
AN ANALYTICAL SOLUTION OF THE IMPACT BEHAVIOR 

OF LUMINAIRE SUPPORT ASSEMBLIES 

by 

J. E. Martinez 
Engineering Research Associate 

Research Report Number 75-9 
Supplementary Studies in Highway Illumination 

Research Project Number 2-8-64-75 

Sponsore~ by 

THE tEXAS HIGHWAY DEPARTMENT 
In Cooperation with the 

U. S. DEPARTMENT OF TRANSPORTATION 
FEDERAL HIGHWAY ADMINISTRATION 

BUREAU OF PUBLIC ROADS 

August 1967 

TEXAS TRANSPORTATION INSTITUTE 
TEXAS A&M UNIVERSITY 

COLLEGE STATION, TEXAS 



FOREWORD 

The information contained herein was developed on Research Project 

2-8-64-75 entitled "Supplementary Studies in Highway Illumination," 

which is a cooperative research project sponsored jointly by the Texas 

Highway Department and the U. S. Department of Transportation, Federal 

Highway Administration, Bureau of Public Roads. The broad objective 

of this project is to (a) study methods to evaluate and compare continuous 

highway illumination systems, (b) study the visibility characteristics for 

high level lighting and driver requirements for rural interchange 

lighting, (c) evaluate contemporary luminaire supports for safety and 

develop break-away bases to enhance roadside safety. This report covers 

the specific objective of developing a mathematical model of a luminaire 

support assembly that is impacted by a vehicle. 
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NOTATION 

• Principal mass moments of inertia at the mass 
center. 

• Direction cosines between the 1 axis and the 
X, Y, Z axes respectively. 

= Direction cosines between the 2 axis and the 
X, Y, Z axes respectively. 

= Direction cosines between the 3 axis and the 
X, Y, Z axes respectively. 

• Frictional forces in the XX and YY directions 
respectively. 

= The normal force. 

= The spring force. 

• The components of the spring force in the XX 
and YY directions respectively. 

• Resultant forces in the X, Y, Z directions 
respectively. 

= Resultant forces in the 1, 2 and 3 directions 
respectively. 

= Acceleration due to gravity. 

= Time increment. 

= Length of the hood of the vehicle. 

= Coordinates of the hood, trunk and top of the 
vehicle respectively. 

= Spring constant of the vehicle. 

= Angular momentum vector. 

• Time rate of change in the angular momentum 
vector. 

• Mass of the post. 
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• Mass of the vehicle. 

• Typical point on the post. 

• Translations of the post center' of mass in the 
1, 2 and 3 directions respectively. 

= Displacement of the vehicle. 

= The torque vector. 

= The torques about the X, Y and Z axes respec­
tively. 

= The torques about the 1, 2 and 3 axes respec­
tively. 

• Velocity of the vehicle. 

• Acceleration of the vehicle. 

= Velocities of the post center of mass in the 
1, 2 and 3 directions respectively • 

= Component accelerations of the post center of 
mass in the 1, 2 and 3 directions respectively. 

= Angular velocities of the post about the 1, 2 
and 3 axes respectively • 

= Component angular accelerations of the post about 
the 1, 2 and 3 axes respectively. 

• A fixed right-handed coordinate system having 
its XX-YY plane where vehicle motion takes place 
and its XX axis in the direction of the highway. 

... 

= 

• 

A fixed right-handed coordinate system having 
its axes coinciding with theinitial position 
of the principal 1, 2, 3 axes and obtained by 
rotating the XX, YY, ZZ system on angle o about 
the XX axis. 

A fixed right-handed coordinate system obtained 
by rotating the XX, YY, ZZ system on angle a 
about the-ZZ axis. 

The translations of fhe post center of mass in 
the X, Y and Z directions respectively. 
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• The translations of the point "P" as measured 
in the X, Y, Z coordinate system. 

• The initial coordinates of the point P as 
measured in the X, Y, Z coordinate system. 

• The translations of the point "P" as measured 
in the XX, YY, ZZ coordinate system. 

• The translations of the point "P" as measured 
in the XV, YV, ZV coordinate system. 

= The YY or YV coordinate of the left fender of 
the vehicle. 

