TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.				
I. Report No.	2. Government Accession No.	3. Recipient's Catalog No.			
TX-90/947-2					
4. Title and Subtitle	5. Report Date				
HOW TO READ THE OUTPUT T	E <u>May 1990</u>				
NETWORK ASSIGNMENT MODELS	6. Performing Organization Code				
7 Author's:	8. Performing Organization Report No.				
Duk M. Chang, Jim Gattis	, and George B. Dresser	Research Report 947-2			
9. Performing Organization Name and Addres	S 3	10. Work Unit No.			
Texas Transportation Inst	titute				
The Texas A&M University		11. Contract or Grant No.			
College Station, Texas 7	7843	2-10-88-947			
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered Interim			
Texas State Department of	F Highways and Public	September 1988-			
Transportation		December 1989			
Transportation Planning I	Division	14. Sponsoring Agency Code			
P. 0. Box 5051, Austin,	Texas 78763				
15 Supplementary Notes					
Research performed for th	e State of Texas.				
Research Study Title: Te		age.			
16. Abstract					
The Texas Travel Demand H distribute, and assign roadwa is a collection of computer networks; it is one part of features are available in the	y trips. The Texas Large I programs designed to ass the Texas Travel Deman	Network Assignment Models ign traffic to transportation d Package. Several special			
to the usual programs regard					
such as self-balancing assi					
assignment, corridor intercep					
and subarea focusing assignn		links, and subarea windowing			
and subarca rocusing assigning	ient teeninques.				
Since the Texas Large Netw	vork Assignment Models	can be used to accomplish			
various jobs, the Models outp					
these various tables and tells					
discussion of the objectives of					
of evaluation assignment out	but are discussed. The rer	ort then lists the designators			
and names of the output tab	les Finally the report of	ontains a detailed discussion			
of the various tables including the following sequence: purpose, how to read, comments, how to use, and sample output tables.					
comments non to abo, and o					
17. Key Words					
Texas Travel Demand Packa	ige No rest	rictions. This document is			
Texas Large Network Assig		le to the public through the			
Traffic Assignment					
-		ield, Virginia 22161			
19. Security Classif. (of this report)	20. Security Classif. (of this pag	a) 21. No. of Pages 22. Price			

nclassified

Unclassified

·

HOW TO READ THE OUTPUT TABLES OF THE TEXAS LARGE NETWORK ASSIGNMENT MODELS

by

Duk M. Chang Assistant Research Planner

Jim Gattis Assistant Research Engineer

and

George B. Dresser Study Supervisor

Texas Travel Demand Package

Research Report Number 947-2

Research Study Number 2-10-88-947

Sponsored by

Texas State Department of Highways and Public Transportation

Texas Transportation Institute The Texas A&M University System College Station, Texas

- . .

.

METRIC (SI*) CONVERSION FACTORS

	APPROXIMATE		ONS TO SI UNITS			APPROXIMATI		INS TO SI UNITS	\$
Symbol	When You Know	Multiply By	To Find	Symbol	Symt	ol When You Know	Multiply By	To Find	Symbo
		LENGTH)		= =		LENGTH		
in ft yđ mi	inches feet yards miles	2.54 0.3048 0.914 1.61	millimetres metres metres kilometres	mm m m km		metres metres	0.039 3.28 1.09 0.621	inches feet yards miles	in ft yd mi
							AREA		
in² ft² yd²	square inches square feet square yards	AREA 645.2 0.0929 0.836	millimetres squared metres squared metres squared	mm² m² m²	1 1 mn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 metres squared kilometres squared 	10.764 od 0.39	square inches square feet square miles acres	in² ft² mi² ac
mi ^z ac	square miles acres	2.59 0.395	kilometres squared hectares	km² ha		1	MASS (weig	ht)	
oz Ib	ounces pounds	MASS (weig 28.35 0.454	g ht) grams kilograms	g kg	9 111111111111111111111111111111111111	kilograms	0.0353 2.205 0 kg) 1.103	ounces pounds short tons	oz Ib T
T fi oz	short tons (2000	29.57	megagrams	Mg mL		litres ³ metres cubed	0.034 0.264 35.315 1.308	fluid ounces gallons cubic feet cubic yards	fl oz gal ft³ yd³
gal ft ^a yd ^a	galions cubic feet cubic yards	3.785 0.0328 0.0765	litres inetres cubed metres cubed	L m ^a		TEM	PERATURE	(exact)	
	olumes greater that				······································	Celsius temperature	9/5 (then add 32)	Fahrenheit temperature	۴
	TEM	PERATURE	e (exact)			°F 32 40 0 14 4020 0	40 80 124 20 40 37	60 80 100	
°F	Fahrenheit :	5/9 (after subtracting 32	Celsius) temperature	°C		•C •C • • factors conform to th		<u>℃</u>	A.

* Si is the symbol for the international System of Measurements

. . •

ABSTRACT

The Texas Travel Demand Package is a series of computer programs to generate, distribute, and assign roadway trips. The Texas Large Network Assignment Models is a collection of computer programs designed to assign traffic to transportation networks; it is one part of the Texas Travel Demand Package. Several special features are available in the Texas Large Network Assignment Models in addition to the usual programs regarding the assignment of traffic to minimum time paths, such as self-balancing assignment, capacity-restraint assignment, incremental assignment, corridor intercepts, travel routes, selected links, and subarea windowing and subarea focusing assignment techniques.

Since the Texas Large Network Assignment Models can be used to accomplish various jobs, the Models output a number of different tables. This writeup describes these various tables and tells how to read them.

This report begins with a general discussion of the objectives of evaluating a traffic assignment output. Various steps of evaluation assignment output are discussed. The report then lists the designators and names of the output tables. Finally, the report contains a detailed discussion of the various tables including the following sequence: purpose, how to read, comments, how to use, and sample output tables.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration or the State Department of Highways and Public Transportation. This report does not constitute a standard, specification, or regulation.

. .

TABLE OF CONTENTS

Introduction	1
Texas Large Network Assignment Models	1
Assignment Evaluation Objectives	2
Analysis Tools	3
Using Regressions	4
Assignment Evaluation Steps	7
Listing of Tables	9
Identification Record Sequence	13
T1(1): Tree Number Table	15
A1(1): Link Volume	17
X3(1): Jurisdictional/Functional Cross Classification	
of Assigned Volumes - VMI	19
X4(1): Jurisdictional/Functional Cross Classification	
of Assigned Volumes - VHR	21
X5(1): Jurisdictional/Functional Cross Classification	
of Counted Volumes	23
X6(1): Jurisdictional/Functional Cross Classification	
of Link Capacities	25
C1(1): Comparison of Assigned Volumes with Counted	
Volumes	27
C4(1): Comparison of Assigned Volumes and Ground Counts	
by Facility Group	31
C5(1): Comparison of Assigned Volumes and Ground Counts	
by Volume Range	33
X1(2): Cross Classification of V/C Frequencies From	
Last Two Assignments	35
X2(2): Cross Classification of Link Capacities by	
V/C Ratio From Last Two Assignments	37
X3(2): Jurisdictional/Functional Cross Classification	
of Assigned Volumes - VMI	39
X4(2): Jurisdictional/Functional Cross Classification	
of Assigned Volumes - VHR	41
X5(2): Jurisdictional/Functional Cross Classification	
of Counted Volumes	43
X6(2): Jurisdictional/Functional Cross Classification	
of Link Capacities	45
C1(2): Comparison of Assigned Volumes with Counted	
Volumes	47
C3(2): Comparison of Assigned Volumes with Assigned	
Volumes	51
C4(2): Comparison of Assigned Volumes and Ground Counts	
by Facility Group	55
C5(2): Comparison of Assigned Volumes and Ground Counts	
by Volume Range	57
	59
A1(W): Link Volumes	61

TABLE OF CONTENTS (Continued)

.

X1(W): Cross Classification of V/C Frequencies From	
Last Two Assignments	63
X2(W): Cross Classification of Link Capacities by	~ -
V/C Ratio From Last Two Assignments	65
X3(W): Jurisdictional/Functional Cross Classification	~ ~
of Assigned Volumes - VMI	67
X4(W): Jurisdictional/Functional Cross Classification	~~
of Assigned Volumes - VHR	69
X5(W): Jurisdictional/Functional Cross Classification of Counted Volumes	71
X6(W): Jurisdictional/Functional Cross Classification	1
of Link Capacities	72
C1(W): Comparison of Assigned Volumes with Counted	15
Volumes	75
C3(W): Comparison of Assigned Volumes with Assigned	15
Volumes	79
C4(W): Comparison of Assigned Volumes and Ground Counts	
by Facility Group	83
C5(W): Comparison of Assigned Volumes and Ground Counts	
by Volume Range	85
I1: Corridor Intercept	
R1: Route Profile	89
L1: List of Volumes and Speeds for Updated Links	91
Selected Link - Cutoff Parameters	
Selected LInk - Trip Interchanges Loaded on Links	
Windowing - S1: Input External Station Links	97
Windowing - S2: Node Types Found From External	
Station Links	99
Windowing - S3: Renumbered Subarea Centroids and	
External Stations	
Windowing - S4: Trips by Number of Cordon Crossings	
Focusing - Subarea Sector Equals	105
Focusing - E1: Centroid to Sector Equivalences	~
for focusing	
Fratar - \$Sum Trip Ends (for base year) Fratar - D1: Convergence Distribution at the End	T03
of Iteration	1 1 1
Fratar - \$Sum Trip Ends (for future year)	
tracar - soum irrb Euros (for include Aeat)	113

.

INTRODUCTION

Purpose	The Texas Travel Demand Package is a series of computer programs to generate, distribute, and assign roadway trips. One part of the package, the Texas Large Network Assignment Models, outputs a number of different tables. This writeup describes these various tables and tells how to read them.
Organization	This report begins with a general discussion of the objectives of evaluating a traffic assignment output. Various steps of evaluation assignment output are discussed. The report then lists the designators and names of the output tables. Finally, the report contains a detailed discussion of the various tables including the following sequence: purpose, how to read, comments, how to use, and sample output tables.

TEXAS LARGE NETWORK ASSIGNMENT MODELS

Introduction	Traffic assignment is a technique which has been developed to aid future transportation planning in the evaluation of the transportation system and/or land-use alternatives. The Texas Large Network Assignment Models is a collection of computer programs in five load modules designed to assign traffic to transportation networks.
Features	Several special features are available in the Texas Large Network Assignment Models in addition to the usual programs regarding the assignment of traffic to minimum time paths.
	 * Self-Balancing: to improve the agreement of assigned volumes with counted volumes. * Capacity-Restraint: to produce multiple path assignments using one of two different impedance adjustments. * Incremental: to produce multiple path assignments based on link impedances for four 25 percent increments from a table look-up. * Corridor Intercepts: to obtain corridor analysis summaries. * Travel Routes: to obtain volume profile comparisons and/or plots. * Selected Links: to perform a special analysis of all traversing movements. * Subarea Windowing or Focusing: to perform a subarea analysis.

Accomplishment	The Texas Large Network Assignment Models can be used to accomplish the following:
	 Prepare a printed description of an assignment network. Revise or update an assignment network. Prepare trip records for traffic assignment. Prepare a printed description of trip interchanges. Trace any or all possible minimum paths. Prepare a printed description of any or all minimum paths. Assign traffic to an assignment network. Prepare a printed description of assigned volumes including turning
	 movements. Prepare mileage and vehicle-mile summaries by functional class and jurisdiction. Balance assigned volumes with counted volumes. Balance assigned volumes with capacities by one of two different impedance adjustment functions. Prepare corridor volume summaries. Prepare interchange reports for selected links by zone or sector. Summarize assigned volumes along travel routes. Print volume profiles along travel routes. Compare assigned volumes with previous assignments. Compare assigned volumes with link capacities. Expand interchanges using the "Fratar" technique. Sum trip generations for each zone. Add trip matrices together. Prepare a subarea network by windowing. Prepare a subarea trip matrix by windowing.
	 * Prepare a table of equals for collapsing a trip matrix for subarea focusing. * Assign traffic using a subarea focusing trip matrix.

ASSIGNMENT EVALUATION OBJECTIVES

Assignment Traffic assignment is the modeling process by which the previously generated and distributed trips are placed on the roadway network. Evaluating an assignment should consist of steps designed to assess how good the modeled assignment is.

Evaluation	Comparison of the modeled assignment volumes with counted volumes is a basis for evaluating the validity of the assignment. Unfortunately, no such comparisons can be made for future year assignments, since future year volumes are not known. However, other types of comparisons can be made to determine if future year assignments are plausible.
Sequence	The present year assignment should be found acceptable before the evaluation of the future year assignment is made.
Check Inputs	The initial steps in assignment evaluation are those of checking the input data. Although this can be a tedious task, it is likely that errors have crept into various network attribute descriptions. Unless the input is checked and corrected, the "garbage in - garbage out" problems will remain.
Check Aggregates	The modeled aggregated values, such as total miles of predicted travel against actual travel or predicted versus surveyed mean trip length, should be compared with the actual or surveyed values. If the values are similar, it does not necessarily follow that the assignment is valid. But if the comparisons are not acceptable, the assignments are suspect.
Check Parts	Make analyses of individual items for the first known current or past years, then for the projected year. These items include but are not limited to volumes across cutlines, or volume/capacity (v/c) relationships on various links.

ANALYSIS TOOLS

Certain statistical analyses can be used to compare and evaluate output assignments. These statistical tests furnish a greater degree of objectivity to the evaluation process. One such group of tests is regression analysis.

USING REGRESSIONS

D						
Purpose	Some of the trip assignment analysis tables present the results of linear regressions. These regressions are used to compare two sets of data or numerical values, and determine how well they agree.					
Objective	The simple linear regression procedure attempts to fit a straight line to a set of data points. The line is fit to minimize the deviation in the vertical or the "Y" direction between the data points and the line.					
Example	One such comparison examines the agreement of the predicted assignments with the actual counted volumes. To see how this works, examine the following example network containing four links.					
Example Data	Link 1 2 3 4 Actual count 980 1450 3360 4420 Calculated Assignment 1400 1310 3000 4500					
Calculations	Let X-values be those of the actual count, and Y-values these of the calculated assignment.					
	Link X Y X ² Y ² X*Y 1 980 1400 960,400 1,960,000 1,372,000 2 1450 1310 2,102,500 1,716,100 1,899,500 3 3360 3000 11,289,600 9,000,000 10,080,000 4 4420 4500 19,536,400 20,250,000 19,890,000 Sum 10210 10210 33,888,900 32,926,100 33,241,500					
	$\overline{\mathbf{x}} = \Sigma \mathbf{x}/\mathbf{n} = 2552.5$					
	$\overline{y} = \Sigma y/n = 2552.5$					
	$S_{xx} = \Sigma x^2 - (\Sigma x)^2 / n = 33,888,900 - 10,210^2 / 4 = 7,827,875$					
	$S_{yy} = \Sigma y^2 - (\Sigma y)^2 / n = 32,926,100 - 10,210^2 / 4 = 6,865,075$					
	$S_{xy} = \sum (x*y) - ((\sum x)*(\sum y))/n$ = 33,241,500 - (10,210*10,210)/4 = 7,180,475					
	$\beta_1 = S_{xy}/S_{xx} = 7,180,475/7,827,875 = 0.917$					
	$\beta_0 = y - \beta_1 * x = 2552.5 - 0.917 * 2552.5 = 211.9$					

 $y = \beta_0 + \beta_1 \star x$

Therefore, the regression equation is

Y = 211.9 + 0.917 X.

Analysis

The coefficient of correlation is R.

 $R = S_{xy} / (S_{xx} * S_{yy})^{0.5} = 0.9795$

The coefficient of determination is R^2 , or 0.96. An important property of the correlation coefficient is that is bounded in the range from -1 to 1. It follows that the coefficient of determination satisfies the inequalities, $0 \le R^2 \le 1$. The coefficients are very high, indicating good agreement between counted and assigned volumes.

A useful display for arranging and summarizing the results of an analysis of variance computation is the ANOVA table. Its entries are the sums of squares (SS), degrees of freedom (df), and mean squares (MS) required for the calculation of the F statistics of interest. The entries in the table are the following:

Source of Variation	Sum of Sq.(SS)	Degree of Free.(df)	Mean Squar Error(MS)	e F
Regression Residual	SS _r =S _{xy} ² /S _x SS _e =S _{yy} -SS		MS _r =SS _r /df MS _e =SS _e /df	MS₁∕MS _e
Regression Residual	6,586,618 278,457		6,586,618 139,229	47.3
Total	6,865,075	5 3		

The F-value can be evaluated to determine whether the data points do exhibit a relationship or if they have a random pattern. Using an F-distribution table with the degrees of freedom $df_1 = 1$ (degrees of freedom for the model) and $df_2 = 2$ (error degrees of freedom), for $\alpha = .10$, the critical value is 8.5. Since 47.3 > 8.5, the relation is significant and not random.

