

MASH Test 3-11 on the T131RC Bridge Rail

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE THE TEXAS A&M UNIVERSITY SYSTEM COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/9-1002-12-1.pdf

		Technical Report Documentation Page
1. Report No. FHWA/TX-12/9-1002-12-1	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle MASH TEST 3-11 ON THE T131	RC BRIDGE RAIL	5. Report Date June 2012
		Published: October 2012
		6. Performing Organization Code
7. Author(s) William F. Williams, Roger P. Blig	h, and Wanda L. Menges	8. Performing Organization Report No. Test Report No. 9-1002-12-1
9. Performing Organization Name and Address Texas A&M Transportation Institut	-	10. Work Unit No. (TRAIS)
The Texas A&M University System		11. Contract or Grant No.
College Station, Texas 77843-3135		Project
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Texas Department of Transportation		Test Report:
Research and Technology Implement	ntation Office	September 2011 – June 2012
P.O. Box 5080		14. Sponsoring Agency Code
Austin, Texas 78763-5080		
Administration.	ith the Texas Department of Transpo	rtation and the Federal Highway
Project Title: Roadside Safety Devi	ce Crash Testing Program	
URL: http://tti.tamu.edu/document	<u>s/9-1002-12-1.pdf</u>	
16. Abstract		
Texas Department of Transp	portation (TxDOT) currently uses the	

a steel post and beam bridge rail anchored to the top of concrete curbs. The T101RC Bridge Rail is 27 inches in height and can be anchored to the top of concrete curbs of varying heights. The heights of the posts and the number of bridge rail elements vary depending on the height of the concrete curb. The posts are anchored to the curb using four adhesive anchors.

Based on crash testing of similar rail designs of the same height, the researchers believed that the TxDOT Type T101RC Bridge Rail would not meet the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) criteria. The purpose of this portion of the project was to design and crash test a modified design of the TxDOT T101RC Bridge Rail that would meet the strength and safety performance criteria for TL-3 of MASH. A new bridge rail was developed and tested for this project.

The TxDOT T131RC Bridge Rail met all the strength and safety performance criteria of MASH. This bridge rail is recommended for implementation on new or retrofit railing applications.

17. Key Words		18. Distribution Statemer	nt	
Bridge Rail, Aesthetic Rail, Longitu	dinal Barrier,	No restrictions.	This document is a	vailable to the
Crash Testing, Roadside Safety		public through N	TIS:	
		National Technic	al Information Ser	vice
		Alexandria, Virgi	inia 22312	
		http://www.ntis.g	<u>SOV</u>	
19. Security Classif. (of this report)	20. Security Classif. (of the	his page)	21. No. of Pages	22. Price
Unclassified	Unclassified		74	

Reproduction of completed page authorized

MASH TEST 3-11 ON THE T131RC BRIDGE RAIL

by

William F. Williams, P.E. Associate Research Engineer Texas A&M Transportation Institute

Roger P. Bligh, Ph.D., P.E. Research Engineer Texas A&M Transportation Institute

and

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

Test Report No. 9-1002-12-1 Project 9-1002-12 Project Title: Roadside Safety Device Crash Testing Program

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > June 2012 Published: October 2012

TEXAS A&M TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above listed agencies assume no liability for its contents or use thereof. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, #78550).

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

Wanda L. Menges, Research Specialist Deputy Quality Manager

Richard A. Zimmer, Senior Research Specialist Test Facility Manager Quality Manager Technical Manager

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas A&M Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project director for this research was Rory Meza, P.E. John Holt, P.E., and Jon Reis with the Bridge Division served as project advisors and were actively involved in the design of the bridge rail system. The TxDOT Research Engineer was Wade Odell, P.E., with the Research and Technology Implementation Office. The authors acknowledge and appreciate their guidance and assistance.

TABLE OF CONTENTS

LIST OF FIGURES	ix
LIST OF TABLES	x
CHAPTER 1. INTRODUCTION	
1.1 INTRODUCTION	
1.2 BACKGROUND	
1.3 OBJECTIVES/SCOPE OF RESEARCH	
CHAPTER 2. SYSTEM DETAILS	
2.1 TEST ARTICLE DESIGN AND CONSTRUCTION	
2.2 MATERIAL SPECIFICATIONS	3
CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA	7
3.1 CRASH TEST MATRIX	
3.2 EVALUATION CRITERIA	7
CHAPTER 4. CRASH TEST PROCEDURES	9
4.1 TEST FACILITY	
4.2 VEHICLE TOW AND GUIDANCE PROCEDURES	9
4.3 DATA ACQUISITION SYSTEMS	9
4.3.1 Vehicle Instrumentation and Data Processing	9
4.3.2 Anthropomorphic Dummy Instrumentation	10
4.3.3 Photographic Instrumentation and Data Processing	
CHAPTER 5. CRASH TEST RESULTS	
5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS	11
5.2 TEST VEHICLE	
5.3 WEATHER CONDITIONS	11
5.4 TEST DESCRIPTION	11
5.5 DAMAGE TO TEST INSTALLATION	
5.6 VEHICLE DAMAGE	
5.7 OCCUPANT RISK FACTORS	14
CHAPTER 6. SUMMARY AND CONCLUSIONS	
6.1 ASSESSMENT OF TEST RESULTS	
6.1.1 Structural Adequacy	
6.1.2 Occupant Risk	
6.1.3 Vehicle Trajectory	
CONCLUSIONS	
CHAPTER 7. IMPLEMENTATION STATEMENT	

TABLE OF CONTENTS (CONTINUED)

REFERENCES	27
APPENDIX A. DETAILS OF THE T131RC BRIDGE RAIL	29
APPENDIX B. CERTIFICATION DOCUMENTATION	. 39
APPENDIX C. TEST VEHICLE PROPERTIES AND INFORMATION	47
APPENDIX D. SEQUENTIAL PHOTOGRAPHS	. 51
APPENDIX E. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS	55

