TTI: 9-1002

MASH TEST 3-37 OF THE TXDOT 31-INCH W-BEAM DOWNSTREAM ANCHOR TERMINAL

Test Report 9-1002-6

Cooperative Research Program

TEXAS TRANSPORTATION INSTITUTE THE TEXAS A&M UNIVERSITY SYSTEM COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/9-1002-6.pdf

		Technical Report Documentation Page						
1. Report No. FHWA/TX-12/9-1002-6	2. Government Accession No.	3. Recipient's Catalog No.						
4. Title and Subtitle		5. Report Date						
MASH TEST 3-37 OF THE TXDO		October 2011						
DOWNSTREAM ANCHOR TERM	IINAL	Published: December 2011						
		6. Performing Organization Code						
7. Author(s)		8. Performing Organization Report No.						
Dusty R. Arrington, Roger P. Bligh	, and Wanda L. Menges	Test Report No. 9-1002-6						
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)						
Texas Transportation Institute Provi	6							
The Texas A&M University System	1	11. Contract or Grant No.						
College Station, Texas 77843-3135		Project 9-1002						
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered						
Texas Department of Transportation	1	Test Report:						
Research and Technology Implement	ntation Office	September 2009–August 2011						
P.O. Box 5080		14. Sponsoring Agency Code						
Austin, Texas 78763-5080								
15. Supplementary Notes								
5 1 1	ith the Texas Department of Tra	insportation and the Federal Highway						
Administration.								
Project Title: Roadside Safety Devi	000							
URL: http://tti.tamu.edu/documents	<u>s/9-1002-6.pdf</u>							

16. Abstract

The objective of this study was to develop a suitable replacement for the downstream "turndown" guardrail anchor system. The "turndown" guardrail anchor system does not meet mandated test requirements under MASH for upstream anchor application terminals; however, it does meet downstream requirements for previous crash testing standards. Due to its low cost, TxDOT has used this anchor system with 27-inch guardrail in downstream applications when it is outside of the clear zone of opposing traffic. With the new federally mandated increase in guardrail height, TxDOT is considering increasing its standard guardrail height to 31 inches. This increase in height increases the risk of a small sedan wedging under the guardrail and snagging on the "turndown" anchor system. The current "turndown" anchor design does not include a releasable connection detail for reverse direction impacts. For this reason, TxDOT has decided to develop a new downstream anchor system rather than test the 31-inch configuration of the "turndown" anchor system.

This anchor system utilized standard parts found in the AASHTO-ARTBA-AGC Guide to Standardized Highway Barrier Hardware when possible. This terminal is nonproprietary to allow for competitive bidding to reduce costs. As this system will be developed for the sole purpose of anchoring the downstream end of guardrail system, the testing matrix will include the optional crash test (3-37) found in MASH for testing terminals in a reverse direction impact condition.

17. Key Words		18. Distribution Statement					
Guardrails, Terminals, End Treatme	nts, W-Beam,	No restrictions. This document is available to the					
Breakaway Cable Terminal, Longitu	· · ·	public through NTIS:					
Crash Testing, Roadside Safety		National Technical Information Service					
		Alexandria, Virginia 22312					
		http://www.ntis.gov					
19. Security Classif. (of this report)	20. Security Classif. (of the	his page)	21. No. of Pages	22. Price			
Unclassified	Unclassified		72				

MASH TEST 3-37 OF THE TXDOT 31-INCH W-BEAM DOWNSTREAM ANCHOR TERMINAL

by

Dusty R. Arrington Engineering Research Associate Texas Transportation Institute

Roger P. Bligh, P.E. Research Engineer Texas Transportation Institute

and

Wanda L. Menges Associate Research Specialist Texas Transportation Institute

Report 9-1002-6 Project 9-1002 Project Title: Roadside Safety Device Crash Testing Program

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > October 2011 Published: December 2011

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above-listed agencies assume no liability for its contents or use thereof. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, #78550).

TTI PROVING GROUND DISCLAIMER

The full-scale crash test reported herein was performed at Texas Transportation Institute (TTI) Proving Ground. TTI Proving Ground is an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards. The results of the crash testing reported herein apply only to the article being tested.

Wanda L. Menges, Research Specialist Deputy Quality Manager

Richard A. Zimmer, Senior Research Specialist Test Facility Manager Quality Manager Technical Manager

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project director for this research was Rory Meza, P.E. with the Design Division. Bobby Dye with the Design Division served as project advisor and was also actively involved in this research. The TxDOT research engineer was Wade Odell, P.E. with the Research and Technology Implementation Office. The authors acknowledge and appreciate their guidance and assistance.

TABLE OF CONTENTS

LIST OF FIGURES	ix
LIST OF TABLES	x
CHAPTER 1. INTRODUCTION	1
1.1 INTRODUCTION	
1.2 BACKGROUND	2
1.3 OBJECTIVES/SCOPE OF RESEARCH	2
CHAPTER 2. SYSTEM DETAILS	
2.1 TEST ARTICLE DESIGN AND CONSTRUCTION	
2.2 MATERIAL SPECIFICATIONS	
2.3 SOIL CONDITIONS	
CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA	9
3.1 CRASH TEST MATRIX	9
3.2 EVALUATION CRITERIA	
CHAPTER 4. CRASH TEST PROCEDURES	
4.1 TEST FACILITY	
4.2 VEHICLE TOW AND GUIDANCE PROCEDURES	
4.3 DATA ACQUISITION SYSTEMS	
4.3.1 Vehicle Instrumentation and Data Processing	
4.3.2 Anthropomorphic Dummy Instrumentation	
4.3.3 Photographic Instrumentation and Data Processing	
CHAPTER 5. CRASH TEST RESULTS	
5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS	
5.2 TEST VEHICLE	
5.3 WEATHER CONDITIONS	
5.4 TEST DESCRIPTION	
5.5 DAMAGE TO TEST INSTALLATION	
5.6 VEHICLE DAMAGE	
5.7 OCCUPANT RISK FACTORS	
CHAPTER 6. SUMMARY AND CONCLUSIONS	
6.1 ASSESSMENT OF TEST RESULTS	
6.1.1 Structural Adequacy	
6.1.2 Occupant Risk	
6.1.3 Vehicle Trajectory	
6.2 CONCLUSIONS	

TABLE OF CONTENTS (CONTINUED)

Page

CHAPTER 7. IMPLEMENTATION STATEMENT	. 27
REFERENCES	. 29
APPENDIX A. DETAILS OF THE TEST ARTICLE	. 31
APPENDIX B. CERTIFICATION DOCUMENTATION	. 37
APPENDIX C. SOIL STRENGTH DOCUMENTATION	. 45
APPENDIX D. TEST VEHICLE PROPERTIES AND INFORMATION	. 47
APPENDIX E. SEQUENTIAL PHOTOGRAPHS	. 51
APPENDIX F. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS	. 55

LIST OF FIGURES

Figure

Figure 2.1.	Details of the TxDOT 31-inch W-Beam Downstream Anchor	
	Terminal Installation.	7
Figure 2.2.	TxDOT 31-inch W-Beam Downstream Anchor Terminal before	
	Test No. 420021-1.	8
Figure 5.1.	Vehicle/Installation Geometrics for Test No. 420021-1	14
Figure 5.2.	Vehicle Before Test No. 420021-1.	15
Figure 5.3.	Vehicle/Installation Positions after Test No. 420021-1.	17
Figure 5.4.	Installation after Test No. 420021-1.	18
Figure 5.5.	Vehicle after Test No. 420021-1.	19
Figure 5.6.	Interior of Vehicle for Test No. 420021-1.	20
Figure 5.7.	Summary of Results for MASH Test 3-37 on the TxDOT 31-inch W-Beam	
	Downstream Anchor Terminal 1.	21
Figure E1.	Sequential Photographs for Test No. 420021-1 (Overhead and Frontal	
	Views).	51
Figure E2.	Sequential Photographs for Test No. 420021-1 (Rear View).	53
Figure F1.	Vehicle Angular Displacements for Test No. 420021-1	55
Figure F2.	Vehicle Longitudinal Accelerometer Trace for Test No. 420021-1	
	(Accelerometer Located at Center of Gravity).	56
Figure F3.	Vehicle Lateral Accelerometer Trace for Test No. 420021-1 (Accelerometer	
	Located at Center of Gravity).	57
Figure F4.	Vehicle Vertical Accelerometer Trace for Test No. 420021-1	
	(Accelerometer Located at Center of Gravity).	58
Figure F5.	Vehicle Longitudinal Accelerometer Trace for Test No. 420021-1	
	(Accelerometer Located Over Rear Axle).	59
Figure F6.	Vehicle Lateral Accelerometer Trace for Test No. 420021-1 (Accelerometer	
_	Located over Rear Axle).	60
Figure F7.	Vehicle Vertical Accelerometer Trace for Test No. 420021-1	
-	(Accelerometer Located over Rear Axle).	61