PLOT REGRESSION FUNCTION IN COMPARISON WITH DATA

ASSIGNMENT EVALUATION STEPS

Overview	These discussions are written to accompany the capacity-restraint assignment option. This method employs five iterations plus a final weighing iteration to assign traffic to the network. If the all-or-nothing method is being used, the references to iterative steps will not apply.									
	The output for iterations one through five lets one see what is happening with the assignment process. The final weighted output is the "final" output assignment.									
Table Numbering	Most of the tables are denoted with a three character system: a letter, then a number, followed by a number in parentheses. The number in parentheses refers to the particular iteration reflected in the table. Table A1(1) displays link volumes from the first iteration; Table A1(5) displays the same type of data as A1(1), but from the fifth iteration.									
Concept	The procedures for evaluating assignment output are rather subjective and relative. There are no universally accepted criteria by which one can establish black-and-white rules to judge an assignment.									
	With capacity-restraint, one should look for:									
	* Stability - does the output vary little at the final iterations?									
	* Reasonability - does the model assignment approach what is actually occurring or could be expected to occur in the future?									
Checking Input	The following tables contain input which can be checked. Check the input to insure correctness:									
	 * Identification Record Sequence * T1: Tree Number * W2: Iteration Weights Applied * Selected Link Cutoff Parameters 									

Checking Totals	Various system aggregates or total measures should be checked. The "X" series of tables present aggregated data. At the final iteration, most of the readings in X1 and X2 should be plotted on the diagonal. This indicates that the traffic assignment is relatively stable.
	 * X1: Cross Classification of V/C Frequencies from Last Two Assignments * X2: Cross Classification of Link Capacities by V/C Ratio from Last Two Assignments
	Check the totals of tables X3, X4, X5, and X6 to see if they appear reasonable for the given system.
	* X3: Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI
	* X4: Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR
	* X5: Jurisdictional/Functional Cross Classification of Counted Volumes
	* X6: Jurisdictional/Functional Cross Classification of Link Capacities
Checking Parts	 Each part of the "C" series and other tables contain discrete data items. * C1: Comparison of Assigned Volumes with Counted Volumes * C3: Comparison of Assigned Volumes with Assigned Volumes * C4: Comparison of Assigned Volumes and Ground Counts by Facility Group * C5: Comparison of Assigned Volumes and Ground Counts by Volume Range * A1: Link Volume * I1: Corridor Intercept * R1: Route Profile * L1: List of Volumes and Speeds for Updated Links
Special Options	Certain special option tables can be checked if the appropriate option is called for.
	 * S1, S2, S3, S4 series for windowing * E1: Centroid to Sector Equivalences for focusing * Fratar output tables

LISTING OF TABLES

Scope	The following tables are discussed.
	 Identification Record Sequence T1(1): Tree Number A1(1): Link Volume
First Iteration	* X3(1): Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI
	* X4(1): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR
	* X5(1): Jurisdictional/Functional Cross Classification of Counted Volumes
	* X6(1): Jurisdictional/Functional Cross Classification of Link Capacities
	 * C1(1): Comparison of Assigned Volumes with Counted Volumes * C4(1): Comparison of Assigned Volumes and Ground Counts by Facility Group
	* C5(1): Comparison of Assigned Volumes and Ground Counts by Volume Range
Second Iteration	 * X1(2): Cross Classification of V/C Frequencies from Last Two Assignments
	* X2(2): Cross Classification of Link Capacities by V/C Ratio from Last Two Assignments
	* X3(2): Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI
	* X4(2): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR
	* X5(2): Jurisdictional/Functional Cross Classification of Counted Volumes
	* X6(2): Jurisdictional/Functional Cross Classification of Link Capacities
	* C1(2): Comparison of Assigned Volumes with Counted Volumes
	 C3(2): Comparison of Assigned Volumes with Assigned Volumes C4(2): Comparison of Assigned Volumes and Ground Counts by Facility Group
	* C5(2): Comparison of Assigned Volumes and Ground Counts by Volume Range

Third Iteration	* V1(2): Cross Classification of V/C Encounting from Last The
Third Iteration	* X1(3): Cross Classification of V/C Frequencies from Last Two Assignments
	* X2(3): Cross Classification of Link Capacities by V/C Ratio from
	Last Two Assignments
	* X3(3): Jurisdictional/Functional Cross Classification of Assigned Volumes - VMI
	* X4(3): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR
	* X5(3): Jurisdictional/Functional Cross Classification of Counted Volumes
	* X6(3): Jurisdictional/Functional Cross Classification of Link Capacities
	* C1(3): Comparison of Assigned Volumes with Counted Volumes
	* C3(3): Comparison of Assigned Volumes with Assigned Volumes
	* C4(3): Comparison of Assigned Volumes and Ground Counts by Facility Group
	* C5(3): Comparison of Assigned Volumes and Ground Counts by
	Volume Range
Fourth Iteration	* X1(4): Cross Classification of V/C Frequencies from Last Two Assignments
	* X2(4): Cross Classification of Link Capacities by V/C Ratio from
	Last Two Assignments * X3(4): Jurisdictional/Functional Cross Classification of Assigned
	Volumes - VMI
	* X4(4): Jurisdictional/Functional Cross Classification of Assigned Volumes - VHR
	* X5(4): Jurisdictional/Functional Cross Classification of Counted Volumes
	* X6(4): Jurisdictional/Functional Cross Classification of Link Capacities
	* C1(4): Comparison of Assigned Volumes with Counted Volumes
	* C3(4): Comparison of Assigned Volumes with Assigned Volumes
	* C4(4): Comparison of Assigned Volumes and Ground Counts by
	Facility Group * C5(4): Comparison of Assigned Volumes and Ground Counts by
	* C5(4): Comparison of Assigned Volumes and Ground Counts by Volume Range

×***

Fifth Iteration	* X1(5): Cross Classification of V/C Frequencies from Last	Two
	Assignments * X2(5): Cross Classification of Link Capacities by V/C Ratio f	rom
	Last Two Assignments	
	* X3(5): Jurisdictional/Functional Cross Classification of Assig Volumes - VMI	gned
	* X4(5): Jurisdictional/Functional Cross Classification of Assig Volumes - VHR	gned
	* X5(5): Jurisdictional/Functional Cross Classification of Cour Volumes	nted
	* X6(5): Jurisdictional/Functional Cross Classification of I Capacities	Link
	* C1(5): Comparison of Assigned Volumes with Counted Volum	ies
	* C3(5): Comparison of Assigned Volumes with Assigned Volur	
	* C4(5): Comparison of Assigned Volumes and Ground Count Facility Group	
	* C5(5): Comparison of Assigned Volumes and Ground Count	s by
	Volume Range	-
Iteration Weights	* W2: Iteration Weights Applied	
	* A1(W):Link Volumes	*
	* X1(W):Cross Classification of V/C Frequencies from Last	Iwo
	Assignments	
	* X2(W):Cross Classification of Link Capacities by V/C Ratio f	rom
	Last Two Assignments * X3(W):Jurisdictional/Functional Cross Classification of Assig	med
	Volumes - VMI	Jucu
	* X4(W):Jurisdictional/Functional Cross Classification of Assig	med
	Volumes - VHR	,
	* X5(W):Jurisdictional/Functional Cross Classification of Cour Volumes	nted
	* X6(W):Jurisdictional/Functional Cross Classification of I Capacities	Link
	* C1(W): Comparison of Assigned Volumes with Counted Volum	nes
	* C3(W): Comparison of Assigned Volumes with Assigned Volum	
	* C4(W): Comparison of Assigned Volumes and Ground Counts	
	Facility Group	2
	* C5(W): Comparison of Assigned Volumes and Ground Counts Volume Range	s by
	* I1: Corridor Intercept	
	* R1: Route Profile	
	* L1: List of Volumes and Speeds for Updated Links	

Selected Link (optional)	 * Selected Link Cutoff Parameters * Trip Interchanges Loaded on Links
Windowing	 * S1: Input External Station Links * S2: Node Types Found from External Station Links * S3: Renumbered Subarea Centroids and External Stations * S4: Trips by Number of Cordon Crossings
Focusing	 * Subarea Sector Equals * E1: Centroid to Sector Equivalences for focusing
Fratar	 * \$Sum Trip Ends (for base year) * D1: Convergence Distribution at the End of Iteration * \$Sum Trip Ends (for future year)
Definitions	 VEHICLE MILES are calculated for each link. If a given link on half mile long has 5000 vehicles assigned to it, then there are 250 (5000 x 0.5) vehicle-miles on that link. Adding the vehicle miles of all of the network links gives a total vehicle miles. VOLUME is the number of vehicles per unit of time. If peak how data is input, then the output will be in vehicles per hour. If who day data are input, then the output will be in vehicles per day.
Turn Penalties	The user must input any desired turn penalties before the program run. There are two coding methods to input these penalties. Th penalty codes may be printed out on a page with the heading, "Th Tree Cards Have Established the Following Parameters."

IDENTIFICATION RECORD SEQUENCE

Purpose	These tables allow the analyst to review link descriptors, such as the length of the link and the assigned speed. Data are listed in a link-by-link format.
How to Read	 BACK NODE is one end of the link. FRONT NODE is the other end of the link. On any given row, more than one front node may be paired with the back node listed in the far left column of the page. SA or DR is the turn penalty code. SA(shaft-and-arrow) is the normal output. J denotes the jurisdiction or area. In practice, the jurisdiction is a group of zones, although it could include all of the zones in a particular city. DIST is the input length of the particular link. SPEED is the input speed for travel along that link. TIME is the required time to travel the particular link.
Comments	 NO CONNECTING NODE will be listed in a row for a back node which was not used. ONE-WAY will be printed for a node pair which is one-way in the opposite direction from the listed node combination.
How to Use	A review of this table will help to uncover data coding errors. The analyst should scan the data to verify the input.

•

TYLER 85-85-1 CAPACITY RESTRAINT

•

BACK	60.0UT			TIME	FRONT	N		DESCR		FRONT			DICT			FRONT					
BACK NODE	FRONT NODE SA		SPEED (MPH)		FRONT	SA		SPEED (MPH)		FRONT				SPEED (MPH)		FRONT	SA			SPEED (MPH)	
301	155 ++ (0 0.33	35.0	0.57	156	++ (0.68	30.0	1.36	200	++	5	0.97	40.0	1.46	307	 ++	5	2.08	40.0	3.12
302	NO CONNE			••••								•								4010	2.14
303	NO CONNE	CTING	NODE																		
304	157 ++ (1.07				55.0					0.22		0.24						
305	157 ++ 1			1.36			0.60		0.90				0.39	55.0	0.43				1.71		1.87
306	305 ++ (1.87			5 0.49		0.53				0.69	40.0	1.04				0.38	35.0	0.65
307	154 ++ 1			1.01			0.88		2.64				2.08		3.12				0.69		1.04
308	153 ++ (1.37			0.49		0.84				0.98	50.0	1.18	309	++	5	1.44	50.0	1.73
309 310	154 ++ 1 309 ++ 1			1.53 0.98			5 1.44 5 1.27		1.73				0.82	50.0 45.0	0.98	113		•	0.98	40.0	1.47
311	152 ++ 1			4.23			0.91	35.0	1.56				1.27	40.0	1.91				0.50	40.0	0.75
312	152 ++ 1			0.86			0.58		0.99				0.98	40.0	1.47				1.22	40.0	1.83
313	312 ++			1.83			5 0.18		0.27				0.90	40.0	1.35		••	•		40.0	
314	161 ++			1.20			0.18		0.27				1.23	55.0	1.34	315	++	6 (0.44	55.0	0.48
315	314 ++			0.48			5 0.42		0.46				0.34	35.0	0.58			-			
316	154 ++ 1			2.07	306	++ /	5 0.49	55.0	0.53	315	++	6	0.42	55.0	0.46						
317	159 ++	0 0.20	40.0	0.30			5 0.34		0.58				0.63	40.0	0.95						
318	158 ++ (0.90			1.07		2.14				0.87		1.16				1.01		1.21
319	160 ++			1.56			0.49		0.98				0.63	40.0	0.95				1.18	40.0	1.77
320	150 ++			0.87			0.67		1.15				0.90	40.0	1.35	416	++	5	1.13	40.0	1.70
321	159 ++			0.47			5 0.38		0.65				0.87		1.16					FA 4	4 94
322	150 ++			0.72			5 1.23		1.34				0.37	35.0 35.0	0.63	411	++ :	D	1.01	50.0	1.21
323 324	163 ++ NO CONNE			0.96	322	TT (5 0.37	35.0	0.63	220	ŦŦ	0	0.83	22.0	1.42						
325	162 ++			1.37	310	** /	(1 18	40.0	1.77	326	**	٨	0.70	40.0	1.05						
326	325 ++			1.05			6 0.50		0.75				0.83	40.0	1.25						
327	172 ++			1.74			\$ 0.50		0.75				0.73	45.0	0.97						
328	162 ++			1.18			5 0.83		1.25	329	++	6	0.63	40.0	0.95						
329	171 ++ 1			1.02	328	++ 1	5 0.63	40.0	0.95	330	++	6	0.54	35.0	0.93	394	++ (6	1.30	40.0	1.95
330	162 ++ 1			1.60			0.93 (1.86				0.83	35.0	1.42	329	++ ;	6	0.54	35.0	0.93
331	173 ++ (1.53			5 0.73		0.97				0.42	45.0	0.56						
332	171 ++ 1			0.30			5 0.42		0.56				0.65	45.0	0.87						
333	332 ++ (0.87			5 0.83		1.25				0.65	45.0	0.87						
334	174 ++ 1			1.30 0.63			5 0.83 5 1.41		1.25				0.42	40.0 40.0	0.63 0.38	300			0.31	50.0	0.37
335 336	334 ++ (188 ++ (0.72			5 1.41	50.0	1.69				0.83	50.0	1.00	370	TT (0.31	50.0	0.37
337	173 ++			1.01			0.57		1.14				0.83	50.0	1.00	404	++)		0.93	50.0	1.12
338	187 ++			0.30			0.70		1.05				0.65	40.0	0.98				2.06	45.0	2.75
339	188 ++ (0.65			5 0.65		0.98				0.84	40.0	1.26						211.5
340	339 ++			1.26			5 0.46		0.69				0.16	40.0	0.24	360	++ ;	6 (0.42	40.0	0.63
341	185 ++ (0 0.57	25.0	1.37	335	++ (5 0.25	40.0	0.38	340	++	6	0.46	40.0	0.69						
342	187 ++ 1	0 1.08	30.0	2.16	340	++ (5 0.16	40.0	0.24	343	++	6	0.41	40.0	0.62						
343	342 ++ (6 0.41	40.0	0.62			5 0.47		0.63				0.52	45.0	0.69						
344	191 ++ (1.68			5 0.47		0.63				1.85	50.0	2.22						
345	338 ++ (2.75			5 1.85		2.22				1.09	50.0	1.31				• •=		
346	190 ++ 1			1.01			0.60		1.20				0.37	55.0	0.40	406	++	6	0.67	55.0	0.73
347	346 ++			0.40			5 0.22		0.33			_	0.37	55.0	0.40	710			· · ·	10.0	
348	193 ++ 1			0.57			0.39		0.67				0.22	40.0	0.33	549	++	D	U.44	40.0	0.66
349	348 ++ (o U.44	40.0	0.66	320	++ (0.28	55.0	0.31	408	++	0	0.49	55.0	0.53						

T1(1): TREE NUMBER TABLE

Purpose	This table prints the tree descriptions for review. It may be easier to review the trees by plotting them as opposed to printing this list. Trees should be checked to insure that the correct routings from one zone to the next are being followed and that coding errors have not been introduced.
How to Read	 TREE NO. is the same as the number of the origin zone. DESTN NODE lists the centroid and node of the destination. ADJ NODE is the node encountered immediately before reaching the destination zone or node. TIME (MIN) is the input time to travel the link between the adjacent node and the destination zone.
How to Use	Locate the subject TREE NO., and a destination node. If coded correctly, the next to the last node encountered before reaching the destination will be listed as ADJ NODE. By repeating this process for all of the destination nodes, the complete tree will be reviewed.

TYLER 85-85-1

TABLE T1(1) TREE NO. 1

DESTN NODE	AD J NODE	TIME (MIN)	DESTN NODE	AD J NODE	TIME (MIN)	DESTN NODE	AD J NODE	TIME (MIN)	DESTN NODE	AD J NODE	TIME (MIN)	DESTN NODE	AD J NODE	TIME (MIN)
201	368	9.98	202	550	15.01	203	545	10.98	204	370	8.24	205	518	5.32
206	514	4.81	207	519	6.56	208	531	4.16	209	613	4.58	210	535	5.44
211	527	4.87	212	525	6.22	213	581	6.79	214	554	7.75	215	562	8.81
216	556	9.82	217	553	10.65	218	550	12.77	219	570	8.50	220	752	8.74
221	297	13.94	222	297	13.93	223	402	11.16	224	403	11.86	225	404	11.22
226	405	12.47	227	406	13.58	228	401	14.76	229	504	13.83	230	506	15.77
231	508	14.91	232	509	14.13	233	559	14.56	234	875	15.20	235	902	16.66
236	897	19.62	237	996	15.92	238	904	17.27	239	903	17.35	240	905	16.92
241	957	16.11	242	986	17.42	243	988	15.03	244	985	16.78	245	990	13.89
246 251	991 409	11.20	247	992	11.02	248	424	11.65	249	424	11.60	250	423	11.71
	NOT RE/	13.17	252	300 NOT REA	13.61		NOT REA			NOT REA			NOT RE	
	NOT RE			NOT REA			NOT RE			NOT REA			NOT RE	
	NOT REA			NOT REA			NOT REA			NOT REA			NOT RE	
	NOT REA			NOT REA			NOT REA			NOT REA			NOT RE	
	NOT REA			NOT REA			NOT RE			NOT RE			NOT RE	
	NOT REA			NOT REA			NOT RE			NOT REA			NOT RE	
	NOT RE			NOT RE			NOT REA			NOT RE		290	NOT RE	ACHED
	NOT RE			NOT RE			NOT RE			NOT RE			NOT RE	
	NOT RE		297	304	13.89	298	297	14.61	299	300	13.93	300	308	13.57
301	307	12.98	302	NOT REA	CHED	303	NOT RE		304	402	11.36	305	306	10.69
306	316	8.82	307	306	9.86	308	309	12.39	309	310	10.66	310	415	9.68
311	310	11.59	312	313	9.45	313	314	7.62	314	322	7.35	315	314	7.83
316	315	8.29	317	315	8.41	318	321	10.63	319	317	9.36	320	416	8.25
321	306	9.47	322	411	6.01	323	322	6.64		NOT RE/		325	326	10.65
326	328	9.60	327	331	10.17	328	329	8.35	329	394	7.40	330	323	8.06
331	332	9.20	332	333	8.64	333	389	7.77	334	335	8.01	335	390	7.38
336 341	335 335	9.07	337	336	10.07	338	339	10.38	339	340	9.40	340	360	8.14
346	335	7.76 12.82	342 347	340 353	8.38 12.42	343 348	357 347	8.26 12.75	344 349	343 408	8.89 12.37	345 350	344 349	11.11
351	354	11.25	347	351	11.38	353	352	12.02	354	355	11.09	350	356	12.68 9.12
356	357	8.63	357	358	7.57	358	359	7.31	359	361	6.89	360	350	7.51
361	363	6.67	362	364	7.00	363	378	6.07	364	365	6.41	365	378	6.05
366	364	6.67	367	366	7.66	368	369	8.51	369	370	8.20	370	371	7.74
371	373	6.47	372	364	6.79	373	374	5.69	374	518	4.95	375	374	5.16
376	375	5.45	377	383	5.35	378	376	5.78	379	380	6.15	380	382	5.72
381	380	6.07	382	383	5.07	383	384	4.89	384	493	4.69	385	384	5.31
386	385	5.94	387	386	6.11	388	387	6.19	389	388	6.90	390	391	7.01
391	380	6.29	392	NOT REA		393	395	5.00	394	393	5.45	395	396	4.49
396	397	4.32	397	398	3.57	398	457	3.29	399	398	3.88	400	NOT RE	

A1(1): LINK VOLUME TABLE

Purpose	This table lists the volumes assigned in the first iteration of the program. It tells which links would be overloaded if all of the traffic took the route of shortest time. This assignment assumes that traffic congestion did not cause the travel time on any route to increase.														
How to Read	ANODE is one end of the link. BNODE is the other end of the link. VOLUME is the assigned volume.														
Comments	DIR notes that the adjacent volume is a one-way directional volume.NDIR notes that the adjacent volume is a two-way nondirectional volume.TURNS notes that the adjacent volume is for a particular movement on the link (which may actually be a "thru" movement). The given movement is from the B-node through the A-node toward the C-node.														
How to Use	The analyst should review the link volumes. An unusual volume could indicate a problem with a coding or with the preceding traffic assignment.														
	ANODE BNODE VOLUME														
	305 DIR 30 3284 : one-way vol. from node 305 to 30 is 3284.														
	305 NDIR 30 6580 : two-way vol. between nodes 305-30 is 6580.														
	TURNS (30-31) 44 : vol. is 44 from node 30 thru 305 toward 31.														
	TURNS (31-306) 741 : vol. is 741 from node 31 thru 305 to 306.														
	TURNS (306- 488) 5546 : vol. is 5546 from node 306 thru 305 to 488.														