LIST OF FIGURES

Figure

Figure 2.1.	Layout of the T131RC Bridge Rail Installation.	4
Figure 2.2.	Details of the T131RC Bridge Rail Installation.	5
Figure 2.3.	T131RC Bridge Rail Installation before Test No. 490022-1	6
Figure 5.1.	Vehicle/Installation Geometrics for Test No. 490022-1	12
Figure 5.2.	Vehicle before Test No. 490022-1	13
Figure 5.3.	Vehicle/Installation after Test No. 490022-1	15
Figure 5.4.	Installation after Test No. 490022-1.	16
Figure 5.5.	Vehicle after Test No. 490022-1	17
Figure 5.6.	Interior of Vehicle after Test No. 490022-1.	18
Figure 5.7.	Summary of Results for MASH Test 3-11 on the T131RC Bridge Rail	19
Figure D1.	Sequential Photographs for Test No. 490022-1 (Field Side of Bridge Rail)	51
Figure D2.	Sequential Photographs for Test No. 490022-1 (Frontal View).	53
Figure E1.	Vehicle Angular Displacements for Test No. 490022-1	55
Figure E2.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-1	
	(Accelerometer Located at Center of Gravity).	56
Figure E3.	Vehicle Lateral Accelerometer Trace for Test No. 490022-1	
	(Accelerometer Located at Center of Gravity).	57
Figure E4.	Vehicle Vertical Accelerometer Trace for Test No. 490022-1	
	(Accelerometer Located at Center of Gravity).	58
Figure E5.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-1	
	(Accelerometer Located Rear of Center of Gravity).	59
Figure E6.	Vehicle Lateral Accelerometer Trace for Test No. 490022-1	
	(Accelerometer Located Rear of Center of Gravity).	60
Figure E7.	Vehicle Vertical Accelerometer Trace for Test No. 490022-1	
	(Accelerometer Located Rear of Center of Gravity).	61

LIST OF TABLES

Table

Page

Table 6.1.	Performance Evaluation Summary for <i>MASH</i> Test 3-11 on the	
	T131RC Bridge Rail	
Table C1.	Vehicle Properties for Test No. 490022-1	
Table C2.	Vertical CG Measurements for Test No. 490022-1.	
Table C3.	Exterior Crush Measurements for Test No. 490022-1.	
Table C4.	Occupant Compartment Measurements for Test No. 490022-1	

CHAPTER 1. INTRODUCTION

1.1 INTRODUCTION

This project was set up to provide the Texas Department of Transportation (TxDOT) with a mechanism to quickly and effectively evaluate high-priority issues related to roadside safety devices. Roadside safety devices shield motorists from roadside hazards such as non-traversable terrain and fixed objects. To maintain the desired level of safety for the motoring public, these safety devices must be designed to accommodate a variety of site conditions, placement locations, and a changing vehicle fleet. Periodically, there is a need to assess the compliance of existing safety devices with current vehicle testing criteria and develop new devices that address identified needs.

Under this project, roadside safety issues are identified and prioritized for investigation. Each roadside safety issue is addressed with a separate work plan, and the results are summarized in individual test reports.

TxDOT currently uses a steel post and beam bridge rail that is anchored to the top of concrete curbs. This bridge rail is called the TxDOT Type T101RC Bridge Rail. The T101RC is 27 inches in height and can be anchored to the top of concrete curbs of varying heights. The heights of the posts and the number of bridge rail elements vary depending on the height of the concrete curb. The posts are anchored to the curb using four adhesive anchors. Based on crash testing of similar rail designs of the same height, the TxDOT Type T101RC Bridge Rail does not meet the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH) (1)*. The purpose of this portion of the project was to design and crash test a modified design of the TxDOT T101RC Bridge Rail that would meet the strength and safety performance criteria for Test Level 3 (TL-3) of *MASH*.

1.2 BACKGROUND

AASHTO published *MASH* in October 2009. *MASH* supersedes *National Cooperative Highway Research Program (NCHRP) Report 350 (2)* as the recommended guidance for the safety performance evaluation of roadside safety features.

1.3 OBJECTIVES/SCOPE OF RESEARCH

The purpose of this project was to design and crash test a modified design of the TxDOT T101RC Bridge Rail that would meet the strength and safety performance criteria for TL-3 of *MASH*.

CHAPTER 2. SYSTEM DETAILS

2.1 TEST ARTICLE DESIGN AND CONSTRUCTION

The TxDOT T131RC Bridge Rail consists of two tubular steel rail elements supported by $W6\times20$ steel posts. The overall length of the test installation was 80 ft and consisted of 16 posts spaced on 5 ft centers. The total height of the bridge rail is 36 inches above the pavement surface. The steel bridge rail was anchored to an 8-inch wide \times 11-inch high cast in place concrete curb. The concrete curb was anchored to a cast-in-place 8-inch thick concrete deck cantilever. The width of the cantilever was 20.75 inches. Mr. John Holt with TxDOT provided the detailed design information on the bridge rail design.

The TxDOT Type T131RC Bridge Rail tested for this project consisted of two rail elements. Both rail elements were HSS6×6×1/4 A500 Grade C structural tubes. The centerline heights of the rail elements were 21 inches and 33 inches for the lower and top rail elements, respectively. Each rail element was attached to each post using a $\frac{5}{8}$ -inch diameter A307 button head bolt. The W6×15 posts were welded to 14-inch × 16-inch × $\frac{5}{8}$ -inch thick baseplates. These baseplates were bent using a 3-inch diameter radius to fit the front and top sides of the concrete curb. The baseplates were fabricated using A572 Grade 50 material, and the posts, from ASTM A992 material. The posts were anchored to the concrete curb using four $\frac{3}{4}$ -inch diameter A193 B7 threaded rods $\frac{8}{2}$ inches long and anchored $\frac{6}{4}$ inches in the concrete curb using the Hilti HAS-E anchor bolt.

A simulated concrete bridge deck cantilever and curb was constructed immediately adjacent to an existing concrete runway located at the Texas A&M Transportation Institute (TTI) Proving Ground test facility. The total length of the deck was 76 ft 6 inches long. The bridge deck cantilever was 20³/₄ inches wide and 6 inches thick. Reinforcement in the deck consisted of a single layer of reinforcing steel placed in the transverse and longitudinal directions. The transverse reinforcement consisted of #4 bars located 10 inches on centers. Longitudinal reinforcement consisted of three #4 bars. Two bars were located immediately beneath the concrete curb, with the third bar located approximately 22 inches from the edge of the deck cantilever. Vertical reinforcement in the curb consisted of #3 stirrups located on 10-inch centers. Two longitudinal #3 bars were located within the curb stirrup and at the top corners of the stirrups. For additional information on the bridge railing test installation, please refer to Figures 2.1 through 2.3 and Appendix A in this report.

2.2 MATERIAL SPECIFICATIONS

These baseplates were fabricated using A572 Grade 50 material, and the posts, from ASTM A992 material. All reinforcement used in the concrete deck had a minimum specified yield strength of 60 ksi. The concrete deck and curb has a specified concrete strength of 3600 psi. Concrete compressive strength tests were performed on the day the test was performed. The tests performed at 25 days age on the concrete deck resulted in an average compressive strength of 3870 psi. The tests performed at 21 days age on the concrete curb resulted in an average compressive strength of 4610 psi.

