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CHAPTER I 

INTRODUCTION 

General 

Among other things, a truly rational flexible pavement design method requires 
the accurate determination of traffic induced stresses. In flexible pavement design 
methods, these stresses are often calculated theoretically -- generally using the 
theory of elasticity <:lPPlied to continuous media -- and then modified based on 
experience. Apparently the modifications are necessary because the traffic stresses 
cannot be accurately calculated in a layered system composed of soils and granular 
materials. 

Tests conducted at Texas A&M University and a limited number of reports by 
others ( l, 2, 3) 1 , suggest that granular materials of the kind used in road 
construction are not linearly elastic (i.e., strains are not linear functions of the 
stresses), especially when subjected to rapid loading conditions. This indicates 
that classical elasticity methods for calculating stresses in these materials need. 
revision. 

Deformation Hypothesis for 
Granular Materials 

As a result of tests conducted on Project 2-8-62-27, "Distribution of Stresses 
in Layered Sy~tems Composed of Granular Materials," a new deformation hypothesis 
for granular materials analogous to Hooke's Law for metals was proposed ( 10). 
This hypothesis is expressed mathematically below: 

= 
. ~ z - K 1 ( a r + ae) 

Equation ( 1.1) 

where: E 2 = Strain in the vertical direction 

Q = Stress in the vertical direction z 

1. Refers to References Cited. 



ar, 0' 9 = Radical and tangential stresses I respectively 

K1, Kz I K3 =constants which must be determined experimentally 
for each material. 

Two other equations can be written for Er and E 9 by a cyclical interchange of the 
subscripts in Equation l 0 1. Figure 1. 1 illustrates graphically the meaning of the 
parameters K2 and Ks. 

Basically, the new hypothesis means this·~· the; modulus of deformation of 
granular materials I instead of being constant as assumed in elasticity theory, 
varies when the stresses vary. Thus, within a pavement subjected to a moving load, 
the modulus varies from instant to instant and from point to point; and in addition, 
.its value depends upon the direction in which it is measured o 

Based on this hypothesis, a set of six partial nonlinear differential equations 
were developed for describing the stresses and displacements in a layered system 
of granular materials. Unfortunately, attempts to solve the equations to obtain 
stresses induced by traffic on a flexible pavement have been unsuccessful owing 
to the complexity of the mathematics. 

The initial deformation hypothesis was· based on observations from static 
triaxial tests and from rapid repetitive triaxial loading tests. A linear stress~ 
strain relationship was used in developing the hypothesis o With the advent of more 
sophisticated recording equipment, it was observed that the stress-strain curves 
actually had a reverse S-shape under rapid repetitive loading. This does not 
completely invalidate the original deformation hypothesis because tests have shown 
that the stress-strain characteristics are still greatly dependent on the state of 
stress existing in the material regardless of the loading rate. However, the fact 
that the stress-strain curves under rapid repetitive loading were curvilinear and 
that the deformation equations could not be readily solved, led a search for new 
methods of describing the deformation characteristics of granular materials. 

Particulate Nature of Granular Materials 

A granular soil mass is composed of a number of discrete particles whi.ch are 
relatively nonplastic;J:t may or may not contain water in its voids. By way of an 
analogy I suppose a steel cylinder 1 considered to be closely elastic in .its behavior, 

·was machined i.nto spheres an.q the mass of spheres .was then stressedo The 
particulate mass need not exhibit the same modulus of elasticity and Poi.sson°S ratio 
as the orgi.nal cylinder. I;n fact 1 there is no'reason to believe that the two elastic 
constants would even exist for the mass although the separate spheres would still 
retain the original constants. 
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rnvestigations in the relatively new field of particulate mechanics have shown 
considerable promise in explaining the stress-strain characteristics of masses of 
discrete particles and the theory may be capable of describing the stress-strain 
behavwr of granular soils. 

Particulate mechanics considers the forces and deformations at contact points 
between individual particles. The deformation equations can be developed for a 
g.iven array or mass of particles provided the geometry of the array is known. Using 
the deformation equations, the strain within the array can be calculated if the particle 
parameters (coefficient of friction between particles, Po is son's ratio, and modulus of 
elasticity of the particles) are known. 

Objections of the Research Program 

The objectives of this research were: 

A) To develop expressions relating stress and strain for various arrays of 
elastic equiradii spheres. 

B) To compute the stress-strain curves of the arrays using the equations 
developed in A) above for a range of parameters (elastic constants and 
coefficient of friction), encompassing those which might be expected for 
actual granular materials. 

C) To compare the computed or theoretical stress-strain curves to the curves 
of an actual soil subjected to rapid repetitive loading . 

. Forthis program, three different arrays were analyzed. They were a) a loose 
planar array (Figure 1. 2) b) a dense planar array (Figure l. 3) and c) a loose 
three dimensional arr9y (Figure 1. 4). The arrays were examined for both triaxial 
and one dimensional compression. It was believed that if the theoretical and actual 
curves agreed closely, then the equations could be expanded to a semi-infinite 
mass composed of layers of granular materials,., and by applying appropriate boundary 
conditions, stresses and displacements in the mass could be calculated. 

Principa 1 Conclusions 

While this exploratory study did not demonstrate a generally acceptable 
agreement between particulate theory and experimental results, it did show that: 

1. The theoretical stress-strain curves for the three arrays exhibited a 
tendency for the secant modulus to increase with increase in lateral 
pressure.. {This tendency'·· so frequently observed in the testing of granular 
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Figure 1 . 2 Geometry of the loose planar array showing 
diagonal angle 45 degrees (Bratton). The 
dashed portion indic&tes a unit cell. 
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FRONT VIEW 

Figure l. 3 The dense packed planar array acted 
on by external stresses 0'1 and 0'3 . 
Note 60° diagonal angles. The dashed 
portion indicates a unit cell. 
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Figure 1. 4 The unit cell of the three dimensional loose array 
showing stresses acting. 



materials, cannot be explained by the usual assumption of an elastic, 
continuous medium). 

2. For two of the arrays studied the computed stress-strain curves exhibited the 
typical reverse-S shape observed in triaxial tests conducted at constant 
lateral pressure. 

3. The study, which was limited to arrays of equiradii spheres and to stresses 
below those capable of producing sliding, also indicated that 

before acceptable agreement between theory and experiment can be 
expected, the theory must be extended to include some ot'all of the 
following features: 

(a) Arrays of spheres of varying diameter 
(b} Arrays that include particle shapes other than spherical 
(c) Slide and counter-slide between particles 
(d) Pore pressures. 
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CHAPTER II 

. REVIEW OF. LITERATURE 

Research on Equiradii Spheres 

Owing to the complexity of the mathematics, the use of particulate mechanics 
in soil simulation studies has been confined to the investigation of equiradii elastic 
spheres. When the spheres are subjected to normal and tangential forces, they 
deform elastically at their points of contact until the tangential forces become 
large enough to overcome Coulomb's friction. After which the spheres slide past 
one another until they reach more favorable positions to resist the applied forces. 

The mathematical study of the effects produced by mutual compressio.n of 
elastic bodies was initiated by Hertz ( 4), who examined the case in which bodies 
are acted on by forces normal to their contact surfaces. According to Hertz, the 
radius, a, of the contact area between two spheres acted on by a force normal to the 
contact surface is: 

a = [ 3 ( l - fJ 2 ) Nr/ 4E ]113 Equation (2 .1) 

where: E = the modulus of elasticity 

r = the radius of the sphere 

fJ = Poisson's ratio 

N = normal force. 

The vertical displacement of the sphere centers due to the normal force is [ see 
Figures 2. l (a) and 2. l (b) ] : 

a= 2[3 (l- fJ2 )N/4E] 213r~:l/3 =2a2/r Equation (2.2) 

Later, Cataneo (5) and Mindlin (6, 7) extended the contact theory by including 
the effect of ta:ngential forces acting on the spheres [see Figure 2. l (c)]. When a 
monotonically increasing tangential force, T, is applied to a, contact surface acted on 
by a constant normal force, slipl is initiated on the circumference of the surface of 

1 
At this point it is well to distinguish between slip and slide. Slip is 

relative movement between two contiguous points on the contact surface, while 
slide is gross movement over the entire surface of contact. 
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Figure 2.1 Spheres under various loading condition. 



contact and progresses radially inward. The portion of the surface of contact on 
which slip occurs lies between the outer annulus of radius, a, and inner annulus 
ofradius, c, where: 

c =a ( 1 - T/FN) 1/3 Equation ( 2. 3) 

where: N =the normal force 

T = the tangential force 

F ~~he coefficient of !riction. 

