

MASH TL-4 EVALUATION OF THE TXDOT TYPE C2P BRIDGE RAIL

Test Report 9-1002-15-2 Rev.1

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation https://tti.tamu.edu/documents/9-1002-15-2-Rev1.pdf

Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-17/9-1002-15-2 Rev.1 4. Title and Subtitle 5. Report Date **MASH TL-4 EVALUATION OF THE TXDOT TYPE C2P** October 2016, Rev 1: June 2022 **BRIDGE RAIL** 6. Performing Organization Code 490026-4 8. Performing Organization Report No. 7. Author(s) William F. Williams, Roger P. Bligh, Wanda L. Menges, Test Report No. and Darrell L. Kuhn 9-1002-15-2 Rev. 1 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas A&M Transportation Institute Proving Ground 3135 TAMU 11. Contract or Grant No. 9-1002-15 College Station, Texas 77843-3135 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office September 2015–August 2016 125 E. 11th Street 14. Sponsoring Agency Code Austin, Texas 78701-2483 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Roadside Safety Device Crash Testing URL: https://tti.tamu.edu/documents/9-1002-15-2-Rev1.pdf 16. Abstract The objective of this research was to evaluate the impact performance of the Texas Department of

The objective of this research was to evaluate the impact performance of the Texas Department of Transportation (TxDOT) Type C2P Bridge Rail according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials *Manual for Assessing Safety Hardware (MASH)* for Test Level Four (TL-4). This report describes the TxDOT Type C2P Bridge Rail, documents the impact performance of the bridge rail system according to *MASH* TL-4 evaluation criteria for longitudinal barriers, and presents recommendations regarding implementation.

MASH Tests 4-10 and 4-11 evaluate a barrier's ability to successfully contain and redirect passenger vehicles and evaluate occupant risk. *MASH* Test 4-12 evaluates the structural adequacy of the bridge rail. All three tests were performed on the TxDOT Type C2P Bridge Rail.

For Test 4-12, the post welds were not properly fabricated according to the project design drawings. As a result, some post welds in the immediate impact area did rupture from the *MASH* Test 4-12 truck impact. These ruptured post welds did aggravate the stability of the single unit truck during the test. For subsequent tests, the posts were welded correctly as per the project drawings. The bridge rail posts, with the correct post welds, should only improve the performance of the single unit truck. The TxDOT Type C2P Bridge Rail performed acceptably for *MASH* TL-4.

^{17. Key Words} Bridge Rails, Longitudinal Barriers, Crash Testing, Roadside Safety	Aesthetic Rails,	public through N	his document is av TIS: al Information Ser inia 22312	
19. Security Classif.(of this report)	20. Security Classif.(of this page)		21. No. of Pages	22. Price
Unclassified	Unclassified		154	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

MASH TL-4 EVALUATION OF THE TXDOT TYPE C2P BRIDGE RAIL

by

William F. Williams, P.E. Associate Research Engineer Texas A&M Transportation Institute

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer Texas A&M Transportation Institute

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 9-1002-15-2 Project 9-1002-15 Project Title: Roadside Safety Device Crash Testing

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > October 2016

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. This report is not intended for construction, bidding, or permit purposes. The engineer in charge of the project was Roger P. Bligh, P.E. #78550.

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

Revision 1: June 24, 2022 Page 20, 27, and 36 added in windshield deformation information under the vehicle damage section.

Wanda L. Menges, Research Specialist Deputy Quality Manager

Darrell L. Kuhn, Research Specialist Quality Manager

Matthew N. Robinson, Sénior Research Specialist Test Facility Manager

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas A&M Transportation Institute, TxDOT, and FHWA. The TxDOT project manager for this research was Wade Odell, Research and Technology Implementation Office. Taya Retterer and Jon Ries, TxDOT Bridge Division, provided valuable technical support to this project and their efforts are greatly appreciated. The authors acknowledge and appreciate their guidance and assistance.

TABLE OF CONTENTS

List of Fig	gure	es	. xi
		5	
Chapter 1		Introduction	
		plem	
1.2.	Obj	ectives/Scope of Research	1
Chapter 2		System Details	
2.1.	Test	Article and Installation Details	3
2.1	1.1	Horizontal Rail Members	3
2.1	1.2	Picket Panels	6
2.1	1.3	Bridge Rail Posts	6
2.1	1.4	Concrete Curb and Bridge Deck	7
2.2.	Mat	erial Specifications	8
Chapter 3	3.	Test Requirements and Evaluation Criteria	11
3.1.	Cras	sh Test Matrix	11
3.2.	Eva	luation Criteria	12
Chapter 4	1.	Test Conditions	13
4.1.	Test	Facility	13
4.2	Veh	icle Tow and Guidance System	13
		a Acquisition Systems	
	3.1	Vehicle Instrumentation and Data Processing	
4.3	3.2		
4.3	3.3	Photographic Instrumentation Data Processing	15
Chapter 5	5.	MASH Test 4-10 (Crash Test No. 490026-4-1)	
-		Designation and Actual Impact Conditions	
		ther Conditions	
		Vehicle	
5.4	Test	Description	18
5.5	Dan	nage to Test Installation	18
5.6	Veh	icle Damage	20
5.7	Occ	upant Risk Factors	20
5.8	Ass	essment of Test Results	21
5.8	3.1	Structural Adequacy	21
5.8	3.2	Occupant Risk	
Chapter (5.	MASH Test 4-11 (Crash Test No. 490026-4-2)	
		Designation and Actual Impact Conditions	25
6.2	Wea	ther Conditions	25
6.3	Test	Vehicle	25
6.4	Test	Description	26
		nage to Test Installation	
6.6	Veh	icle Damage	27

TABLE OF CONTENTS (CONTINUED)

Page

6.7	Occi	upant Risk Factors	28
6.8		essment of Test Results	
6	5.8.1	Structural Adequacy	
6	5.8.2	Occupant Risk	
Chapter	7.	MASH Test 4-12 (Crash Test No. 490026-4-3)	
7.1		Designation and Actual Impact Conditions	33
7.2		ther Conditions	
7.3	Test	Vehicle	33
7.4	Test	Description	34
7.5	Dam	nage to Test Installation	35
7.6	Veh	icle Damage	36
7.7	Occu	upant Risk Factors	36
7.8	Asse	essment of Test Results	37
7	.8.1	Structural Adequacy	37
7	.8.2	Occupant Risk	37
Chapter		Summary and Conclusions	
8.1	Asse	essment of Test Results	41
8	8.1.1	MASH Test 4-10 (Crash Test No. 490026-4-1)	41
8	8.1.2	MASH Test 4-11 (Crash Test No. 490026-4-2	41
8	3.1.3	MASH Test 4-12 (Crash Test No. 490026-4-3)	41
8.2		clusions	
Chapter	· 9.	Implementation Plan	
			49
		Details of the TxDOT Type C2P Bridge Rail Used in Test Nos.	
		5-4-1 and 4-2	51
		Details of the TxDOT Type C2P Bridge Rail Used in Test Nos.	
		5-4-3	
Append		Supporting Certification Documents	
Appenic		MASH Test 4-10 (Crash Test No. 490026-4-1)	
D1		icle Properties and Information	
D2	-	iential Photographs	
D3		icle Angular Displacements	
D4		icle Accelerations	
Appenic		MASH Test 4-11 (Crash Test No. 490026-4-2)	
E1 E2		icle Properties and Information	
E2	Sequ		. 11/
E3	Vale	iential Photographs	120
E4		icle Angular Displacements	
Annon	Veh	icle Angular Displacements	. 121
Appenic	Veh lx F.	icle Angular Displacements icle Accelerations MASH Test 4-12 (Crash Test No. 490026-4-3)	. 121 . 127
F1	Veh lx F. Veh	icle Angular Displacements icle Accelerations <i>MASH</i> Test 4-12 (Crash Test No. 490026-4-3) icle Properties and Information	. 121 . 127 . 127
F1 F2	Veh lx F. Veh Sequ	icle Angular Displacements icle Accelerations	. 121 . 127 . 127 . 129
F1	Veh dx F. Veh Sequ Veh	icle Angular Displacements icle Accelerations <i>MASH</i> Test 4-12 (Crash Test No. 490026-4-3) icle Properties and Information	. 121 . 127 . 127 . 129 . 133

LIST OF FIGURES

Figure 2-1.	General Layout of the TxDOT Type C2P Bridge Rail for Test No. 490026-4-1 and 4-2.	4
Figure 2-2.	General Layout of the TxDOT Type C2P Bridge Rail for Test No. 490026-4-3.	
Figure 2-3.	TxDOT Type C2P Bridge Rail prior to First Test 4-12	
Figure 5-1.	TxDOT Type C2P Bridge Rail/Test Vehicle Geometrics for Test No.	,, j
1.8010 0 11	490026-4-1	17
Figure 5-2.	Test Vehicle before Test No. 490026-4-1	
Figure 5-3.	TxDOT Type C2P Bridge Rail after Test No. 490026-4-1.	
Figure 5-4.	Test Vehicle after Test No. 490026-4-1.	
Figure 5-5.	Interior of Test Vehicle for Test No. 490026-4-1	
Figure 5-6.	Summary of Results for MASH Test 4-10 on TxDOT Type C2P Bridge	
U	Rail	22
Figure 6-1.	TxDOT Type C2P Bridge Rail/Test Vehicle Geometrics for	
U	Test No. 490026-4-2.	25
Figure 6-2.	Test Vehicle before Test No. 490026-4-2	26
Figure 6-3.	TxDOT Type C2P Bridge Rail after Test No. 490026-4-2.	27
Figure 6-4.	Test Vehicle after Test No. 490026-4-2.	
Figure 6-5.	Interior of Test Vehicle for Test No. 490026-4-2	28
Figure 6-6.	Summary of Results for MASH Test 4-11 on TxDOT Type C2P Bridge	
-	Rail	29
Figure 7-1.	TxDOT Type C2P Bridge Rail/Test Vehicle Geometrics for Test	
	No. 490026-4-3	
Figure 7-2.	Test Vehicle before Test No. 490026-4-3	34
Figure 7-3.	TxDOT Type C2P Bridge Rail after Test No. 490026-4-3.	35
Figure 7-4.	Test Vehicle after Test No. 490026-4-3.	36
Figure 7-5.	Interior of Test Vehicle for Test No. 490026-4-3	36
Figure 7-6.	Summary of Results for MASH Test 4-12 on TxDOT Type C2P Bridge	
	Rail	38
Figure D-1.	Sequential Photographs for Test No. 490026-4-1 (Overhead and Frontal	
	Views).	
Figure D-2.	Sequential Photographs for Test No. 490026-4-1 (Rear View)	
Figure D-3.	Vehicle Angular Displacements for Test No. 490026-4-1.	105
Figure D-4.	Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-1	
	(Accelerometer Located at Center of Gravity).	106
Figure D-5.	Vehicle Lateral Accelerometer Trace for Test No. 490026-4-1	
	(Accelerometer Located at Center of Gravity).	107
Figure D-6.	Vehicle Vertical Accelerometer Trace for Test No. 490026-4-1	
	(Accelerometer Located at Center of Gravity).	108
Figure D-7.	Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-1	
	(Accelerometer Located Rear of Center of Gravity).	109

Figure D-8.	Vehicle Lateral Accelerometer Trace for Test No. 490026-4-1	
e	(Accelerometer Located Rear of Center of Gravity).	110
Figure D-9.	Vehicle Vertical Accelerometer Trace for Test No. 490026-4-1	
U	(Accelerometer Located Rear of Center of Gravity).	111
Figure E-1.	Sequential Photographs for Test No. 490026-4-2 (Overhead and Frontal	
C	Views).	117
Figure E-2.	Sequential Photographs for Test No. 490026-4-2 (Rear View)	
Figure E-3.	Vehicle Angular Displacements for Test No. 490026-4-2.	120
Figure E-4.	Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-2	
C	(Accelerometer Located at Center of Gravity).	121
Figure E-5.	Vehicle Lateral Accelerometer Trace for Test No. 490026-4-2	
-	(Accelerometer Located at Center of Gravity).	122
Figure E-6.	Vehicle Vertical Accelerometer Trace for Test No. 490026-4-2	
-	(Accelerometer Located at Center of Gravity).	123
Figure E-7.	Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-2	
-	(Accelerometer Located Rear of Center of Gravity).	124
Figure E-8.	Vehicle Lateral Accelerometer Trace for Test No. 490026-4-2	
-	(Accelerometer Located Rear of Center of Gravity).	125
Figure E-9.	Vehicle Vertical Accelerometer Trace for Test No. 490026-4-2	
	(Accelerometer Located Rear of Center of Gravity).	126
Figure F-1.	Sequential Photographs for Test No. 490026-4-3 (Overhead and Frontal	
	Views)	129
Figure F-2.	Sequential Photographs for Test No. 490026-4-3 (Rear View)	
Figure F-3.	Vehicle Angular Displacements for Test No. 490026-4-3.	133
Figure F-4.	Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-3	
	(Accelerometer Located at Horizontal Center of Gravity)	134
Figure F-5.	Vehicle Lateral Accelerometer Trace for Test No. 490026-4-3	
	(Accelerometer Located at Horizontal Center of Gravity)	135
Figure F-6.	Vehicle Vertical Accelerometer Trace for Test No. 490026-4-3	
	(Accelerometer Located at Horizontal Center of Gravity)	136
Figure F-7.	Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-3	
	(Accelerometer Located Rear of Horizontal Center of Gravity)	137
Figure F-8.	Vehicle Lateral Accelerometer Trace for Test No. 490026-4-3	
	(Accelerometer Located Rear of Horizontal Center of Gravity)	138
Figure F-9.	Vehicle Vertical Accelerometer Trace for Test No. 490026-4-3	
	(Accelerometer Located Rear of Horizontal Center of Gravity)	139

LIST OF TABLES

Table 8-1.	Performance Evaluation Summary for MASH Test 4-10 on TxDOT Type	
	C2P Bridge Rail.	43
Table 8-2.	Performance Evaluation Summary for MASH Test 4-11 on TxDOT Type	
	C2P Bridge Rail	44
Table 8-3.	Performance Evaluation Summary for MASH Test 4-12 on TxDOT Type	
	C2P Bridge Rail.	45
Table D-1.	Vehicle Properties for Test No. 490026-4-1	99
Table D-2.	Exterior Crush Measurements for Test No. 490026-4-1.	100
Table D-3.	Occupant Compartment Measurements for Test No. 490026-4-1	101
Table E-1.	Vehicle Properties for Test No. 490026-4-2.	113
Table E-2.	Measurements of Vehicle Vertical CG for Test No. 490026-4-2	114
Table E-3.	Exterior Crush Measurements for Test No. 490026-4-2.	115
Table E-4.	Occupant Compartment Measurements for Test No. 490026-4-2	116
Table F-1.	Vehicle Properties for Test No. 490026-4-3	127

Chapter 1. INTRODUCTION

1.1. PROBLEM

The current research was conducted under a project that was set up to provide the Texas Department of Transportation (TxDOT) with a mechanism to quickly and effectively evaluate high-priority issues related to roadside safety devices. Such safety devices help shield motorists from roadside hazards such as non-traversable terrain and fixed objects. To maintain the desired level of safety for the motoring public, these safety devices must be designed to accommodate various site conditions, placement locations, and a changing vehicle fleet. Periodically, there is a need to assess the compliance of existing safety devices with current evaluation and testing criteria and develop new devices that address identified needs.

Under this project, TxDOT identified roadside safety issues and prioritized these for investigation. Each roadside safety issue is addressed with a separate work plan and test report.