Figure 2.1. Layout of the T131RC Bridge Rail Installation.

Figure 2.3. T131RC Bridge Rail Installation before Test No. 490022-1.

CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 CRASH TEST MATRIX

According to *MASH*, two tests are recommended to evaluate longitudinal barriers to test level three (TL-3).

MASH Test Designation 3-10: A 2425-lb vehicle impacting the critical impact point (CIP) of the length of need (LON) of the barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect a small passenger vehicle.

MASH Test Designation 3-11: A 5000-lb pickup truck impacting the CIP of the LON of the barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect light trucks and sport utility vehicles.

Based on the geometry and strength of the new rail design, the project team concluded that Test 3-10 was not warranted. The test reported here corresponds to Test 3-11 of *MASH* (5000-lb pickup, 62 mi/h, 25 degrees).

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2 EVALUATION CRITERIA

The crash test was evaluated in accordance with the criteria presented in *MASH*. The performance of the T131RC Bridge Rail is judged on the basis of three factors: structural adequacy, occupant risk, and post impact vehicle trajectory. Structural adequacy is judged upon the ability of the T131RC Bridge Rail to contain and redirect the vehicle, or bring the vehicle to a controlled stop in a predictable manner. Occupant risk criteria evaluate the potential risk of hazard to occupants in the impacting vehicle, and, to some extent, other traffic, pedestrians, or workers in construction zones, if applicable. Post-impact vehicle trajectory is assessed to determine potential for secondary impact with other vehicles or fixed objects, creating further risk of injury to occupants of the impacting vehicle and/or risk of injury to occupants in other vehicles. The appropriate safety evaluation criteria from Table 5-1 of *MASH* were used to evaluate the crash test reported here, and are listed in further detail under the assessment of the crash test.

CHAPTER 4. CRASH TEST PROCEDURES

4.1 TEST FACILITY

The full-scale crash test reported here was performed at Texas A&M Transportation Institute Proving Ground, an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The Texas A&M Transportation Institute Proving Ground is a 2000-acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A&M University. The site, formerly an Air Force base, has large expanses of concrete runways and parking aprons well-suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the T131RC Bridge Rail evaluated under this project was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5 ft \times 15 ft blocks nominally 6–8 inches deep. The apron is over 50 years old, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE PROCEDURES

The test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be unrestrained. The vehicle remained free-wheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site, after which the brakes were activated to bring it to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers that measure the x, y, and z axis of vehicle acceleration are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors measuring vehicle roll, pitch, and yaw

rates are ultra-small size, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once the data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results. Each of the TDAS Pro units are returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology.

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, the program computes the maximum average accelerations over 50-ms intervals in each of the three directions. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact.

4.3.2 Anthropomorphic Dummy Instrumentation

According to *MASH*, the use of a dummy in the 2270P vehicle is optional. Researchers did not use any dummy in the tests with the 2270P vehicle.

4.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of the test included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-DV camera and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

CHAPTER 5. CRASH TEST RESULTS

5.1 **TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS**

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb ± 100 lb and impacting the bridge rail at an impact speed of 62.2 mi/h ± 2.5 mi/h and an angle of 25 degrees ± 1.5 degrees. The target impact point was 4.3 ft upstream of the centerline of post 6. The 2007 Dodge Ram 1500 pickup truck used in the test weighed 4985 lb and the actual impact speed and angle were 63.0 mi/h and 24.7 degrees, respectively. The actual impact point was 5 ft upstream of post 6. Impact severity (IS) was 115.5 kip-ft, which was equal to the target IS.

5.2 **TEST VEHICLE**

A 2007 Dodge Ram 1500 pickup truck, shown in Figures 4 and 5, was used for the crash test. Both the test inertia weight and the gross static weight of the vehicle was 4985 lb. The height to the lower edge of the vehicle bumper was 13.75 inches, and it was 25.38 inches to the upper edge of the bumper. The height to the vehicle's center of gravity was 28.48 inches. Tables C1 and C2 in Appendix C give additional dimensions and information on the vehicle. The pickup was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact.

5.3 WEATHER CONDITIONS

The test was performed on the morning of February 14, 2012. Weather conditions at the time of testing were: Wind speed: 8 mi/h; Wind direction: The reference for wind direction is vehicle fixed as 90* 133 degrees with respect to the vehicle (vehicle was traveling shown. in a southwesterly direction); Temperature: 67°F, Relative Ô٩ humidity: 70 percent.

5.4 **TEST DESCRIPTION**

The 2007 Dodge Ram 1500 pickup, traveling at an impact speed of 63.0 mi/h, impacted the T131RC bridge rail 5 ft upstream of post 6 at an impact angle of 24.7 degrees. At 0.014 s after impact, post 5 began to deflect toward the field side, and posts 6 and 7 began to deflect towards field side at 0.017 s and 0.026 s, respectively. The concrete deck around post 5 began to crack at 0.031 s, and at 0.046 s on the downstream side. Post 7 began to deflect toward the field side at 0.048 s, and the concrete deck around posts 6 and 7 began to crack at 0.069 and 0.073 s, respectively. At 0.082 s, the right front tire blew out, and at 0.082 s, the concrete deck at post 8 began to crack. The rear of the vehicle contacted the bridge rail at 0.174 s. At 0.343 s, the vehicle lost contact with the bridge rail. The overhead camera failed, and therefore exit speed and angle were not obtainable. Brakes on the vehicle were not applied, and the vehicle subsequently came to rest 310 ft downstream of impact. Figures D1 and D2 in Appendix D show sequential photographs of the test period.

Figure 5.1. Vehicle/Installation Geometrics for Test No. 490022-1.

Figure 5.2. Vehicle before Test No. 490022-1.

5.5 DAMAGE TO TEST INSTALLATION

Figures 5.3 and 5.4 show damage to the T131RC Bridge Rail after the test. The concrete curb sustained minor damage at posts 2 and 3, and more significant damage at posts 4 through 9. The curb separated 1 inch from the deck at posts 5 and 6. Posts 3 through 8 were leaning toward the field side between 3 degrees to a maximum of 8 degrees at post 6. Length of contact of the vehicle with the bridge rail was 13.2 ft. Maximum permanent deformation was 6.5 inches. The overhead camera failed to trigger, therefore, maximum dynamic deflection and working width were not obtainable.

