maximum shear stress of cracked concrete and the 

corresponding shear strain, respectively. c
m12τ  and 120γ  are obtained initially in the first phase of 

the solution algorithm using the empirical equation, 

)1(85.0 10120 ηεγ −−=  (2.3-28) 

where 
ε10 = maximum principal tensile strain of cracked concrete, 
and the equilibrium equation, 

( ) ( )[ ] 1112 2cos2sin
2
1 αταρσρστ tmtytty

c
m ff llll +′−−′−=  (2.3-29) 

where 
τltm = maximum applied shear stress in the t−l  coordinate, 
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lyf ′  = smeared (average) yield stress of longitudinal steel bars embedded in concrete 

given by Eq. 2.3-14b, and 

tyf ′  = smeared (average) yield stress of transverse steel bars embedded in concrete 

given by Eq. 2.3-14b. 
 

2.3.3 Softened Membrane Model (SMM) 
The RA-STM and the FA-STM are two rational models that can satisfy Navier’s three 

principles of mechanics of materials. Although these two models are successful in predicting the 
pre-peak behavior of reinforced concrete membrane elements subjected to monotonic shear 
stresses, they cannot explain the existence of the post-peak load-deformation curves (descending 
branches). The reason, as pointed out by Hsu and Zhu (2002), is because the Poisson effect is 
neglected in those theories. 

In order to predict the descending branches of the shear stress-strain curves of membrane 
elements, a new theory known as the softened membrane model (SMM) was developed by Hsu 
and Zhu (2002) that did take the Poisson effect into account. In this model, two Hsu/Zhu ratios, 
ν12 and ν21, were obtained from tests (Zhu and Hsu, 2002) to characterize the Poisson effect of 
cracked concrete in the 21−  coordinate system using the smeared crack concept. Hsu/Zhu ratio 

ν21 is defined as the ratio 21 εε ∆∆ , where 1ε∆  is the resulting increment of strain in  

−1 direction and 2ε∆  is the source increment of strain in −2 direction. Similarly, Hsu/Zhu ratio 

ν21 is defined as the ratio 12 εε ∆∆ , where 2ε∆  is the resulting increment of strain in 

−2 direction and 1ε∆  is the source increment of strain in −1 direction. It is to be mentioned that 

the −1 direction is the direction of the applied principal tensile stresses, and the −2 direction is 
the direction of the applied principal compressive stresses. 

The SMM is an extension of the FA-STM with two improvements. One is the inclusion of the 
two Hsu/Zhu ratios to consider the Poisson effect, and the other is the derivation of a simple, but 
rational, shear modulus of concrete. 

 
Equilibrium and Compatibility Equations 

The equations for stress equilibrium and strain compatibility are identical to those in the 
FA-STM, which are repeated as follows: 
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)sin(coscossin)( 1
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Although Eqs. 2.3-33 to 2.3-35 appear to be the same as Eqs. 2.3-20 to 2.3-22, the concepts 
involved in these two sets of equations are quite different. In Eqs. 2.3-33 to 2.3-35, the set of 
strains, ε1, ε2, εl, and εt, are the biaxial strains, taking into account the Hsu/Zhu ratios. In Eqs. 
2.3-20 to 2.3-22 of the FA-STM, however, these same strains are taken as the uniaxial strains, 
because the Hsu/Zhu ratios were assumed to be zero. In other words, the set of Eqs. 2.3-20 to 
2.3-22 are actually special cases of the set of Eqs. 2.3-33 to 2.3-35. 

 
Biaxial Strains vs. Uniaxial Strains (Hsu/Zhu Ratios) 

The three basic compatibility equations used in the SMM are based on the biaxial strains, 
rather than on the uniaxial strains as assumed in the FA-STM and the RA-STM. Since the 
relationships between the stresses in the equilibrium equations and the biaxial strains in the 
compatibility equations depend on the Hsu/Zhu ratios, the constitutive laws relating the stresses to 
the biaxial strains are not unique and thus cannot be determined directly from experiments. All 
previous constitutive laws for cracked concrete and embedded steel bars as used in the RA-STM 
and the FA-STM, were based on uniaxial loading (Belarbi and Hsu, 1994; Zhang and Hsu, 1998). 
Therefore, equations relating the uniaxial strains to the biaxial strains need to be derived, so that 
the uniaxial strains of cracked concrete can serve as the bridge to connect the biaxial strains in the 

t−l  directions to the stresses in the steel. The relationships between the uniaxial strains and the 
biaxial strains are given as follows (Zhu, 2000): 
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where 
ε1, ε2 = biaxial smeared (average) strains in −1  and −2 directions, respectively, 

1ε , 2ε  = uniaxial smeared (average) strains in −1  and −2 directions, respectively, 

lε , tε  = uniaxial smeared (average) strains in −l  and −t directions, respectively, and 

γ12 = biaxial smeared (average) shear strains in 21−  coordinate system. 
The Hsu/Zhu ratios are given by (Zhu and Hsu, 2002): 

sfεν 8502.012 += , ysf εε ≤  (2.3-40a) 

or  9.112 =ν , ysf εε >  (2.3-40b) 

021 =ν   (2.3-41) 

where 

sfε  = smeared (average) tensile strain of steel bars in −l  and −t  directions, 

whichever yields first, taking into account Hsu/Zhu ratios. 
Eqs. 2.3-36 to 2.3-39 can be used to obtain the uniaxial strains from the biaxial strains, and 

these uniaxial strains, in turn, will be used to calculate the stresses in cracked concrete ( c
1σ  and 

c
2σ ) and in the steel ( lf  and tf ) in the equilibrium Eqs. 2.3-30 to 2.3-32 using the uniaxial 

constitutive laws of the materials as will be shown hereafter. 
 

Constitutive Relationship of Cracked Concrete in Compression 

The constitutive relationships of concrete compressive stress c
2σ  and the uniaxial 

compressive strain 2ε , shown in Fig. 2.3.2, are given as follows: 
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and  
ll σρ
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η
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−
=
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f
f

, 52.0 << η  (2.3-44) 

η′  in Eq. 2.3-43 is η  or its reciprocal whichever is less than unity. 

Constitutive Relationship of Cracked Concrete in Tension 
Based on the previous uniaxial tests, the smeared (average) stress-strain relationship of 

concrete in tension, shown in Fig. 2.3.2, was obtained as follows (Belarbi and Hsu, 1994): 

11 εσ cE= , crεε ≤1  (stage T1) (2.3-45a) 
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where 

cE  = elastic modulus of concrete taken as cf ′3875  ( cf ′  and cf ′  are in MPa), 

εcr = concrete cracking strain taken as 0.00008, and 

crf  = concrete cracking stress taken as cf ′31.0  ( cf ′  and cf ′  are in MPa). 
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Constitutive Relationship of Cracked Concrete in Shear 

Zhu, Hsu, and Lee (2001) showed that the relationship between the shear stress and the shear 
strain of cracked concrete in the 21−  coordinate system could be rationally derived from the 
equilibrium equations and the compatibility equations by assuming that the direction of principal 
stresses coincides with the direction of principal strains. The new constitutive law of concrete in 
shear is given as: 

12
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21
12 )(2

γ
εε
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−

=
cc

c  (2.3-46) 

Constitutive Relationship of Steel Bars Embedded in Cracked Concrete  
The smeared (average) tensile stress-strain relationship of steel embedded in concrete in the 

t−l  coordinate, shown in Fig. 2.3.3, can be expressed as follows: 
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Fig. 2.3.2 Constitutive Laws of Concrete in Tension and Compression 
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Stage 3 (unloading): )( spsps Eff εε −−= , ps εε <  (2.3-47c) 

where  )293.0( Byn −= εε  (2.3-48) 
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 (2.3-49) 

In the above equations, l  replaces s in the subscript of symbols for the longitudinal steel, 
and t  replaces s for the transverse steel. In Eq. 2.3-48, recent tests (Chintrakarn, 2001) show that 
the originally specified minimum ρ of 0.5% can be reduced to 0.25%. 

 

 
Solution Algorithm 

The solution procedure for the softened membrane model is given by the flow chart in Fig. 
2.3.4. The following two equilibrium equations, which make the solution procedure more 
efficient, are derived from the basic equilibrium equations 2.3-30 and 2.3-31: 
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Fig. 2.3.3 Constitutive Law of Steel Bars 
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Select 2ε  

Assume 12γ  

Assume 1ε  

Calculate lε , tε , and 12ν , Eqs. 2.3-33, 2.3-34, and 2.3-40 

Calculate 1ε , 2ε , lε , and tε , Eqs. 2.3-36 to 2.3-39 

Calculate c
1σ , c

2σ , and c
12τ , Eqs. 2.3-45, 2.3-42, and 2.3-46 

Calculate lf , and tf , Eq. 2.3-47 

Calculate 1)( tt ff ρρ +ll , and 1)( tt ff ρρ −ll  

Calculate 2)( tt ff ρρ +ll , and 2)( tt ff ρρ −ll , Eqs. 2.3-50 and 2.3-51 

?0)()( 12 =+−+ tttt ffff ρρρρ llll

?0)()( 12 =−−− tttt ffff ρρρρ llll

Calculate tlτ , and tlγ , Eqs. 2.3-32 and 2.3-35 
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End 
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No 
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Yes 

Yes 

Fig. 2.3.4 Flow Chart of Solution Procedure for Softened Membrane Model 
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2.4 Literature Survey on Shear Behavior of Prestressed Concrete Panels 
Very little experimental research has been done on the behavior of prestressed concrete 

membrane elements (panels) under shear stresses. The main difficulties involved in performing 
these kinds of tests were the high cost of testing equipment and the complexity in fabricating 
prestressed concrete panels. 

Marti and Meyboom (1992) discussed the influence of prestressing on the behavior of 
orthogonally reinforced concrete elements subjected to in-plane shear forces. Meyboom (1987) 
reported three tests performed on the University of Toronto’s shell element tester. All three 
specimens had identical dimensions of mm 287mm 1626mm 1626 ××  ( in. 11.3in. 64in. 64 ×× ). 
The only variable was the amount of prestressing in the 45-degree direction: Specimen PP1 was 
not prestressed, Specimen PP2 was prestressed to 2.07 MPa (301 psi), and Specimen PP3 was 
prestressed to 4.40 MPa (638 psi). Based on these test results, the authors concluded that 
prestressing results in higher cracking loads, reduced reorientation of the internal forces after 
cracking, delayed degradation of the concrete, smaller strains in the reinforcements at ultimate, 
and higher ultimate loads. The experimental responses were compared with the predicted 
responses made by linear, nonlinear, and limit analyses as given in the paper. However, there were 
several deficiencies in the study: First, they did not give the properties of materials in prestressed 
concrete panels, so only a qualitative analysis could be performed. The effect of prestressing on 
the constitutive laws of the concrete was not clarified. Second, since mild steel bars were oriented 
in the direction of the unbonded prestressing bars, the crack patterns were caused mainly by the 
distribution of the mild steel bars. Finally, the descending branches for the shear stress-strain 
curve could not be obtained because the tester was not equipped with a servo-controlled system. 

Rahal (2002) proposed a method for the analysis and design of concrete membrane elements 
subjected to in-plane shear and normal stresses, which is a simplification of the modified 
compression field theory (Vecchio and Collins, 1986). In this method, a prestress force was 
simply considered as a superimposed normal stress on the panels. The experimental results of 
Meyboom (1987) were used to check his method. It was concluded that a significant increase of 
prestressing stresses produced only a slight increase in shear strength. Also, the effect of 
prestressing on the shear behavior of the prestressed concrete elements could not be verified due 
to the limitation of experimental results. 
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CHAPTER 3 

CRACK SIMULATION TESTS 

3.1 General Description 
Prestressed concrete is classified into “pre-tensioned concrete” and “post-tensioned 

concrete” by the sequence of concrete placement and tensioning of high-strength steel. Pre-
tensioning technology is more commonly used than post-tensioning in highway bridges, because 
it is more convenient for mass production. According to ACI 318-02 Eq. 12-2, the transfer length 
in concrete pre-tensioned by 270K ( MPa 1862 ) strands with an assumed effective stress of 

MPa 965  ( ksi 140 ) is 50 times the strand diameter, giving mm 750  ( in. 30 ) and mm 625  
( in. 25 ) for diameters of in. 0.6  ( mm 15 ) and in. 0.5  ( mm 13 ) strands, respectively. The 
corresponding development lengths in pre-tensioned concrete are mm 2692  ( in. 106 ) and 

mm 2235  ( in. 88 ), respectively. Since these transfer lengths and development lengths are too 
large for the test panels of mm 1398mm 1398 ×  ( in. 55in. 55 × ), the post-tensioning method was 
chosen for the test panels in this research. The post-tensioned strands were placed in flexible 
conduits and then grouted. 

A trial panel, labeled TE-2, was first tested. The arrangement of the reinforcements of panel 
TE-2 is shown in Fig. 3.1.1. Prestressing tendons were placed in the longitudinal direction and 
the post-tensioning technology was used. This panel was tested under applied tensile forces in 
the longitudinal direction. The crack pattern of panel TE-2 at 2% tensile strain is shown in Fig. 
3.1.2. The crack spacing, approximately mm 610  ( in. 24 ), was excessive due to the weak bond 
between the prestressing tendons and the cementitious grout. The smeared-crack concept as an 
average quantity of strain could not be applied in this case with only two big cracks occurring in 
the measurement zone. Therefore, a series of crack simulation tests was performed to improve 
the bond condition between the steel tendons and the cementitious grout. The purpose of the 
study was to find the same cracking pattern of post-tensioned concrete with conduits as that in 
pre-tensioned concrete without conduits. 

 
 



 30

 
Fig. 3.1.1 Arrangement of Reinforcement in Trial Panel TE-2 
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3.2 Test Program 
Bond stress is primarily the result of the shear interlock between the reinforcing element and 

the enveloping concrete. According to Nawy’s textbook (1985) for reinforced concrete, bond 
strength is controlled by the following major factors: (1) adhesion between the concrete and the 
reinforcement; (2) gripping effect resulting from the drying shrinkage of the surrounding 
concrete; (3) frictional resistance to sliding and interlock as the reinforcement is subjected to 
tensile stress; (4) effect of concrete quality and strength in tension and compression; and (5) 
diameter, shape, and spacing of reinforcement as they effect crack development. Three types of 
tests can be used to determine the bond quality of the reinforcement: the pull-out test, the 
embedded-rod test, and the beam test. The concept of the embedded-rod test was used in this 
research. 

Ten specimens were designed to study the cracking patterns as related to the bond condition 
between the prestressing tendons and the concrete. Four variables were included in the study as 

Fig. 3.1.2 Crack Pattern of Trial Panel TE-2 at 2% Tensile Strain 

l

t
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shown in Table 3.2.1: namely, the number of tendons, the presence or absence of flexible 
conduit, the strength of cementitious grout, and the percentage of the mild steel in the concrete. 
In order to provide a high prestress force on concrete, the prestressing tendons with in. 0.6  (15 
mm) iameter were used. The corrugated flexible conduit, which has a diameter of mm 32  (1-1/4 
in.), is assumed to carry no axial loading, but is capable of transferring bond stresses. The 
specimens without the flexible conduits have the same bond condition as that in the pre-
tensioned concrete. Three types of grouts were injected into the flexible conduits after 
prestressing. LSG represents Low Strength Grout with 6.9 MPa (1000 psi) compressive strength 
at two to three days. HSG means High Strength Grout with 13.8 MPa (2000 psi) compressive 
strength at two to three days. SCCG stands for Self-Compacting Concrete Grout with 41.4 MPa 
(6000 psi) compressive strength at two to three days and with great workability. 

 
 

Table 3.2.1 Variables of 10 Specimens 

Specimen 
Number of 
Prestressing 

Tendons 

Flexible 
Conduit 

Cementitious 
Grout* 

Mild 
Steel 

TSB1 1 w LSG w/o 

TSB2 1 w/o N/A w/o 

TSB3 1 w HSG w/o 

TSB4 1 w HSG 2 #2 

TSB5 1 w HSG 2 #4 

TSB6 2 w/o N/A w/o 

TSB7 4 w/o N/A w/o 

TSB8 2 w SCCG w/o 

TSB9 2 w SCCG w/o 

TSB10 4 w SCCG w/o 

 

 

* LSG = Low Strength Grout, 
 HSG = High Strength Grout, and 
 SCCG = Self-Compacting Concrete Grout 
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3.3 Test Specimens 
Ten test specimens were cast in two groups and had the same dimensions of 

mm 178mm 257mm 1398 ××  ( in. 7in. 10.125in. 55 ×× ). 
In the first group, specimens TSB1 to TSB5, a single prestressing tendon was placed in the 

center plane of each specimen. All specimens were cast with flexible conduits, except specimen 
TSB2, in which a prestressing tendon was directly embedded in the concrete to simulate the bond 
condition in the pre-tensioned concrete. LSG was used as the grouting material in specimen 
TSB1; and HSG was employed in specimens TSB3, TSB4, and TSB5. Specimen TSB2 had no 
grout at all. Two #2 and two #4 mild steel bars were placed in specimens TSB4 and TSB5, 
respectively. The concrete compressive strength was 398 MPa (5776 psi) in this group. 

In the second group, specimens TSB6 to TSB10, each specimen was designed with two 
layers of prestressing tendons in the mm 178  ( in. 7 ) thickness direction, and no mild steel bars. 
Two prestressing tendons were designed in specimens TSB6, TSB8, and TSB9, while four were 
in specimens TSB7 and TSB10. No flexible conduit was placed in specimens TSB6 and TSB7 to 
simulate the pre-tensioned concrete. Specimens TSB8, TSB9, and TSB10 had flexible conduits 
which were injected with SCCG. The concrete compressive strength was 36.7 MPa (5323 psi) in 
this group. 

 
3.3.1 Fabrication of Specimens 

The first group of specimens TSB1 to TSB5 and the second group of specimens TSB6 to 
TSB10 were cast separately as shown in Fig. 3.3.1 and Fig. 3.3.2, respectively. All 10 specimens 
were cast in a precisely made steel form, which was initially used to cast tested panels with sizes 
of mm 1398mm 1398 ×  ( in. 55in. 55 × ). The steel form was separated into five strips of mm 257  
( in. 10.125 ) width, divided by six steel plates sized mm 10mm 191mm 1398 ××  
( in. 0.375in. 7.5in. 55 ×× ). 

Specimens TSB1 to TSB5 were cast and tested first. At each end of the specimen, there were 
two regular horizontal anchor-inserts welded together by a mm 13  ( in. 0.5 ) thick steel bearing 
plate (Grade A36) with a mm 38  ( in. 1.5 ) diameter hole at its center. This set of inserts can hold 
and anchor a tendon so that the tensile forces from the jacks can be transferred to the prestressing 
tendon. 
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TSB9 TSB6 TSB7 TSB8 TSB10 

Fig. 3.3.1 Formwork for Crack Simulation Tests (TSB1 to TSB5) 

TSB2 TSB4 TSB5 TSB1 TSB3 

Fig. 3.3.1 Formwork for Crack Simulation Tests (TSB1 to TSB5) 

Fig. 3.3.2 Formwork for Crack Simulation Tests (TSB6 to TSB10) 
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To provide a higher prestress force on concrete, more tendons had to be placed in the 
specimens. A new U-shape insert, Fig. 3.3.3, was designed which consisted of two vertical 
anchor-inserts and a bearing plate. The new U-shape inserts can provide more space for multiple 
tendons, up to four tendons in one specimen. Three threaded holes of mm 25  ( in. 1 ) diameter 
were needed on each vertical anchor-insert to ensure the connection between the yokes and the 
specimens. 

After testing specimens TSB1 to TSB5, permanent deformations were observed on their 
bearing plates. Therefore, higher strength or thicker bearing plates were indicated. A finite 
element software, SAP2000, was applied to analyze the stress distribution on the bearing plates 
with different thickness. As a result, the high strength steel (A572-50) with a nominal yielding 
strength of MPa 345  ( ksi 50 ) was chosen to make the bearing plates. The thickness was 
designed to be mm 25  ( in. 1 ) for the plates with one tendon and mm 51  ( in. 2 ) for those with 
two or four tendons. The two anchor-inserts were made of the high-strength steel of MPa 448  
( ksi 65 ) yield strength instead of the regular Grade A36 steel. Fig. 3.3.3 shows the dimensions 
and the photo of U-shape inserts for four tendons. 

The whole procedure of assembling and casting is summarized as follows. First, the steel 
casting form and the six dividing plates were oiled. U-shape inserts were then installed in the 
casting form by tightening the bolts to ensure the accurate positions. Sand was used to fill the 
space between the inserts and the form, leaving room for the tendon chucks. After that, the 
flexible conduits were placed in the specimens between the U-shape inserts at two ends; and 
steel pipes with mm 19  ( in. 3/4 ) diameters were put inside the flexible conduits to make them 
straight. Near each end of the flexible conduits, a hole on the conduits was connected to a plastic 
tube, which was used to inject grout into the flexible conduits after the tendons were stressed. 
Next, 10 threaded rods, used to fasten the brackets of LVDTs during testing, were attached to the 
bottom plate of the form. Two pick-up hooks were fixed in each specimen. Finally, all the 
positions were checked and the concrete was cast. The concrete was divided into two batches for 
casting each group. Fig 3.3.4 shows the specimens after casting concrete. 
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Fig. 3.3.3 Dimensions of U-Shape Inserts (Unit: in.) 

(a) Perspective View 

(b) Top View 
(c) Side View 

Bearing 
Plate 

Anchor
-insert 
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3.3.2 Tendon Jacking System 

The jacking system, as shown in Fig. 3.3.5, applies the prestressing force to the steel 
tendons. In the post-tensioning method, the tendons were jacked sequentially. The equipment for 
the jacking system includes: a hydraulic jack, a pump, a pressure relief valve, load cells, a strain 
indicator, a data acquisition system, a home-made supporting chair, and three chucks. 

The hydraulic jack used in this research is the double-acting hollow plunger cylinder RRH-
3010 from Enerpac Co. The advance cylinder capacity is 351 kN (79 kips). The stroke is 

mm 254  ( in. 10 ), and the diameter of the center hole is mm 33  ( in. 1.31 ). An electric pump with 
a four-way valve, made by Owatonna Tool Co., MN, was used to power the hydraulic jack with 
an oil pressure up to 69 MPa (10,000 psi). A model V-152 pressure relief valve, manufactured by 
Enerpac Co., is able to control the pressure developed by the pump within a range of 5.5 to 69 
MPa (800 to 10,000 ksi), thus controlling the force in the hydraulic jack. 

Two types of load cells, manufactured by Transducer Techniques Inc., CA, were used in the 
jacking system, namely, THD-50 and LWO-60. THD-50 is a “thru-hole” load cell mm 25  ( in. 1 ) 
thick, with a mm 76  ( in. 3 ) outer diameter and a mm41  ( in. 1.6 ) inner diameter. The 
compressive capacity is 222 kN (50 kips). It was used to measure the tensile force in the 
prestressing tendons during the jacking procedure. The reading was indicated by a strain 
indicator. 

LWO-60 is a thru-hole “load washer” load cell with a compressive capacity of kN 267  (60 
kips). The outer and inner diameters are mm44  ( in. 1.75 ) and mm 23  ( in. 0.897 ), respectively. 
The thickness is only mm 13  ( in. 0.5 ). This type of load cells can be placed inside the specimens 
between the chucks and the bearing plates to monitor the tensile forces in the tendons during and 

Fig. 3.3.4 Specimens after Casting Concrete 
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after prestressing. A data acquisition system called Spider 8 was used to collect the readings 
from all the LWO-60 load cells. 

The supporting chair consists of two 25 mm (1 in.) thick steel plates, four threaded bolts, and 
eight nuts. The chair is designed to transfer the force of the hydraulic jack to the test specimen. 
The height of the chair is adjustable. 

Fig. 3.3.5(a) is a sketch of the tendon jacking system. Three chucks are used in the jacking 
system. The first chuck on the left end, which is next to a load cell LWO-60, grips one end of the 
tendon. On the right end, the second chuck holds the tendon against the hydraulic jack. Load cell 
THD-50 is placed between this chuck and the jack piston (Fig. 3.3.5(c)). The jack sits on the 
supporting chair against the specimen. The third chuck is located in the space enclosed by U-
shape inserts. This chuck is kept loose during the jacking process, but catches the tendon once 
the releasing procedure starts. 
 After all the setup was ready, the pump would be turned on to increase the pressure in the 
jack. The whole jacking procedure was summarized into five steps. First, a small force was 
applied to tighten the setup, and the positions of all the components were checked. Second, the 
tendon was pulled until the desired tensile force was reached. The pulling stage was divided into 
about 15 steps. At each step, the readings from load cells THD-50 and LWO-60 were recorded. 
Because the thickness of LWO-60 was very small, the reading was very sensitive to the 
eccentricity of the load (did not happen on THD-50). Therefore, the data from THD-50 would be 
used to calibrate the LWO-60 load cells. 

 In the third step, the nut bearing against the right plate of the supporting chair was turned to 
push and tighten the chuck against the test specimen, as shown in Fig. 3.3.5(b). This is one of the 
two methods to reduce the prestress loss due to the anchorage slippage. The other method is to 
utilize the pressure relief valve. Fourth, the pressure relief valve was turned to slowly release the 
pressure in the hydraulic jack. By applying those two methods, the prestress loss could be 
minimized. These two methods not only reduced the prestress loss, but also stabilized the loss, 
which could make the forces in the tendons more uniform in the test panel. The data showed that 
the effective stress in in. 0.6  tendons was approximately MPa 965  ( ksi 140 ) with a jacking 
stress of MPa 1303  ( ksi 189 ). Upon release, the middle chuck served to catch the tendon. 
Finally, all equipment was removed from the specimen and the redundant parts of the tendons 
were cut off. 