LIST OF TABLES

Table

Page

Table 6.1.	Performance Evaluation Summary for MASH Test 3-37 on the TxDOT					
	31-inch W-Beam Downstream Anchor Terminal.					
Table D1.	Vehicle Properties for Test No. 420021-1.	47				
Table D2.	Exterior Crush Measurements for Test No. 420021-1					
Table D3.	Occupant Compartment Measurements for Test No. 420021-1.	49				

CHAPTER 1. INTRODUCTION

1.1 INTRODUCTION

This project was set up to provide Texas Department of Transportation (TxDOT) with a mechanism to quickly and effectively evaluate high-priority issues related to roadside safety devices. Roadside safety devices shield motorists from roadside hazards such as non-traversable terrain and fixed objects. To maintain the desired level of safety for the motoring public, these safety devices must be designed to accommodate a variety of site conditions, placement locations, and a changing vehicle fleet. Periodically, there is a need to assess the compliance of existing safety devices with current vehicle testing criteria and develop new devices that address identified needs.

Under this project, roadside safety issues were identified and prioritized for investigation. The selected safety issues were evaluated through crash data analyses, engineering analyses, computer simulation, dynamic impact testing, and full-scale crash testing as appropriate. Factors such as impact performance, maintenance, and cost were considered. Each roadside safety issue is addressed with a separate work plan, and the results are summarized in an individual test report.

One problem prioritized by the TxDOT review panel included the development of a suitable replacement for the downstream "turndown" guardrail anchor system. The "turndown" guardrail anchor system does not meet mandated test requirements under the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH) (1)* for upstream anchor application. However, it does meet downstream requirements for previous crash testing standards. Due to its low costs, TxDOT has used this anchor system with 27-inch guardrail in downstream applications when it is outside of the clear zone of opposing traffic. With the new federally mandated increase in guardrail height, TxDOT is considering increasing its standard guardrail height to 31 inches. This increase in height increases the risk of a small sedan wedging under the guardrail and snagging on the "turndown" anchor system. The current "turndown" anchor design does not include a releasable connection detail for reverse direction impacts. For this reason, TxDOT has decided to develop a new downstream anchor system rather than test the 31-inch configuration of the "turndown" anchor system.

The anchor system should utilize standard parts found in the American Association of State Highway and Transportation Officials-American Road and Transportation Builders Association-Association of General Contractors of America (AASHTO-ARTBA-AGC) *Guide to Standardized Highway Barrier Hardware* when possible (2). The terminal should be nonproprietary to allow for competitive bidding to reduce costs. As this system will be developed for the sole purpose of anchoring the downstream end of guardrail system, the testing matrix will include the optional crash test (3-37) found in *MASH* for testing terminals in a reverse direction impact condition.

1.2 BACKGROUND

AASHTO published *MASH* in October 2009. *MASH* supersedes *National Cooperative Highway Research Program (NCHRP) Report 350 (3)* as the recommended guidance for the safety performance evaluation of roadside safety features. Changes incorporated into the new guidelines include new design test vehicles, revised test matrices, and revised impact conditions.

The test matrix found in *NCHRP Report 350* and *MASH* for developing guardrail terminals has generally been costly for states to develop nonproprietary designs. The current *MASH* testing matrix includes a total of eight tests, inflating the cost for development of an end terminal to over \$500,000. For this reason, private entities have developed most of the systems that are currently available, which are considered proprietary to protect their extensive investment. This, combined with the increased cost due to the added complexity associated with safely redirecting, absorbing, or gating an impact upstream of the length of need (LON), have increased the cost of terminals.

Terminals developed for end-on impacts are required to have upstream anchorage and downstream anchorage of guardrails when inside the clear zone of opposing travel lanes. This, however, is not the case for downstream anchor systems installed outside of the clear zone of opposing travel lanes. By removing the end-on impact condition, an anchor system cost and complexity can be dramatically reduced. One instance of this is the TxDOT downstream "turndown" anchor system. The TxDOT "turndown" guardrail anchor system does not meet mandated test requirements under *MASH* for upstream anchor application. However, it does meet downstream requirements for previous crash testing standards. Due to its low cost, TxDOT has used this anchor system with 27-inch guardrails in downstream applications when it is outside of the clear zone of opposing traffic.

With the new federally mandated increase in guardrail height, TxDOT is considering increasing its standard guardrail height to 31 inches. This increase in height increases the risk of a small sedan wedging under the guardrail and snagging on the "turndown" anchor system. The current "turndown" anchor design does not include a releasable connection detail for reverse direction impacts. For this reason, TxDOT has decided to develop a new downstream anchor system rather than test the 31-inch configuration of the "turndown" anchor system.

1.3 OBJECTIVES/SCOPE OF RESEARCH

The objective of this test was to develop and evaluate the performance of the TxDOT 31-inch W-Beam Downstream Anchor Terminal according to the *MASH* standards for Test Level 3 (TL-3) terminals. The test performed was *MASH* test 3-37, which typically involves a 2270P (5004 lb) pickup truck impacting the critical impact point (CIP) of the terminal in the reverse direction of traffic at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test will evaluate the ability of the terminal to successfully release when a heavy vehicle impacts it. However, in the test reported here, the 1100C (2425 lb) small car was used to maximize the risk of wedging the vehicle under the raised 31-inch guardrail, increasing the risk of snagging on the anchor post. The anchor system used standard parts found in the AASHTO-

ARTBA-AGC *Guide to Standardized Highway Barrier Hardware* when possible. This terminal is nonproprietary to allow for competitive bidding to reduce costs.

This report gives the details of the TxDOT 31-inch W-Beam Downstream Anchor Terminal, test conditions, description of the test performed, and an assessment of the test results.

CHAPTER 2. SYSTEM DETAILS

2.1 TEST ARTICLE DESIGN AND CONSTRUCTION

The TxDOT 31-inch W-Beam Downstream Anchor Terminal had a total length of 118 ft–9 inches. The upstream end of the installation was anchored using a standard 31-inch ET terminal. The length of need was supported using a standard 72-inch W6×8.5 steel line post with an 8-inch wood blockout. Posts were spaced ever 75 inches with the rail splices falling at the mid-span between posts. This system provided a length of need of 87 ft–6 inches.

The test article is a modification of a breakaway cable terminal (BCT). All components of the terminal were standard, off-the-shelf parts from the AASHTO-ARTBA-AGC *Guide to Standardized Highway Barrier Hardware*. The terminal utilizes two 6-inch × 8-inch × 72-inch foundation tubes. In each foundation tube, a 6-inch × 8-inch wooden breakaway post was placed. These foundations were spaced 72 inches from center to center. The two foundation tubes were then linked together at ground level using two C3×5 channel sections. This design was a simplification of the original welded channel section found in the AASHTO-ARTBA-AGC *Guide to Standardized Highway Barrier Hardware*. A 9 ft-4.5 inch anchor rail segment was used to facilitate the attachment to a 31-inch guardrail installation with splices placed at the mid-span. This leads to a terminal length of only 9 ft-4 inches.

The anchor post was not bolted to the rail to prevent the rail from fracturing the anchor post in the event of a reverse direction impact. Instead, a standard "shelf angle bracket" (ARTBA #FPP02) supported the rail in the vertical direction in the event of a redirection impact upstream of the guardrail anchor terminal. A W-beam end section (ARTBA #RWE03a) was used to finish the end of the rail, and a standard breakaway anchor cable (ARTBA #FCA01) was used in conjunction with a guardrail anchor bracket (ARTBA #FPA01) to anchor the system. Figure 2.1 and Appendix A give further system details and installation details, and Figure 2.2 presents photographs of the installation.