5.6 VEHICLE DAMAGE

Figure 5.5 shows damage that the 2270P vehicle sustained. The right front upper and lower ball joints pulled out of the sockets, and the tie rod, the right upper and lower A-arms, and the right frame rail were deformed. Also damaged were the front bumper, grill, hood, right front tire and wheel rim, right front fender, right front and rear doors, right cab corner, right rear exterior bed, right rear tire and wheel rim, and rear bumper. Maximum exterior crush to the vehicle was 15.0 inches in the side plane at the right front corner at bumper height. Maximum occupant compartment deformation was 0.5 inch in the lateral area across the cab at the left front passenger's kickpanel. Figure 5.6 has photographs of the interior of the vehicle. In Appendix C, Tables C3 and C4 provide exterior crush and occupant compartment measurements.

5.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 15.1 ft/s at 0.096 s, the highest 0.010-s occupant ridedown acceleration was 3.4 Gs from 0.187 to 0.197 s, and the maximum 0.050-s average acceleration was -7.0 Gs between 0.025 and 0.075 s. In the lateral direction, the occupant impact velocity was 25.9 ft/s at 0.096 s, the highest 0.010-s occupant ridedown acceleration was 10.6 Gs from 0.218 to 0.228 s, and the maximum 0.050-s average was -12.8 Gs between 0.038 and 0.088 s. Theoretical Head Impact Velocity (THIV) was 32.4 km/h or 9.0 m/s at 0.094 s; Post-Impact Head Decelerations (PHD) was 10.7 Gs between 0.218 and 0.228 s; and Acceleration Severity Index (ASI) was 1.52 between 0.025 and 0.075 s. Figure 5.7 summarizes these data and other pertinent information from the test. Figures E1 through E7 in Appendix E present the vehicle angular displacements and accelerations versus time traces.

Figure 5.3. Vehicle/Installation after Test No. 490022-1.

Figure 5.4. Installation after Test No. 490022-1.

Figure 5.5. Vehicle after Test No. 490022-1.

Figure 5.6. Interior of Vehicle after Test No. 490022-1.

TR No. 9-1002-12-1

2012-10-25

CHAPTER 6. SUMMARY AND CONCLUSIONS

6.1 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

6.1.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The T131RC bridge rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum permanent deformation was 6.5 inches. (PASS)

6.1.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches)

- <u>Results</u>:No detached elements, fragments, or other debris were present to penetrate
or show potential for penetrating the occupant compartment, nor present
hazard to others in the area. (PASS)
Maximum occupant compartment deformation was 0.5 inch in the lateral
area across the cab at front passenger hip height and the lateral area across
the cab at the front passenger side kickpanel. (PASS)
- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Results</u>: The 2270P vehicle remained upright during and after the collision event. The maximum roll and pitch angles were 23 degrees and 11 degrees, respectively. (PASS)

Н.	Occupant impact velocities sho	uld satisfy the following:
	Longitudinal and Lateral C	<u>ccupant Impact Velocity</u>
	<u>Preferred</u>	<u>Maximum</u>
	30 ft/s	40 ft/s

- <u>Results</u>: Longitudinal occupant impact velocity was 15.1 ft/s, and lateral occupant impact velocity was 25.9 ft/s. (PASS)
- I. Occupant ridedown accelerations should satisfy the following: <u>Longitudinal and Lateral Occupant Ridedown Accelerations</u> <u>Preferred</u> <u>15.0 Gs</u> <u>20.49 Gs</u>
- <u>Results</u>: Longitudinal ridedown acceleration was 3.4 G, and lateral ridedown acceleration was 10.6 G. (PASS)

6.1.3 Vehicle Trajectory

For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).

<u>Result</u>: The 2270P vehicle exited within the exit box. (PASS)

CONCLUSIONS

The T131RC bridge rail performed acceptably for MASH Test 3-11 (see Table 6.1).

Ţ	Ladie 0.1. Feriormance Evaluation Summ Test Agency: Texas A&M Transportation Institute	Lable o.l. Fertormance Evaluation Summary for MASH Lest 3-11 on the LISIKC Bridge Kall. exas A&M Transportation Institute Test No.: 490022-1	e Kall. Test Date: 2012-02-14
		Results	Assessment
St A.	ructural . Test a bring not pe althou is acc	The T131RC Bridge Rail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum permanent deformation was 6.5 inches.	Pass
Ŏ Ă	Scu	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, nor pose a hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 0.5 inch in the lateral area across the cab at front passenger hip height and the lateral area across the cab at the front passenger side kickpanel.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. The maximum roll and pitch angles were 23 degrees and 11 degrees, respectively.	Pass
H.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal occupant impact velocity was 15.1 ft/s, and lateral occupant impact velocity was 25.9 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Longitudinal ridedown acceleration was 3.4 G, and lateral ridedown acceleration was 10.6 G.	Pass
ک	Vehicle Trajectory For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).	The 2270P vehicle exited within the exit box.	Pass

Table 6.1. Performance Evaluation Summary for MASH Test 3-11 on the T131RC Bridge Rail.
CHAPTER 7. IMPLEMENTATION STATEMENT

TxDOT currently uses the TxDOT Type T101RC Bridge Rail, a steel post and beam bridge anchored to the top of concrete curbs. The T101RC Bridge Rail is 27 inches in height and can be anchored to the top of concrete curbs of varying heights. The heights of the posts and the number of bridge rail elements vary depending on the height of the concrete curb. The posts are anchored to the curb using four adhesive anchors.

Based on crash testing of similar rail designs of the same height, the researchers believed that the TxDOT Type T101RC Bridge Rail would not meet the *MASH* TL-3 criteria. The purpose of this portion of the project was to design and crash test a modified design of the TxDOT T101RC Bridge Rail that would meet the strength and safety performance criteria for TL-3 of *MASH*. A new bridge rail was developed and tested for this project.

The TxDOT T131RC Bridge Rail met all the strength and safety performance criteria of *MASH*. This bridge rail is recommended for implementation on new or retrofit railing applications.

REFERENCES

- 1. AASHTO. *Manual for Assessing Safety Hardware*. American Association of State Highway and Transportation Officials, Washington, D.C., 2009.
- 2. H. E. Ross, Jr., D. L. Sicking, R. A. Zimmer and J. D. Michie. *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, D.C., 1993.