In addition to slippage and elastic loss, prestress losses also include time-related losses, such 
as creep and shrinkage in the concrete and relaxation in the steel. To limit these time-dependent 
losses and to keep the high prestressed forces on the specimens, tests were conducted as soon as 
possible after the tensioning procedure. Experience shows that two to three days would be 
needed to inject grout into the flexible conduits, to install yokes, to put specimens in the Univers- 
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Fig. 3.3.5 Tendon Jacking System 
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al Panel Tester, and to install Linear Voltage Displacement Transducers (LVDTs), etc. For this 
reason, the strength of grouting materials at two to three days was important and was taken as the 
criterion for choosing suitable grout. 

 

3.4 Materials 
3.4.1 Concrete 

A cylinder compressive strength of 41.4 MPa (6000 psi) was chosen as the target strength of 
the concrete in the test specimens. The concrete mix proportion (based on weight) was 
1:2.64:2.93, corresponding to cement, sand, and coarse aggregate, respectively. The water-
cement ratio was about 0.6. Since sand always contains some water, the water-cement ratio was 
controlled by the slump test. The desired slump was mm 178  ( in. 7 ). Type I Portland cement 
was used. Concrete sand conformed to ASTM C33, while the graded limestone aggregate had a 
maximum size of mm 19  ( in. 3/4 ). 

Six standard cylinders, with the dimensions of mm 305mm 152 ×  ( in. 12in. 6 × ), were cast 
along with each group of specimens. The cylinders were cured under the same environmental 
conditions as that of the specimens, that is, seven days under moist environment covered by the 
plastic sheet and the remaining time in the air-conditioned laboratory until testing. A Tinius 
Olsen Universal testing machine with a capacity of 1779 kN (400 kips) was used to test the 
cylinders using a strain rate of around 400 micro strains per minute. The standard cylinders were 
tested at the same age as the test specimens and capped with a high strength sulfur compound 
before testing. 

Three types of grouting materials were used in the test specimens: LSG, HSG, and SCCG. 
The mix proportion was 1:1:0.5 for LSG, corresponding to cement, sand, and water, respectively; 
1:0.3:0.5 for HSG; and 1:1.5:0.37 for SCCG. In addition, 0.126 oz (3.57 g) of High Ratio Water 
Reduction (HRWR) agent was used for every 1 pound (454 g) of cement in SCCG. To obtain a 
high concrete strength in two to three days, Type III Portland cement was used in all three 
grouting materials. The compressive strength of grout was obtained from the tests of 

mm 152mm 76 ×  ( in. 6in. 3 × ) cylinders. 

 

3.4.2 Reinforcements 
The stress-relieved strands, grade 270 ( MPa 1862 ), which conformed to ASTM A-416, were 

donated by Texas Concrete Company, Victoria, TX. Each strand was made from seven wires by 
twisting six of them around a slightly larger, straight central wire. In this experiment, the strands 
had a nominal diameter of 0.6 in. (15 mm), a cross-sectional area of 140 mm2 (0.217 in.2), an 
ultimate strength of MPa 1862  ( ksi 270 ), and an elastic limit of MPa 1396  ( ksi 203 ) (75% of 
the ultimate strength). The solid line in Fig. 3.4.1 shows the typical stress-strain relationship of 
the strands, which is the average of three color lines representing the stress-strain curves from 
three strand tests. 
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The low-alloy, grade 60 ( MPa 415 ) steel bars, which satisfied ASTM 716, were used in the 
specimens. Two sizes of deformed bars #2 and #4, with cross-sectional areas of 32 mm2 and 129 
mm2 (0.05 in2 and 0.2 in2), were placed in TSB4 and TSB5, respectively. The #2 bars were 
manufactured in Sweden (could be purchased from Portland Cement Association in the United 
States) and the #4 bars were custom-made and donated by Chaparral Steel Co. of Midlothian, 
TX. At least three coupons for each size of steel bars were tested in the Tinus Olsen Universal 
testing machine to obtain the stress-strain curves. The tensile strains were measured by an 
extensometer capable of measuring strains up to 0.25. The mechanical properties of the steel bars 
used in the test program are listed in Table 3.4.1. 

 

 

Table 3.4.1 Mechanical Properties of Steel Bars 

Steel Bar yf  (MPa) yε  sE  (GPa) hε  

#2 419.2 0.00250 187.5 - 

# 4 415.1 0.00216 192.2 0.0176 

Fig. 3.4.1 Stress-Strain Curve of Bare Strands 
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Note: hε  is the strain at the beginning of the strain hardening region 

3.5 Loading Procedure 
The specimens in the test program were tested using the Universal Panel Tester. Two yokes 

were first attached to the ends of a specimen by high-strength bolts. Then the specimen was 
connected to jack N10, S10, N16, and S16, while a roller was placed at the bottom to support the 
specimen. The roller was removed when the test began. The test setup for a typical specimen is 
shown in Fig. 3.5.1, where the photo in (a) shows the specimen installed in the Universal Panel 
Tester and (b) shows the axial tensile forces on the embedded-rod specimen. 

The 10 specimens were each subjected to a uniaxial tensile load supplied by four jacks 
(jacks N10, S10, N16, and S16) controlled by manifold 4. Two LVDTs were installed on the two 
opposite faces of a specimen to measure the smeared strains. The average values of the two 
LVDT signals were collected and sent to controller 4 as strain feedback. Once all the jacks and 
the LVDTs were ready, the horizontal tensile load was applied to the specimen using the load-
control method and the strain-control method before and after the elastic limit of prestressing 
tendons, respectively. The elastic limit is taken as MPa 1303  ( ksi 189 ), the peak of the elastic 
stage in the stress-strain relationship of bare prestressing tendons. 

 

 

3.6 Test Results 
In the embedded-rod test specimens, the number of cracks, their widths, and their spacing at 

various loading levels were a measure of the bond stress development between the concrete and 
the tendons. The crack widths were measured by microscopes with a precision of mm 0.025  

Fig. 3.5.1 Test Setup for a Typical Specimen 

(a) 

(b) 
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( in. 0.001 ). The average crack spacings of the specimens were taken as the main criterion for the 
comparisons. 

Fig. 3.6.1 shows the crack patterns of specimens TSB2 and TSB3, and Fig. 3.6.2 shows 
those for specimens TSB6 and TSB8. In these two figures, the photos for each specimen under 
various loading were pasted together and the load stages H  were labeled by either tensile loads 
or tensile strains. Fig. 3.6.1 and Fig. 3.6.2 show that the number of cracks remained constant 
beyond a certain load (named the critical load), and further increase of loading only increased the 
crack widths. Half of the crack spacing beyond the critical load represents the minimum length 
for a tendon to transfer its stresses to the surrounding concrete to cause cracking. This crack 
spacing is a direct function of the bond strength. The smaller the crack spacing, the stronger the 
bond strength. Therefore, the average crack spacings of the specimens were calculated based on 
the measured crack spacings after the critical loads and are listed in Table 3.6.1. 

 

 
Fig. 3.6.1 Crack Patterns of Specimens TSB2 and TSB3 

(a) TSB2-North (b) TSB3-North 
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Fig. 3.6.2 Crack Patterns of Specimens TSB6 and TSB8 

(a) TSB6-South (b) TSB8-South 
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Table 3.6.1 Average Crack Spacing of 10 Specimens 

Average Crack Spacing Average Crack Spacing 
Specimen 

(in.) (cm) 
Specimen 

(in.) (cm) 

TSB1 20 50.8 TSB6 3.1 7.9 

TSB2 6.5 16.5 TSB7 3.0 7.6 

TSB3 11.0 27.9 TSB8 3.1 7.9 

TSB4 7.8 19.8 TSB9 3.3 8.4 

TSB5 3.9 9.9 TSB10 Bond 
Failure 

Bond 
Failure 

 
Several sets of the specimens were compared as follows: 
(1) Comparison of specimens TSB3, TSB4, and TSB5. 
Table 3.6.1 shows that these three specimens have the same number of tendons, the same 

flexible conduit, and the same cementitious grout, but differ in the percentage of mild steel. 
Because the bond between the deformed mild steel bars and the concrete is very strong, the crack 
spacings decreased significantly with the increase of mild steel. Table 3.6.1 shows that the width 
of crack spacing decreased from TSB3 to TSB4 and to TSB5, as the mild steel bars increased 
from none to two #2 bars then to two #4 bars. 

(2) Comparison of specimens TSB2, TSB6, and TSB7. 
These three specimens have the same three variables, differing only in the number of 

prestressing tendons. The increase of the number of prestressing tendons from one to two in 
specimens TSB2 and TSB6 helped to reduce the crack spacings from in. 6.5  to in. 3.1  However, 
further increase of tendons from two to four reduced the crack spacing very slightly in specimens 
TSB6 and TSB7. Apparently, there is a minimum crack spacing for specimens with a certain 
thickness of concrete cover. 

(3) Comparison of specimens TSB1, TSB2, and TSB3. 

Specimen TSB3 with conduits and a grout of psi 2000  had crack spacing ( in. 11.0 ) much 

smaller than the crack spacing ( in. 20.0 ) for specimen TSB1 with the same flexible conduit but a 

grout of psi 1000 . However, specimen TSB2, which was without conduit and grout, had even 

smaller crack spacing ( in. 6.5 ). To further reduce the crack spacing of specimens with conduits, 
grout of even higher strength must be devised. 

(4) Comparison of specimens TSB6, TSB8, and TSB9. 
Self-Compacting Concrete Grout (SCCG) with 41.4 MPa (6000 psi) compressive strength at 

two to three days was used in specimens TSB8 and TSB9. Their crack spacings of in. 3.1  and 
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in. 3.3 , respectively, were essentially the same as the in. 3.1  spacing for specimen TSB6 devoid 
of conduit and grout. In other words, post-tensioned specimens with flexible conduits and SCC 
grout of 41.4 MPa (6000 psi) (TSB8 and TSB9) can be used to simulate the bond condition in 
the pre-tensioned specimen (TSB6). 

 

3.7 Conclusions 
According to the test results of 10 embedded-rod specimens, it can be concluded that (1) the 

bond condition in pre-tensioned concrete can be simulated by post-tensioned concrete with 
flexible conduits and SCC grout of 41.4 MPa (6000 psi); (2) the new U-shape insert was proven 
to be capable of carrying up to four prestressing tendons; and (3) the jacking system was 
successful in applying and controlling the prestress forces on the concrete. All these proven 
technologies will be applicable to test panels described in Chapters 4 and 5. 
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CHAPTER 4 

PRESTRESSED CONCRETE 0-DEGREE PANELS UNDER 

SEQUENTIAL LOADING 

 
To establish a rational model for the action of shear on prestressed concrete, a total of 10 

membrane elements (panels) were tested in this research. The panels were divided into two 
groups: TE and TA, according to the angle of steel bar orientation α1 with respect to the applied 
principal stresses. The α1 angles of groups TE and TA are 0o and 45o respectively. Panels with 
α1 = 0o are subjected to sequential loading to study the constitutive relationships of materials 
(concrete and prestressing tendons). Panels with α1 = 45o are subjected to pure shear (a special 
case of proportional loading) to study the shear behavior of prestressed concrete membrane 
elements. The test program and testing results of the five panels in Group TE are described and 
discussed in this chapter, while those of the five panels in Group TA are presented in Chapter 5. 

 

4.1 Test Program (Group TE) 
The purpose of testing the five panels in Group TE is to obtain the constitutive laws of 

concrete and steel tendons in prestressed concrete membrane elements. The five panels were 

designed with two variables: (1) percentage of prestressing tendons plρ  in the panels and (2) 

tensile strain in the horizontal direction 1ε , which was maintained constant during the second 

stage of the loading (see Section 4.4) in each panel. The two variables of Group TE are listed in 
Table 4.1.1. 

The labels of all five specimens in Group TE start with the letter “T”, which signifies that 
these panels are reinforced with prestressing Tendons. The second letter “E” means that the steel 
grid was set parallel to the applied principal stresses, resulting in α1 = 0o. 

All the panels were subjected to sequential loading. Tensile forces were first applied in the 
horizontal direction. After attaining the desired smeared (average) tensile strain in the panels, 
compressive stresses were gradually applied in the vertical direction until failure. During the first 
stage of the tensile loading, the constitutive laws of concrete in tension and prestressing tendons 
embedded in concrete were obtained. In the second stage of the compressive loading, the stress-
strain relationships of concrete in compression were recorded, from which the experimental 
softening coefficients were obtained. 
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   Table 4.1.1 Two Variables of Test Panels in Group TE  

Concrete Steel in l  direction 
Specimen 

cf ′  (MPa) 0ε  Tendons plρ  

Prestress 
MPa (ksi) 1ε  

TE-3 32.52 0.0020 2 6.0φ @267 mm 0.59% 5.52 (0.8) 2% 

TE-4 38.69 0.0024 2 6.0φ @267 mm 0.59% 5.52 (0.8) 1% 

TE-5 34.76 0.0022 2 6.0φ @267 mm 0.59% 5.52 (0.8) 3% 

TE-6 36.81 0.0018 1 6.0φ @267 mm 0.30% 2.76 (0.4) 2% 

TE-7 42.39 0.0021 4 6.0φ @267 mm 1.18% 11.0 (1.6) 2% 

 
Based on the two variables, the five panels were divided into two series. In the first series of 

panels TE-4, 3, and 5, the prestressing tendons have a percentage of 0.59% in the horizontal 
direction and a vertical spacing of mm 267  ( in. 10.5 ). The desired horizontal tensile strains in 
the second stage of loading were 1%, 2%, and 3% for TE-4, 3, and 5, respectively. This series of 
panels produced the relationship between the softening coefficients and the tensile strains in the 
perpendicular direction. 

The second series of panels consists of panels TE-6, 3, and 7. In this series of panels the 
desired tensile strains were kept constant at 2%, while the number of prestressing tendons in 
these three panels varied from 1 to 4 as shown in Table 4.1.1. The effect of prestress on the 
softening coefficients was clarified from this series of tests. 

 

4.2 Test Specimens (Group TE) 
4.2.1 Layout of Specimens 

The dimensions and steel arrangements of the panels in Group TE are shown in Fig. 4.2.1. 
Two coordinate systems ( t−l  and 21− ) were used for all the test panels. The first coordinate 
system t−l  was used to represent the directions of the longitudinal ( l ) and the transverse (t) 
steel, while the second coordinate system 21−  was used to represent the directions of the 
applied principal stresses. 

In Group TE, the longitudinal reinforcements (prestressing tendons) were placed parallel to 
the applied horizontal principal tensile stress, while the transverse reinforcements (mild steel) 
were placed parallel to the applied vertical principal compressive stress, i.e., the angle between 
the −l axis and the −1 axis is α1 = 0o. All the panels had the same sizes of 

mm 178mm 1398mm 1398 ××  ( in. 7in. 55in. 55 ×× ). The transverse reinforcements were #4 
mild steel bars. The spacing of reinforcing bars was kept constant at mm 267  ( in. 10.5 ) and the 
percentage of steel was 0.54% in all the panels. 
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The arrangement of the reinforcements in panels TE-4, 3, and 5 was identical as shown in 
Fig. 4.2.1(a). Five prestressing tendons (in the form of pairs) were placed in the horizontal 
direction in two layers. The center-to-center spacing between the two layers of tendons was 73 
mm (2.88 in). The prestress force in each tendon was about 138 kN (31 kips), resulting in the 
prestress on the concrete of about MPa 5.52  ( ksi 0.8 ). Fig. 4.2.1(b) shows the steel grid of panel 
TE-6, which had only one layer of prestressing tendons. Five tendons with the spacing of 

mm 267  ( in. 10.5 ) provided about MPa 2.76  ( ksi 0.4 ) prestress on the concrete. In Fig. 4.2.1(c), 
panel TE-7 has a total of 20 prestressing tendons divided into five groups of four tendons each. 
The four tendons were held and tensioned together as a group by a U-shape insert at each end. 
The U-shape inserts are shown in Fig. 3.3.3. The center-to-center spacing of the inserts was 267 
mm (10.5 in.). The prestressing force in each tendon was also about 138 kN (31 kips), resulting 
in a concrete compressive stress of MPa 11  ( ksi 1.6 ). 
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(a) Steel Layout and Dimensions of Panels TE-4, 3, and 5 
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Fig. 4.2.1 Steel Layout and Dimensions of Test Panels in Group TE 

Unit: mm 
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(b) Steel Layout and Dimensions of Panel TE-6 

Fig. 4.2.1 Steel Layout and Dimensions of Test Panels in Group TE (continued) 
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(c) Steel Layout and Dimensions of Panel TE-7 

Fig. 4.2.1 Steel Layout and Dimensions of Test Panels in Group TE (continued) 

Unit: mm 
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4.2.2 Fabrication of Specimens 
All the specimens were cast in the steel form as shown in Fig. 4.2.2(a) to (c). Each panel had 

two layers of #4 steel bars in the transverse direction and two layers of prestressing tendons in 
the longitudinal direction, except panel TE-6, shown in Fig. 4.2.2(b) which had only one mid-
layer of prestressing tendons. The two layers of #4 steel bars in the transverse direction were first 
welded to the regular anchor-inserts in a special steel jig with the sizes of mm 1398mm 1398 ×  
( in. 55in. 55 × ) as shown in Fig. 4.2.3. 

The reinforcement and accessories were installed in the casting form in the following six 
steps. (1) The bottom layer of the #4 steel bars was transferred from the steel jig to the oiled 
casting form. The anchor-inserts at the ends of the steel bars were aligned and bolted to the side 
faces of the casting form. (2) Ten U-shape inserts for each panel were bolted onto the two sides 
of the casting form, and the flexible conduits were placed between the U-shape inserts. To 
support the flexible conduits, steel pipes were placed inside the conduits and through the holes 
on the U-shape inserts. (3) The top layer of #4 steel bars with the anchor-inserts was bolted onto 
the casting form. 

In step (4) the threaded rods for fastening LVDT brackets were attached onto the bottom of 
the casting form, and two pick-up rings were installed. (5) Sand was poured into the space 
between the U-shape inserts and the side form to prevent concrete from entering the space during 
casting. Panel TE-6 was the exception; here styrofoam blocks were used instead of sand. (6) The 
top tips of the threaded rods were taped to protect the threads, and cylinder molds were cleaned 
and oiled. The formwork was done and ready for the casting of concrete. 
 With the reinforcing bars and flexible conduits secured inside the casting form, each panel 
was cast in a horizontal position using two batches of concrete of approximately 0.184 m3 (6.5 
ft3) each. Each batch was mixed in a 0.34 m3 (12 ft3) capacity mixer available in the laboratory 
and then spread uniformly in the casting form. The concrete had an average slump of mm 178  
( in. 7 ) with good workability. 
 After the form was filled, the concrete was shaken by an internal spud vibrator. The concrete 
adjacent to the perimeter of the casting form was more intensively vibrated so that the ultimate 
failure of the panels would occur away from the edges. The cylinder molds were also filled and 
vibrated in a manner similar to the central portion of the panels. The concrete in the companion 
cylinders was cured in the same way as the test panels. 
 Once the concrete was cast, a smooth finish was obtained on the top surface of the panels 
and the cylinders; thereafter they were covered with a plastic sheet. The concrete was kept in a 
humid condition for the first seven days. Then the panels and the cylinders were stripped from 
the molds and cured in the air-conditioned laboratory for about 28 days. 
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Fig. 4.2.2 Formworks of Panels in Group TE  

(a) Formwork of Panel TE-4 

(b) Formwork of Panel TE-6 
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Fig. 4.2.3 Special Steel Jig 

(c) Formwork of Panel TE-7 

Fig. 4.2.2 Formworks of panels in Group TE (continued) 



 56

 
4.2.3 Tendon Jacking System 

The tendon jacking system for the panels in Group TE was the same as that described in 
Section 3.3.2 for the crack simulation tests. 

The tendon jacking procedure was performed about four days before the panel was tested. 
Ten load cells (LWO-60) were used to monitor the tensile forces of the tendons in the panels, 
except that five load cells were used in panel TE-6. The average readings of the load cells right 
before testing were taken as the prestress forces on each panel. Following the jacking of the 
tendons, the grouting materials (SCCG) were injected into the flexible conduits. Then the panels 
were mounted in the Universal Panel Tester, and LVDTs were attached on both surfaces of the 
panels. The panels were ready for testing. 

 

4.3 Materials (Group TE) 
4.3.1 Concrete 

A cylinder compressive strength of 41.4 MPa (6000 psi) was chosen as the target strength of 
the concrete in the panels of Group TE. This concrete was the same as that used in the crack 
simulation tests. The concrete mix proportion (based on weight) was 1:2.64:2.93, corresponding 
to cement, sand, and coarse aggregate, respectively. The water-cement ratio was 0.6 and the 
slump for each batch was mm 178  ( in. 7 ). The cement was Type I Portland cement, the sand 
conformed to ASTM C33, and the graded limestone aggregate had a maximum size of mm 19  
( in. 3/4 ). 

Six standard concrete cylinders, with the dimensions of mm 305mm 152 ×  ( in. 12in. 6 × ), 
were cast along with each panel. The cylinders were tested at the same age as the panels using 
the Tinius Olsen Universal testing machine. The compressive stresses and strains were recorded 
up to the peak point. Fig. 4.3.1 shows that the typical compressive stress-strain relationship of 
concrete was clearly in the form of a parabolic curve. Thus, a parabolic equation was used to 
represent the compressive stress-strain relationship of plain concrete in the ascending branch. 

The actual compressive strength of the concrete and the strain at peak stress in each panel 
are listed in Table 4.1.1. The strengths in some panels were a little lower than the target. The 
small differences in concrete strength could be remedied by the normalization of concrete 
strength in the analysis. 
 The Self-Compacting Concrete Grout (SCCG), used to grout the flexible ducts, had a mix 
proportion of 1:1.5:0.37 for Type III Portland cement, sand, and water, respectively. A ratio of 
0.126 oz (3.57 g) of High Ratio Water Reduction (HRWR) agent was used for every 1 pound 
(454 g) of cement in the SCCG. 
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4.3.2 Reinforcements 
The prestressing tendons with a nominal diameter of in. 0.6  ( mm 15 ) were used in the 

longitudinal direction of the panels. Size #4 mild steel bars were used in the transverse direction. 
The properties of these two kinds of reinforcements are specified in Section 3.4.2. 

 

4.4 Loading Procedure (Group TE) 
The test program was carried out using the Universal Panel Tester. The panel was subjected 

to in-plane forces, supplied by 20 pairs of in-plane hydraulic jacks placed around the four sides 
of a square panel. The loading procedure was well designed by controlling the pressures in the 
jacks, using a servo-control system. 

Figure 4.4.1 shows the typical sequential loading path used in the panels of Group TE. The 
sequential loading path included two stages: (1) the horizontal tensile loading was first applied, 
and (2) the vertical compressive loading was applied until the failure of the panels, while the 
horizontal strain was maintained constant. In each stage, the load-control mode was first used, 
followed by the strain-control mode. 

In the first stage, the load-control mode was used until the stresses in the tendons were close 
to the elastic limit of MPa 1303  ( ksi 189 ). Then the control mode was switched to the strain-
control until the desired principal tensile strain was obtained. In this stage of uniaxial tensile 
loading, we can obtain the smeared (average) constitutive law of concrete in tension and the 
smeared (average) constitutive law of prestressing tendons embedded in concrete. 

Fig. 4.3.1 Typical Stress-Strain Curve from Concrete Cylinder Compression Test
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In the second stage of vertical compressive loading, the horizontal tensile strain was kept 
constant using the servo-control system. As the first stage, the load-control mode was first 
applied until the peak stress was approached. Then the control mode was shifted to the strain-
control, which allows us to measure the strains in the descending branches of the stress-strain 
curves. In this second stage, we can study the smeared (average) compressive constitutive law of 
concrete in compression, particularly the softening coefficients. 

 

4.5 General Behavior of Test Panels in Group TE 
According to the test program in Section 4.1, five prestressed concrete panels in Group TE 

were successfully tested under the sequential loading. The data in the two loading stages are 
recorded separately. The crack widths for each panel were recorded and the crack patterns at 
selected load stages were photographed.  

In the first stage of tensile loading, all five panels were used to obtain the tensile constitutive 
laws of concrete and prestressing tendons. In the second stage of compressive loading, the 
softening coefficients of prestressed concrete were studied as related to the perpendicular tensile 
strains and to the prestress. 

In the first series of panels TE-4, 3, and 5, the constant tensile strains were 0.0146, 0.0194, 

and 0.0293, respectively. The relationship between the softening coefficient, ζ , and the tensile 

strain, 1ε , could be obtained. It should be noted that in testing panel TE-4, during the first stage 

of the loading, one of the top prestressing tendons was broken at one end due to a large 

Fig. 4.4.1 Sequential Loading Path used in Group TE 
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deformation. After restarting the test, the target tensile strain was revised to 0.0146 rather than 
0.01 as indicated in Table 4.1.1. 

In the second series of panels TE-6, 3, and 7, the constant tensile strains were approximately 
the same, being 0.0203, 0.0194, and 0.0205, respectively. With the different prestress of 

MPa 2.76 , MPa 5.52 , and MPa 11.0 , respectively, the effect of prestress on the softening 
coefficients was studied as described below. 