1.2. OBJECTIVES/SCOPE OF RESEARCH

The objective of this research was to evaluate the impact performance of the TxDOT Type C2P Bridge Rail according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* for Test Level Four (TL-4) (1). This report describes the TxDOT Type C2P Bridge Rail, documents the impact performance of the bridge rail system according to *MASH* TL-4 evaluation criteria for longitudinal barriers, and presents recommendations on implementation.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

The test installation consisted of three 144-ft long (post-to-post) horizontal steel rails mounted on a 148-ft long concrete curb. Each rail was comprised of four 39-ft 10-inch long (40-ft long nominal) segments. The overall height of the bridge rail system was 42 inches above the bridge deck. The upper rail was comprised of a 4½-inch outside diameter (OD) \times $^{3}/_{16}$ -inch wall thickness round hollow structural section (HSS4.500×0.1875), and the middle and lower rails were each 6-inch × 2-inch × ¼-inch wall thickness rectangular hollow structural sections (HSS6.00×2.00×0.250). Nineteen 32-inch tall posts were equally spaced at 8 ft along the length of the installation. The posts were anchored to the top of a 9-inch tall steel reinforced concrete curb.

2.1.1 Horizontal Rail Members

The upper rail element was comprised of an HSS4.500 \times 0.1875 fabricated from ASTM A500 grade B material. The horizontal centerline of the round upper rail was 39³/₄ inches above the bridge deck. The middle and lower rail elements were each comprised of HSS6.00 \times 2.00 \times 0.250 fabricated from ASTM A500 grade B material. The horizontal centerlines of the middle and lower rails were 27 inches and 17 inches above the bridge deck, respectively.

To facilitate attaching the rails to the posts, each rail contained five pairs of $1^{1}/_{16}$ -inch diameter holes on $4\frac{1}{2}$ -inch centers on the field side located every 96 inches along the length of the rail. The rails were attached to the posts with $\frac{1}{2}$ -inch diameter ASTM A36 steel U-bolts with 2 inches of 13 UNC threads on $3\frac{1}{2}$ -inch long legs bent at $4\frac{1}{2}$ -inch centers. The bolts were inserted through the $1^{1}/_{16}$ -inch diameter holes in the rail and through the post, then secured with 2-inch square $\times \frac{5}{16}$ -inch thick ASTM A36 plate washers containing a centered $\frac{9}{16}$ -inch diameter hole, a lock washer, and a $\frac{1}{2}$ -inch, 13 UNC heavy hex nut (see Appendix A and/or B, drawing sheet 8 of 14 for details)

For test 1 with the small car and test 2 with the pickup truck, the most upstream four post locations of the installation were not used, so the fifth post location was numbered as post 1. The 2-inch wide rail expansion joints were centered 32 inches upstream of the centerlines of posts 6 and 11 of 15 posts. Each of the three rail sections were attached to five posts. The most upstream rail section had a 31-inch overhang preceding post 1, and the most downstream rail section had a 5-ft 3-inch overhang beyond post 15 (see Figure 2-1 and Appendix A)

For test 3 with the single unit truck, the three rail expansion joints for the four rail sections were each centered 32 inches upstream of the centerlines of posts 6, 11, and 16 of 19 posts. The most upstream three rail sections at posts 1 through 15 were each attached to five posts, with a 31-inch overhang preceding post 1, and the remaining downstream rail section at posts 16 through 19 was attached to four posts (16, 17, 18, and 19) with a 13 ft-3 inch overhang beyond post 19 (see Figure 2-2 and Appendix B)

Figure 2-1. General Layout of the TxDOT Type C2P Bridge Rail for Test No. 490026-4-1 and 4-2.

Figure 2-2. General Layout of the TxDOT Type C2P Bridge Rail for Test No. 490026-4-3.

The rail sections were connected with internal splice sections that matched the internal profile of the rails. The splice sections for the top rail were 28-inch long \times 4-inch OD \times ¹/₄-inch thick round HSS fabricated from ASTM A500 grade B material with a ³/₈-inch diameter locating pin located mid-span. The splice sections for the middle and bottom rails were 28-inch long welded rectangular tubes measuring 5³/₈-inches wide \times 1³/₈-inches tall \times ³/₁₆-inch thick fabricated from ASTM A36 steel plate. These splice tubes also contained a ³/₈-inch diameter locating pin at mid-span (see Appendix A and/or B, drawing sheet 6 of 14 for details).

2.1.2 Picket Panels

Eighteen picket panels were attached to the field side of the bridge rail system, one between each of the 19 posts. Each panel measured $73\frac{1}{8}$ inches long $\times 29\frac{7}{8}$ -inches high, and had thirteen ⁵/₈-inch square vertical steel bars evenly spaced at 6 inches along the length. Three horizontal members connected the pickets. The top longitudinal member was a 2-inch \times 1¹/₂-inch \times ³/₁₆-inch thick angle oriented with the 2-inch leg vertical and on the field side of the pickets. The middle and bottom horizontal members were $1\frac{1}{2}$ -inch $\times \frac{3}{8}$ -inch thick steel plate positioned 13³/₄ inches and 23⁷/₈ inches below the top of the top angle. The middle and bottom horizontal members were positioned on the traffic side of the pickets. Fifteen picket sections had three $\frac{9}{16}$ -inch diameter bolt holes located $3^{9}/_{16}$ inches, $33^{9}/_{16}$ inches, and $69^{9}/_{16}$ inches from the end of each middle and bottom horizontal plate (providing 30-inch and 36-inch spacings). The three picket sections located at the sleeved expansion joints had $\frac{9}{16}$ -inch wide × 3½-inch long slots (instead of $\frac{9}{16}$ -inch diameter holes) centered at the same locations. All picket materials were ASTM A36 steel. Each picket panel was secured to the middle and lower rails with six $\frac{1}{2} \times 1\frac{1}{2}$ -13 UNC ASTM A325 bolts, two $\frac{1}{2}$ -inch SAE hardened washers, and 1/2-inch heavy hex nuts. The rails were constructed with 2-inch diameter hardware access holes on the bottom near the field side at each picket panel bolt location. Similar holes were field cut in the internal splice sections as needed, and 2-inch long bolts were used at these locations. The top horizontal angle was not connected to the round top rail (see Appendix A and/or B, drawing sheet 5 and 7 of 14 for details).

2.1.3 Bridge Rail Posts

Fabricated steel posts, each 32 inches in overall height, supported the three rails atop the curb at 19 locations equally spaced at 8 ft along the test installation. Each post was a built-up welded structure comprised of two 9-inch wide \times 31¹/₄-inch tall \times ³/₄-inch thick side plates on 12¹/₂-inch centers welded to a base plate. The base plate was 14-inches wide \times 12-inches deep \times ³/₄-inch thick. Three rail bolting plates, each 2 inches wide \times ³/₄ inch thick, were welded between the side plates. A ⁵/₈-inch square vertical bar picket was welded to the field side of the middle and bottom rail plates. The front of each side plate was located 2¹/₂ inches back from the edge of the baseplate. Each side plate contained two rectangular notches, each 3¹/₄ inches deep \times 2¹/₈ inches high, that received the rail bolting plates and the middle/lower rail elements. The traffic side face of the middle and lower rails projected 3¹/₂ inches beyond the side plates, and was flush with the face of the curb.

The base plate contained two pairs of $1\frac{1}{5}$ -inch diameter anchor bolt holes located $2\frac{5}{8}$ inches and $7\frac{3}{8}$ inches from the front edge (traffic side) of the base plate and spaced on 4-inch centers about the centerline of the post. The base plates and post side plates were fabricated from ASTM A572

grade 50 material, and the pickets and rail bolting plates were fabricated from ASTM A36 material (see Appendix A and/or B, drawing sheet 3 and 4 of 14 for details).

In addition to the 12 existing anchor bolt sets, 7 new anchor bolt assemblies (for posts 13 through 19) were cast into the extended concrete curb. Four $\frac{7}{8}$ -inch diameter $\times 11\frac{1}{2}$ -inch long ASTM A193 grade B7 threaded rods were located in $\frac{15}{16}$ -inch diameter holes in an 11-inch long $\times 6\frac{1}{2}$ -inch wide $\times \frac{1}{4}$ -inch thick ASTM A36 steel anchor plate and supported by heavy hex nuts welded to the underside. Anchor bolt threads projected $2\frac{1}{2}$ inches above the top of the concrete curb. Each post was secured to the curb with a $\frac{7}{8}$ -inch diameter heavy hex nut and $\frac{7}{8}$ -inch SAE hardened washer on each anchor bolt (see Appendix A and/or B, drawing sheet 9 of 14 for details).

2.1.3.1 Bridge Rail Post Interim Repairs

The first test was test 3 with the single unit truck (*MASH* 4-12), followed by test 2 with the pickup truck (*MASH* 4-11), and finally test 1 with the small car (*MASH* 4-10). During test 3, the base plate welds failed at posts 5, 6, and 7 (refer to Section 7.5). Prior to test 2, the base plates for all 15 posts used for the remaining two tests were removed and new base plates of the same design were welded to the posts.

2.1.4 Concrete Curb and Bridge Deck

An existing steel reinforced concrete curb, bridge deck, and support wall from a previous bridge rail installation was used for the upstream 92-ft of the 148-ft installation length used for testing and evaluation of the TxDOT Type C2P Bridge Rail. On the downstream end of the installation, an additional 56 ft of curb, bridge deck, and sub-grade footer wall was constructed off of the existing concrete apron at the TTI Proving Ground facility. The curb was installed in three regions: A) an extension of the existing curb approximately 6-ft long; B) a new curb, deck, and sub-grade footer wall approximately 12 ft long; and C) a new curb, deck, sub-grade footer wall, and moment slab approximately 38 ft long.

The top of the curb was 9 inches above the finished grade of the bridge deck, and was 14 inches wide.

The cantilevered deck was constructed on top of a 12-inch thick \times 3-ft deep vertical footer wall. The deck emulated the overhang of a bridge deck and was 8-inch thick \times 30-inch wide. A 14-inch wide \times 9-inch tall curb with ³/₄-inch chamfered corners was cast on top of the deck. The field side of the bridge deck extended 1¹/₂ inches beyond the field side of the curb (see Appendix A and/or B, drawing sheet 10 of 14 for details).

In the new deck region A, the bridge deck was extended laterally approximately 4 ft to the existing concrete apron.

In the new deck region B, the vertical footer wall was extended longitudinally and the bridge deck was extended laterally approximately 5½ ft over the new footer wall to the existing concrete apron (see Appendix A, drawing sheet 10 of 14 for details)

In the new deck region C, the vertical footer wall was extended farther longitudinally and the bridge deck was extended laterally approximately 14½ ft over the new footer wall to create a new moment slab that was joined to the existing concrete apron (see Appendix A, drawing sheet 12 of 14 for details)

The bridge deck and moment slab extension were secured to the existing concrete apron via 24-inch long \times ⁵/₈-inch diameter joint bars that were set a minimum of 6 inches deep in holes drilled horizontally into the edge of the apron 3¹/₂ inches below grade and 24 inches on center. The joint bars were secured into the apron using Hilti RE500 epoxy according to the manufacturer's instructions. The curb extension was similarly connected with four joint bars (see Appendix A and/or B, drawing sheet 10 and 11 of 14 for details).

The ⁵/₈-inch diameter (#5) deck stirrups and transverse reinforcing steel bars were spaced on 6-inch longitudinal centers (except as noted) for the length of the curb. Also, a pair of #5 Z bars secured each anchor bolt assembly in the curb. Additional concrete reinforcement details can be found in Appendix A and/or B, drawing sheets 10 through 14.

Concrete cover over the reinforcing steel was 2 inches on the top of the deck, 1¹/₄ inches at the bottom of the deck, and 1¹/₂ inches on the top and sides of the curb. Junctions of the steel reinforcing bars were field wire-tied as necessary.

Figure 2-1 and Figure 2-2 present overall information on the TxDOT Type C2P Bridge Rail, and Figure 2-3 provides photographs of the installation. Appendices A and B provide further details of the TxDOT Type C2P Bridge Rail.

2.2. MATERIAL SPECIFICATIONS

The specified minimum unconfined compressive strength for the bridge deck and curb concrete were 4000 psi. The average unconfined compressive strength of the concrete in the bridge wall was 4586 psi at 46 days of age. The average unconfined compressive strength of the concrete in the bridge deck was 4539 psi at 34 days of age. The average unconfined compressive strength of the concrete in the curb was 3850 psi at 15 days of age.

Reinforcement of the bridge deck and curb was comprised of ASTM A615 grade 60 rebar with specified minimum yield strength of 60 ksi.

Epoxied connections were installed with Hilti RE500 epoxy anchoring system according to the manufacturer's instructions.

Appendix C provides material certification documents for the materials used to install/construct the TxDOT Type C2P Bridge Rail.

Figure 2-3. TxDOT Type C2P Bridge Rail prior to First Test 4-12.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST MATRIX

According to *MASH*, three tests are recommended to evaluate bridge rails for *MASH* Test Level 4 (TL-4). Details of these tests are described below:

MASH Test 4-10 involves a 2420-lb passenger car (1100C) impacting the critical impact point (CIP) of the length-of-need (LON) of the bridge rail while traveling at an impact speed and angle of 62 mi/h and 25 degrees, respectively.

MASH Test 4-11 involves a 5000-lb pickup truck (2270P) impacting the CIP of the LON of the bridge rail while traveling at an impact speed and angle of 62 mi/h and 25 degrees, respectively.

MASH Test 4-12 involves a 22046-lb single unit truck (10000S) impacting the CIP of the LON of the bridge rail while traveling at an impact speed and angle of 56 mi/h and 15 degrees, respectively.

MASH Tests 4-10 and 4-11 evaluate a barrier's ability to successfully contain and redirect passenger vehicles and evaluate occupant risk. *MASH* Test 4-12 evaluates the structural adequacy of the bridge rail. All three tests were performed on the TxDOT Type C2P Bridge Rail. The target CIP for each test was determined according to the information provided in *MASH* and is summarized in Figure 3-1 through Figure 3-3.

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

Figure 3-1. Target CIP for MASH Test 4-10 on TxDOT Type C2P Bridge Rail.

Figure 3-2. Target CIP for MASH Test 4-11 on TxDOT Type C2P Bridge Rail.

Figure 3-3. Target CIP for MASH Test 4-12 on TxDOT Type C2P Bridge Rail.

3.2. EVALUATION CRITERIA

The crash test results for each test were evaluated in accordance with the criteria presented in *MASH*. The impact performance of the TxDOT Type C2P Bridge Rail was judged based on the following factors:

- Structural adequacy, which is judged on the ability of the TxDOT Type C2P Bridge Rail to contain and redirect the vehicle.
- Risk of occupant compartment deformation or intrusion by detached elements, fragments, or other debris from the test article, which evaluates the potential risk of hazard to occupants, and, to some extent, other traffic, pedestrians, or workers in construction zones, if applicable.
- Occupant risk values, for which longitudinal and lateral occupant impact velocity and ridedown accelerations for the 1100C and 2270P vehicles must be within the limits specified in *MASH*, and determines the risk of injury to the occupants.
- Post-impact vehicle trajectory, which considers potential for secondary impact with other vehicles or fixed objects creating further risk of injury to occupants of the impacting vehicle and/or risk of injury to occupants in other vehicles.

The appropriate safety evaluation criteria from Table 5-1 of *MASH* were used to evaluate the crash tests reported herein. These criteria are listed in further detail under the assessment of each crash test.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards.

The TTI Proving Ground is a 2000-acre complex of research and training facilities located 8 miles northwest of the main campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons that are well-suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the TxDOT Type C2P Bridge Rail was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft $\times 15$ -ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE SYSTEM

The test vehicles were towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicles remained freewheeling (i.e., no steering or braking inputs) until they cleared the immediate area of the test site, after which the brakes were activated, if needed, to bring the test vehicles to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on

transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology. All accelerometers are calibrated annually according to SAE J211 *4.6.1* by means of an ENDEVCO[®] 2901, precision primary vibration standard. This device and its support instruments are returned to the factory annually for a National Institute of Standards Technology (NIST) traceable calibration. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

4.3.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional. However, it is recommended a dummy be used when testing "any longitudinal barrier with a height greater than or equal to 33 inches." Use of the dummy in the 2270P vehicle is recommended for tall rails to evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact performance evaluation. Since the rail height of the TxDOT Type C2P Bridge Rail was

42 inches, a dummy was placed in the front seat of the 2270P vehicle on the impact side and restrained with lap and shoulder belts.