APPENDIX A. DETAILS OF THE T131RC BRIDGE RAIL

T//2011-2012/490022 TxDOT/-1 T131RC/Drafting/T131 RC Drawing

T:\2011-2012\490022 TxDOT\-1 T131RC\Drafting\T131 RC Drawing

APPENDIX B. CERTIFICATION DOCUMENTATION

MATERIAL USED

TEST NUMBER 490022-1	BER 490022-1	
----------------------	--------------	--

TEST NAME T131RC

DATE 2012-02-14

DATE RECEIVED	ITEM NUMBER	DESCRIPTION	SUPPLIER	HEAT #
2012-01-26*	Parts-15	Guardrail Parts	Brazos Industries	see file
2012-01-12	Rebar 03-06	3/8" x 20' grd 60	CMC-Sheplers	3028608
2012-01-12	Rebar 04-25	1/2" x 20' gr 60	CMC-Sheplers	see file

1014 METTED FED MANDPACTURED IN THE ING 1014 METTED FED MANDPACTURED IN THE ING 11. beams produced by Marcu-Sarkelog are case, and rolled to a fully killed and fine grain practiced aread in the direct sanafacturing of this satarial. [132ta 1.132ta 1.135 485 485 485 485 1.2 Place[5] CCETORCE [201 503]532 487 1.12 Place[5] CCETORCE [201 503]532 487 1.12 Place[5] CCETORCE [201 502]54 1.12 Place[5] CCETORCE [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]55 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]55 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]54 [201 502]55 [201 502]54 [201 502]54 [201 502]55 [201 502]54 [201 500]54 [201 500] ē -505 505 505 1 .1321 13339 . 1125 5.8 .23 P C S 121 517551 TEAUE STATE 100 1,72 Inu#1 4.84 E IX HAN 50°* 50. . 04 1.80 - 90 2. v. L. 1. . . 1 COSCOMPT N. 1 CL. BL XXXXX .16 . 330 .15 234 SPECTEICATENS: Tweated in anomalance with AsTM specification A6.11/A68.11 and A374. Quality Manual Ray Rus Assult: N220-56-55 351M : A012-11.035-08.4625-45-55/4512.07.58/A709.345M/A70911 565 053 : 540.22-540 .76 .004 .0053 24 804 8071 113 21 404 17 > sa 531 6687518 PD: 5399303 1502859 rCd .030 .029 .0012 5 E EXXXXX 1003. Sauce B. Werk Merall argist 1.1 -182 P Sa LEELTI 19203533 CUSLOMOR CUITCOMOR ELM. . 906 . 9073 .048 26.00 E SCUTH LEUP 4 (6028 1) 2.0. 60X (50267 7.0. 11X 70715 Marcury has not been CERIFLED MLLL TEST REPORT 1.196 .85 .01 .02 1.10 919ce(5) いいまい市 1984 P1968(5) I heady costify that the contents of this report are accurate and contract, shi task results and apartions performed by the morarial interfactures are in compliance with naterial specifications, and when farigment by the Purchesen, seef applicable specifications, P C CT XXXXXX 27 40 077 23. 29 -12 63. 5hip 761 27.39 25.43 22.15 23.35 23, 39 25.16 Enon3 35.86 35,96 101111111 73330 (ISA) 126922 111100 71510 71310 01.209 615 612 613 496 PINYA IISA 36668 16570 60.600 100525 57590 57681 50130 58698 9.19 336 405 Sold Tel Newasse CORFORETION Sold Colonies CENTRE PRAP. SUIT SOC Field/ Earsile Rulio 10 13. \$5. 50 23 51 53. Elangariae based on 8' (20.35cm) of Cl = 35.01cu43.35m(+1.25cr+1.495) EC. 31.076 Akalk Grade(s) Test NUCCR STREE . BERAELEY D. D. Box 2339 MC. Plassot, 5.C. 29664 Phone: (943) 336-5803 HUSAELL, GR 2115013 2113512 11-2268 2114961 WER3: 060' 30.33' W203845.1 012.1320m W12x13 840* 30.03* W6KL5 0681 88.03' W352822.5 012.1920# · CC. RC . 880 W203841.7 DUSCLAPLAND 012.1520W W310K29.3 PCA = 55X 84 C STEEL 3 30 Z Page HUGER NUCOR : MONT 78665981572 :01 60-21 05:52 Order-Line - 7073336 / 1 - Od Jau O 1448322 - 100H onl seinteubni sosan8 BLR466 8260211 - ppog PESTT8 - 18 12-28-2011 12:03

TR No. 9-1002-12-1

2012-10-25

-		:04 es Inc	1000	oad -	1111841			BL ·	- 36	7509 Heat	- C	09384	3					BLR
-	_						Ord	er-Li	ne -	69707	700 /	1	-			-		
-			-				экспо	PT 1	COPO	RT						Depty 1	score 1	
20 02 20 20 20 20 20 20 20 20 20 20 20 2	UNIT ST.K	Expose IN 4550 IN 45500 IN 455000 IN 455000 IN 455000 IN 4550	02 MACHINT IN IRON AN AGHITOGICI Interne, an didrass, co Inter Confictoria To Januarte	CYCOPCE D STEEL RSIC 465 DHOL, CT HUBLITY CYCOPF R (STAR	DOS HUSSIAN I		TON	36390	Tous Ne Sh (Cept Qualit Koury Cento	poese dpplo ndpplo ty cert poer ract	y dox et sa ifica Ma E Ma E	16323	4 Je 1 5 on21	17			mocce 0318	
100		Sec. Sec.	States of the local division in the local di			The statement					-		_	and the second		in the second second		
Da				Harry	interest restar				1		H	1	0	opses perce	Bas a mos	IP998	Nexes	
PYI		H FRCH	UPECCHPC	Dato	iption of goods					670	Sha	l Indir Ind-ance		ipus pac Receivery	Bas u ma Type of pad PY/IOHIa COR.8	425	No sector Technology No 1-3	
PYI HO MAR		Kan	APECCHEC	Hame Disc DisAJBAS SIGN PAR SIGN PAR SIGN PAR	iption of goods	RIDO'RI	Каточе тайлар Асса шау	Bast storegy Surface appear	1287	1	Sites MARKS Map	hele		etri Par Ding	РУЛОНЫ	12 × 12		

32 a (16 rð. 'n AL Nosof x × 1093845 16 14 16 4 8 8 7 54 3 38.0 Statest_c 304 1093843 16 10 97 4 7 54 3. 1 4 1 450 -38.0 -1093845 16 10 97 14 16 38.0 -----

HR 1/2× 48 40+# 17105 Heat# 1093843 A= 6390465

20.900 20.9 81,150 61,180

THESE-TRO Nep

8 ~ .

A.