 
4.5.1 Applied Tensile Stress-Strain Relationships 

To describe the panel behavior the horizontal principal stress, σ1, is plotted against the 
horizontal principal strain, ε1. The two series of panels TE-4, 3, 5 and TE-6, 3, 7 are shown in 
Fig. 4.5.1 and Fig. 4.5.2, respectively. 

As shown in Fig. 4.5.1, the panels in the first series (TE-4, 3, and 5) had the same number of 
prestressing tendons. Hence, these three panels had almost the same tensile stress-strain curves 
up to their target strains. 

In the second series of panels TE-6, 3, and 7, Fig. 4.5.2, the tensile loads carried by the 
panels increased with the increase of prestressing tendons. The tensile stresses of 5.5, 11.0, and 
21.5 MPa (800, 1600, and 3120 psi) at a strain of 0.02 for panels TE-6, 3, and 7 were 
approximately proportional to the tendon percentages of 0.30%, 0.59%, and 1.18%, respectively. 
The corresponding cracking stresses were 4.48, 7.56, and 12.75 MPa (650, 1096, and 1849 psi), 
respectively. 

The smeared (average) stress-strain relationships of concrete in tension and prestressing steel 
embedded in concrete are derived in Sections 4.6 and 4.7, respectively. 
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4.5.2 Applied Compressive Stress-Strain Relationships 
The compressive stress-strain relationships of the panels in Group TE are given in Fig. 4.5.3 

and Fig. 4.5.4. 
In the first series (panels TE-4, 3, and 5), Fig.4.5.3, the same number of prestressing tendons 

was placed while the constant tensile strains in the horizontal direction were changed from 
0.0146 to 0.0194, then to 0.0293. The curves show that the compressive strength of the panel is 
indeed a function of the tensile strain in the perpendicular direction. 

In the second series (panels TE-6, 3, and 7), Fig. 4.5.4, the panels had different amounts of 
prestressing steel and the desired tensile strains were designed to be the same. The compressive 
strengths of the three panels were 23.52, 17.74, and MPa 17.1  (3.41, 2.57, and ksi 2.48 ), 
respectively. It is clear that the compressive strength of panels TE-3 and TE-7 are almost the 
same, but the strength of panel TE-6 was much higher than those of panels TE-3 and TE-7. 

The smeared (average) stress-strain relationships of concrete in compression are further  
discussed in Section 4.8. 
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4.6 Smeared (Average) Stress-Strain Relationships of Concrete in Tension 
Plain concrete cannot resist any tensile stresses after a crack is formed, but the concrete 

between the cracks of reinforced concrete can still take some tensile stress. This contribution of 
concrete between cracks is known as “tension stiffening” (Carreira and Chu, 1986). Taking into 
account this phenomenon, the smeared (average) stress-strain relationships of concrete and mild 
steel were studied (Belarbi and Hsu, 1994; Hsu and Zhang, 1996). 

Tension stiffening can also be observed in prestressed concrete. From the first stage of the 
panel tests, we obtained the smeared (average) constitutive laws of concrete in tension discussed 
in Section 4.6.1 to 4.6.3. The smeared (average) stress-strain relationship of prestressing tendons 
is discussed in Section 4.7. 

 
4.6.1 Decompression 

Before applying loads, initial compressive stress and strain exist in the concrete due to the 
prestress. Upon applying a tensile load, the first stage of the stress-strain relationship of concrete, 
called “decompression,” begins. 
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The initial stress and the initial uniaxial strain in concrete are denoted as ciσ  and ciε , 

respectively, while the initial stress and the initial uniaxial strain of prestressing tendons are pif  

and piε , respectively. These stresses are in equilibrium as follows: 

0=+ pspicci AfAσ  (4.6-1) 

where 

cA , psA  = cross-sectional areas of concrete and tendons, respectively. 

Prior to concrete cracking, both the concrete and the prestressing tendons can be considered 

as elastic materials. When stretched to the same strain 1ε , the concrete stress cσ  and the tendon 

stress psf  are given as follows: 

1εσσ ccic E ′+=  (4.6-2) 

1εpspips Eff +=  (4.6-3) 

where 
Eps = modulus of prestressing steel tendons, and 

cE ′  = decompression modulus of concrete, given as 02 εcf ′ . See Eq. 4.6-8. 

The total load P  is the sum of the concrete force and the tendon force: 

pspscc fAAP += σ  

( ) ( )pspiccipspscc AfAAEAE +++′= σε1  

In view of Eq. 4.6-1, 

( ) 1εpspscc AEAEP +′=  (4.6-4) 

Substituting the cross-sectional area of tendons cpps AA lρ=  into Eq. 4.6-4 and rearranging 

the terms, a general form of equilibrium equation before cracking is given as: 

11 ερε psp
c

c E
A
PE l−=′  (4.6-5) 

Substituting Eq. 4.6-5 into Eq. 4.6-2, the concrete stress is obtained as follows: 
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1ερσσ psp
c

cic E
A
P

l−+=  (4.6-6) 

The concrete uniaxial strain cε  is given by:  

1εεε += cic  (4.6-7) 

Using Eqs. 4.6-6 and 4.6-7, the experimental stress-strain relationship of concrete in 
decompression can be plotted as shown in Fig. 4.6.1. It is obvious that the relationship is close to 
a straight line. 

 

Fig. 4.6.1 Experimental cc εσ −  Relationships of Concrete in Decompression 
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4.6.2 Post-Decompression Behavior 
After the decompression of the concrete and before the yielding of the tendons, Eqs. 4.6-6 

and 4.6-7 can still be applied to obtain the experimental stress-strain relationship of the concrete. 

After cracking, the applied strain 1ε  becomes the smeared (average) strain. Fig. 4.6.2 shows the 

stress-strain curves of the concrete in tension. The stresses are normalized by dividing the tensile 

stresses by the crack strength of the concrete. It is noted that a small extra strain cxε  is formed at 

the end of the decompression. 
 

4.6.3 Mathematical Modeling of Smeared (Average) Stress-Strain Curve of Concrete in 
Tension 

The experimental stress-strain relationship of concrete in decompression is close to a straight 
line as shown in Fig. 4.6.1. Therefore, a linear equation is proposed. The slope of the line is 

taken as the unloading modulus of the concrete in compression cE ′ . Because the slope of the 

unloading part is the tangential slope of a parabolic compressive stress-strain relationship of 

concrete at the origin, the modulus, cE ′ , is given as: 

Fig. 4.6.2 Experimental Smeared (Average) Tensile Stress-Strain Curves of Concrete
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0

2
ε
c

c
fE

′
=′  (4.6-8) 

Complete decompression to a zero tensile stress stage would result in an extra strain of cxε  

as shown in Fig. 4.6.3. 
The stress-strain relationships of concrete after decompression are similar to those of 

reinforced concrete (Belarbi and Hsu, 1994) except that the curve starts at a point (0, cxε ). 

Assuming the same concrete cracking stress fcr and the same cracking strain εcr as those of 
reinforced concrete, the relationship prior to cracking is expressed as a straight line, starting from 

the point (0, cxε ) and ending at the point ( crf , crε ). Therefore, the slope is taken as the modulus 

of concrete cE ′′  defined by ( )cxcrcrf εε − . After cracking, the curve is similar to that of 

reinforced concrete proposed by Tamai et al. (1987), 
c

c

cr
crc f 








=

ε
ε

σ  (4.6-9) 

where 
c = a constant taken as 0.5, obtained from this research. 
The constant c in Eq. 4.6-9 for reinforced concrete was 0.4. It is changed to 0.5 in Eq. 4.6-9 

as the bond between prestressing tendons and concrete is weaker than that between deformed 
bars and concrete. Fig. 4.6.2 shows a reasonable fit by using the new constant, 0.5. 

In summary, the smeared (average) stress-strain relationships of concrete in tension for 
prestressed concrete, shown in Fig. 4.6.3, are expressed by the following equations: 

Stage UC:  ciciccc E σεεσ +−′= )( , cxc εε ≤  (4.6-10a) 

Stage T1:  )( cxccc E εεσ −′′= , crccx εεε ≤<  (4.6-10b) 

Stage T2:  
5.0









=

c

cr
crc f

ε
ε

σ , crc εε >  (4.6-10c) 

where 

cE ′  = decompression modulus of concrete taken as 
0

2
ε
cf ′

, 

ciε  = initial strain in concrete due to prestress, 

σci = initial stress in concrete,  
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cxε  = extra strain calculated by 
c

ci
ci E ′

−
σ

ε , 

cE ′′  = modulus of concrete taken as 
cxcr

crf
εε −

, 

crε  = concrete cracking strain taken as 0.00008, and 

crf  = concrete cracking stress taken as cf ′31.0  ( cf ′  and cf ′  are in MPa). 
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The constant 0.9 in Eq. 4.6-11 takes care of the size effect between the large panels and the 
in. 6  by in. 12  standard cylinders. 

Using the proposed Eqs. 4.6-10a, b, and c, the smeared (average) stress-strain relationships 
of concrete in tension are plotted in Fig. 4.6.4 to Fig. 4.6.8 and compared to the test data of the 
five panels TE-3 to TE-7. It can be seen that the agreements are acceptable. 

 

 
Fig. 4.6.4 Smeared (Average) Stress-Strain Relationships of Concrete in Tension (TE-3)
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Fig. 4.6.6 Smeared (Average) Stress-Strain Relationships of Concrete in Tension (TE-5) 

Concrete in Tension (TE-5)
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Fig. 4.6.5 Smeared (Average) Stress-Strain Relationships of Concrete in Tension (TE-4) 
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Fig. 4.6.8 Smeared (Average) Stress-Strain Relationships of Concrete in Tension (TE-7) 

Concrete in Tension (TE-7)

-12

-10

-8

-6

-4

-2

0

2

4

-0.0006 -0.0003 0 0.0003 0.0006 0.0009 0.0012

Strain

St
re

ss
 (M
Pa

)
St

re
ss

 (M
Pa

) 

Fig. 4.6.7 Smeared (Average) Stress-Strain Relationships of Concrete in Tension (TE-6) 

Concrete in Tension (TE-6)

-4

-3

-2

-1

0

1

2

3

-0.0005 0 0.0005 0.001 0.0015

Strain

St
re

ss
 (M
Pa

)
St

re
ss

 (M
Pa

) 



 71

4.7 Smeared (Average) Stress-Strain Relationships of Prestressing Tendons 
Embedded in Concrete 

When mild steel bars with a yield plateau are stiffened by concrete as in the non-prestressed 
reinforced concrete panels, the smeared (average) yield stress fn is lower than the yield stress fy of 
a bare steel bar, because of “concrete stiffening.” The smeared yield stress fn  was derived and 
expressed analytically by Belarbi and Hsu (1994) and Zhang and Hsu (1998). Prestressing 
strands, however, have no clear yielding point, and the effect of “concrete stiffening” will have 
to be expressed in a different way. 

In this research, the elastic limit of prestressing tendons embedded in concrete is 
approximately 70% of the ultimate strength fpu, which is lower than that of bare prestressing 
strands. Therefore, the stress-strain relationship of prestressing tendons prior to 0.7fpu  is given 
by: 

spsps Ef ε= , 
ps

pu
s E

f7.0
<ε  (4.7-1) 

where 
Eps = elastic modulus of prestressing tendons taken as GPa 200  ( ksi 29000 ), 

and fpu = ultimate strength of prestressing tendons taken as MPa 1862  ( ksi 270 ). 
After the cracking of the concrete, the experimental stress and strain of prestressing tendons 

can be obtained by the following derivation. 
Recalling Eq. 4.6-4, the total load is given as: 

pspscc fAAP += σ   

 The smeared (average) stress of concrete σc can be obtained from Eq. 4.6-10c. Substituting 
Eq. 4.6-10c into Eq. 4.6-4, rearranging the terms, and then using Eq. 4.6-7, the stress of 
prestressing tendons is given as: 

lp

ci

cr
cr

ps
ps

f

A
Pf

ρ
εε

ε
5.0

1








+

−=  (4.7-2) 

 
 
The strain of the tendons is:  

1εεε += pis  (4.7-3) 

Using Eqs. 4.7-2 and 4.7-3, the experimental stress-strain curve of prestressing tendons in 
panel TE-4 is plotted in Fig. 4.7.1, as well as the stress-strain curve of bare strands. The 
experimental curves in the other four panels are similar to that in panel TE-4. 
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The stress-strain relationship of bare prestressing strands beyond the elastic limit (75% of 

the ultimate strength) has been represented by the following equation, 

mm

pu

sps
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E
f 1
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
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 ′
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′
=

ε

ε
  (4.7-4) 

where 

psE ′  = modulus of prestressing tendons taken as GPa 211  ( ksi 30600 ), 

fpu = ultimate strength of prestressing tendons taken as MPa 1862  ( ksi 270 ), and 
m  = a constant describing the curvature at knee portion, taken as 6. 
Because of the contribution of the concrete in tension, the smeared (average) stress-strain 

curve of prestressing tendons embedded in concrete should be lower than that of bare tendons 
(shown in Fig. 4.7.1). The elastic limit also reduced from 75% to 70% of the ultimate strength. 

Fig. 4.7.1 Comparison of Experimental Stress-Strain Curve of Prestressing 
Tendons Embedded in Concrete in Panel TE-4 with that of Bare Strands 
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Replacing fpu by puf ′  ( ksi 260 ), and the constant m by 5, Eq. 4.7-5 was obtained to fit the 

experimental results (Fig. 4.7.1) of prestressing strands embedded in concrete: 

5
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where 

psE ′′  = modulus of prestressing tendons taken as GPa 209.2  ( ksi 30345 ), and 

puf ′  = revised strength of prestressing tendons taken as MPa 7931  ( ksi 260 ). 

Based on Eqs. 4.7-1 and 4.7-5, a comparison of the theoretical smeared (average) stress-
strain curve of prestressing tendons with the experimental curve in panel TE-4 is shown in Fig. 
4.7.2. It can be seen that the two proposed equations are satisfactory. Fig. 4.7.3 to Fig. 4.7.6 
show the comparisons for the other four panels, TE-3, 5, 6, and 7. 
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Fig. 4.7.2 Comparison of Theoretical Smeared (Average) Stress-Strain Curve of 
Prestressing Tendons with Experimental Curve for Panel TE-4 
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Fig. 4.7.3 Comparison of Theoretical Smeared (Average) Stress-Strain Curve of 
Prestressing Tendons with Experimental Curve for Panel TE-3 
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Fig. 4.7.5 Comparison of Theoretical Smeared (Average) Stress-Strain Curve of 
Prestressing Tendons with Experimental Curve for Panel TE-6 
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Fig. 4.7.4 Comparison of Theoretical Smeared (Average) Stress-Strain Curve of 
Prestressing Tendons with Experimental Curve for Panel TE-5 
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4.8 Smeared (Average) Stress-Strain Relationships of Concrete in 

Compression 
Figures 4.5.3 and 4.5.4 give the compressive stress-strain curves of the panels in Group TE. 

To obtain the compressive stress-strain relationship of the concrete, the stresses in Fig. 4.5.3 and 
Fig. 4.5.4 are subtracted by the mild steel stresses, while the strains remain the same. The stress-
strain relationship of mild steel bars in compression is the same as that of a bare steel bar. That 
is, the stress is proportional to the strain with the slope of Es until yielding and becomes a 
constant of MPa 415.1  ( ksi 60.2 ) after yielding. 

Fig. 4.7.6 Comparison of Theoretical Smeared (Average) Stress-Strain Curve of 
Prestressing Tendons with Experimental Curve for Panel TE-7 
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The experimental smeared (average) stress-strain curves of the concrete in compression are 
shown in Fig. 4.8.1 and Fig. 4.8.2. 

To be consistent with the non-prestressed reinforced concrete, a parabolic equation is 
proposed here for the compressive stress-strain curve of the prestressed concrete: 
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where 

0ε  = concrete cylinder strain corresponding to cylinder strength cf ′ , and 

ζσ, ζε = stress and strain softening coefficients, respectively. 
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Based on the experimental research conducted by Belarbi and Hsu (1994 and 1995), the 
strain softening coefficient ζε for 0o panels under sequential loading is equal to unity. The same 
phenomenon can also be observed in the test panels of Group TE. The discussion in this section, 
however, focuses on the stress softening coefficient, ζσ. 

The stress softening coefficient ζσ  is defined as the ratio of the peak compressive stress σp  

of the panel to the companion cylinder strength cf ′  as follows: 

c

p

f ′
=

σ
ζ σ   (4.8-2) 

Based on the above equation, the experimental softening coefficients ζσ of the panels are 
calculated and listed in Table 4.8.1. The softening coefficients in the two series of panels are 
compared. 
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Table 4.8.1 Experimental Softening Coefficients 
Panel No. plρ  1ε  cf ′  (MPa) pkσ  (MPa) σζ  (exp.) 

[1] [2] [3] [4] [5] [6]=[5]/[4]

TE-4 0.59% 1.46% 38.69 18.65 0.482 

TE-3 0.59% 1.94% 32.52 15.98 0.492 

TE-5 0.59% 2.93% 34.76 13.55 0.390 

TE-6 0.295% 2.03% 36.81 21.42 0.582 

TE-3 0.59% 1.94% 32.52 15.98 0.492 

TE-7 1.18% 2.05% 42.39 15.13 0.357 

TE-1 0.21% 2.11% 48.46 16.68 0.344 

 
Table 4.8.1 also lists a part of the test results of panel TE-1 that related to the softening 

coefficient. Panel TE-1 was a trial panel, not included in the test program because of premature 
failure at the edges of the panel. The layout of panel TE-1 is similar to that of panel TE-6. The 
reinforcements in the longitudinal direction were five seven-wire strands with the diameter of 
0.5 in. The mild steel ratio was 0.54%. The compressive loading was applied with a constant 
horizontal tensile strain of 2.11%. 

In the first series of panels (TE-4, 3, and 5), the effect of the tensile strain 1ε  in the 

perpendicular direction on the softening coefficient was studied. It was clear that the softening 
coefficient is a function of the tensile strain; the larger the tensile strain, the lower the softening 
coefficient. This tendency is well described in published data on the expression of the softening 
coefficient for 0o reinforced concrete panels under sequential loading (Belarbi and Hsu, 1994 and 
1995; Zhang and Hsu, 1998): 

12501
8.5

ε
ζ σ

+′
=

cf
  (4.8-3) 

In Table 4.8.2 the predicted results from Eq. 4.8-3, given in columns 4 and 5, are compared 
to the new test data on prestressed panels, column 3. The difference between the two sets of 
results can be considered as the effect of prestress and can be represented by a prestress factor 

pW . 

In the second series of panels (TE-6, 3, and 7), the effect of the percentage of prestressing 
tendons, as well as the prestress in the concrete, was studied. Similar to the first series, the 
experimental results are compared with those from Eq. 4.8-3 and listed in Table 4.8.2, including 
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the prestress factor pW . Neglecting panel TE-6 in Table 4.8.2, the average prestress factor pW  is 

1.15. 

 
The result from panel TE-6 is neglected for the following two reasons: First, there was only 

one layer of prestressing tendons in the longitudinal direction. When the tensile loading was 
applied, only three main cracks were created as shown in Fig. 4.8.3. In the other panels, such as 
panel TE-3, two layers of tendons were used which induced more uniform cracks as shown in 
Fig. 4.8.4. Since panel TE-6 had much fewer cracks than TE-3, the concrete between the cracks 
in panel TE-6 was stronger than that in panel TE-3, resulting in a higher load capacity. Thus, 
neglecting panel TE-6 is on the conservative side. Second, in actual structures, such as 
prestressed concrete bridge girders, many tendons are placed creating more uniform cracks. 
Neglecting the effects exhibited by panel TE-6 in determining the value of the prestress factor is 
valid in practice. 

 

Table 4.8.2 Comparison of Experimental Softening Coefficients with Analytical 
Model 

Panel No. 1ε  σζ  (exp.) 9.08.5
≤

′cf
 

12501
1

ε+ pW  

[1] [2] [3] [4] [5] ]5][4[
]3[]6[ =  

TE-4 1.46% 0.482 0.90 0.464 1.16 

TE-3 1.94% 0.492 0.90 0.413 1.32 

TE-5 2.93% 0.390 0.90 0.347 1.25 

TE-6 2.03% 0.582 0.90 0.406 1.59* 

TE-3 1.94% 0.492 0.90 0.413 1.32 

TE-7 2.05% 0.357 0.89 0.404 0.99 

TE-1 2.11% 0.344 0.83 0.399 1.04 

* Not included in the average. The average is 1.15. 
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Fig. 4.8.4 Crack Pattern of Panel TE-3 

Fig. 4.8.3 Crack Pattern of Panel TE-6 
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In summary, the smeared (average) stress-strain relationships of concrete in compression are 

expressed as: 
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( ) ( ) ( ) 9.01 ≤′= pc Wffff βεζ   (4.8-5) 
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and   15.1=pW   (4.8-9) 
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CHAPTER 5 

PRESTRESSED CONCRETE 45-DEGREE PANELS UNDER PURE 

SHEAR (PROPORTIONAL LOADING) 

 
As Chapter 4 describes the test results of the panels in Group TE, Chapter 5 addresses the 

studies done on Group TA. Group TA panels with 45o steel bars were subjected to pure shear, a 
special case of proportional loading. The test program, test specimens, and test results of the 
panels in Group TA are described. The shear behavior of prestressed concrete was studied, and 
the stress-strain relationship of concrete in compression is further discussed. Particular attention 
is given to the new prestress factor in the softening coefficient. 

 

5.1 Test Program (Group TA) 
Five full-size panels with steel bars oriented at 45o were designed to study the shear behavior 

of prestressed concrete membrane elements. Two variables were studied in this group: (1) 
percentage of prestressing tendons in the longitudinal direction ρlp and (2) percentage of mild 
steel bars in the transverse direction ρt. The details are listed in Table 5.1.1. The panels in this 
group are identified first with the letter “T”, which signifies that the panels are designed with 
prestressing Tendons. The second letter “A” means that the steel grid was oriented at a 45o angle 
to the applied principal stresses. 

The panels in this group were divided into two series based on the two variables. The first 
series included panels TA-1, 2, and 3. In this series, the percentage of the prestressing steel in the 
longitudinal direction was kept constant at 0.84%. The mild steel in the transverse direction 
varied from 0.42% to 0.77% then to 1.54%. The second series included panels TA-2, 4, and 5. 
The percentages of the mild steel in the transverse direction were 0.77% in the three panels, and 
the percentages of the prestressing tendons were 0.84%, 0.59%, and 0.42%, respectively. The 
effects of the percentages of prestressing tendons and the percentage of mild steel on the shear 
behavior of prestressed concrete membrane elements were studied in the test program. 
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Table 5.1.1 Principal Variables of Test Panels in Group TA 

Concrete Steel in l  direction Steel in t  direction 
Specimen 

cf ′  
(MPa) 0ε  Tendons plρ  Mild Steel tρ  

TA-1 41.47 0.0021 2 6.0φ @189 mm 0.84% 2#3@189 mm 0.42%

TA-2 41.33 0.0019 2 6.0φ @189 mm 0.84% 2#4@189 mm 0.77%

TA-3 42.21 0.0019 2 6.0φ @189 mm 0.84% 4#4@189 mm 1.54%

TA-4 42.54 0.0021 2 5.0φ @189 mm 0.59% 2#4@189 mm 0.77%

TA-5 41.08 0.0021 1 6.0φ @189 mm 0.42% 2#4@189 mm 0.77%

 

5.2 Test Specimens (Group TA) 
5.2.1 Layout of Specimens 

As in the case of the specimens in  Group TE, the same two coordinate systems ( t−l  and 
21− ) were used in the panels in Group TA, Fig. 5.2.1. All the panels had the same size of 

mm 178mm 1398mm 1398 ××  ( in. 7in. 55in. 55 ×× ). The longitudinal reinforcements 
(prestressing tendons) and the transverse reinforcements (mild steel) were oriented at an angle of 
45o  to the principal 21−  coordinate of the applied stresses, i.e. α1 = 45o.  

As shown in Fig. 5.2.1(a), two layers of the prestressing tendons were placed in the 
longitudinal direction with a spacing of mm 188  ( in. 7.4 ) in panels TA-1, 2, 3, and 4. Since the 
stresses in in. 0.6  prestressing tendons were kept constant at about MPa 986  ( ksi 143 ) in the 
first three panels, the prestress on the concrete was approximately MPa 8.3  ( ksi .21 ). In panel 
TA-4, in. 0.5  prestressing tendons were used to replace the in. .60  tendons. The smaller tendons 
produced a prestress of MPa .85  ( ksi .840 ). At two of the corners of the panels, the regular 
anchor-inserts were used because there was no space to place the prestressing tendons. 