From Equation ( 2. 3) it may be noted that as the value of the tangential force 
approaches the value of FN (static friction force), c approaches zero and slip 
progresses over the whole contact surface. Figure 2. 2 shows the distribution 
o{ tangential stresses, T ,· on the contact area during loading. When c =· 0, 
rigid body sliding occurs between the particles and the geometry of the array 
changes. 

The tangential displacement, 0, resulting from the tangential and normal force 
is: 

6 =[3 {2- ~)FN/8Ga[1- (1- T/FN) 2/3] Equation (2.4) 

where: G = E/2 ( 1 + ~) = the shear modulus. 

Whitman ( 8) first utilized the principles and equations of particulate mechanics 
to develop the deformation characteristics of a loose packed two dimensional array 

· of equiradii spheres subjected to one dimensional. compression. The determination 
of the stress-strain relations,hips of this array was simplified by 4so symmetry of the 
spheres. Whitman indicated that the resulting stress-strain curves were nonlinear 
and had a reverseS-shape configuration. In subsequent research, Whitman et al. 
(3) no.ted that dry sand tested under conditions of one dimensional compression also 
displayed reverseS-shape stress-strain curves (see Figure 2. 3). This phenomenon 
was. explained as fo How s: 

As the load is initially applied, deformations in the sand grains occur 
resulting in a steep stress-strain curve concave to the strain axis. · · 

The load is further increased causing the grainsto start sliding 
relative to each other. At this stage the stress-strain curve becomes 
more concave to the strain axis indicating an increase in st~ain rate. 

As the particles are rearranged into a denser state, sliding becom&s 
more difficult, the strain rate dec_reases resulting in a stress-strain 
curve concave to the stress axis. 
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Miller at M. I. T. ( 9) examined the loose planar array2 (Figure 2. 1) subjected 
to both triaxial and one dimensional compression. He indicated that the theoretical 
curves differed somewhat from those of actual soils, and concluded this was prob­
ably due to the fact that a) the soil particles were not spherical, b) the packing 
was not regular 1 c) the particles ~ere not equiradii I and d) the soil array was three 
dimensional which could tend to accentuate small differences. 

There has been only a limited amount of research conducted on three dimensional 
systems of spheres. One investigator, Deresiewicz ( 12), derived the equati.ons . 
to explain the deformation characteristics of a simple cubic array of equiradii spheres 
(Figure 2. 4); however, his orientation consisted of a series of planar arrays stacked 
side by side which has no apparent advantage over a planar array. He did not 
compare his results with experimental data from real soils. 

Hendron ( 13) investigated a face centered array3 of equiradii spheres subjected 
to one dimensional compression. He stated that this Q.rray closely approximated the 
energy absorption loss exhibited in actuaLsoils. Hendron tested four different 
sands under one dimensional compression using high pressures and found that: 

A) The secant modulus increased as the relative density increased. 

B) The secant modulllS increased as the pressure increased up to a 
point. Beyond this, the higher pressures significantly crushed 
the grains causing the stress-strain curve to become concave 
downward. 

C) The constrained tangent modulus varied by a factor of eight or 
nine for different sands. 

It was concluded that factors such as angularity and grain size distribution 
significantly influenced the stress-strain behavior over a wide range of pressures. 
This conclusion is well taken: since angularity and grain size distribution play a 
major role in particle interlocking I they evidently have a definite effect on the 
behavior of the stress-strain curves. 

Hendron's results did not exhibit reverse 8-:shape stress-strain curves (see 
Figures 2. 5 through 2. 8). This was probably due to the rather slow rates of strain 
that he used in his testing program (0.01 and 0.005 inches per minute). 

2 . 
A two dimensional array and a planar array are synonymous. Such an array 

is only one sphere-diameter in thickness. 

3 A face centered array is a three dimensional dense array. 
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FRONT VIEW SIDE VIEW 

Figure 2 . 4 The front and side views 
of the simple cubic array. 
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Contact Points Between Particles 

One of the major contributing factors of stress-deformation relationships is 
that of the area of contact between mineral grains. Research has indicated that the 
theoretical computations of this area may be in error. 

Bowden and Tabor ( 33) found that the real area of contact between two bodies 
acted on by normal force was much smaller than the apparent or gross area, and 
that adhesion takes place between adjacent surfaces at contact between irregularities. 
To cause slide between the bodies in contact, sufficient tangential force must be 
applied to shear essentially solid material at the real contact points. The total 
tangential force is then proportional to::the .area of real contact, and. since this area 
is a function of the applied load, the tangential force is also a function of the applied 
load. 

Scott ( 34) indicates that when the interface between the two particles is 
contaminated by a film of foreign material, the shear strength of the film plays a 
definite part in determining the frictional coeffieient between the two surfaces. He 
adds that the contact film is absent only in special tests where extreme care is 
used to prevent its presence. 

Influence of Variable Confining Pressure on 
Stress-Strain Characteristics 

In many cases standard triaxial compression tests do not duplicate field stress 
conditions. For example, in a flexible pavement the radial, tangential, and 
vertical stresses at a point change simultaneously as a vehicle approaches I whereas 
in a triaxial test the confining pressure generally remains constant as the vertical 
stress Is-increased. 

In the development of the deformation hypothesis described in Chapter I, the 
condition of a variable confining pressure was considered. It was assumed that the 
radial stress varied linearly with the vertical stress such that 

Equation ( 2. 5) 

If Equation ( 2. 5 ) is combined with Equation ( l. l ) , it results in: 

! z 
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By means of Equation (2. 6), a hypothetical case was solved using typical 
values for K1 , K2 and K3 . Figure 2. 9 presents these results and compares them 
to the strict elastic case for which K3 is assumed to be zero, K1 is Poisson's 
ratio and K2 is the modulus of elasticity. 

0' Brien ( 2 0) subsequently performed variable confining pressure tests to 
examine the validity of Equation 2. 6. He had considerable difficulty with 
equipment and had to reduce his rate of loading to 0. 005 inches per minute which 
is rather unrealistic compared to field conditions. Based on his findings, he 
concluded that laboratory tested samples of granular materials can be made to 
duplicate field stress-strain curves. He also noted that the proposed deformation 
hypothesis -- Equation ( 2. 6) -- appeared to be correct. 

O'Brien indicated a need for refinement in equipment and techniques before 
accurate experimental results could be obtained. He especially noted that a 
better method for recording load and deformation was needed. 

Effect of Rapid Loading 

It has been .observed that the rate or time of loading has a definite effect on the 
shearing strength and modulus of deformation of soils. Casagrande and Shannon 
( 31) found that if specimens of soil and soft rock are subjected to a single rapidly 
applied load, their ultimate strengths are significantly greater than those observed 
for specimens using loading rates common in conventional testing procedures. 
Furthermore 1 rapid loading produces a definite increase in the modulus of 
deformation. 

Whiteman and Healy (32) concluded that the strengths of dry sands and very 
---dense saturated sands are not time dependent, i.e., the compressive strengths of 

the sands they tested were little affected by changes in the loading time. However 1 

they found that the compressive strengths of loose saturated sands were dependent 
upon failure time. For loose saturated Ottawa sand, the compressive strength 
increased by 40 percent between failure times of five seconds and 0. 02 5 
second. This increase amounted to about 100 percent for Camp Cook sand when the 
failure time was reduced from three minutes to 0.2 second. Whitman and Healy 
pointed out, however 1 that the observed increases could have been affected by 
the laboratory apparatus and that the same strength changes may not develop in 
natural deposits of these same materials. 

Whitman's conclusions at first appear to contradict Casagrande's. However 1 

Casagrande worked on the basis of total stresses while Whitman based his findings 
on effective stresses. If Casagrande had measured pore pressures, his conclusions 
may have been similar to Whitman's. 
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Wilson and Sibley (26) indicated that the shape of the stress-strain curve is 
greatly influenced by the rate at which the load is applied. They found that generally 
the stress-strain curves from dynamic confined compression tests are reversed 
S-shaped, starting with a high modulus for axial loads slightly above the hydrostatic 
pressure, then decreasing with increased axial stress until some point well beyond the 
confining pressure, and then increasing again with further increase in the axial stress. 