= The YY or YV coordinate of the right fender of 
vehicle 

= A moving right-handed coordinate system having 
its 1, 2 and 3 axes along principal directions 
of the post. 

= Angle the XX, YY, ZZ coordinate system·iS 
rotated about -zz axis to obtain XV, YV, ZV 
coordinate system. 

• Angle of XX, YY, ZZ coordinate system is 
rotated about XX axis to obtain X, Y, Z coor­
dinate system. 

• The Eulerian angles. 

• The time-rate of change of the Eulerian angles. 

• The rotation parameters. 





1.1 General Background 

CHAPTER I 

INTRODUCTION 

Modern freeways require adequate lighting facilities and in order 

to meet lighting requirements, light posts sometimes have to be located 

near the edge of the traffic lane. Single post sign standards and stop 

light posts are also necessary. Each of these post installations are 

often located so as to constitute a safety hazar~ and collision with 

these posts can cause fatalities. 

An obvious solution to the problem is the relocation of the post. 

This is not always feasible so the engineer has to resort to other means 

to eliminate this safety hazard. The method of developing supports 

that will limit impact forces to tolerable limits has been suggested as 

another solution to the problem. A design showing considerable merit is 

the "break-away" luminaire support post that disengages the post from 

its foundation upon impact. 

Since posts are usually quite massive, they could, after impact, 

be knocked into the path of the vehicle, or onto the highway. 

The work presented in this research is directed toward developing 

a post model that upon impact will be knocked out of the vehicle path 

and also not land on the highway causing an unsafe condition for other 

motorists. This can be accomplished by a suitable location of the mass 

center of the post assembly which means the mass will have to be dis­

tributed in a certain fashion. 

1 



In order to develop a concept into a design that can be utilized 

under field conditions, it is necessary to investigate the behavior 

under various conditions. For the problem in question, this entails 

investigation under different conditions of vehicle impact with 

various vehicle sizes and velocities. It is also necessary to study 

the behavior of the various "break-away" features of the posts. 

Current techniques involve a full-scale crash test for each sign and 

vehicle parameter. 

Samson, Rowan, Olson and Tidwe111 draw the following conclusion 

in the summary statement of their report: 

"The thorough observation of the high speed film has clearly 
indicated the phenomenological behavior of the several structural 
supports tested. These observations have also created an insight 
into the formulation of a mathematical model for expressing the 
behavior quantitatively." 

Edwards
2 

has investigated the solution to the case where a post 

is simulated using a discrete mass system. This method is based on 

a distributed mass system consisting of a discrete member of concen-

trated masses connected by assumed massless elastic link elements. 

The dynamical equations written for this model express the relations 

between mass point displacements and accelerations in terms of post 

parameters and external actions. These equations are solved using a 

numerical integration technique. The solution assumes motion to take 

place in a plane but it is possible to extend it to three-dimentional 

motion in order that it may handle the more general situation which 

is usually the case. 

The work presented in this research is part of a larger project 
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on sign and light post behavior. 

1.2 Objectives 

The objectives of this research are: 

(1) To establish an analytical model that will describe the 

motion of a rigid body under the influence of gravity and time depen-

dent forces. 

(2) To apply numerical integration techniques to obtain a solu-

tion to the equations of motion. 

(3) To investigate the stability of the numerical solution. 

(4) To attempt to correlate theoretical results with experimen-

tal data obtained from the impact of a vehicle on sign and light post 

systems. 

1.3 Literature Review 

The direct solution of the equations of motion for a rigid body 

subjected to time dependent forces presents a formidable task. The 

equations of motion for a body rotating about a fixed point are pre-

3 4 5 6 7 8 9 
sented by several authors. ' ' ' ' ' ' The special case of the motion 

of a rigid body with a fixed point under no forces is presented in 

k 1 · 1 d . 3 ' 4 ' 5 Th bl . t d b wor s on ana yt1ca ynam1cs. e pro em 1s trea e y two 

methods -- the descriptive and the analytic. The descriptive method, 

or method of Poinsot, gives a good qualitative idea of the motion. 

In the case where the body has an axis of dynamical symmetry, the 

description is particularly simple. 
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The analytical method, like that of Poinsot, makes use of the 

fact that for the special case considered the kinetic energy and 

angular momentum are constants. 