TYLER 85-85-1 CAPACITY RESTRAINT

. -

TABLE A1(1) ANODE E	LIN B NODE	K VOLU	JMES /OLUME	8	NODE	1	VOLUME	8	NODE		VOLUME	B -	NODE		VOLUME	NAME OF INTERSECTION
306 DIR 306 NDIR TURNS(TURNS(TURNS(305 305 305- 316- 307-	316) 307) 321)	8674 17425 8498 206 179		316 316 305- 316- 321-	307) 321) 305)	9639 19173 77 904 173	Ć	307 307 305- 307- 321-	321) 305) 316)	77	((((321 321 316- 307- 321-	305) 316) 307)	1259 2543 8424 210 180	
307 DIR 307 NDIR TURNS(TURNS(TURNS(154 154 154- 157- 301-	157) 301) 306)	302 604 44 241	~~~~	157 157 154- 157- 306-	301) 306) 154)	47 96 33 0 226	(306) 154) 157)	31	()()	306 306 157- 301- 306-	154) 157) 301)	3	
308 DIR 308 NDIR TURNS(TURNS(TURNS(153 153 153- 155- 300-	155) 300) 309)	28 56 1 0 1101		155 155 153- 155- 309-	300) 309) 153)	23 68 12 44 14	(((300 300 153- 300- 309-	309) 153) 155)	13	()()	309 309 155- 300- 309-	155)	1160 2268 1 1 1073	
309 DIR 309 NDIR TURNS(TURNS(154 154 154- 310-	308) 154)	34 67 33 0	(308 308 154- 310-	310) 308)	1108 2268 0 1075	(310 310 308-	154)	1126 2201 34	(308-	310)	1126	
310 DIR 310 NDIR TURNS(TURNS(TURNS(309 309- 309- 311- 415-	311) 415) 312)	1075 2201 0 206 67		311 311 309- 311- 312-	415) 312) 309)	159 404 1123 39 1	())	415 415 309- 415- 312-	312) 309) 311)	1074	(()	312 312 311- 415- 312-	309) 311) 415)	109 217 0 118 66	
311 DIR 311 NDIR TURNS(TURNS(TURNS(152 152- 152- 153- 310-	153) 310) 417)	8 14 3 102 90	(153 153 152- 153- 417-	310) 417) 152)	77 187 0 6 6	Ć	310 310 152- 310- 417-	152)	0	(),	417 417 153- 310- 417-	152) 153) 310)	99 253 2 69 143	
312 DIR 312 NDIR TURNS(TURNS(TURNS)	151 151 151- 154- 310-	154) 310) 313)	16 33 14 76 29	(154 154 151- 154- 313-	313)	109 216 3 17 0	(310 310 151- 310- 313-	151)	2	(313 313 154- 310- 313-	154)	46 92 14 78 29	
313 DIR 313 NDIR TURNS(TURNS(312 312 312- 320-	314) 312)	46 92 26 18	(314 314 312- 320-	320) 314)	160 330 20 134	(320 320 314-	312)	162 314 28	(314-	320)	142	
314 DIR 314 NDIR TURNS(161 161 161-	313)	1262 2541 42	(313 313 161-	322)	170 330 939	(322 322 161-	315)	12737 25317 298	¢	315 315 313-	161)	12068 24286 39	

18

-

X3(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VMI

Purpose	This table shows the breakdown of volumes assigned during the first iteration according to the various categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.
How to Read	 FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E. JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E. MILES is the number of miles falling into the particular category described by the row and the column heading. VEH-MILES is the number of vehicle-miles of travel in the particular category described by the row and the column heading.
How to Use	If "2" in a column or row heading refers to Yourtown and "8" refers to

to Use If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 10.8 miles of freeway in Yourtown and 37,999 vehicle-miles of travel on freeways in Yourtown according to this assignment. Also, there are a total of 35.7 miles and 103,577 vehicle-miles in Yourtown, a total of 28.5 miles and 98,778 vehicle-miles on freeways, and a total of 3790.1 miles and 18,974,034 vehicle-miles in the whole study area.

		FUNCTIONAL	CLASSIFICATION
JUR	UNIT	8	TOTAL
:	:	:	:
2	MILES	10.8	35.7
	VEH-MILES	37999	103577
:	:	:	:
TOTAL	MILES	28.5	3790.1
	VEH-MILES	98778	18974034

Checking the miles of freeway in each jurisdiction can uncover coding mistakes. When testing alternative facility options, the vehicle-miles should be minimized.

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X3(1)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES

		FUNCTIONAL CLASSIFICATION						
JUR	UNIT	A	8	C	D	ε	F	TOTAL
0	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0 0	269.6 276481
1	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	4.8 47345
2	MILES VEH-MILES	0.0 0	0.0 0	5.6 89352	0.0 0	3.0 3151	0.0 0	42.5 389778
3	MILES VEH-MILES	0.0 0	0.0	5.8 192881	0.0 0	5.4 28624	0.0 0	55.1 753082
4	MILES VEH-MILES	0.0 0	0.0 0	3.5 39114	0.0 0	52.3 166158	0.0 0	63.8 313206
5	MILES VEH-MILES	0.0 0	0.0 0	2.9 40445	0.0 0	57.4 64538	0.0 0	69.7 243023
6	MILES VEH-MILES	0.0 0	0.0 0	13.2 245397	0.0 0	31.2 46980	0.0 0	58.8 523216
7	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	36.5 99729	0.0 0	36.5 99729
8	MILES VEH-MILES	0.0 0	0.0 0	1.8 25381	0.0 0	39.1 81374	0.0 0	58.8 302174
9	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
A	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0 0
8	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
C	MILES VEH-MILES	0.0 0	0.0 0	0.0	0.0 0	0.0	0.0 0	0.0 0
D	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0	0.0 0	0.0 0	0.0 0
E	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
F	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0
гот	AL MILES VEH-MILES	0.0 0	0.0	32.8 632571	0.0 0	224.9 490554	0.0	659.6 2948034

. •

.

X4(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VHR

-

Purpose	This table or matrix shows the breakdown of vehicle-hours of travel which result from this assignment iteration and the breakdown of the average speed according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.
How to Read	 FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E. JUR is the jurisdictional area, in practice usually a group of zones. VEH-HOURS is the amount of vehicle-hours of travel which the first assignment says will be made on or in the particular category described by the row and the column description. MILES/HOUR is the average velocity of the links that fall into the particular category described by the row and the column headings.
How to Use	If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 3,300 vehicle-hours of travel on freeways in Yourtown according to this assignment with an average speed of 49.0 miles per hour. Also, there are a total of 11,450 vehicle-hours and an average of 32.7 miles per hour in Yourtown, a total of 45,928 vehicle-hours and an average of 56.5 miles per hour on freeways, and a total of 45,234,576 vehicle-hours and an average of 35.2 miles per hour in the whole study area. When comparing future alternative networks, one goal might be to minimize vehicle-hours of travel.

		FUNCTIONAL CL	ASSIFICATION
JUR	UNIT	8	TOTAL
:	:	:	:
2	VEH-HOURS	3300	11450
1	MILES/HOUR	49.0	32.7
:	:	:	:
TOTAL	VEH-HRS	45928	45234576
]	MILES/HOUR	56.5	35.2

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X4(1)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES

				FUNCTIONA	L CLASSIFIC	ATION		
JUR	UNIT	A	B	C	D	Ε	F	TOTAL
	VEH-HOURS	0	0	0	0	0	0	9561
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	28.92
	VEH-HOUR\$	0	0	0	0	0	0	1778
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	26.62
	VEH-HOURS	0	0	2002	0	86	0	10178
	MILES/HOUR	0.00	0.00	44.63	0.00	36.53	0.00	38.30
	VEH-HOURS	0	0	4293	0	747	0	20020
	MILES/HOUR	0.00	0.00	44.93	0.00	38.30	0.00	37.62
	VEH-HOURS MILES/HOUR	0.00	0 0.00	712 54.96	0 0.00	3272 50.79	0 0.00	6374 49.14
	VEH-HOURS	0	0	733	0	1386	0	4730
	MILES/HOUR	0.00	0.00	55.21	0.00	46.55	0.00	51.38
	VEH-HOURS	0	0	4571	0	970	0	9789
	MILES/HOUR	0.00	0.00	53.68	0.00	48.42	0.00	53.45
	VEH-HOURS MILES/HOUR	0.00	0 0.00	0 0.00	0 0.00	2144 46.51	0 0.00	2144 46.51
	VEH-HOURS	0	0	462	0	1799	0	6468
	MILES/HOUR	0.00	0.00	54.97	0.00	45.24	0.00	46.72
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS MILES/HOUR	0 0.00	0.00	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
D	VEH-HOURS MILES/HOUR	0 0.00	0 0.00	0.00	0 0.00	0 0.00	0 0.00	0 0.00
E	VEH-HOURS MILES/HOUR	0.00	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00
F	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
101	AL VEH-HRS	0	0	12772	0	10405	0	71042
	MILES/HOUR	0.00	0.00	49.53	0.00	47.15	0.00	41.50

X5(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

whole study area.

Purpose	This table or matrix shows the actual counted volumes on links that did have counts made on them and the miles of link which were counted. The listing is presented according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.
How to Read	 FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E. JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E. MILES is the number of miles of link on which counts were made that fall into the particular category described by the row and the column heading. VEH-MILES is the number of vehicle-miles of travel which were counted that fall into the particular category described by the row and the column heading.
How to Use	If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then the total mileage of the freeway links on which counts were made in Yourtown was 1.8, and there were 3,855 vehicle-miles of travel on these links. Also, there are a total of 3.7 miles and 10,357

		FUNCTIONAL C	LASSIFICATION
JUR	UNIT	8	TOTAL
:	:	:	:
2	MILES	1.8	3.7
	VEH-MILES	3855	10357
:	:	:	:
TOTAL	MILES	2.5	9.1
	VEH-MILES	9878	74034

vehicle-miles in Yourtown, a total of 2.5 miles and 9,878 vehicle-miles on freeways, and a total of 9.1 miles and 74,034 vehicle-miles in the

TYLER 85-85-1 CAPACITY RESTRAINT

. .

`

TABLE X5(1)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

		FUNCTIONAL CLASSIFICATION						
JUR	UNIT	A	B	C	D	Е	F	TOTAL
0	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0	0.0	0.0 0
1	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	4.8 45394
2	MILES VEH-MILES	0.0 0	0.0	5.6 83497	0.0 0	3.0 4498	0.0 0	42.5 397430
3	MILES VEH-MILES	0.0	0.0 0	5.8 179206	0.0 0	5.4 30303	0.0 0	55.1 723997
4	MILES VEH-MILES	0.0 0	0.0 0	3.5 40438	0.0 0	52.3 157506	0.0 0	63.8 319901
5	MILES VEH-MILES	0.0 0	0.0 0	2.9 40024	0.0 0	57.4 69499	0.0 0	69.7 253840
6	MILES VEH-MILES	0.0 0	0.0 0	13.2 225744	0.0 0	31.2 50218	0.0 0	58.8 517421
7	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	36.5 98663	0.0 0	36.5 98663
8	MILES VEH-MILES	0.0 0	0.0 0	1.8 25081	0.0	39.1 90293	0.0 0	58.8 305564
9	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
A	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
B	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
C	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
D	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
£	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
F	MILES VEH-MILES	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0	0.0 0
TOT	AL MILES VEH-MILES	0.0	0.0	32.8 593990	0.0 0	224.9 500980	0.0 0	390.0 2662210

X6(1): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

Purpose This table or matrix shows the miles of the links according to the various input categories of roadway class (freeway, arterial) or a defined jurisdictional area and the twenty-four hour capacity in terms of vehicle-miles on each. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Read FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E. JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E.

MILES is the number of miles that fall into the particular category described by the row and the column heading.

VEH-MILES is the number of vehicle-miles of capacity that fall into the particular category described by the row and the column heading.

How to Use If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 7.8 miles of freeway in Yourtown and 63,790 vehicle-miles of capacity on the freeways in Yourtown. Also, there are a total of 18.5 miles and 138,577 vehicle-miles on freeways and a total of 790.1 miles and 8,974,034 vehicle-miles in the entire study area. This information can be used to compare the impacts of various proposed alternative networks.

		FUNCTIONAL	CLASSIFICATION
JUR	UNIT	8	TOTAL
*** *** -**			
:	:	:	:
2	MILES	7.8	31.7
	VEH-MILES	63790	193577
:	:	:	:
:	:	:	:
TOTAL	MILES	18.5	790.1
	VEH-MILES	138577	8974034

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X6(1)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

	FUNCTIONAL CLASSIFICATION							
JUR	UNIT	A	8	C	D	Ε	F	TOTAL
0	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	80.3 150664
1	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	4.8 100350
2	MILES VEH-MILES	0.0	0.0 0	5.6 188940	0.0	3.0 21371	0.0 0	42.5 903977
3	MILES VEH-MILES	0.0	0.0	5.8 194970	0.0 0	5.4 48790	0.0 0	55.1 1123329
4	MILES VEH-MILES	0.0 0	0.0 0	3.5 97244	0.0	52.3 371412	0.0 0	63.8 639634
5	MILES VEH-MILES	0.0	0.0 0	2.9 78963	0.0	57.4 387778	0.0 0	69.7 813120
6	MILES VEH-MILES	0.0	0.0 0	13.2 378832	0.0 0	31.2 208275	0.0 0	58.8 1271072
7	MILES VEH-MILES	0.0	0.0	0.0 0	0.0	36.5 273280	0.0 0	36.5 273280
8	MILES VEH-MILES	0.0	0.0	1.8 57628	0.0	39.1 291046	0.0 0	58.8 793134
9	MILES VEH-MILES	0.0	0.0	0.0	0.0	0.0 0	0.0 0	0.0 0
A	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0
8	MILES VEH-MILES	0.0	0.0	0.0	0.0 0	0.0	0.0	· 0.0 0
С	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0
D	MILES VEH-MILES	0.0	0.0 0	0.0	0.0	0.0 0	0.0	0.0 0
E	MILES VEH-MILES	0.0	0.0	0.0 0	0.0 0	0.0 0	0.0	0.0 0
F	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0
TOT	AL MILES VEH-MILES	0.0	0.0	32.8 996577	0.0	224 .9 1601952	0.0	470 .3 6068560
C1(1): COMPARISON OF ASSIGNED VOLUMES WITH COUNTED VOLUMES

This table analyzes the degree of agreement between predicted and Purpose actual volumes on selected routes. A series of links, which is often traveled in sequence from one link to another, forms a route. A regression equation is used to evaluate the degree of agreement. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment. How to Read ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column. INTCPT is the β_0 value of the y-axis intercept of the regression equation. In many cases the ideal intercept is 0.0. SLOPE is the β_1 value or the slope of the regression equation. When comparing two sets of supposedly identical data on x-y axes with the same scale, the ideal slope equals 1.0. UPPER and LOWER are the values of the confidence limits of the slope. It is highly probable that the true slope falls somewhere between these two values. SAMPLE is the number of links that comprise the particular route. TOTAL is the sum of the volumes on the various links of the route. CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. A value of -1.0 indicates a perfect inverse relationship. DETERM (R^2) is the coefficient of determination. This value is the proportion of total variability that is explained by the model with 1.0 being a perfect model. SOS is the sum of squares used to calculate other terms in regression analysis. RMS is the root mean square error used to estimate the standard deviation of the dependent variable. PCT ERR is the root mean square error expressed as a percent of average volume of the routes' links.

F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression (df₁) is always one. For the error, the degrees of freedom is the number of samples minus two (df₂ = s-2). Enter an F distribution table for df₁ = 1 and df₂ = s-2 to find the critical F-value at certain α -value, which, if smaller than the calculated F-value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the counted volumes.

How to Use The table will flag problems with assignments to the listed routes. A value in the F column that is too low or a low coefficient of determination indicates a low level of agreement between the modeled assignment and the counted volumes.

TABLE C1(1)				COMP/	ARISON OF A	SSIGNED V	OLUMES WI	TH COUNTED V	OLUMES		
COMPARISON OF					-85-1 CAPAC -85-1 CAPAC						ITER. 1 DEC 14, 1988' DEC 14, 1988'
ROUTE INTCPT 14511.094 29697.230 3******* 42297.974	SLOPE 0.6556 0.6172 0.1909 0.8463	0.6367	LOWER 0.4929 0.3725 -0.2550 0.5300	SAMPLE 17. 13. 17. 13.	TOTAL 409435.0 322465.0 779767.0 168182.0	0.83039 0.21175	0.68955		RMS 4399.316 2472.462 7577.942 1483.259	PCT ERR 18.266 9.968 16.521 11.465	F 62.39 24.43 0.70 27.50
ALL1095.564	0.8541	0.8710	0.8372	843.	7459616.0	0.95973	0.92107	0.6962E+10	2873.724	32.476	9814.67

30

.

•

C4(1): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

Purpose	This table analyzes the degree of agreement between predicted (assigned) and actual counted volumes by facility type, either
	FREEWAY, ARTERIAL, or OTHERS.
	In addition, comparisons are made for geographical areas, called "sectors," which are groupings of zones. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.
How to Read	AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.
	AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in
	a particular row. NUMBER OF OBSERVATIONS is the number of links which fall into the category listed in a particular row. INTERCEPT is the β_0 value or the value of the y-axis intercept of the provision equation
	the regression equation. SLOPE is the β_1 value or the slope of the regression equation. COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no
	relationship and 1.0 a perfect relationship. COEFFICIENT OF DETERMINATION (R ²) indicates the proportion of total variability that is explained by the model with 1.0 being a
	perfect model. ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.
	PERCENT ROOT MEAN SQUARE is the root mean square error expressed as a percent of average ground count per link.
How to Use	A low coefficient of determination indicates that the assigned volumes on that particular group of links do not match well with the counted volumes. The counted volumes and the final-output assigned volumes for each facility group should agree within $\pm 10\%$.