MASH does not recommend or require use of a dummy in the 10000S vehicle. However, for informational purposes, an H3 instrumented dummy provided by the National Highway Traffic Safety Association (NHTSA) was positioned in the driver's seat and restrained with lap and shoulder belts. Measurements and photographs were taken per NHTSA protocol for use in studying dummy interactions within large vehicles.

4.3.3 Photographic Instrumentation Data Processing

Photographic coverage of each test included three high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed behind the installation at an angle.
- A third placed to have a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on each of the impacting vehicles was activated by a pressure-sensitive tape switch to indicate the instant of contact with the TxDOT Type C2P Bridge Rail. The flashbulb was visible from each camera to synchronize timing from the impact event. The videos from these high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-digital video camera and still cameras recorded and documented conditions of each test vehicle and the installation before and after each test.

Chapter 5. MASH TEST 4-10 (CRASH TEST NO. 490026-4-1)

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 4-10 involves an 1100C vehicle weighing 2425 lb ±55 lb impacting the CIP of the TxDOT Type C2P Bridge Rail at an impact speed of 62 mi/h ±2.5 mi/h and an angle of 25 degrees ±1.5 degrees. The target CIP for *MASH* Test 4-10 on the TxDOT Type C2P Bridge Rail was $43^{3}/_{16}$ inches upstream of the centerline of post 11. The 2010 Kia Rio used in the test weighed 2433 lb, and the actual impact speed and angle were 63.0 mi/h and 25.7 degrees, respectively. The actual impact point was 45 inches upstream of the centerline of post 11. Minimum target impact severity (IS) was 51 kip-ft, and actual IS was 61 kip-ft.

5.2 WEATHER CONDITIONS

The test was performed on the morning of July 20, 2016. Weather conditions at the time of testing were as follows: wind speed: 3 mi/h; wind direction: 183 degrees (vehicle was traveling in a northwesterly direction); temperature: 90°F; relative humidity: 63 percent.

5.3 TEST VEHICLE

A 2010 Kia Rio, shown in Figure 5-1 and Figure 5-2, was used for the crash test. The vehicle's test inertia weight was 2433 lb, and its gross static weight was 2598 lb. The height to the lower edge of the vehicle bumper was 7.75 inches and the height to the upper edge of the vehicle bumper was 21.0 inches. Table D-1 in Appendix D1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5-1. TxDOT Type C2P Bridge Rail/Test Vehicle Geometrics for Test No. 490026-4-1.

Figure 5-2. Test Vehicle before Test No. 490026-4-1.

5.4 TEST DESCRIPTION

As the 2010 Kia Rio was traveling at an impact speed of 63.0 mi/h, the left front corner of the bumper contacted the TxDOT Type C2P Bridge Rail 45 inches upstream of post 11 at an impact angle of 25.7 degrees. At 0.005 s after impact, the left front tire contacted the curb, and at 0.019 s, the hood contacted the middle horizontal rail element. The left front tire deformed at 0.022 s as the rim began traveling on the top surface of the curb, and the vehicle began to redirect at 0.032 s. At 0.040 s, the driver door opened slightly at the top near the roof, and at 0.050 s, cracks in the windshield began to radiate up and out from the left lower corner. The glass of the driver door began to dislodge from the frame of the window at 0.055 s, and the left front tire deflated at 0.064 s. At 0.089 s, the head of the dummy contacted the dislodged window glass, and at 0.101 s, the glass shattered as the dummy's head remained in contact with the door glass. The head of the dummy began to return to the vehicle interior at 0.132 s (the dummy's head did not contact the bridge rail), and the vehicle was traveling parallel with the installation at 0.178 s. At 0.350 s, the vehicle lost contact with the installation while traveling at an exit speed and exit angle of 49.5 mi/h and 9.7 degrees, respectively. Figures D-1 and D-2 in Appendix C2 present sequential photographs during the test.

For a bridge rail, it is desirable that the vehicle be redirected and exit the barrier within the exit box criteria (not less than 32.8 ft for cars and pickups). Brakes on the vehicle were applied 1.8 s after impact. The vehicle yawed counterclockwise and came to rest 174 ft downstream of impact and 2 ft toward the field side of the bridge rail. The 1100C vehicle exited within the exit box criteria defined in *MASH*.

5.5 DAMAGE TO TEST INSTALLATION

Figure 5-3 shows the damage to the TxDOT Type C2P Bridge Rail. The traffic face of the bridge rail was marred and scuffed, as was the traffic face and top of the curb. Working width was 14.0 inches. Maximum dynamic deflection during the test was 0.8 inch, and there was no notable maximum permanent deformation after the test.

Figure 5-3. TxDOT Type C2P Bridge Rail after Test No. 490026-4-1.

5.6 VEHICLE DAMAGE

Figure 5-4 shows the damage sustained by the vehicle. The front bumper, hood, left front tire and rim, left front strut and tower, left front fender, left front door and window glass, left rear door, left rear quarter panel, and rear bumper were damaged. The windshield was cracked in the left lower corner, and cracks radiated upward and toward the center, and deformation of the windshield was significantly less than 3 inches. Maximum exterior crush to the vehicle was 13.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 4.0 inches in the left front firewall area near the toe pan. Figure 5-5 shows the interior of the vehicle. Tables C-2 and C-3 in Appendix D1 provide exterior crush and occupant compartment measurements.

Figure 5-4. Test Vehicle after Test No. 490026-4-1.

Before Test

After Test

Figure 5-5. Interior of Test Vehicle for Test No. 490026-4-1.

5.7 OCCUPANT RISK FACTORS

Data from the accelerometers located at the vehicle center of gravity were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity (OIV) was 26.2 ft/s at 0.071 s, the highest 0.010-s occupant ridedown acceleration was 2.8 g from

0.949 to 0.959 s, and the maximum 0.050-s average acceleration was -14.9 g between 0.014 and 0.064 s. In the lateral direction, the occupant impact velocity was 33.1 ft/s at 0.071 s, the highest 0.010-s occupant ridedown acceleration was 8.2 g from 0.199 to 0.209 s, and the maximum 0.050-s average was 19.7 g between 0.010 and 0.060 s. Theoretical Head Impact Velocity (THIV) was 46.0 km/h or 12.8 m/s at 0.069 s; Post-Impact Head Decelerations (PHD) was 8.5 g between 0.199 and 0.209 s; and Acceleration Severity Index (ASI) was 2.81 between 0.044 and 0.094 s. Figure 5-6 summarizes these data and other pertinent information from the test. Figures D-3 in Appendix D3 shows the vehicle angular displacements, and Figures D-4 through D-9 in Appendix D4 show accelerations versus time traces.

5.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria for *MASH* test 4-10 is provided below.

5.8.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The TxDOT Type C2P Bridge Rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 0.8 inch. (PASS)

5.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof \leq 4.0 inches; windshield = \leq 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan \leq 9.0 inches; forward of A-pillar \leq 12.0 inches; front side door area above seat \leq 9.0 inches; front side door below seat \leq 12.0 inches; floor pan/transmission tunnel area \leq 12.0 inches).

<u>Results</u>: No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. (PASS)

Maximum occupant compartment deformation was 4.0 inches in the left front firewall area. (PASS)

General Information		Impact Conditions	Post-Impact Trajectory
Test Agency	Texas A&M Transportation Institute (TTI)		Stopping Distance
Test Standard Test No		Angle25.7 degrees	2 ft twd field side
TTI Test No	490026-4-1	Location/Orientation	Vehicle Stability
Test Date		of post 11	Maximum Yaw Angle52 degrees
Test Article		Impact Severity	Maximum Pitch Angle5 degrees
Туре	Bridge Rail	Exit Conditions	Maximum Roll Angle6 degrees
	TxDOT Type C2P Bridge Rail	Speed	Vehicle SnaggingNo
Installation Length		Angle	Vehicle PocketingNo
	Three steel rails supported on fabricated	Occupant Risk Values	Test Article Deflections
	steel posts mounted on concrete curb and	Longitudinal OIV	Dynamic0.8 inch
	deck	Lateral OIV	PermanentNone noted
Soil Type and Condition		Longitudinal Ridedown2.8 g	Working Width14.0 inches
		Lateral Ridedown	
Test Vehicle		THIV	Vehicle Damage
Type/Designation	1100C	PHD8.5 g	VDS
Make and Model		ASI2.81	CDC11FLEW4
Curb		Max. 0.050-s Average	Max. Exterior Deformation
Test Inertial		Longitudinal–14.9 g	OCDILF0033000
Dummy		Lateral19.7 g	Max. Occupant Compartment
Gross Static		Vertical3.8 g	Deformation

Figure 5-6. Summary of Results for MASH Test 4-10 on TxDOT Type C2P Bridge Rail.
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
<u>Result</u>	<u>s</u> : The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6 degrees and 5 degrees, respectively. (PASS)
Н.	Occupant impact velocities should satisfy the following:
	Longitudinal and Lateral Occupant Impact Velocity
	Preferred Maximum
	30 ft/s 40 ft/s
<u>Result</u>	<u>s</u> : Longitudinal OIV was 26.2 ft/s, and lateral OIV was 33.1 ft/s. (PASS)
Ι.	Occupant ridedown accelerations should satisfy the following:
	Longitudinal and Lateral Occupant Ridedown Accelerations
	Preferred <u>Maximum</u>
	15 g 20.49 g
<u>Result</u>	<u>s</u> : Maximum longitudinal ridedown acceleration was 2.8 g, and maximum lateral ridedown acceleration was 8.2 g. (PASS)

Chapter 6. MASH TEST 4-11 (CRASH TEST NO. 490026-4-2)

6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 4-11 involves a 2270P vehicle weighing 5000 lb ±110 lb impacting the CIP of the TxDOT Type C2P Bridge Rail at an impact speed of 62.2 mi/h ±2.5 mi/h and an angle of 25 degrees ±1.5 degrees. The target CIP for *MASH* Test 4-11 on the TxDOT Type C2P Bridge Rail was 51⁵/₈ inches upstream of the centerline of post 6. The 2011 Dodge RAM 1500 pickup truck used in the test weighed 5048 lb, and the actual impact speed and angle were 62.9 mi/h and 24.5 degrees, respectively. The actual impact point was 47¹/₂ inches upstream of the centerline of post 6. Minimum target impact severity was 106 kip-ft, and actual IS was 115 kip-ft.

6.2 WEATHER CONDITIONS

The test was performed on the morning of July 13, 2016. Weather conditions at the time of testing were as follows: wind speed: 14 mi/h; wind direction: 199 degrees (vehicle was traveling in a northwesterly direction); temperature: 92°F; relative humidity: 64 percent.

6.3 TEST VEHICLE

A 2011 Dodge RAM 1500 pickup truck, shown in Figure 6-1 and Figure 6-2, was used for the crash test. The vehicle's test inertia weight was 5048 lb, and its gross static weight was 5213 lb. The height to the lower edge of the vehicle bumper was 11.75 inches and the height to the upper edge of the vehicle bumper was 26.0 inches. The height to the center of gravity of the vehicle was 28.3 inches. Tables E-1 and E-2 in Appendix E1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 6-1. TxDOT Type C2P Bridge Rail/Test Vehicle Geometrics for Test No. 490026-4-2.

Figure 6-2. Test Vehicle before Test No. 490026-4-2.

6.4 TEST DESCRIPTION

As the 2011 Dodge RAM 1500 pickup truck was traveling at an impact speed of 62.9 mi/h, the left front corner of the bumper contacted the TxDOT Type C2P Bridge Rail 47½ inches upstream of the centerline of post 6 at an impact angle of 24.5 degrees. At 0.014 s after impact, the left front tire contacted the curb, and at 0.018 s, the hood and grill contacted the middle horizontal rail element. The left front tire began to climb the curb at 0.024 s, and the tire deflated at 0.028 s. At 0.038 s, the vehicle began to redirect, and at 0.042 s, a crack formed on the field side of the curb at post 6. The door opened near the roof at 0.058 s, and the head of the dummy contacted the door glass at 0.096 s. At 0.103 s, cracks began to radiate up and out from the left lower corner of the windshield, and at 0.106 s, the door glass in the driver door shattered. The head of the dummy was at maximum extent outside the vehicle at 0.134 s but did not contact the bridge rail. The vehicle began was traveling parallel with the installation at 0.169 s. The dummy began retracting into the interior of the vehicle at 0.172 s, and the rear of the vehicle contacted the bridge rail at 0.180 s. At 0.340 s, the vehicle lost contact with the installation traveling at an exit speed and exit angle of 50.5 mi/h and 8.1 degrees, respectively. Figures E-1 and E-2 in Appendix E2 present sequential photographs during the test.

For a bridge rail, it is desirable that the vehicle be redirected and exit the barrier within the exit box criteria (not less than 32.8 ft for cars and pickups). Brakes on the vehicle were applied at 1.8 s after impact. The vehicle yawed counterclockwise and came to rest against a secondary barrier 220 ft downstream of impact and 1 ft toward the traffic side of the bridge rail. The 2270P vehicle exited within the exit box criteria defined in *MASH*.

6.5 DAMAGE TO TEST INSTALLATION

Figure 6-3 shows the damage to the TxDOT Type C2P Bridge Rail. No damage to the posts was noted. Small cracks in the curb radiated from the anchor bolts at post 5, and larger cracks radiated from the anchor bolts at post 6. Working width was 14.0 inches. Maximum dynamic deflection during the test was 2.5 inches, and maximum permanent deformation was 1.4 inches.

Figure 6-3. TxDOT Type C2P Bridge Rail after Test No. 490026-4-2.

6.6 VEHICLE DAMAGE

Figure 6-4 shows the damage sustained by the vehicle. The front bumper, grill, hood, left front tire and rim, left upper and lower A-arms, left front fender, left front door and window glass, left rear door, left rear cab corner, left rear exterior bed, left rear tire and rim, left rear bumper, and left rear tailgate were damaged. The windshield sustained stress cracks radiating form the lower left corner of the A-pillar, and there was no deformation to the windshield. Maximum exterior crush to the vehicle was 13.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 2.25 inches in the instrument

panel area. Figure 6-5 shows the interior of the vehicle. Tables E-3 and E-4 in Appendix E1 provide exterior crush and occupant compartment measurements.

Figure 6-4. Test Vehicle after Test No. 490026-4-2.

Before Test

After Test

6.7 OCCUPANT RISK FACTORS

Data from the accelerometers located at the vehicle center of gravity were digitized for evaluation of occupant risk. In the longitudinal direction, the OIV was 18.4 ft/s at 0.094 s, the highest 0.010-s occupant ridedown acceleration was 3.0 g from 0.200 to 0.210 s, and the maximum 0.050-s average acceleration was –9.9 g between 0.032 and 0.082 s. In the lateral direction, the occupant impact velocity was 29.5 ft/s at 0.094 s, the highest 0.010-s occupant ridedown acceleration was 9.5 g from 0.222 to 0.232 s, and the maximum 0.050-s average was 15.3 g between 0.042 and 0.092 s. THIV was 38.7 km/h or 10.7 m/s at 0.091 s; PHD was 9.9 g between 0.222 and 0.232 s; and ASI was 2.03 between 0.062 and 0.112 s. Figure 6-6 summarizes these data and other pertinent information from the test. Figure E-3 in Appendix E3 shows the vehicle angular displacements, and Figures E-4 through E-9 in Appendix E4 show accelerations versus time traces.