2.2 MATERIAL SPECIFICATIONS

All rolled steel shapes were fabricated to meet American Society for Testing and Materials (ASTM) A36 specifications, and the foundation tubes, according to ASTM A500 grade B specifications. All other components were manufactured to meet specifications defined in the AASHTO-ARTBA-AGC *Guide to Standardized Highway Barrier Hardware*.

2.3 SOIL CONDITIONS

In accordance with Appendix B of *MASH*, soil strength was measured on the day of the crash test (see Appendix C, Figure C1). During construction of the TxDOT 31-inch W-Beam Downstream Anchor Terminal for the full-scale crash test, two W6×16 posts were installed in the

immediate vicinity of the terminal using the same fill materials and installation procedures followed for the terminal and used in the reference tests (see Appendix C, Figure C2).

As determined from the reference tests shown in Appendix C, Figure C2, the minimum static post load required for deflections of 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, is 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial reference installation). On the day of the test, April 20, 2011, load on the post at deflections of 5 inches, 10 inches, and 15 inches was 9515 lbf, 9242 lbf, and 8909 lbf, respectively. The strength of the backfill material met minimum requirements.

DOWNSTREAM TERMINAL	ELEVATION VIEW	(4) SEE NOTE 2b														· 22 →		The Texas A&M University System	Revisions: Texas Transportation Institute		1. 2011-04-05 GS DA Date Drawn By Scale Sheet No.	GES 1:30 2 of 5	3. Project No. Sheet Name	4. 420021-1 Downstream Terminal	5. TxDOT Downstream W-beam Terminal	
ARTBA					FPP02	FPB01	FMM02	FPA01	RWE03a	FCA01	FBB	FBB01	FBB03	FBX16a	FBX16a	FBX16a	FWC16a		indicated	set (5) at	at Post 1		ove	line.		
QTY.	2	2	2	1	1		1	1	1	1	20	4	2	8	4	2	18		herwise	le Bracl	allouts		1/2" at	pround		E
PART NAME	6 x 8 x 72" Foundation Tube	Tube Post for Terminal	Strut, Channel	Rail for Terminal	Shelf Angle Bracket	BCT Bearing Plate	BCT Post Sleeve	Guardrail Anchor Bracket	W-beam End Section	BCT Cable Anchor	Nut, Recessed Guardrail	Bolt, Button-head 1-1/4"	Bolt, Button-head 10"	Bolt, 5/8 -11 x 2 hex	Bolt, 5/8 -11 x 8 hex	Bolt, 5/8 -11 x 10 hex	Washer, 5/8 flat		2a. All hardware is A307 unless otherwise indicated.	2b. Rail is supported by Shelf Angle Bracket (5) at	2c. Parts 1, 2, 11, 13, and 15 - 17 callouts at Post 19	or 20 typical at both locations.	2d. Foundation Tube protrudes 1-1/2" above	cound me. 2e. Top edge of Strut at 2" above ground line.		
#	1	2	3	4	5	9	L	8	6	10	11	12	13	14	15	16	17		2а.	2b. Dort 3	2c.	or 20	2d.	ground line. 2e. Top e	l	

gniver U1-120024/gniver U
/Dinfing/Dinimer T
meanterwood 1-/120024/1102-0102/:T

Figure 2.2. TxDOT 31-inch W-Beam Downstream Anchor Terminal before Test No. 420021-1.

CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 CRASH TEST MATRIX

According to *MASH*, up to eight tests are recommended to evaluate W-beam guardrail terminals to test level three (TL-3). Details of these tests are described below.

- 1. **MASH test designation 3-30**: An 1100C (2425 lb) passenger car impacting the terminal end-on at a nominal impact speed and angle of 62 mi/h and 0 degree, respectively, with the quarter point of the vehicle aligned with the centerline of the nose of the terminal. This test is primarily intended to evaluate occupant risk and vehicle trajectory criteria.
- 2. *MASH* test designation 3-31: A 2270P (5000 lb) pickup truck impacting the terminal end-on at a nominal impact speed and angle of 62 mi/h and 0 degree, respectively, with the centerline of the vehicle aligned with the centerline of the nose of the terminal. This test is primarily intended to evaluate occupant risk and vehicle trajectory criteria.
- 3. **MASH test designation 3-32**: An 1100C (2425 lb) passenger car impacting the terminal end on at a nominal impact speed of 62 mi/h and the critical impact angle ranging from 5 to 15 degrees, with the centerline of the vehicle aligned with the centerline of the nose of the terminal. The test is primarily intended to evaluate occupant risk and vehicle trajectory criteria.
- 4. *MASH* test designation 3-33: A 2270P (5000 lb) pickup truck impacting the terminal end-on at a nominal impact speed of 62 mi/h and the critical impact angle ranging from 5 to 15 degrees, with the centerline of the vehicle aligned with the centerline of the nose of the terminal. The test is primarily intended to evaluate occupant risk and vehicle trajectory criteria.
- 5. *MASH* test designation 3-34: An 1100C (2425 lb) passenger car impacting the terminal at a nominal impact speed and angle of 62 mi/h and 15 degrees, respectively, with the corner of the bumper aligned with the critical impact point (CIP) of the length of need (LON) of the terminal. The test is primarily intended to evaluate occupant risk and vehicle trajectory criteria.
- 6. *MASH* test designation 3-35: A 2270P (5000 lb) pickup truck impacting the terminal at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively, with the corner of the bumper aligned with the beginning of the LON of the terminal. The test is primarily intended to evaluate structural adequacy and vehicle trajectory criteria.
- 7. *MASH* test designation 3-37: A 2270P (5000 lb) pickup truck impacting the terminal at a nominal impact speed and angle of 62 mi/h and 25 degrees,

respectively, midpoint between the nose and the end of the terminal in the reverse direction. This test is intended to evaluate the performance of a terminal for a "reverse" hit.

8. *MASH* test designation 3-38: A 1500C (3300 lb) passenger car impacting the terminal end-on at a nominal impact speed and angle of 62 mi/h and 0 degree, respectively, with the centerline of the vehicle aligned with the centerline of the nose of the terminal. This test is intended to evaluate the performance of a staged energy-absorbing terminal when impacted by a midsize vehicle.

The test reported here corresponds to *MASH* test designation 3-37. However, the vehicle used in the test reported here was the 1100C (2425 lb) small car due to its higher risk of wedging under the breakaway anchor cable in a reverse direction impact event. This, in turn, would lead to a higher risk of snagging on the anchor cable and anchor post, possibly causing elevated occupant risk numbers. The target impact point was 15 ft-7.5 inches upstream of downstream anchor post (37 inches upstream of post 18). This impact location was determined to be the CIP through review of the previous length-of-need test on the 31-inch guardrail with 8-inch blockouts (4).

The crash test and data analysis procedures were in accordance with the guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2 EVALUATION CRITERIA

The crash test was evaluated in accordance with the criteria presented in *MASH*. The performance of the TxDOT 31-inch W-Beam Downstream Anchor Terminal is judged on the basis of three factors: structural adequacy, occupant risk, and post-impact vehicle trajectory. Structural adequacy is judged on the ability of the TxDOT 31-inch W-Beam Downstream Anchor Terminal to contain and redirect the vehicle, or bring the vehicle to a controlled stop in a predictable manner. Occupant risk criteria evaluate the potential risk of hazard to occupants in the impacting vehicle, and, to some extent, other traffic, pedestrians, or workers in construction zones, if applicable. Post-impact vehicle trajectory is assessed to determine potential for secondary impact with other vehicles or fixed objects, creating further risk of injury to occupants of the impacting vehicle and/or risk of injury to occupants in other vehicles. The appropriate safety evaluation criteria from table 5-1 of *MASH* were used to evaluate the crash test reported here, and are listed in further detail under the assessment of the crash test.

CHAPTER 4. CRASH TEST PROCEDURES

4.1 TEST FACILITY

The full-scale crash test reported here was performed at Texas Transportation Institute (TTI) Proving Ground. TTI Proving Ground is an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The Texas Transportation Institute Proving Ground is a 2000-acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A&M University. Formerly an Air Force base, the site has large expanses of concrete runways and parking aprons well-suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the TxDOT 31-inch W-Beam Downstream Anchor Terminal evaluated under this project was along the edge of an out-of-service apron. The apron is an unreinforced jointed-concrete pavement in 12.5 ft \times 15 ft blocks nominally 8–12 inches deep. It is over 50 years old, and its joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE PROCEDURES

The test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be free-wheeling and unrestrained. The vehicle remained free-wheeling, i.e., no steering or braking inputs, until the vehicle cleared the immediate area of the test site, at which time brakes on the vehicle were activated to bring it to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, that measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw

rates, are ultra small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once the data are recorded, internal batteries back these up inside the unit, should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiating the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results. Each of the TDAS Pro units is returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology.