The angular velocities and displacements of the body are obtained 

using elliptic functions. From the periodic property of the elliptic 

functions, it is seen that the motion as a whole is not periodic. 

The general motion of a rigid body consists of motion of the 

mass center plus motion relative to the mass center and the equations 

for this motion are given by Synge. 3 It is illogical to suppose that 

the determination of the general motion always divides into two parts 

-- a problem in particle dynamics and a problem in the dynamics of 

a body with a fixed point. Constraints make the two problems inter­

lock, and complications arise. A general plan cannot be given for 

the solution of all such problems and the method of solution depends 

upon the particular problem under consideration. 

Even if a rigorous solution to a problem does exist, its use to 

obtain numerical results may often be tedious and time-consuming. 

This condition has led in recent years to the rapid development of 

numerical methods of analysis such as those discussed by Karman, 10 

Salvadori11and Johnson, 12and machine methods of computation. 

For the dynamics problem, a numerical solution consists in 

obtaining numerical values of the displacement and velocity at dis­

crete times. These displacement and velocity values are obtained by 

a step-by-step integration procedure of the equations of motion of 

the system, starting with the necessary initial conditions and evalu-

4 



ating the conditions at the end of a discrete time interval. These 

values are then the basis for calculation of the velocity and dis­

placement at successive discrete times. 

Historically, the development of numerical-integration methods 

has resulted from the efforts of individuals searching for the solu­

tion to specific problems in science or engineering. These researchers 

often devised methods of solution based on the physical behavior of 

the system in question, but with little regard for mathematical rigor. 

As the need for numerical methods of analysis has increased, mathe­

maticians have become interested in the problem and provided a mathe­

matical classification of the available procedures placing emphasis 

on the subject of errors, convergence, and stability of the various 

numerical-integration methods. 
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C H A P T E R I I 

THE GENERAL MATHEMATICAL MODEL 

2.1 Development of the equations of motion 

Choose i, j, k to be a triad of unit orthogonal vectors in a 

moving frame of reference S', which rotates with angular velocity w 

relative to a Newtonian frame S. 

Any vector V may be expressed in the form 

V = Vl i + V2 j + V3 k (2.1) 

Now it is desired to determine the rate of change of V as 

estimated by an observer in the Newtonian frame S. It must be 

emphasized that not only do Vl, V2 and V3 vary, but also the vectors 

i, j and k. 

Differentiation with respect to time t, of equation (2.1) gives 

dV = dVl i + dV2 -:- + dV3 k + Vldf + V2dj + V3dk 
dt dt dt J dt dt dt dt (2.2) 

Let i, j and k be unit vectors fixed in a rigid body S' which 

rotates with angular velocity w. One may think of i, j and k as the 

position vectors of a particle "B" of this body relative to a base 

point "A", the origin of i, j and k. The derivative~~ is now the 

velocity of "B" relative to "A", with the same reasoning applying to 

j and k. 
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Therefore 

Now define 

di -= 
dt 

W X f 

_ti_-xJ· 
dt- w (2. 3) 

(2.4) 

Substitution of equations (2.3) and (2.4) into (2.2) yields 

dv = tw + v1 <w x I> + v2 <w x J7 ) + v3 <w x it> dt 6t 

or 

dV = 6 v + w X (Vli + V2J7 + V3k) 
dt 6t 

Substitution of equation (2.1) into (2.5) yields 

(2. 5) 

Thus the rate of change of a vector as estimated by an observer in 

the Newtonian frames "S" is 

(2.6) 

dv . f t dt cons1sts o two par s. 

The first part, ~~' is the rate of change of Vas measured by 
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an observer moving with S' and is commonly referred to as the "rate 

of growth," since, in calculating it, one thinks of the vector as 

changing or growing, whereas i, j and k remain constant. The second 

term, w x V, is due to the rotation of the triad i, j, k and may be 

called the "rate of transport." Thus, for a rotating frame, the 

rate of change of a vector equals the rate of growth plus the rate 

of transport. 

Consider now obtaining the equations of motion of a rigid body. 