29

TR No. 9-1002-15-2

General Information		Impact (
	Texas A&M Transportation Institute (TTI)	Speed
Test Standard Test No		Angle
TTI Test No.		Locatio
Test Date	2016-07-13	
Test Article		Impact \$
Туре	Bridge Rail	Exit Cor
Name	TxDOT Type C2P Bridge Rail	Speed
Installation Length	112 ft Rail Post-to-Post	Angle
Material or Key Elements	Three steel rails supported on fabricated steel posts mounted on concrete curb and deck	Occupa Longit Latera
Soil Type and Condition	Concrete Bridge Deck, Dry	Longit Latera
Test Vehicle		THIV.
Type/Designation	2270P	PHD
Make and Model		ASI
Curb	4911 lb	Max. 0.0

Test Inertial 5048 lb Dummy 165 lb

Gross Static 5213 lb

mpact Conditions	62.9 mi/b
Angle	24.5 degrees
Location/Orientation	47½ inches upstream
	of post 6
mpact Severity	115 kip-ft
Exit Conditions	
Speed	
Angle	8.1 degrees
Occupant Risk Values	
Longitudinal OIV	
Lateral OIV	
Longitudinal Ridedown	0
Lateral Ridedown	
THIV	
PHD	
ASI	2.03
Max. 0.050-s Average	
Longitudinal	
Lateral	15.3 g

Post-Impact Trajectory

Stopping Distance	220 ft downstream
	1 ft twd traffic lanes
Vehicle Stability	
Maximum Yaw Angle	37 degrees
Maximum Pitch Angle	4 degrees
Maximum Roll Angle	5 degrees
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	2.5 inches
Permanent	1.4 inches
Working Width	14.0 inches
Vehicle Damage	
VDS	11LEO4

VDS	11LFQ4
CDC	11FLEW3
Max. Exterior Deformation	13.0 inches
OCDI	LF0000000
Max. Occupant Compartment	
Deformation	2.25 inches

Figure 6-6. Summary of Results for MASH Test 4-11 on TxDOT Type C2P Bridge Rail.

Vertical.....-2.5 g

6.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria for *MASH* test 4-11 is provided below.

6.8.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The TxDOT Type C2P Bridge Rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 2.5 inches. (PASS)

6.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).

<u>Results</u>: No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. (PASS)

Maximum occupant compartment deformation was 2.25 inches in the instrument panel area. (PASS)

- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Results</u>: The 2270P vehicle remained upright during and after collision event. Maximum roll and pitch angles were 5 degrees and 4 degrees, respectively. (PASS)

*	pant impact velocities should s ongitudinal and Lateral Occup	
	<u>Preferred</u> 30 ft/s	<u>Maximum</u> 40 ft/s
<u>Results</u> :	Longitudinal OIV was 18.4 (PASS)	ft/s, and lateral OIV was 29.5 ft/s.
1	pant ridedown accelerations sl ongitudinal and Lateral Occup Preferred	<i></i>
	<u>15 g</u>	20.49 g
<u>Results</u> :	6	lown acceleration was 3.0 g, and acceleration was 9.5 g. (PASS)

Chapter 7. MASH TEST 4-12 (CRASH TEST NO. 490026-4-3)

7.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 4-12 involves a 10000S vehicle weighing 22,000 lb \pm 660 lb impacting the CIP of the TxDOT Type C2P Bridge Rail at an impact speed of 56 mi/h \pm 2.5 mi/h and an angle of 15 degrees \pm 1.5 degrees. The CIP for *MASH* Test 4-12 on the TxDOT Type C2P Bridge Rail was 5 ft (60 inches) upstream of centerline of post 6. The 2004 International 4200 single-unit box van truck used in the test weighed 22,220 lb, and the actual impact speed and angle were 58.4 mi/h and 15.3 degrees, respectively. The actual impact point was 63 inches upstream of centerline of post 6. Minimum target impact severity was 142 kip-ft, and actual IS was 176 kip-ft.

7.2 WEATHER CONDITIONS

The test was performed on the morning of June 27, 2016. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 198 degrees (vehicle was traveling in a northwesterly direction); temperature: 91°F; relative humidity: 54 percent.

7.3 TEST VEHICLE

A 2004 International 4200 single-unit box van truck, shown in Figure 7-1 and Figure 7-2, was used for the crash test. Test inertia weight of the test vehicle was 22,220 lb, and its gross static weight was 22,385 lb. The height to the lower edge of the vehicle front bumper was 19.25 inches and height to the upper edge of the vehicle front bumper was 34.0 inches. Table F-1 in Appendix F1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7-1. TxDOT Type C2P Bridge Rail/Test Vehicle Geometrics for Test No. 490026-4-3.

Figure 7-2. Test Vehicle before Test No. 490026-4-3.

7.4 TEST DESCRIPTION

As the 2004 International 4200 single-unit box van truck was traveling at an impact speed of 58.4 mi/h, the left front corner of the bumper contacted the middle horizontal rail element of the TxDOT Type C2P Bridge Rail 63 inches upstream of centerline of post 6 at an impact angle of 15.3 degrees. At 0.008 s after impact, the left front fender of the vehicle contacted the top horizontal rail element, and at 0.009 s, the left front tire contacted the lower rail element. The left front tire contacted the curb at 0.011 s, and the tire began to climb the curb at 0.025 s. At 0.063 s, the cab of the vehicle began to redirect, and at 0.098 s, the left lower corner of the box contacted the top horizontal rail element. The box of the vehicle began to redirect at 0.110 s, and the base plate at post 5 began to lift up off the curb at 0.234 s. At 0.235 s, the left lower rear corner of the box contacted the top horizontal rail element, and at 0.242 s, the box was traveling parallel with the installation. The weld at the connection between post 5 and the base plate began to rupture at 0.257 s, and the cab of the vehicle was traveling parallel with the installation at 0.270 s. At 0.294 s, post 5 was at maximum dynamic angle of 23 degrees toward the field side, and at 0.408 s, the left rear lower corner of the box lifted upward off the top horizontal rail element. Between 0.500 s and 0.600 s, the vehicle was traveling at 54.1 mi/h as it left the view of the overhead camera. The left front corner of the box contacted the top horizontal rail element at 0.580 s, and the left rear corner of the box contacted the top horizontal rail element a second time at 0.838 s. At 1.278 s, the left upper corner of the box contacted the top horizontal rail element, and at 1.739 s, the left rear upper corner of the box contacted the top horizontal rail element. Figures F-1 and F-2 in Appendix F2 present sequential photographs during the test.

For a bridge rail, it is desirable that the vehicle be redirected and exit the barrier within the exit box criteria (not less than 65.6 ft for vehicles other than cars and pickups). Brakes on the vehicle were not applied. The vehicle rode off the end of the bridge rail while traveling approximately parallel with the bridge rail. As the vehicle lost contact with the bridge rail, the vehicle rolled clockwise and came to rest on its left side 240 ft downstream of impact and 6 ft toward the traffic side of the bridge rail. The 10000S vehicle exited within the exit box criteria defined in *MASH*.

7.5 DAMAGE TO TEST INSTALLATION

Figure 7-3 shows the damage to the TxDOT Type C2P Bridge Rail. The welds failed at the base plates of post 5, 6, and 7. It was determined that the welds were not constructed correctly by the fabricator. After the welds failed at Posts 5, 6, and 7, the post plates rotated toward the field side 10 degrees, 13 degrees, and 7 degrees, respectively. The picket section between posts 5 and 6 released at the center and downstream locations but remained attached to the rail. Cracks radiated through the curb at posts 3 and 4, through the curb and deck at posts 5, 6, and 7, and through the curb at post 8. Working width was 62.3 inches. Maximum dynamic deflection during the test was 11.4 inches. Maximum permanent deformation as 7.25 inches at the joint between posts 5 and 6.

Figure 7-3. TxDOT Type C2P Bridge Rail after Test No. 490026-4-3.

7.6 VEHICLE DAMAGE

Figure 7-4 shows the damage sustained by the vehicle. The front bumper, hood, left front tire and rim, left battery box, left steps, left door and vent glass, left side of the cargo box, left rear outer tire and rim, and roof were damaged. The windshield sustained stress cracks during the test, and there was no deformation to the windshield. Maximum exterior crush to the vehicle was 14.0 inches in the side plane at the left front corner at bumper height. No occupant compartment deformation was noted. Figure 7-5 shows the interior of the vehicle.

Figure 7-4. Test Vehicle after Test No. 490026-4-3.

Figure 7-5. Interior of Test Vehicle for Test No. 490026-4-3.

7.7 OCCUPANT RISK FACTORS

Data from accelerometers located near the near the center of gravity were digitized only for information purposes. In the longitudinal direction, the OIV was 6.2 ft/s at 0.212 s, the highest 0.010-s occupant ridedown acceleration was 3.6 g from 0.260 to 0.270 s, and the maximum 0.050-s average acceleration was -1.8 g between 0.048 and 0.098 s. In the lateral direction, the occupant impact velocity was 15.1 ft/s at 0.212 s, the highest 0.010-s occupant

ridedown acceleration was 8.0 g from 0.278 to 0.288 s, and the maximum 0.050-s average was 5.4 g between 0.111 and 0.161 s. THIV was 17.8 km/h or 4.9 m/s at 0.206 s; PHD was 8.0 g between 0.278 and 0.288 s; and ASI was 0.61 between 0.136 and 0.186 s. Figure 7-6 summarizes these data and other pertinent information from the test. Figure F-3 in Appendix F3 shows the vehicle angular displacements, and Figures F-4 through F-9 in Appendix F4 show accelerations versus time traces.

7.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria for *MASH* test 4-12 is provided below.

7.8.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The TxDOT Type C2P Bridge Rail contained and redirected the 10000S vehicle. Although the welds partially failed on several posts in the impact region (due to incorrect weldment by the fabricator), the vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 11.4 inches. (PASS)

7.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof \leq 4.0 inches; windshield = \leq 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan \leq 9.0 inches; forward of A-pillar \leq 12.0 inches; front side door area above seat \leq 9.0 inches; front side door below seat \leq 12.0 inches; floor pan/transmission tunnel area \leq 12.0 inches).

Results:No detached elements, fragments, or other debris from the bridge
rail was present to penetrate or show potential for penetrating the
occupant compartment, or to present hazard to others in the area.
(PASS)

No deformation or intrusion into the occupant compartment occurred. (PASS)

U	S
0	0

		Section A-A
General Information	Impact Conditions	Post-Impact Trajectory
Test Agency Texas A&M Transportation Institute (TTI) Speed58.4 mi/h	Stopping Distance240 ft dwnstrm
Test Standard Test No MASH Test 4-12	Angle15.3 degrees	6 ft twd traffic
TTI Test No 490026-4-3	Location/Orientation63 inches upstream	Vehicle Stability
Test Date 2016-06-27	of post 6	Maximum Yaw Angle29 degrees
Test Article	Impact Severity176 kip-ft	Maximum Pitch Angle10 degrees
TypeBridge Rail	Exit Conditions	Maximum Roll Angle
Name TxDOT Type C2P Bridge Rail	Speed54.1 mi/h	Vehicle SnaggingNo
Installation Length 144 ft Rail Post-to-Post	AngleNot obtainable	Vehicle PocketingNo
Material or Key Elements Three steel rails supported on fabricated	Occupant Risk Values	Test Article Deflections
steel posts mounted on concrete curb ar	nd Longitudinal OIV6.2 ft/s	Dynamic11.4 inches
deck	Lateral OIV15.1 ft/s	Permanent7.25 inches
Soil Type and Condition Concrete Bridge Deck, Dry	Longitudinal Ridedown3.6 g	Working Width62.3 inches
Test Vehicle	Lateral Ridedown8.0 g	Vehicle Damage
Type/Designation 10000S	THIV17.8 km/h	VDSNA
Make and Model 2004 International 4200 single-unit box	PHD8.0 g	CDC11FLEW5
van truck	ASI0.61	Max. Exterior Deformation14.0 inches
Curb 12,360 lb	Max. 0.050-s Average	OCDILF0000000
Ballast 10,287	Longitudinal1.8 g	Max. Occupant Compartment
Test Inertial 22,220 lb	Lateral5.4 g	DeformationNone
Gross Static 23,385 lb	Vertical2.5 g	
	-	

Figure 7-6. Summary of Results for MASH Test 4-12 on TxDOT Type C2P Bridge Rail.

- *G.* It is preferable, although not essential, that the vehicle remain upright during and after the collision.
- <u>Results</u>: After losing contact with the bridge rail, the vehicle yawed counterclockwise and rolled onto its left side.

Chapter 8. SUMMARY AND CONCLUSIONS

8.1 ASSESSMENT OF TEST RESULTS

An assessment for each *MASH* test performed on the TxDOT Type C2P Bridge Rail is provided below.

8.1.1 *MASH* Test 4-10 (Crash Test No. 490026-4-1)

The TxDOT Type C2P Bridge Rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 0.8 inch. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the left front firewall area. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6 degrees and 5 degrees, respectively. Occupant risk factors were within the limits specified in *MASH*.

8.1.2 MASH Test 4-11 (Crash Test No. 490026-4-2

The TxDOT Type C2P Bridge Rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 2.5 inches. No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation was 2.25 inches in the instrument panel area. The 2270P vehicle remained upright during and after collision event. Maximum roll and pitch angles were 5 degrees and 4 degrees, respectively. Occupant risk factors were within the preferred limits specified in *MASH*.

8.1.3 MASH Test 4-12 (Crash Test No. 490026-4-3)

The TxDOT Type C2P Bridge Rail contained and redirected the 10000S vehicle. Although the welds partially failed on several posts in the impact region (due to poor weld penetration during fabrication), the vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 11.4 inches. No detached elements, fragments, or other debris from the bridge rail was present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. No deformation or intrusion into the occupant compartment occurred. After losing contact with the bridge rail, the vehicle yawed counterclockwise and rolled onto its left side.

8.2 CONCLUSIONS

For *MASH* Test 4-12, the post welds were not properly fabricated according to the project design drawings. As a result, some post welds in the immediate impact area did rupture from the *MASH* Test 4-12 truck impact. These ruptured post welds did aggravate the stability of the single unit truck during the test. For subsequent tests, the posts were welded correctly as per the project

drawings. The bridge rail posts, with the correct post welds, should only improve the performance of the single unit truck.^{*}

Table 8-1 through Table 8-3 show that the TxDOT Type C2P Bridge Rail performed acceptably for *MASH* TL-4.

^{*} The opinions expressed in this paragraph are outside the scope of TTI Proving Ground's A2LA Accreditation.

_	Test Ag	gency: Texas A&M Transportation Institute	Test No.: 490026-4-1	Test Date: 2016-07-26
		MASH Test 4-10 Evaluation Criteria	Test Results	Assessment
	A. Te br sh in	ral Adequacy est article should contain and redirect the vehicle or ring the vehicle to a controlled stop; the vehicle would not penetrate, underride, or override the stallation although controlled lateral deflection of e test article is acceptable.	The TxDOT Type C2P Bridge Rail contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 0.8 inch.	Pass
	D. De th fo an	nt Risk etached elements, fragments, or other debris from e test article should not penetrate or show potential r penetrating the occupant compartment, or present n undue hazard to other traffic, pedestrians, or ersonnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area.	Pass
	CO	eformations of, or intrusions into, the occupant ompartment should not exceed limits set forth in ection 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 4.0 inches in the left front firewall area.	Pass
	F. Th co	he vehicle should remain upright during and after ollision. The maximum roll and pitch angles are not exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6 degrees and 5 degrees, respectively.	Pass
	sh	ongitudinal and lateral occupant impact velocities would fall below the preferred value of 30 ft/s, or at ast below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 26.2 ft/s, and lateral OIV was 33.1 ft/s.	Pass
	I. La ac 15	ongitudinal and lateral occupant ridedown ccelerations should fall below the preferred value of 5.0 Gs, or at least below the maximum allowable alue of 20.49 Gs.	Maximum longitudinal ridedown acceleration was 2.8 g, and maximum lateral ridedown acceleration was 8.2 g.	Pass

Table 8-1. Performance Evaluation Summary for MASH Test 4-10 on TxDOT Type C2P Bridge Rail.