Figure 5.2.1(b) shows panel TA-5 to have only one layer of in. .60  diameter prestressing 
tendons. This single layer of in. .60  diameter tendons produced a prestress of about MPa .14  
( ksi .60 ). 
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(a) Steel Layout and Dimensions of Panels TA-1, 2, 3, and 4 
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Fig. 5.2.1 Steel Layout and Dimensions of Test Panels in Group TA 

Unit: mm 

 Tendon Mild Steel 

TA-1 6.02φ  2#3@189 mm 
TA-2 6.02φ  2#4@189 mm 
TA-3 6.02φ  4#4@189 mm 
TA-4 5.02φ  2#4@189 mm 
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(b) Steel Layout and Dimensions of Panel TA-5 
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Fig. 5.2.1 Steel Layout and Dimensions of Test Panels in Group TA (continued) 
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5.2.2 Fabrication of Specimens 
To hold the tendons at 45o, new V-shape inserts were designed and manufactured as shown 

in Fig. 5.2.2(a). Each V-shape insert consists of two perpendicular plates. One is the bearing 
plate with a thickness of mm 38  ( in.5.1  ) for anchoring the prestressing tendons. The other is a 
connecting plate with a thickness of mm 25  ( in. 1 ) for connecting to the two layers of mild steel 
bars. The detailed dimensions of a typical V-shape insert are shown in Fig. 5.2.2(b). The bearing 
plate could hold two prestressing tendons as shown in Fig. 5.2.2(c). The connecting plate was 
connected to the two transverse mild steel bars via two steel plates mm 9.5  ( in. 3/8 ) thick, 

mm 64  ( in. 2.5 ) wide, and mm 127  ( in. 5 ) long. V-shape inserts at the corners of a panel are 
different in that there are no plates connecting the transverse steel bars which were directly 
welded onto the bearing plates. All the steel plates in the V-shape inserts were assembled by 
welding. 

The two layers of the transverse mild steel bars were welded to the V-shape inserts in the 
steel casting form in the following manner: the 16 V-shape inserts were first bolted to the steel 
casting form, and the first layer of the steel bars was welded. Then the V-shape inserts were 
flipped over, and fastened again. The second layer of the steel bars could then be welded. The 
two V-shape inserts at the corners were connected by welding four #4 steel bars on the surfaces 
of the adjacent bearing plates. 

After finishing the welding work, the steel casting form was emptied and cleaned. The 
whole steel assembly and the flexible conduits were then placed into the casting form, as shown 
in Fig. 5.2.3. The casting and curing procedure were the same as those described in Section 
4.2.2. 
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Fig. 5.2.2 Dimensions of V-shape Inserts (Unit: in.) 

(a) Perspective View

(b) Top View 

(c) Bearing Plate
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(b) Formwork of Panel TA-5 
Fig. 5.2.3 Formworks of Panels in Group TA 

(a) Formwork of Panel TA-3 
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5.2.3 Tendon Jacking System 
The tendon jacking system for the panels in Group TA is the same as that for the panels in 

Group TE except that different supporting chairs were used. Fig. 5.2.4(a) shows the pulling end 
in the jacking system. 

The supporting chair consisted of two supporting legs of unequal lengths and one connecting 
plate, as shown in Fig. 5.2.4(b). Each supporting leg was made by welding two threaded rods of 
25 mm (1 in.) diameter to a steel bearing plate at an angle of 45o. The bearing plate has a mm 25  
( in. 1 ) diameter hole at the center for a connecting bolt to the panel. The connecting plate was 
attached to the threaded rods by four holes at the corners and four nuts. The nuts on the four 
threaded rods could be adjusted to make the connecting plate perpendicular to the direction of 
the prestressing tendons. Three holes with a diameter of mm 16  ( in. 5/8 ) were drilled near the 
center of the connecting plate along the plane of flexible conduits to accommodate both the two-
layer and the single-layer arrangements of the prestressing tendons. For the corner tendons, the 
sizes of the supporting legs and the connecting plate were slightly different from those of the 
other tendons. 

The tendon jacking system, including hydraulic jack, pump, pressure relief valve, load cells, 
etc, was the same as that used in the cracking simulation tests in Chapter 3. The jacking 
procedure for the tendons was also explained. 
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Fig. 5.2.4 Tendon Jacking System for Panels in Group TA 

Supporting Chair  Load Cell THD-50 

Bearing Plate 

Connecting 
Plate 

Connecting 

(a) Setup of Pulling End 

(b) Details of Supporting Chair 

Supporting Legs 
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5.3 Materials (Group TA) 
5.3.1 Concrete 

The materials for the concrete used in Group TA were the same as those used in Group TE 
described in Section 4.3.1. The compressive strength of the concrete for each panel is listed in 
Table 5.1.1. The strength was very close to the target strength of 41.4 MPa (6000 psi). The 
grouting material, SCCG, was the same as that described in Section 4.3.1. 

 
5.3.2 Reinforcements 

The stress-relieved strands, grade 270 ( MPa 1862 ), which conformed to ASTM A-416, were 
used in the specimens. Two sizes of strands were used. Strands with in. 0.5  ( mm 13 ) nominal 
diameter and a cross-sectional area of 99 mm2 (0.153 in2) were used in panel TA-4, while  
strands with 0.6 in. (15 mm) nominal diameter and a cross-sectional area of 140 mm2 (0.217 in2) 
were used in the other four panels. 

The mild steel bars used in the Group TA panels were #3 and #4 bars, which were low-alloy 
grade 60 ( MPa 415 ) steel bars and satisfied ASTM 716. The deformed bars #3 and #4 had cross-
sectional areas of 71 mm2 and 129 mm2 (0.11 in.2 and 0.20 in.2), respectively. The mechanical 
properties of the steel bars are shown in Table 5.3.1. Fig. 5.3.1 shows two typical stress-strain 
relationships of #3 and #4 steel bars. 

 
Table 5.3.1 Mechanical Properties of Steel Bars 

Steel Bar yf  (MPa) yε  sE  (GPa) hε  

#3 413.8 0.00210 197.0 0.0200 

# 4 415.1 0.00216 192.2 0.0176 

Note: hε  is the strain at the beginning of the strain hardening region. 
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5.4 Loading Procedure (Group TA) 
A proportional load path was used in the tests of panels in Group TA, as shown in Fig. 5.4.1. 

In these tests, all horizontal tensile stresses and vertical compressive stresses were applied with 
equal magnitude, σ2 = -σ1, to create a pure shear state in the 45o direction. 

In applying the loads, either the horizontal or the vertical loading could be used to control 
the loading of the other direction. The average reading of the LVDTs for tensile strains was 
chosen as the controlling feedback because the compressive strains were much more sensitive 
and scattered than the tensile strains. In this control scheme, the horizontal tensile strain, ε1, 
controls the horizontal tensile stress, σ1, which, in turn, controls the vertical compressive stress, 
σ2.  

In these five panel tests, load-control mode was first applied. Just before the yielding of the 
steel, the strain-control mode was initiated, which could well control the non-linear part of the 
shear behavior. 

 

Fig. 5.3.1 Stress-Strain Curves of Bare Steel Bars 
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5.5 General Behavior of Test Panels in Group TA 
Five panels in Group TA were tested under pure shear conditions. As described in Section 

5.1, the panels were designed to have various reinforcement ratios in the two orthogonal 
directions. The panels TA-1, 2, and 3 were used to study the effect of transverse mild steel 
percentage on the shear behavior of prestressed concrete elements, while the panels TA-2, 4, and 
5 were used to study the effect of prestressing tendon percentage. 

The raw test data of the panels, which includes the applied tensile and compressive forces 
and the strains of all 20 LVDTs in each panel, can be found in Wang’s dissertation (2006). 
Wang’s dissertation also gives the test data for these panels analyzed with the equilibrium and 
the compatibility equations in the Softened Membrane Model, the crack widths for each panel, 
and the crack patterns at certain stages. 

 
5.5.1 Cracking Behavior 

For non-prestressed reinforced concrete elements, initial cracks form in the direction of 
applied principal tensile stress, regardless of the orientation of the reinforcing bars. Under pure 
shear, the direction of cracks is oriented at an angle of 45o to the longitudinal steel. With 
increasing load, new cracks may “rotate” if the steel ratios are different in the two directions. 

The prestressed concrete panels, however, displayed a different type of crack formation and 
development. First, the initial cracks formed at angles of less than 45o to the longitudinal 
prestressing tendons: approximately 26.5o in panels TA-1, 2, and 3; and 31.6o and 34.2o in panels 

Fig. 5.4.1 Proportional Loading Path used in Group TA 
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TA-4 and 5, respectively. These angles are close to the angle of the principal compressive stress 
at the cracking of each panel. 

Second, the “rotation” of cracks was not observed with the increase of the applied loads. All 
the cracks formed during a short “cracking stage.” Beyond the peak point of the shear stress-
strain curves, slippage of cracks and spalling of the concrete gradually occurred along the 
prestressing tendons in the middle part of the panels TA-1, 2, and 3 until the failures. In panels 
TA-4 and 5, only spalling was seen on one face of the panel. 

Figures 5.5.1 and 5.5.2 give the shear stress-strain relationships of panels in Group TA. It 
can be seen that the cracking strength of the prestressed concrete panels is related to the 
prestressing tendons in the panels rather than the mild steel in the transverse direction. The 
cracking strengths of panels TA-1, 2, and 3 are approximately the same with a value of MPa 3.7  
( ksi 0.54 ). The cracking strengths of panels TA-4 and 5 are given as MPa 3.45  and MPa 2.84  
( ksi 0.50  and ksi 0.41 ), respectively. They are smaller than that of TA-2 because of fewer 
prestressing tendons, i.e., less prestress on the concrete. In other words, the prestress delays the 
cracking of the concrete, which is parallel to the conclusion of the panel tests in Group TE 
(Chapter 4). 

 
5.5.2 Yielding of Steel 

Upon the cracking of concrete, the steel bars started to resist the shear loading and the 
stresses in the steel increased dramatically. From the shear stress-strain relationships shown in 
Fig. 5.5.1, the yield point of the mild steel in the transverse direction could be discerned in 
panels TA-1 and TA-2 with the transverse steel ratios of 0.42% and 0.77%, respectively. In 
contrast, the yield point could not be discerned in panel TA-3 with a transverse steel ratio of 
1.54%. Apparently, the yielding of mild steel could occur only when the transverse steel force is 
much less than the longitudinal prestressing force. 

The yielding of prestressing tendons could not be observed in any of the panel tests of Group 
TA for two reasons. First, prestressing tendons have a high elastic limit. Second, there is no clear 
yielding plateau for prestressing tendons. Even beyond the limit of the elastic stage (0.7 fpu), the 
stiffness decreases very slowly until reaching 85% to 90% of the ultimate strength. It was 
frequently observed that prestressing tendons in bridge girders did not yield under shear failure 
modes, because crushing of concrete occurred before the yielding of the longitudinal prestressing 
tendons.  
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Fig. 5.5.1 Shear Stress-Strain Curves of Panels TA-1, 2, and 3 
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5.5.3 Shear Stress vs. Shear Strain Relationships ( tt ll γτ −  Curves) 

In the five panels, TA-1 to TA-5, the prestressing tendons and the mild steel were oriented at 
an angle of 45o to the principal 21−  coordinate of the applied stresses, i.e. a1 = 45o.  

The stress transformation equations of the element in terms of principal applied stresses are 
given as: 

1
2

21
2

1 sincos ασασσ +=l   (5.5-1) 

1
2

21
2

1 cossin ασασσ +=t   (5.5-2) 

1121 cossin)( αασστ +−=tl  (5.5-3) 

The strain transformation equations of the element in terms of principal strains are given as: 

1
2

21
2

1 sincos αεαεε +=l   (5.5-4) 

1
2

21
2

1 cossin αεαεε +=t   (5.5-5) 

1121 cossin)( ααεεγ +−=tl   (5.5-6) 

Substituting α1 = 45o into Eqs. 5.5-3 and 5.5-6, the shear stress tlτ  and the shear strain tlγ  

of the element can be calculated by the following simple equation in terms of the principal 

stresses and strains ( 2σ , 1σ , 2ε , and 1ε ): 

( )212
1 σστ +−=tl   (5.5-7) 

( )212
1 εεγ +−=tl   (5.5-8) 

The principal stresses and strains were calculated using the readings from jack load cells and 
LVDTs, respectively. The shear stress-strain curves of the panels in the two series are plotted in 
Fig. 5.5.1 and Fig. 5.5.2, respectively. 

As described in Section 5.5.2, each of the curves for panels TA-1, 2, 4, and 5 exhibits three 
critical points, namely, cracking of concrete, yielding of transverse mild steel, and crushing of 
concrete. Before the cracking of the concrete, the shear behavior of the panels was elastic and the 

tt ll γτ −  curves were essentially linear. After cracking, the approximately linear increase of the 

shear stresses continued with smaller slopes until the yielding of the mild steel. After the mild 
steel yielded, the shear strains increased dramatically with a very small increase of shear stresses. 
The prestressed concrete panels reached their peak shear strengths when the crushing of the 
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concrete occurred. The shear stresses started to decline with the increase of the deformations 
beyond the peak points. 

Test panel TA-3 exhibited a different shear behavior from the other panels. Because this 
panel had the highest percentages of prestressing tendons and mild steel, the steel in both 
longitudinal and transverse directions did not yield. There were only two critical points, the 
cracking and the crushing of the concrete, that divided the shear stress-strain curve into three 
stages. 

From the two series of curves, it is obvious that the maximum shear capacity of the 
prestressed concrete panels is related to its reinforcement ratios. The experimental shear 
strengths of the test panels TA-1, 2, and 3 are MPa 5.96 , MPa 6.40 , and MPa 7.47  ( ksi 0.86 , 

ksi 0.93 , and ksi 1.08 ), respectively. The shear strengths are MPa 6.40 , MPa 5.67 , and 
MPa 4.77  ( ksi 0.93 , ksi 0.82 , and ksi 0.69 ) for test panels TA-2, 4, and 5, respectively. The 

shear strength increases with an increase of either prestressing tendon or mild steel ratios. 
The shear ductility factor is defined as the ratio of the strain at 80% of peak stress in the 

descending branch to the strain at the yielding point. It is evident from Fig. 5.5.1 and Fig. 5.5.2 
that a prestressed concrete element subjected to shear could exhibit good ductility if properly 
reinforced. The ductility factors of the panels TA-1, 2, and 3 in the first series are 12.7, 5.0, and 
less than 1.0 (no steel yielding in panel TA-3), respectively. It is obvious that the ductility 
increases dramatically with the decrease of the mild steel ratios in the transverse direction. In the 
second series, the ductility factors are 5.0, 6.9, and 8.6 for panels TA-2, 4, and 5, respectively. 
The strain at 87% of peak stress is used because of the limited test data for panel TA-4. 
Obviously, the ductility increases with the reduction of prestressing tendons in the longitudinal 
direction. 

The descending branches of those shear stress-strain curves right after the crushing of the 
concrete exhibit an interesting phenomenon. In panels TA-1 and TA-2, after the crushing of 
concrete, the shear stresses dropped rapidly below 80% of peak stress in a short period. Even 
under strain-control mode, only one or two points within this period were caught. In panels TA-4 
and 5, however, there was no sudden drop after the crushing of concrete. The shear stresses 
gradually decreased with the increase of the shear strains. 

 

5.5.4 Shear Stress vs. Principal Tensile Strain Relationships ( 1ετ −tl  Curves) 

Figures 5.5.3 and 5.5.4 show the experimental shear stress vs. principal tensile strain 

relationships. The principal tensile strains, 1ε , of the prestressed concrete panels are obtained by 

averaging the horizontal LVDT readings. 

The shapes of the two figures are similar to Figs. 5.5.1 and 5.5.2 because the shear strain tlγ  

is governed predominantly by the principal tensile strain, especially before the crushing of the 

concrete. Each 1ετ −tl  curve also has four stages jointed by three characteristic points. The first 
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stage is the elastic stage before concrete cracking. The second stage is the post-cracking elastic 
branch. The third stage is the plastic stage starting from the yielding of the mild steel to the peak 
point. The last stage is the descending branch. 
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5.5.5 Shear Stress vs. Principal Compressive Strain Relationships ( 2ετ −tl  Curves) 

Figures 5.5.5 and 5.5.6 show the two series of experimental shear stress vs. principal 
compressive strain relationships. The principal compressive strains, ε2, of the prestressed 
concrete panels are obtained by averaging the vertical LVDT readings. 

Unlike the τlt−γlt curves, the cracking of the concrete had a lesser effect on the post-cracking 
slope of the τlt−ε2  curves. With the increase of the applied shear stress after cracking, the 
compressive strain continued to increase linearly up to the yielding of the mild steel and became 
nonlinear until the peak point. After the crushing of concrete, the compressive strain rapidly 
increased with a decrease of applied shear stress. 

It should be noted that the compressive strains of panels TA-1 and 5 had a slight reduction 
after the yielding of the mild steel. Two reasons to explain the phenomenon were advanced by 
Pang (1991). First, the direction of the principal compressive strain of the concrete 
( −d direction) deviated significantly from the original −2 direction after the yielding of steel. 
This deviation of the principal compressive direction reduced the compressive strain in the 
−2 direction. Second, the direction of cracks was not perpendicular to the direction of the 

principal tensile stresses of the elements. The inclined cracks crossed the line connecting the two 
measuring points of a LVDT in the −2 direction. The development of the crack widths gave a 
tensile component in the −2 direction, which counteracted the compressive strain caused by the 
external shear forces. 
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5.6 Smeared (Average) Stress-Strain Relationships of Concrete in 

Compression 
The softening coefficient is the most important property of the smeared (average) stress-

strain relationships of concrete in compression. 
 

5.6.1 Experimental Curves for Prestressed Concrete 
In the Softened Membrane Model, the equilibrium equations for panels in Group TA are 

given as: 

pp
ccc flll ραατασασσ +++= 11121

2
21

2
1 cossin2sincos  (5.6-1) 

tt
ccc

t fραατασασσ +−+= 11121
2

21
2

1 cossin2cossin  (5.6-2) 

)sin(coscossin)( 1
2

1
2

121121 ααταασστ −++−= ccc
tl  (5.6-3) 

Substituting α1=45o into Eq. 5.6-3 and rearranging the equation, the compressive stress of 
the concrete is given as follows: 

t
cc

lτσσ 221 −=   (5.6-4) 
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In Eq. 5.6-4, the applied shear stress tlτ  can be calculated from the applied principal stresses 

measured from the panel testing, as expressed by Eq. 5.5-7. The average tensile stress of the 

concrete c
1σ  is relatively small in magnitude and can be calculated from the tensile stress-strain 

relationships of the concrete expressed by Eq. 4.6-10c. This equation was established from the 
panels in Group TE described in Section 4.6.3. 

In the SMM, the relationships between the uniaxial strains and the biaxial strains are given 
as follows (Zhu, 2000): 

2
2112

12
1

2112
1 11

1 ε
νν

ν
ε

νν
ε

−
+

−
=  (5.6-5) 

2
2112

1
2112

21
2 1

1
1

ε
νν

ε
νν

ν
ε

−
+

−
=  (5.6-6) 

The Hsu/Zhu ratio 21ν , which is the tensile strain caused by the perpendicular compressive 

strain, is zero. Substituting 021 =ν  into Eq. 5.6-6, the uniaxial compressive strain of the concrete 

is obtained as follows: 

 22 εε =  (5.6-7) 

The biaxial compressive strain 2ε  in Eq. 5.6-7 can be calculated directly from the tests by 

averaging the vertical LVDT readings. 
It should be noted that the longitudinal prestresses were induced into the concrete before the 

application of the load. This 45o prestress induced identical initial compressive strains in the −1  
and the −2  directions, labeled as εi. The strain in the −1 direction is considered when calculating 

c
1σ  in Eq. 5.6-4. The strain in the −2 direction is added to 2ε  to get the uniaxial compressive 

strain cε  in the concrete, as follows: 

 ic εεε += 2  (5.6-8) 

Using Eqs. 5.6-4 and 5.6-8, the experimental smeared (average) stress-strain curves of the 
concrete in compression in the two series of panels are plotted in Fig. 5.6.1 and Fig. 5.6.2. 
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The effect of loading paths on the concrete compressive softening was first observed by 
Belarbi and Hsu (1995). By comparing the test results from their two series, E and F, they found 
that the loading path had a significant effect on the softening behavior. Unlike sequential 
loading, in which only the stress was softened, both the stress and the strain were softened for the 
panels tested under proportional loading. The stress and strain softening coefficients were 
approximately the same. Later experiments at the University of Houston (Pang and Hsu, 1995; 
Zhang and Hsu, 1998) confirmed this observation. From this research, Fig. 5.6.1 and Fig. 5.6.2, 
similar conclusion could be drawn for prestressed concrete, i.e., both the stress and the strain of 
concrete were softened under proportional loading. 

 
5.6.2 Mathematical Modeling of Smeared (Average) Stress-Strain Curve of Prestressed 

Concrete in Compression 
In the Softened Membrane Model, the smeared (average) constitutive relationships of 

concrete compressive stress c
2σ  versus uniaxial compressive strain 2ε , shown in Fig. 5.6.3, are 

given as follows: 
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As discussed in Section 4.8, the softening coefficient ζ  in Eq. 5.6-9 is expressed as the 

product of the functions of concrete compressive strength cf ′ , uniaxial tensile strain 1ε , and 

deviation angle β, i.e. 

 ( ) ( ) ( ) 9.01 ≤′= βεζ ffff c   (5.6-10) 

where ( ) 9.08.5
≤

′
=′

c
c f

ff  ( cf ′  in MPa)  (5.6-11) 

 ( )
1

1 4001
1

ε
ε

+
=f   (5.6-12) 

and  ( )
o24

1
β

β −=f   (5.6-13) 
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To express the smeared (average) stress-strain curves of the concrete in compression in 

prestressed elements, the same parabolic equation, Eq. 5.6-9, is used. The three functions used to 
calculate the softening coefficient are expressed by Eqs. 5.6-10 to 5.6-13. 

For consistency, ( )cff ′  and ( )1εf  remain the same as those for reinforced concrete. By 

dividing the experimental values of ζ  by ( )cff ′  and ( )1εf , the experimental ( )βf  for 

prestressed concrete elements are calculated and listed in Table 5.6.1. The experimental β  for 

the prestressed concrete elements listed in Table 5.6.1 are obtained using Eq. 2.3-1. 

2ε

c
2σ

0ζε

Stage C1
Stage C2 

Compressive strain 

Compressive stress 

Not to scale 

Fig. 5.6.3 Constitutive Laws of Concrete in Compression 
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According to the data in Table 5.6.1, the f(β) versus β relationship for the prestressed 
concrete panels is plotted in Fig. 5.6.4 along with the data for the reinforced concrete panels and 
the straight line by Eq. 5.6-13. Two points should be noted. First, the average f(β) at β=0 (Group 
TE) is 1.15, which is the prestress factor Wp obtained from Section 4.8. Second, the f(β) versus β 
relationship for prestressed concrete panels in Group TA shows a different trend than that for 
reinforced concrete panels. In other words, Eq. 5.6-13 for reinforced concrete must be modified 
before it can be applied to prestressed concrete elements. 

Table 5.6.1 Calculation of β  and ( )βf  for Prestressed Concrete Panels 

Specimen 
ζ  

(exp.) 
cf ′  

(MPa) 
( )cff ′ 1ε  ( )1εf ( )βf  β  

(Degree)

[1] [2] [3] [4] [5] [6] [7]=[2]/([4][6]) [8] 

TA-1 0.284 41.47 0.900 0.012277 0.411 0.767 17.6 

TA-2 0.308 41.33 0.900 0.005242 0.568 0.602 13.8 

TA-3 0.361 42.21 0.893 0.002743 0.691 0.585 7.6 

TA-4 0.265 42.54 0.889 0.008603 0.475 0.628 12.4 

TA-5 0.229 41.08 0.900 0.007187 0.508 0.501 9.7 

TE-3 0.492 32.52 0.900 0.019400 0.413 1.321 0 

TE-4 0.482 38.69 0.900 0.014600 0.464 1.155 0 

TE-5 0.390 34.76 0.900 0.029300 0.347 1.249 0 

TE-6 0.582 36.82 0.900 0.020300 0.406 1.593 0 

TE-7 0.357 42.39 0.891 0.020500 0.404 0.992 0 

 Note: Eq. 5.6-12) was used to calculate ( )1εf  for the panels in Group TA. 

  Eq. 4.8-7 was used to calculate ( )1εf  for the panels in Group TE. 
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Introducing a new “prestressed factor Wp” into the softening coefficient to take care of the 

effect of prestress, Eq. 5.6-10 becomes: 

( ) ( ) ( ) 9.01 ≤′= pc Wffff βεζ   (5.6-14) 

where ( ) 9.08.5
≤

′
=′

c
c f

ff  ( cf ′  in MPa)  (5.6-15) 

  ( )
1

1 4001
1

ε
ε

+
=f   (5.6-16) 

and  ( )
o24

1
β

β −=f   (5.6-17) 

Dividing the experimental softening coefficient by ( )cff ′ , ( )1εf , and ( )βf  gives the values 

of Wp, which are listed in Table 5.6.2. 

Fig. 5.6.4 f(β) versus β Relationships for Reinforced and Prestressed 
Concrete Panels 
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Figure 5.6.5 relates the pW  factor to the β  angle according to Column [6] and [7] in Table 

5.6.2. A regression analysis is performed using the Microsoft Excel program. By setting 
polynomial as the regression type, choosing an order of 2, and setting the intercept at 1.15, the 

prestressed factor pW  is given as: 

 
( )

6
109.0

15.1
−

+=
ββ

pW   (5.6-18) 

The coefficient of determination is calculated to be 0.8896, which means that Eq. 5.6-18 can 
represent very well the relationship between Wp and β. 