Let F denote the total external force and T the total moment of the 

external forces about the mass center. The acceleration A of the 

mass center relative to a Newtonian frame is given by the elementary 

equation 

F d (MV) = dt 

or if the mass, M, is independent of time 

F = MA: (2. 7) 

where M is the mass of this body. For motion relative to the mass 

center 

dE 
dt = T (2.8) 

where E is the angular momentum about the mass center. 

- - dE -
Consider resolving A, F, dt' and T along a principal triad 

i, j, kat the mass center. The triad is permanently a principal 

triad fixed in the body and having an angular velocity w. 

8 



From equation (2.6) 

where 

V = Vli + V2j + V3k 

and i is now the vel~city of the mass center. 

Also, 

w = wli + w2j + w3k 

and 

where a dot denotes a rate of change with respect to time, 

w x V may be written as 

i j k 

w x V = wl w2 w3 

Vl V2 V3 

Thus, expanding the determinant, 

w x V = (w2 V3 - w3 V2) i + (w3 Vl - wl V3) j 

+ (wl V2 - w2 Vl) k (2.9) 

Using equations (2.7) and (2.9), the equations for the 
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acceleration A of the mass center take the form: 

. 
M (Vl - V2 w3 + V3 w2) = Fl 

. 
M (V2 - V3 wl + Vl w3J = F2 (2.10) . 
M (V3 Vl w2 + V2 wl) = F3 

Consider now the equations of motion relative to the mass 

center. 

Let A, B and C be the principal mass moments of inertia at 

the mass center so that 

As before, 

or 

Thus the equations 

L = A wl I + B w2 j + C w3 k (2.11) 

.: ilL -
L = Llt + w X L 

L = A ~1 I + B ~2 j + C ~3 k + (wl I + w2 j 

+ w3 k) x (A wl I + B w2 j + C w3 k) 

L = (A ~1 - B w2 w3 + C w3 w2) I + (B ~2 - C w3 wl 

+ A wl w3) j + (C ~3 - A wl w2 + B w2 wl) k 

of motion relative to the mass center become 

. 
Awl- (B-C) w2 w3 = Tl 

. 
B w2 (C-A) w3 wl = T2 
. 

c w3 - (A-B) wl w2 = T3 

10 



These equations are also known as Euler's equations of motion for 

a rigid body with a fixed point. The fixed point here being the 

mass center of the body. The motion of the body relative to the 

mass center is exactly the same as if the mass center were fixed 

and the same forces were acting. Thus, the six equations for the 

components of velocity of the mass center and the components of 

angular velocity of the body are: 

M (Vl - V2 w3 + V3 w2) = Fl 

M (V2 - V3 wl + Vl w3) = F2 

M (V3 Vl w2 + V2 wl) = F3 

A ~1 - (B-C) w2 w3 = Tl 

B ~2 - (C-A) w3 wl = T2 

C ~3 - (A-B) wl w2 = T3 

2.2 The Eulerian Angles 

(2.12) 

Consider the problem of describing the position of a rigid body 

which is free to turn about a point 0. (Figure 1.) A line "L" can 

be fixed in the body passing through 0, then the body can merely turn 

about "L". One could assign the angle through which the body has 

turned about "L" from some initial position, and a final position is 

completely determined. 

To describe the direction of "L" and the angle of rotation, one 

needs to specify three parameters; the most convenient parameters 

are the Eulerian angles which will now be discussed. 

11 



K 

THE EULERIAN ANGLES 

FIGURE 
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Figure 1 shows two unit orthogonal right-handed triads (i, j, k) 

and (I, J, K) at the point 0. The triad (i, j, k) is fixed in a rigid 

body which can turn about "O", and the triad (I, J, K) is a fixed 

frame of reference. Let the direction of "K" be that of the line "L" 

mentioned above. 

The first Eulerian angle 8 is the angle between k and K. The 

second angle,¢ is the angle between the plane (k, K) and the plane 

(K, I). The third angle,~ is the angle between the plane (k, i) 

and the plane (K, k). The angles 8 and¢, being the usual polar angles, 

fix (k); ~ is the angle of rotation about k. It is evident that 8, ¢, and 

~determine the position of (i, j, k) and hence the position of the 

entire body. 