They noted that for most materials the constrained modulus of deformation 
increased as the loading rate increased. However, it was also mentioned that some 
completely saturated materials and some weakly cemented sands appeared to have 
moduli which were more or less independent of the magnitude of the stress increase. 

Summary of Previous Research 

It has been observed that the deformation characteristics of actual soils differ 
markedly from those of the elastic materials usually assumed in pavement design 
methods. Particulate mechanics, which considers forces and deformation between 
individual particles, may come closer than other methods to simulating stress -strain 
relationships, particularly of granular soils. 

At present, particulate theory is restricted to equiradii spheres owing to the 
mathematical complexity involved when dealing with other shapes qr with spheres 
of unequal radii. And there are other complicating factors which must be considered. 
The heterogeneous nature of real soils causes the numb.er of contacts between 
particles to vary within the materials, and the surfaces of the contacts are con­
taminated with five grained materials and moisture. In addition, it is difficult to 
conceive of a real soil in which the coefficient of friction, Poisson's ratio and 

-modulus of elasticity would remain constant from particle to particle. 

Nevertheless, the little amount of information· available on particulate 
mechanics theory indicates that it has potential and should be investigated in 
greater detail. If it does nothing else, it should serve to delinea_te those particle 
parameters which have the greatest influence on stress-strain behavior of 
granular materials. 

Since arrays of particles in real soils bear little resemeblance to the simple 
arrays which can be presently investigated with particulate mechanics theory, it 

appears that the best approach is to select a few different arrays and compare their 
stress-strain characteristics to those of real soils. In addition, the particle 
parameters should be investigated for each array. Those parameter values which 
result in the best fit to actual stress-strain curves may not be the actual values for 
the particles, but they should represent average or perhaps synthetic values 
suitable for design applications. 
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CHAPTER I I I 

THEORETICAL DEVELOPMENT 

Loose Planar Array 

Figure 3. 1 is a front and side view of the loose planar array of equiradii 
spheres showing the geometry. The area on which the vertical 0' 1 , and later-aL,_ 
cr3 , stresses are assumed to act is 4/2r2. Forces F1 and F3 are the vertical 
lateral reactions due to the loads imposed by the respective stresses. Therefore: 

Equation ( 3. 1) 

F 
3 

= 2/2 r2 
CJ 3 

Equation ( 3 . 2 ) 

when~: r :::.: tl)e ra~(1ius Qf t_hq Sl?horos. 

The normal, N, and tangential, T, components of these forces are: 

N = 4r2 ( cr1 + cr3 )/2 Equation ( 3.3) 

Equation ( 3 . 4 ) . 

The normal_ahq tangential displacements,. ex and o, _can be ·calculated as 
indicated in Equation ( 2. 2) and Equation ( 2. 4), respectively. However, if 
T = FN, sliding takes place between part:l,cles and the corresponding equation 
foro is: 

0 = [ 3 ( 2 - IJ. ) F N/ 8Ga ] + S L Equation ( 3. 5) 

where: SL = displacement by sliding. 

_ Equations 2. 4 and 3. 5 explain the tangential displacement during the first load 
cycle. When the array is unloaded the tangential displacement, 0 u, can be 
calculated from the equation given below: 

0 u = 3 ( 2 - ~ ) FN 

8Ga 
{ 2 [ 1-

T* -T 

2FN 

2/3 
+ N* -N] 

_ (1 _ -~-~-*-) 2/3 ( N: ) 2/3 _ 1} + SL 

Equation ( 3. 6) 

where: T* = Maximum tangential force during loading, 

N*= Maximum normal force during loading. 
-24-



FRONT VIEW 

Figure 3 . 1 The loose planar array of 
elastic equiradii spheres. 

SIDE VIEW 

AFTER LYNCH 



The equation for the tangential displacement upon reloading I or I has the following 
form~ 

0 
r = 3 ( 2 - fJ) F { N1 [ 2 ( 1 T* -T 

8G a 2FNL 

N* NL 2/3 T* 2/3 N* 2/3 
-- ) - ( t-. - ) (._) 

2NL FN* N 

+ 2 ( 1- T·-T1 + N-NL)2/3+ 1 ]+ 
2FNL 2NL 

~ [ 1- ( NL ) 2/3 ]} + Su 
a N 

Equation ( 3. 7) 

where: N1 = lowest normal force 

T 
1 

= lowest tangential force 

Su = slide developed during unloading. 

From the preceding equations, it is possible to describe the strain for a given set 
of stresses provided the geometry of the array is known. For the loose planar array the 
following equations can be developed: 

1 
£1 = 2r 

1 
£3 = 2r 

(a+ o) 

(a+ 0) 

where: £ = vertical strain 
1 

"'E 
3 

= lateral strain. 

Equation ( 3. 8) 

Equation ( 3. 9) 

With these equations both the vertical and lateral strain can be calculated for any 
given system of stresses if the boundary conditions are known. 

Dense Planar Array 

Figure 3. 2 is a front and side view of the dense planar array showing the geometry. 
The $·urface acted on by the vertical and lateral stresses are 4r2 and 4f3r2 I respectively. 
The contact force F 1 = 2r2 O'J • Since the dense array also has two contact points with 
spheres at its equator (see Figure 3. 2) I there is an additional force F 

0
; thus the system 

is indeterminate. However I if the assumption F0 = 01 is made then the system becomes 
determinate and F3 = 2f3r2 cr3 . The normal and tangential components of these contact 
forces are~ · 

N = /3 r2 ( 0' 1 + 0' 3 ) 

T =r2 (cr
1

- 3cr
3

) 

Equation (3. 10 ). 

Equation ( 3 . 11 ) . 

1A basis for the assumption F 
0 

= 0 is contained in Appendix A. 
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Figure 3. 2 The dense packed planar array 
acted on by external stresses 
a 1 and a 3. Note 60° diagonal 
angles. The dashed portion 
indicates a unit cell. 



For the dense array the tangential displacement as derived by Lynch ( 11) 
is~ 

6= 3 (2 -"') 
8 Ga 1 

T T. 
[ 2 (l- ~FN )2/3_ ( 1_ TL )2/3 

FN 

where: a 
1 

= [ 3 ( l- M
2

) 
4E 

Equation ( 3. 12) 

1/3 
(N+AN)r] 

!:::. N = increment of normal force. 

Equations 2. 2 and 3 .12 express the normal and tangential displacements 
within the sphere unit and I knowing the geometry of-:the array I the strain equations 
can be developed. They are: 

'£ 
6 + /3 0! 

= 1 2/3r 
Equation ( 3.13) 

and 

(3 = 
a- /36 

2r 
Equation ( 3 .14) 

With these equations the vertical and lateral strain can be determined for a 
given system of stresses provided the boundary conditions are known. 

Loose Three Dimensional Array 

Examination of the three dimensional loose array of equiradii spheres shown in 
Figure 3. 3 revealed that it was symmetrical about axes which intersect at 60° angles. 

Figure 3. 3 is a top view of a unit cell cqnsisting of seven spheres. The points 
labelled A through G represent the centers of the spheres designated by the same 
letters. If point D is considered to be in the plane of the paper I then points A, 
B and C are in a plane parallel to and above the paper; and points, E1 F and G are 
in a plane parallel to and below the paper. The plane of the paper is midway between 
planes ABC and EFG. The lines connect the centers of the outer spheres, and delin­
eate the triangular areas on which the vertical and confining pressures are assumed to 
act. 

Figure 3. 4 is the same view as before, but the:spheres have been removed. The 
geometrical configuration represented by this line drawing is a cubic octahedron~. The 

1A cubic octahedron is a double pyramid with four equilateral triangles on each 
pyramid. 
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Figure 3 . 3 Top view of the loose array of equiradii spheres 
showing the lines connecting sphere centers which 
delineate the stress triangles. 



A F 

E B 

Figure 3 • 4 The top view with the spheres removed exemplifying 
the line drawing of Figure 3. 1. 



octahedron is lying on one of its triangular faces. This geometric figure, due to 
symmetry, consists of four pairs of triangular parallel planes. The two triangles 
composing each pair have the same relationship to each other as ABC and EFG. 
The other pairs are AGE and BCF, BEF and ACG, and ABE and CFG. The area of 
each triangular surface is equal to 3. 46r2. 

The loading of the unit cell may be described as a two step process: ( 1) a 
fluid pressure is applied and is considered to act normal to each of the eight 
triangular surfaces; ( 2) a vertical stress is applied normal to surface ABC. 