Tes	st Agency: Texas A&M Transportation Institute	Test No.: 490026-4-2	Test Date: 2016-07-13
	MASH Test 4-11 Evaluation Criteria	Test Results	Assessment
Str A.	<u>uctural Adequacy</u> Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The TxDOT Type C2P Bridge Rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 2.5 inches.	Pass
Oc D.	cupant Risk Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 2.25 inches in the instrument panel area.	Pass
<i>F</i> .	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after collision event. Maximum roll and pitch angles were 5 degrees and 4 degrees, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal OIV was 18.4 ft/s, and lateral OIV was 29.5 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal ridedown acceleration was 3.0 g, and maximum lateral ridedown acceleration was 9.5 g.	Pass

Table 8-2. Performance Evaluation Summary for MASH Test 4-11 on TxDOT Type C2P Bridge Rail.

Table 8-3. Performance Evaluation Summary for MASH Test 4-12 on TxDOT Type C2P Bridge Rail.

Test Agency: Texas A	A&M Transportation Institute	Test No.: 490026-4-3	Test Date: 2016-06-27
MASH Te	st 4-12 Evaluation Criteria	Test Results	Assessment
bring the vehicle should not pene	uld contain and redirect the vehicle or e to a controlled stop; the vehicle trate, underride, or override the ough controlled lateral deflection of s acceptable.	The TxDOT Type C2P Bridge Rail contained and redirected the 10000S vehicle. Although the welds partially failed on several posts in the impact region (due to poor weld penetration during fabrication), the vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 11.4 inches.	Pass
the test article s for penetrating	nts, fragments, or other debris from hould not penetrate or show potential the occupant compartment, or present d to other traffic, pedestrians, or york zone.	No detached elements, fragments, or other debris from the bridge rail was present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area.	Pass
Deformations og compartment sh	f, or intrusions into, the occupant ould not exceed limits set forth in Appendix E of MASH.	No deformation or intrusion into the occupant compartment occurred.	Pass
G. It is preferable,	although not essential, that the vehicle during and after collision.	After losing contact with the bridge rail, the vehicle yawed counterclockwise and rolled onto its left side.	Not Required

Chapter 9. IMPLEMENTATION PLAN

The TxDOT Type C2P Bridge Rail, as tested and reported herein, met all the strength and impact performance requirements of *MASH* TL-4. Based on these testing results, the researchers consider the TxDOT Type C2P Bridge Rail suitable for implementation on bridges on which a *MASH* TL-4 barrier is desired.

REFERENCES

1. AASHTO. *Manual for Assessing Roadside Safety Hardware*. 2009, American Association of State Highway and Transportation Officials: Washington, D.C.

TR No. 9-1002-15-2

51

2022-06-29

TR No. 9-1002-15-2

54

2022-06-29

TR No. 9-1002-15-2

56

60

65

67

74

TL

APPENDIX C.SUPPORTING CERTIFICATION DOCUMENTS

Project

Bryan, TX

Sample Date:

Sampled By:

Riverside Campus

Riverside Campus

Project Number: A1161016

Sample Information

Weather Conditions:

Accumulative Yards: Placement Method:

Sample Location:

Placement Location:

Water Added Before (gal): Water Added After (gal):

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number:	A1161016.0010			
Service Date:	06/09/16			
Report Date:	06/28/16	Revision 1 - 15-day results		
Task:	PO #49002	6-4		

Client

Texas Transportation Institute Attn: Gary Gerke TTI Business Office 3135 TAMU College Station, TX 77843-3135

Material Information

Specified Strength: 4,000 psi @ 28 days

Mix ID:

Supplier:	Martin Marietta Materials				
Batch Time:	1237	Plant:			
Truck No.:	7130	Ticket No.:	3364590		

Field Test Data

Test	Result	Specification
Slump (in):	4 3/4	Not Specified
Air Content (%):		Not Specified
Concrete Temp. (F):	92	40 - 95
Ambient Temp. (F):	91	40 - 95
Plastic Unit Wt. (pcf):		Not Specified
Yield (Cu. Yds.):		-

Laboratory Test Data

Set No.	Specimen ID	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Age at Test (days)	Load (lbs)	Strength (psi)	Fracture Type
1	А	4.00	12.57	06/13/16	06/24/16	15	48,940	3,890	5
1	В	4.00	12.57	06/13/16	06/24/16	15	45,420	3,610	2
1	С	4.00	12.57	06/13/16	06/24/16	15	50,860	4,050	3
						Aver	age (15 days)	3,850	
1	D	4.00	12.57	06/13/16	07/07/16	28			
1	E	4.00	12.57	06/13/16	07/07/16	28			

Comments: Not tested for plastic unit weight.

Samples Made By: Terracon

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and Services: test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Randolph E. Rohrbach **Reported To:**

Contractor:

Report Distribution:) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Nicole Farabee Start/Stop: 1230-1415

Reviewed By: Mark E.Dornak, P.E. Project Manager

6198 Imperial Loop

06/09/16

West end

Curb

Randolph E. Rohrbach

Clear, light wind 5.5/5.5

Direct Discharge

Maximum Compressive

College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Sample Time:

Batch Size (cy): 5.5

1320

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 11-16-12, Rev.6

Page 1 of 1

	310	ving Ground Tu 0 SH 47, Bldg 7091 C	Texas A&M Transportation Institute axes A&M University ollege Station, TX 77843 hone 979-945-6375	5.7.2	Concrete Br	eak QPF 5.7.2	Date:	
**			olicy Form	Revised by: (Approved by	G. E. Schroeder : C. E. But	Revision: 5	Page: 1 of 1	
Project No.: Placement:						g Date: <u>201</u> P.S.I.:		
Truck No.	Bat	ch Ticket	Yards	T Tecl	echnician taking Sign echnician taking Printed hnician breaking	ature of sample: 2	tom so	
Break Date		Cylinde	r Ago	ruck No.	Total Load (Pounds)	PSI Break	Ave	rage
2016-06-24	7	46 0	and the second sec		131,000	4633	.1	
1		1			28,000	4527	454	3/
				1	30,000	4598	120	Q
				+				
					and the second			•

08

	Proving Ground T 3100 SH 47, Bldg 7091 C	Texas A&M Transportation Institute college Station, TX 77843 hone 979-845-6375	5.7.2	Concrete Br	eak QPF 5.7.	Date:
		olicy Form	Revised by: (Approved by	G. E. Schroeder : C. E. But	Revision 5	Page: 1 of 1
Project No.: Placement:				Castin Mix Design		6-05-25
Truck No.	Batch Ticket	Yards	Tech	echnician taking Printed nnician breaking	sample: 6 Constant of sample: 5 Constant of sample: 5 Constant of sample: 5 Constant of 5 Constant o	In SCHRUCDER
Break Date	Cylinde		uck lo.	Total Load (Pounds)	PSI Break	Average
2016-06-27	39 pA		1	31,000 25,000 29,000	4421 4421 4573	4539

			MATERIAL USED			
TEST NUM	MBER	490026-4				
TEST NAM	ΛE	42" Picket Rail				
DATE		2016-06/07				
#	DATE RECEIVED	DESCRIPTION	GRADE	YIELD	TENSILE	SUPPLIER
15-044 15-045	2016-04-12 2016-04-12	Rebar, #5 x 20' Rebar, #4 x 20'	60 60	63.8 ksi none given	102.5 ksi	CMC Steel CMC Steel
15-049	2016-05-31	Ø7/8 x 11-1/2 Rod	B7	125000	138000	Mack Bolt & Steel
15-050 15-051	2016-05-31 2016-05-31	Nut, 7/8 Heavy Hex Washer, 7/8 flat	2H SAE			Mack Bolt & Steel Mack Bolt & Steel
15-053	2016-06-20	Rail Parts		see attached		Rik-Mar

82

15-044 CMC STEE 1 STEEL N SEGUIN T	IILL DR	IVE	CERTIFIED For ac	
CMC		3-7310		
HEAT NO.:3060965	S	CMC Constructio	n Svcs College St	
SECTION: REBAR 16MM (#5) 20'0"	0			
420/60 B096	L	10650 State Hw	y 30	
GRADE: ASTM A615-14 Gr 420/60	D	College Station TX		
ROLL DATE: 01/20/2016		US 77845-7950	1	
MELT DATE: 01/17/2016	Т	979 774 5900		
	0			
Characteristic	Value		Cha	
С	0.43%		· · · ·	
Mn	1.00%			
P	0.012	%		

н BOL#: 71536214 30 T 10650 State Hwy 30 CUST PO#: 707820 Ρ ŕΧ College Station TX CUST P/N: 552520 US 77845-7950 DLVRY LBS / HEAT: 4006.000 LB т 979 774 5900 DLVRY PCS / HEAT: 192 EA 0 Characteristic Value Characteristic Value 0.044% S 0.21% Si 0.24% Cu Cr 0.12% Ni 0.13% Мо 0.035% ٧ 0.000% Cb 0.003% Sn 0.009% 0.003% AI Yield Strength test 1 63.8ksi Tensile Strength test 1 102.5ksi 16% Elongation test 1 Elongation Gage Lgth test 1 8IN Bend Test Diameter 2.188IN Bend Test 1 Passed

 $1, n \in \mathbb{N}^{n}$

S CMC Construction Svcs College Stati

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here

William VanderWaal

Delivery#: 81728421

are accurate and conform to the reported grade specification

Quality Assurance/Reliability Manager

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. **REMARKS** :

83

TR No. 9-1002-15-2

02/18/2016 17:55:00 Page 1 OF 1

1 STEE	TEEL TEX/ L MILL DR N TX 7815	IVE	CERTIFIED MILL For additiona 830-37:	copies call	are accurate and co	ertify that the test results presented here onform to the reported grade specification will ve heaf William VanderWaal surance/Reliability Manager
HEAT NO.:3062573 SECTION: REBAR 13MM (#4) 20 420/60 GRADE: ASTM A615-14 Gr 420 ROLL DATE: 04/06/2016 MELT DATE: 04/01/2016	L	10650 State Hv	тх	S CMC Construction H I 10650 State Hwy P College Station T US 77845-7950 T 979 774 5900 O		Delivery#: 81766737 BOL#: 71582102 CUST PO#: 712289 CUST P/N: 552420D DLVRY LBS / HEAT: 35056.000 LE DLVRY PCS / HEAT: 2624 EA
Characteristic	Value		Characteris	tic Value	Cha	aracteristic Value
(Mi	0.96% 0.012	%				
s Ci Ci	0.33% 0.10%					
	0.038	%			1 1	
Si A						

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS :

04/06/2016 16:01:44 Page 1 OF 1

15-049	B&G Manufacturing Co, Inc 3067 Unionville Pike, P.O. Box 904, Hatfield, PA General Telephone: 215-822-1925		
	Customer number: 1310 Mack Bolt, Steel & Machine 5875 Hwy 21 E Bryan TX 77808	Manufacturing	Company
	Shipping Address: Mack Bolt, Steel & Machine 5875 Hwy 21 E	Quality certificate	
	BRYAN TX 77808 USA	Date 05/27/2016 Purchase order item 30986	

 B&G Delivery item

 80610282
 000010

 B&G Sales Order item

 418418
 000010

 Page 1
 of
 3

We certify that the material or fasteners supplied were manufactured, sampled, tested and inspected in accordance with the specification and other requirements designated in the purchase order and was found to meet those requirements. While in our possession, the material did not come in contact with mercury. The recording of false, fictitious or fraudulent statements or entries on this document may be punishable as a felony under Federal Statute.

Material Number : 60372 Batch 0000431559 / Quantity 2 EA Heat Number: 6613040020

Specification / Description TFL STUDS ASTM A193 B7 .875-9 X 11.500 MEASURED OVERALL LENGTH

Characteristic	Unit	Value
Specifications Heat Number Country Of Melt /	Mill	- ASTM-A193-06A GR. B7 - 6613040020 - China
Carbon [*] Content		% 0.4000
Chromium Content		% 0.9100
Manganese Content		% 0.7700
Molybdenum Content	2	% 0.1800
Phosphorus Content		% 0.0130
Silicon Content		% 0.1900 ⁻
Sulfur Content		% 0.0050
Tensile Strength		psi 138000
Yield Strength		psi 125000
Elongation		% 20.000
Reduction of Area		% 5 8. 000
Hardness RC		30
Tempering Temperat	ure	°F 1148

15-049	B&G Manufacturing Company, I 3067 Unionville Pike, Hatfield, PA 19440 Phone:	nc. Quality Certificate Date:05/27/2016
		a the decomposition of the second state of the second state $B\&G$ Part# 60372
	Page 2 of 3 Macro Etch Testing MACRO CENTER SEGREGATION MACRO RANDOM CONDITION MACRO SUBSURFACE CONDITION Condition Condition	 Pass ASTM E381-01 C2 ASTM E381-01 R2 ASTM E381-01 S2 Quenched and Tempered Stress Relieved

If you have any questions concerning this document, please contact our customer service dept at 215-996-3301.

Certification Service Specialist: Amanda Culp

TR No. 9-1002-15-2

-049 B&G Manufacturing Company, Inc. Quality Certificate Date:05/27/2016 3067 Unionville Pike, Hatfield, PA 19440 Phone: 215-822-1925 B&G Delivery Item 80610282 / 000010

B&G Delivery Item 80610282 / 000010 B&G Sales Order 418418 Item 000010 B&G Part# 60372 Customer: Mack Bolt, Steel & Machine Purchase order 30986

Page 3 of 3

Material Number : 60372 Batch 0000431561 / Quantity 48 EA Heat Number: 4104544

Specification / Description TFL STUDS ASTM A193 B7 .875-9 X 11.500 MEASURED OVERALL LENGTH

Characteristic Unit	Value	
Specifications	_	ASTM-A193-06A GR. B7
Heat Number	-	4104544
Country Of Melt / Mill	-	China
Carbon Content	8 0.4	000
Chromium Content		600
Manganese Content		500
Molybdenum Content	8 0.1	800
Phosphorus Content	80.1 80.0 80.2	120
Silicon Content	8 0.2	400
Sulfur Content	80.0	050
Tensile Strength	psi 126	000
Yield Strength	psi 113	000
Elongation	8 19.	000
Reduction of Area	8 61.	000
Hardness RC	27	
Tempering Temperature	°F 116	6
Macro Etch Testing	-	Pass
MACRO CENTER SEGREGATION	-	ASTM E381-01 C2
MACRO RANDOM CONDITION	-	ASTM E381-01 R2
MACRO SUBSURFACE CONDITION	-	ASTM E381-01 S2
Decarburization	-	Pass
Condition	-	Quenched and Tempered
Condition	-	Stress Relieved

If you have any questions concerning this document, please contact our customer service dept at 215-996-3301.

Certification Service Specialist:	Amanda Culp	()monota	Cell	_
Continuation but nee openant				

15-049

				15-050) (
		Stelfas	t Inc.		J	Report	of Ch	emical	and Physica	al Properties
	$\boldsymbol{\boldsymbol{S}}$	22979 Ste Strongsvil	lfast Parkwa le, Ohio	ıy						
	®	44149								
Issued To:	Mack Bolt	t, Steel &	Machine							
	5875 Hwy BRYAN, 77808							ler: 309 ler: SO		
								e #: 557		
Quantity:	150					Lo	t Numb	ber: 141	0200458B	
Part #:	A2HHO08	875C				Heat	t Numb	ber: J214	401603	
Description:	7/8-9 Hvy Hx	Nut 2H			C	ountry	of Orig	gin: CN		
				<u>Chem</u>	ical An	alysis				
C Mn	n P	S	Si	Cr	Mo	V	В	Ni	Cu	
0.44 0.7	0.021	0.003	0.16							
			N	<u>Aechan</u>	ical Pr	operti	es			
Grade of Steel Minimum Tem Result of 24 H Hardness (Core Proof Load Macro Etch Te Grade Marking	r. Temper (e) est	np. Fest		RB RC IIN 22						

We hereby certify that the above data is a true copy of the data furnished to us by the producing mill or the data resulting from tests performed in approved laboratories. Stelfast does not certify to customer's part number.