0312

Дата Date: 05.05.11 05-33

IN OKITS The

2-2012 04:10	1.01	id . 1	132336			BI -	3677	708						
2~2012 04:10 os Industries Inc	LUa	na = 1	102030			DL.			762367					
PO -					0	rder-Li	ne - 70	73336	15					
12/22/2011 TH	18:39	PAX 53	19 738 5	50£1 a	tlastu	be shi	pping				15.5.55		200	4/005
			-	-	-	-								
Arten Tube 6 205 Clark 8 Herrow, Ont NoR 130 Tel: 518- Fax: 518-	L.					TEST			ube	3 Det	.B/L: e: tomer:	8046(12.22 990	0468 .2011	
			IV	AIE	NIAL	TEST	REF	UKI						
Sold to										Shi	pped to			
Steel War 500 COLO ROSWELL USA	O CORPOR Thousing ONIAL CER GA 300	Corpor VTER 1 176	v sti PR							NAI SOL BUI USA	MASCO UTH LO DA TX	SOUT OP 4 78718	H WES P.O. B 5-0367	ST YOX
Material: 5.0x5.0x		(4x2).				a: 5005 Dedar: 6		10				in: Cas	ada	
Heat No 0		P	s	SI	Al	Ca	(0650)	Mo	Cupi Min	Cr	101456	Ti	76 R	N
752525 0.19	A	0.008	11 Paul Balanthanne	0.013	0.040	0.045		0.005	0.014	0.048	0.002		0.000	management of the local division of the loca
Bundle No PCs			eliane	Ein.					rtification				: 0.3	
M101700676 8	063850	Pai 0	78200 Psi	32.0	16		2	A	TM ASOO	-10A GI	RADE B&			
Material Note: Gates Dr.Notec														
Møterial: 6.0x6.0x		3x30.		Ņ	laterial N	¢: 6006	0250400	00		ni en en		te Carte int Carte		
Sales order: 6091						Order: 6-			Cust Mat			A50004	90	
Heat No 0 762367 0.11		0.007	S. 0.006	\$i 0.014	AI 0.061	Cu 0.042	Cb	0.006	NI	Çr	V	Ti	8	N
Bundle No PCs	C. C. C. C. C. C.		éneñe	Els.		0.042	0.005		0.018	0.028	0.002	0.000	0.000 E: 0.3	
M101096888 9	054900	-	67270 Pai	34.0			1		TM A500	104 05	RADE B&		na. 0.0	-
Material Note: Sales Or.Note:														
Material: 8.0x4.0x	260-40*0*0(.2641.		м	atorial N	e: 9004	026040	10				n Cara		
	38			P	urchase (Order: 6	409841		Cuet Ma	arial #:	T8454R	ECTA500	00480	
Sales order: 6893			8	Si	A)	Ge	Cb	Bild .	hi	Cr	V	Ti	8	N
Heat No C					AL									
Heat No 0	0.780	0.008	0-00-8	0.013	0.066	0.049	0.008	0.005	0.015	0.035	0.002	0.000		9.2013.000
Heat No 0 762777 0.11 Bundle No PCa	0.780 Yield		0-009	BR	2In	0.049	0.008	Ce	rencation			c	0.000 E: 0.3	9.2013.000
Heat No 0	0.780		0-00-8		2In	0.049	0.008	Ce				c		9.2013.000

			100			6	7 19.1.10			H				o	6		TIPSELL - DEO.	1			- Od '19 stos juq 02-501
HOGINN	ľ.	Load	Grade	Order A36, Qual 1,	Sti			45		1	H2			H	TH	Ľ.		1fath.	Man Man Nan	, there	
NUDOR STEEL		LOAG NUMDER		ar Besci 9.6250 Hty PLe NDCMA-TR	Stripped	190030	1HD093E	Shipped	Ites	THOODED	2400939	THOCASE A	TIMUTOCR	140095E	EH00958	1+00958		Rates: 3 PCS:	curry has n unfactured unfactured 9901:2008	ind ankes h	
Street TISOALOGSA, ING.	12274	000		Order Bescription: Order Bescription: A36, 9.6250 IN × 96.000 IM × 240. Quality Plan Description: A36NDCMA-TRIPLE: A5TM A36-08 M00	Heat/Slap Ruther	117759-03 AAA	80-6522018 8107759-03	Certified	By.	S1240093FTT	STHOODSWIT	TTMERGENT	STHOODER TT	TEAPODAETZ	S140092MTT	LUKP 50 GHES		S: 30 Weight:	Kierrusy has not come in consid with this product delating insumationaring process not inter any metowy been used by the menufacturing process. Catrified in accordance with EN 10204 3.1, no weld repeat has been performed on the material. Menufactured in a Mity Xillion france grass precipe. " Produced from Coll." (SO 9001.2008 Registered. PED Certified	$^{\prime\prime\prime\prime\prime}$ indicates Heats method and Manufachured in the U.S.A.	
TUEOALOCSA.	1441	1	1	00 DN × 240 \$1001: ^35-08 X00	th Cert	-		***		-	BUNDER		-	827759	ESTIVES .	651491B		SAL SCOP ::	act yrth this p fred in accord fine graith pred ED Cardfled	nd Manufactur	
-ONI	AND LES	W-107372-004			tifted	8147759	B1U7759		+	-	+	+	+ 50	444	4 4.4	843			nochuch chu ancar whit Uça, ** Pri	ed in the L	
	11 Codore Municheter	004		5436-0	U	0,28	0.28	Yield Ten	+	46.7 6.		+	-	6.0.0	46.8 6	41.3 6			ang the m EN 10204 Interest fin	.ABA	
	der A		1	COD IN COD IN NU/ASME SA36-03/A709-36-10	Ŧ	0.89 0.	0.89 0.	Tensile Y		67.9 68	-	-	+		63.3 7	64.0 7			anyfacturfy 3.1. No wi m Coll **		
MILL	e o aj			Q1-9	4	0.012 0.008 0.06	0.0X2 0.008 0.06 0.022 0.008 0.06	A/7 ELD!	مإحسا	65.8 536.0	-	+	+		73.5 40.9	1.6 39.5			g process bid repeir in		
1	Merchany .	1 1	~		SI	8 0.06	8 0.06	ELENGATION \$	18 L	0	4 10	-	0	9	3	ė	<i>x</i>		not insk av se been pr		
음과국			U	13-19-	J	0.16 0	0.15		eko Ko	-	-					_			r mercery t		
TEST CERTIFICATE	Part	-	Customer:	Sold T01 NAMSCO Buda TX Shrip T0: NAMESCO Buda TX	ð Æ	0.06 0.09	0.06 0.09	1	¥									and the second second	the male		
ICAI	t Number			kurda T.K Surda T.K	2				Size am						I				2		
ш					රී	0.021 0.000 0.001 0.037	10.021 0.000 0.001 0.031 0.057 0.001 0.008 0.0001 0.0001 0.0001 0.0011	Charpy Induces (ft-1bf)	-	+			_		+	-		being of the second	Vee theready		
	0	113			V AI	.001 0.0	0.0 100.0	(-1) 53	~	+				+	+	-		Seat Milean	Contra y sea		
	arts fra	L-309282J			1	37 0.001	157 0.001 137 0.001	bf)	AVA	-				+	-			The second sec	- A		
	Certificate Number				Z	0.008	1. 0.008	ļ							-	_		t close without	ty the specific the second		
	er					0.0001		Shear X	•					-	T			sinner nak	B		
Ra	Date	08/09/2011 13:46			3	0.0027	0.6027 0.008		-				+	T	+	1		x and the cold 3	8		
Page #: L of 1		1 170			Ş	0.008	0.008		dept 600				+	+	t	1		he tagis r			