As the vertical load is applied to sphere D throug}J. spheres A, Band C, it is 
transferred to the three, bottom spheres as shown in Figure 3. 5. The vertical 
reaction, F1 , at each of the six points of contact r,esulting from this load transfer 
is 1 .1Sr2a1 , where a1 is the ver.Ucal stress applied includi~g the. fluid pressure 
acting on ABC. The normal and tangential components ofF 1 on the contact surfaces 
are 0.66?r2a1 and 0.940r2a1, respectively. 

The normal and tangential components on the contact surfaces resulting from 
the fluid pressure acting on triangles other than ABC and EFG are 1. 771r2a3 and 
- 0.940r2a3, respectively. Theminus sign is used in this case to denote the 
tangential force acting opposite to the tangential force resulting from a 1 • The 
triangles are inclined at 19.4° with the vertical. 

The total normal force is: 

2 + 1. 771 r a3 Equation ( 3. 13) 

____ while the total tangential force is: 

Equation ( 3. 14) 

For purposes of computer programming, let Nt = P and Tt = Q. Alpha (a:) 
was determinedby substituting the values of Nt and Tt in Equation (2 .2). 

0:· = 2 [ 3 (1- 1-'2 ) P/4EJ213 r ""
1
/

3 
Equ~tion {3.15) 

Likewise delta ( 0') was calculated by substituting the value·s of Nt and Tt in 
Equation (2. 4). 

= [ 3 ( 2 - J.') FP/8Ga ] [ 1 - ( 1 - Q/FP ) 2~3 ] Equation ( 3.16) 

where: G = E/2 ( 1 + J.l.) = the shear modulus. 
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Figure 3. 5 Top view of the loose array of equiradii spheres 
with the three upper spheres removed. This in­
dicates how the center sphere is in contact with 
three bottom spheres. The load on the center 
sphere is transferred through these contact points 
to the bottom spheres. 



The displacements are calculated in two steps: 1) the alpha and delta equations 
( 3. 15 and 3 .16) are solved for hydrostatic conditions which yield initial values (a 

0 
and 0

0
); 2) the stress (0' 1 ) is incremented/ and new alpha (a ) and delta ( 6) values 

are calculated. 

Since the alpha and delta relationships of the sphere unit are known/ it is 
possible to calculate the strains induced by a given system of stresses. The 
vertical strain, ( 1' resulting from the relative displacement of adjacent spheres 
due to vertical and horizontal stresses was calculated as shown below: 

f: = relative vertical displacement within the unit 
1 thickness of the unit 

t:i = 3~ 6 (cos 35.30) +·3lla(sin 35.3°) 
3. 46r 

( 1 = ( 0. 706 1:::. 6 + 0. 5 1:::. a)/r 

where: 1:::.0=6-6 
0 

Equation ( 3.17) 

The radial strain, f 3 , due to vertical and horizontal stresses was calculated by 
considering relative radial displacement of spheres. 

r@lative radial displacement of-the spheres 
(3 = width of the unit 

3. 68r 

f 3 = (0.66 !:::.a - 0.47 £10)/r Equation {3 .18) 

The above equations completely define the deformation -- both laterally and 
vertically -- for the loose array of equiradii spheres with the orientation described. 
In order to apply triaxial compression conditions to the equations, the confining 
pressure must be held constant, and computations off 1 and t: 3 can be easily made. 
One dimensional compression, on the other hand, requires that the radial strain be 
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equal to zero. When these boundary conditions are applied to the array either 
condition may be calculated .. 

The deformation equations for all the arrays were programmed for the University's 
7 094 computer. 
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CHAPTER IV 

THE RESEARCH PROGRAM 

General 

The purpose of the experimental phase of the research project was to determine 
the stress-strain characteristics of certain base course materials subjected to 
repetitive triaxial loading. The purpose of the theoretical phase was to use 
particulate mechanics to explain the observed shapes of dynamic stress-strain 
curves. 

To do this specimens were repetitively loaded and typical stress-strain 
curves developed from the data. (Much of this information was gathered as a 
by-product of research conducted on Project 2-8-62-27). The deformation 
equations for three arrays of elastic equiradii spheres were developed for 
triaxial compression and one dimensional compression conditions (Chapter I II). 
A parametric study was made to determine the effect of the various parameters 
( #J 1 E 1 F and a3 ) on the stress-strain characteristics of the array. Ultimately I 
a comparison was made between theoretical and actual results to determine the 
applicability of the theoretical approach. 

The Research Material 

The material was obtained from a borrow pit near Seguin/ Texas. The local 
classification -- caliche gravel -- is a bit misleading since the particles larger 

____ than about one-quarter of an inch consist of a cherty of flinty core with a porous 
appearing limestone ( Caco3 ) rind surroUl'lding it, or hard calcium carbonate 
covered by the rind. The limestone rind ranged from molecular thickness to a 
maximum of about one-quarter inch (see Figure 4.1). 

The gravel is the result of weathering and erosion of the limestone beds of 
the Edwards Plateau Region of Texas. As flooding developed along the Guadalupe 
River, the boulders and finer material were swept downstream. The chert and 
hard calcite.[ being more resistant to weathering I survived to be redeposited in 
gravel beds similar to the one where the research material was excavated. The 
limestone film which actually gives the material its name resulted from alternat­
ing wet and dry seasons. In wet seasons insoluble ca.lcitim carbonate was changed 
in the upper layers to soluble calcium bicarbonate by the action of weak carbonic 
acid. This solution leached into the lower layers, During dry seasons water 
evaporated from the lower layers and insoluble calcium carbonate was once again 
formed and precipitated as a film on the larger particles. 
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Figure 4. 1 Typical particles of the caliche gravel split open 
to show the calcium carbonate rind on this material. 
Top picture shows particles with chert centers while 
those in bottom picture are carbonate centers. Note 
variation in thickness of the rind and the presence of 
annular rings in the thicker rind. 



Engineering Characteristics of the Material 

Engineering characteristics of the material were determined by physical tests 
performed on the desired gradations. The results of some of the more important 
tests are as~follo.ws: 

A. Compaction Characteristics. (Test Method Tex-113- E) ( 14) 
The compaction characteristics were determined for a compactive effort 
of 13.26 ft. lbs. per cu. in. The referenced procedure was revised 
somewhat to facilitate fabrication of replicate specimens ( 15). 

The optimum moisture content using the revised procedure was 6. 8 
percent and the maximum dry unit weight was 13 5. 4 pcf. 

B. Specific gravity. (Test Method Tex-201-F} ( 14) Gs = 2. 653 

C. Atterberg Limits. (ASTM Designation D423-S4T and D424-S4T} 
( 1 6 } 

1 . Liquid Limit. W 1 = 21 . 3 

2. Plastic Limit. Wp = 13. 9 

3. Plasticity Index. IP = 7. 4 

D. Los Angeles Abrasion. (ASTM Designation D131-116-E) {16) 
Wear= 27.3 percent 

E. Wet Ball Mill. (Test Method Tex-116-E) (14) 
Wear= 36.2 percent 

F. Permeability. ( 17 ) 
k = o. 02x10.;.4cm/sec 

G. Texas Triaxial Classification. Test Method Tex-117-E) (14) 
C !ass = 2 . 8 ( 8 e e Figure 4 . 2 ) 

H. Soil Classification. 

1. Unified- GM 

2.. Texas - Type B, Grade 3. 

Figure 4. 3 is a pictorial representation of the research material indicating 
the shape of the various particle sizes. The upper picture shows particle sizes 
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Figure 4. 3 A pictorial representation of the research material. 



of 1-3/4 - 1/2 inches, middle picture is 1/2 inch -=!flO mesh particles; lower 
picture #40 - =!fSO mesh particles, magnified 30X. The lower picture shows 
quartz particles (glass like) and calcium carbonate (powder like). It can be 
noted from the lower picture that dust covers the particles and therefore contaminates 
the contact points between particles. 

Preparation for Repetitive Loading Specimens 

Approximately four cubic yards of the material were dried for twenty-four 
hours in a 140° F oven, and then separated on a Gilson shaker into seven size 
groups. These various sizes were stored in 55-gallon drums to be recombined later 
into the gradation shown in Figure 4 0 4. Twelve-inch high by six-inch diameter 
specimens were then compacted using the revised procedure (15) for fabricating 
compaction spec;imens 0 

After compaction the specimen was extruded and then encased in a rubber 
membrane which was, in turn, sealed to the head and pedestal of a triaxial 
cell with "silicone rubber" (Dow Corning Silastic RTV) and a one~inch wide rubber 
band made from motorcycle innertubes 0 This method of sealing proved to be· quite 
effective after numerous other methods had failed to stop water leakage. The cell 
was assembled, filled with tap water and allowed to sit overnight. The following 
morning 3. 0 psi confining pressure was applied to the chamber, and the drainage 
ports to the head and pedestal were opened to allow entrapped air to escape. A 
volume change device (Figure 4. 5) was connected to the two ports and initial 
readings recorded for water and air. The confining pressure was increased to the 
desired level and the volume change device was observed for possible leaks in 
the membrane. 