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being that of the initial impact.

4.3.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the driver's position of the 1100C vehicle. The dummy was uninstrumented.

4.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of the test included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-digital video camera and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

CHAPTER 5. CRASH TEST RESULTS

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH test 3-37 involves a 2270P vehicle weighing 5000 lb \pm 100 lb impacting the terminal in the reverse direction of travel at an impact speed of 62.2 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. An 1100C impact vehicle was substituted for the 2270P due to its higher risk of wedging under the breakaway anchor cable in a reverse direction impact event. The target impact point was 15 ft-7.5 inches upstream of downstream anchor post (37 inches upstream of post 18). The 2004 Kia Rio used in the test weighed 2420 lb and the actual impact speed and angle were 61.9 mi/h and 25.3 degrees, respectively. The actual impact point was 36 inches upstream of post 18.

5.2 TEST VEHICLE

The 2004 Kia Rio, shown in Figures 5.1 and 5.2, was used for the crash test. Test inertia weight of the vehicle was 2420 lb, and its gross static weight was 2585 lb. The height to the lower edge of the vehicle bumper was 8.5 inches, and it was 22.75 inches to the upper edge of the bumper. Table D1 in Appendix D gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact.

5.3 WEATHER CONDITIONS

The test was performed on the morning of April 20, 2011. No rainfall was recorded for

the 10 days prior to the test. Weather conditions at the time of testing were: Wind speed: 9 mi/h; Wind direction: 180 degrees with respect to the vehicle (vehicle was traveling in a northwesterly direction); Temperature: 81°F, Relative humidity: 71 percent.

5.4 TEST DESCRIPTION

The 2004 Kia Rio, traveling at an impact speed of 61.9 mi/h, impacted the terminal 37 inches upstream of post 18 at an impact angle of 25.3 degrees. At approximately 0.024 s after impact, the left front corner of the vehicle contacted post 18, and at 0.054 s, the vehicle began to redirect. The rail segment at the end of the terminal separated from post 20 at 0.059 s, and post 19 and 20 began to deflect toward the field side at 0.070 s. At 0.095 s, the vehicle contacted post 19, and at 0.097 s, post 19 began to shatter. At 0.160 s, post 20 began to rise upward, and at 0.176 s, the front of the vehicle contacted post 20, which continued to rise upward. The vehicle lost contact with the terminal at 0.217 s, and was traveling at an exit speed and angle of 40.2 mi/h and 18.4 degrees, respectively. Brakes on the vehicle were applied at 0.540 s after impact, and the vehicle came to rest 140 ft downstream of impact and 7.5 ft toward traffic lanes. Figures E1 and E2 in Appendix E show sequential photographs of the test period.

Figure 5.1. Vehicle/Installation Geometrics for Test No. 420021-1.

Figure 5.2. Vehicle before Test No. 420021-1.

5.5 DAMAGE TO TEST INSTALLATION

Figures 5.3 and 5.4 show the damage to the TxDOT 31-inch W-Beam Downstream Anchor Terminal. The soil was disturbed around post 15, and post 16 was leaning downstream 0.25 inch. Post 17 was leaning toward the field side 1.5 inches and there was a 0.25 inch gap in the soil on the upstream side of the post, and 1.0 inch on the downstream side. Post 18 was leaning 30 degrees downstream and was pushed toward the field side 5.5 inches. Post 19 fractured at ground level and was resting 50 ft toward the field side directly behind its original position. Post 20 fractured at ground level and was resting 82.5 ft downstream of impact and 30 ft toward the field side. The W-beam rail element detached from posts 18 through 20. The end of the guardrail was resting on the ground approximately 16 ft toward the field. Working width was 16 ft. Length of contact of the car with the rail element was 15.6 ft. Maximum dynamic deflection of the W-beam rail element was 16 ft.

5.6 VEHICLE DAMAGE

As shown in Figure 5.5, the vehicle sustained damage to the front and left front quarter. The left strut and tower and left lower ball joint were damaged. The front bumper, hood, radiator and support, left front tire and wheel rim, and left front fender were also damaged. The windshield sustained stress cracks from the left lower corner, and the left side of the floor pan was very slightly damaged. Maximum exterior crush to the vehicle was 14.0 inches in the side plane at the left front corner at bumper height. No occupant compartment deformation occurred. Photographs of the interior of the vehicle are shown in Figure 5.6. Appendix D, Tables D2 and D3 have data on the exterior crush and occupant compartment deformation.

5.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 21.0 ft/s at 0.140 s, the highest 0.010-s occupant ridedown acceleration was 9.7 Gs from 0.163 s to 0.173 s, and the maximum 0.050-s average acceleration was -7.5 Gs between 0.033 s and 0.083 s. In the lateral direction, the occupant impact velocity was 14.8 ft/s at 0.140 s, the highest 0.010-s occupant ridedown acceleration was 6.6 Gs from 0.140 s to 0.150 s, and the maximum 0.050-s average was 5.6 Gs between 0.030 s and 0.080 s. Theoretical Head Impact Velocity (THIV) was 27.2 km/h or 7.6 m/s at 0.136 s; Post-Impact Head Decelerations (PHD) was 10.2 Gs between 0.163 s and 0.173 s; and Acceleration Severity Index (ASI) was 0.86 between 0.029 s and 0.079 s. Figure 5.7 summarizes these data and other pertinent information from the test. Appendix F, Figures F1 through F7 present data on vehicle angular displacements and accelerations versus time traces.

Figure 5.3. Vehicle/Installation Positions after Test No. 420021-1.

Figure 5.4. Installation after Test No. 420021-1.

Figure 5.5. Vehicle after Test No. 420021-1.

Figure 5.6. Interior of Vehicle for Test No. 420021-1.

CHAPTER 6. SUMMARY AND CONCLUSIONS

6.1 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

6.1.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The TxDOT 31-inch W-Beam Downstream Anchor Terminal contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the W-beam rail element was 16 ft. (PASS)

6.1.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches)

- Results:Post 19 fractured at ground level and was resting 50 ft toward the
field side directly behind its original position. Post 20 fractured at
ground level and was resting 82.5 ft downstream of impact and
30 ft toward the field side. These fragments did not penetrate, nor
to show potential for penetrating the occupant compartment.
No deformation or intrusion of the occupant compartment
occurred. (PASS)
- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Results</u>: The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were -11 and -4 degrees, respectively. (PASS)

Н.	Occupant impact velocities	should satisfy the following:
	Longitudinal and Later	al Occupant Impact Velocity
	Preferred	Maximum
	30 ft/s	40 ft/s

<u>Results</u>: Longitudinal occupant impact velocity was 21.0 ft/s, and lateral occupant impact velocity was 14.8 ft/s. (PASS)

<i>I</i> .	Occupant ridedown acceleration	ns should satisfy the following:
	Longitudinal and Latera	l Occupant Ridedown Accelerations
	Preferred	<u>Maximum</u>
	15.0 Gs	20.49 Gs

<u>Results</u>: Longitudinal ridedown acceleration was 9.7 G, and lateral ridedown acceleration was 6.6 G. (PASS)

6.1.3 Vehicle Trajectory

N. Vehicle trajectory behind the test article is acceptable.

<u>Result</u>: The 1100C vehicle came to rest 7.5 ft toward the traffic side. (N/A)