2012-10-25

Porteous Fastener Company

Product Information Sheet

Carriage Bolt, Inch Series, Grade A

- > PFC Product Category: 00100
- > Typical Material: Low Carbon Steel
- Material and Mechanical Properties: Purchased to meet ASTM A307 Grade A.
- Dimensions: ASME B18.5, Round Head Square Neck Bolt, Rolled Threads

 - Full thread to 6 miches in length.
 - > Undersize body and 6 inches of threads on lengths over 6 to 12 inches.
 - > 6 inches threads and fell size body onlengths over 12 inches.
- > Zinc Plating: Purchased to meet ASTMP1941 Fe2n
 - FINT HARDEN White papers has it AN REPORTED AND MA153.
- > Hot-Dip Galvanized: Purchase 14PHENEDERS
- A DESCRIPTION OF THE PARTY OF T s HRB > Typical Hardrid
- > Tensile Strength 60,000 PSI Minimum 1 3 4 4

	trength - No M A307 Gra					
Size	PSI	Pounda 1900 3100				
1/4-20	60,000	1900				
5/16-18	60,000	3100				
3/8-16	60,000	4650				
7/16-14	60,000	6,350				
1/2-13	60,000	8,500				
9/16-12	60,000	11,000				
5/8-11	60,000	13,550				
3/4-10	60,000	20.050				
7/8-9	60,000	27,700				
1-8	60,000	36,350				

Len	gth Toler	ances - C	arriage B	olts							
	Nominal Size										
Nominal Length	#10 to 3/8	7/16 & 1/2	9/16 to 3/4	7/8 to 1							
	Tolerance on Length										
Up to & Incl 1"	+0.02/-0.03	+0.02/-0.03	+0.02/-0.03								
Over 1" to 2 1/2", incl.	+0.02/-0.04	+0.04/-0.05	+0.06/-0.08	+0.08/-0.10							
Over 2 1/2" to 4", incl.	+0.04/-0.06	+0.06/-0.08	+0.08/-0.10	+0.10/-0.14							
Over 4" to 6", incl.	+0.06/-0.10	+0.08/-0.10	+0.10/-0.10	+0.12/-0.16							
Over 6"	+0.10/-0.18	+0.12/-0.18	+0.14/-0.18	+0.16/-0.20							

Porteous Fastener Company

Page 1 of 1

The information presented is believed to be accurate at the time of occument creation. However, Porteous Fastener Company is not responsible for any clein tresceble to any excer (honoreschical or otherwise) as contained herein. Portecus Fastener Company makes no warrantice as to the occuracy of the information.

in . -- * ці С ź 20 6 NBMG-08 March 9, 2011 Date: 26-Oct-2011 ຜິ 33 33 B.L. Number: 586989 Load Number: 195932 5 -.12 14.00 Page: භ ŝ CHEMICAL TESTS .003 003 024 > ß **CERTIFIED MILL TEST REPORT** ۶ .016 .019 Nathan Stewart ۵. 1.02 ა .17 ž JEWETT, TX 75846 Nucor Steel - Texas Ī 46 44 8812 Hwy 79 W QUALITY ASSURANCE: 800-527-6445 0 Ship from: DEF WT% Vaterial Safety Data Sheets are available at www.nucorbar.com or by contacting your inside sales representative. BEND PHYSICAL TESTS "8 NI % 70,000 110,500 13.0% 483MPa 762MPa 108,900 12.0% 487MPa 751MPa TENSILE P.S.I. NUCOR CORPORATION NUCOR STEEL TEXAS **NCCOR** 70,700 YIELD P.S.I. scribed herein has been manufactured in accordance with and above and that it satisfies those requirements. on this material. ASTM A615/A615M-09b GR 60[420] ASTM A615/A615M-09b GR 60[420] DESCRIPTION A615M Gr 420 (Gr60) A615M Gr 420 (Gr60) els in any form ADELPHIA METALS-CUST PU NIA AASHTO M31-07 AASHTO M31-07 Nucor Steel - Texas Nucor Steel - Texas SOLD ADELPHIA METALS I LLC 411 MAIN ST E TO: NEW PRAGUE, MN 56071-13/#4 Rebar 20' 13/#4 Rebar 20' hereby certify that the material described i the specifications and standards lished above 1. Weld repair was not performed on this 2. Mateo and Manufactured in the United 3. Mancury, Radium, or Alpha source material JEWETT, TX 75846-801746 801746 JW1110880201 JW1110880301 HEAT NUM. * £ #Od ^= #Od SHIP ë

are accurate and conform to the reported grade specification DLVRY LBS / HEAT: 16848.000 LB We hereby certify that the test results presented here DLVRY PCS / HEAT: 2240 EA Value Daniel J. Schacht Delivery#: 80634703 Quality Assurance Manager CUST PO#: 5390AB Characteristic BOL#: 70224264 CUST P/N: THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. CMC Construction Svcs College Stati 10650 State Hwy 30 College Station TX **US 77845-7950** 979 774 5900 Value CERTIFIED MILL TEST REPORT For additional copies call Characteristic 830-372-8771 s ⊢ т _ ۵. 0 CMC Construction Svcs College Stati 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900 SEGUIN TX 78155-7510 **1 STEEL MILL DRIVE** CMC STEEL TEXAS 0.001% 108.3ksi 0.059% 0.037% 0.002% 0.013% 0.012% 0.002% 70.6ksi 1.313IN 0.16% 0.34% s o - 0 0.45% 0.81% 0.17% 0.17% Passed ⊢ 0 Value 13% 8IN GRADE: ASTM A615-09b Gr 420/60 SECTION: REBAR 10MM (#3) 20'0" Characteristic υ ۳ ۵. S ŝ 2 ບັ Ï ĥ > в Sn Al Bend Test Diameter Bend Test 1 Yield Strength test 1 Tensile Strength test 1 Elongation test 1 Elongation Gage Lgth test 1 MELT DATE: 11/19/2011 ROLL DATE: 11/20/2011 HEAT NO.:3028608 420/60