Testing Equipment 

The repetitive testing equipment has been previously described ( 18), however 
a brief description will be included to promote an understanding of the test results o 

Repetitive loading unit. The repetitive loading unit is essentially a hydraulic 
operated testing machine capable of applying repetitive loads to four specimens 
simultaneously (see Figure 4 0 6). The loads are applied by interchangeable 
hydraulic rams 0 Each of the four testing stations has a restrictor valve and an 
adjustable pressure regulator to control the line pressure to that desired for 
each individual ram. 

The speed and frequency of loading is de pendent on timer actuated solenoid 
valves 0 Each timer is essentially a synchronous motor, turning a shaft mounted 
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Figure 4. 5 Photograph and schematic diagram of volume change 
device. 
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Figure 4. 6 Photograph and diagram of the repetitive loading 
apparatus. 



cam, which alternately opens and closes a microswitch connected to the solenoid 
valve. By alternating motors with different speeds and gear arrangements, a Wide 
assortment of time cycles is available. The shaft mounted cam can be adjusted so 
that the microswitch remains on from two to 98 percent of the totaJ cycle time. 

Triaxial compression cells. The triaxial compression cells (Figure 4. 7) were 
designed by personnel of the Texas Transportation Institute and constructed .locally. 
They were made for 6-inch diameter by 12-inch high specimens and are conventional 
except for the loading piston arrangement. The piston is one-inch diameter hardened 
stainless steel ahd it travels through two linear ball bushings. The ball bushings 
minimize friction and insure full loading on the specimen. 

Protective membranes. The membranes used in this research were 1/32-inch 
thick butyl rubber. These were substituted for the standard latex membranes when 
it was discovered that practically all of the commercial latex membranes had very 
small holes in. them, were very easily. punctured .and were exceedingly permeable to 
air. 

M.~~~~!JM_.I?..YEtem. Transducers for measuring vertical load were attached directly 
to the pistons of the hydraulic rams. They were hollow cylinders of seamless 
aluminum tubing onto which wer.e ~ounted four temp~rature compensated strain gages 
in a full bridge arrangement (·see Figure 4. 8). 

The vertical deflection transducers were composed of two cantilever beryllium 
copper blades with strain gages mounted so that a full bridge was again formed (see 
Figure 4 . 8 ) . 

Two Model 82-6 Honeywell Bridge Balance units were used to regulate voltage 
and balance the transducers, and a 24-channel Model 1508 Honeywell Visicorder 
oscillograph (Figure 4. 9) recorded transducer output. 

Measurements from the load-deformation recordings were used to calculate 
dynamic stress-strain curves. To facilitate computations, an I. B. M. 7094 
computer was used to calculate and plot the stress-strain data. 

Repetitive Testing Procedures 

While the specimen was being observed for possible leaks, a dummy cell 
consisting of a piece of steel pipe was placed in the triaxial station to be used. 
The dummy cell was loaded repetitively and whatever adjustments deemed necessary 
to gain the desired magnitude and shape of loading curve were made. Loading was 
allowed to continue until the system "warmed up" and until no significant variation 
was noticed in the magnitude or shape of the loading curve. At this point, the triaxial 
cell containing the specimen was quickly inserted in the station, the initial height 
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FIGURE 4. 7 Picture and schematic diagram of specimen volume 
change apparatus. 



Figure 4. 8 Close-up of head of triaxial cell showing mounting 
arrangement of dial indicator, force and deformation 
transducers. Note position of safety switch on piston 
clamp guide. 



Figure 4. 9 Honeywell visicorder and related instrumentation. 



of sample and zero readings on the volume change device were recorded and repetitive 
loading was begun. 

The load was applied to the specimen for 0. 2 second and released for 1. 8 
seconds. This loading cycle had been found to be one of the more destructive ( 19) 1 

and simulates traffic moving at approximately 3 0 to 35 miles per hour. A typical 
load and deflection pattern is shown in Figure 4. 10. Specimen height and volume 
change measurements were recorded throughout the life of the specimen at 1/ 5 I l 01 
20 1 40 1 80 1 160 1 325 1 650 1 1300 1 2500 1 5000 1 10 1 000repetitions, etc. to plot 
progressive failure. Knowing the volume of the specimen/ its unit weight and degree 
of saturation could be plotted throughout its life. Dynamic load and deformation 
recordings were made starting at 32 5 repetitions. In general the recordings were 
continued until arbitrary failure ( 5 percent strain) occurred or until it became · 
evident that failure would not occur within a reasonable length of time (three weeks 
to one month). 

At the conclusion of regular testing I the confining pressure was increased ·from 
its initial value to 3 0 psi and a load-deformation recording was made. The radial 
stress was then reduced in 5 psi decrements 1 and the recording process repeated 
after a stabilization period of approximately 50 repetitions. 

After completion of the test I the cell was removed from its station/ drained 
and disassembled. The sample was weighed, photographed 1 broken into approximately 
the original 2-inch layers and dried. 

The Parametric Study 

The deformation equations developed in Chapter III contain several parameters 
of the material which affect the shape of the stress-strain curves. To facilitate 

- c-hcosi-nga range-of values for theseparameters 1 four fragments of the research mater­
ial were cored. One core was dark chert/ another light chert/ another nearly pure 
quartzite and the fourth a piece of hard limestone/ indicating the variable na.ture of 
the material. The dynamic modulus of elasticity and Poisson's :ratio:, j determined soni­
cally/ varied from 9.8x1Q6 psi to 17.1x106 psi and from 0.05 to 0.24/ respectively. 
Additional information/ shown in Table IV .1 1 was obtained from various publications. 
From these sources it was indicated that the modulus of elasticity co.uld be expected 
to be within 5 to 2 0 million psi, Po is son's ratio within 0. 1 to 0. 3 and the coefficient 
of friction between 0. I and 0. 5. Factorial arrangements encompassing these ranges 
were developed for each of the three arrays considered (see, Figures 4. ll through 4. 13). 
For each box tn the factorials I stress-strain curves were computed for confining 
pressures of 5, 10/ 20 and 30 psi. 

-48-



···-··- l - ' -- I 

""' 
DEFLECTION =)2 T 

' '~ 
-

-+-' - t 

- 0.2SECOND ..... 

' 
~ 

/ ~~ 1\ ---- -- -
~- LOAD 

/ ··---------- ·------'-- f-.--,--~ v· ~-------~ ----~--~----- . 

~ TIME ~ 
~ ---------------·- ----------·- ------· --~-----·~- -- ·--- -···· ---... ---~ 

-

-- --
---- ---- ----

- U• 

Figure 4.10 A typical load-deflection oscillograph. 



TABLE IV. 1 

Summary of Reported Values for Modulus of Elasticity I 
Poisson's Ratio I and Coefficient of Friction of Rocks 
and Minerals . 