6.2 CONCLUSIONS

Table 6.1 shows that the TxDOT 31-inch W-Beam Downstream Anchor Terminal performed acceptably for *MASH* test 3-37. The terminal successfully released the anchor cable and the vehicle gated through without snagging on the anchor post in an impact downstream of the length of need of the barrier system. Previous crash testing has shown that this anchor system provides sufficient capacity to redirect a vehicle impact in the LON of a connected guardrail system. The TxDOT 31-inch W-Beam Downstream Anchor Terminal would, therefore, be acceptable to provide anchorage for guardrail systems, provided it is only installed in a downstream configuration outside of the clear zone of opposing traffic lanes.
Te	Test Agency: Texas Transportation Institute	Test No.: 420021-1 Te	Test Date: 2011-04-20
	MASH Test 3-37 Evaluation Criteria	Test Results	Assessment
Str_{A} .	Structural Adequacy A. Test article should contain and redirect the vehicle or bring	The TxDOT 31-inch W-Beam Downstream Anchor	
	the vehicle to a controlled stop; the vehicle should not	Terminal contained and redirected the 1100C vehicle.	ſ
	penetrate, underride, or override the installation although controlled lateral deflection of the test article is accentable	I he vehicle did not penetrate, underride, or override the installation Mavimum dynamic deflection of the	Pass
	comi onca vaici ai achecinon of me rest avirie is acceptance.	W-beam rail element was 16 ft.	
ŏ	Occupant Risk		
D.	Detached elements, fragments, or other debris from the test	Posts 19 and 20 fractured at ground level, with 19	
	article should not penetrate or show potential for	resting 50 ft toward the field side directly behind its	
	penetrating the occupant compartment, or present an undue	original position, and 20 resting 82.5 ft downstream	Dace
	hazard to other traffic, pedestrians, or personnel in a work	of impact and 30 ft toward the field side. These	CCD I
	zone.	fragments did not penetrate, nor showed potential for	
		penetrating, the occupant compartment.	
	Deformations of, or intrusions into, the occupant	No deformation or intrusion of the occupant	
	compartment should not exceed limits set forth in Section	compartment occurred.	Pass
	5.3 and Appendix E of MASH.		
Е.	The vehicle should remain upright during and after	The 1100C vehicle remained upright during and after	
	collision. The maximum roll and pitch angles are not to	the collision event. Maximum roll and pitch angles	Pass
	exceed 75 degrees.	were -11 and -4 degrees, respectively.	
H.	Longitudinal and lateral occupant impact velocities should	Longitudinal occupant impact velocity was 21.0 ft/s,	
	fall below the preferred value of 30 ft/s, or at least below	and lateral occupant impact velocity was 14.8 ft/s.	Pass
	the maximum allowable value of 40 ft/s.		
I.	Longitudinal and lateral occupant ridedown accelerations	Longitudinal ridedown acceleration was 9.7 G, and	ſ
	should fall below the preferred value of 15.0 Gs, or at least	lateral ridedown acceleration was 6.6 G.	Pass
	below the maximum allowable value of 20.49 US.		
ζ	Vehicle Trajectory		
N.	Vehicle trajectory behind the test article is acceptable.	The 1100C vehicle came to rest 7.5 ft toward the traffic side	N/A
		number of the second seco	

Table 6.1. Performance Evaluation Summary for MASH Test 3-37 on the TxDOT 31-inch W-BeamDownstream Anchor Terminal.

CHAPTER 7. IMPLEMENTATION STATEMENT

Installation details for the TxDOT 31-inch W-Beam Downstream Anchor Terminal are included in Appendix A and the AASHTO-ARTBA-AGC *Guide to Standardized Highway Barrier Hardware*. The Design Division should review these details. If the Division chooses to add this terminal to its current list of hardware standards, then they should develop a standard detail sheet that districts could use across the state as a nonproprietary alternative method for anchoring downstream ends of guardrails outside the clear zone of opposing traffic lanes.

REFERENCES

- 1. AASHTO, *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials, Washington, DC, 2009.
- 2. AASHTO-ARTBA-AGC Task Force 13, *A Guide to Standardized Highway Barrier Hardware*, American Association of State Highway and Transportation Officials-American Road and Transportation Builders of America-Associated General Contractors of America, <u>http://guides.roadsafellc.com/Documents/Hardware/Guide/intro.html</u>, accessed October 25, 2011.
- H. E. Ross, Jr., D. L. Sicking, R. A. Zimmer and J. D. Michie. *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, DC, 1993.
- 4. R.P. Bligh, A. Abu-Odeh, W.L. Menges, *MASH Test 3-10 on 31-Inch W-Beam Guardrail with Standard Offset Blocks*, Test Report No. 9-1002-4, Texas Transportation Institute, March 2011.

APPENDIX A. DETAILS OF THE TEST ARTICLE

DOWNSTREAM TERMINAL	ELEVATION VIEW	(-				16 17 11					75*	Ter m	The Texas A&M University System	0		GS DA Date Drawn By Scale Sheet No.	2011-03-30 GES 1:30 2 of 5	Project No. Sheet Name	420021-1 Downstream Terminal	TxDOT Downstream W-beam Terminal
DOWN		(4)						/ 1/		-GROUND LINE		(-	-)					Revisions:	Date	2011-04-05				
				ŀ	•	31"	-												Revi	No.	1.	¢i	3.	4.	5.
ARTBA					FPP02	FPB01	FMM02	FPA01	RWE03a	FCA01	FBB	FBB01	FBB03	FBX16a	FBX16a	FBX16a	FWC16a		ndicated.	et (5) at	callouts at Post 19		ove	en	
QTY.	2	2	2	1	1	1	1	1	1	1	20	4	2	8	4	2	18		erwise i	e Bracke	llouts at		1-1/2" above	il bunor	
PART NAME	6 x 8 x 72" Foundation Tube	Tube Post for Terminal	Strut, Channel	Rail for Terminal	Shelf Angle Bracket	BCT Bearing Plate	BCT Post Sleeve	Guardrail Anchor Bracket	W-beam End Section	BCT Cable Anchor	Nut, Recessed Guardrail	Bolt, Button-head 1-1/4"	Bolt, Button-head 10"	Bolt, 5/8 -11 x 2 hex	Bolt, 5/8 -11 x 8 hex	Bolt, 5/8 -11 x 10 hex	Washer, 5/8 flat		2a. All hardware is A307 unless otherwise indicated.	2b. Rail is supported by Shelf Angle Bracket (5) at	Fost 20 and does not attach to post. 2c. Parts 1, 2, 11, 13, and 15 - 17 ca	or 20 typical at both locations.	lation Tube protrudes	cound line. 2e - Ton edge of Strut at 2" above provind line.	100 cube of other at 4 moves 6
#	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17		2a.	2b.	2c.	or 20	2d.	2 Ton e	i

aniwerd 1-120024/420021/-1 Drammer means Tenning/Drawings/420021/-1 Drawing

STRAFT CT I-TZOOZE	A STILLAR TO TALE A	/ Innums l'meanterword f	TROOPL)	TTOZ-OTOZ .T
DUDADI (] [-[20027	/ sources(/ puttes(lonume meatsmuo([- \ LCUUCF \	\ L LOZ=O LOZ \•.L

gniwend f-f20021/-1 Downstream Terming/Drafting/Drawing/420021-1 Drawing

TEST NUMBER	420021-1				
FEST NAME	TxDOT Downstream W-beam Terminal	-beam Terminal			
DATE	2011-04-20				
DATE RECEIVED	ITEM NUMBER	DESCRIPTION	SUPPLIER	HEAT #	NOTE
2011-04-01 2010-06-11 2010-04-27 2009-04-30 2010-11-29 2008 08 12	Channel-01 W-beam 9 Strap 6-9 Cable-SWG 4 W-beam 04 POST-SLP-1	C3x5 x 20' 12ga 4-sp 19'-4.5" BLK 6x1/4x20' A36 ORA 3/4" X 6'6" DBL SWG RED 12 ga. 4-space 6x8.5x72" YEL	Mack Bolt & Steel Trinity Aleron Trinity Trinity Industries TRINITY	JW1010766402 various - see file SP203417 generic Trinity several - see list 11812600/11812610	г 0 м

MATERIAL USED

Used for strut on downstream anchor.
 Terminal Rail
 Used to make shelf angle bracket at Post 20.