This certificate applies to the product shown on this document, as supplied by Stelfast Inc. Alterations to the product by our customer or a third party will render this certificate void.

San 1 David Biss Quality Manager

May 25, 2016

Page 1 of 1

15-051

Report of Chemical and Physical Properties

22979 Stelfast Parkway Strongsville, Ohio 44149

Stelfast Inc.

Issued To: Mack Bolt, Steel & Machine 5875 Hwy 21 East BRYAN, TX 77808

Purchase Order: 31004 Stelfast Order: SO 154470 Certificate #: 523,030

Quantity: 750 Part #: DHW0008750 Description: 7/8 Hardened Washer F436 Lot Number: GBR14538173A-007 Heat Number: D113007143 Country of Origin: CN

					Cher	nical A	nalysis	5		
С	Mn	Р	S	Si	Cr	Mo	V	В	Ni	Cu
0.45	0.59	0.014	0.007	0.22						
					Mech	anical l	Proper	ties		
Hardness	(Core)		39	9 - 44 H	RC					

We hereby certify that the above data is a true copy of the data furnished to us by the producing mill or the data resulting from tests performed in approved laboratories. Stelfast does not certify to customer's part numbers. This certificate applies to the product shown on this document, as supplied by Stelfast Inc. Alterations to the

product by our customer or a third party will render this certificate void.

David Biss

David Biss Quality Manager

May 27, 2016

Page 1 of 1

$\begin{array}{c} \mbox{MILL TEST CERTIFICATE} & \mbox{AHMSA:} \mbox{QUALITY WITH THE STRENGTH OF STEEL} \\ \mbox{Prolongacion juarez sin numero colonia la loma monclova coahuila $25770} & \mbox{B856841B} \end{array}$

CUSTOMER									DATE OF IS		PAGE	SHO	VIN THIS RE	T CHEMICAL AND/OR TES PORT ARE CORRECT AS RECORDS OF THE COMPAN
	AHMSA INT/ TRIPLE-S	HOUSTON							21.04.	2016	1	CON	AINED THE	RECORDS OF THE COMPAN
ADDRESS	5150 N LOOP1604 W S	AN ANTONIO	, TX.										NG. RAMIRO	
PRODUCT	WIDE PLATE													
	HIDE PERIE.											MEC	HANICALTE	STRAND CERTIFICATION
+						AL COMP			-					
HEAT	SPECIFICATION	С	Mn	P	S	Si	Cu	Cr	Ni	Mo	Alt	v	Cb	Ti
261731	ASTM A 572 50 T1 REV12		1.420	0.023		0.170			0.017	0.002	0.039	0.005	0.017	0.011
261732	ASTM A 572 50 T1 REV12	0.170	1.420	0.023		0.190 OF THE		0.017	0.020	0.003	0.034	0.004	0.019	0.011
HEAT	SLAB	PLATE NO.		HICKNES				T	RENGTH		LON.			
261731	3010	94305321		.5000	s(men)	54.670			24 (KSI)		() ()		T.ELONG	j.
261731	3080	94302211		. 7500		54.058			70 (KSI)		(8)			
261731	3100	94302221		0.7500		54.558			83 (KSI)		(8)		2	
261731	3160	94302221		. 0000		64.851			74 (KSI)		(8)		2	
261731 261732	3010	94303501		. 7500		53.784			49(KSI)		(8)		2	
261732 261732	3020	94305401		. 5000		55.061			95 (KSI)		(*)		2	
261732	3130	94343921		.0000		56.013			07(KSI)		(8)		2	
261732	4020	94303531		.7500		53.339			98(KSI)		(%)		2	
261732	4070	94304521		.2500		58.348			02(KSI)		(%)		2	
+					SHT	PED PRO		10.0						
HEAT	PLANCHON	PLATE NO.	3	HICKNES	S(Inch)	WIDTH (Inch)	LARGE (I	nch)	ORDER		ITE	м	DELIVERY
261731	3130	94303782	C	.7500		96.000	0	240.000	0	00001	84118	000	080	1002268931
261731	4140	94303721	c	. 7500		96.000	0	240.000	0	00001	84118	000	080	1002268931
261731	4140	94303722	C	. 7500		96.000	0	240.000	0	00001	84118	000	080	1002268931
261732	3030	94303752	c	. 7500		96.000	0	240.000	0	00001	84118	000	080	1002268931
261732	3050	94303741	c	. 7500		96.000	0	240.000	0	00001	84118	000	080	1002268931
261732	3050	94303742	C	. 7500		96.000	0	240.000	0	00001	84118	000	080	1002268931
HEAT	PLANCHON	PLATE NO.	C	USTOMER	ORD.			STAND	ARD					
261731	3130	94303782	P	HI4196(WLY-187	36)/M		A-6						
261731	4140	94303721	P	HI4196 (WLY-187	36)/M		A-6						
261731	4140	94303722	P	HI4196 (WLY-187	36)/M		A-6						
261732	3030	94303752	P	HI4196 (WLY-187	36)/M		A-6						
261732	3050	94303741	A	HI4196 (WLY-187	36)/M		A-6						
261732	3050	94303742	P	HI4196 (WLY-187	36)/M		A-6						
grain	ats and sizes are fully practice. DIN EN 10204 § Y OF ORIGIN: MÉXICO			ith fin	e									
						END OF	DATA							
3/10	15	57161												
TAX	Qu 1046 12	1-201												
										UED : (

TR No. 9-1002-15-2

CC-03-F-01-A

Product: 4.5 Specification: Heat Number			ade B, ERW	,						: 4/27/2016			
lest Norther									Melted and	Manufactured i	n the U.S.A	۹.	B
loof blow hor					al Analys		(Hea	t Analysis					
	C	Mn	P	S	Si	Cu		NI	Cr	Mo	V		Ę
4514783	0.2	0.46	0.014	0.005	0.03	0.08	-	0.03	0.06	0.01	0.00	0.5	1069
							Propert	11	rotest Elatt		AN ()		85
				Yield	Tensil	e	Elong %	5 5	ec. hold	ening UT N	0 Notch		NIO:
Test	Dir	Loc		KSI (0.2% offset)	KSI		in 2"	PS	1				모
1 2 3	L T T	B B W		64.1	74.8		27	N/#	PAS	SED N	A		B/L: DHO-106885 W/O: DHO-124786-1
TTFM-052/0		NG CRE		INFORMATION IS	CORRECT	AS CON	By: Vice	e-President I	RDS OF TEXAS	ies Inc.	_	01/04/10	Page 1 of 1

	LAMSP.			PO Box 2	Ste 1119	CLIENTE/Seel Supp	ly Co.		8411 Ir	DESTINATA S - Irvingt vington	on Whs	то	F.	FECHAN 11/17/	0678 DATE
0.C.J P.O. HOU-167987 HOU-167987 HOU-167987 HOU-167987 HOU-167987 HOU-167987	PEDIDO/ ORDER 30039108-20 30039108-30 30039108-30 30039108-50 30039108-50 30039108-60	ROLLO/ COIL 0011069329 0010697386 0010697386 0011029598 0011029598 0011029598 0011063615	LOTE/ PACKAGE 0011130578 001102855 001102855 0011068029 0011067482 0011067776 0011119741	306201 306201 306204 306204 306204	SQR SQR SQR SQR SQR	4 FL	RIPCION D TERIAL DE 0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500	SCRIPTION HGB STK HGB STK HGB STK HGB STK HGB STK	N STK 40.00 20.00 20.00 40.00 40.00 40.00	LONGITUD/ LENGTH 40.000 Feet 20.000 Feet 20.000 Feet 40.000 Feet 40.000 Feet 40.000 Feet 24.000 Feet	%C 0.1644 0.1560 0.1560 0.1693 0.1693 0.1693 0.1483	ANALI %Mn 0.9529 0.9481 0.9481 0.9487 0.9487 0.9487 0.9487	SIS %P 0.0128 0.0241 0.0241 0.0152 0.0152 0.0152 0.0152 0.0194	0.0056 0.0083 0.0083 0.0076 0.0076 0.0076 0.0076	%Si 0.0214 0.0147 0.0147 0.0138 0.0138 0.0138 0.0145
0.c./ P.0.	PEDIDO/ ORDER	ROLLO/ COIL	LOTE/ PACKAGE	DURE (HRE	LAI	DADES FIS TENSIC TENSILE	ON/ CI (ksi) Yi	ELD (ksi)	PROPERTIE	ION/ ESTAN	IDAR	COLA	л	HECI	E
HOU-167987 HOU-167987	30039108-20 30039108-30	0011069329 0010697386	0011130578	85			T	65 1.50 67	at an fian		B HR Gr	2575 2551	30 Ma	ade in M ade in M	exico
HOU-167987 HOU-167987	30039108-30	0010697386	0011022845	1	-		77 255	130 67°. 237 63	ede zi Kewi eve it Nov			2551		ade in M	1
HOU-167987	30039108-50	0011029616	0011067482	199520			77	63		25 A500 HR-		2572		ade in M	
HOU-167987	30039108-50	0011029598	0011067776	82		1 A	77	63		25 A500 HR-		2572		ade in M	
HOU-167987	30039108-60	0011063615	0011119741	85			73	60		29 A500 HR-	B HR Gr	2575	82 Ma	ade in M	exico
					•	,									

5 0

TRIPLES

+VERDE

Acería Ramos Arizpe CARRETERA MONCLOVA KM 4 NUMERO 2125, TRA C.P./ZIP RAMOS ARIZPE, COAHUILA Tel/Phone (+52) 01 818 368 1111

Tel/Phone (+52) 01 818 368 1111 EN CALIDAD MX 01 800 021 3322, USA 1800 332 2376

/ CERTIFICATE OF TEST AN ANALYSIS

No: Cartificatór / 62598 - 20356715 Certificator No: 22/02/2016

Hecho en México / Made in Mexico

DATO	S DEL CLIENTE / SOLD TO	CLIENTE C	ONSIGNADO TSHIP TO ?	DATOS DEL EMBARQUEY SMIPPING INFORMATION
Cliente / Customer: DEACERO USA, IN	C. (HOUSTON)	Cliente / Customer: DEACERO U CENTER)	ISA INC (HOUSTON DISTRIBUTION	Núm. Viaje / Travel No: 62598
Dirección / Address: 8411 IRVINGTON	BLVD	Dirección / Address: 1755 FEDE	RALRD	Núm, Factura / Invoice No: FQ34981
Ciudad / City: HOUSTON	Estado / State: , TX	Ciudad / City: HOUSTON	Estado / State: , TX	Pedido / Customer Order No: 2035 715
Teléfono / Phone: 332 2376	Pais / Country: U.S.A. C.P./ZIP 77022-3			Núm. Plan / Shipping Plan: 67442
Correo Electrónico / eMail:				Focha Emb8rque / Date: 11/02/2018
				Orden de Compra / Purchase Order:

			COMPOSICIÓN QUÍN	ICATC	NEMIC/	L CO	POSIT	TON (%	PEBO	/ WEIG	AT)					1.20	1.1.	244
Coleda / Heat	Secuencia / Sequence	Clave / Code	Producto / Description of Goods	%C	% Mn	% Si	%P	%S	% Cu	% Cr	% Ni	% Mo	% Sn	% Ti	%V	% Nb	%N	CE
				AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG
79166	146001	60671	SQUARE BAR 5/8" A-36 20' 2.0T	0.23	0.55	0.14	0.005	0.012	0.19	0.083	0.084	0.019 B	0.027	0.001	0.003	0.000	0.000	0.343
13661	22509	63335	FLAT BAR 2" x 1/2" A36/529-50 20' 2.0T	0.20	0.72	0.18	0.013	0.010	0.19	0.094	0.075	0.023	0.010	0.000	0.003	0.001	0.009	0.342
13662	22508	63335	FLAT BAR 2" x 1/2" A36/529-50 20' 2.0T	0.21	0.71	0.18	0.011	0.009	0.19	0.083	0.075	0.023	0.011	0.000	0.004	0.002	0.008	0.352
10675	19789	63181	FLAT BAR 3" x 5/8" A36/529-50 20 2.0T	0.21	0.95	0.22	0.006	0.005	0.10	0.057	0.047	0.009	0.006	0.010	0.014	0.012	0.009	0.384
13516	22431	79035	FLAT BAR 6" x 1/4" A36/529-50 20' 2.0T	0.21	0.90	0.18	0.010	0.009	0.10	0.057	0.053	0.016	0.007	0.009	0.015	0.008	0.009	0.372
13500	22365	10702	FLAT BAR 8" x 3/8" A36/529-50 20' 2.0T	0.23	0.93	0.21	0.009	0.006	0.08	0.052	0.040	0.013	0.006	0.012	0.014	0.009 B	0.008	0.392

	Y										
Heat	Secuencia / Sequence	Clave / Code	Producto / Description of Goods	Calibre / Diameter	Cantidad / Bundle	RT kg/mm ²	TS PSI	% Elong / Elong	LF kg/mm ¹	PSI	P. Doblez / Bend Test
						AVG	AVG	AVG	AVG	AVG	
79166	146001	60671	SQUARE BAR 5/8" A-36 20' 2.01	5/8"	10	49.86	70950.78	26.11	34.30	48808.90	Cumple / Successfully
13661	22509	63335	FLAT BAR 2" x 1/2" A36/529-50 20" 2.0T +	2" x 1/2"	3	52.39	74550.97	29.63	35.34	50288.62	Cumple / Successfully
13662	22508	63335	FLAT BAR 2" x 1/2" A36/529-50 20" 2.0T	2" x 1/2"	7	51.82	73739.86	28.64	36.27	51812.21	Cumple / Successfully
10675	19789	63181	FLAT BAR 3" x 5/8" A36/529-50 20' 2.0T	3" x 5/8"	2	51.79	73697.17	32.95	37.98	54045.54	Cumple / Successfully
13516	22431	79035	FLAT BAR 6" x 1/4" A36/529-50 20' 2.0T	6" x 1/4"	8	55.30	78691.90	34.25	39.30	55923.90	Cumple / Successfully
13500	22365	10702	FLAT BAR 8" x 3/8" A36/529-50 20' 2.0T	8" x 3/8"	8	51.07	72672.81	34.31	36.60	52081.80	Cumple / Successfully

Certificamos que este material ha sido producido, inspeccionado y probado de acuerdo a las normas de fabricación del acero aplicables e la ASTM A35-2006, A528-2005 (re aprobada el 2009), A572-2012 y A922-2011 9 a las normas dimensionales NMX B252, ASTM A&/ABM-2012. / We certify that this meterial has been produced hor-rolled carbon, inspected and tested according to standards aplicable stelemaking to ASTM A36-2006, A528-2005 (Reapproved 2009), A572-2012 y A992-2011, and the dimensional standards NMX B252, ASTM A&/ABM-2012. SOUA RE TBAR A - 3 & 5/8 X 2.0

FRANCISCO JAVIER VARGAS SOTO Gerente de Aseguramiento da Calidad / Quality Assurance Manager