Reference 

Reynolds ( 21) 

Willis and 

Rock 

Quartzite 
Limestone 
Granite 
sandstone 

De Reus ( 22) Chert 
Quartzite 
Sandstone 
Basalt 
Granite 
Limestone 
Dolomite 

Hirsch ( 23) Calcareous-

4.5-8.3 
4.8-5.4 
4.5-8.3 
4.8-5.4 

3.1-18.0 
3.8-10.2 
2.9- 4.0 

11.4-13.9 
7.6- 9.8 
5.1-12.6 
2.5-10.0 

Siliceous Gravel 8. 6 
. Crushed Limestone 4. 5 

Mantell ( 2 4) 

Horn and 
Deere ( 25) 

Balmer (28) 

Flint 5. 6 
Sandstone 5. 2 
Moline Limestone 4. 5 
Soft Limestone 3. 7 

Clear Quartz 
Rose Quartz 
Feldspar 
Calcite 

Limestone 
chalcedonic 

Limestone 
med. grained 

Subgraywacke 
ined. grained 

Schist 

8.0-8.8 

4.9-5.2 

1.7-1.9 
9.4-9.9 

0.16-0.23 
0.15-0.24 
0. 17 

0.18-0.22 

0.17.:.0.23 

0.03-0.09 
0.15-0.20 

Oven 
Dry 

0. 11 
.0. 13 
0. 11 
0. 14 

F 
Satu­
rated 

0.42 
0.45 
0. 76 
o. 68 



E 0'"3 = 5, 10, 20, and 30 psi 
r· I.L x10 6 

5 7 8 9 10 13 

0. 10 X X X X X X 
0.15 X X X X X X 

0.05 0.20 X X X X X X 
0.25 X X X X X X 
0.30 X X X X X X 

o. 10 X X X X X X 
0.15 X X X X X X 

0.10 0.20 X X X X X X 
0.25 X X X X X X 
0.30 X X X X X X 

0.10 X X X X X X 
0.15 X X X X X X 

0.15 0.20 X X X X X X 
0.25 X X X X X X 
0.30 X X X X X X 

0. 10 X X X X X X 
0.15 X X X X X X 

0.20 0.20 X X X X X X 
0.25 X X X X X X 
0.30 X X X X X X 

Figure 4. 11 The factorial arrangement for the loose 
planar array. 



Ex 0'3 = 5, 10, 20 and 30 psi 
106 F ,., 

5 8 8.5 13 15 20 

0.2 X X X X X X 

0.2 
0.3 X .X X X X X 
0.4 X X X X X X 
0.5 X X X X X X 

0.2 X X X X X X 
0.3 X X X X X X 

0.3 0.4 X X X X X X 
0.5 X X X X X X 

0.2 X X X X X X 

0.4 0.3 X ·X X X X X 
0.4 X X X X X X 
0.5 X X X X X X 

0.2 X X X X X X 
0.3 X X X X X X 

0.5 0.4 X X X X X X 
0.5 X X X X X X 

Figure 4. 12 The factorial arrangement for the 
Dense planar array. 



IJ E 0'3 = 5, 10, 20 and 3 
x106 

5 10 15 20 

0.2 X X X X 

0.2 0.4 X X X X 

0.4 0.2 X X X X 

0.4 X X X X 

Figure 4. 13 The factorial arrangement for 
the loose three dimensional 
array 

0 psi--



CHAPTER V 

DISCUSSION OF TEST RESULTS 

Results for the Loose Planar Array 

The results of the parametric study for the loose planar array were analyzed to 
ascertain the influence of the various particle parameters (Poisson's ratio, coefficient 
of friction and modulus of elasticity) on the shape and distribution of the theoretical 
stress-strain curves. Also, a comparison was made between the theoretical stress­
strain curves and actual stress-strain curves for a cherty limestone gravel subjected 
to rapid repetitive loading. It was found that the theoretical curves possessed the 
correct shape, but the effect was not as pronounced as the effect indicated by the 
actual stress-strain curves. This is illustrated in Figure 5. 1, which shows theoretical 
stress-strain curves for the elastic constants and friction factor which best fit the 
actual stress-strain curves. 

The effect of varying E, p., F, and the confining pressure 1 is shown in Figures 
5. 2 through 5. 5. It was found that: 

A) As E increased there was a significant increase in the secant modulus. 
Changing E had no effect on the position of the inflection point (Figure 5. 2). 

B) As 1J. increased, the secant modulus increased slightly, and the coordinates 
of the inflection point increased significantly (Figure 5. 3). 

C) As F increased the secant modulus increased. It also influenced the 
position on the curve at which inflection occurred, i.e., as F increased 
the stress at which inflection occurred also increased. 

- - ---o-)---A-s the confining pressure increased the secant modulus increased (Figure 5. 5). 

In summary it can be said that the position of the inflection point was affected by 
p. and F while the secant modulus was affected to some extent by all parameters. 

Results for the Dense Planar Array 

The parametric study showed that the theoretical stress-strain curves did not 
exhibit a reverse S-shape ( see Figure 5. 6). Also the range of strain values was 
not great enough to compare well with experimental results. 

1In the one dimensional compression case, PO is the initial confining pressure 
and the change in vertical stress is termed delta sigma. 
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It was believed that the stress-strain curves of the same soil compacted to a 
denser state would compare more favorably. However I this proved not to be the 
case~ the theoretical stress-strain curves still did not compare well with the actual 
curves (see Figure 5. 7). These results indicated that the dense planar array was 
too rigid to use in soil simulation studies. 

It was also observed that~ 

(A) Increasing the modulus of elasticity while holding all other 
parameters constant increased the secant modulus, but the 
general shape of the curve did not change (see Figure 5. 8) o 

(B) Increasing F while the other factors remained constant had 
little effect on the shape of the stress-strain curves produced 
from the dense array (see Figure 5. 9) I but it did increase the· 
stress at which failure occurred. 

(C) Increasing J.L or Poisson's ratio had less effect on the stress­
strain curves than any of the other parameters. The slope of 

·the stress-strain curves was increased slightly (Figure 5. 10). 

(D) Increasing the confining pressure resulted in an increase in 
the secant modulus.· (Figures 5. 6 and 5. 7) o 

To summarize: The modulus of elasticity I Poisson's ratio, and coefficient 
of friction had little effect on the shape of the stress-strain curves; however I 
increasing the coefficient of friction markedly increased the stress at which 
failure occurred. An increase in confining pressure was accompanied by an 
increase in the secant modulus. 

Results for the Three-Dimensional Array 
Subjected to Triaxial Compress.ion 

The results of the parametric study were analyzed with the thought of comparing 
them to past resea,rch concerning deformation hypotheses for granular soils. Figure 
5. 11 shows the theoretical curves determined by triaxial compression conditions 
which best compare with the experimental curyes used by Bratton ( 10} and Lynch 
( 11). It may be noted that the spread of strain is less than that obtained from the 
actual soiL This indicates the actual soil is not as stable as the array of equiradii 
spheres up to the point where sliding begins to occur 0 This is reasonable since the 
uniform contact area utilized in the theoretical array would be much more stable than 
that found in the random packing of non-uniform particles of actual soils (see Figure 
5o 12). Many of the contact points in the actual soil are more likely to slide than 
those found in the theoretical array I thus indicating one other possibility for getting 
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Figure 5. 9 The effect of varying F on the shape of stress­
strain curves (two dimensional dense array 
under triaxial compression). 
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Figure 5. 12 Actual soil compared with a theoretical array. 



more strain. Also, the theoretical curves are based on smooth contact surfaces, 
thus modilizing complete friction, while according to Bowden and Tabor ( 33), 
the actual soil does not meet this assumption. 

Failure of Three Dimensional Loose Array 
Under Triaxial Loading 

It is seen from Figure 5. 11 that under low confining pressures, sliding begins 
almost immediately in the spherical array. Once sliding occurs between the spheres, the 
deformation equations become indeterminate and there is no way of examining the 
stress-strain properties of the array subjected to greater loads. Thereafter, the 
strain is strictly a function of the changing geometry of the sphere array. The actual 
soil, on the other hand, was allowed to continue well past the point where sliding 
occurred, and a reorientation of particles allowed further increases in stress and strain. 

There is a definite need for some type of computer technique that can predict the 
location of each sphere at any particular instant of time. With this available, strains 
which occur due to sliding of particles could be predicted and incorporated in subse­
quent deformation equations. 

Results of Changing Parameters Under Triaxial Loading 
Conditions for the Three Dimensional Loose Array 

When Poisson's ratio was the only parameter varied, there was no appreciable 
effect on the shape or load carrying capacity of the stress-strain curves as 
exemplified in Figure 5 .13. 

When F was increased, thena) the load carrying capacity of the array increased, 
_and--bJ-the-secant modulus increased, i.e., the slope of the stress-strain curve 
became steeper (see Figure 5.14). 

When the modulus of elasticity of the spheres was increased a) the tangent 
modulus increased, and b) the load carrying capacity of the array increased (see 
Figure 5 .15 ) . 