Eqs. 5.6-14 to 5.6-18 unify the softening coefficients for reinforced concrete and prestressed 
concrete. The effect of the deviation angle β on the softening coefficient in prestressed concrete 
is obviously more complicated than that in reinforced concrete. The complexity stemmed from 
two sources. First, prestress on the concrete changes the deviation angle even before the 
application of loading. Second, the properties of the prestressing tendons in the longitudinal 

Table 5.6.2 Calculation of pW  for Prestressed Concrete Panels 

Specimen 
ζ  

(exp.) 
( )cff ′  

(Eq. 5.6-15)
( )1εf  

(Eq. 5.6-16)
( )βf  

(Eq. 5.6-17)
pW  

(exp.) 
β  

(Degree)

[1] [2] [3] [4] [5] [3][4][5]
[2][6] =  [7] 

TA-1 0.284 0.900 0.411 0.267 2.877 17.6 

TA-2 0.308 0.900 0.568 0.425 1.416 13.8 

TA-3 0.361 0.900 0.691 0.683 0.851 7.6 

TA-4 0.265 0.894 0.475 0.483 1.293 12.4 

TA-5 0.229 0.900 0.508 0.596 0.841 9.7 

TE-3 0.492 0.900 0.413 1 1.321 0 

TE-4 0.482 0.900 0.464 1 1.155 0 

TE-5 0.390 0.900 0.347 1 1.249 0 

TE-6 0.582 0.900 0.406 1 1.593 0 

TE-7 0.357 0.891 0.404 1 0.992 0 
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direction are quite different from those of the mild steel in the transverse direction. Apparently, 
the difference in stiffnesses in the longitudinal and the transverse directions is very large. 

Although we cannot explain the shape of the pW  function, the softening coefficient 

expressed by Eqs. 5.6-14 to 5.6-18 is very general and amazingly accurate. These equations are 
applicable to reinforced and prestressed concrete, with any ratio of longitudinal steel to 
transverse steel, any orientation of steel bars with respect to the principal stresses, as well as 
high-strength concrete up to MPa 100 . 

The testing of Group TE and TA panels allowed us to establish the constitutive laws of 
concrete in compression and in tension, as well as the prestressing tendons. These constitutive 
laws are included in the Softened Membrane Model to predict the shear behavior of prestressed 
concrete elements. Fig. 5.6.6 compares the predictions from the Softened Membrane Model for 
Prestressed Concrete (SMM-PC) with the experimental data of concrete compressive stress-
strain relationships. The prediction agrees very well with the experimental data for all five panels 
of Group TA. 

 

Fig. 5.6.5 pW  versus β  Relationships for Prestressed Concrete Panels 
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Fig. 5.6.6 Comparison of SMM-PC Predicted Concrete Compressive Stress-
Strain Curves with Experimental Data of Panels TA-1 to TA-5 

Concrete Compressive Strain, cε

C
on

cr
et

e 
C

om
pr

es
si

ve
 S

tre
ss

 (M
Pa

), 
σ c

 

Concrete Compressive Strain, cε

C
on

cr
et

e 
C

om
pr

es
si

ve
 S

tre
ss

 (M
Pa

), 
σ c

 

0042.0
0084.0

=
=

t

p

ρ
ρl

0077.0
0084.0

=
=

t

p

ρ
ρl



 112

 

TA-4
-14

-12

-10

-8

-6

-4

-2

0
-0.003-0.0025-0.002-0.0015-0.001-0.00050

Concrete Compressive Strain

C
on

cr
et

e 
C

om
pr

es
si

ve
 S

tre
ss

(M
Pa

)

Test
SMM-PC

TA-3
-16

-14

-12

-10

-8

-6

-4

-2

0
-0.004-0.0035-0.003-0.0025-0.002-0.0015-0.001-0.00050

Concrete Compressive Strain

C
on

cr
et

e 
C

om
pr

es
si

ve
 S

tre
ss

(M
Pa

)

Test
SMM-PC

Fig. 5.6.6 Comparison of SMM-PC Predicted Concrete Compressive Stress-Strain 
Curves with Experimental Data of Panels TA-1 to TA-5 (continued) 
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Fig. 5.6.6 Comparison of SMM-PC Predicted Concrete Compressive Stress-Strain 
Curves with Experimental Data of Panels TA-1 to TA-5 (continued) 
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CHAPTER 6 

ANALYTICAL MODELS OF PRESTRESSED CONCRETE PANELS 
 

6.1 Introduction 
Reinforced concrete structures can be visualized as assemblies of membrane elements, and 

their behavior can be predicted using the finite element method once the constitutive relationships 
of the elements are established. At the University of Houston, Zhong (2005) developed a 
nonlinear finite element program, named Simulation of Reinforced Concrete Structures (SRCS), 
for analysis of reinforced concrete structures. In SRCS, based on the Cyclic Softened Membrane 
Model (CSMM) (Mansour, 2001; Mansour and Hsu, 2005a and 2005b), a two-dimensional 
reinforced concrete plane stress material module and three uniaxial material modules of steel and 
concrete were developed and implemented into the object-oriented finite element framework 
OpenSees (Fenves 2001). SRCS is proven to successfully predict the behavior of reinforced 
concrete plane stress structures subjected to static, reversed cyclic, and dynamic loading. 

In the present research project, the Softened Membrane Model for Prestressed Concrete 
(SMM-PC) has been developed to predict the response of prestressed concrete membrane 
elements under shear loading. Therefore, a new finite element program for prestressed concrete 
structures can be developed based on SRCS. The key to this program are the following two points: 
(1) new constitutive relationships of prestressing tendons embedded in concrete; and (2) revised 
constitutive relationships of concrete considering the effect of prestress. These new constitutive 
relationships of materials need to be implemented into SRCS based on the OpenSees framework. 

This chapter summarizes the equations of equilibrium, compatibility, and constitutive 
relationships used in the Softened Membrane Model for Prestressed Concrete (SMM-PC). Both 
the constitutive laws and the analytical model presented in Chapters 4 through 6 will be applied to 
prestressed concrete beams. Basically, tests on prestressed concrete beams are performed, and an 
analytical model for the shear behavior of prestressed concrete beams is developed. 

The three equilibrium equations and three compatibility equations are summarized in Section 
6.2.1; the relationships between the biaxial strains and the uniaxial strains are given in Section 
6.2.2; and the constitutive laws of the materials are presented in Section 6.2.3 and Section 6.2.4. 
The algorithm to solve all the equations is shown in Section 6.2.5. The analytical results of panels 
in Group TA are presented in Section 6.3 and compared with the test results. 

 

6.2 Fundamentals of Softened Membrane Model for Prestressed Concrete 
Fig. 6.2.1(a) shows a prestressed concrete element subjected to in-plane stresses. As with the 

SMM, two reference Cartesian coordinates are used in the SMM-PC, as shown in Fig. 6.2.1(e). 
The first reference Cartesian t−l  coordinate system represents the directions of the longitudinal 
and transverse reinforcements. The second reference Cartesian 21−  coordinate system 
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represents the directions of the applied principal tensile ( −1 axis) and compressive ( −2 axis) 
stresses. 

 
6.2.1 Equilibrium and Compatibility Equations 

The three equilibrium equations, which relate the applied stresses (σl, σt, and τlt) to the 

internal stresses of concrete ( c
1σ , c

2σ , and c
12τ ), mild steel (fl and ft), and prestressing steel (flp and 

ftp) in a membrane element, are expressed as: 
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Fig. 6.2.1 Coordinate System in a Prestressed Concrete Membrane Element 
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The three compatibility equations, which represent the relationship between the strains ( lε , 

tε , and tlγ ) in the t−l  coordinate of the reinforcement and the strains ( 1ε , 2ε , and 12γ ) in the 

21−  coordinate of the principal applied stress, are expressed as follows (Pang and Hsu, 1996): 
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2
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6.2.2 Biaxial Strains vs. Uniaxial Strains 

To solve the equilibrium and compatibility equations, the stress-strain relationships of 
concrete and reinforcements have to be provided. As mentioned in Section 2.3.3, the set of strains 
in the compatibility equations, ε1, ε2, εl, and εt, are biaxial strains, which are functions of the 
Hsu/Zhu ratios. The constitutive laws between the stresses and the biaxial strains cannot be 
determined directly from experiments. Therefore, a “bridge” is required to relate the biaxial 

strains and the uniaxial strains. The relationships between the uniaxial strains ( 1ε , 2ε , lε , and 

tε ) and the biaxial strains (ε1, ε2, εl, and εt) are given as follows (Zhu, 2000): 
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The Hsu/Zhu ratios are given by: 

sfεν 8502.012 += , ysf εε ≤  (6.2-11a) 

9.112 =ν , ysf εε >  (6.2-11b) 

021 =ν   (6.2-12) 

where 
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sfε  = smeared (average) tensile strain of steel bars in the −l  and the −t directions, 

whichever yields first, taking into account the Hsu/Zhu ratios. 
 

6.2.3 Constitutive Relationships of Concrete in Prestressed Elements 
The constitutive relationships of cracked concrete in tension, compression, and shear in 

prestressed elements are summarized in this section. The tensile stress is applied in the 
−1 direction and the compressive stress in the −2 direction. Detailed explanations of these 

constitutive relationships can be found in Chapters 4 and 5. 
 

Concrete in Tension 
The constitutive relationships for the tensile stress versus tensile strain of concrete are given 

in Chapter 4, Eq. 4.6-10. Substituting cε  by ( )ciεε +1  (based on Eq. 4.6-7) and cσ  by c
1σ , the 

relationships of the tensile stress c
1σ  versus the uniaxial tensile strain 1ε  of prestressed concrete 

are given as follows: 

Stage UC:  cic
c E σεσ +′= 11 , ( )cicx εεε −≤1  (6.2-13a) 

Stage T1:  )( 11 cxcic
c E εεεσ −+′′= , ( ) ( )cicrcicx εεεεε −≤<− 1  (6.2-13b) 
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c f
εε

εσ , ( )cicr εεε −>1  (6.2-13c) 

where 

cE ′  = decompression modulus of concrete taken as 
0

2
ε
cf ′ , 

ciε  = initial strain in concrete due to prestress, 

σci = initial stress in concrete, 

cxε  = extra strain in concrete after decompression calculated by 
c

ci
ci E ′
−
σ

ε , 

cE ′′  = modulus of concrete taken as 
cxcr

crf
εε −

, 

εcr = concrete cracking strain taken as 0.00008, and 

fcr = concrete cracking stress taken as cf ′31.0  ( cf ′  and cf ′  are in MPa). 
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Concrete in Compression 

The smeared (average) constitutive relationships of concrete compressive stress c
2σ  and the 

uniaxial compressive strain 2ε  are given as follows: 
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where ζ  is the softening coefficient. 

The softening coefficient in Eq. 6.2-14 can be determined as follows: 

( ) ( ) ( ) 9.01 ≤′= pc Wffff βεζ   (6.2-15) 

where ( ) 9.08.5
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Concrete in Shear 

The equation relating the shear stress of concrete c
12τ  and the shear strain 12γ  in the 21−  

coordinate is given by: 

12
21

21
12 )(2

γ
εε
σστ
−
−

=
cc

c  (6.2-21) 
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6.2.4 Constitutive Relationships of Reinforcements 
Two types of reinforcements are embedded in concrete, prestressing tendons and mild steel 

bars. 
 

Prestressing Tendons Embedded in Concrete 
The smeared (average) stress-strain relationships of prestressing tendons embedded in 

concrete are given as follows: 
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where 
Eps = elastic modulus of prestressing tendons taken as GPa 200  ( ksi 29000 ), 
fpu = ultimate strength of prestressing tendons taken as MPa 1862  ( ksi 270 ), 

psE ′′  = modulus of prestressing tendons, used in plastic region (Eq. 6.2-22b), taken as 

GPa 209  ( ksi 30345 ), and 

puf ′  = revised strength of prestressing tendons taken as MPa 1793  ( ksi 260 ). 

In the above equations, lp replaces ps in the subscript of symbols for the longitudinal tendons, 
and tp replaces ps for the transverse tendons. 

 
Mild Steel Embedded in Concrete 

The smeared (average) tensile stress-strain relationships of mild steel embedded in concrete 
in the t−l  coordinate are the same in SMM. They can be expressed as follows: 

Stage 1: sss Ef ε= , ns εε ≤  (6.2-23a) 
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Stage 3 (unloading): )( spsps Eff εε −−= , ps εε <  (6.2-23c) 
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In the above equations, l  replaces s in the subscript of symbols for the longitudinal steel, 
and t  replaces s for the transverse steel. 

 
6.2.5 Solution Algorithm 

The solution procedure for the SMM-PC is given in the flow chart of Fig. 6.2.2. Similar to the 
SMM, two equilibrium equations, Eqs. 6.2-26 and 6.2-27, are also used to make the solution 
procedure more efficient. Eqs. 6.2-26 and 6.2-27 are derived from Eqs. 6.2-1 and 6.2-2: 

)()( 21
cc

ttptpttpp ffff σσσσρρρρ +−+=+++ lllll   (6.2-26) 

112121 2sin22cos)()( ατασσσσρρρρ ccc
ttptpttpp ffff −−−−=−−+ lllll  (6.2-27) 

Defining pp fff lllll ρρρ +=][  and tptpttt fff ρρρ +=][ , the above two equations become: 

)()(][][ 21
cc

ttff σσσσρρ +−+=+ ll   (6.2-28) 

112121 2sin22cos)()(][][ ατασσσσρρ ccc
ttff −−−−=− ll   (6.2-29) 

The solution procedure can also be described as follows (Fig. 6.2.2): 

Step 1: Select a value of strain in the −2 direction, 2ε . 

Step 2: Assume a value of shear strain in the 21−  coordinate, γ12. 
Step 3: Assume a value of strain in the −1 direction, ε1. 
Step 4: Calculate steel strains εl, εt, and ν12, from Eqs. 6.2-4, 6.2-5, and 6.2-11, 

respectively. Hsu/Zhu ratio ν21 is taken as zero. 

Step 5: Calculate uniaxial strains 1ε , 2ε , lε , and tε  from Eqs. 6.2-7 to 6.2-10. 

Step 6: Calculate the concrete stresses c
1σ , c

2σ  and c
12τ  from Eqs. 6.2-13, 6.2-14, and 

6.2-21, respectively. 
Step 7: Calculate the reinforcement stresses fl, ft, flp, and ftp from Eqs. 6.2-22 and 6.2-23. 

Step 8: Calculate 1)][]([ tff ρρ +l  and 1)][]([ tff ρρ −l . 

Step 9: Calculate 2)][]([ tff ρρ +l  and 2)][]([ tff ρρ −l , from Eqs. 6.2-28 and 6.2-29, 

respectively. 

Step 10: Compare 1)][]([ tff ρρ +l  with 2)][]([ tff ρρ +l . When 2)][]([ tff ρρ +l  is 

larger than 1)][]([ tff ρρ +l , increase the tensile strain 1ε . Otherwise, decrease 
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1ε . Repeat steps 3 to 10 until 1)][]([ tff ρρ +l  and 2)][]([ tff ρρ +l  are close 

enough within the specified accuracy. 

Step 11: Compare 1)][]([ tff ρρ −l  with 2)][]([ tff ρρ −l . When 2)][]([ tff ρρ −l  is 

larger than 1)][]([ tff ρρ −l , increase the value of shear strain 12γ . Otherwise, 

decrease the shear strain 12γ . Repeat steps 2 to 11 until 1)][]([ tff ρρ −l  and 

2)][]([ tff ρρ −l  are close enough within the specified accuracy. 

Step 12: Calculate the applied shear stress tlτ  and the corresponding shear strain tlγ  from 

Eq. 6.2-3 and 6.2-6, respectively. This will provide one point on the tlτ  versus 

tlγ  curve. 

Step 13: Select another value of 2ε  and repeat steps 2 to 12. Calculations for a series of 

2ε  values will provide the whole tlτ  versus tlγ  curve. 
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Select 2ε  

Assume 12γ  

Assume 1ε  

Calculate lε , tε , and 12ν , Eqs. 6.2-4, 6.2-5, and 6.2-11 

Calculate 1ε , 2ε , lε , and tε , Eqs. 6.2-7 to 6.2-10 

Calculate c
1σ , c

2σ , and c
12τ , Eqs. 6.2-13, 6.2-14, and 6.2-21 

Calculate lf , tf , pf l , and tpf , Eqs. 6.2-22 and 6.2-23 

Calculate 1)][]([ tff ρρ +l  and 1)][]([ tff ρρ −l  

Calculate 2)][]([ tff ρρ +l  and 2)][]([ tff ρρ −l , Eqs. 6.2-28 and 6.2-29 

?0)][]([)][]([ 12 =+−+ tt ffff ρρρρ ll

?0)][]([)][]([ 12 =−−− tt ffff ρρρρ ll

Calculate tlτ , and tlγ , Eqs. 6.2-3 and 6.2-6 

?5.2   Is 02 εε >

End 

No (assume 1ε ) 

No (assume 12γ ) 

No 

Yes 

Yes 

Yes 

Fig. 6.2.2 Flow Chart of Solution Procedure for SMM-PC 
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6.3 Applications of SMM-PC to Test Panels TA-1 to TA-5 
Following the flow chart shown in Fig. 6.2.2, a computer program was written to predict the 

shear behavior of the five panels in Group TA. Two features should be emphasized in a computer 
program for prestressed concrete. First, prestressing tendons were placed in the longitudinal 
direction and mild steel in the transverse direction for all five panels. Therefore, in Step 7, only 

pf l  and tf  were calculated. Second, initial stresses and initial strains exist in prestressing 

tendons and concrete. These initial stresses were taken into account when applying the 
constitutive relationships in Step 6 and Step 7. 

The applied shear stress versus shear strain relationships predicted by the SMM-PC are 
compared with the experimental results of five panels TA-1 to TA-5 in Fig. 6.3.1 to Fig. 6.3.5. 

These five panels have longitudinal prestressing steel ratios, plρ , varying from 0.42% to 0.84% 

and transverse mild steel ratios, tρ , varying from 0.42% to 1.54%. Fig. 6.3.1 to Fig. 6.3.5 show 

that the predictions of the SMM-PC are very satisfactory. 
 

 
Fig. 6.3.1 Applied Shear Stress tlτ  versus Shear Strain tlγ  of Panel TA-1 
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Fig. 6.3.3 Applied Shear Stress tlτ  versus Shear Strain tlγ  of Panel TA-3 
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Fig. 6.3.2 Applied Shear Stress tlτ  versus Shear Strain tlγ  of Panel TA-2 

TA-2

0

1

2

3

4

5

6

7

8

0 0.005 0.01 0.015 0.02 0.025
Shear Strain

Sh
ea

r S
tre

ss
 (M
Pa

)

Test
SMM-PC0077.0

0084.0
=
=

t

p

ρ
ρl

Sh
ea

r S
tre

ss
 (M

Pa
)  



 126

 

 
 

Fig. 6.3.4 Applied Shear Stress tlτ  versus Shear Strain tlγ  of Panel TA-4 
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Fig. 6.3.5 Applied Shear Stress tlτ  versus Shear Strain tlγ  of Panel TA-5 
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CHAPTER 7 

SHEAR TESTS OF PRESTRESSED CONCRETE BEAMS 

 

7.1 Introduction 

As shown in Part I (Chapters 2 through 6), the constitutive laws of concrete in compression 
and tension as well as prestressing tendons embedded in concrete were determined by the 
prestressed concrete panel tests, and the analytical model for prestressed concrete elements 
(panels) in shear was developed. In Part II (Chapters 7 through 9) both the constitutive laws of 
materials and the analytical model presented in Part I will be applied to prestressed concrete 
beams. Chapter 7 reports the test of five prestressed concrete beams. Chapter 8 describes two 
analytical models, one for the flexural behavior and one for the shear behavior of prestressed 
concrete beams. Using the shear model to analyze a beam, the shear contribution of concrete (Vc) 
in prestressed concrete beams is developed from the shear resistance of concrete along an 
inclined failure plane. In Chapter 9, a new simple design equation for prestressed concrete in 
shear is proposed. The shear capacities of prestressed concrete beams tested in this project, as 
well as the other shear test results in the literature (Elzanaty et al., 1987; Rangan, 1991; and 
Lyngberg, 1976) are used to support the new design equation. The predicted shear strengths are 
compared with the strengths calculated based on ACI (2005) and AASHTO (2004) provisions.  
Finally, four design examples are prepared to illustrate the application of the proposed design 
guidelines. 
 

7.2 Test Program 

Test specimens having cross sections of TxDOT Type-A beams were selected for this 
research project as shown in Figs. 7.2.1 to 7.2.4. Five such beams were designed to study the 
behavior of the beams in web shear and flexure shear. The aim was to develop a simplified 
method for shear design of prestressed concrete beams to overcome the complications of the 
design methods described in the present design codes. Three of the five beams (Beams B1, B2, 
and B3) were designed to fail in web shear, whereas the remaining two (Beams B4 and B5) were 
designed to fail in flexure shear. One web shear specimen (Beam B3) and one flexure shear 
specimen (Beam B5) had draped prestressing strands. Another parameter that was varied in the 
specimens was the amount of shear reinforcement.  

Table 7.2.1 shows the test variables for the five beams, B1 to B5. Beam B1 was designed to 
fail in web shear and prestressed with 12 straight low-relaxation strands. Transverse shear 
reinforcement of 0.17% was provided by #2 L rebars at 10 in. spacing or by #3 L rebars at 20 in. 
The #2 rebars at 10 in. spacing were used at the failure end region to ensure that a sufficient 
number of stirrups intersect the failure plane. The #3 rebars at 20 in. spacing were used in the 
remaining parts of the beams. 

Similar to B1, Beam B2 was designed to fail in web shear and prestressed with 12 straight 
low relaxation strands. However, Beam B2 had 1% web shear reinforcement consisting of #4 R 
rebars at 7 in. spacing. 

Beam B3 was also designed to fail in web shear and prestressed with 12 strands. However, 
four prestressing strands in this beam were draped. Two of the draped strands started from a 
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distance of 11 ft from the ends of the beam to an additional height of 14 in. at the ends. The 
draping of the other two strands started at a distance of 8 ft from the ends of the beam to an 
additional height of 10 in. at the ends. Transverse shear reinforcement of 1% in the web was the 
same as that provided in Beam B2. 

Beam B4 was designed to fail in flexural shear and prestressed with 12 straight low 
relaxation strands. As in Beam B1, Beam B4 was reinforced with 0.17% shear reinforcement 
consisting of #2 L rebars at 10 in. spacing for the measured regions and #3 L rebars at 20 in. 
spacing for the remaining lengths. The measured locations of flexure shear failure was between 
5.3 ft to 7.9 ft from the ends. 

Beam B5 was also designed to fail in flexural shear. The prestressing strands in Beam B5 
were also draped as in Beam B3. The transverse shear reinforcement of 0.17% was identical to 
that of Beam B4. 

 
Table 7.2.1   Test Specimens 

Beam ID Mode of failure Shear 
Reinforcement 

Prestressing Tendons Casting Schedule 

B1 Web Shear 0.17% 12 straight 12/12/05 

B2 Web Shear 1.0% 12 straight 12/12/05 

B3 Web Shear 1.0% 8 straight, 4 draped 12/08/05 

B4 Flexural Shear 0.17% 12 straight 12/12/05 

B5 Flexural Shear 0.17% 8 straight, 4 draped 12/08/05 
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(a) Cross Section of Beams B1, B2 and B4 
 
Fig. 7.2.1   Cross Section of Type-A Beams 

C/S AT ENDS OF BEAMS B1, B2 AND B4
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(b) Cross Section of Beams B3 and B5 
 

Fig. 7.2.1   Cross Section of Type-A Beams (continued) 
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 Fig.7.2.2   Elevation and Reinforcement Details of Beam B1 
 

 

 

 

 

 

              

 Fig. 7.2.3   Elevation and Reinforcement Details of Beams B2 and B3 
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Fig. 7.2.4   Elevation and Reinforcement Details of Beams B4 and B5 
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7.3 Test Specimens 

The crosssections of the designed beams are shown in Fig. 7.2.1(a) and (b). The total height 
of the beam was 28 in. and the widths of the top and bottom flange were 12 in. and 16 in., 
respectively. The width of the web was 6 in. The prestressing tendons in three beams (B1, B2, 
and B4)were straight while in the other two (B3 and B5) they were draped. The position of the 
straight prestressing tendons and the type of the reinforcing bars are also shown. The sizes of the 
rebars are as follows: #3 rebars were used for X rebars, #4 for R and V rebars,  #5 for U and W 
rebars, and #6 for S and Y rebars. In addition to the above, #2 and #3 rebars were used in some 
beams for L rebars which are similar in shape to the R rebars.  X and V rebars were designed to 
confine the concrete and act as secondary reinforcements in the top and bottom flange, 
respectively. L, R and S rebars served as transverse reinforcement for shear strength. The W and 
Y rebars were installed to resist the end zone bearing, spalling, and bursting stresses, whereas the 
U rebars ran all along the beam to support the R,  X, and Y rebars. Twelve 0.5-in. diameter, 
seven-wire, low-relaxation strands were used as the prestressing steel. The prestressing strands 
had ultimate strength of 270 ksi.  

The elevations of the five designed beams (Beams B1 to B5) are shown in Fig. 7.2.2 
through Fig. 7.2.4. The total length of the beams tested was 25 ft while the span length was 24 ft. 
Fig. 7.3.1 shows the reinforcement and instrumentation details of Beams B1 through B3 that 
were designed to fail in web shear. Fig. 7.3.2 shows the details of Beams B4 and B5 that were 
designed to fail in flexure shear. 