TABLE C4(1)

. ·

COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

.

FACILITY GROUP	AVERAGE GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	NUMBER OF OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT OF CORRELATION	COEFFICIENT OF DETERMI- NATION	ROOT MEAN SQUARE	PERCENT ROOT MEAN SQUARE
FREEWAYS ARTERIALS OTHERS	1.617307E+04 8.589414E+03 2.381877E+03		274.	-2.634761E+03 -2.036700E+02 -3.012952E+02	1.077681E+00	9.583107E-01	9.183594E-01	2.840835E+03	3.307365E+01
SECTOR CLASSIFICATION									
1 2 3 4 5 6 7 8	6.839559E+03 4.202039E+03 7.234664E+03 2.811628E+03	9.309352E+03 1.405053E+04 6.643625E+03 4.049459E+03 7.596039E+03	169. 234. 91. 98. 75. 43.	-1.557531E+03 -1.432406E+02 -1.104134E+03 2.391408E+02 -5.244142E+01 -2.096821E+02 -5.352832E+02 -4.456360E+02	1.007942E+00 1.134708E+00 9.363884E-01 9.761686E-01 1.078933E+00 1.209686E+00	9.600843E-01 9.495196E-01 9.607258E-01 9.946839E-01 9.889950E-01 9.823925E-01	9.217618E-01 9.015874E-01 9.229941E-01 9.893960E-01 9.781111E-01 9.650950E-01	2.007353E+03 4.419848E+03 2.489148E+03 6.111655E+02 1.429127E+03 9.142170E+02	2.140466E+01 3.309369E+01 3.639339E+01 1.454450E+01 1.975388E+01 3.251556E+01

C5(1): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

Purpose	This table analyzes the degree of agreement between predicted and actual link volumes by volume groupings or ranges. The ALL row presents this analysis for the entire network of links. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.
How to Read	 VOLUME RANGE lists the minimum and maximum volumes in that particular grouping. AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row. AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row. NUMBER OF OBSERVATIONS lists the number of links in the particular volume range. INTERCEPT is the β₀ value or the value of the y-axis intercept of the regression equation. SLOPE is the β₁ value or the slope of the regression equation. COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. COEFFICIENT OF DETERMINATION (R²) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model. ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable. PERCENT ROOT MEAN SQUARE ERROR is the root mean square error expressed as a percent of average ground count per link.
How to Use	A low coefficient of determination indicates that the assigned volumes on that particular volume range of links do not match well with the counted volumes. This information will indicate whether traffic on certain groups of roads is being systematically over- or underassigned.

TABLE C5(1)

COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

VOLUME RANGE	AVERAGE GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	NUMBER OF OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT OF CORRELATION	COEFFICIENT OF DETERMI- NATION	ROOT MEAN SQUARE	PERCENT ROOT MEAN SQUARE
0 TO									
999 1000 to	4.859375E+02	3.921172E+02	128.	9.104016E+01	6.195797E-01	4.831001E-01	2.333857E-01	3.205430E+02	6.596382E+01
4999	2.518587E+03	2.459249E+03	269.	-3.130540E+02	1.100737E+00	5.675609E-01	3.221253E-01	1.782003E+03	7.075407E+01
5000 TO 9999 10000 TO	7.193078E+03	7.109809E+03	159.	6.669951E+02	8.956962E-01	4.625103E-01	2.139158E-01	2.541334E+03	3.533026E+01
14999 15000 TO	1.268130E+04	1.215995E+04	107.	2.989175E+03	7.231728E-01	3.548246E-01	1.259004E-01	2.799041E+03	2.207217E+01
24999	1.919136E+04	2.043511E+04	139.	-9.036711E+03	1.535681E+00	7.316474E-01	5.353079E-01	4.330984E+03	2.256735E+01
25000 TO 49999	3.381951E+04	3.599590E+04	41.	-1.214968E+04	1.423603E+00	8.418798E-01	7.087616E-01	6.289543E+03	1.859737E+01
ALL ITERATION TIME		8.848891E+03 MINUTES	843.	-4.831326E+02	1.078469E+00	9.597265E-01	9.210748E-01	2.873724E+03	3.321062E+01

• X1(2) CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST TWO ASSIGNMENTS

Purpose This plot indicates the level of change between two successive assignment iterations. The number of links in each V/C ratio group are indicated.

If the data points are well scattered, then the current assignment iteration was much different than the previous iteration. If the data points tend toward a straight line with origin at (0,0) in the upper left corner, then little change took place between iterations.

How to Read This table is really a graph with the (0,0) point in the upper left corner.

V/C is the volume to capacity ratio. The horizontal or X-axis is the present iteration V/C ratio. The vertical or Y-axis is the V/C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of links which have the V/C attributes of the particular row and column.

TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total column transposed.

How to Use The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of (0,0) toward (3,3), then it is stable. If stability is not reached, then the output is not reliable.

Scanning the output will indicate the extent of overcapacity links. One can determine whether capacity limitations will be severe.

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X1	(2)

CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST TWO ASSIGNMENTS

V/C	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	TOT
0123456789012345678901000000011111111112222222222222222222	7 4 3 2	399 495 532 31 2 51 1 2 2	19 23 32 10 3 1 1 4 2 2 2 4 2 1 2 1	6721 3895123341221 1221	11 5 6 22 40 9 4 2 1 3 2 1 1 1 1	12 15 4 12 22 21 9 2 4 5 1	5 3 4 4 9 4 22 14 5 6 2 2 1 1 1	2 4 2 2 6 2 7 7 7 10 9 1 3 1 1	2125368 13653222 1	3 1 14 7 4 1 4 1 1 1	5 1114354422	4 1232242211 3	1 1 322 1 432 1	5 1 1 2 1 1 1 1 1 1 1 1 1	1	2 1 1 1	2 2 1 1 1 1 1 1 1 1 1	1	 4 1 1 1	2	1	1	1	1	2	1	1	1	1	1	4	
2.3 2.4 2.5 2.6 2.7	23214	1		1				۱	1		1					1															1	244415
2.8 2.9 3.0	1 2 14	2	1					1	1				1					1		•••							•••	1			3	2 3 23
TOT	189 234	118 126	110 84	105 108	109 104	108 60	83 70	60 62	63 53	33 49	33 29	27 21	19 26	16 19	5 19	7 4	11 10	2 10	8 8	5 8	6 4	2 3	1 2	1 4	2 4	2 4	3 1	2 5	22	1 3	26 23	

TOTAL LINKS IN V/C SUMMARY = 1159

X2(2): CROSS CLASSIFICATION OF LINK CAPACITIES BY V/C RATIO FROM LAST TWO ASSIGNMENTS

Purpose This plot indicates the level of change between two successive assignment iterations. The sum of the volumes per link which fall into each V/C ratio group are indicated.

If the data points are well scattered, then the current assignment iteration was much different than the previous iteration. If the data points tend toward a straight line with origin at (0,0) in the upper left corner, then little change took place between iterations.

How to Read This table is really a graph with the (0,0) point in the upper left corner.

V/C is the volume to capacity ratio. The horizontal or X-axis is the present iteration V/C ratio. The vertical or Y-axis is the V/C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of trips (times the "SCALE FACTOR" listed below the graph) which have the V/C attributes of the particular row and column.

TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total transposed.

PCT CAP is written "staggered" on two rows. This printed output is the cumulative percent of capacity held by each column from left to right.

SCALE FACTOR ONE UNIT is the largest trip divided by 999.

TOTAL SCALED TRIP IN SUMMARY is the sum of TOT.

TOTAL LINK CAPACITIES is the sum of the capacities on all links.

How to Use The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of (0,0) toward (3,3), then it is stable. If stability is not reached, then the output is not reliable. TABLE X2(2)

/C	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.	5 2.7	2.	8 2.9	3.0
.0 .1	721 86			80 78	166 63	80 133	30 40	38 63	24 20	15 2	31	16	1	7 10	1	1	25		13	4	9		6		4					2	31 21
.2	60	-45	399	367	68	50	42	- 4	21			40	•			1	Ĩ				2		U								1
.3	27	73 35	259 111	818 202	999	199 461	80 157	33 106	73 50	17 65	17 9	10 40	8		8		2											I			120
.5	41	49 26	3	68	260 53	391 191	47 403	34 142	81 143	22 54	2 86	45 35		13			3		4	3	1										1
7	4		6 54	23 33	21	30 37	317	62 230	278	120 57	68	42	46	65	10			,	ġ	5	·	9				4					1
9	31		52	55 71 89	45	108	151	225	118	1	86 68	42 42 63 28	53 30	60		1		4	9		1					1					ļ
0	1	11	34 30	8	29 23	3	79 27	11 12	22	50 8	39 16	- 8	14	20 32 1	32	9															
2	9 39	25 1	55 10	21 23	6		2	7	25	32	65	32	14 42 34	1						1											
123456789012345678	33	•	9		3Ŏ			~	36	1		11	54		1		1											•		1	
6	2 45	8 8		2 1	20		6																								
7 8	2 15	8	28 20			20			1																						
9 n	11						1																								
1	1							1																							
3	7								1																						
4 5	1 4							2																							3
67	1							-																							
8	1																														
9	5		1																												
от 1	 1581	119	1559	1884	2248	1703	1435	1002	1002	444	487	372	228	148	52	12	15		35	13	16	9	6	0			••	2 ()	2 1	10
										974							74	59	35 35	12	4	Ż	Ō	8	4	6	•	1 4		1 0	6
т	7.8		25.6		53.1		73.9		87.3		73.5		97.6		99.0		% .2		79.5	~	9.7	_	9.8	~	9.8		99.4	`	99.	~ •	00.0

SCALE FACTOR ONE UNIT = 1020 TRIPS

TOTAL SCALED TRIPS IN SUMMARY = 14971

TOTAL LINK CAPACITIES = 15422200.

X3(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VMI

Purpose This table or matrix shows the breakdown of volumes assigned during the second iteration according to the various categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Read FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E. JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E. MILES is the number of miles falling into the particular category described by the row and the column heading. VEH-MILES is the number of vehicle-miles of travel in the particular category described by the row and the column heading.

How to Use If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 10.8 miles of freeway in Yourtown and 37,999 vehicle-miles of travel on freeways in Yourtown according to this assignment. Also, there are a total of 35.7 miles and 103,577 vehicle-miles in Yourtown, a total of 28.5 miles and 98,778 vehicle-miles on freeways, and a total of 3790.1 miles and 18,974,034 vehicle-miles in the whole study area.

		FUNCTIONAL C	LASSIFICATION
JUR	UNIT	8	TOTAL
:	:	:	:
2	MILES	10.8	35.7
	VEH-MILES	37999	103577
:	:	:	:
TOTAL	MILES	28.5	3790.1
	VEH-MILES	98778	18974034

Checking the miles of freeway in each jurisdiction can uncover coding mistakes. When testing alternative facility options, the vehicle-miles should be minimized.

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X3(2)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES

				FUNCTIONA	L CLASSIFI	CATION		
JUR	UNIT	A	В	C	D	E	F	TOTAL
0	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0	269.6 282954
1	NILES VEH-MILES	0.0 0	0.0	0.0	0.0 0	0.0 0	0.0 0	4.8 41025
2	MILES VEN-MILES	0.0 0	0.0 0	5.6 106611	0.0 0	3.0 3762	0.0 0	42.5 409883
3	MILES VEH-MILES	0.0 0	0.0 0	5_8 170654	0.0 0	5.4 27590	0.0 0	55.1 730112
4	MILES VEH-MILES	0.0 0	0.0 0	3.5 41831	0.0	52.3 171463	0.0 0	63.8 332328
5	MILES VEH-MILES	0.0 0	0.0 0	2.9 38985	0.0	57.4 84400	0.0 0	69.7 270807
6	MILES VEH-MILES	0.0 0	0.0	13.2 234739	0.0 0	31.2 45892	0.0 0	58.8 512531
7	MILES VEH-MILES	0.0 0	0.0 0	0.0	0.0	36.5 99648	0.0 0	36.5 99648
8	MILES VEH-MILES	0.0 0	0.0 0	1.8 25363	0.0 0	39.1 118499	0.0 0	58.8 320906
9	MILES VEH-MILES	0.0	0.0	0.0	0.0	0.0 0	0.0 0	0.0 0
A	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	0.0	0.0	0.0 0
8	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0 0
С	MILES VEH-MILES	0.0 0	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0 0
D	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0 0
E	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0 0
F	MILES VEH-MILES	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0	0.0 0
στ	AL MILES VEH-MILES	0.0	0.0	32.8 618181	0.0 0	224.9 551256	0.0 0	659.6 3000193

X4(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VHR

Purpose This table or matrix shows the breakdown of vehicle-hours of travel which result from the second iteration and the breakdown of the average speed according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Read
 FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E.
 JUR is the jurisdictional area, in practice usually a group of zones.
 VEH-HOURS is the amount of vehicle-hours of travel which the first assignment says will be made on or in the particular category described by the row and the column description.
 MILES/HOUR is the average velocity of the links that fall into the particular category described by the row and the column headings.

How to Use If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 3,300 vehicle-hours of travel on freeways in Yourtown according to this assignment with an average speed of 49.0 miles per hour. Also, there are a total of 11,450 vehicle-hours and an average of 32.7 miles per hour in Yourtown, a total of 45,928 vehicle-hours and an average of 56.5 miles per hour on freeways, and a total of 45,234,576 vehicle-hours and an average of 35.2 miles per hour in the whole study area. When comparing future alternative networks, one goal might be to minimize vehicle-hours of travel.

	FUNCTIONAL CLA	SSIFICATION
UNIT	8	TOTAL
:	:	:
VEH-HOURS	3300	11450
MILES/HOUR	49.0	32.7
•	:	:
VEH-HRS	45928	45234576
MILES/HOUR	56.5	35.2
	VEH-HOURS MILES/HOUR VEH-HRS	UNIT 8 : : : VEH-HOURS 3300 MILES/HOUR 49.0 : : VEH-HRS 45928

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X4(2)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES

				FUNCTIONA	L CLASSIFIC	ATION		
JUR	UNIT	A	8	C	D	E	F	TOTAL
	VEH-HOURS	0	0	0	0	0	0	10240
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	27.63
	VEH-HOURS	0	0	0	0	0	0	1519
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	27.00
	VEH-HOURS	0	0	2226	0	94	0	10029
	MILES/HOUR	0.00	0.00	47.90	0.00	39.84	0.00	40.87
	VEH-HOURS	0	0	4379	0	752	0	20455
	MILES/HOUR	0.00	0.00	38.97	0.00	36.71	0.00	35.69
	VEH-HOURS	0	0	701	0	3609	0	6937
	MILES/HOUR	0.00	0.00	59.64	0.00	47.51	0.00	47.91
	VEH-HOURS	0	0	657	0	1725	0	4972
	MILES/HOUR	0.00	0.00	59.38	0.00	48.93	0.00	54.46
	VEH-HOURS	0	0	4190	0	896	0	9028
	MILES/HOUR	0.00	0.00	56.02	0.00	51.23	0.00	56.77
	VEH-HOURS	0	0	0	0	2297	0	2297
	MILES/HOUR	0.00	0.00	0.00	0.00	43.39	0.00	43.39
	VEH-HOURS	0	0	428	0	2690	0	6664
	MILES/HOUR	0.00	0.00	59.32	0.00	44.05	0.00	48.15
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS MILES/HOUR	0 0.00	0 0.00	0.00	0 0.00	0 0.00	0 0.00	0 0.00
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	MILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	AL VEH-HRS	0	0	12581	0	12062	0	72142
	MILES/HOUR	0.00	0.00	49,14	0.00	45.70	0.00	41.59

X5(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

.

Purpose	did have c counted. categories c area. The	ounts made or The listing is of roadway class analyst must r	n them and the mile presented according s (freeway, arterial) o	volumes on links that es of link which were to the various input or defined jurisdictional ding to determine the or row.
How to Read	of roadw JUR is the ranging f MILES is the fall into t heading. VEH-MILI counted	ay class ranging jurisdictional rom 0 to 9 and ne number of m he particular ca ES is the num	g from 0 to 9 and A area, in practice usu I A to E. niles of link on which ategory described by t ber of vehicle-miles are particular category	y the various categories to E. ally a group of zones, counts were made that he row and the column of travel which were y described by the row
How to Use	freeways, th were made of travel on vehicle-mile	ien the total m in Yourtown w these links. A es in Yourtown s, and a total o	ileage of the freeway was 1.8, and there we lso, there are a total , a total of 2.5 miles a	rtown and "8" refers to v links on which counts ere 3,855 vehicle-miles of 3.7 miles and 10,357 and 9,878 vehicle-miles 34 vehicle-miles in the
			FUNCTIONAL CLA	SSIFICATION
	JUR	UNIT	8	TOTAL
	: 2 V	: MILES EH-MILES	: 1.8 3855	: 3.7 10357
		: MILES EH-MILES	: 2.5 9878	: 9.1 74034

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X5(2)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

	FUNCTIONAL CLASSIFICATION									
JUR	UNIT	A	В	C	D	E	F	TOTAL		
0	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	0.0	0.0	0.0		
1	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0 0	4.8 45394		
2	MILES VEH-MILES	0.0	0.0	5.6 83497	0.0	3.0 4498	0.0 0	42.5 397430		
3	MILES VEH-MILES	0.0	0.0	5.8 179206	0.0 0	5.4 30303	0.0	55.1 723997		
4	MILES VEH-MILES	0.0 0	0.0	3.5 40438	0.0 0	52.3 157506	0.0 0	63.8 319901		
5	MILES VEH-MILES	0.0	0.0 0	2.9 40024	0.0 0	57.4 69499	0.0 0	69.7 253840		
6	MILES VEH-MILES	0.0 0	0.0	13.2 225744	0.0 0	31.2 50218	0.0 0	58.8 517421		
7	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	36.5 98663	0.0 0	36.5 98663		
8	MILES VEH-MILES	0.0	0.0	1.8 25081	0.0 0	39.1 90293	0.0 0	58.8 305564		
9	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0 0		
A	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0 0		
B	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0		
С	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0		
D	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0		
E	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0		
F	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0	0.0 0	0.0 0		
TOT	AL MILES VEH-MILES	0.0 0	0.0	32.8 593990	0.0 0	224.9 500980	0.0 0	390.0 2662210		

X6(2): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

Purpose	various inpude defined juris	ut categories sdictional are uiles on each.	of roadway class (a and the twenty-fou The analyst must r	e links according to the (freeway, arterial) or a r hour capacity in terms efer to the input coding particular column or row.
How to Read	of roadwa JUR is the ranging fr MILES is th described VEH-MILE	y class rangin jurisdictional om 0 to 9 an ne number of by the row a S is the numb	ng from 0 to 9 and A area, in practice us d A to E. f miles that fall into nd the column head ber of vehicle-miles (the particular category
How to Use	freeways, the vehicle-mile a total of 18 of 790.1 mil This inform	en there are ' s of capacity of .5 miles and 1 les and 8,974	7.8 miles of freeway on the freeways in Yo 138,577 vehicle-miles ,034 vehicle-miles in e used to compare	ourtown and "8" refers to in Yourtown and 63,790 ourtown. Also, there are on freeways and a total in the entire study area. the impacts of various
			FUNCTIONAL CL	
	JUR	UNIT	8	TOTAL
	:		•	
	2	MILES	7.8	31.7

:	:	:	:
2	MILES	7.8	31.7
	VEH-MILES	63790	193577
:	:	:	:
:	:	:	:
TOTAL	MILES	18.5	790.1
	VEH-MILES	138577	8974034

TYLER 85-85-1 CAPACITY RESTRAINT

.