As the confining pressure was increased then a) the load carrying capacity of 
the array increased; b) the secant modulus increased considerably (see Figure 5. 16) • 

. It is interesting to note the behavior of the strain ratio, ~e 3/~E'1, shown in 
Table V. 1. In every case the values are negative. They increase algebraically at 
the beginning of testing, but at some point the trend is reversed and they begin to 
decrease for the remainder of the test, indicating that the array is expanding radially. 
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TABLE V.1 

Strain Ratio Results for Triaxial Conditions 

F E SIGMA 3 

0.2 0.2 10x106psi 30 psi 

DELTA DELTA STRAIN 
SIGMA 1 EPSILON 1 RATIO 

(psi) (in/in) 

2.00 0.1816x1o-4 -0.0357 

4.00 0.2435x1o-4 -0. 0231 

6.00 0.3701x1o-4 -0.0194 

8.00 0.5008x1o-4 -0.0182 

10.00 0.6370x1o-4 -0.0181 

. 12.00 0. 7 807x1 o-4 -0.0190 

14.00 0.9356x1o-4 -0.0211 
---------

16.00 0.1111x1o- 3 -0.0259 

18.00 0.1356x1o-3 -0.0496 



This bulging effect was actually observed in the soil specimens. The author has 
observed that Ottawa sand specimens which are initially in a rather loose state, 
bulge during triaxial testing. 

In summary, the load carrying capacity of the array was affected little by 
changes in Poisson's ratio and the modulus of elasticity of the particles, but was 
notably influ:enced by the coefficient of friction and the radial stress. This is in 
agreement with the behavior of the dense planar array~ 

The strain, on the other hand, was affected by the modulus of elasticity, the 
coefficient of friction and the confining pressure. Poisson's ratio had no apparent 
effect on strain. 

. . 

Comparison of Triaxial Compression Loading of the 
Three Dimensional Array with Deformation Hypotheses 

When the results of the triaxial compression loading were compared with the 
deformation hypothesis described in Chapter I, it was noted that the curves exhibited 
a remarkable resemblance as far as shape was concerned to Dunlap's data from Texas 
triaxial tests (Figure 5·. 17). However, the magnitude of the theoretical modulus of 
deformation was ten times as great as those of actual soils (compare Figure 5.18 
and 1. 1), indicating a, much greater stiffness than actually occ'urr.ed in the test 
specimens. This is probably due to assumption of perfect contacts between spheres 
which is unrealistic in actual soils. The data for the curve in Figure 5. 18 are 
shown in Table V. 2. 

Results of the One DimensionaLCompression of the .. 
Three Dimensional Array 

Unlike the triaxial loading, the one dimensional compression conditions did not 
produce early failures sihce slide could not generaliy occur for the range of parameters 
studied. The slope of the curves continued to increase throughout their entirety. 
Therefore, instead of automatically terminating the calculations when slide occurred-­
as in the triaxial loading condition -- the one dimensional compression curves were 
stopped when the vertical stress reached 100 psi. 

When compared to the actual stress-strain curves used for evaluating the loose 
planar array (Figure 5. 1) and the dense planar array (Figure 5. 6), the one dimensional 
compression of the three dimensional array did not produce a good fit (Figure 5. 19). 
The range of strain was too small, and the shape of the curves did not resemble those 
of the actual soil. In general, the slopes of the:stress-strain curves were concave to 
the stress axis and much too steep. 
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TABLE V.. 2 

Results of M
2 

Calculations for Triaxial Compression Qonditions 

fJ = 0. 2 F = 0.2 E = Sx106 

0'1 - 0'3 0' 0'1 M 
3 z 

'o. oooo6 2.8 5 7.8 130,000 

0.00006 4.05 10 14.05 234,167 

0.00006 5.30 20 25.30 421,667 

0.00006 6.10 30 36.10 601,667 



One dimensional compression results vvere also compared td stress-strain curves 
of specimens of material other than those used in evaluating the other arrays (see 
Figures 5. 20, through 5. 23). These specimens had been subjected to several 
hundred thousand repetiti6ns of load before the stress-strain curves were determined" 
[n every case, the range of strains for the theoretical curves was too small, and they 
lacked the general shape of the experimental curves. The modulus of deformation 
was very high for the theoretical case, The reason for this becomes readily 
apparent upon examining the stress ratio, L a 3/t::. a 1 , (see Table V. 3). It increased 
up to a point and then remained constant thereafter. This indicated that the radial 
stress continued to increase as the vertical stress increased, thus causing the 
secant modulus to increase. 

The high stiffness as well as the small range of strain values may be due to 
larger actual areas of contact between perfect equiradii spheres than between actual 
partiCles. If random size's of spheres had been u'sed, the contact areas would have 
varied from very small to quite large, and it may have been possible to gain a better 
fitting model. 

There was an initial high tangent modulus which decreased after the first load 
increment and thereafter increased (Figure 5.25). This indicates that there was a 
slight reverseS-shaped curvature near the origin. It was not as evident in the three 
dimensional array as it was in Bratton's ( 10) two dimensional array, and the various 
parameters seemed to have little or no effect on the location of the inflection point. 

Effect of Parameter Variation for 
Three Dimensional Array Subjected 
to One Dimensional Compression 

The one dimensional compression calculations were made for the same parameters 
as in the triaxial cc;>mpression condition, and the following observations were made: 

A) An increase in Poisson's ratio had little effect on the shape of the 
stress-strain curve; however, it did increase the tangent modulus 
by a small amount (see Figure 5.25). 

~) As the coefficient of friction increased, the shape of the curve did 
not change appreciably (see Figure 5. 26). 

C) As the modulus of elasticity increased the secant modulus increased 
markedly (see Figure 5. 27), 

D) As the initial confining pressure increased, the tangent modulus 
increased, but only a relatively small amount (see Figure 5.28). 
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TABLE V. 3 

Stress Ratio for One Dimensiona,l Compression Conditions 

J.L F E 0'3 

0.2 0.2 5xlo6 psi 5. 0 psi 

DELTA DELTA STRESS 
SIGMA 1 EPSILON 1 RATIO 
(psi) (in/in) 

5.32 0.8637x1o-4 0.4929 

9.15 0.1463xJ.o-3 0.5196 

12. 88 0.2015x1o-3 0.5448 

16.50 0.2526xlo-3 0.5730 

19.97 o.2984x:1o-3 0.6237 
-----------

23.37 0.3385x1o-3 - 0.6237 

27.76 0.3770x1o-3 0.6237 

30.15 0.4142xlo-3 0.6237 

33.54 0.4502xlo-3 0.6237 

50.50 0.6l65xlo-3 0.6237 

80.46 0.8735xlo-3 0.6237 



Comparison of One Dimensional Compression of the 
Three Dimensional Array With Variable Confining Pressure 

Tests 

The one dimensional compression calculations produced curves which resemble 
experimental curves reported by O'Brien (2{)) for variable confining pressure 
triaxial tests. A constant ratio of a3 to a 1 was maintained in these tests. Figures 
5.29, 5.30 and 5.31 show theoretical curves compared to O'Brien's experimental 
curves. Although the strain depicted by the theoretical stress-strain curves was 
of the correct order of magnitude, in almost every case the experimental curves 
were not as steep as the theoretical ones. This may be due to the extremely slow 
rate of strain which o• Brien used ( 0. 005 inches per minute). If facilities had 
permitted rapid loading, the experimental curves would undoubtedly have been much 
steeper, as indicated by Casagrande (31) and others. 

Effects of Pore Pressures 

The particulate theory as now set up does not consider pore pressures. However, 
these pressures do exist in actual soils subjected to rapid repetitive loading. The 
first few load repetitions cause considerable permanent deformation in a soil specimen, 
and during these repetitions -- since the permeability of the soil is relatively low -­
the pore pressures may become quite high. The build up of positive pore pressures 
will cause the slope of the dynamic stress-strain curve to decrease. As the number 
of stress repetitions increase, the particles slide past each other into more favorable 
positions to carry the stress while water and air is extruded from the specimen. At 
times during the life of a specimen, the total and effective stresses may be nearly 
equal. 

___Bi_s_hop (29, 30) proposed the following relationship for the effective stress in 
soils: 

a = 0' - Ua + X ( ua - ~ ) 

where: a = effective stress 

a = total applied stress 

u = pore air pressure 
a 

11w = pore water pressure 

Equation ( 5. 1) 

X = a parameter which depends on the degree of 
saturation (Figure 5. 32), cycle of wetting 
and drying or stress change. 
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As the number of load repetitions on a specimen increases, the degree of 
saturation I and thus X I also increase. Depending on the corresponding changes 
in the pore air and water pressures 1 and effective stress -- which influences the 
shape of the stress-strain curve -- will either increase or decrease: if the 
effective stress decreases, the stress-strain curve will become flatter. 