APPENDIX B. CERTIFICATION DOCUMENTATION

04-01-2011 08:05 //ack Bolt & Steel	Load - 990222 BL - 3657015 Heat - JW1010734601	BLR466
Cust. PO - 20526	Order-Line - 6149531 / 2	
Nucor Steel	12/30/2010 11:46:03 AM PAGE 1/002 Fax Server	<u> </u>
010	, 33 (2000 	
EPORT ************************************	NAMC.08 Meth 24 2000	R
Number (1990)	000 000 000 000 000 000 000 000	THE A
Nucor	003 003 003 003 003 003 003 003 003 003	K
REPOR	011 011 000 000 000 011 00 010 000 000	stewart
L TEST as 346	<u>1</u>	Nathan Stewart
CERTIFIED MILL TEST REPORT Ship from: Ship from: Shiz Hwy 79 W JEWETT, TX 75846 800-527-6445		OUAUTY ASSURANCE:
CERTIFIED M Ship from: Nucor Steel - 1 JEWETT, TX 800-527-6445	MIN DEF	ASSU
	BEND .	
. 15	Initial de salles representance PHYSICAL TESTS PHYSICAL TESTS PHYSICAL TESTS Physical de salles representance Physical de salles Phy	PORATION
CRATION ORATION	ing your insic PHY 71,300 552MPa 555MPa 555MPa 555MPa 65,500 65,500 455MPa 455MPa 453MPa	S OF THE COP
MULTOR NUCOR CORPORATION NUCOR STEEL TEXAS	All common by contracting your inside s PHYSIC P	N THE RECORD TT, NOLUDING DUCCD ARE W NG OF THIS MA
	Material:Safety Data Sheets are available at www.nucorbat.com or by confracting your inside safes representative. HEAT NUM.* DESCRIPTION VIELD TENSIL ELONG PCd# -> 6305/F3 EEVON YIELD FBS/L ELONG PCd# -> 6305/F3 S5,800 71,300 20.0% BEXIL S# Channel 378MPa 492MPa 5000 BY100662501 Nucr Steel - Texas 55,800 72,800 20.0% BY111.5# Channel 373MPa 502MPa 5000 21.0% BY1010734601 My1010734601 75,800 21.0% 21.0% MY1010734601 ASTM ASS-08,ASS ARNO ASTM A572/A572- 392,MPa 502,MPa 502,000 BY1010734601 My1010734601 75,800 21.0% 21.0% MY1010734601 MU010734601 75,900 21.0% BY101 FD# -> 50,900 67,500 21.0% BY1010 FD# -> 50,900 67,500 21.0% BY1010 FE 75,800 21.0% <td>HHERERY GRATIFY THAT THE ABOVE FIGURES ARE CORRECT AS CONTAINED IN THE RECORDS OF THE CORPORATION ALL MAUFACTURING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, INCLUDING ALL MAUFACTURING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, NOLUDING MERCURY, IN ANY FORM, HAS NOT BEEN USED IN THE PRODUCTION OR TESTING OF THIS MATERIAL.</td>	HHERERY GRATIFY THAT THE ABOVE FIGURES ARE CORRECT AS CONTAINED IN THE RECORDS OF THE CORPORATION ALL MAUFACTURING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, INCLUDING ALL MAUFACTURING PROCESSES OF THE STEEL MATERIALS IN THIS PRODUCT, NOLUDING MERCURY, IN ANY FORM, HAS NOT BEEN USED IN THE PRODUCTION OR TESTING OF THIS MATERIAL.
193 193	Material:Safety Data S HEAT NUM.* PO# -> 63 PO# -> 63 Nu 1010734501 Nu PO# -> 63 A PO# -> 63 A A A A A A A A A A A A A A A A A A A	HEREBY CERTIFY THAT THAN THAN THAN THAN THAN THAN COCUPAND FOR THAN COCUPAND THAN COCUPAND THAN THAN THAN THAN THAN THAN THAN THAN

Trinity Highway Products , LLC 2548 N.E. 28th St.			o. €	Certified Analysis	ysis						1	LL LE LEVENSE	Products	15 LLC
Ft Worth, TX 76111			0	Customer PO:							Asof 6/25/10	01/5/10		
Customer: SAMPLES, TESTING, TRAINING MTRLS	3 MTRLS		н	BOL Number: 31302										
2525 STEMMONS FRWY				Document #: 2										
				Shipped To: TX										
DALLAS, TX 75207				Use State: TX										
Project: SAMPLES-TESTING THIS ORDER FOR END TERMINALS ONLY!	DER FOR END	TER	MINALS ONLY!											
Otv Part# Description	Sher	-	TV Heat Code/ Heat #	± Vield	SE	Rla	μ N	•	v	5	5	ć	Vn ACW	M)
	-180		100929	55	77,800	26.0 0.1	90 0.75	0.0(o.		0.00 0.050 0.002	.002 4	
	M-180	¥	2 100928	63,610	80,920	25.2 0.	0.190 0.7	50 0.011	0.004 0	0.750 0.011 0.004 0.030 0.090		0.000 0.040 0.000		4
	M-180	×	2 101800	50,000	73,300	30.0 0.	0.190 0.7	50 0.012	0.002 0	0.750 0.012 0.002 0.020 0.120		0.000 0.070 0.002		4
	A-500		2 202248	53,600	75,500	29.0 0.	0.190 0.7	80 0.011	0.020 0	0.780 0.011 0.020 0.120 0.120		0.000 0.050 0.002		4
		A	2 202249	51,800	74,500	30.0 0.190		90 0.010	0.002 0	0.790 0.010 0.002 0.020 0.120		0.000 0.050 0.002	~	4
2 33795G SYT-3"AN STRT 3-HL 6'6	A-36		V906151	52,710	75,060	29.5 0.1	30 0.70	0.011	0.022 0.	0.130 0.700 0.011 0.022 0.200 0.240		0.00 0.100 0.021	.021 4	4
TL -3 or TL-4 COMPLIANT when installed according to manufactures specifications	according to m	anuf	actures specification	su										
Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.	Highway Proc	lucts	, LLC Storage Star	n Policy No. LG-002										
ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36	JFACTURED II (0, ALL STRU	N US/	A AND COMPLIES RAL STEEL MEE	WITH THE BUY AM TS ASTM A36	ERICA ACT.									
ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.	MS WITH AS	-WI	123, UNLESS OTI	HERWISE STATED.										
BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.	CIFICATIONS	AN	D ARE GALVAN	IZED IN ACCORD/	ANCE WITH	I ASTM A	-153, U	NLESS	OTHEI	RWISE	STATE	D.		
NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.	IFICATIONS	AND	ARE GALVANI	CED IN ACCORDAN	ICE WITH	ASTM A-1	53, UN	LESS C	THERV	VISE S7	LATED.			
3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING	ED END AISI C	-103	5 STEEL ANNEALI	ED STUD I" DIA AS	[M 449 AAS]	HTO M30,	TYPE II	BREAK	DND					
STRENGTH - 49100 LB										~	١	Y	0	~

State of Texas, County of Tarrant. Sworn and subscribed before me this 25th day of June, 2010

Notary Public: Commission Expires:

Duality Assurance vav Trinity His 2 Certified By:

39

		-										_									 1.
	0	1, 2009	ці С		.32			70	i				.32				.23				-
	13-Apr-2010 540065 156435	NBMG-08 March 24, 2009	, s		.25			74	5				.34				.26				ļ ļ
je: 2		NBMG	3\ \8		.16	700		0C	00.				.19	.003			.15	.001			2
Page:	Date: B.L. Number: Load Number:		si si		.040	3		000	002	ļ			.020	.003			.020	.002			1
ЗТ	B.I Loa		CHEMICAL TESTS								-										R
REPOF			₽ 		.018			014	.032				.020	039			.013	.024			
CERTIFIED MILL TEST REPORT			U ₩		.72	i i		66	.13				.75	.18			.51	.13			Ben Cave
MILL	rexas V 75846		× Z		Ę	ŗ		10	4				.12	.12			60	.11			Ĕ
rified	Ship from: Nucor Steel - Texas 8812 Hwy 79 W JEWETT, TX 75846 800-527-6445	-	。/ 」																		QUALITY ASSURANCE:
CER.	Ship from: Nucor Stee 8812 Hwy JEWETT, 800-527-6		WT%																		QUAI
		esentative.	STS BEND		-				_												
		ales repre	LE ELONG E		26.0%	25.0%		26 0%	20.04	27.0%			30.0%	/00 00	30.0%		27.0%		28.0%		RATION
RATION TEXAS		our inside s	TENSILE P.S.I.		68,800 47,000	67,100	463MPa	64 600	445MPa	65,100	449MPa		66,200	456MPa	00,200 456MPa		64,000	441MPa	65,400 451MPa		DF THE CORPC
NUCOR CORPORATION NUCOR STEEL TEXAS		/ contacting	YIELD 1 P.S.I.		46,300 210MD-		317MPa	48 600	335MPa	49,500	341MPa			-	46,900 323MPa		46.300	œ	47,600 328MPa		THE RECORDS INCLUDING JCED ARE WELD JCED ARE WELD
		Material Safety Data Sheets are available at www.nucorbar.com or by contacting your inside sales representative.					709M-09 G				A709M-07				A709M-07				A709M-07		I HEREBY CERTERY THAT THE ABOVE FIGURES ARE CORRECT AS CONTAINED IN THE RECORDS OF THE CORPORATION. All MANUPACTURENG PROCESSES OF THE STREEL MATERIALS IN THIS PRODUCT, INCLUDING MALTHON, HAVE OCCURRENT ATTENT THE UNITED STATES ALL PRODUCTED ARE MELD FREE MALTHON, HAVE OCCURRENT ATTENT THE UNITED STATES ALL PRODUCTION OF TESTING OF THES MATERIAL.
NC - DIP 56365	91-0231 NC - DIP NY 19-0000	able at www.nu	DESCRIPTION		Texas		ASTM A36/A36M-08, A709/709M-09 G R36, ASME SA36-07	PARE	2220		ASTM A36/A36M-08, A709/A709M-07 GR36, ASMF SA36-07		Fexas		20 A36 ASTM A36/A36M-08, A709/A709M-07	E SA36-07	Texas		20' A36 ASTM A36/A36M-08, A709/A709M-07	IE SA36-07	I HEREBY CERTEFY THAT THE ABOUE FIGURES ARE CORRECT AS ALL MANUPACTURENG PROCESSES OF THE STREEL MATTRATALS IN MALLIAND MAVE OCCURRED MITHIN THE UNITED STATES ALL WELTING MAVE OCCURRED MITHIN THE UNITED STATES ALL WERCHEY, IN ANY FORM, MAS NOT BERN USED IN THE REQUOT
ALAMO IRON WORKS INC - DIP STEEL SERV CTR/AP#66365 PO BOX 231	SAN ANTONIO, TX 78291-0231 ALAMO IRON WORKS INC - DIP 943 AT&T CENTER PKWY SAN ANTONIO, TX 78219-0000	eets are avails	ā	SP203417	Nucor Steel - Texas	20' A36	5TM A36/A36M-08, A R36, ASME SA36-07	SP203417 Nucor Steel - Teves	1/4x1" Flat	20' A36	STM A36/A36M-08, A70 GR36, ASMF SA36-07	SP203417	Nucor Steel - Texas	1/4x3" Flat	7 A30 STM A36/A3	GR36, ASME SA36-07 separate	or zoot is Nucor Steel - Texas	1/4x6" Flat	20' A36 ASTM A36/A3	GR36, ASME SA36-07	HE ABOVE FIGUR SSES OF THE ST WITHIN THE UNI AS NOT BEEN US
ALAMO IRON STEEL SERV PO BOX 231	ANTON AO IRON AT&T CE ANTON	ty Data Sh	• · V	с. С		28	¥			20	Ä	S		1	¥ ¥	10		11	¥.		TFY THAT T RING PROCE OCCURRED NY FORM, H
		terial Safe	HEAT NUM.	<= #04	JW1010177401			PO# =>				50# =	JW1010203201			/- #Ca	JW1010242001				REREBY CERT MANUFACTU JING, HAVE
SOLD TO:	SHIP TO:	Ma			2			2	5				5				3				 ALL A

Trinity Highway Products , LLC 2548 N.E. 28th St. Ft Worth, TX		and a start of the
Customer: SAMPLES, TESTING MATERIALS Sales Order: 1072852 2525 STEMMONS FRWY Customer PO: BOL # 27227 DALLAS, TX 75207 DALLAS, TX 75207	Print Date: 4/28/09 Project: SAMPLES-TESTING THIS ORDER FOR END TERMI Shipped To: TX Use State: TX	ERM
Trinity Highway Products, LLC Certificate Of Compliance For Trinity Industries, Inc. ** E.T. PLUS EXTRUDER TERMINAL **	EXTRUDER TERMINAL **	
Pieces Description		
4 3/16X12.5X16 CAB ANC BRKT 4 CBL 3/4X66/DBL SWG/NOHWD 20 1" ROUND WASHER F844 20 1" HEX NUT A563		
Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.		
	8	2 ₁ 2
AS MELTED AND N BETS AASHTO M-1 NIZED MATERIAL IH ASTM A-307 SPI H ASTM A-563 SPE LINC COATED SWA(MMERICA ACT WITH ASTM A-153, UNLESS OTHERWISE STATED. TTH ASTM A-153, UNLESS OTHERWISE STATED. AASHTO M30, TYPE II BREAKING	88 o. 98
State of Texas, County of Tarrant. Sworthand State of Texas, County of	ray Products, LLC Quality Assurance	of 1

^{3g} C Mn 14 0.190 0.750 0.01 66 0.190 0.750 0.01 66 0.190 0.750 0.03 13 0.210 0.900 0.1 13 0.210 0.900 0.1 10 0.190 0.750 0.3 10 0.190 0.750 0.0 0.2 0.220 0.880 0.0 0.2 0.220 0.880 0.0 10 0.190 0.750 0.0 10 0.	A 2 130796 62,250 83,370 23.6 0.190 0.730 0.010 0.003 0.030 0.140 0.000 0.060 A 2 130796 62,260 83,370 23.6 0.190 0.730 0.010 0.003 0.030 0.140 0.000 0.060 A 2 130873 57,900 80,400 21.3 0.210 0.900 0.018 0.006 0.018 0.020 0.000 0.020	12/12/05/1.2/12 0/2010 0.0/20 0.0/20 0.0/20 0.1/20 0.1/20 0.1/20 0.0/20 0.0/20 0.0/20 0.0/20 0.1/20 0.1/20 0.0/0 M-180 A 2 130/794 6.3.340 81.340 26.6 0.1/90 0.750 0.011 0.003 0.0/30 0.1/10 0.000 0.060 M-180 A 2 120/056 6.750 0.1/10 26.6 0.1/00 0.760 0.0/10.004 0.0/10 0.0/10 0.0/10 0.000 0.060	PLES-TESTING THIS ORDER FOR ETS ONLY! Description Spec CL TY Heat Code/Heat # Vield TS Elg C Mn P S Ni Cu Cb Cr 12/12/631.5/S M-180 A 2 113569 61300 80.810 244.0190.0730.0012.0005.0120_0000_050_01	Shipped To: TX DALLAS, TX 75207 Use State: TX	2525 STEMMONS FRWY Document #: 1	Customer: SAMPLES, TESTING, TRAINING MTRLS BOL Number: 45213		Trinity Highway Products, LLC		a 0.030 0.140 0.000 0.000 6 0.018 0.020 0.000 0.000 1 0.020 0.140 0.000 0.060 0.000 3 0.020 0.160 0.000 0.000 7 0.020 0.030 0.000 0.020 0.000 HERWISE STATED. SRWISE STATED. SRWISE STATED. SRWISE STATED. Dullity Assurance publity Assurance	4.800 20.2 0.220 0.880 A ACT. E "BUY AMERICA ACT" E WITH ASTM A-153, UNI WITH ASTM A-153, UNI E WASSHTO M30, TYPE II BI E MA Certified By: MR Certified By:	ions ain Policy No. I.G-002. S: WITH THE BUY AMERICA ACT. ETS ASTM A36 AND COMPLIES WITH THE "BUY AMI THERWISE ST'ATED. NIZED IN ACCORDANCE WITH ASTN IZED IN ACCORDANCE WITH ASTN IXENTAN	factures specifications 4, LLC Storage Stain P SA AND COMPLIES WI RAL STEEL MEETS RFORMED IN USA ANI 123, UNLESS OTHER 123, UNLESS OTHER 123, UNLESS OTHER 123, UNLESS OTHER 123, STEEL ANNEALED 33 STEEL ANNEALED 33 STEEL ANNEALED 33 STEEL ANNEALED 33 STEEL ANNEALED 33 STEEL ANNEALED 34 STEEL ANNEALED 35 STEEL ANNEALED 35 STEEL ANNEALED 35 STEEL ANNEALED 35 STEEL ANNEALED 36 STEEL ANNEALED 37 STEEL ANNEALED 38 STEEL ANNEALED 39 STEEL ANNEALED 39 STEEL ANNEALED 31 STEEL ANNEALED 31 STEEL ANNEALED 33 STEEL ANNEALED 34 STEEL ANNEALED 35 STEEL ANNEALED	Jing to manu way Products UURED IN UG I STRUCTU ON ARE PER ATIONS AN VTIONS AN UD AISI C-10: D A	ject to Trinity High ED AND MANUFAC ASHT:O M-180, AL ASHT:O M-180, AL F THE STEEL OR IR IAL CONFORMS W M A-307 SPECIFIC A A-563 SPECIFIC A A-563 SPECIFIC A A-563 SPECIFIC A TED SWAGED EN DATED SWAGED EN	Upon delivery, all materials su ALL STEEL USED WAS MELT ALL GUARDRAIL MEETS A ALL GUARDRAIL MEETS A ALL GUARDRAIL MEETS A ALL GALVANIZED MATER BOLTS COMPLY WITH AST BOLTS COMPLY WITH AST 34" DIA CABLE 6X19 ZINC C STRENGTH - 49100 LB State of Ohio, County of Trumb Notary Public: UMUG Notary Public: UMUG Commission Expires: //
--	---	--	--	--	----------------------------------	--	--	-------------------------------	--	--	--	--	--	--	---	---