GÐ GERDAU	CUSTOMER SH TRIPLE S STE 6000 JENSEN	EL SUPPLY	CUS TRI	TED MATERIAL		GRAI GGM			APE / SIZE / 5/16 X 2		Page 1/1											
CA-ML-CAMBRIDGE 60 ORION PLACE	HOUSTON,TZ			USTON, TX 77226-	1119	LENC 20'00'			WEIGHT 5,112 LB		HEAT / BATCH 52069747/05											
AMBRIDGE, ON N1T 1R9 anada	SALES ORDE 2696421/0000		. (CUSTOMER MATE	ERIAL Nº	SPEC	IFICATION / DAT	E or REVIS	ION	•												
CUSTOMER PURCHASE ORDER NUMBER HOU-166824		BILL OF LAD 1301-0000011		DATE 08/28/201	15		•															
CHEMICAL COMPOSITION <i>G</i> Mn <i>P</i> 0.08 1.16 0.014	\$% 0.040	\$j 0.21	Си 0.26	Ni 0.08	Ст 0.11	0.026	¥ 0.023	Nb 0.001		•												
MECHANICAL PROPERTIES Elong. G. 22.00 8.0 20.00 8.0	/L ch 000 000	UI P1 717 735	rs SI 771 509	UTS MPa 495 507		501 515	.50		YS MPa 346 355													
his grade meets the requirements for the following grades: STM Grades: A36; A529-50; A572-50; A709-36; A709-3 SA Grades: 44W; 50W ASHTO Grades: M270-36; M270-50		•								,												
his grade meets the requirements for the following grades: STM Grades: A36; A529-50; A572-50; A709-36; A709-3 CSA Grades: 44W; 50W ASHTO Grades: M270-36; M270-50	50	•																				
his grade meets the requirements for the following grades: STM Grades: A36; A529-50; A572-50; A709-36; A709-3 SA Grades: 44W; 50W ASHTO Grades: M270-36; M270-50	50	•		. 53																		
his grade meets the requirements for the following grades: STM Grades: A36; A529-50; A572-50; A709-36; A709-3 CSA Grades: 44W; 50W ASHTO Grades: M270-36; M270-50	50	•		. p>																		
COMMENTS / NOTES This grade meets the requirements for the following grades: ASTM Grades: A36; A529-50; A572-50; A709-36; A709-3 SSA Grades: 44W; 50W VASHTO Grades: M270-36; M270-50 ASME Grades: SA36 ASME Grades: SA36 A - 36 FUAT BAR	⁵⁰ 3			. 52							5											
		SIEOS		Certi	ncado			l de Pr ll Test				as y	Qui		as 01	701	129	,				3
----	---	---	--	---	--	--	--	--	--	---	--	--	--	---	--	--	--	--	--	--	--------------------------------------	--
	TRIPLE S STEEL		PM							Or	den /	Orde	r:411(66				Certif	icado 0	o / Ce	rtifica	te: B41
	SERIE	PRODUCTO PRODUCT	COLADA HEAT	GRADO GRADE	·LE ·YS	•UT •TS		LE/UT (YS/TS)	С	Mn	SI	P	S	Cu	Cr	Ni	Mo	Sn	۷	Nb	AI	CEQ
	1201511252018 1201511252009 1201511252009 1201511252005 1201512163035 1201512163035 1201512163035 1201512163038 1201512163038		000000152482 000000152482 000000152482 000000152560 000000152560 000000152560 000000152560 000000152560	A36/A529-50 A36/A529-50 A36/A529-50 A36/A529-50 A36/A529-50 A36/A529-50 A36/A529-50 A36/A529-50 A36/A529-50	51245 51245 51245 51245 51300 51300 51300 51300	73521 73521 73521 73521 72500 72500 72500 72500 72500 72500	30 30 30 29 29 29 29 36	0.7 0.7 0.7 0.71 0.71 0.71 0.71 0.71 0.7	.168 .168 .168 .168 .162 .162 .162 .162	.859 .859 .859 .82 .82 .82 .82 .82 .82 .82	.149 .149 .149 .161 .161 .161 .161 .164	.011 .011 .011 .016 .016 .016 .016 .016	.028 .028 .028 .028 .02 .02 .02 .02 .022	22 22 22 287 287 287 287 287 29	.052 .052 .052 .052 .131 .131 .131 .131 .081	.086 .086 .086 .086 .095 .095 .095 .095 .095	.033 .033 .033 .033 .019 .019 .019 .025	.015 .015 .015 .015 .012 .012	.001 .001 .001 .001 .001 .001 .001	.008 .008 .008 .008 .001 .001 .001 .005	.001 .001 .001 .002 .002	.376 .376 .376 .376 .381 .381 .381 .381
		R A-36/GR 50 resadas en L.E. y U.T sor			anto ovi	rocodo	0.00															
		ed in L.E and U.T are in F							0.		-			-						-		
fa	bricado, muestre on los requisitos	el producto aquí descrito, eado, probado e inspeccia aplicables de la especific 3 a (2014); A529 / A529M	onado de acuerdo ación:	И.							bee with	n ma	inufa	cture e rec	d, sa Juirei	ment	d, tes of s	sted	and	inspe	ected	plishes in acco SA-6/

		CUSTOMER	SHIP TO	Contraction of the second s	STOMER BILL TO	L TEST REPOR	GRA	DE	SH	APE / SIZE		Page 1/1 DOCUMENT I
GO GER	DAU		TEEL SUPPLY	TR	IPLE S STEEL		GGM	IULTI		le / 2X1 1/2X3/16		0000002412
		HOUSTON; USA	TON,TX 77026-1113 HOUSTON,TX 77226-1119 USA				LEN0 20'00			WEIGHT 2,968 LB		BATCH 200/03
CHARLOTTE, NC 28269 USA SALES ORDER 3558760/000020				CUSTOMER MATERIAL N°			SPECIFICATION / DATE or REVISION ASTM A529-14, A572-15 ASTM A6-14,A36-14, ASME SA-36					
CUSTOMER PURCHASE OR HOU-169975	DER NUMBER	1	BILL OF LA 1321-000003		DATE 04/05/2		ASTN	A A709-13A, AASH G40.20-13/G40.21-1	TO M270-12			
CHEMICAL COMPOSITION C Mn 0.16 0.68	P 0.014	\$ 0.038	\$j 0.19	Çu 0.34	Ni 0.13	\$5 0.14	Mo 0.040	У 0.016	Nb 0.002	şn 0.015		
MECHANICAL PROPERTIES Elong. 29.00	ł	G/L nch	ų	TS	U	TE	v					
GEOMETRIC CHARACTERISTIC R:R 40.00 COMMENTS / NOTES This grade meets the requirements for	S or the following grad	.000	74	PSI 4755	M 5	TS Pa 15	4 55.	25 343		YS 382		
GEOMETRIC CHARACTERISTIC R:R 40.00 COMMENTS / NOTES This grade meets the requirements for ASTM Grades: A36, A529-50; A57; CSA Grades: A4W; 50W AASHTO Grades: M270-36; M270-	r the following grad -50; A709-36; A709	.000	74	PSI 1755	M 5	Pa 15	1 ⁴ 55.	\$1 343		МРа 382		
GEOMETRIC CHARACTERISTIC R:R	r the following grad -50; A709-36; A709	.000	74	PSI 1755	5	Pa 15	1 ⁴ 55.	\$1 343		¥Ра 382		
GEOMETRIC CHARACTERISTIC R:R 40.00 COMMENTS / NOTES This grade meets the requirements fo ASTM Grades: A36, A529-50; A57: CSA Grades: 44W; 50W AASHTO Grades: M270-36; M270- ASME Grades: M270-36; M270- ASME Grades: SA36 SAGUE A36 ANGLE A36 The ab	r the following grad -50; A709-36; A70 50 	000 es: 2.50 rtified chemical		(6 × 20 records as contai		15		ify that these data		YPa 382 4 in compliance with		

15-053

MATERIAL CERTIFICATION

Date: 4/14/2016 Time: 6:24:06PM

33944 Shipper's No.

Customer Information: Triple S Steel P.O. Box 21119

Houston, TX 77226

Shipped Date: 4/14/2016 12:00:00AM

Item Description Customer Item # Order Number	Qty Shipped C Mn P S Si Strength Strength Elonga	tion
3.000 x 3.000 x 1/4 x 240	0.190 0.870 0.011 0.002 0.027 75.00 HEAT #:NF1019 Grade: ASTM A500 B/C Rev 10a	26
00050197	Customer PO #: TXN-3195	
4.000 x 4.000 x 1/4 x 288	0.190 0.840 0.009 0.006 0.024 48.00 HEAT #:NF1619 Grade: ASTM A500 B/C Rev 10a	25
00050197	Customer PO #: TXN-3195	
4.000 x 4.000 x 1/4 x 288	0.190 0.860 0.009 0.002 0.024 12.00 HEAT #:SF1994 Grade: ASTM A500 B/C Rev 10a	27
00050197	Customer PO #: TXN-3195	
6.000 x 2.000 x 1/4 x 480	0.210 0.470 0.014 0.004 0.020 24.00 HEAT #:A602083 Grade: ASTM A500 B/C Rev 10a	25
00050197	Customer PO #: TXN-3195	
6.000 x 4.000 x 1/4 x 576	0.200 0.850 0.014 0.003 0.018 9.00 HEAT #:NF1017 Grade: ASTM A500 B/C Rev 10a	30
00050197	Customer PO #: TXN-3195	

Comments:

- All items above were Melted and Manufactured in the U.S.A.
- Mercury free.
- The material test results meeting ASTM A500 B and/or B/C Rev 10a also meet the requirements for ASTM A500 B Rev 10 and Rev 13.
- Material that meets A500 B and B/C Rev 10a also meet the requirements for A513.
- Pipe sizes above meet ASTM A53 Grade B Non-Hydro Type E / A500 Grade B tensile requirements only.

171 Cleage Dr. Birmingham, Alabama 35217 (205) 520-0238. 1-800-956-5440 . Fax (205) 520-9573 C:\Users\gwilliams\AppData\Roaming\Wisys\Agility\Docs\MATCERTV6_base.RPT

3

Ship To: Dallas / Fort Worth Prime Stock 3201 N. Sylvania Avenue BLDG 105 817-222-1603 Shelley

Fort Worth, TX 76111

DELTA STEEL, INC. 15-053 RIK-MAR FABRICATORS, INC.

Certificate of Mill Test Results

RIK-MAR FABRICATORS, INC. Heat No. D01629 Doc No. 137605 Indexed 02-Mar-16 by jmasar

PO/Rel: 16-18774 / THANKS VINCE B/L: DHO-106985 W/O: DHO-124786-2 01-Jun-16 Page 1 of 1

Indep	enden	ce Tub	e			6226 W. 74 Chicago, IL 708-496-0 ax: 708-56	60638 0380			Certifica		ndencetube. itctube. er: MAR 409
						Purchase Order No: DHO-145785 Sales Order No: MAR 302824 - 2 Bill of Lading No: MAR 176204 - 3 Invoice No: Ship To: 1 - DELTA STEEL, INC. 7355 ROUNDHOUSE LANE HOUSTON, TX 77078					pped: 3/1, biced:	/2016
Fax: 708-563-1950 Sold To: 413 - DELTA STEEL INC-HOUSTON P.O. BOX 2289 HOUSTON, TX 77252												
	CERTIFICATE of ANALYSIS and TE											
			ALYSIS	and T	ESTS				Ce		lo: MAR 4 te: 2/29/2	
Custome ROUND	r Part No A500 GR/			and T	ESTS				Ce		te: 2/29/2	
Custome ROUND	er Part No A500 GR/ D (3.5"NP	ADE B(C)	0 X 42' Sp	ecs		60/ELG=3	34.1		Ce T Ratio 8707	Test Da	te: 2/29/2 eces T 10	016 otal Weight
Custome ROUND 4.000"OI Bundle T 6922	ar Part No A500 GR/ 0 (3.5"NP ag Mill 6	ADE B(C) S)X SCH4 Heat	0 X 42' Sp 9 YL	ecs D=60740	/TEN=697			0.	T Ratio 8707	Test Da Total Pie Pieces 10	te: 2/29/2 eces T 10 3 We 3 3	016 Total Weight 3,826
Custome ROUND 4.000"OI Bundle T 6922	ar Part No A500 GR/ 0 (3.5"NP ag Mill 6	Heat	0 X 42' Sp 9 YL	ecs D=60740	/TEN=697			0.	T Ratio 8707	Test Da Total Pie Pieces 10	te: 2/29/2 eces T 10 3 We 3 3	016 Total Weight 3,826
Custome ROUND 4.000"OI Bundle T 6922 Mill #: 6	A500 GR/ 0 (3.5"NP ag Mill 6 Heat #: D	Heat D01629 Ca	0 X 42' Sp 9 YL rbon Eq: (ecs D=60740	/TEN=697 Heat Src O	rigin: MEL	TED AND	0. MANUF	T Ratio 8707 ACTUREE	Test Da Total Pie Pieces 10 D IN THE 1	te: 2/29/2 eces T 10 3 We) 3 USA	016 Total Weight 3,826
Custome ROUND 4.000"OI Bundle T 6922 Mill #: 6 C 0.1800	A 500 GR/ 0 (3.5"NP ag Mill 6 Heat #: D 0.5200	Heat D01629 Ca 0.0150	0 X 42' 9 YL rbon Eq: (5 0.0080	ecs D=60740 D.2746 F	/TEN=697 Heat Src O	rigin: MEL	TED ANE	0. MANUF/ Mo	T Ratio 8707 ACTUREE	Test Da Total Pie Pieces 10 D IN THE I Ni	te: 2/29/2 eces T 10 3 We 0 3 USA	016 Total Weight 3,826
Custome ROUND 4.000"OI Bundle T 6922 Mill #: 6	A 500 GR/ 0 (3.5"NP ag Mill 6 Heat #: D	ADE B(C) S)X SCH4 Heat D01629 Ca	0 X 42' Sp 9 YL rbon Eq: (ecs D=60740 D.2746 F	/TEN=697 Heat Src O	rigin: MEL	TED ANE	0. MANUF/ Mo	T Ratio 8707 ACTUREE	Test Da Total Pie Pieces 10 D IN THE I Ni	te: 2/29/2 eces T 10 3 We 0 3 USA	016 Total Weight 3,826
Custome ROUND 4.000"Ot Bundle T 6922 Mill #: 6 C 0.1800 Sn 0.0030	r Part No A500 GR/ 0 (3.5"NP ag Mill 6 Heat #: Di Mn 0.5200 N 0.0050	Heat D01629 0.0150 B 0.0001	0 X 42' 9 YL rbon Eq: (5 0.0080 Ti 0.0010	ecs D=60740, D.2746 F Si 0.0100	TEN=697 Heat Src O Al 0.0470	rigin: MEL Cu 0.0100	Cr 0.0300	0. MANUF/ Mo 0.0020	T Ratio 8707 ACTUREE	Test Da Total Pie Pieces 10 D IN THE I Ni	te: 2/29/2 eces T 10 3 We 0 3 USA	016 Total Weight 3,826
Custome ROUND 4.000"OI Bundle T 6922 Mill #: 6 C 0.1800 Sn 0.0030 LEED Inf	r Part No A500 GR/ 0 (3.5"NP ag Mill 6 Heat #: Di Mn 0.5200 N 0.0050	Heat D01629 Ca 0.0150 B	0 X 42' 9 YL rbon Eq: (5 0.0080 Ti 0.0010	ecs D=60740. D.2746 F Si 0.0100	TEN=697 Heat Src O Al 0.0470 ED inform	rigin: MEL Cu 0.0100	TED ANE Cr 0.0300 the produ	0. 0 MANUF/ Mo 0.0020	T Ratio 8707 ACTUREE	Test Da Total Pieces 10 D IN THE I Ni 0.0100	te: 2/29/2 eces T 10 3 We 0 3 USA	016 Total Weight 3,826 Sight 826 Cb 0.0010

WE PROUDLY MANUFACTURE ALL OUR PRODUCT IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. MATERIAL IDENTIFIED AS A500 GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS.