To determine when the angles are to be counted as positive or 

negative, one takes an initial position in which (i, j, k) coincide 

with (I, J, K) then bring the body to the general position shown in 

Figure 1 by applying the following rotations in order: 

(1) A rotation¢ K; this brings the movable triad (i, j, k) 

into coincidence with (I', J', K). 

(2) A rotation e J I; this brings (i, j' k) into coincidence 

with (I", J', k). 

(3) A rotation~ R; this brings (i, j, k) into the required 

final position. 

Thus, all possible orientations of the body can be obtained by 

assigning values to e, ¢, and ~in the ranges 

0 < 8 < TI; 0 < ¢ < 2rr; 0 < ~ < 2TI 

13 



The Eulerian angles e, ~' and ~ form a set of generalized coor­

dinates for a rigid body with a fixed point. They can also be used 

as part of a set of generalized coordinates for a rigid body free to 

move in space. 

Referring again to Figure 1, one may regard "O" as a base point 

in the body and (I, J, K) as a triad of unit vectors carried by "O" 

and remaining parallel to axes fixed in a frame of reference. The 

Cartesian coordinates x, y, z of "O" together with the Eulerian angles 

e, ~' and ~' describe the configuration of the body completely. Since 

the numbers x, y, z, e, ~' and ~ can be varied independently, with­

out violating the rigidity of the body, it is clear that a rigid 

body, free to move in space, has six degrees of freedom. 

A table of scalar products representing the direction cosines 

of the vectors (i, j, k) relative to (I, J, K) or vice versa, accord­

ing to the way the table is read, will now be developed. 

Consider the rotation ~K about the K axis. This gives Table 1. 

Now, consider the rotation eJ' about the J' axis and obtain 

Table 2. 

Finally, consider the rotation ~k about the k axis and obtain 

Table 3. 

Let the first table represent the rotation matrix D, the second 

E, and the third F. 

Thus, matrix equations may be written as 

{X'} = [D) {X} 

{X"} = [E] {X'} 

{X} [F) {X"} 

14 
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TABLE I. REPRESENTATION OF THE ROTATION ~K 

I J K 

I' cos 4> SIN ~ 0 

J' -SIN 4> cos ~ 0 

K' 0 0 I 

TABLE 2. REPRESENTATION OF THE ROTATION 9J
1 

,. J' K' 

I" cos a 0 -SIN a 

J" 0 I 0 

K SIN 9 0 cos g 

TABLE 3. REPRESENTATION OF THE ROTATION 't'K 

I" J" K 

X cos '+' SIN lj.l 0 

y -SIN Ill cos 'II 0 

z 0 0 I 
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Where 

{X"} = [E] [D] {X} 

and 

[X] = [F] [E] [D]. {X} (2.14) 

Now consider premultiplying matrix E by matrix F such that 

Cos ljJ 

-Sin ljJ 

0 

Sin ljJ 0 

Cos ljJ 0 

0 1 

Cos 6 

0 

Sin 6 

0 

1 

0 

-Sin 6 

0 = [F] [E] 

Cos 6 

The product matrix is given by 

Cos ljJ Cos 6 Sin ljJ -Sin 6 Cos ljJ 

-Sin ljJ Cos 6 Cos ljJ Sin 6 Sin ljJ = [FE] 

Sin 6 0 Cos 6 

Now consider post multiplying the product matrix [FE] by [D] 

such that 

Cos ljJ Cos 6 Sin ljJ -Sin 6 Cos· ljJ Cos <1> Sin <1> 

-Sin ljJ Cos 6 Cos ljJ Sin 6 Sin ljJ 

Sin 6 0 Cos 6 0 0 

16 



The product matrix is given by 

Cos 8 Cos <P Cos ljJ Cos 1jJ Cos 8 Sin <P 

-Sin <P Sin 1jJ +Cos.¢ Sin 1jJ -Sin 8 Cos 1jJ 

-Sin 1jJ Cos 8 Cos¢ -Sin ljJ Sin <P Cos 8 
=[FED] 

-Sin <P Cos 1jJ +Cos <P Cos ljJ Sin 8 Sin ljJ 

Sin 8 Cos <P Sin 8 Sin <P Cos 8 

The matrix [FED] is now used to obtain Table 4 which represents 

a table of scalar products representing the direction cosines of the 

vectors (i, j, k) relative to (I, J, K) or vice versa according to 

the way the table is read. 