			Ceruiled Analysis	SIS			Anuta Anuta	AND
Trinity Highway Products, LLC								
2548 N.E. 28th St.		Order Nu	Order Number: 1069934					
Ft Worth, TX		Custome	Customer PO: SAMPLES	S			Asof: 8/8/08	
Customer: SAMPLES, TESTING MATERIALS		BOL Number:	mber: 24967				00000 00 10 011	
2525 STEMMONS FRWY		Document #:	tent #: 1					
		Shippe	Shipped To: TX					
DALLAS, TX 75207		Use !	Use State: TX					
Project: T-8 TESTING **Must include certs	with truck!!!*							
Qty Part# Description 50 545G 60 POST/DB:DDR	Spee CL. TY Me. A-709 118	TY Heat Code/Heat # 11812600	Yield 48,700	TS 69,700	Elg C M 24.3 0.120 0.73	Mn P S 0.730 0.011 0.042	Elg C Mn P S Si Cu Cb Cr Vn 24.3 0.120 0.730 0.011 0.042 0.230 0.240 0.000 0.120 0.002	Vn ACW 0.002 4
545G	A-36 118	11812610	46,400	66,000	26.4 0.110 0.73	30 0.008 0.039	26.4 0.110 0.730 0.008 0.039 0.200 0.230 0.000 0.120 0.001	0.001 4
						Item # - POST- 6 x 8.5 x 72" YF MFG - TRINITY	ttem # - POST-SLP-1 6 x 8.5 x 72" YEL MFG - TRINITY	
Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.	fighway Products , LL	C Storage Stain Poli	icy No. LG-002.			Item # - BLK-OUT-R7 6X8X14 WOOD RED MFG - TRINITY	Item # - BLK-OUT-RT-1 \$X8X14 WOOD RED MFG - TRINITY	
ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36	ACTURED IN USA AN	RED IN USA AND COMPLIES WITH THE BUY STRUCTURAL STEEL MEETS ASTM A36	I THE BUY AME STM A36	RICA ACT.				
ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123. BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.	DNFORMS WITH AS' IFICATIONS AND A FICATIONS AND AR	TM-123. RE GALVANIZED E GALVANIZED I	IN ACCORDA	NCE WITH CE WITH A	ASTM A-153 STM A-153, U	, UNLESS OTHI	IERWISE STATED. RWISE STATED.	
3/4" DIA CABLE 6X19 ZINC COATED SWAGED END STRENGTH – 49100 LB	D END AISI C-1035 STI	AISI C-1035 STEEL ANNEALED STUD I" DIA ASTM 449 AASHTO M30, TYPE II BREAKING	UD I" DIA AST	M 449 AASH	TO M30, TYPI	II BREAKING		
State of Texas, County of Tarrant. Sworn and subscribed before me this 8th day of August, 2008 Notary Public: Commission Expires:	subscribed before me this 8th e RACHEL R. MEDINA State of Texas My commission Expires	day of August, 2008	Trinity Highv Certified By:	Highway Pr d By:	Trinity Highway Products , LLC Certified By:	Stef	Leteni Ingles	4

APPENDIX C. SOIL STRENGTH DOCUMENTATION

APPENDIX D. TEST VEHICLE PROPERTIES AND INFORMATION

Date:	2011-04	-20	Test No.:	420021-1		VIN No.:	KNADC12	256462946	690
Year:	2004		Make:	Kia		Model:	Rio		
			2 psi e vehicle pric	_	101440		Tire Size:		
		erometer lo						CCELEROMETERS	
NOTES	S:			A WHEEL			E VEHICL	E	WHEEL N TRACK
Engine Engine Transm								IERTIAL C.M.	
	Auto FWD al Equipmo	or RWD ent:	_ Manual 4WD					-	
Dummy Type: Mass: Seat F		50 th perce 165 lb Driver	entile male		F W	W H		Mreaty D	
Geome	etry: inc	hes		-			C	-	
Α	62.50	_ F _	32.00	K	12.00	Ρ	3.25	U	15.50
B	56.12	_ <u> </u>		_ L	24.25	Q _	22.50	_ V_	21.50
	164.25	_ <u>H</u> _	34.05	_ M	56.50	R_	15.50	_ W_	35.50
D E	37.00	_ '_	8.50	_ N	57.00	S_ Т	8.62	_ X _	104.50
	95.25 Center Ht	_ J_ Front	22.75 10.75	_ O Wheel Cer	28.00 hter Ht Rea	-	63.00 11.125		
					Tes			<u>Gross</u>	
	atings:		s: lb	<u>Curb</u>	Inert			<u>Static</u>	
ront	1691	M _{fre}		1530			wable	1653	Allowable
Back Total	1559	M _{re}		854	-	865 Ran 420 242		932 2585	Range =
4 11131	3250	MT		2384		21 21 1 2 A 2	0 ±55 lb	7585	2585 ±55 lb

LF: <u>785</u> RF: <u>770</u> LR: <u>416</u> RR: <u>449</u>

lb

Table D2. Exterior Crush Measurements for Test No. 420021-1.

Date:	2011-04-20	Test No.:	420021-1	VIN No.:	KNADC125646294690
Year:	2004	Make:	Kia	Model:	Rio

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable									
End Damage	Side Damage								
Undeformed end width	Bowing: B1 X1								
Corner shift: A1	B2 X2								
A2									
End shift at frame (CDC)	Bowing constant								
(check one)	X1+X2 _								
< 4 inches	2								
≥ 4 inches									

Note: Measure C₁ to C₆ from Driver to Passenger side in Front or Rear impacts—Rear to Front in Side Impacts.

a : "		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C ₃	C ₄	C ₅	C ₆	±D
1	Front plane at bumper ht	24.0	11.0	30.0	11.0	7.0	4.5	3.0	1.5	0	-15.0
2	Side plane at bumper ht	24.0	14.0	40.0	0	3.0	7.0	11.0	13.3	14.0	+60.0
	Measurements recorded										
	in inches										

¹Table taken from the National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Table D3. Occupant Compartment Measurements for Test No. 420021-1.

*Lateral area across the cab from

driver's side kickpanel to passenger's side kickpanel.

APPENDIX E. SEQUENTIAL PHOTOGRAPHS

0.000 s

0.036 s

0.072 s

Figure E1. Sequential Photographs for Test No. 420021-1 (Overhead and Frontal Views).

0.108 s

0.144s

0.180 s

0.217 s

Figure E1. Sequential Photographs for Test No. 420021-1 (Overhead and Frontal Views) (continued).

0.000 s

0.036 s

0.072 s

0.108 s

0.144 s

0.180 s

0.252 s

Figure E2. Sequential Photographs for Test No. 420021-1 (Rear View).

Figure F1. Vehicle Angular Displacements for Test No. 420021-1.

Roll, Pitch, and Yaw Angles

APPENDIX F. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS

Figure F2. Vehicle Longitudinal Accelerometer Trace for Test No. 420021-1 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

Z Acceleration over Rear Axle