11/22/2011 18:03:39 Page 1 OF 1

REMARKS :

46

APPENDIX C. TEST VEHICLE PROPERTIES AND INFORMATION

Date	e: <u>2012</u>	-02-14		Test No.:	490022-	-1	VIN No.:	1D7HA	18P97518	37573	_
Yea	r: <u>2007</u>			Make:	Dodge		Model:	Ram 15	500		
Tire	Size:	P265/70	R17			Tire	Inflation Pre	ssure: 3	35 psi		
Trea	ad Type:	All Terra	ain					meter: 1			-
							Cuo	<u> </u>	00100		-
NOte	e any dama	age to the	e ven	icle prior to t	est:	-		_ X		4	-
• D	enotes aco	celerome	er lo	cation.			W				
NOT	TES:										$\overline{1}$
						_		•			
Ena	ine Type:	V-8			A	EL	$\uparrow \parallel \neg \uparrow$	•	_	● WHEEL TRACK	T
	ine CID:	4.7 lit	er		i î 🚣						
Trar	smission ⁻	Type:									
	Auto	or		Manual					\succ	TEST INERTIAL C.M.	
	FWD	<u>x</u> RV	VD	4WD	F		- /		T		Î
Opti	onal Equip	oment:					\sim				
											B
	nmy Data:	No. di					<u>ALU</u>	G	f((; L
Тур Ма		No di	ummy	у	· <u> </u>				$\overline{+}$		<u> </u>
Se	at Position	:				_ ↓ M _f	H - ront	-	7	M _{rear}	
Geo	metry:	inches						- C —	•		
А	78.25		F	36.00	К_	20.50	_ P _	2.88	U	29.00	<u> </u>
В	75.00		G _	28.44		29.12	Q	31.25	V	30.50	<u> </u>
С	223.75		Н_	61.53	M _	68.50	R	18.38	V		
D	47.25		I	13.75	<u>N</u>	68.00	S	12.00	X	98.00	<u> </u>
E	140.50 Wheel Cent		J _	25.38	O Wheel W	44.50	_ т_	77.50 Bottom	Frame		_
	Height Fro	nt		14.75 Cle	arance (Fro	ont)	5.00	Height -	- Front	17.125	<u>;</u>
	Wheel Center Height Rea			14.75 Cle	Wheel W arance (Re		10.25	Bottom Height		24.75	<u>)</u>
RA	NGE LIMIT:	A=78 ±2 ir	iches;			8 ±12 inches; F M+N/2=67 ±1.		; G = > 28 i	nches; H =	63 ±4 inches;	
GV	WR Ratin	as:		Mass: Ib	,	<u>Curb</u>		Inertial	C	Gross Static	
Fro		3700		M _{front}		 2819		2802	2		
Ba		3900		M _{rear}		2103		2183			
Tot	al	6700		M _{Total}		4922		4985			
Mas	s Distribu	ition:				(Allowa	able Range for	TIM and GS	6M = 5000 lb	b ±110 lb)	
lk			LF:	1457	RF:	1345	LR:	1083	RR:	1100	

Table C1. Vehicle Properties for Test No. 490022-1.

Table C2. Vertical CG Measurements for Test No. 490022-1.

Date: 2012-02-14 Test No.: 490022-1 VIN No.: 1D7HA18P975187573
Year: 2007 Make: Dodge Model: Ram 1500
Body Style: Quad Cab Mileage: 153756
Engine: _4.7 liter V-8 Transmission: Automatic
Fuel Level: Empty Ballast: 76 lb at front of bed (440 lb max)
Tire Pressure: Front: 35 psi Rear: 35 psi Size: P265/70R17
Measured Vehicle Weights: (lb)
LF: 1433 RF: 1367 Front Axle: 2800
LR: 1075 RR: 1114 Rear Axle: 2189
Left: 2508 Right: 2481 Total: 4989 5000 ±110 lb allowed 5000 ±110 lb allowed
Wheel Base:140.5 inchesTrack: F:68.5 inchesR:68 inches148 ±12 inches allowedTrack = $(F+R)/2 = 67 \pm 1.5$ inches allowed
Center of Gravity, SAE J874 Suspension Method
X: 61.65 in Rear of Front Axle (63 ±4 inches allowed)
Y: -0.19 in Left - Right + of Vehicle Centerline
Z: <u>28.4375</u> in Above Ground (minumum 28.0 inches allowed)
Hood Height: <u>44.5</u> inches Front Bumper Height: <u>25.375</u> inches
Front Overhang: <u>36.0</u> inches Rear Bumper Height: <u>29.125</u> inches 39 ± 3 inches allowed
Overall Length: <u>223.75</u> inches 237 ±13 inches allowed

Table C3. Exterior Crush Measurements for Test No. 490022-1.

Date:	2012-02-14	Test No.:	490022-1	VIN No.:	1D7HA18P975187573
Year:	2007	Make:	Dodge	Model:	Ram 1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	
≥ 4 inches	

Note: Measure C_1 to C_6 from Driver to Passenger side in Front or Rear impacts – Rear to Front in Side Impacts.

a : c		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C ₂	C ₃	C ₄	C5	C ₆	±D
1	Front plane at bumper ht	17.0	10.0	24.0	0	1	1.75	3.5	5.0	10.0	+14
2	Side plane at bumper ht	17.0	15.0	44.0	3	7.5	11	12.5	13.5	15.0	+67
	Measurements recorded										
	in inches										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Table C4. Occupant Compartment Measurements for Test No. 490022-1.

APPENDIX D. SEQUENTIAL PHOTOGRAPHS

0.000 s

0.049 s

0.147 s

0.196s

0.245 s

0.294 s

Figure D1. Sequential Photographs for Test No. 490022-1 (Field Side of Bridge Rail) (continued).

0.343 s

0.000 s

0.049 s

0.098 s

0.147 s

0.196 s

0.245 s

0.294 s

0.343 s

Figure D2. Sequential Photographs for Test No. 490022-1 (Frontal View).

APPENDIX E. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS

Figure E2. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-1 (Accelerometer Located at Center of Gravity).

2012-10-25

2012-10-25

Test Vehicle: 2007 Dodge Ram 1500 Pickup

Impact Speed: 63 mph Impact Angle: 24.7 degrees

Impact Speed: 0 Impact Angle: 0

Inertial Mass: 4985 lb

Test Standard Test No.: MASH Test 3-11 Test Article: T131RC Bridge Rail

Test Number: 490022-1

2.0

1.5

1.0 Time (s)

50-msec average

SAE Class 60 Filter

X Acceleration Rear of CG

TR No. 9-1002-12-1

59

60

2012-10-25

2012-10-25

61