The (i, j, k) vectors correspond to the (1, 2, 3) directions 

as shown in Figure 1. It will now be useful to develop a relation-

ship for the angular velocities about these axes in terms of the 

angular velocities e, ~' and ~ and the Eulerian angles 8, cp and ljJ. 

The rotations by which the axes 0 (I, J, K) were moved to their 

final position were through <P about OK, through 8 about oJ' and 

through ljJ about Ok. One can imagine these three rotations to be 

carried out simultaneously, the angular velocities of the body being 

~ about OK, 8 about oJ' and ~ about Ok. The components about oi, 
. 

Oj, and Ok of the angular velocity <P are readily obtained from the 

[FED] matrix as 

. . . 
-Sin 8 Cos ljJ ¢, Sin 8 Sin ljJ ¢, and Cos 8 ¢. 
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TABLE 4. TABLE OF DIRECTION COSINES RELATING THE ROTATING 

AXES TO THE FIXED AXES BY MEANS OF THE EULERIAN ANGLES 

I J K 

-SIN 4> SIN 't' COS q SIN If' -SIN 9 COS 'I' 

i 
+COS9COS~COS'f' +COS 9 SIN~ COS 'I' 

-SIN~ COS 'I' COS~ COS 'I' SIN 9 SIN 'I' 
j 

-cos 9 cos~ SIN 'I' -COS 9 SIN ci> SIN 'I' 

k SIN 9 COS ci> SIN9 SIN~ cos 9 

-

! 

i 



• 
The angular velocity components of e are obtained from the [F] 

matrix and are 

. . 
Sin~ e, Cos ~ e, and 0. 

The angular velocity ~ lies along the (3) axis and needs no 

transformation. 

Combining the three results, the scalar equations relating the 

angular velocities wl, w2 and w3 about the 1, 2 and 3 axes and the 

angular velocities e, ~' and ~ and the Euler angles e, ~ and ~; are 

obtained and given by equations (2.16). 

. . 
wl = Sin ~e - Sin e Cos ~<P 

. . 
w2 = Cos ~8 + Sin 8 Sin ~<P (2.15) 

. . 
w3 Cos 8<P + ~ 

2.3 Derivation of the Rotation Formula 

The theorem formulated by Euler in 1776 asserts, of a body 

with one point 0 fixed, that any displacement is a rotation. In 

other words, any change of orientation of the body can be achieved 

by a rotation about some axis through 0. Euler's theorem is equiv-

alent to saying that in any two orientations of the body, there is 

one line OL fixed in the body whose direction and sense remains 

invariant. 

' 
Consider expressing the shift in position from R to S, of a 

particle fixed in the body; the coordinates of R relative to a fixed 

set of axes OX, Y, Z are (Yl, Y2, Y3) and the coordinates of S are 
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(Xl, X2, X3). 

Let T be the rotation vector in Figure 2. The line OA is in 

the direction of the vector T, M is the mid-point of RS, RS is 

perpendicular to the plane of T and m since ~/2)RS = T X m and p is 

the point where the plane through R perpendicular to OA meets OA. 

Now, 

m = ~/2)(X + Y) where X andY refer to Sand R respectively. 

Also, MS = (l/2)(X - Y) = T x m 

or 

Therefore, 

or 

= Tan ~ 
2 

(2.16) 

(2.17) 

Thus, the shift from R to S has been achieved by a rotation 

through an angle w about OA. 

The rotation vector can be expressed as 

- w -T = (Tan -) n 
2 

(2.18) 

Where n is a unit vector along the axis of rotation and w is the 

angle of rotation. 

Equation (2.16) may be rewritten in a more useful form 
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as 

s - r = T X (S + r) (2.19) 

where the position vector of a particle of the body relative to the 

fixed axes before the displacement is designated by r and the position 

vector of the same particle of the body after the displacement is 

represented by s. 
At this stage it will be useful to solve equation (2.19) for 

s. 
Multiply each side of equation (2.19) by T to form the vector 

product 

T X cs - r) = T X l T X cs x r)~ 
Since (b X c) ca: . C)b- (b a) -a x = . c 

T X (s - r) = [T . cs + r)] T (T . 