TABLE X6(2)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

		FUNCTIONAL CLASSIFICATION										
JUR	UNIT	Α	B	C	D	E	F	TOTAL				
0	MILES VEH-MILES	0.0 0	0.0 0	0.0	0.0 0	0.0 0	0.0	80.3 150664				
1	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	4.8 100350				
2	MILES VEH-MILES	0.0	0.0	5.6 188940	0.0 0	3.0 21371	0.0 0	42.5 903977				
3	MILES VEH-MILES	0.0	0.0	5.8 194970	0.0 0	5.4 48790	0.0 0	55.1 1123329				
4	MILES VEH-MILES	0.0	0.0	3.5 97244	0.0 0	52.3 371412	0.0	63.8 639634				
5	MILES VEH-MILES	0.0	0.0 0	2.9 78963	0.0 0	57.4 387778	0.0 0	69.7 813120				
6	MILES VEH-MILES	0.0	0.0 0	13.2 378832	0.0 0	31.2 208275	0.0 0	58.8 1271072				
7	MILES VEH-MILES	0.0	0.0	0.0 0	0.0 0	36.5 273280	0.0	36.5 273280				
8	MILES VEH-MILES	0.0	0.0	1.8 57628	0.0 0	39.1 291046	0.0 0	58.8 793134				
9	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0				
A	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0				
B	MILES VEH-MILES	0.0	0.0	0.0	0.0 0	0.0	0.0 0	0.0				
C	MILES VEH-MILES	0.0	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0				
D	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0				
E	MILES VEH-MILES	0.0	0.0 0	0.0	0.0 0	0.0	0.0 0	0.0				
F	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0				
TOT	AL MILES VEH-MILES	0.0 0	0.0 0	32.8 996577	0.0 0	224.9 1601952	0.0 0	470.3 6068560				

C1(2): COMPARISON OF ASSIGNED VOLUMES WITH COUNTED VOLUMES

Purpose This table analyzes the degree of agreement between predicted and actual volumes on selected routes. A series of links, which is often traveled in sequence from one link to another, forms a route.

A regression equation is used to evaluate the degree of agreement. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to Read ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column.

- INTCPT is the β_0 value of the y-axis intercept of the regression equation. In many cases the ideal intercept is 0.0.
- SLOPE is the β_1 value or the slope of the regression equation. When comparing two sets of supposedly identical data on x-y axes with the same scale, the ideal slope equals 1.0.
- UPPER and LOWER are the values of the confidence limits of the slope. It is highly probable that the true slope falls somewhere between these two values.
- SAMPLE is the number of links that comprise the particular route.
- TOTAL is the sum of the volumes on the various links of the route. CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. A value of -1.0 indicates a perfect inverse relationship.
- DETERM (R^2) is the coefficient of determination. This value is the proportion of total variability that is explained by the model with 1.0 being a perfect model.
- SOS is the sum of squares used to calculate other terms in regression analysis.
- RMS is the root mean square error used to estimate the standard deviation of the dependent variable.
- PCT ERR is the root mean square error expressed as a percent of average volume of the routes' links.

F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression (df₁) is always one. For the error, the degrees of freedom is the number of samples minus two (df₂ = s-2). Enter an F distribution table for df₁ = 1 and df₂ = s-2 to find the critical F-value at certain α -value, which, if smaller than the calculated F-value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the counted volumes.

How to Use The table will flag problems with assignments to the listed routes. A value in the F column that is too low or a low coefficient of determination indicates a low level of agreement between the modeled assignment and the counted volumes.

TABLE C1(2)	COME	PARISON OF ASSIGNED V	OLUMES WITH COUNTED VOLUMES		
	VOLUMES FROM ' TYLER 8 VOLUMES FROM ' TYLER 8				1TER. 2 DEC 14, 1988' DEC 14, 1988'
ROUTE INTCPT SLOPE 1******** 0.3081 28794.348 0.7132 3******** -0.1711 4 210.800 0.8377	0.0929 -0.4351 17	507188.0 0.73032 295519.0 0.93248 595165.0 -0.31170	DETERM. SOS RMS 0.53336 0.2194E+10 11359.676 0.86953 0.1045E+09 2834.918 0.09716 0.1050E+10 7858.601 0.34636 0.1286E+09 3144.839	PCT ERR 38.076 12.471 22.447 20.211	F 17.14 73.31 1.61 5.83
ALL1246.268 0.8341	0.8697 0.7984 843	7486131.0 0.84519	0.71434 0.2060E+11 4943.421	55.667	2103.06

.

50

•

C3(2): COMPARISON OF ASSIGNED VOLUMES WITH ASSIGNED VOLUMES

Purpose	This table presents a comparison of the assignments from the present iteration with the assignments of the previous iteration. This comparison is in the form of a regression equation.
How to Read	 ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column. INTCPT is the value of the y-axis intercept of the regression equation. SLOPE is the β₁ value or the slope of the regression equation. UPPER and LOWER are the values of the confidence limits of the equation. It is highly probable that the true mean falls somewhere between these two values. SAMPLE is the number of assigned volumes that are compared on the particular route. TOTAL is the total sums of squares used to calculate other terms in regression analysis. CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. DETERM is the coefficient of determination (R²). This value indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model. SOS is the sum of squares used to calculate other terms in regression analysis. RMS is the root mean square error used to estimate the standard deviation of the dependent variable. PCT ERR is the root mean square error expressed as a percent. F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression (df₁) is always one. For the error, the degrees of freedom is the number of "degrees on freedom" is the number of samples minus two (df₂ = s-2). Enter an F distribution table for df₁ = 1 and df₂ = s-2 to find the critical F-value at certain α-value, which, if smaller than the calculated F-value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is signifi

How to Use The table will flag assignments that are varying greatly from one assignment to the next. A value in the F column that is too low or a low coefficient of determination indicates problems with the assignment.

TABLE C3(2)				COMP	RISON OF	SSIGNED V	OLUMES WI	TH ASSIGNED	VOLUMES		
COMPARISON OF A					85-1 CAPAG						ITER. 2 DEC 14, 1988' ITER. 1 DEC 14, 1988'
ROUTE INTCPT 18807.301 22386.714 3********	0.9862	UPPER 0.6476 1.1598 0.1906 1.6336	0.8126	SAMPLE 17. 13. 17. 13.	295519.0 595165.0	0.95838	0.91850 0.03399	SOS 0.9197E+09 0.7613E+08 0.2722E+10 0.1248E+09	2419.882 12654.813	PCT ERR 24.653 10.645 36.147 19.914	F 54.81 123.97 0.53 16.81
ALL1024.118	0.8811	0.9266	0.8356	843.	7486131.0	0.79458	0.63135	0.3143E+11	6106.394	68.763	1440.31

. .

C4(2): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

Purpose	This table analyzes the degree of agreement between predicted (assigned) and actual counted volumes by facility type, either FREEWAY, ARTERIAL, or OTHERS.
	In addition, comparisons are made for geographical areas, called "sectors," which are groupings of zones. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.
How to read	AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row. AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row. NUMBER OF OBSERVATIONS is the number of links which fall into the category listed in a particular row. INTERCEPT is the β_0 value or the value of the y-axis intercept of the regression equation. SLOPE is the β_1 value or the slope of the regression equation. COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. COEFFICIENT OF DETERMINATION (R ²) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model. ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable. PERCENT ROOT MEAN SQUARE is the root mean square error expressed as a percent of average ground count per link.
How to Use	A low coefficient of determination indicates that the assigned volumes on that particular group of links do not match well with the counted volumes. The counted volumes and the final-output assigned volumes for each facility group should agree within $\pm 10\%$.

TABLE C4(2)

COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

FACILITY GROUP	AVERAGE GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	NUMBER OF OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT OF CORRELATION	COEFFICIENT OF DETERMI- NATION	ROOT MEAN SQUARE	PERCENT ROOT MEAN SQUARE
FREEWAYS ARTERIALS OTHERS	1.617307E+04 8.589414E+03 2.381877E+03		260. 274. 309.	1.657809E+03	6.965863E-01 9.289259E-01 6.354518E-01	8.690326E-01	7.552176E-01	4.643785E+03	5.406404E+01
SECTOR CLASSIFICATION									
1 2 3 4 5 6 7 8	9.378105E+03 1.335555E+04 6.839559E+03 4.202039E+03 7.234664E+03 2.811628E+03	1.359178E+04	43.	9.568105E+02 2.926233E+03 1.909857E+03 2.516849E+02 -8.164589E+01 1.875572E+03	7.566204E-01 9.370875E-01 7.985848E-01 7.276109E-01 1.008558E+00 1.024613E+00 4.841969E-01 7.425483E-01	8.847823E-01 7.860014E-01 8.219082E-01 9.908592E-01 9.908851E-01 4.164045E-01	7.828397E-01 6.177981E-01 6.755330E-01 9.818018E-01 9.818532E-01 1.733927E-01	3.417619E+03 7.231445E+03 5.118770E+03 8.360029E+02 1.092839E+03 3.474851E+03	3.644252E+01 5.414558E+01 7.484064E+01 1.989516E+01 1.510559E+01 1.235886E+02

C5(2): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

Purpose	This table analyzes the degree of agreement between predicted and actual link volumes by volume groupings or ranges. The ALL row presents this analysis for the entire network of links. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.
How to Read	 VOLUME RANGE lists the minimum and maximum volumes in that particular grouping. AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row. AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row. NUMBER OF OBSERVATIONS lists the number of links in the particular volume range. INTERCEPT is the β₀ value or the value of the y-axis intercept of the regression equation. SLOPE is the β₁ value or the slope of the regression equation. COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. COEFFICIENT OF DETERMINATION (R²) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model. ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable. PERCENT ROOT MEAN SQUARE ERROR is the root mean square error expressed as a percent of average ground count per link.
How to Use	A low coefficient of determination indicates that the assigned volumes on that particular volume range of links do not match well with the counted volumes. This information will indicate whether traffic on certain groups of roads is being systematically over- or underassigned.

COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

VOLUME RANGE	AVERAGE GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	NUMBER OF OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT OF CORRELATION	COEFFICIENT OF DETERMI- NATION	ROOT MEAN SQUARE	PERCENT ROOT MEAN SQUARE
0 TO									
999 1000 TO	4.859375E+02	1.057406E+03	128.	-1.064683E+02	2.395111E+00	4.153873E-01	1.725466E-01	1.515004E+03	3.117690E+02
4999	2.518587E+03	3.600219E+03	269.	7.971389E+02	1.112957E+00	4.138088E-01	1.712377E-01	2.935016E+03	1.165342E+02
5000 TO 9999 10000 TO	7.193078E+03	8.208418E+03	159.	6.039316E+03	3.015538E-01	1.014699E-01	1.029613E-02	4.599148E+03	6.393852E+01
14999 15000 TO	1.268130E+04	1.275345E+04	107.	-9.702531E+03	1.770793E+00	5.202089E-01	2.706172E-01	4.296145E+03	3.387778E+01
24999 25000 TO	1.919136E+04	1.810939E+04	139.	7.564691E+03	5.494498E-01	1.837068E-01	3.374819E-02	8.148586E+03	4.245964E+01
	3.381951E+04	2.915514E+04	41.	-6.373621E+03	1.050540E+00	6.174456E-01	3.812390E-01	9.135930E+03	2.701378E+01
ALL ITERATION TIME		8.880344E+03 MINUTES	843.	1.469383E+03	8.564591E-01	8.451863E-01	7.143399E-01	4.943418E+03	5.712936E+01

TABLE C5(2)

W2: ITERATION WEIGHTS APPLIED

Purpose	This small table lists the weights or percentages of the assignment from each iteration that comprise the final weighted output.								
How to Read	ITERATION indicates the first through the fifth iterations of the capacity restraint assignment.PER CENT lists the percent of the output from a particular iteration that is combined with portions of the other iterations to form the weighted output.								
How to Use	This table reports what iteration percents were preprogrammed. The evaluation of the table is not required.								

WEIGHTEDDEC 8, 1988

.

ITERATION WEIGHTS APPLIED

1	15
2	15
3	20
4	20
5	30

TABLE W2

A1(W): LINK VOLUME TABLE

Purpose	This table lists the final weighted volume assignment. These weighted assignments are formed by combining portions of the assignments from the five iterations. The specified portions are listed in the preceding table W2. ANODE is one end of the link. BNODE is the other end of the link. VOLUME is the assigned volume.											
How to Read												
Comments	mments DIR notes that the adjacent volume is a one-way directional volume. NDIR notes that the adjacent volume is a two-way nondirectional volume. TURNS notes that the adjacent volume is for a particular movement on the link (which may actually be a "thru" movement). The given movement is from the B-node through the A-node toward the C-node.											
How to Use	The final volume assignments are in this table. The analyst should review the link volumes. An unusual volume could indicate a problem with a coding or with the preceding traffic assignment.TABLE A1(1)LINK VOLUMES BNODEANODEBNODEVOLUME											
	305 DIR 30 3284 : one-way vol. from node											
	305 to 30 is 3284. 305 NDIR 30 6580 : two-way vol. between											
	nodes 305-30 is 6580. TURNS (30- 31) 44 : vol. is 44 from node											
	30 thru 305 toward 31. TURNS (31-306) 741 : vol. is 741 from node											
	31 thru 305 to 306. TURNS (306-488) 5546 : vol. is 5546 from node 306 thru 305 to 488.											

TYLER 85-85-1 CAPACITY RESTRAINT

TAD! C																
TABLE A1(W) ANODE	LINK B NODE	VOLUN V	ies /olume	8	NODE		OLUME	8	NODE		VOLUME		NODE		VOLUME	NAME OF INTERSECTION
306 DIR 306 NDIR TURNS(TURNS(TURNS(305 305- 305- 316- 307-	316) 307) 321)	8271 16600 8054 204 157		316 316 305- 316- 321-	307) 321) 305)	8992 17901 99 705 173		307 307 305- 307- 321-	321) 305) 316)	461 924 176 99 731		321 321 316- 307- 321-	305) 316) 307)	207	
307 DIR 307 NDIR TURNS(TURNS(TURNS)	154 154 154- 157- 301-	157) 301) 306)	302 604 44 238		157 157 154- 157- 306-	301) 306) 154)	47 96 33 0 226	••••	301 301 154- 301- 306-	306) 154) 157)	272 544 225 31 0		306 306 157- 301- 306-	154) 157) 301)	3	
308 DIR 308 NDIR TURNS(TURNS(TURNS(153 153 153- 155- 300-	155) 300) 309)	28 56 1 0 1692		155 155 153- 155- 309-	300) 309) 153)	23 70 12 45 14		300 300 153- 300- 309-	309) 153) 155)	1656 3362 15 13 21	()()	309 309 155- 300- 309-	153) 155) 300)	1752 3432 1 1644	
309 DIR 309 NDIR TURNS(TURNS(154 154 154- 310-	308) 154)	34 67 33 0	((308 308 154- 310-	310) 308)	1679 3432 0 1646	¢	310 310 308-	154)	1718 3365 34	(308-	310)	1718	
310 DIR 310 NDIR TURNS(TURNS(TURNS)	309 309- 309- 311- 415-	311) 415) 312)	1646 3365 0 137 185	(()	311 311 309- 311- 312-	415) 312) 309)	124 302 1713 41 1		415 415 309- 415- 312-	312) 309) 311)	2035 3945 5 1645 44		312 312 311- 415- 312-	309) 311) 415)	80	
311 DIR 311 NDIR TURNS(TURNS(TURNS(152 152 152- 153- 310-	153) 310) 417)	10 19 3 102 52		153 153 152- 153- 417-	310) 417) 152)	77 187 2 6 6		310 310 152- 310- 417-	417) 152) 153)	178 302 3 3 5		417 417 153- 310- 417-	152) 153) 310)	69	
312 DIR 312 NDIR TURNS(TURNS(TURNS(151 151 151- 154- 310-	154) 310) 313)	16 33 14 197 31		154 154 151- 154- 313-	310) 313) 151)	786 1557 3 561 0		310 310 151- 310- 313-	313) 151) 154)	229 460 0 2 573	Ċ	313 313 154- 310- 313-	151) 154) 310)	198	
313 DIR 313 NDIR TURNS(TURNS(312 312 312- 320-	314) 312)	602 1194 572 18		314 314 312- 320-	320) 314)	722 1466 20 150	(320 320 314-	312)	180 348 584	(314-	320)	160	
314 DIR 314 NDIR TURNS(161 161 161-	313)	1115 2245 93	¢	313 313 161-	322)	744 1466 786	(322 322 161-	315)	11784 23439 250	(315 315 313-	161)	10749 21636 90	

62

• •
X1(W): CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST TWO ASSIGNMENTS

Purpose This plot compares the volume/capacity ratio of links from the weighted assignment with those of the fifth iterations. The number of links in each V/C ratio group are indicated.

If the data points are well scattered, then the weighted assignment was much different than the fifth iteration. If the data points tend toward a straight line with origin at (0,0) in the upper left corner, then the fifth iteration and the weighted assignment are similar.

How to Read This table is really a graph with the (0,0) point in the upper left corner.