CURRENT STANDARDS: A252-10 A500/A500M-13 A513-13 ASTM A53/A53M-12 | ASME SA-53/SA-53M-13 A847/A847M-14 A1085/A1085M-15

BLACK PLAIN END PIPE ASTM A-500 GR B G/2/16

Muhai Ba

Mihai (Mike) Popa, Corporate Metallurgist

Page - 1

APPENDIX D. MASH TEST 4-10 (CRASH TEST NO. 490026-4-1)

D1 VEHICLE PROPERTIES AND INFORMATION

Table D-1. Vehicle Properties for Test No. 490026-4-1. Date: 2016-07-20 Test No.: 490026-4-1 VIN No.: KNADH4A31A6679041 Year: 2010 Make: Kia Model: Rio Odometer: 101244 Tire Size: 185/65R14 Tire Inflation Pressure: 32 psi Describe any damage to the vehicle prior to test: None Denotes accelerometer location. NOTES: None Engine Type: 4 cylinder Engine CID: 1.6 liter Transmission Type: 0x Auto or Manual x FWD RWD 4WD **Optional Equipment:** None Ó ×. * * Dummy Data: G 1-- K Type: 50th percentile male ш Mass: 165 lb D Seat Position: Driver seat **Geometry:** inches F 33.00 Ρ 4.12 15.10 66.38 Κ 10.75 U А В 57.50 G -----L 25.00 Q 22.50 V 20.75 С н R W 35.35 165.75 35.35 Μ 57.75 15.50 D 34.00 7.75 Ν 57.10 S 7.50 Х 102.25 I Е 97.75 J 21.00 Ο 28.25 т 66.20 Wheel Center Ht Front 11.00 Wheel Center Ht Rear 11.00 0 W-H GVWR Ratings: Mass: lb Curb Test Inertial **Gross Static** Front Mfront 1552 1918 1598 1562 871 1046 Back 1874 895 Mrear Total 3638 M_{Total} 2493 2433 2598

Mass Distribution:

lb

LF:

770

426

RR:

792

LR:

445

RF:

Table D-2. Exterior Crush Measurements for Test No. 490026-4-1.

Date:	2016-07-20	Test No.:	490026-4-1	VIN No.:	KNADH4A31A6679041	
Year:	2010	- Make:	Kia	Model:	Rio	

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	=
≥ 4 inches	

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C ₃	C_4	C ₅	C ₆	±D
1	Front plane at bumper ht	20	12	30	12						-15
2	Side plane at bumper ht	20	13	52	0	4	4.5	7.5	10.5	13	+50
	Measurements recorded										
	in inches										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Year: 2010 Make: Kia Model: Ric Image: Construction of the state	Date:	2016-07-20	Test No.:	490026-4-1	VIN	No.:	KNADH4A31A	46679041
DEFORMATION MEASUREMENT Before (inches) After (inches) A1 67.25 67.00 A2 67.25 67.25 A3 67.50 67.50 B1, B2, B3, B4, B5, B6 B2 36.75 36.25 B3 40.50 38.75 36.25 B3 40.50 36.00 36.00 B4 36.00 36.00 36.00 C1 26.50 22.50 C2 C2 C3 26.50 9.50 B1 B2 39.50 9.50 8.00 10 D2 03 9.50 9.50 E1 51.50 52.75	Year:	2010	Make:	Kia	Moo	del:	Rio	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		H-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		G						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¶↓		7.		A1		67.25	67.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					A2		67.25	67.25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					A3		67.50	67.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					B1		40.50	38.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B1, B2,	B3, B4, B5, B6		B2		36.75	36.25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					B3		40.50	40.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	\bigcap			<u> </u>	B4		36.00	36.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\neg \neg $, & C3 _ /		B5		36.00	36.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					B6		36.00	36.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					C1		26.50	22.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					C2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		/			C3		26.50	26.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		// 1			D1		9.50	8.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					D2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					D3		9.50	9.50
F 51.00 51.00 G 51.00 51.00 H 36.75 36.75 I 36.75 36.75					E1		51.50	52.75
G51.0051.00H36.7536.75I36.7536.75					E2		51.12	51.75
H <u>36.75</u> I <u>36.75</u> 36.75					F		51.00	51.00
36.75 36.75					G		51.00	51.00
					Н		36.75	36.75
J* <u>51.00</u> 49.50					I		36.75	36.75
					J*		51.00	49.50

Table D-3. Occupant Compartment Measurements for Test No. 490026-4-1.

*Lateral area across the cab from

driver's side kickpanel to passenger's side kickpanel.

D2 SEQUENTIAL PHOTOGRAPHS

Figure D-1. Sequential Photographs for Test No. 490026-4-1 (Overhead and Frontal Views).

Figure D-1. Sequential Photographs for Test No. 490026-4-1 (Overhead and Frontal Views) (Continued).

1.

0.000 s

0.060 s

0.120 s

0.360 s

0.180 s

0.420 s

Figure D-2. Sequential Photographs for Test No. 490026-4-1 (Rear View).

Figure D-3. Vehicle Angular Displacements for Test No. 490026-4-1.

TR No. 9-1002-15-2

Y Acceleration at CG

Figure D-5. Vehicle Lateral Accelerometer Trace for Test No. 490026-4-1 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

X Acceleration Rear of CG Longitudinal Acceleration (g) AAr -10 Test Number: 490026-4-1 Test Standard Test Number: MASH Test 4-10 Test Article: TxDOT 42-inch Picket Rail -20 Test Vehicle: 2010 Kia Rio Inertial Mass: 2433 lb Gross Mass: 2598 lb Impact Speed: 63.0 mi/h -30 Impact Angle: 25.7 degrees -40⁺0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (s) SAE Class 60 Filter 50-msec average

Figure D-7. Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-1 (Accelerometer Located Rear of Center of Gravity).

109

2022-06-29

0.4

0.6

50-msec average

Y Acceleration Rear of CG

0.8

Time (s)

1.0

1.2

1.4

1.6

-10∔ 0

0.2

SAE Class 60 Filter

Z Acceleration Rear of CG

Figure D-9. Vehicle Vertical Accelerometer Trace for Test No. 490026-4-1 (Accelerometer Located Rear of Center of Gravity).

APPENDIX E. MASH TEST 4-11 (CRASH TEST NO. 490026-4-2)

E1 VEHICLE PROPERTIES AND INFORMATION

		Table	E-1. Vehic	le Propert	ties for '	Test No. 49	0026-4-2		
Date:	2016-0)7-13	Test No.:	490026-4-	2	VIN No.:	1D7RB1	6P1B5550752	2
Year:	2011		Make:	Dodge		Model:	RAM 150	00	
Tire Siz	ze: _2	265/70R17			Tire	Inflation Pres	ssure: <u>35</u>	5 psi	
Tread ⁻	Type: H	Highway				Odor	neter: 12	20216	
Note a	ny damag	ge to the vel	hicle prior to	test: <u>Nor</u>	ne				
• Deno	otes acce	elerometer lo	ocation.				•		
NOTES	S: <u>None</u>	Э							
Engine Engine		V-8 4.7 liter							- N T
Transm	nission Ty Auto or FWD	/pe: <u>x </u>	_ Manual 4WD		R –	-Q+		-TEST INERTIAL C. M.	
Optiona Non	al Equipr ne	nent:							 B ر
Dummy Type: Mass: Seat P	y Data: Position:	50 th perce 165 lb Driver sea	entile male	<u>_</u>	-F-				
Geome	etry: inch	es			-	FRONT	— C ———	REAR	•
Α	78.50	F _	41.50	K	20.00	_ P _	3.00	U	26.75
В	75.00	G _	28.30	_ L	29.25	Q	30.50	V	29.50
С	231.00	_ H_	62.20	M	68.50	_ R _	18.00	W	62.20
D	49.50	_ _	11.75	N	68.00	S	13.00	_ x	78.45
	140.50 neel Center leight Front	J	26.00 14.75 Cle	O Wheel Well earance (Front)		T <u>6.00_</u>	77.00 Bottom Fi Height - I	Front	17.50
	neel Center leight Rear		14.75 Cl	Wheel Well earance (Rear)		9.25	Bottom Fi Height -		25.50
GVW	R Rating	s:	Mass: Ib	Cu	urb	Test	Inertial	Gross	Static
Front		3700	Mfront		2874		2813		2898
Back		3900	M _{rear}		2037		2235		2315
Total		6700	M _{Total}		4911 (Allows	able Range for TIM and	5048	+110 lb)	5213
Mass [Distributi								
lb		LF:	1415	RF:	1398	LR:	1118	RR: 11	17

Date: 2016-07-	<u>13</u> Te	est No.: <u>4</u>	90026-4-2		VIN: <u>1D7</u>	7RB1	6P1B5550)752	
Year: 2011		Make:	odge		Model:	RAN	1 1500		
Body Style: Qu	ad Cab			I	Mileage:	1202	216		
Engine: <u>4.7 lite</u>	r V-8			Trans	mission: _	Auto	omatic		
Fuel Level: Em	pty	Balla	ast:	212 lb)			(440	lb max)
Tire Pressure: Fr	ont:	 35 psi	Rear	: 35	psi Si	ze:	265/70R1	7	
Measured Veh			b)			-			_
LF:	1415		RF:	1398			ront Axle:	2813	
	1415		111.	1590				2013	
LR:	1118		RR:	1117		F	Rear Axle:	2235	
Left:	2533		Right:	2515			Total:	5048	
								0 lb allow ed	
		4 4 9 5		T	00 5				
		140.5 les allow ed	inches	Track: F:			es R: 67 ±1.5 inches		inches
Center of Grav	ity , SAE	J874 Sus	spension N	/lethod					
X:	62.21	inches	Rear of F	ront Axle	(63 ±4 inche	s allov	v ed)		
Y:	-0.12	inches	Left -	Right +	of Vehicle	e Cei	nterline		
Z:	28.3	inches	Above Gr	ound	(minumum 28	3.0 inc	hes allow ed)		
	2010				(mindinamize				
Hood Height	:	45.50	inches	Front E	Bumper He	eight:		26.00 ir	nches
	43 ±4 in	ches allowed							
Front Overhang	:	41.50	inches	Rear E	Bumper He	eight:		29.25 ir	nches
-		ches allowed							
Overall Length	:	231.00	inches						
		inches allowe							

Table E-2. Measurements of Vehicle Vertical CG for Test No. 490026-4-2.

Table E-3. Exterior Crush Measurements for Test No. 490026-4-2.

Date:	2016-07-13	Test No.:	490026-4-2	VIN No.:	1D7RB16P1B5550752
Year:	2011	Make:	Dodge	Model:	RAM 1500

VEHICLE CRUSH ME	ASUREMENT SHEET
Complete Whe	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	<i>X</i> 1+ <i>X</i> 2
< 4 inches	<u></u> =
\geq 4 inches	

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

a .a		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C_2	C ₃	C_4	C ₅	C ₆	±D
1	Front plane at bumper ht	20	11	25	11	7	3	2.5	2	0	-12.5
2	Side plane at bumper ht	20	13	70	1	2	6.25	8	10	13	+70
	Measurements recorded										
	in inches										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2016-07-13	Test No.:	490026-4-2	VIN No.:	1D7RB16P1B5550752
Year:	2011	Make:	Dodge	Model:	RAM 1500

 Table E-4. Occupant Compartment Measurements for Test No. 490026-4-2.

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before (inches)	After (inches)
A1	(incries) 65.25	· · · · · ·
		63.00
A2	63.25	63.25
A3	65.25	65.25
B1	44.75	44.75
B2	38.00	38.00
B3	44.75	44.75
B4	39.50	39.50
B5	43.00	43.00
B6	39.50	39.50
C1	28.00	27.00
C2		
C3	25.25	25.25
D1	11.25	11.25
D2		
D3	11.25	11.25
E1	58.75	61.75
E2	63.50	65.50
E3	63.50	63.50
E4	63.25	63.25
F	59.00	59.00
G	59.00	59.00
Н	37.00	37.00
I	37.00	37.00
J*	23.50	21.50

E2 SEQUENTIAL PHOTOGRAPHS

Figure E-1. Sequential Photographs for Test No. 490026-4-2 (Overhead and Frontal Views).

Figure E-1. Sequential Photographs for Test No. 490026-4-2 (Overhead and Frontal Views) (Continued).

0.180 s

0.420 s

Figure E-2. Sequential Photographs for Test No. 490026-4-2 (Rear View).

Figure E-3. Vehicle Angular Displacements for Test No. 490026-4-2.

TR No. 9-1002-15-2

E4

VEHICLE ACCELERATIONS

Figure E-4. Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-2 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

Figure E-5. Vehicle Lateral Accelerometer Trace for Test No. 490026-4-2 (Accelerometer Located at Center of Gravity).

Figure E-6. Vehicle Vertical Accelerometer Trace for Test No. 490026-4-2 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

Figure E-7. Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-2 (Accelerometer Located Rear of Center of Gravity).

Figure E-8. Vehicle Lateral Accelerometer Trace for Test No. 490026-4-2 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

Figure E-9. Vehicle Vertical Accelerometer Trace for Test No. 490026-4-2 (Accelerometer Located Rear of Center of Gravity).

APPENDIX F. MASH TEST 4-12 (CRASH TEST NO. 490026-4-3)

F1 VEHICLE PROPERTIES AND INFORMATION

Table F-1. Vehicle Properties for Test No. 490026-4-3.

Date: 2016-06-27	2016-06-27 Test No.: 490026-4		VIN No	o.: <u>1HTMP</u>	AFN24H66	2565		
Year: 2004	ar: _2004 Make: _I		Model: <u>4200</u>					
WEIGHTS (Ib or kg)		CURB	TEST INERTIAL					
V	front axle	6110	_	7800				
Wrear axle		6250	=	14420				
	WTOTAL	12360	_	2222	0			
Allowable	Range for CURB = 13	,200 ±2200 lb Allowable Ra	ange for T	IM = 22,046 ±660) lb			
Ballast: 10287 (lb) (as-needed) (See MASH Section 4.2.1.2 for recommended ballasting)								
Mass Distribution (lb or kg): LF:	4030	RF: <u>3770</u>	LR: _	7350	RR:	7070		
Engine Type: VT		A		meter Locat	ions (inche	s)		
Engine Size: 365			X	2	У	Z ³		
Transmission Type: <u>x</u> Auto or FWD x RWD	_ Manual 4WD	Front: Over 5 th Wheel:	132 239		0	49.00 49.00		
FWD <u>x</u> RWD Describe any damage to th <u>None</u>		test:						
Other notes to include ba attachment: 4612 lb block; H=30 inc 5270 lb block; H=60 inc	hes, W=60 inche	s; L=30 inches	ion, ce	nter of mas	s, and met	hod of		
Centered in middle of bed								

Table F-1. Vehicle Properties for Test No. 490026-4-3 (Continued).

61.5 inches to center of block to ground

Four 5/16-inch cable per block

² Referenced to the front axle ³ Above ground

F2 SEQUENTIAL PHOTOGRAPHS

Figure F-1. Sequential Photographs for Test No. 490026-4-3 (Overhead and Frontal Views).

Figure F-1. Sequential Photographs for Test No. 490026-4-3 (Overhead and Frontal Views) (Continued).

0.400 s

0.100 s

0.600 s

0.300 s

0.700 s

Figure F-2. Sequential Photographs for Test No. 490026-4-3 (Rear View).

F3

VEHICLE ANGULAR DISPLACEMENTS

Figure F-3. Vehicle Angular Displacements for Test No. 490026-4-3.

3. Roll.

F4

VEHICLE ACCELERATIONS

Figure F-4. Vehicle Longitudinal Accelerometer Trace for Test No. 490026-4-3 (Accelerometer Located at Horizontal Center of Gravity).

TR No. 9-1002-15-2

Figure F-6. Vehicle Vertical Accelerometer Trace for Test No. 490026-4-3 (Accelerometer Located at Horizontal Center of Gravity).

X Acceleration Rear of CG

Y Acceleration Rear of CG

Figure F-8. Vehicle Lateral Accelerometer Trace for Test No. 490026-4-3 (Accelerometer Located Rear of Horizontal Center of Gravity).

Z Acceleration Rear of CG