Figure 5. 33 shows stress-strain curves of a typical repetitive test specimen 
at different numbers of repetitions. At 350 repetitions, the combination of X, Ua 
and uw apparently produces a lower effective stress than at 33,300 or 246,700 
repetitions. And at 246 1 7 00 repetitions, and the effective stress appears to be generally 
less than it is at 33,300 repetitions. 

The change in the degree of densification with the number of repetitions will 
also influence the shape of the stress-strain curves. 

Thus! until dynamic pore pressures can be measured in repetitively loaded 
specimens little can be said about their influence except they do affect the shape 
of the stress-strain curves. 

Effect of Degradation on the Frictional Resistance of the Soil 

Dunlap ( 15) reported that degradation of the test material und~r repetitive loading 
was so insignificant that a detailed analysis was not required. However I the minute 
amount of degradation which occurred probably took place at the points of contact 
between particles. This could influence the frictional resistance between particles 
and cause the stress-strain characteristics to change with the number of repetitions. 

~-~-- - To ascertain whether degradation influences the shape of the stress-strain curves, 
it would be necessary to perform a detailed study which would incorporate the measure­
ment of degradation and dynamic pore pressures within the specimen to actually 
differentiate between the effect of wear on contact surfaces and the influence of 
pore pressure. Also, the original gradation would need to be more closely controlled. 
Until this time I the variation in frictional resistance with repetitions can only be 
assumed. 

Elastic Strain in the Triaxial Cell 

There is a certain amount of error induced into the experimental data as a result 
of elastic deformation in the triaxial cell. This deformation was determined under 
static load conditions substituting a concrete cylinder for a specimen. Although 
corrections were made, this static deformation may not be the same as that induced 
by dynamic loads. Also, the deformation in the cell using the concrete cylinder may not 
be the same as if soil were used. 
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To improve the accuracy of the strain calculations, it would be necessary to 
measure deformations within the central portion of the specimens. Facilities 
are now available for making these measurements. There are optical tracking 
devices which will lock onto any Optical discontinuity in view and indicate the 
relative pisition of it by means of voltage output. There is a similar device which 
measures linear movement by measuring the amount of light reflected from a light 
source of known intensity. The use of in,struments such as these can greatly enhance 
the probability of correlating theoretical with actual results. 

-97-



CHAPTER IV 

CONCLUSIONS 

A the6retical analysis was conducted of the strains occurring in three ;ciifferent 
arrays. F~rst I a. two dimensional loose array was subjected to qne .dimensional­
compression; second, a twO dimensional den,se ar;r:ay WqS S1,.1bjected,._to.triaxial 
compression; and third, a three dimensional loose array was subjected to both triaxial 
and one dimensional compression conditions. The deformation equations for each of 
these arrays were developed, and a parametric study conducted for each of the above 
states. Finally, the computed theoretical stress-strain curves were compared to 
actual stress-strain curves of a cherty limestone gravel. 

The following conclusions can be drawn from the loose planar array subjected 
to triaxial compression conditions: 

1. A planar array of elastic spheres produces stress-strain curves 
which resemble granular materials subjected to rapid repetitive 
loading, though the effect of increasing the confining pres sure 
was less than that observed for real soils. 

2. To gain close agreement between theoretical and actual results, 
equations must be developed to allow slide and counter slide 
between particles. 

When the dense planar array was considered the conclusions below were 
drawn: 

l. The stress-strain curves, within the range of E, IJ. and F considered, did 
not have the reverse S-shape typically observed for real soils. 

2. The stress-strain curves were always concave to the strain axis. 

3. Increasing the coefficient of friction markedly increased the stress 
at which failure (sliding) occurred. 

4. As for the planar array, the effect of increasing the confining pressure 
resembled the effect observed for real soils, but was less pronounced. 

5. The stress-strain curves for the loose planar array subjected to one 
dimensional compression showed greater similarity to the actual curves .. 
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The following conclusions can be drawn from the triaxial compression study of a 
three dimensional loose array of equiradii spheres: 

. . 

l. rr:here was nota close fitbetweentheoretical stress-stra.in curves and 
actual stress-strain curves. 

2. The computed triaxial compression curves, at lea,st within .the ranges of 
parameters studied, did not have tl~e rever:se S-shape typical of actual 
stress-:-strcdn curves. 

3. The triaxial compression equations become indeterminate when the 
tangential stress equals the product of the normal stress and the coefficient 
of friction. Thereafter, the strain is strictly a function of the changing 
geometry of the array and cannot be explained with the present theory. 

4. The three dimensional theory does predict the fan-shaped array typical of 
actual stress-strain curves, but to a lesser degree than usually observed. 

5. The theoretical modulus of deformation versus radial stress curves 
resemble those obtained experimentally by Dunlap ( 27), but the theoretical 
modulus is too high by about one order of magnitude. 

The conclusions below can be drawn from the analysis of the one dimensional 
compression conditions for the three dimensional loose array: 

l. The stress-strain curves are generally concave to the stress axis. 
There is a very slight reverse curvature near the origin which is not 
noticeable on small scale representations of the stress-strain curves, 

2. The theoretical curves resemble curves from variable confining pressure 
tests reported by O'Brien (20). 

3. The secant moduli of the theoretical curves are too high to allow 
comparison with the family of experimental curves. 

4. The one dimensional compression theory predicts the typical fan-shaped 
array of stress-strain curves observed in actual soils, but the range of 
strains in smaller than those observed in experimental soils. 

5. The three dimensional model does not appear to give as good a correlation 
with experimenta 1 data as the loose planar array. 
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The following general comments are relevant: 

1. It will be necessary to know the variations in pore pressures before 
changes in the coefficient of friction with increased stressing can be 
assessed. 

2. The particulate theory seems to give results more consistent with 
experimental conditions than elastic theory applied to a continuous 
medium, but more study is needed before close correlations can be made 
with actual stress-strain curves. 
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CHAPTER VII 

RECOMMENDATIONS 

This research was exploratory in nature. Thus I relatively simple arrays of 
equiradii elastic spheres were chosen for the analyses. A number of refinements 
can be made which may enhance the chances of better agreement between theory 
and experimental results. A few suggestions for future consideration are as 
follows: 

1. Vary the diameter of the spheres 1 calculate the number of contact 
points and relate these to experimental conditions. 

2. Perform variable confining pressure tests on specimens of equiradii 
spheres with known elastic constants and relate these to theory. 

3. Evaluate the effect of non-spherical particles in the array. 

4. Develop equations or computer techniques which will permit 
computation of strains after sliding of the particles begins. 

5. Determine the effects of one dimensional compression on a 
dense planar array. 

6. Determine the effects of unloading and reloading on a three dimensional 
loose array. 

7. Determine the actual frictional resistance in an experimental soil and 
compare these to values of solid block movement. 
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APPENDIX A 

Basis for the Assumption F = 0 
0 

The dense planar array (Figure A.1) is subjected to an increasing vertical pressure 
and constant lateral pressure. The resultant move_ment of sphere 4 is vertically down­
ward with relation to sphere 1. The centers of spheres 4 and 2, and 4 and 3 approach 
each other; simultaneously sphere 4 moves downward with respect to sphere centers 2 
and 3. This down and outward forcing motion of 4 causes 2 and 3 to move apart resulting 
in a zero contact force between them. The assumption F 

0 
= 0 is valid as long as these 

loading conditions occur. 

Since the hydrostatic stress state exists. initially in triaxial testing I the force 
relationship at F 

0 
must also be considered (Figure 3. 2). As the hydrostatic stress is 

incremented, 4 moves to the left with respect to 2 and right with respect to 3. Since 
2 and 3 are in contact under these loading conditions some distortion on the contact 
plane does occur and F 0 f. 0. Further, sliding develops on the contact face between 4 
and 2 and 4 and 3. IfF 

0 
is assumed= 0, more tangential force is developed between 

4 and 2 and 4 and 3 than can be mobilized; therefore, -T > FN occurs. 

Without: the restraint provided by F 0 I failure would occur and the array collapse. 
Therefore, it is additionally assumed the excess tangential force is carried by F

0 
and 

the distortion in:the array is that which would be produced by the forces mobilized on 
the faces between 4 and 2 and 4 and 3. 

No further investigation of the strain between 2 and 3 was attempted. By ignoring 
the existance of F 0 for this analysis, it was tacitly assumed that the relative approach 

----------ef--2- and 3 due to F 0 would equal the horizontal component of the deformation between 
:;> 4 and 2 and 4 and 3. 
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