V/C is the volume to capacity ratio. The horizontal or X-axis is the present iteration V/C ratio. The vertical or Y-axis is the V/C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of links which have the V/C attributes of the particular row and column.

TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total column transposed.

How to Use The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of (0,0) toward (3,3), then it is stable. If stability is not reached, then the output is not reliable.

Scanning the output will indicate the extent of overcapacity links. One can determine whether capacity limitations will be severe.

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X1(W)

CROSS CLASSIFICATION OF V/C FREQUENCIES FROM LAST TWO ASSIGNMENTS

V/C	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	TOT
0.234500.7890111.234567890111.2222345567890 0.111.2345678901222222222222222222222222222222222222	115 8	16 99 10	3 14 74 7	2 4 14 80 6 3 1 1	2 3 1 9 74 16 1 1	2 25 48 11 4 1	5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 1 6 19 40 17 3 2 1	3 1 1 2 11 38 13 2 3 2 1	5 2 1 2 6 10 24 16 2 1 1	83 1 1215644 2	8 1 1 1 7 7 7 4 3 1 3 4 1 1 3 4 1	2 1 1 1 1 3 1 4 2 2 1 3 1 2 1 1	4 1 4 4 3 2 1 1 1	3 1 1 3 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1	1	1	1 2		2	1			1				1	1878 1384 100 893 774 356 8771 1286 10411 4 3 3 1 5 3 2 4 1 2 0 0 1 3
101	123 187	138	104	110 100	107 88	73 89	82 83	95 74	71	43	47 45	42 16	37 28	21 16	13 10	14	11	4	3	23	5	0 5	4 3	2	0 4	0	2	0	0	0	13	

TOTAL LINKS IN V/C SUMMARY = 1159

X2(W): CROSS CLASSIFICATION OF LINK CAPACITIES BY V/C RATIO FROM LAST TWO ASSIGNMENTS

Purpose This plot compares link capacities by volume/capacity ratio from the weighted assignment with that of the fifth iterations. The sum of the volumes per link which fall into each V/C ratio group are indicated.

If the data points are well scattered, then the weighted assignment differed greatly from the fifth iteration. If the data points tend toward a straight line with origin at (0,0) in the upper left corner, then little change took place between iterations.

How to Read This table is really a graph with the (0,0) point in the upper left corner.

V/C is the volume to capacity ratio. The horizontal or X-axis is the present iteration V/C ratio. The vertical or Y-axis is the V/C ratio of the previous iteration. Instead of plotting points in the form of dots, they are represented as numbers, each number being the number of trips (times the "SCALE FACTOR" listed below the graph) which have the V/C attributes of the particular row and column.

TOT is the total of a row or a column. There are two rows of totals at the bottom of the plot. The top row is the column total. The bottom row is the row total transposed.

PCT CAP is written "staggered" on two rows. This printed output is the cumulative percent of capacity held by each column from left to right.

SCALE FACTOR ONE UNIT is the largest trip divided by 999. TOTAL SCALED TRIP IN SUMMARY is the sum of TOT.

TOTAL LINK CAPACITIES is the sum of the capacities on all links.

How to Use The analyst can determine whether the particular iteration is approaching stability by the degree of scatter. When the plot forms a diagonal passing through the coordinates of (0,0) toward (3,3), then it is stable. If stability is not reached, then the output is not reliable.

SCALE FACTOR ONE UNIT = 1714 TRIPS

TOTAL SCALED TRIPS IN SUMMARY = 8922

TOTAL LINK CAPACITIES = 15422200.

66

X3(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VMI

Purpose	This table or matrix shows the breakdown of volumes from the weighted assignment according to the various categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.
How to Read	 FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E. JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E. MILES is the number of miles falling into the particular category described by the row and the column heading. VEH-MILES is the number of vehicle-miles of travel in the particular category described by the row and the column heading.

How to Use If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 10.8 miles of freeway in Yourtown and 37,999 vehicle-miles of travel on freeways in Yourtown according to this assignment. Also, there are a total of 35.7 miles and 103,577 vehicle-miles in Yourtown, a total of 28.5 miles and 98,778 vehicle-miles on freeways, and a total of 3790.1 miles and 18,974,034 vehicle-miles in the whole study area.

		FUNCTIONAL CLA	SSIFICATION
JUR	UNIT	8	TOTAL
:	:	:	:
2	MILES	10.8	35.7
	VEH-MILES	37999	103577
:	:	:	:
TOTAL	MILES	28.5	3790.1
	VEH-MILES	98778	18974034

Checking the miles of freeway in each jurisdiction can uncover coding mistakes. When testing alternative facility options, the vehicle-miles should be minimized.

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X3(W)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES

				FUNCTIONA	L CLASSIFI	CATION		
JUR	UNIT	A	B	C	Ð	Ε	F	TOTAL
0	MILES VEH-MILES	0.0	0.0 0	0.0	0.0 0	0.0 0	0.0	269.6 278786
1	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	4.8 45918
2	MILES VEH-MILES	0.0	0.0	5.6 93744	0.0	3.0 3966	0.0 0	42.5 398038
3	MILES VEH-MILES	0.0 0	0.0	5.8 181734	0.0	5.4 29370	0.0 0	55.1 744104
4	MILES VEH-MILES	0.0 0	0.0 0	3.5 40435	0.0	52.3 162139	0.0	63.8 317589
5	MILES VEH-MILES	0.0 0	0.0 0	2.9 39912	0.0	57.4 79991	0.0	69.7 259824
6	MILES VEH-MILES	0.0	0.0 0	13.2 234075	0.0 0	31.2 48357	0.0	58.8 514019
7	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0 0	36.5 99249	0.0	36.5 99249
8	MILES VEH-MILES	0.0 0	0.0	1.8 25370	0.0 0	39.1 95862	0.0	58.8 305250
9	MILES VEH-MILES	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0	0.0 0	0.0 0
8	MILES VEH-MILES	0.0	0.0	0.0 0	0.0	0.0	0.0 0	0.0
C	MILES VEH-MILES	0.0 0	0.0	0.0	0.0	0.0	0.0 0	0.0 0
D	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0	0.0 0	0.0	0.0 0
E	MILES VEH-MILES	0.0	0.0	0.0	0.0	0.0 0	0.0	0.0
F	MILES VEH-MILES	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOT	AL MILES VEH-MILES	0.0	0.0	32.8 615270	0.0 0	224.9 518934	0.0 0	659.6 2962776

X4(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES - VHR

Purpose This table or matrix shows the breakdown of vehicle-hours of travel in the weighted assignment and the breakdown of the average speed according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.

How to Read
 FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E.
 JUR is the jurisdictional area, in practice usually a group of zones.
 VEH-HOURS is the amount of vehicle-hours of travel which the weighted assignment says will be made on or in the particular category described by the row and the column description.
 MILES/HOUR is the average velocity of the links that fall into the particular category described by the row and the column headings.

How to Use If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 3,300 vehicle-hours of travel on freeways in Yourtown according to this assignment with an average speed of 49.0 miles per hour. Also, there are a total of 11,450 vehicle-hours and an average of 32.7 miles per hour in Yourtown, a total of 45,928 vehiclehours and an average of 56.5 miles per hour on freeways, and a total of 45,234,576 vehicle-hours and an average of 35.2 miles per hour in the whole study area. When comparing future alternative networks, one goal might be to minimize vehicle-hours of travel.

	FUNCTIONAL	CLASSIFICATION
UNIT	8	TOTAL
:	:	:
VEH-HOURS	3300	11450
MILES/HOUR	49.0	32.7
:	:	:
VEH-HRS	45928	45234576
MILES/HOUR	56.5	35.2
	VEH-HOURS MILES/HOUR i VEH-HRS	UNIT 8 : : : VEH-HOURS 3300 MILES/HOUR 49.0 : : : VEH-HRS 45928

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X4(W)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF ASSIGNED VOLUMES

				FUNCTIONA	L CLASSIFIC	ATION		
JUR	UNIT	A	B	C	D	Ε	F	TOTAL
	VEH-HOURS	0	0	0	0	0	0	10822
	I LES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	25.76
	VEH-HOURS	0	0	0	0	0	0	1657
	I LES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	27.71
	VEH-HOURS	0	0	1972	0	102	0	9839
	I LES/HOUR	0.00	0.00	47.54	0.00	38.76	0.00	40.45
	VEH-HOURS	0	0	4435	0	784	0	20548
	[LES/HOUR	0.00	0.00	40.98	0.00	37.45	0.00	36.21
	VEH-HOURS ILES/HOUR	0.00	0 0.00	688 58.80	0 0.00	3373 48.08	0 0.00	6654 47.73
	VEH-HOURS	0	0	677	0	1637	0	479 3
	I LES/HOUR	0.00	0.00	58.98	0.00	48.88	0.00	54.21
	VEH-HOURS	0	0	4189	0	949	0	9123
	[LES/HOUR	0.00	0.00	55.88	0.00	50.93	0.00	56.34
	VEH-HOURS	0	0	0	0	2209	0	2209
	ILES/HOUR	0.00	0.00	0.00	0.00	44.92	0.00	44.92
	VEH-HOURS	0	0	433	0	2113	0	6301
	I LES/HOUR	0.00	0.00	58.65	0.00	45.37	0.00	48.44
	VEH-HOURS	0	0	0	0	0	0	0
	I LES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	ILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	ILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	ILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	ILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	ILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	VEH-HOURS	0	0	0	0	0	0	0
	ILES/HOUR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	L VEH-HRS	0	0	12392	0	11167	0	71946
	ILES/HOUR	0.00	0.00	49.65	0.00	46.47	0.00	41.18

X5(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

Purpose This table or matrix shows the actual counted volumes on links that did have counts made on them and the miles of link which were counted. The listing is presented according to the various input categories of roadway class (freeway, arterial) or defined jurisdictional area. The analyst must refer to the input coding to determine the identity of the category in a particular column or row. Since this table makes use of actual count data, this table is not applicable when conducting a future year assignment.

How to Read FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E.

JUR is the jurisdictional area, in practice usually a group of zones, ranging from 0 to 9 and A to E.

MILES is the number of miles of link on which counts were made that fall into the particular category described by the row and the column heading.

VEH-MILES is the number of vehicle-miles of travel which were counted that fall into the particular category described by the row and the column heading.

How to Use If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then the total mileage of the freeway links on which counts were made in Yourtown was 1.8, and there were 3,855 vehicle-miles of travel on these links. Also, there are a total of 3.7 miles and 10,357 vehicle-miles in Yourtown, a total of 2.5 miles and 9,878 vehicle-miles on freeways, and a total of 9.1 miles and 74,034 vehicle-miles in the whole study area.

		FUNCTIONAL C	LASSIFICATION
JUR	UNIT	8	TOTAL

:	:	:	:
2	MILES	1.8	3.7
	VEH-MILES	3855	10357
:	:	:	:
TOTAL	MILES	2.5	9.1
	VEH-MILES	9878	74034

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X5(W)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF COUNTED VOLUMES

				FUNCTIONA	L CLASSIFI	CATION		
JUR	UNIT	A	B	C	D	E	F	TOTAL
0	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0	0.0 0	0.0	0.0
1	MILES VEH-MILES	0.0 0	0.0 0	0.0	0.0 0	0.0 0	0.0 0	4.8 45394
2	MILES VEH-MILES	0.0 0	0.0 0	5.6 83497	0.0	3.0 4498	0.0 0	42.5 397430
3	MILES VEH-MILES	0.0	0.0 0	5.8 179206	0.0 0	5.4 30303	0.0 0	55.1 723997
4	MILES VEH-MILES	0.0 0	0.0 0	3.5 40438	0.0 0	52.3 157506	0.0 0	63.8 319901
5	MILES VEH-MILES	0.0 0	0.0 0	2.9 40024	0.0	57.4 69499	0.0 0	69.7 253840
6	MILES VEH-MILES	0.0 0	0.0	13.2 225744	0.0 0	31.2 50218	0.0 0	58.8 517421
7	MILES VEH-MILES	0.0	0.0	0.0 0	0.0 0	36.5 98663	0.0 0	36.5 98663
8	MILES VEH-MILES	0.0 0	0.0	1.8 25081	0.0 0	39.1 90293	0.0 0	58.8 305564
9	MILES VEH-MILES	0.0	0.0	0.0	0.0 0	0.0 0	0.0 0	0.0 0
A	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0
8	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	0.0	0.0 0	0.0 0
С	MILES VEH-MILES	0.0 0	0.0 0	0.0	0.0	0.0	0.0 0	0.0 0
D	MILES VEH-MILES	0.0 0	0.0 0	0.0	0.0	0.0	0.0 0	0.0 0
E	MILES VEH-MILES	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0	0.0 0
F	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0	0.0 0	0.0 0	0.0 0
OT	AL MILES VEH-MILES	0.0 0	0.0 0	32.8 593990	0.0	224.9 500980	0.0 0	390.0 2662210

X6(W): JURISDICTIONAL/FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

Purpose	This table or matrix shows the miles of the links according to the various input categories of roadway class (freeway, arterial) or a defined jurisdictional area and the twenty-four hour capacity in terms
	of vehicle-miles on each. The analyst must refer to the input coding to determine the identity of the category in a particular column or row.
How to Read	FUNCTIONAL CLASSIFICATION is coded by the various categories of roadway class ranging from 0 to 9 and A to E. JUR is the jurisdictional area, in practice usually a group of zones,
	ranging from 0 to 9 and A to E. MILES is the number of miles that fall into the particular category described by the row and the column heading.
	VEH-MILES is the number of vehicle-miles of capacity that fall into the particular category described by the row and the column heading.
How to Use	If "2" in a column or row heading refers to Yourtown and "8" refers to freeways, then there are 7.8 miles of freeway in Yourtown and 63,790 vehicle-miles of capacity on the freeways in Yourtown. Also, there are a total of 18.5 miles and 138,577 vehicle-miles on freeways and a total of 790.1 miles and 8,974,034 vehicle-miles in the entire study area. This information can be used to compare the impacts of various proposed alternative networks.

		FUNCTIONAL CL	ASSIFICATION
JUR	UNIT	8	TOTAL
:	:	:	:
2	MILES	7.8	31.7
	VEH-MILES	63790	193577
:	:	:	:
:	:	:	:
TOTAL	MILES	18.5	790.1
	VEH-MILES	138577	8974034

TYLER 85-85-1 CAPACITY RESTRAINT

TABLE X6(W)

JURISDICTIONAL / FUNCTIONAL CROSS CLASSIFICATION OF LINK CAPACITIES

				FUNCTIONA	L CLASSIFI	CATION		
JUR	UNIT	A	В	C	D	Ε	F	TOTAL
0	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0	0.0	0.0	80.3 150664
1	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0 0	0.0 0	4.8 100350
2	MILES VEH-MILES	0.0 0	0.0 0	5.6 188940	0.0 0	3.0 21371	0.0 0	42.5 903977
3	MILES VEH-MILES	0.0 0	0.0 0	5.8 194970	0.0	5.4 48790	0.0 0	55.1 1123329
4	MILES VEH-MILES	0.0 0	0.0 0	3.5 97244	0.0 0	52.3 371412	0.0	63.8 639634
5	MILES VEH-MILES	0.0 0	0.0 0	2.9 78963	0.0	57.4 387778	0.0 0	69.7 813120
6	MILES VEH-MILES	0.0 0	0.0 0	13.2 378832	0.0	31.2 208275	0.0 0	58.8 1271072
7	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	36.5 273280	0.0	36.5 273280
8	MILES VEH-MILES	0.0 0	0.0 0	1.8 57628	0.0	39.1 291046	0.0 0	58.8 793134
9	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	0.0 0	0.0	0.0 0
A	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0 0	0.0 0	0.0	0.0 0
8	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	0.0	0.0 0	0.0 0
C	MILES VEH-MILES	0.0 0	0.0 0	0.0 0	0.0	0.0	0.0 0	0.0 0
D	MILES VEH-MILES	0.0	0.0 0	0.0 0	0.0	0.0	0.0 0	0.0 0
E	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0 0	0.0	0.0	0.0 0
F	MILES VEH-MILES	0.0 0	0.0	0.0 0	0.0	0.0	0.0 0	0.0 0
тот	AL MILES VEH-MILES	0.0	0.0 0	32.8 996577	0.0 0	224.9 1601952	0.0 0	470.3 6068560

. ,

C1(W): COMPARISON OF ASSIGNED VOLUMES WITH COUNTED VOLUMES

Purpose This table analyzes the degree of agreement between predicted and actual volumes on selected routes. A series of links, which is often traveled in sequence from one link to another, forms a route. A regression equation is used to evaluate the degree of agreement. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment. How to Read ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column. **INTCPT** is the β_0 value of the y-axis intercept of the regression equation. In many cases the ideal intercept is 0.0. SLOPE is the β_1 value or the slope of the regression equation. When comparing two sets of supposedly identical data on x-y axes with the same scale, the ideal slope equals 1.0. UPPER and LOWER are the values of the confidence limits of the slope. It is highly probable that the true slope falls somewhere between these two values. SAMPLE is the number of links that comprise the particular route. TOTAL is the sum of the volumes on the various links of the route. CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. A value of -1.0 indicates a perfect inverse relationship. DETERM (R^2) is the coefficient of determination. This value is the proportion of total variability that is explained by the model with 1.0 being a perfect model. SOS is the sum of squares used to calculate other terms in regression analysis. RMS is the root mean square error used to estimate the standard deviation of the dependent variable. PCT ERR is the root mean square error expressed as a percent of average volume of the routes' links.

F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression (df₁) is always one. For the error, the degrees of freedom is the number of samples minus two (df₂ = s-2). Enter an F distribution table for df₁ = 1 and df₂ = s-2 to find the critical F-value at certain α -value, which, if smaller than the calculated F-value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the counted volumes.

How to Use The table will flag problems with assignments to the listed routes. A value in the F column that is too low or a low coefficient of determination indicates a low level of agreement between the modeled assignment and the counted volumes.