 

 
(a) Beam B1 (0.17% steel, straight strands, to be loaded at 3.5 ft from end) 

Fig. 7.3.1   Reinforcement and Instrumentation Details of Beams B1, B2, and B3 (Web Shear 
Specimens) 

 

Strain Gauges

#2 L-bars
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(b) Beam B2 (1% steel, straight strands, to be loaded at 3.5 ft from end)  
 

 
(c) Beam B3 (1% steel, draped strands, to be loaded at 3.5 ft from end) 

 
Fig. 7.3.1   Reinforcement and Instrumentation Details of Beams B1, B2, and B3 (Web 
Shear Specimens) (continued) 
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          (a) Beam B4 (0.17% steel, straight strands, to be loaded at 8.5 ft from end)  
 

 

(d) Beam B5 (0.17% steel, draped strands, to be loaded at 8.5 ft from end)  
 

Fig. 7.3.2   Reinforcement and Instrumentation Details of Beams B4 and B5 (Flexure Shear 
Specimens) 
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7.4 Manufacturing of Test Specimens 

The five beams were cast in two groups on two different days. The two beams, B3 and B5, 
having draped strands were first cast together in a long-line prestressing bed with Type-A steel 
form. The strands were prestressed by hydraulic jacks against the prestressing bed. Hold-downs 
were installed on the bed (Fig. 7.3.2(b)) to drape the strands at the desired inclination.  The 
second group of three beams, B1, B2, and B4, with straight tendons was cast after four days. 
Concrete was prepared in a plant mixer, transported to the casting site, and deposited into the 
formworks using a mobile hopper as shown in Fig. 7.4.1(a). During casting, spud vibrators were 
used for compacting the concrete as shown in Fig. 7.4.1(b). 

One day after casting, the prestressing strands were slowly released.  The compressive 
strength of concrete at the time of application of prestress was approximately 4000 psi. For 
Beams B3 and B5, the anchors of the hold-down rods were removed after the application of the 
prestress, as shown in Fig. 7.4.1(c). 

 

        
(a) Concrete Placed in Beam B4 by a Hopper  

 
Fig. 7.4.1 Casting of Test Specimens 
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(b) Compaction using Needle Vibrators in Beam B4  

 

 
(c) Removal of Anchors of Hold-down Rod from Beam B3 
 

Fig. 7.4.1 Casting of Test Specimens (continued) 
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7.5 Test Setup 

The beams were subjected to vertical loading up to their maximum shear capacity in a 
specially built steel loading frame, as shown in Fig. 7.5.1. Two of the four actuators (namely 
actuator B and actuator C), each attached to a vertical steel frame, were used to apply the vertical 
loads on the beams. Each of these two actuators had a capacity of 320 kips. Actuator frame B 
was installed on the north end of the beam, and actuator frame C on the south end of the beam. 
These two actuator frames were sitting on top of two WF18×97 beams, bolted securely to the 
strong floor. The two WF18×97 beams were 20 ft long and spaced at 87 in. center to center. The 
beam specimen was positioned in the middle of this spacing width on top of two load cells 
placed at each end. The load cells of 500 kips capacity were sitting on top of the steel pedestals 
fixed to the strong floor. On top of the load cells, bearing plates to support the beams were 
placed with a roller on the north end and a hinge on the south end, thus allowing the beam to 
rotate freely at the supports and to expand freely along its length. The actuators were provided 
with bracings for their lateral stability. 

 

 
Fig. 7.5.1 Test Setup 

 

The position of the vertical loads on the beams together with the support positions is shown 
in Fig. 7.5.2. The loads from actuators B and C were applied at 3 ft from the supports (both north 
and south supports) for Beams B1, B2, and B3; and at 8 ft from the supports for Beams B4 and 
B5. Actuator loads were applied through a roller assembly consisting of two 6 in.×  12 in.×2 in. 
bearing plates and two rollers of 2 in. diameter and 12 in. length, so as to ensure uniform and 
frictionless load transfer from actuators on to the beam surface. All the bearing plates and rollers 
were heat-treated to maximum possible hardness, in order to minimize local deformations.  Lead 
sheets were also used between the load bearing plates and beam surface. 

The loads and displacements of the actuators were precisely controlled by the MTS 
‘MultiFlex’ System. Actuators B and C were first programmed with a load control mode of 5 

B C
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kips/min. When the slope of the load-displacement curve started decreasing, the control mode 
was switched to a displacement control of 0.2 in./hour. This step continued until shear failure 
occurred at either end of the beam. This displacement control feature was essential in capturing 
the ductility/brittleness behavior of the beam failing in shear. 
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(a) Loading Point and LVDT Locations for Beams B1, B2 and B3 

 
(b) Loading Point and LVDT Locations for Beams B4 and B5 
 

Fig 7.5.2 Loading Positions of Beams 
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During testing, Linear Voltage Displacement Transducers (LVDTs) were used to measure the 
displacements at the failure regions of the beam adjacent to the points of load application, as 
shown in Fig. 7.5.3. The LVDTs were installed on both faces of the beams to get the average 
displacements. Several LVDTs were also placed under the beam, both at the supports and at the 
point of loading to measure the total and net displacements of the beam. Strain gauges were 
installed on both legs of the vertical rebars inside the beams to monitor the rebar strains during 
the load test. The locations of strain gages on rebars are shown in Fig 7.5.4 through 7.5.6 for 
various beams. On average, each beam was instrumented with about 30 LVDTs and 16 strain 
gages to record the structural behavior of the beam. Data from these sensors were continuously 
monitored and stored by the HBM ‘Spider-8’ Data Acquisition System. Shear cracks formed on 
the beam web during the load test were regularly marked on the grid as shown in Fig. 7.5.7. The 
crack widths were measured using a hand-held microscope having a 0.001 in. measuring 
precision. 

  

 
Fig. 7.5.3 LVDT Setup on Beam B4 
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Fig. 7.5.4 Location of Strain Gages on L Bars in Beam B1 

 

 
Fig. 7.5.5 Location of Strain Gages on R Bars in Beams B2 and B3 
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Fig. 7.5.6 Location of Strain Gages on L Bars in Beams B4 and B5 
 

 
  Fig. 7.5.7 Tracking and Measuring Shear Cracks on the Web of Beam B4 
 

7.6 Test Results 

Table 7.6.1 shows the ultimate strengths at failure for the five test beams, B1 to B5. It can be 
seen that both ends of Beams B1 and B2 failed in web shear. Two web shear failures were 
created in one beam, because such a failure occurred adjacent to the support and damaged only a 
short length of the beam at one end. It was possible to create a loading scheme to induce a web 
shear failure at the other end. 

Although the north end of Beam B3 failed in flexure, the load deformation curves showed 
that the north end almost reached its web shear capacity, as the concrete in the web region almost 
crushed at failure. Since the behavior of the south end was very similar to the north end, it was 
decided not to test the south end after the failure of the north end.  
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Beams B4 and B5 were designed to fail in flexural shear in a region adjacent to the load point 
at one-third span of the beams. As the failure reduced one-third of the beam length, it was not 
possible to devise a loading scheme to create another flexural shear failure for the remaining 
length. Hence, each of these two beams could provide only one failure load. Specimen B5 
actually failed in flexure at a distance of 11 ft from the end due to a weak section created by the 
hold-down rod, Fig. 7.4.1(c), as the grouting was weak and full of voids. Similar to Beam B3, the 
flexural shear capacity of Beam B5 was very close to its failure load in flexure. 

From the shape of the load-deflection curves, shown in Fig. 7.6.1. it can be seen that the 
specimens designed for web shear failure (B1, B2, and B3) had higher shear capacities compared 
to the specimens designed to fail in flexural shear (B4 and B5). However, the specimens that 
failed in flexural shear had higher ductility. Both the strength and deflections were well predicted 
by the flexural analysis given in Chapter 8, Section 8.1. 
 

Table 7.6.1 Failure Loads of Beams 
 
 

Beam 
 

Tendon 
Profile 

(Straight/ 
Draped) 

Transverse 
Steel 
(%) 

Concrete 
Strength 

(ksi) 

Failure 
Mode 

Ultimate 
Shear 

Capacity 
(kips) 

Ultimate 
Moment 
Capacity  
(kips-ft.) 

Max. 
Shear 

corresp. 
to 

Ultimate 
Moment 

(kips) 

Max. 
Moment 
corresp. 

to 
Ultimate 

Shear 
(kips-ft.) 

B1-North 

 
Straight 0.17 10.5 Web-Shear 188.9 - - 566.7 

B1-South 

 
Straight 0.17 10.5 Web-Shear 173.5 - - 520.5 

B2-North 

 
Straight 1.0 10.8 Web-Shear 201.1 - - 603.3 

B2-South 

 
Straight 1.0 10.8 Web-Shear 234.0 - - 702.0 

B3-North 

 
Draped 1.0 9.37 

Flexure/ 

Flexural-

Shear 

- 684.0 228.0 - 

B4-South 

 
Straight 0.17 10.3 

Flexural-

Shear 
96.8 - - 774.4 

B5-North 

 
Draped 0.17 9.36 

Flexure/ 

Flexural-

Shear 

- 784.0 98.0 - 
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Fig 7.6.1 Load Deflection Curves of Specimens B1 to B5 

 

Table 7.6.2 Ultimate Strains in Specimens B1 to B5 measured by LVDTs 

Strains (x 10-6)  
εV1 εV2 εH1 εH2 εD1 εD2 

B1-North 880 990 -367 377 -1767 2256 

B1-South 754 712 -318 1858 -1482 2750 

B2-North 982 991 -277 2616 -2629 3881 

B2-South 389 165 -276 2514 -1801 2925 

B3-North 575 937 -370 2164 -1265 2256 

B4-South 4280 678 -665 1982 -290 2202 

B5-North 127 687 -954 3406 -309 1448 

  

Table 7.6.2 gives the ultimate strains in Beam B1 to Beam B5 measured by LVDTs at 
failure. The LVDTs were located adjacent to the loading point as indicated in Fig. 7.5.2. A set of 
six LVDTs is shown in Fig 7.5.3. Each set had two vertical, two horizontal and two diagonal 
LVDTs. Out of the two vertical LVDTs, the one that was situated closer to the load was named 
V2 (strain of εV2) while the other was named V1 (strain of εV1). The horizontal LVDT situated on 
the top flange was named H1 (strain of εH1) while the one on the bottom flange was named H2 
(strain of εH2). The diagonal LVDT that was connected to the top flange near the load point was 
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named D1 (strain of εD1) and was subjected to compressive strains during the loading of the 
beams. Diagonal LVDT D2 (strain of εD2) was connected to the lower flange near the load point 
and subjected to tensile stresses during loading of the beams. The strains shown in Table 7.6.2 
for the different LVDTs for all the beams are the average of the two LVDT strains located on 
both sides of the beams. These strains have been used to calculate the ultimate capacities using 
the analytical model described in Chapter 8. 

 

Table 7.6.3 Experimental Ultimate Strains in Strain Gages for Specimens B1 to B5 
Strains (x 10-6) Beams 

εSG1 εSG2 εSG3 εSG4 
B1-North 2,686 22,918 11,565 - 

B1-South 928 22,010 14,854 - 

B2-North 1,159 13,255 14,025 11,362 

B2-South 1,554 10,737 12,318 5,435 

B3-North 1,107 2,398 2,283 2,042 

B4-South 235 14,357 8,370 - 

B5-North 500 5,052 5,841 - 

 

Table 7.6.3 gives the ultimate strains in Beams B1 to B5 measured by electrical strain gages 
attached to the rebars in the failure regions. In specimens B1, B4, and B5 three rebars in each 
measured region were instrumented with strain gages. In specimens B2 and B3, four rebars in 
each measured region were instrumented. Both legs of a rebar were instrumented with a strain 
gage. The locations of the strain gages on the rebars were selected to ensure that the strain gages 
would intersect the failure plane as shown in Figs. 7.5.4 to 7.5.6. The strains shown in Table 
7.6.3 have been used to calculate the ultimate stresses and the ultimate forces in the stirrups. The 
ultimate forces were calculated from the ultimate stresses by multiplying the cross-sectional area 
of the rebars. The stirrup forces were used to calculate the ultimate shear capacities of the beams 
using the analytical model described in Chapter 8. However, some strains recorded in Table 7.6.3 
are too low. This may be due to the fact that the failure plane did not intersect these strain gages. 
In such cases, the stresses developed due to the recorded strains have been taken not less than 40 
ksi. 
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CHAPTER 8 

ANALYSIS OF PRESTRESSED BEAMS 

 

8.1 Flexural Analysis 
A flexural analysis of the beam was performed using the beam theory to check the overall 

accuracy of the beam tests performed in this research project. For this purpose the load-
deflection curves of the beams were obtained for five beams, B1 to B5, and compared with the 
test results given in Fig. 7.6.1 of Chapter 7. The following procedure was used to obtain the 
individual points of the load-deflection curve. 

Step 1:  For a given load, the moments developed at the sections under the loading points 
were obtained. The sections are at 3 ft from the supports for Beams B1, B2, and 
B3 and 8 ft for B4 and B5. 

Step 2:  The stresses developed in concrete and prestressing tendons at the loading section 
were obtained by equating the compressive and tensile forces in the section. The 
unbalanced moment at the section was equated to the moment developed at the 
section due to the external moment (Step 1). 
The stress-strain relationship of concrete was assumed to be linear up to the 
cracking of the section. After cracking, the stress-strain relationship given in Eq. 

8.1-1 was used. The cracking stress of concrete was taken as ′
cf5.7 . 
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where  
′

cf  = compressive strength of concrete, 
εc  =  compressive strain in the extreme concrete fiber at the cross 

section, and 
ε0  =  ultimate compressive strain in concrete. 

The stress-strain relationship of prestressing tendons shown in Eqs. 8.1-2 and 8.1-
3 were used in this analysis. 
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where   
Eps =  elastic modulus of prestressing tendons, taken as 29,000 ksi, 

 fpu  =  ultimate strength of prestressing tendons, taken as 270 ksi, 
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 psE′  =  modulus of prestressing tendons, taken as 30,345 ksi, 
 puf ′  =  revised strength of prestressing tendons, taken as 260 ksi, and 
 m  =  constant taken as 5. 

Step 3:  The compressive strain in the extreme concrete fiber at the loading section was 
obtained corresponding to the external moment in Step 2. This was divided by the 
depth of the neutral axis of the section to obtain the curvature of the section. 

Step 4:   The deflection of the beam at the loading section was obtained using the curvature 
area diagram (Gere and Timoshenko, 1991). 

The load-deflection curves were obtained using the above-mentioned procedure for Beams 
B1, B2, and B3 (web shear) and Beams B4 and B5 (flexure shear). These curves have been 
shown in Fig 7.5.1. It can be seen that the load deformation behavior predicted from the analysis 
was very close to the load deformation curves of the test specimens with web shear as well as 
flexural shear failures. 
 

8.2 Shear Analysis 
 
8.2.1 Analytical Model 

The concept of shear resistance developed by Loov (2002) was used to calculate the ultimate 
shear capacity of Beams B1 to B3 in shear failure. According to this shear model, the 
contribution of concrete to the shear capacity of the beams stems from the shear stress of the 
concrete along the failure plane (indicated by S in Fig 8.2.1). Loov’s concept is very different 
from the existing design methods (ACI, 2005 and AASHTO, 2004) which assume that the 
concrete contribution to the shear capacity of beams arise from the tensile stress across failure 
planes. The following procedure was used to calculate the ultimate shear capacities of Beams B1 
to B3 using the experimental strains measured from these beams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig 8.2.1 Analytical Model used for calculating Web Shear Capacities of Beams 
 

Step 1:  The shear strain, γhv, in the horizontal and vertical coordinate (or t−l  coordinate) 
were obtained using the strain compatibility relationship shown in Eq. 8.2-1: 

h

V

R α1

S
T

∑ vF l

t 12 
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     (8.2-1) 
where   

εd  =  strain  recorded in either of the diagonal LVDTs, 
 εh  =  average of the strains recorded in the two horizontal LVDTs, 
 εv  =  average of the strains recorded in the two vertical LVDTs, and 
 φ  =  angle between the horizontal and the diagonal LVDTs. 

Two values of γhv were obtained by putting two values of diagonal strains, εd, in the above 
equation along with the strain values of εh, εv and corresponding φ. The average of these two 
values was taken as the ultimate shear strain γhv in the l -t coordinate. 
 

Step 2:  The values of normal and shear strains ε1, ε2 and γ12 in the principal 21−  
coordinate were obtained from the strains in the t−l  coordinate using the stain 
compatibility relationships shown in Eqs. 8.2-2 through 8.2-4: 
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where  
α1  =  angle between the horizontal direction ( −l axis) and the 

principal tensile stress direction (1—axis). 
 
 Step 3:  Uniaxial normal strains in the 21−  coordinate, 1ε  and 2ε , were obtained from 

the biaxial normal strains, ε1and ε2, using the Hsu-Zhu ratios in Eqs. 8.2-5 and 
8.2-6. 
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 Step 4:  The tensile and compressive stresses in concrete, c
1σ  and c

2σ , in the 21−  
coordinate were obtained from the uniaxial strains 2ε  and 1ε , respectively, using 
the constitutive laws of prestressed concrete developed in Section 6.2.3 (Part I, 
Chapter 6). 

 
 Step 5:  The shear modulus of concrete was obtained using Eq. 6.2-21: 
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 Step 6:  The shear stress in concrete along the failure plane, c
12τ , was obtained by 

multiplying the shear modulus of concrete G (obtained in Step 5) by the shear 
strain γ12 along the failure plane (obtained in Step 2, Eq. 8.2-4). 

 
Step 7:  The shear force S along the failure plane was obtained by multiplying the shear 

stress c
12τ  by the inclined area of the concrete section along the failure plane. 

 
Step 8:  Using the equlibirum relation shown in Eq. 8.2-8, the shear capacity of the beam, 

V, was calculated as: 
 

∑+
−

= VFTSV
1

1

cos
sin
α

α                (8.2-8) 

where  
∑ VF = summation of forces in the stirrups lying on the failure plane at 

the ultimate load of the beams. The forces in each stirrup lying 
on the failure plane can be calculated from the ultimate strains 
in the stirrups obtained from the strain gages glued on the 
stirrups. Using the stress-strain relationship of the stirrup 
rebars, the steel stresses corresponding to the recorded strains 
can be obtained. Then multiplying the stresses by the cross 
sectional area of the stirrups gives the individual stirrup forces. 

 
 T  =  tensile force in the prestressing tendons at the ultimate load of 

the beams. For different beams T was calculated from flexural 
analysis corresponding to the ultimate moment developed at 
the loading sections of the beams. 

 
In order to check the validity of the analytical model for shear, the angle of failure plane α1, 

defined by its normal, was determined from the equilibrium equation (8.2-8). Using the eight-
step procedure described above, the ultimate load of a beam could be calculated by assuming an 
angle of failure planes. Using an iteration procedure, the angle of failure plane was changed till 
the calculated ultimate load was close to the experimental capacity of the beam. The above 
mentioned calculation was done for both ends of Beams B1 and B2. However only the north 
ends of Beam B3 could be tested up to the ultimate load. Hence, only the failed ends of Beam B3 
were included in the calculation.  

Table 8.2.1 shows the values of the angles of failure planes for Beams B1 to B3, along with 
other forces that developed at the ultimate stage of the beams to maintain equilibrium with the 
external shear loads, as per the analytical model being used here. It can be seen from Table 8.2.1 
that the variation of the angle of failure plane with the ultimate load did not follow any specific 
trend. Hence, it was decided to correlate between the angle of the failure plane with the shear 
capacity of the beam contributed by the concrete and steel as presented in Section 8.2.2. 
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Table 8.2.1 Angles of Failure Planes Corresponding to Beam Shear Capacities as per Model 
Beam α1 

(deg) 
γ12 

(x 10-6) 
G 

(ksi) 
c
12τ  

(ksi) 
Aincl 
(in2) 

S 
(kips) 

T 
(kips)

∑ VF
(kips) 

Vcal 
(kips) 

Vexp 
(kips) 

cal

exp

V
V

B1 N 42.1 1000 369 0.37 411.7 152.3 34.1 16.0 190.4 188.9 0.992
B1 S 37.0 936 324 0.30 458.6 139.2 22.4 17.4 174.8 173.5 0.993
B2 N 38.2 1228 210 0.26 446.3 115.2 43.5 88.2 200.5 201.1 1.003
B2 S 33.6 974 343 0.33 498.7 166.7 77.0 85.1 234.0 234.0 1.000
B3 N 34.2 944 362 0.34 491.0 167.9 71.6 67.9 228.0 228.0 1.000

 
Beams B4 and B5 failing in flexural shear are not included in Table 8.2.1. This is because 

their actual failure surface did not extend all the way from the top to the bottom of these beams. 
A failure surface actually consisted of a vertical crack at the bottom, joined by an inclined crack 
at the top. Hence, the total area of the inclined failure plane is not effective in contributing to the 
shear resistance of these beams as assumed in the shear analysis.  

 
8.2.2  Vc and Vs Terms in the Analytical Model 

The term 
1

1

cos
sin
α

αTS − in Eq. (8.2-8) is the “contribution of concrete in shear,” Vc. The 

variation of the normalized concrete shear, 
Af

V

c

c

′
, with the angle of the failure plane was 

studied for Beams B1 to B3.  Table 8.2.2 shows the calculated values of normalized shear 
capacities of these three beams using the angles of failure planes obtained in Table 8.2.1. The 
correlation between the normalized shear capacities and the angles of failure planes is shown in 
Fig 8.2.2. From the trend-line of the variation it was observed that the normalized concrete shear 
remained essentially constant for the various angles of failure planes. Hence, it was decided not 
to include the angle of failure plane in the Vc term for the design equation to be developed from 
this research.  

In Eq. (8.2-8) the “contribution of steel in shear,” Vs, is equal to VF∑ . For this term no 
specific trend could be observed in the variation of stirrup forces with the angle of failure. 
Hence, it was decided to follow Loov’s “minimum shear resistance” method to determine the 
number of stirrups intersecting the failure plane, VF∑ . Instead of locating a 45º crack to obtain 
an average number of stirrups, d/s, as shown in Fig. 8.2.3(a), Loov’s “minimum shear resistance” 
method gives the number of stirrups as (d/s – 1), as shown in Fig. 8.2.3(b). Hence, the Vs term in 
the proposed design equation was expressed as: 

 







 −= 1

s
dfAV yvs                  (8.2-9) 

Based on the above discussions of the Vc and Vs terms in the analytical model, a new and 
simple design equation for shear was developed and is presented in Chapter 9. 
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Table 8.2.2 Normalized Concrete Shear Contributions of Beams B1 through B3 
Beam α1 ′

cf  
(psi) 

′
cf  

(psi) 

S 
(kips) 

T 
(kips) 

Vs 
(kips) 

Vp 
(kips) 

Vc 
(kips) 

Af

V

c

c

′

B1N 42.1 10,500 102.5 152.3 34.1 16.0 0 174.5 6.17 
B1S 37.0 10,500 102.5 139.2 22.4 17.4 0 157.4 5.57 
B2N 38.2 10,840 104.1 115.2 43.5 88.2 0 112.4 3.91 
B2S 33.6 10,840 104.1 166.7 77.0 85.1 0 149.0 5.18 
B3N 34.2 9,370 96.8 167.9 71.6 67.9 5.8 154.3 5.78 

 

Fig 8.2.2 Variation of Normalized Concrete Shear of Beams Tested in Web Shear 

 

 

 

 

 

 

 

 

(a) Average Spacing Method    (b) Minimum Shear Resistance Method 

Fig. 8.2.3 Determination of Number of Stirrups for “Contribution of Steel” Vs 
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CHAPTER 9 

SHEAR DESIGN OF PRESTRESSED BEAMS 
 

9.1     Design Method 

A new design method was developed at UH based on the test results reported in Chapter 7. It 
was found that the shear strength of prestressed beams is a function of the shear span to depth 
ratio, a/d, and it is not a function of the prestressing force, nor a function of the angle of failure 
plane.  Based on the test results it was decided to implement the shear span to depth ratio (a/d) 
into the new design equation. 

The amount of prestressing force in a prestressed beam did not have a significant effect on its 
ultimate shear capacity. A series of tests by Lyngberg (1976) specifically indicated the 
insignificant effect of prestressing force on the ultimate shear capacity of prestressed beams. 
Tests by Elzanaty and Rangan also had small variations in prestressing forces without any 
observable variation in the ultimate shear capacities of their beam specimens. Based on these test 
results it was decided not to include the prestressing force in the new design equation to be 
developed in this research. 

In the case of web-shear failure (B1, B2, and B3), Section 8.2 showed that the concrete 
contribution to shear, Vc, does not vary significantly with the angle of failure plane. The ultimate 
strengths of these beams also showed that the steel contribution, Vs, was not strongly effected by 
the angle of failure plane. In the case of flexural-shear failure (B4 and B5), it is not logical to 
calculate Vs using the number of stirrups intersecting a failure plane, because the actual failure 
surface did not extend all the way from the top to the bottom of the beam. A failure surface 
actually consisted of a vertical crack at the bottom, joined by an inclined crack at the top. Only 
the stirrups intersecting the top inclined crack would be effective in resisting shear. Hence, it was 
decided not to include the angle of failure plane in the Vc as well as the Vs parts of the design 
equation. 

The UH observations were supported by three groups of tests in literature. The first group of 
tests was conducted by Lyngberg (1976) at the University of Denmark. Fig. 9.1.1(a) and (b) 
shows the cross section and the elevation of a typical Danish specimen.  Nine beams were tested, 
in which the major variable was the intensity of prestress. The cross section, web reinforcement, 
flexural ultimate moment, and shear span were held constant. The results showed that the shear 
strength was not influenced by the presence of prestress. The Danish tests also provided another 
important observation when compared to the UH test specimens. The two groups of test 
specimens were similar in size and shape, except that the Danish specimens had wide flanges and 
the UH specimens had narrow flanges. Since good agreement in shear strengths was observed 
between these two groups of tests, it was concluded that the top flange width was not a 
significant variable effecting the shear strength, and that the web region was the primary shear-
resisting component. 