TABLE C1(W)				COMP	ARISON OF A	SSIGNED V	OLUMES WI	TH COUNTED V	OLUMES			
COMPARISON OF					-85-1 CAPAC -85-1 CAPAC						WEIGHTEDDEC 14, 1988' DEC 14, 1988'	
ROUTE INTOPT	SLOPE	UPPER	LOWER	SAMPLE	TOTAL	CORR.	DETERM.	SOS	RMS	PCT ERR	F	
16435.770 27082.004		0.7548	0.3743	17. 13.	417510.0 320658.0		0.69279	0.4562E+09 0.4126E+08	5180.560	21.094 7.223	33.83 52.63	
3*******			0.1112	17.				0.1545E+09	3014.296	7.387	5.80	
4 511.498	0.9130	1.3221	0.5051	13.	181204.0	0.19143	0.03333	0.3894E+08	1730.762	12.417	19.21	
ALL 135.620	0.9630	0.9781	0.9480	843.	7455934.0	0.97431	0.94927	0.3444E+10	2021.373	22.855	15737.27	

C3(W): COMPARISON OF ASSIGNED VOLUMES WITH ASSIGNED VOLUMES

Purpose	This table presents a comparison of the assignments from the weighted assignment with the assignments of the fifth iteration. This comparison is in the form of a regression equation.
How to Read	 ROUTE is the number assigned to the route being investigated. The printout field for route is not separated from the adjacent field to the right, so the route number can appear to be a part of the number in the adjacent column. INTCPT is the value of the y-axis intercept of the regression equation. SLOPE is the β₁ value or the slope of the regression equation. UPPER and LOWER are the values of the confidence limits of the equation. It is highly probable that the true mean falls somewhere between these two values. SAMPLE is the number of assigned volumes that are compared on the particular route. TOTAL is the total sums of squares used to calculate other terms in regression analysis. CORR (R) is the coefficient of correlation. This indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. DETERM is the coefficient of determination (R²). This value indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model. SOS is the sum of squares used to calculate other terms in regression analysis. RMS is the root mean square error used to estimate the standard deviation of the dependent variable. PCT ERR is the root mean square error expressed as a percent. F is the heading over the F-ratio value for the F-test of significance of the regression equation. For any particular row, the F entry must be evaluated by the number of "degrees of freedom" (df). The degree of freedom for the regression (df₁) is always one. For the error, the degrees of freedom is the number of samples minus two (df₂ = s-2). Enter an F distribution table for df₁ = 1 and df₂ = s-2 to find the critical F-value, means that the regression is significant. Therefore, the test hypothesis will be rejected and concluded that there is significant difference between the assigned volumes and the previous assigned volumes.

How to Use

The table will flag weighted route assignments that greatly differed from those of the fifth iteration. A value in the F column that is too low or a low coefficient of determination indicates problems with the assignment on that particular route.

TABLE C3(W)				COMPA	RISON OF A	SSIGNED V	OLUMES WI	TH ASSIGNED	VOLUMES		
COMPARISON OF WITH					85-1 CAPAC 85-1 CAPAC						WEIGHTEDDEC 14, 1988' ITER. 5 DEC 14, 1988'
ROUTE INTCPT 11529.329 2 709.126 3******* 4-245.616	0.9831 1.7163	UPPER 0.9783 1.0391 2.2976 1.0340	LOWER 0.8498 0.9271 1.1350 0.9880	SAMPLE 17. 13. 17. 13.		0.99538	0.98106 0.99079 0.69064		RMS 977.956 488.662 3439.498 130.144	PCT ERR 3.982 1.981 8.429 0.934	F 777.06 1183.07 33.49 7418.06
ALL -16.146	0.9985	1.0076	0.9894	843.	7455934.0	0.99105	0.98219	0.1213E+10	1199.380	13.561	46377.16

C4(W): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

Purpose This table analyzes the degree of agreement between predicted (assigned) and actual counted volumes by facility type, either

FREEWAY, ARTERIAL, or OTHERS.

In addition, comparisons are made for geographical areas, called "sectors," which are groupings of zones. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.

How to read AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row.

- AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row.
- NUMBER OF OBSERVATIONS is the number of links which fall into the category listed in a particular row.
- INTERCEPT is the β_0 value or the value of the y-axis intercept of the regression equation.
- SLOPE is the β_1 value or the slope of the regression equation.
- COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship.
- COEFFICIENT OF DETERMINATION (\mathbb{R}^2) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model.
- ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable.

PERCENT ROOT MEAN SQUARE is the root mean square error expressed as a percent of average ground count per link.

How to Use A low coefficient of determination indicates that the assigned volumes on that particular group of links do not match well with the counted volumes. The counted volumes and the final-output assigned volumes for each facility group should agree within $\pm 10\%$.

TABLE C4(W)

COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY FACILITY GROUP

FACILITY GROUP	AVERAGE GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	NUMBER OF OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT OF CORRELATION	COEFFICIENT OF DETERMI- NATION	ROOT MEAN SQUARE	PERCENT ROOT MEAN SQUARE
FREEWAYS ARTERIALS OTHERS	1.617307E+04 8.589414E+03 2.381877E+03		274.	6.364037E+00 6.442170E+02 2.110079E+02	9.963010E-01	9.697778E-01	9.404690E-01	2.211931E+03	2.575182E+01
SECTOR CLASSIFICATION									
1 2 3 4 5 6 7 8	6.839559E+03 4.202039E+03 7.234664E+03 2.811628E+03	9.485805E+03 1.384251E+04 6.713219E+03 4.304090E+03	169. 234. 91. 98.	6.666729E+02 6.824517E+02 2.031514E+02 -1.922090E+01 2.240487E+02	9.771900E-01 9.865437E-01 8.817479E-01 9.759401E-01	9.604505E-01 9.654341E-01 9.784965E-01 9.957401E-01 9.907042E-01 9.767268E-01	9.224651E-01 9.320629E-01 9.574553E-01 9.914982E-01 9.814948E-01 9.539952E-01	1.944004E+03 2.962408E+03 1.971489E+03 5.427192E+02 1.114981E+03 6.474268E+02	2.072917E+01 2.218109E+01 2.882478E+01 1.291562E+01 1.541165E+01 2.302675E+01

C5(W): COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

Purpose	This table analyzes the degree of agreement between predicted and actual link volumes by volume groupings or ranges. The ALL row presents this analysis for the entire network of links. Since a comparison is being made with actual counted data, this table has no application when conducting a future year assignment.
How to Read	 VOLUME RANGE lists the minimum and maximum volumes in that particular grouping. AVERAGE GROUND COUNT PER LINK is the average counted volume of those links which fall into the category listed in a particular row. AVERAGE ASSIGNED VOLUME PER LINK is the average predicted volume of those links which fall into the category listed in a particular row. NUMBER OF OBSERVATIONS lists the number of links in the particular volume range. INTERCEPT is the β₀ value or the value of the y-axis intercept of the regression equation. SLOPE is the β₁ value or the slope of the regression equation. COEFFICIENT OF CORRELATION (R) indicates the level of a linear relationship between two variables with 0.0 being no relationship and 1.0 a perfect relationship. COEFFICIENT OF DETERMINATION (R²) indicates the proportion of total variability that is explained by the model with 1.0 being a perfect model. ROOT MEAN SQUARE is the root mean square error used to estimate the standard deviation of the dependent variable. PERCENT ROOT MEAN SQUARE ERROR is the root mean square error expressed as a percent of average ground count per link.
How to Use	A low coefficient of determination indicates that the assigned volumes on that particular volume range of links do not match well with the counted volumes. This information will indicate whether traffic on certain groups of roads is being systematically over- or underassigned.

COMPARISON OF ASSIGNED VOLUMES AND GROUND COUNTS BY VOLUME RANGE

VOLUME RANGE	AVERAGE GROUND COUNT PER LINK	AVERAGE ASSIGNED VOLUME PER LINK	NUMBER OF OBSERVATIONS	INTERCEPT	SLOPE	COEFFICIENT OF CORRELATION	COEFFICIENT OF DETERMI- NATION	ROOT MEAN SQUARE	PERCENT ROOT MEAN SQUARE
0 TO									
999 1000 то	4.859375E+02	6.119922E+02	128.	8.951299E+01	1.075198E+00	5.616012E-01	3.153958E-01	4.289243E+02	8.826736E+01
4999 5000 TO	2.518587E+03	2.870163E+03	269.	-1.837461E+02	1.212548E+00	6.849614E-01	4.691721E-01	1.496954E+03	5.943625E+01
9999 10000 TO	7.193078E+03	7.568004E+03	159.	2.775512E+03	6.662644E-01	4.674503E-01	2.185098E-01	1.960825E+03	2.725987E+01
14999 15000 TO	1.268130E+04	1.254854E+04	107.	-7.628887E+02	1.049688E+00	6.206396E-01	3.851934E-01	1.900009E+03	1.498275E+01
24999 25000 TO	1.919136E+04	1.946037E+04	139.	-1.647127E+03	1.099843E+00	7.069159E-01	4.997301E-01	3.012418E+03	1.569673E+01
49999	3.381951E+04	3.303722E+04	41.	-7.156437E+03	1.188475E+00	8.969744E-01	8.045631E-01	3.692880E+03	1.091938E+01
ALL	8.653023E+03	8.844523E+03	843.	3.149900E+02	9.857286E-01	9.743053E-01	9.492708E-01	2.021373E+03	2.336031E+01

TABLE C5(W)

. . .

I1: CORRIDOR INTERCEPT

Purpose	The person running the assignment can request that a number of cutlines be constructed and the link volumes across the cutlines be reported. The output for each requested cutline is reported on a separate sheet of paper.
How to Read	 ANODE is one end of a link. BNODE is the other end of a link. RT is the assigned route number this link is on. F is the functional class. Refer to the input coding to determine what codes denote what class. SPEED is the originally assigned link speed. COUNT is the actual counted volume on a link; if a count was not made on the link, then 0 appears. CAP is the input link capacity. VOL 1 is the assigned volume from the first iteration. VOL 2 is the assigned volume from the second iteration. VOL 3 is the assigned volume from the fourth iteration. VOL 4 is the assigned volume from the fourth iteration. VOL 5 is the assigned volume from the weighted assignment. PCT COUNT is the percentage of VOL 6 / COUNT. PCT CAP is the percentage of VOL 6 / CAP.
How to Use	The inability to perfectly model traffic behavior leads to differences between predicted and counted volumes in the best of assignments. However, the sums of predicted and counted volumes on a group of competing links (i.e., a corridor) should come close to agreeing. The level of agreement can be checked by reviewing these tables. The base year counted and assigned volumes should agree within $\pm 10\%$.

. .

TABLE	11					COR	RIDOR II	ITERCEP'	F 1			
ANODE	BNODE	RT	SPEED	COUNT	CAP	VOL 1	VOL 2	VOL 3	VOL 4	VOL 5	PCT VOL 6 COUNT	PCT CAP
568 569 576 586 597	569 578 577 587 598	0	35 35 30 30 30	6500 3000 3100 9000	33500 7100 18300 18300 9600	29028 6841 494 4675 6575	45839 64 4379 7479 3455	25762 8511 3400 2760 7120	30661 8472 4275 7399 4897	29734 7821 3319 4331 5287	31435 136. 6779 104. 3262 108. 5154 166. 5494 61.	3 95.5 7 17.8 3 28.2 0 57.2
630 640 642 653 656 673	631 641 654 675 681	000000000000000000000000000000000000000	30 30 30 30 30 30 30 35	5100 19200 2400 13800 14500	24300 21300 21300 21300 24300 21300	27390 1670 19780 2777 9819 17647	5013 16141 14218 2732 12978 18631	29818 3596 18707 3412 11401 13176	12549 9425 17243 2345 10712 21275	24991 4047 18888 2533 12985 15145	20831 97.1 6490 127.1 17956 93.1 2738 114.1 11738 85.1 16875 116.4	3 30.5 84.3 1 12.9 48.3 79.2
682 683 712 TOTAL	683 687 713	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	35	3000 23200	9600 18300 33500 282000	2646 2400 24077 155819	2088 3717 20964 157698	2943 1899 24936 157441	2983 1869 25092 159197	1926 3543 24061 158611	2473 88.3 2734 91. 23980 103.4 157939 105.4	14.9

R1: ROUTE PROFILE

Purpose	This table lists the volumes on the sequential links of a route so they can be analyzed. The output for each requested route is reported on a separate page. Each link of the route is listed on a row.
How to Read	ANODE is the end of a link with the smaller number. BNODE is the end of a link with the larger number. The practice of listing the smaller number link in the left column may obscure the sequential numbering of links. Just mentally reverse the order of the listed nodes to help make the sequential listing apparent from one row to the next.
	 F is the functional class. Refer to the input coding to determine what codes denote what class. DIST is the length of the link. SPEED is the originally assigned link speed. COUNT is the actual counted volume on a link; if a count was not made on the link, then 0 appears. CAP is the input link capacity.
	VOL 1 is the assigned volume from the first iteration. VOL 2 is the assigned volume from the second iteration. VOL 3 is the assigned volume from the third iteration. VOL 4 is the assigned volume from the fourth iteration. VOL 5 is the assigned volume from the fifth iteration. VOL 6 is the assigned volume from the weighted assignment.
How to Use	These tables can be used to assess the validity of assignments on sequential links of a specified route.

.

.

,

TABLE	R1						ROUTE	1 PROF	ILE			
ANODE	BNODE	F	DIST	SPEED	COUNT	CAP	VOL 1	VOL 2	VOL 3	VOL 4	VOL 5	VOL 6
364 371 371 520 522 523 524 540 540	372 372 521 521 522 523 524 541 541 545	- 0000000333	0.25 0.38 0.22 0.21 0.38 0.38 0.33 0.15 0.12 0.16	40 45 45 45 45 45 45 45 45 45	14500 15000 15500 16800 18100 18500 19000 21000 23800 21000	33500 33500 33500 33500 33500 33500 33500 33500 33500 33500 33500	16195 17975 17284 17284 22126 22142 22595 24542 24542 24542 24873	18708 19457 19761 26581 26597 27047 29318 29318 28325	14186 14922 15423 15423 19435 19451 19882 21862 21862 21862 21428	16862 17611 18238 18238 23614 23630 24086 26120 26120 26156	16110 16859 17470 17470 22507 22523 22978 25030 25030 25159	16278 17179 17530 17530 22668 22684 23133 25184 25184 25044
565 566 567 568 569	567 568 569	333	0.12 0.07 0.26 0.13 0.30	45 45 45 45	20700 21600 22300 23000 22900	33500 33500 33500 33500 33500	25897 29599 28575 29028 30393	28958 40548 45364 45839 37440	22226 27045 26032 25762 28293	27000 32102 30224 30661 31165	26023 31254 29239 29734 30647	25880 31728 31114 31435 31261

•

L1: LIST OF VOLUMES AND SPEEDS FOR UPDATED LINKS

Purpose		ents the assignments from each of the iterations. The nalyze the stability of the assignment.						
How to Read	 ANODE is the end of a link with the smaller number. BNODE is the end of a link with the larger number. DIST is the length of the link. FC is the functional class. Refer to the input coding to determine what codes denote what class. COUNT is the actual counted volume on a link; if a count was not made on the link, then 0 appears. CAP is the input link capacity. VOL 1 is the assigned volume from the first iteration. VOL 2 is the assigned volume from the second iteration. VOL 3 is the assigned volume from the fourth iteration. VOL 4 is the assigned volume from the fifth iteration. VOL 5 is the assigned volume from the weighted assignment. SPD is the link speed used for the listed iteration. V/C is the volume to capacity ratio which results from the assignment of that iteration. , +, #, or * are used to flag links whose assigned volumes grossly exceed capacity. 							
	Symbol	<u>V/C Ratio Range</u>						
	• + # *	0.00 to 1.24 1.25 to 1.49 1.50 to 1.99 2.00 to 10.0						
How to Use	link and evaluation and/or speed	n be used to check length and capacity coding for each te the stability of each link assignment. If the volume on a link are fluctuating greatly from iteration to articular assignment is very sensitive to small changes.						

	TYLE	85-85	-1 (CAPACITY R	ESTRAIN	IT					WEIGHTED	DEC 8, 1988
TABLE L1						LIST OF	VOLUME	S AND S	SPEEDS P	OR UPDA1	TED LINKS	
ANOD	E BNODE	DIST	FC	CAPACITY	VOL 1 SPD 1	VOL 2 SPD 2	VOL 3 SPD 3	VOL 4 SPD 4	VOL 5 SPD 5	VOL 6 SPD 6		V/C V/C V/C V/C V/C 1 2 3 4 5 6
30	1 307	2.08	E	7200	549 40.0	536 43.5	545 43.5	544 43.5	545 43.5	544 42.9		0.1 0.1 0.1 0.1 0.1 0.1
30	4 402	0.22	1	49000	21447 55.0	20164 60.0	20176 60.0	19958 60.0	20129 60.0	20307 60.0		0.4 0.4 0.4 0.4 0.4 0.4
30	5 402	2 0.39	C	26900	17415 54.4	16092 57.1	16053 57.1	15833 58,5	16002 58.5	16204 57.1		0.6 0.6 0.6 0.6 0.6
30	5 306	5 1.71	C	26900	17425 54.9	17174 58.0	16065 58.0	16969 58.3	16011 58.3	16600 57.6		0.6 0.6 0.6 0.6 0.6
30	6 316	6 0.49	C	29500	19173 55.5	17686 58.8	17818 58.8	17501 58.8	17693 58.8	17901 58.8		0.6 0.6 0.6 0.6 0.6
30	6 307	0.69	E	7200	929 39.8	916 43.1	925 43.1	924 43.1	925 43.1	924 42.7		0.1 0.1 0.1 0.1 0.1 0.1
30	6 321	0.38	E	4000	2543 35.1	1320 37.4	2552 38.0	1332 37.4	2481 38.0	2101 37.4		0.6 0.3 0.6 0.3 0.6 0.5
30	8 309	> 1.44	E	7200	2268 49.9	3587 54.3	3563 54.0	3784 54.0	3613 54.0	3432 53.3		0.3 0.5 0.5 0.5 0.5 0.5
30	9 310	0.82	E	7200	2201 50.2	3520 54.7	3496 54.1	3717 54.1	3546 54.1	3365 53.5		0.3 0.5 0.5 0.5 0.5 0.5
31	0 311	1.27	E	7200	404 39.9	412 43.3	245 43.3	269 43.3	256 43.3	302 42.8		0.1 0.1 0.0 0.0 0.0 0.0
31	0 415	2.09	E	7200	2654 44.9	4233 48.8	4068 48.4	4297 48.2	4130 48.2	3945 47.9		0.4 0.6 0.6 0.6 0.6 0.5
31	0 312	2 0.98	E	7200	217 40.0	503 43.6	495 43.6	513 43.6	500 43.6	460 42.9		0.0 0.1 0.1 0.1 0.1 0.1
31	1 417	0.50	E	7200	253 40.0	241 43.5	94 43.5	103 43.5	105 43.5	145 42.9		0.0 0.0 0.0 0.0 0.0 0.0
31	2 313	5 1.22	E	7200	92 40.0	1388 43.6	1396 43.6	1378 43.6	1391 43.6	1194 43.1		0.0 0.2 0.2 0.2 0.2 0.2
31	3 314	0.18	E	8200	330 40.0	1852 43.2	1634 43.2	1616 43.2	1629 43.2	1466 43.2		0.0 0.2 0.2 0.2 0.2 0.2
31	3 320	0.90	£	5600	314 40.0	540 43.5	314 43.5	314 43.5	314 43.5	348 42.9		0.1 0.1 0.1 0.1 0.1 0.1

SELECTED LINKS

CUTOFF PARAMETERS

Purpose	This table appears when using an "all-or-nothing" assignment and will not appear with the usual capacity-restraint output. This is a printout of input values.
	The intent of the input is to reduce the amount of printed output zonal interchange volumes. For a given node, the most restrictive of the three controls will apply. Either no more than a certain percent of the zonal interchanges on a given link will be printed, interchanges with a volume less than the cutoff will not be printed, or no more than a certain number of zonal interchanges will be printed.
How to Read	ANODE is one end of a link. BNODE is the other end of the link. PER CENT (.GT.) is the value of the cutoff parameter. VOLUME (.LT.) is the value of the cutoff parameter. ZONE PAIRS (.GT.) is the value of the cutoff parameter.
How to Use	This output is simply a reference to document certain inputs.

SELECTED LINK		CUT OFF PARAMETERS			
ANODE	BNODE	PER CENT (.GT.)	VOLUME (.LT.)	ZONE PAIRS (.GT.)	
789	822	25	0	32767	
850	851	100	32767	32767	
534	610	100	0	15	

•

SELECTED LINKS

TRIP INTERCHANGES LOADED ON LINK

Purpose	This table lists the zones whose trips traverse certain links.		
How to Read	 TRIP INTERCHANGES LOADED ON LINK is the link under consideration. AZONE is one zone of a pair with trips on the link. BZONE is the other zone of a pair with trips on the link. TOTAL is the total number of two-way trips between the two zones on the link under consideration. AZONE-BZONE is the number of assigned trips from zone A to zone B on the link under consideration. BZONE-AZONE is the number of assigned trips from zone B to zone A on the link under consideration. 		
How to Use	This output can be checked to determine whether the placement of zonal interchanges on certain links seems reasonable.		

TYLER 85-85-1

DEC 16, 1988

•

TRID	INTEDCHANCES	1.04050	~		700	022	022	700
IRTE	INTERCHANGES	LUADED	UN	LINK	(07	044	022	103

	ZONE TO ZONE TRIPS		
AZONE BZONE	TOTAL	AZONE-BZONE	BZONE - AZONE
AZONE BZONE 94 79 92 38 94 38 35 79 97 38 94 91 92 53 240 229 94 53 94 229 94 53 94 229 35 91 35 53 92 70 94 237 247 234 92 48 92 52 97 53 30 79 94 70 97 70 92 37 247 237 92 45	TOTAL 1151 826 765 743 642 624 586 520 452 439 420 418 413 403 340 350 348 340 329 328 322 322 310 307	AZONE -8ZONE 576 413 382 372 321 312 293 260 227 220 210 209 207 201 209 207 201 209 207 201 200 175 174 170 165 164 161 158 155	BZONE - AZONE 575 413 383 371 321 312 293 260 225 219 210 209 206 202 200 175 174 170 164 161 161 157 153
35 237 92 73	295 285	148 142	147 143
	50523		L

LISTING OF TRIPS FOR THIS SELECTED LINK CUT OFF AT 25.0 PER CENT

96

WINDOWING

S1: INPUT EXTERNAL STATION LINKS

Purpose	This table is part of the "Windowing" output. It lists the links intersected by the cordon line used to define the windowed area.				
How to Read	Each row of the output lists the link node endpoints.				
How to Use	The analyst can check the listed links to insure that the cordon line was drawn as intended. The external station links must be selected so that a centroid does not become an external station. To insure that a centroid does not become an external station, the cordon line must intersect a centroid connector such that the centroid is inside the cordoned subarea.				
	The last single number (one node or centroid number) in a row tells the computer which side of the cordoned area to use (i.e., inside or outside).				

DEC 16, 1988

TABLE S1

. .

INPUT EXTERNAL STATION LINKS

472 465 464 476 477 485 484	1 475 2 478 3 483 497
486	497
496	4
510 500	4 499
609	608
531	5 501
532 613	501 12
628	12
627	615
625	626
624 624	502 11
623	622
658	10
659 670	661 9
668	9 665
666	665
667 471	8 473
6	
WINDOWING

S2: NODE TYPES FOUND FROM EXTERNAL STATION LINKS

Purpose	This table describes the relationship of the nodes to the windowed area.				
How to Read	This table is a matrix-chart. There are fifty entries per row. The top or horizontal axis scale is numbered in increments of five to assist in determining the number of the node in each of the fifty columns. By using the codes printed immediately above the horizontal scale, one can determine the relationship of any node to the windowed portion of the network.				
	E: denotes an external station node. I: denotes a node inside the subarea. N: denotes a node not connected to the network. O: denotes a node outside the subarea.				
How to Use	The table can be reviewed to make sure the windowed area was coded				
	as intended.				

DEC 16, 1988

. .

TABLE S2 NODE TYPES FOUND FROM EXTERNAL STATION LINKS (I = INSIDE, O = OUTSIDE, N = NOT IN NETWORK, E = EXTERNAL STATION, U = UNDETERMINED) NODE 27 EXTERNAL STATIONS

70 NODES/ZONES NOT CONNECTED IN NETWORK

44 NODES/ZONES IN SUBAREA

857 NODES/ZONES OUTSIDE OF SUBAREA

0 NODES/ZONES UNDETERMINED

WINDOWING

S3: RENUMBERED SUBAREA CENTROIDS AND EXTERNAL STATIONS

Purpose	This table lists the renumbering which occurred as a result of the windowing.
How to Read	NEW ZONE is the zone number of the "windowed" network. OLD ZONE is the zone number of the "regular" network.
How to Use	This table is used to relate the windowed output to the regular network numbering scheme.

DEC 16, 1988

TABLE	S3 RENUMBERED SUBAREA CENTROIDS AND EXTERNAL STATIONS (E INDICATES AN EXTERNAL STATION)														
NEW ZONE	OLD ZONE	NEW ZONE	OLD ZONE	NEW ZONE	OLD ZONE	NEW ZONE	OLD ZONE	NEW ZONE	OLD ZONE	NEW ZONE	OLD ZONE	NEW ZONE	OLD ZONE	NEW ZONE	OLD ZONE
1 9 17E 25E 33E	1 9 476 531 628	2 10 18E 26E 34E	2 10 477 532 658	3 11 19E 27E 35E	3 11 484 609 659	4 12 20E 28E 36E	4 12 485 613 666	5 13E 21E 29E 37E	5 464 486 623 667	6 14E 22E 30E 38E	6 465 496 624 668	7 15E 23E 31E 39E	7 471 500 625 670	8 16E 24E 32E	8 472 510 627

WINDOWING

S4: TRIPS BY NUMBER OF CORDON CROSSINGS

Purpose	This output tells how many trips crossed the windowing cordon line and tells the trip origin with respect to the cordon line.
How to Read	 NUMBER OF CORDON CROSSINGS indicates how many times the trips on that row crossed the cordon line. TRIPS FOR ORIGIN INSIDE is the number of trips with their origin inside of the cordon line. TRIPS FOR ORIGIN OUTSIDE is the number of trips with an origin outside of the cordon line.
How to Use	This output tells the travel activity with respect to the cordon.

۰,

DEC 16, 1988

,

TABLE S4	TRIPS BY NUMBER OF CORDON CROSSINGS

NUMBER OF Cordon Crossings	TRIPS FOR ORIGIN INSIDE	TRIPS FOR ORIGIN OUTSIDE
0	6724. 41335.	465076. 41224.
ż	273.	7317.

CUMULATIVE TIME = 0.0357 MINUTES TIME SINCE LAST QUERY = 0.0273 MINUTES

1

\$STOP

MESSAGE SUMMARY: MESSAGE NUMBER - COUNT

201

FOCUSING

SUBAREA SECTOR EQUALS

Purpose	This table lists the sector centroids and also the centroids which are equated to the sector centroids.
How to Read	The numbers to the right of the EQUAL on this table may specify ranges of centroids by placing the beginning of the range on the card in one field and immediately following this field by a field with the last centroid of the range with a minus sign in front of the centroid number.
How to Use	Trees will not be built for centroids equated to sector centroids. The exception to this is that trees will be built for all zones equated to the same zone (sector centroids). An entry is generated for each sector centroid, and if it is additionally equated to itself, a warning message will be printed.

TYLER 85-85-1

DEC 16, 1988

. -

SUBAREA SECTOR EQUALS

58 EQUAL 71 EQUAL 75 EQUAL 81 EQUAL 86 EQUAL 97 EQUAL 100 EQUAL 107 EQUAL 114 EQUAL 119 EQUAL 138 EQUAL 139 EQUAL 151 EQUAL 151 EQUAL 162 EQUAL 173 EQUAL 187 EQUAL 59 57 74 75 -61 62 78 64 63 65 215 216 66 91 -70 72 219 -80 76 83 88 85 77 82 84 87 92 -96 98 101 -103 105 109 -90 99 108 111 -113 104 106 110 115 116 120 122 131 220 127 129 130 140 141 137 152 154 158 159 161 117 118 121 123 133 -135 132 138 148 -150 153 156 157 163 172 160 170 171 174 185 186 188 189 197 198 193 EQUAL 190 - 192 194 - 196 201 EQUAL 200 203 204 214 218 EQUAL 202 217 CUMULATIVE TIME = 0.0275 MINUTES TIME SINCE LAST QUERY = 0.0005 MINUTES

106

\$STOP

MESSAGE SUMMARY: MESSAGE NUMBER - COUNT

201 252

FOCUSING

E1: CENTROID TO SECTOR EQUIVALENCES

Purpose	This table lists the internal and external zone numbers. The sector centroids and also the centroids which are equated to the sector centroids are listed in this table.
How to Read	The numbers to the left of the TO on this table indicate all zone numbers of centroids. The numbers to the right of the TO on this table specify either the zone centroids or the sector centroids. If the zone centroids are within the defined subarea or in the transition ring area, the numbers remain the same as the zone numbers. If the zone centroids are located in the outside of the transition ring area, the zone numbers to the left of the TO are aggregated to the sector centroids indicated to the right of the TO on this table.
How to Use	Trees will not be built for centroids equated to sector centroids. The exception to this is that trees will be built for all zones equated to the same zone (sector centroids). An entry is generated for each sector centroid, and if it is additionally equated to itself, a warning message will be printed.

CENTROID TO SECTOR EQUIVALENCES

DEFAULT EQUIVALENCES HAVE BEEN SET TO SECTOR219

LAST NODE NUMBER FOR THIS NETWORK IS 998 NUMBER OF NODES CONNECTED IN THIS NETWORK = 928 NUMBER OF ONE WAY LINKS = 3078

TREE	BUILD T	IME =	0.	01 MII	NUTES.								
	LIST	511	510	500	609	531	532	613	612	629	630	631	632
	LIST	632	634	635	636	637	647	648	649	678	679	680	681
	LIST	681	673	672	669	668	666	667	471	472	467	466	465
	LIST	465	464	476	477	485	484	486	496	512	511	0	0
	DIRECT	647	646	0	0	0	0	0	0	0	0	0	0
	END	0	0	0	0	0	0	0	0	0	0	0	0
NUMBE	ER OF TU	RNING	MOVENEN	ITS TO	SAVE	=	2147						

TABLE E1

FRATAR

\$SUM TRIP ENDS (for base year)

Purpose	This table lists the existing trips by zone. If the Fratar model is used only for external trips, then the listing will be for the external thru trips. This table facilitates checking the input.
How to Read	 ZONE NO. is the centroid node number of the zone. NO. TRIPS ENTERING is the input number of trips from this zone entering the study area. NO. TRIPS EXITING is the input number of trips leaving the study area to this zone. NO. INTRAZONAL is the number of trips within a zone. NO. TRIP ENDS is the sum of trips entering and trips exiting. NO. ZONES ENTERING is the number of zones with nonzero interchanges. NO. ZONES EXITING is the number of zones with nonzero interchanges.
How to Use	The analyst should check this output to verify the input data. If the Fratar model is being used only for external trip analysis, then the entries for all zones other than the external should be zero.

,

FRATAR TYLER 85-85-1 EXTERNAL THRU

DEC 16,	1988
---------	------

.

ZONE NO.	NO.TRIPS Entering	NO.TRIPS EXITING	NO. INTRAZONAL	NO. TRIP ENDS	NO.ZONES ENTERING	NO.ZONES EXITING
208	0	0	0	0	0	0
209	Ō	Ó	Õ	Ŏ	õ	ŏ
210	0	0	0	0	Ó	Ő
211	0	0	0	0	0	0
212	0	0	Q	0	0	0
213	Q	0	0	0	0	0
214	0	0	0	0	0	0
215	0	0	<u>o</u>	0	0	0
216 217	0	0	0	0	0	0
218	0	0	0	0	0	0
219	0	0	0	0	0	0
220	0	ů 0	0	0	0	0
221	760	760	Ö	1520	20	18
222	1	1	0	2	1	10
223	181	181	ŏ	362	22	23
224	7	7	ŏ	14	22 7	7
225	21	21	ō	42	13	12
226	7	7	õ	14	6	6
227	77	78	Ō	155	11	13
228	674	674	0	1348	18	19
229	121	121	0	242	23	22
230	1	1	0	2	1	1
231	9	9	0	18	9	9
232	51	51	0	102	19	18
233	21	21	0	42	9	10
234	87	87	Q	174	21	22 5 7
235 236	7	7	0 0	14	6	5
230	14 69	14 69	0	28 138	8 13	15
238	107	107	0	214	11	15 11
239	13	13	Ő	26	9	, i 9
240	195	194	ŏ	389	20	21
241	18	18	ŏ	36	ĩĩ	10
242	2	2	ŏ	4	2	2
243	2	75	õ	150	18	20
244	3	2	Õ	5	3	2
245	38	38	0	76	8	27
246	0	0	0	0	0	0
247	132	132	0	264	19	19
248	9	9	0	18	5	6
249	73	74	0	147	18	17
250	12	12	0	24	7	7
251	1	1	0	2	1	1
252	10	10	0	20	7	6
TOTALS	2796	2796	0	5592		

. ·

FRATAR

D1: CONVERGENCE DISTRIBUTION AT THE END OF ITERATION

Purpose	The Fratar model employs growth factors to multiply present trips in order to estimate future trips. The nature of the Fratar model is such that the predicted trips from A to B may not equal the number of trips from B to A. Successive iterations are used to make the model converge toward agreement. This output indicates the level of agreement.				
How to Read	FACTOR is the ratio of estimated to actual trips. NUMBER is the number of zones with a given factor.				
How to Use	Most of the zones should have a factor of near 1.0 after the final iteration. If there are very many zones with low or high factors, the model is not properly converging. The input trip interchange table and growth factors should then be reviewed.				

•

CONVERGENCE DISTRIBUTION AT THE END OF ITERATION 9

	FACTOR	NUMBER
LESS THAN	0.90	4
	0.90	1
	0.91	1
	0.92	2
	0.93	0
	0.94	2
	0.95	0
	0.96	0
	0.97	0
	0.98	0
	0.99	0
	1.00	231
	1.01	5
	1.02	2
	1.03	1
	1.04	0
	1.05	0
	1.06	1
	1.07	0
	1.08	0
	1.09	0
	1.10	0
GREATER THAN	1.10	2

TABLE D1(9)

ι.

. -

FRATAR

\$SUM TRIP ENDS (for future year)

Purpose	This table lists the projected trips by zone. If the Fratar model is used only for external trips, then the listing will be for the external thru trips. This table facilitates checking the input.
How to Read	 ZONE NO. is the centroid node number of the zone. NO. TRIPS ENTERING is the projected number of trips from this zone entering the study area. NO. TRIPS EXITING is the projected number of trips leaving the study area to this zone. NO. INTRAZONAL is the number of trips within a zone. NO. TRIP ENDS is the sum of trips entering and trips exiting. NO. ZONES ENTERING is the number of zones with nonzero interchanges. NO. ZONES EXITING is the number of zones with nonzero interchanges.
How to Use	This table gives the projected number of trips to and from the external zones. The values should be input to the appropriate zones for running the assignment models.

ς.

FRATAR TYLER 85-85-1 EXTERNAL THRU

DEC 16, 1988	
--------------	--

ZONE NO.	NO.TRIPS ENTERING	NO.TRIPS Exiting	NO. INTRAZONAL	NO. TRIP ENDS	NO.ZONES ENTERING	NO.ZONES EXITING
208	0	0	0	0	0	0
209	Ó	Ō	Ō	ŏ	ŏ	ŏ
210	Ó	Ō	0	Ō	Ō	õ
211	Ō	Ō	Ō	õ	ō	ŏ
212	Ő	Ō	Ō	Ő	Ō	õ
213	Ő	Ö	Ō	Ō	Ō	Õ
214	0	0	Ó	Ō	0	Õ
215	0	0	0	0	0	Ō
216	0	0	0	0	Ó	Ô
217	0	0	0	0	0	0
218	0	0	0	0	0	0
219	0	0	0	0	0	0
220	0	0	0	0	0	0
221	1122	1122	0	2244	20	18
222	1	1	Q	2	1	1
223	276	276	0	552	22 7	· 23 7
224	_7	8	0	15	.7	7
225	39	38	0	\overline{n}	13	12
226	11	11	0	22	6	6
227	117	119	0	236	11	13
228	965	965	Ó	1930	18	19
229	179 1	177	0	356	23	22
230		1 10	0	2	1 9	1
231 232	11 77	76	0	21 153	19	9 18
233	28	29	Ő	57	9	10
234	122	121	Ö	243	21	22
235	13	10	Ö	23	6	22 5
236	27	27	ő	54	8	7
237	88	89	ŏ	177	13	15
238	135	136	õ	271	11	11
239	18	20	õ	38		9
240	248	250	õ	498	20	21
241	29	28	õ	57	11	10
242	2	2	Ō	4	2	2
243	120	120	Ō	240	18	20
244	5	4	0	9	3	2
245	56	55	0	111	8	7
246	0	0	0	0	0	Ó
247	171	170	0	341	19	19
248	13	15	0	28	5	6
249	113	114	0	227	18	17
250	19	19	0	38	7	7
251	1	1	0	2	1	1
252	12	12	0	24	7	6
TOT 11 0				8053		
TOTALS	4026	4026	0	8052		