The second group of tests was performed by Rangan (1991). Fig. 9.1.1(c) and (d) shows the 
cross section and the elevation of a typical specimen. The specimens in these tests were designed 
with high amounts of steel so that the specimens would fail in web crushing. Hence, these tests 
were used to determine the upper limit of shear capacities to be specified along with the new 
design equation.  
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The third group of tests studied was by Elzanaty et al. (1986) at Cornell University. 
Specimens of small sizes (height of 14 in. and 18 in.) were used in these tests of flexural shear 
failures. Fig. 9.1.1(e) and (f) shows the cross section and elevation of a typical specimen tested 
by Elzanaty. These tests provide the trend of shear strengths as a function of a/d in the range of 
3.8 to 5.8. However, the shear strength of these small specimens were found to be much higher 
than the predicted values based on the larger specimens of UH and Denmark. This is obviously 
due to size effect. The small size of the Cornell specimens also caused the bottom flange to be 
very large relative to the web. The large bottom flange will also contribute to the shear resistance 
of the beams. 

 
(a) Cross Section of Beams Tested by Lyngberg (1976) 

 
(b) Elevation of Beams Tested by Lyngberg (1976) 
 

Fig. 9.1.1 Details of Beams Tested by Other Researchers 
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(c) Cross Section of Beams Tested by Rangan (1991) 

 
(d) Elevation of Beams Tested by Rangan (1991) 
 

Fig. 9.1.1 Details of Beams Tested by Other Researchers (continued) 
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(e) Details of CI Specimens Tested by Elzanaty (1987) 

 
(f) Details of CW Specimens Tested by Elzanaty (1987) 
 

Fig. 9.1.1 Details of Beams Tested by Other Researchers (continued) 
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To implement the parameter a/d into the design equation, the concrete shear contribution, Vc, 
of all the specimens were calculated by subtracting the steel contribution, Vs (calculated as per 
the proposed Eq. 8.2-9) from the total shear capacities of the beams. The normalized concrete 

shear, 
dbf

V

wc

c

′
of the specimens was obtained thereafter and their variation with a/d was 

studied. The plot in Fig. 9.1.2 shows the variation of normalized concrete shear with a/d. Taking 
a conservative trend of the variation, it was observed that the a/d term could be implemented into 
the Vc part of the design equation as shown in Eq. 9.1-1. 

( )
dbf

da
V wcc

′= 7.0/
14 dbf wc

′≤10       (9.1-1) 

where  
bw  =  width of the web of the prestressed beam, and 
d  =  depth of the c.g.s of the tendons from the top compression fiber of the 

prestressed beam. The value of d is not taken to be less than 80% of the total 
depth of the beam. 

 Vc should not be greater than dbf wc
′10 . 

The final design equation for shear capacity of prestressed concrete is shown in Eq. 9.1-2. 
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Fig 9.1.2 Variation of Normalized Concrete Shear with a/d 
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In order to determine the upper limit of the shear capacities for prestressed concrete 

beams over reinforced in shear, a plot of 
dbf

V

wc

u

′
against a/d was made for all the prestressed 

concrete beam specimens (Fig. 9.1.3). From the plot it was observed that all specimens tested by 

Rangan had a 
dbf

V

wc

u

′
value of 18 and above. All these specimens were over-reinforced and 

failed due to web crushing.  
In view of the fact that the actual beams used in highways could be larger than those 

tested by Rangan, it was decided to choose an upper limit more conservative than the 

dbf

V

wc

u

′
of Rangan’s specimens. As a result, the ultimate shear strength of concrete was limited 

to dbf wc
′16 .  

For beams subjected to distributed loading, the shear span ratio a/d varies along the 
length of the beam. Therefore a/d must be generalized to become (M/Vd). In short, the ultimate 
shear capacity of the prestressed concrete beam can be taken as shown in Eq. 9.1-3. 







 −+′









= 114

7.0

s
dfAdbf

M
dVV yvwc
u

u
u dbf wc

′≤16     (9.1-3) 

 

Fig 9.1.3 Variation of Normalized Ultimate Shear Capacities of Beams with a/d 
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9.2 Shear Capacities of Beams According to ACI and AASHTO Provisions 

The shear capacities of all the beam specimens studied in Section 9.1 were also 
calculated according to the provisions of the ACI Building Code (2005) and the AASHTO 
Specifications (2004). The results obtained were compared to the shear capacities of the 
specimens calculated as per the design equations developed in Section 9.1. The results are shown 
in Tables 9.2.1 through 9.2.4. It can be seen that the proposed shear design equation is not only 
simple, but quite reasonable. 

Table 9.2.4 shows that the results obtained from the new design equation are more 
conservative than the ones obtained from the ACI and AASHTO provisions. This is desirable 
because Elzanaty’s test specimens were much smaller than the full-scale specimens tested in this 
project and those used in highway bridges. The relatively large bottom flange in Elzanaty’s small 
specimens also exaggerated the experimental shear strengths. 

Table 9.2.3 shows the upper limit of dbfV wcu ′=16max,  is also very reasonable. It is less 
conservative than the ACI provisions, but safer than the AASHTO provisions. The AASHTO 
provisions are not sufficiently conservative for two reasons. Firstly, Rangan’s specimens have 
stiffeners under the applied loads and near the failure zone (see Fig. 9.1.1(d)). These stiffeners 
would exaggerate the shear resistances. Second, beams used in highway bridges are likely to be 
larger than Rangan’s test specimens, and the shear resistance would be lower due to size effect. 
In short, the upper limit max,uV in the AASHTO Specifications is not recommended.
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Table 9.2.1 Comparison of Test Results for UH Specimens 
UH ACI AASHTO  Vexp 

(kips) 

Vc 
(kips) 

Vs 
(kips) 

Vp 
(kips) 

V 
(kips) 

 cal

exp

V
V

 
Vc 

(kips)
Vs 

(kips)
Vp 

(kips) 
V 

(kips)
 cal

exp

V
V

 
Vc 

(kips) 
Vs 

(kips)
Vp 

(kips)
V 

(kips)
cal

exp

V
V  

B1 173.5 137.7 7.4 0 145.1 1.196 72.6 13.4 0 86.0 2.018 32.3 26.7 0 59.0 2.940 
B2 201.1 139.9 52.8 0 192.7 1.044 73.3 80.6 0 139.9 1.437 30.9 118.0 0 148.9 1.351 
B3 228.0 130.1 52.8 5.8 188.7 1.208 69.9 80.6 5.8 130.1 1.752 25.0 105.2 5.8 136.0 1.676 
B4 96.8 69.0 7.4 0 76.4 1.267 59.8 13.4 0 73.2 1.322 46.5 40.7 0 87.2 1.109 
B5 98.0 65.7 7.4 10.3 83.4 1.175 57.3 13.4 10.3 70.7 1.386 37.9 34.0 10.3 82.2 1.193 

 

Table 9.2.2 Comparison of Test Results for Lyngberg’s Specimens 
UH ACI AASHTO  Vexp 

(kips) 

Vc 
(kips) 

Vs 
(kips) 

Vp 
(kips) 

V 
(kips)

 cal

exp

V
V

 
Vc 

(kips) 
Vs 

(kips) 
Vp 

(kips) 
V 

(kips)
 cal

exp

V
V

 
Vc 

(kips) 
Vs 

(kips) 
Vp 

(kips)
V 

(kips)
cal

exp

V
V  

2A-3 113.8 47.3 31.3 0 78.6 1.448 41.5 47.2 0 69.1 1.647 13.6 73.9 0 87.5 1.300 
2B-3 115.8 48.2 31.3 0 79.5 1.457 41.9 49.3 0 70.4 1.645 12.6 75.2 0 87.8 1.318 
3A-2 109.9 46.2 31.3 0 77.5 1.418 33.7 50.8 0 67.5 1.628 10.5 72.6 0 83.1 1.323 
3B-2 97.3 43.4 31.3 0 74.7 1.303 32.9 47.9 0 63.4 1.535 9.8 67.8 0 77.6 1.253 
4A-1 105.4 46.5 32.6 0 79.1 1.332 23.5 49.0 0 67.9 1.552 9.9 66.2 0 76.1 1.387 
4B-1 102.1 45.7 32.6 0 78.3 1.304 22.8 50.4 0 66.7 1.531 9.7 67.8 0 77.5 1.318 
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Table 9.2.3 Comparison of Test Results for Rangan’s Specimens 
UH ACI AASHTO  Vexp 

(kips) 

Vc 
(kips) 

Vs 
(kips) 

Vp 
(kips)

Vu,max 
(kips) 

* cal

exp

V
V

 
Vc 

(kips) 
Vs,max 
(kips) 

** 

Vp 
(kips) 

V 
(kips)

 cal

exp

V
V

 
Vc 

(kips) 
Vs 

(kips) 
Vp 

(kips)
Vu,max 
(kips) 
*** cal

exp

V
V  

II-1 103.6 32.8 62.6 0 71.4 1.451 22.4 35.7 0 44.6 2.323 6.5 92.7 0 82.8 1.251 
II-2 85.2 27.0 104.2 0 58.8 1.448 19.5 29.4 0 36.8 2.315 5.5 157.2 0 55.0 1.550 
II-3 110.0 37.2 62.6 0 81.1 1.356 25.2 40.6 0 50.7 2.170 7.3 92.6 0 93.5 1.176 
II-4 107.8 37.1 104.2 0 80.7 1.336 25.2 40.4 0 50.5 2.135 7.3 153.6 0 91.1 1.183 
III-1 82.7 30.7 61.2 0 67.9 1.218 24.6 34.0 0 42.5 1.946 7.4 100.2 0 73.1 1.131 
III-2 87.8 29.5 101.8 0 65.3 1.345 24.0 32.7 0 40.8 2.152 6.2 156.0 0 67.1 1.308 
III-3 89.1 35.4 61.2 0 78.3 1.138 28.1 39.1 0 48.9 1.822 7.5 94.3 0 83.0 1.074 
III-4 101.8 32.7 101.8 0 72.3 1.408 26.2 36.1 0 45.2 2.252 6.9 156.0 0 74.2 1.372 
IV-1 84.3 26.8 99.3 0 60.1 1.403 29.3 30.1 0 37.6 2.242 7.9 176.9 0 61.9 1.361 
IV-2 75.9 26.0 59.7 0 58.5 1.297 29.4 29.3 0 36.6 2.074 7.8 112.3 0 56.1 1.353 
IV-3 104.5 30.6 99.3 0 68.8 1.519 33.1 34.4 0 43.0 2.430 9.2 180.1 0 69.6 1.502 
IV-4 87.8 27.3 59.7 0 61.4 1.430 31.5 30.7 0 38.4 2.286 8.0 110.3 0 54.0 1.627 

 

    * dbf wc′=16V maxu,  

  ** dbf wc′= 8V maxs,  

*** hddbf vvwc 72.0;25.0V maxu, ≥′=  
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Table 9.2.4 Comparison of Test Results for Elzanaty’s Specimens 
UH ACI AASHTO  Vexp 

(kips) 

Vc 
(kips) 

Vs 
(kips) 

Vp 
(kips) 

V 
(kips)

 cal

exp

V
V

 
Vc 

(kips) 
Vs 

(kips) 
Vp 

(kips) 
V 

(kips)
 cal

exp

V
V

 
Vc 

(kips) 
Vs 

(kips) 
Vp 

(kips)
V 

(kips)
cal

exp

V
V  

CI-10 31.8 15.1 2.8 0 17.9 1.777 11.7 8.8 0 20.5 1.551 10.1 22.3 0 32.4 0.982 
CI-11 28.6 13.2 2.8 0 16.0 1.788 11.0 8.8 0 19.8 1.444 8.0 20.8 0 28.8 0.994 
CI-12 27.5 11.2 2.8 0 14.0 1.964 10.4 8.8 0 19.2 1.432 6.1 19.0 0 25.1 1.095 
CI-13 34.8 15.1 2.8 0 17.9 1.944 14.4 8.8 0 23.2 1.500 9.3 21.7 0 31.0 1.123 
CI-14 37.0 15.2 8.6 0 23.8 1.555 14.6 14.1 0 28.7 1.289 9.2 33.2 0 42.4 0.873 
CI-15 27.2 14.8 2.8 0 17.6 1.545 11.6 8.8 0 20.4 1.333 9.9 22.3 0 32.2 0.845 
CI-16 36.7 15.1 2.8 0 17.9 2.050 14.5 8.8 0 23.3 1.575 9.1 20.8 0 29.9 1.226 
CI-17 29.1 14.8 1.3 0 16.1 1.807 14.4 4.0 0 18.4 1.582 10.3 10.6 0 20.9 1.395 

CW-10 39.0 16.6 3.0 0 19.6 1.990 17.6 9.7 0 27.3 1.429 7.3 19.3 0 26.6 1.472 
CW-11 35.2 14.5 3.0 0 17.5 2.011 16.1 9.7 0 25.8 1.364 6.2 18.8 0 25.0 1.408 
CW-12 31.6 12.3 3.0 0 15.3 2.065 14.7 9.7 0 22.0 1.436 4.8 17.4 0 22.2 1.422 
CW-13 41.0 16.6 3.0 0 19.6 2.092 20.2 9.7 0 29.6 1.385 7.4 20.8 0 28.2 1.452 
CW-14 42.2 16.7 7.3 0 24.0 1.883 20.5 13.8 0 29.8 1.416 7.1 27.9 0 35.0 1.206 
CW-15 33.8 16.3 3.0 0 19.3 1.751 17.3 9.7 0 27.0 1.252 7.3 20.0 0 27.3 1.240 
CW-16 42.0 16.6 3.0 0 19.6 2.143 20.3 9.7 0 29.7 1.414 7.1 19.5 0 26.6 1.578 
CW-17 32.0 16.2 1.4 0 17.6 1.818 20.1 4.4 0 24.5 1.306 7.8 10.1 0 17.9 1.793 
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9.3 Design Examples for Prestressed Beams 

The use of the design equation developed as described in the previous section has been 
illustrated by four design examples in this section. TXDOT Type-A girders spaced at 8.67 ft c/c 
and supporting a 30 ft wide and 8 in. thick deck slab are considered. The design of a typical 
girder described above, using the new design equation, has been shown by varying different 
parameters in the following four examples. 

 

 
Fig. 9.3.1 Layout of Girders and Roadway Slab considered in Design Examples 

 

 
Fig. 9.3.2 Dimensional Details of Beam and Overlaying Slab 

 

9.3.1 Example 1 
The values of various quantities required for design are follows: 
h = 28 in.  bw = 6 in.  Ln = 24 ft  fc’ = 10 ksi   
fy = 60 ksi  Av = 0.62 in.2  dbv = 5/8  in.  wu  = 24 kips/ft 
 

Maximum moment on the girder, Mu/φ = 
8

1 2lwu

φ
=

89.0
2424 2

×
× = 1920 kip-ft 

As per calculations for flexural capacities of prestressed concrete girders, provide 18 ½-in. low 
relaxation strands. 
Distance of cg of beam cross section from top fiber = 15.41 in. 
Eccentricity of tendons from cg = 8.39 in. 
Thickness of deck slab = 8 in. 
d = 15.41 + 8.39 + 8 = 31.8 in. 
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Assuming the critical section of the beam in shear to be at a distance d from the support,  

Shear force at critical section of the beam Vu= 





 − dwlw

u
u

2
= 






 ×−

×
12

8.3124
2

2424 = 224.4 kips 

 

Maximum shear capacity of the beam, Vu,max = φ dbf wc
′16 = 8.316000,101675.0 ××××  

        = 229.0 kips > 224.4 kips (ok) 
Given cross section is sufficient to resist shear. 
The amount of steel required at the critical section of the beam has been shown below. 

Factored shear force at the section, Vu= 





 − xwlw

u
u

2
= 






 ×−

×
12

8.3124
2

2424 = 224.4 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu =
























×

−×
×

2
12

8.3124

12
8.31

2
2424

2

 

= 678.9 kip-ft 

u

u

M
dV

=
129.678

8.314.224
×
× = 0.876  

Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 8.316000,10876.014 7.0 ×××× = 243.5 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′10 = 8.316000,1010 ×××  

= 190.8 kips < 243.5 kips  
 Vs = Vu/φ-Vc = 224.4/0.75 – 190.8 = 108.4 kips 
Using two-legged #5 rebars (Av = 0.62 in2) as shear reinforcement, the spacing required to 
provide the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

6062.0
4.108
8.31 = 8.1 in. 

Provide two-legged #5 rebars @ 8 in. c/c. 
 
The amount of steel required at a section of the beam 8 ft from the support has been calculated.  

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 818
2

2424 = 96 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2

8188
2

2418 2

= 1536 kip-ft 

u

u

M
dV =

121536
8.3196

×
× = 0.166  
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Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 8.316000,10166.014 7.0 ×××× = 75.9 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′10 = 8.316000,1010 ×××  

= 190.8 kips > 75.9 kips 
 Vs = Vu/φ-Vc = 96.0/0.75 – 75.9 = 52.1 kips 
Using two-legged #5 rebars (Av = 0.62 in2) as shear reinforcement, the spacing required to 
provide the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

6062.0
1.52

8.31 = 13.2 in. 

Provide two-legged #5 rebars @ 13 in. c/c. 
Table 9.3.1 shows the design of the beam over half span of the beam. It can be seen that the 
spacing of the two-legged #5 rebars is 8 in. c/c up to a distance 7 ft from the support. At 8 ft from 
the support, the spacing is increased to 13 in. c/c.  
 

Table 9.3.1 Beam Design 1 
x 

(ft) 
Vu 

(kips) 
Mu 

(kip-ft) 
u

u

M
dV

 
Vc 

(kips) 
Vs 

(kips) 
s 

(#5) 
(in) 

sprov 
(in) 

d=2.65 224.4 678.9 0.876 190.8 108.4 8.1 8 
3 216 756 0.757 190.8 97.2 8.8 8 
4 192 960 0.530 171.3 84.7 9.7 8 
5 168 1140 0.391 138.3 85.7 9.6 8 
6 144 1296 0.294 113.5 78.5 10.2 8 
7 120 1428 0.223 93.3 66.7 11.4 8 
8 96 1536 0.166 75.9 52.1 13.2 13 
9 72 1620 0.118 59.8 36.2 16.1 13 
10 48 1680 0.076 43.9 20.1 20.6 13 
11 24 1680 0.037 26.6 5.4 27.8 13 
12 0 1716 - - - - 13 

 

9.3.2 Example 2 
The above design example was repeated by using a uniformly distributed load of 12 kips/ft.  

Maximum moment on the girder, Mu/φ = 
8

1 2lwu

φ
=

8
2412

9.0
1 2× = 960 kip-ft 

As per calculations for flexural capacities of prestressed concrete girders, provide 8 ½-in. low 
relaxation strands. 
Distance of cg of beam cross section from top fiber = 15.41 in. 
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Eccentricity of tendons from cg = 10.11 in. 
Thickness of deck slab = 8 in. 
d = 15.41 + 10.11 + 8 = 33.52 in. 
Assuming the critical section of the beam in shear to be at a distance d from the support,  

Shear force at critical section of the beam Vu= 





 − dwlw

u
u

2
= 






 ×−

×
12

52.3312
2

2412 = 110.5 kips 

 

Maximum shear capacity of the beam, Vu,max = φ dbf wc
′16 = 52.336000,101675.0 ××××  

        = 241.3 kips > 110.5 kips (ok) 
Given cross section is sufficient to resist shear. 
The amount of steel required at a section of the beam 5 ft from the support has been shown 
below. 

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 512
2

2412 = 84 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2

5125
2

2412 2

= 570 kip-ft 

u

u

M
dV

=
12570
52.3384

×
× = 0.412  

Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 52.336000,10412.014 7.0 ×××× = 151.3 kips  

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′10 = 52.336000,1010 ×××  

= 201.1kips > 151.3 kips 
Vs = Vu/φ-Vc = 84.0/0.75 – 151.3 = -39.3 kips (no steel required) 

Hence, provide minimum amount of stirrups as per the ACI Code (2005).  
Using Eq. 11-14 of ACI code (2005) 

wy

pups
v b

d
d
s

f
fA

A
80min, =  

wwy

pups

w

v

b
d

dbf
fA

sb
A 1

80
min, =⇒  

( )( )
( )( ) 6

13.23
1346080

270153.012×
=⇒ wρ = 0.00151 

Using Eq. 11-3 of ACI (2005) 

y

w
cv f

sbfA ′= 75.0min,  

y

c

w

v

f
f

sb
A ′

=⇒
75.0min,  
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000,60
000,1075.0 ×

=⇒ wρ = 0.00125 

Hence use two-legged #2 rebars 10 inches c/c or two-legged #3 rebars @ 20 inches c/c for 
minimum steel (ρw = 0.17) 
 
The amount of steel required at a section of the beam 8 ft from the support has been calculated.  

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 812
2

2412 = 48.0 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2

8128
2

2412 2

= 768 kip-ft 

u

u

M
dV

=
12768
52.3348

×
× = 0.175 

 Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 52.336000,10175.014 7.0 ×××× = 83.0 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′10 = 52.336000,1010 ×××  

= 201.1kips > 83.0 kips 
Vs = Vu/φ-Vc = 48.0/0.75 – 83.0 = -19.0 kips (no steel required) 
Hence provide minimum amount of stirrups in this case also as calculated for the section at 4 ft 
from the support. Use two-legged #2 rebars 10 inches c/c or two-legged #3 rebars @ 20 inches 
c/c for minimum steel (ρw = 0.17). 
Table 9.3.2 shows the concrete shear resistance at different sections along half span of the beam. 
It can be seen that the concrete shear is greater than the shear force at all sections and no stirrups 
are required at any section of the beam. Hence, minimum stirrups have been provided throughout 
 

Table 9.3.2 Beam Design 2 
x 

(ft) 
Vu 

(kips) 
Mu 

(kip-ft) 
u

u

M
dV

 
Vc 

(kips) 
Vs 

(kips) 
s 

(#3) 
(in) 

sprov 
(in) 

d=2.8 110.5 355.4 0.868 201.1 - - 20 
3 108 378 0.798 201.1 - - 20 
4 96 480 0.559 187.3 - - 20 
5 84 570 0.412 151.3 - - 20 
6 72 648 0.310 124.1 - - 20 
7 60 714 0.235 102.1 - - 20 
8 48 768 0.175 83.0 - - 20 
9 36 810 0.124 65.4 - - 20 
10 24 840 0.080 48.0 - - 20 
11 12 858 0.039 29.1 - - 20 
12 0 864 - - - - 20 
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9.3.3 Example 3 
The beam designed in Example 1 has been redesigned by increasing its span to 40 ft, and 
changing the load of 9 kips/ft.  

Maximum moment on the girder, Mu = 
8

1 2lwu

φ
=

8
409

9.0
1 2× = 2000 kip-ft 

As per calculations for flexural capacities of prestressed concrete girders, provide 18 ½-in. low 
relaxation strands. 
Distance of cg of beam cross section from top fiber = 15.41 in. 
Eccentricity of tendons from cg = 8.39 in. 
Thickness of deck slab = 8 in. 
d = 15.41 + 8.39 + 8 = 31.8 in. 
Assuming the critical section of the beam in shear to be at a distance d from the support,  

Shear force at critical section of the beam Vu= 





 − dwlw

u
u

2
= 






 ×−

×
12

8.319
2
409 = 156.2 kips 

 

Maximum shear capacity of the beam, Vu,max = φ dbf wc
′16 = 8.316000,101675.0 ××××  

        = 229.0 kips > 156.2 kips (ok) 
Given cross section is sufficient to resist shear. 
The amount of steel required at a section of the beam 8 ft from the support has been shown 
below. 

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 89
2
409 = 108 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2
898

2
409 2

= 1152 kip-ft 

u

u

M
dV

=
121152

8.31108
×

× = 0.248  

Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 8.316000,10248.014 7.0 ×××× = 100.8 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′10 = 8.316000,1010 ×××  

= 190.8 kips > 100.8 kips 
 Vs = Vu/φ-Vc = 108/0.75 – 100.8 = 43.2 kips 
Using two-legged #4 rebars (Av = 0.4 in2) as shear reinforcement, the spacing required to provide 
the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

604.0
2.43

8.31 =11.4 in. 

Provide two-legged #4 rebars @ 11 in. c/c. 



 171

The amount of steel required at a section of the beam 16 ft from the support has been calculated.  

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 169
2
409 = 36 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2
16916

2
409 2

= 1728 kip-ft 

u

u

M
dV

=
121728
8.3136

×
× = 0.055 

Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 8.316000,10055.014 7.0 ×××× = 35.2 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′10 = 8.316000,1010 ×××  

= 190.8 kips > 35.2 kips 
 Vs = Vu/φ-Vc = 36/0.75 – 35.2 = 12.8 kips 
Using two-legged #4 rebars (Av = 0.4 in2) as shear reinforcement, the spacing required to provide 
the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

604.0
8.12

8.31 = 20.7 in. 

Provide two-legged #4 rebars @ 20 in. c/c. 
Table 9.3.3 shows the design of the beam over half span of the beam. It can be seen that with the 

increase of beam span the 
u

u

M
dV

 values are lower than the ones obtained in Example 1. This in 

turn gives lower values of concrete shear resistance in comparison to Example 1. However, since 
the value of distributed load applied in this case is less than half of what is applied in Example 1, 
the shear resistance required at any section is much lower. Hence, the amount of transverse steel 
required is lower even though the concrete contribution is lower. 
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Table 9.3.3 Beam Design 3 
x 

(ft) 
Vu 

(kips) 
Mu 

(kip-ft) 
u

u

M
dV

 
Vc 

(kips) 
Vs 

(kips) 
s 

(#4) 
(in) 

sprov 
(in) 

d=2.65 156.2 445.4 0.929 190.8 25.2 18.4 11 
4 144 648 0.589 184.4 7.6 24.1 11 
6 126 918 0.364 131.6 36.4 12.6 11 
8 108 1152 0.248 100.8 43.2 11.4 11 
10 90 1350 0.177 79.4 40.6 11.8 11 
12 72 1512 0.126 62.7 33.3 13.2 13 
14 54 1638 0.087 48.5 23.5 16.1 13 
16 36 1728 0.055 35.2 12.8 20.7 20 
18 18 1782 0.027 21.2 2.8 28.5 20 
20 0 1800 - - - - 20 

 

9.3.4 Example 4 
The beam in Example 3 has been redesigned by reducing the uniformly distributed load acting 
on it to 6 kips/ft.  

Maximum moment on the girder, Mu/φ = 
8

1 2lwu

φ
=

8
406

9.0
1 2× = 1333 kip-ft. 

As per calculations for flexural capacities of prestressed concrete girders, provide 10 ½-in. low 
relaxation strands. 
Distance of cg of beam cross section from top fiber = 15.41 in. 
Eccentricity of tendons from cg = 9.81 in. 
Thickness of deck slab = 8 in. 
d = 15.41 + 9.81 + 8 = 33.22 in. 
Assuming the critical section of the beam in shear to be at a distance d from the support,  

Shear force at critical section of the beam Vu= 





 − dwlw

u
u

2
= 






 ×−

×
12

22.336
2
406 = 103.4 kips 

 

Maximum shear capacity of the beam, Vu,max = φ dbf wc
′16 = 22.336000,101675.0 ××××  

        = 239.2 kips > 103.4 kips (ok) 
Given cross section is sufficient to resist shear. 
The amount of steel required at a section of the beam 10 ft from the support has been shown 
below. 

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 106
2
406 = 60 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2
10610

2
406 2

= 900 kip-ft 

u

u

M
dV

=
12900
22.3360

×
× = 0.185 
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Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 22.336000,10185.014 7.0 ×××× = 85.5 kips 

Maximum concrete shear capacity of the beam, Vc,max =  dbf wc
′10 = 22.336000,10010 ×××  

= 199.3 kips > 85.5 kips 
Vs = Vu/φ-Vc = 60.0/0.75 – 85.5 = -5.5 kips (no steel required) 
Hence, provide minimum amount of stirrups in this case also as calculated for Example 2. 
Use two-legged #2 rebars 10 inches c/c or two-legged #3 rebars @ 20 in. c/c for minimum steel 
(ρw = 0.17) 
The amount of steel required at a section of the beam 16 ft from the support has been calculated.  

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 166
2
406 = 24 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2
16616

2
406 2

= 1152 kip-ft 

u

u

M
dV

=
121152
22.3324

×
× = 0.058 

Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 22.336000,10058.014 7.0 ×××× = 37.9 kips 

Maximum concrete shear capacity of the beam, Vc,max =  dbf wc
′10 = 22.336000,10010 ×××  

= 199.3 kips > 37.9 kips 
Vs = Vu/φ-Vc = 24.0/0.75 – 37.9 = -5.9 kips (no steel required) 
Hence, provide minimum amount of stirrups in this case also as calculated for Example 2. Use 
two-legged #2 rebars 10 in. c/c or 2 legged #3 rebars @ 20 in. c/c for minimum steel (ρw = 0.17) 
 
Table 9.3.4 shows the design of the beam over half span of the beam. It can be seen that with 
after reducing the load to half the value, no stirrups are required in this case also (similar to 
Example 2). Hence, provide minimum stirrups. 
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Table 9.3.4 Beam Design 4 
x 

(ft) 
Vu 

(kips) 
Mu 

(kip-ft) dV
M

u

u  Vc 
(kips) 

Vs 
(kips) 

s 
(#3) 
(in) 

sprov 
(in) 

d=2.77 103.4 309.2 0.926 199.3 - - 20 
4 96 432 0.615 198.6 - - 20 
6 84 612 0.380 141.7 - - 20 
8 72 768 0.260 108.5 - - 20 
10 60 900 0.185 85.5 - - 20 
12 48 1008 0.132 67.6 - - 20 
14 36 1092 0.091 52.2 - - 20 
16 24 1152 0.058 37.9 - - 20 
18 12 1188 0.028 22.8 - - 20 
20 0 1200 - - - - 20 

 
9.4  Shear Design of Non-Prestressed Beams 

The design equation proposed in Section 6.1 can be extended to reinforced concrete 
structures by implementing a factor Kr into the concrete contribution to the shear capacity, to 
take into account the absence of prestressing effect. A value of Kr = 0.4 was chosen to be used in 
design. However the upper limits of shear capacities of reinforced concrete structures is not as 
high as prestressed concrete structures. Hence, following the provisions of the ACI code (2005) 

it was decided to restrict the upper limit of shear capacities to dbf wc
′10 . The upper limit of 

concrete contribution to the shear, however, has been taken as dbf wc
′4 . Hence, Eq. 9.4-1 gives 

the new design equation for non-prestressed structures. The application of this design equation 
has been illustrated through an example problem in Section 9.4.1. 

scu VVV += dbf wc
′≤10        (9.4-1) 

dbf
M

dVKV wc
u

u
rc

′








=

7.0

14 dbf wc
′≤ 4      (9.4-2)   

Kr =  0.4 







 −= 1

s
dfAV yvs         (9.4-3) 

 
9.4.1 Design Example for Non-Prestressed T-Beam 
The following problem has been considered to show application of new design equation for non-
prestressed members: 
An isolated T-beam has an effective span of 25 ft and carries a factored load of 18 kips/ft. Other 
properties of the beam are as follows: 
h = 30 in.   bf = 40 in.    hf = 5 in.   
bw = 15 in.   d  = 26 in.   cf ′= 7 ksi    
fy = 60 ksi     
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Maximum moment on the girder, Mu/φ = 
8

1 2lwu

φ
=

8
2518

9.0
1 2× = 1562.5 kip-ft 

Using the compressive stress-strain relations given in the ACI code (2005) and assuming the NA 
lies in the flange: 

uc Madbaf =





 −′

2
85.0 , 

where a = depth over which the compressive stresses exist in the cross section. 
Substituting the numerical values of all other parameter in the above equation, the value of a can 
be obtained: 
a = 3.23 in. 
Equating the compressive and steel forces we get: 

60
23.340785.0

85.0

85.0

×××
=⇒

′
=⇒

′=

s

y

c
s

cys

A

f
bafA

baffA

 

Therefore As = 12.8 in2 
Provide ten #10 bars as longitudinal tension steel (total area = 12.70 in.2 ~ 12.8 in.2) 
Assuming the critical section of the beam in shear to be at a distance d from the support,  

Shear force at critical section of the beam Vu= 





 − dwlw

u
u

2
= 






 ×−

×
12
2618

2
2518 = 186 kips 

 

Maximum shear capacity of the beam, Vu,max = φ dbf wc
′10 = 2615000,71075.0 ××××  

        = 244.7 kips > 186 kips (ok) 
Given cross section is sufficient to resist shear. 
The amount of steel required at the critical section of the beam has been shown below. 

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

×
12
2618

2
2518 = 186 kips  

Factored moment at the section, Mu = 







−

22

2xwxlw uu =
























×

−×
×

2
12
2618

12
26

2
2518

2

 

= 445.3 kip-ft 

u

u

M
dV

=
123.445

26186
×
× = 0.905 

Vc = dbf
M

dVK wc
u

u
r

′








7.0

14 = 2615000,7905.04.014 7.0 ××××× = 170.4 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′4 = 261570004 ×××  

       = 130.5 kips < 170.4 kips  
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 Vs = Vu/φ-Vc = 186/0.75 – 130.5 = 117.5 kips 
Using two-legged #5 rebars (Av = 0.62 in2) as shear reinforcement, the spacing required to 
provide the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

6062.0
5.117

26 = 6.3 in. 

smax = 0.5d = 13 in. 
Provide two-legged #5 rebars @ 6 in. c/c 
The amount of steel required at a section of the beam 10 ft from the support has been calculated.  

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

× 1018
2

2518 = 45 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu = 






 ×
−×

×
2
101810

2
2518 2

= 1350 kip-ft 

u

u

M
dV

=
121350

2645
×
× = 0.072 

Vc = dbf
M

dVK wc
u

u
r

′








7.0

14 = 2615000,7072.04.014 7.0 ××××× = 29.0 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′4 = 261570004 ×××  

        = 130.5 kips > 29.0 kips (ok) 
 Vs = Vu/φ-Vc = 45/0.75 – 29.0 = 31.0 kips 
Using two-legged #5 rebars (Av = 0.62 in2) as shear reinforcement, the spacing required to 
provide the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

6062.0
0.31
26 = 14.2 in. 

smax = 0.5d = 13 in. 
Provide 2 legged #5 rebars @ 13 in. c/c. 
Table 9.4.1 shows the design of the beam over half span of the beam.  
 
Observations: Comparing prestressed beam (Example 1 in Section 9.3) to non-prestressed beam 
(Example in Section 9.4), the amount of transverse steel required for a 24 ft prestressed beam 
with 6 in. wide web, carrying a load of 24 kips/ft is lower than the amount of transverse steel 
required for the non-prestressed beam with a 15 in. wide web carrying a load of 18 kips/ft and 
having a span of 25 ft. This is because the concrete contribution to shear is much higher in the 
case of a prestressed beam. 
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Table 9.4.1 Design of Non-Prestressed Beam 
x 

(ft) 
Vu 

(kips) 
Mu 

(kip-ft) 
u

u

M
dV

 
Vc 

(kips) 
Vs 

(kips) 
s 

(#5) 
(in) 

sprov 
(in) 

d=2.17 186 445.3 0.905 130.5 117.5 6.3 6 
3 171 594 0.624 130.5 97.5 7.2 6 
4 153 756 0.438 102.6 101.4 7.0 6 
5 135 900 0.325 83.2 96.8 7.2 6 
6 117 1026 0.247 68.7 87.3 7.8 6 
7 99 1134 0.189 57.0 75.0 8.6 6 
8 81 1224 0.143 46.9 61.1 9.8 9 
9 63 1296 0.105 37.8 46.2 11.6 9 
10 45 1350 0.072 29.0 31,0 14.2 13 
11 27 1386 0.042 19.9 16.1 18.2 13 
12 9 1404 0.014 9.2 2.8 24.2 13 

12.5 0 1406.25 0 - - - 13 
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CHAPTER 10 

CONCLUSIONS AND SUGGESTIONS 
 

10.1 Conclusions 
The purpose of this research is to study the behavior of prestressed concrete elements and 

beams under shear and to finally develop a simplified equation for the shear design of prestressed 
concrete girders. The following conclusions are made from this research:  

(1) The Softened Membrane Model for Prestressed Concrete (SMM-PC) is presented in this 
research as an analytical model to predict shear behavior of prestressed concrete elements. The 
SMM-PC is an extension of the SMM developed at the University of Houston (Hsu and Zhu, 2002; 
Zhu, 2000; Zhu and Hsu, 2002). This new model is applicable to reinforced and prestressed 
concrete, with any ratio of longitudinal steel to transverse steel, and in any orientation of steel 
reinforcement with respect to the applied principal stresses. Although this model was verified for 
application to concrete of normal strength (42 MPa) in this research project, future research is 
likely to prove that it is also applicable to high-strength concrete up to 100 MPa. 

(2) To implement the new model SMM-PC, new constitutive laws are established for 
prestressed concrete under sequential and proportional loading. The constitutive laws of concrete 
in tension include the decompression load stage. 

(3) Prestress causes a 15% increase of concrete compressive strength under sequential 
loading. In the case of proportional loading, a prestress factor Wp is proposed for incorporation 
into the softening coefficient of prestressed concrete. Wp  is expressed in terms of the deviation 
angle β, and takes care of the effect of prestress on concrete compressive strength. 

(4) The constitutive laws of prestressing strands embedded in concrete are obtained. 
Compared to bare prestressing strands, the smeared (average) stress-strain relationships of 
prestressing strands has a lower ultimate strength, a lower elastic limit, and a knee region of 
smaller curvature. 

(5) A post-tensioning system was developed for seven-wire strands to simulate the bond 
condition of pre-tensioning strands. A system of self-compacting concrete grout (SCCG) in 
flexible conduits was developed to create the same crack patterns in post-tensioned concrete as 
those in pre-tensioned concrete. 

(6) The shear behavior of prestressed concrete beams was critically examined by full-scale 
tests on five TXDOT Type-A beams with web shear or flexural shear failure 

(7) Using the constitutive laws developed in this research, an analytical model is developed to 
calculate the ultimate shear capacity of the prestressed concrete beams. Using this model, ultimate 
capacities of beams can be calculated corresponding to given angles of failure planes. 

(8) A new design equation is developed using the results of the beam tests performed in this 
research as well as test results from other tests available in literature. Four design examples are 
shown to illustrate the use of the developed design equation for prestressed girders. 
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(9) The new design equation is extended to include non-prestressed girders, and a design 
example for the same is also prepared. 

 

10.2 Suggestions 
Future research in this area are suggested as follows: 
(1)  Whereas the prestressed concrete panels were subjected to pure shear in this research, 

future research is desired to study the effect of normal stresses on the shear strength of elements. 
The Universal Panel Tester can be used to apply a combination of normal and shear stresses to 
prestressed concrete panels. 

(2)  Because high-strength concrete is widely used in prestressed concrete construction, the 
application of the SMM-PC model to high-strength prestressed concrete elements needs to be 
validated. 

(3) Finite element programs should be developed based on the SMM-PC model to predict 
the behavior of whole prestressed concrete structures. 
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A.1 Design Recommendations for Prestressed Beam 

The step-by-step procedure involved for shear design of a prestressed concrete beam 
using the new design equation has been described below: 
Step 1: Calculate the maximum bending moment, Mmax acting on the beam. Provide the number 
of prestressing strands required to carry the bending moment by calculating the flexural capacity. 
Step 2: Calculate the effective depth of the beam, d from the eccentricity of the arrangement of 
tendons finalized in Step 1. 
Step 3: Calculate the maximum shear force, Vu acting at the critical section of the beam located 
at a distance d from the support. 
Step 4: Check if the shear force at the critical section of the beam is greater than the maximum 
shear capacity of the beam given by Eq. A.1-1. If so, then increase the concrete strength or the 
size of the beam. 

dbfV wcu ′= 16max, φ          (A.1-1) 
Step 5: Calculate the shear force, Vu and bending moment Mu at different sections over the span 
of the beam at intervals not exceeding Ln/20, where Ln is the span of the beam. 

Step 6: Calculate shear span to depth ratios 
dV

M

u

u for different design sections.  

Step 7: Calculate the concrete contribution to shear capacity of the different sections, Vc using 
Eq. A.1-2. 

  dbf
M

dVV wc
u

u
c ′








=

7.0

14 < dbf wc′10       (A.1-2) 

Step 8: Calculate the amount of shear force to be carried by steel at different sections, Vs using 
Eq. A.1-3. 
  cus VVV −= φ/           (A.1-3) 
Step 9: For selected sizes of stirrup having cross-sectional area Av, find the spacing of stirrups 
required at different design sections using Eq. A.1-4. 











+

=

1
yv

s

fA
V

ds          (A.1-4) 

A design problem has been solved below to illustrate the various steps described above: 
 
Design Problem TXDOT Type-A girders spaced at 8.67 ft c/c and supporting a 30 ft wide and 8 
in. thick deck slab are designed. The step-by-step design procedure of a typical girder described 
above, using the new design equation, has been shown below. 
The values of various quantities required for design are as follows: 

h = 28 in.  bw = 6 in.  Ln = 24 ft  ′
cf = 10 ksi   

fy = 60 ksi  Av = 0.62 in.2  dbv = 5/8  in.  wu  = 24 kips/ft 
d = 22.33 + 0.8 = 23.13 in.  
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Step 1: 

Maximum moment on the girder, Mu/φ = 
8

1 2lwu

φ
=

89.0
2424 2

×
× = 1920 kip-ft 

As per calculations for flexural capacities of prestressed concrete girders, provide 18 ½-in. low 
relaxation strands. 
Step 2: 
Distance of cg of beam cross section from top fiber = 15.41 in. 
Eccentricity of tendons from cg = 8.39 in. 
Thickness of deck slab = 8 in. 
d = 15.41 + 8.39 + 8 = 31.8 in. 
Step 3: 
Assuming the critical section of the beam in shear to be at a distance d from the support,  

Shear force at critical section of the beam Vu= 





 − dwlw

u
u

2
= 






 ×−

×
12

8.3124
2

2424 = 224.4 kips 

Step 4: 

Maximum shear capacity of the beam, Vu,max = φ dbf wc
′16 = 8.316000,101675.0 ××××  

        = 229.0 kips > 224.4 kips (ok) 
Given cross section is sufficient to resist shear. 
 
The amount of steel required at the critical section of the beam has been shown below. 
Step 5: 

Factored shear force at the section, Vu= 





 − xwlw

u
u

2
= 






 ×−

×
12

8.3124
2

2424 = 224.4 kips 

Factored moment at the section, Mu = 







−

22

2xwxlw uu =
























×

−×
×

2
12

8.3124

12
8.31

2
2424

2

 

= 678.9 kip-ft 
Step 6: 

u

u

M
dV

=
129.678

8.314.224
×
× = 0.876  

Step 7: 

Vc = dbf
M

dV
wc

u

u ′








7.0

14 = 8.316000,10876.014 7.0 ×××× = 219.9 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′10 = 8.316000,1010 ×××  

= 190.8 kips < 219.9 kips 
Step 8:  
Vs = Vu/φ-Vc = 224.4/0.75 – 190.8 = 108.4 kips 
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Step 9: 
Using two-legged #5 rebars (Av = 0.62 in2) as shear reinforcement, the spacing required to 
provide the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

6062.0
4.108
8.31 = 8.1 in. 

Provide two-legged #5 rebars @ 8 in. c/c. 
 
Table A.1 shows the design of the beam over half span of the beam. It can be seen that the 
spacing of the two-legged #5 rebars is 8 in. c/c upto a distance 7 ft from the support. At 8 ft from 
the support, the spacing is increased to 13 in. c/c.  
 

Table A.1 Prestressed Beam Design 
x 

(ft) 
Vu 

(kips) 
Mu 

(kip-ft) 
u

u

M
dV

 
Vc 

(kips) 
Vs 

(kips) 
s 

(#5) 
(in) 

sprov 
(in) 

d=2.65 224.4 678.9 0.876 190.8 108.4 8.1 8 
3 216 756 0.757 190.8 97.2 8.8 8 
4 192 960 0.530 171.3 84.7 9.7 8 
5 168 1140 0.391 138.3 85.7 9.6 8 
6 144 1296 0.294 113.5 78.5 10.2 8 
7 120 1428 0.223 93.3 66.7 11.4 8 
8 96 1536 0.166 75.9 52.1 13.2 13 
9 72 1620 0.118 59.8 36.2 16.1 13 
10 48 1680 0.076 43.9 20.1 20.6 13 
11 24 1680 0.037 26.6 5.4 27.8 13 
12 0 1716 - - - - 13 

 
 

A.2 Design Recommendation for Non-Prestressed Beam 

 
A unified shear design method is proposed for both prestressed and non-prestressed 

beams. The primary difference between these two types of beams lies in the concrete 
contribution Vc. A generalized Vc can be expressed as follows: 

 

dbf
M

dV
KV wc

u

u
rc ′








=14         (A.2-1) 

where  
Kr =  prestress factor. Kr is taken as unity (1) for beams with effective prestress force 

not less than 40 percent of the tensile strength of flexural reinforcement. Kr will be taken as 0.4 
for non-prestressed beams. 
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The step-by-step procedure to design a non-prestressed beam using the new design 
equation has been described below: 
Step 1: Calculate the maximum bending moment Mmax acting on the beam. Calculate the amount 
of longitudinal tension steel required to carry this moment. 
Step 2: Calculate the maximum shear force, Vu acting at the critical section of the beam located 
at a distance d from the support. 
Step 3: Check if the shear force at the critical section of the beam is greater than the maximum 
shear capacity of the beam given by Eq. A.1-1. If so then increase the concrete strength or the 
size of the beam. 

dbfV wcu ′= 10max, φ          (A.2-2) 
Step 4: Calculate the shear force Vu and bending moment Mu at different sections over the span 
of the beam at intervals not exceeding Ln/20, where Ln is the span of the beam. 

Step 5: Calculate shear span to depth ratios 
u

u

M
dV for different design sections.  

Step 6: Calculate the concrete contribution to shear capacity of the different sections Vc using 
Eq. A.2-3. 

 dbfdbf
M

dVKV wcwc
u

u
rc ′<′








= 414

7.0

      (A.2-3) 

Step 7: Calculate the amount of shear force to be carried by steel at different sections Vs using 
Eq. A.2-4. 

 cus VVV −= φ/          (A.2-4) 
Step 8: For selected sizes of stirrup having cross-sectional area Av find the spacing of stirrups 
required at different design sections using Eq. A.2-5. 











+

=

1
yv

s

fA
V

ds          (A.2-5) 

 
 
 
Design Problem An isolated T-beam has an effective span of 25 ft and carries a factored load of 
18 kips/ft. Other properties of the beam are as follows: 
h = 30 in.   bf = 40 in.    hf = 5 in.   
bw = 15 in.   d  = 26 in.   cf ′= 7 ksi    
fy = 60 ksi     

 
Step 1: 

Maximum moment on the girder, Mu/φ = 
8

1 2lwu

φ
=

8
2518

9.0
1 2× = 1562.5 kip-ft 

Using the compressive stress-strain relations given in the ACI Code (2005) and assuming the NA 
lies in the flange: 

uc Madbaf =





 −′

2
85.0 , 
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where  
a  =  depth over which the compressive stresses exist in the cross section. 

Substituting the numerical values of all other parameter in the above equation, the value of a can 
be obtained: 
a = 3.23 in. 
Equating the compressive and steel forces we get: 

60
23.340785.0

85.0

85.0

×××
=⇒

′
=⇒

′=

s

y

c
s

cys

A

f
bafA

baffA

 

Therefore As = 12.8 in.2 
Provide ten #10 bars as longitudinal tension steel (total area = 12.70 in.2 ~ 12.8 in.2) 
 
Step 2: 
Assuming the critical section of the beam in shear to be at a distance d from the support,  

Shear force at critical section of the beam Vu= 





 − dwlw

u
u

2
= 






 ×−

×
12
2618

2
2518 = 186 kips 

Step 3: 

Maximum shear capacity of the beam, Vu,max = φ dbf wc
′10 = 2615000,71075.0 ××××  

        = 244.7 kips > 186 kips (ok) 
Given cross section is sufficient to resist shear. 
 
Step 4: 
The amount of steel required at the critical section of the beam has been shown below. 

Factored shear force at the section, Vu = 





 − xwlw

u
u

2
= 






 ×−

×
12
2618

2
2518 = 186 kips  

Factored moment at the section, Mu = 







−

22

2xwxlw uu =
























×

−×
×

2
12
2618

12
26

2
2518

2

 

= 445.3 kip-ft 
Step 5: 

u

u

M
dV

=
123.445

26186
×
× = 0.905 

Step 6: 

Vc = dbf
M

dVK wc
u

u
r

′








7.0

14 = 2615000,7905.04.014 7.0 ××××× = 170.4 kips 

Maximum concrete shear capacity of the beam, Vc,max = dbf wc
′4 = 261570004 ×××  

       = 130.5 kips < 170.4 kips  
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Step 7: 
Vs = Vu/φ-Vc = 186/0.75 – 130.5 = 117.5 kips 
Step 8: 
Using two-legged #5 rebars (Av = 0.62 in2) as shear reinforcement, the spacing required to 
provide the required Vs has been calculated using Eq. 8.2-9. 







 −= 1

s
dfAV yvs  











+

=⇒

1
yv

s

fA
V

ds =






 +

×
1

6062.0
5.117

26 = 6.3 in. 

smax = 0.5d = 13 in. 
Provide two-legged #5 rebars @ 6 in. c/c. 
Table A-2 shows the design of the beam over half span of the beam.  
 
 

Table A-2 Non-Prestressed Beam Design 
x 

(ft) 
Vu 

(kips) 
Mu 

(kip-ft) 
u

u

M
dV

 
Vc 

(kips) 
Vs 

(kips) 
s 

(#5) 
(in) 

sprov 
(in) 

d=2.17 186 445.3 0.905 130.5 117.5 6.3 6 
3 171 594 0.624 130.5 97.5 7.2 6 
4 153 756 0.438 102.6 101.4 7.0 6 
5 135 900 0.325 83.2 96.8 7.2 6 
6 117 1026 0.247 68.7 87.3 7.8 6 
7 99 1134 0.189 57.0 75.0 8.6 6 
8 81 1224 0.143 46.9 61.1 9.8 9 
9 63 1296 0.105 37.8 46.2 11.6 9 
10 45 1350 0.072 29.0 31.0 14.2 13 
11 27 1386 0.042 19.9 16.1 18.2 13 
12 9 1404 0.014 9.2 2.8 24.2 13 

12.5 0 1406.25 0 - - - 13 
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