T . T = t2 

and T . cs + r) = 2 (T . r) 
Thus, 

Adding equations (2.20) and (2.19) gives 

T X s - (T X r) + s - r = 2 (T . r) T 

+ cf x s) + cf x r) 

22 
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or 

Adding 2 r to both sides yields 

or 

S + r 

Equation (2.21) is the rotation formula. 

Consider now that the rotation vector T makes angles a, S, y, 

with the OX, Y, Z axes respectively, and that the point R has initial 

coordinates Xo, Yo and Zo before the rotation w. 

With the above in mind, it can be said that 

and 

w 
t = Tan 2 

T = (Tan ~) (Cos a I, + Cos S j + Cos y k 

r = Xo I + Yo j + Zo k 

where i, j , k are unit vee tors along the X, Y and Z axes, respec·-

tively. 

i 

T x r = w 
Tan 2 Cos a 

Xo 

j 

w 
Tan 2 Cos S 

Yo 
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Therefore 

'2 

-T x r = (Zo Tan ~ Cos S - Yo Tan ~ Cos y) i 
2 2 

w w + (Xo Tan 2 Cos y - Zo Tan 2 Cos a) j 

w w -+ Yo Tan 2 Cos a - Xo Tan 2 Cos S ) k 

(2.22) 

Xo Tan ~ Cos a + Yo Tan ~ Cos S + Zo Tan ~ Cos y 

(2.23) 

2 w 2 2 w 
= (Xo Tan 2 Cos a + Yo Tan 2 Cos a Cos S 

2 w + Zo Tan 2 Cos a Cos Y) i 

2 w 2 w 2 + (Xo Tan 2 Cos a Cos S + Yo Tan 2 Cos S 

2 w + Zo Tan 2 Cos S Cos y) j 

2 w 2 w + (Xo Tan 2 Cos a Cos y + Yo Tan 2 Cos S Cos y 

2 w 2 -+ Zo Tan 2 Cos y) k 

2 2 = --"'"'"'---- = ---=---2 w 2 w 
1 + Tan 2 Sec 2 

2 w 
= 2 Cos 2 

(2.24) 

(2.25) 

Substituting the above expressions into equation (2.21), the 

expression for S becomes 

- 2( s· 2 w c 2 y s· 2 w c c o + z s· 2 w c c S = Xo 1n 2 OS a + 0 1n 2 OS a OS f.' 0 1n 2 OS a OS Y 
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w w w w 2 w Xo + Zo Sin 2 Cos 2 Cos S - Yo Sin 2 Cos 2 Cos y + Xo Cos 2 - ;r) i 

+ 2(Xo Sin
2 ~ Cos a Cos S + Yo Sin

2 ~ Cos
2 

S + Zo Sin
2 ~ CosS CCB y 

w w w w 2 w Yo) -t Xo Sin 2 Cos 2 Cos y - Zo Sin 2 Cos 2 Cos a+ Yo Cos 2 - T j 

+ 2(x S . 2 w c c + Y s· 2 w c a c z s· 2 w 0 1n 2 OS a OS y 0 1n 2 OS ~ OS y + 0 1n 2 
2 Cos y 

w w w w 2 w Zo -+ Yo Sin 2 Cos 2 Cos a - Xo Sin 2 Cos 2 Cos S + Zo Cos 2 - ;r) k 

Let X, Y and Z be the components of S in the x, y and z directions 

respectively. 

Then, 

X = 2 Sin
2 ~ (Xo Cos2 

a + Yo Cos a Cos S + Zo Cos a Cos y + 
z.!£ 

Cos 2 
s· 2 w 1n 2 

w w + 2 Sin 2 Cos 2 (Zo Cos S - Yo Cos y) - Xo 

or adding and subtracting 2 Xo 

X= Xo - 2 Sin
2 ~ [xo Sin

2 
• - Yo Cos <> Cos S - Zo Cos • Cos ~ 

+ 2 Sin ~ Cos ~ ~o Cos S - Yo Cos ~ (2.26) 

Similarly, 

y = Yo - 2 s· 2 w 1n 2 [Yo Sin
2 

S - Zo Cos S Cos y - Xo Cos S Cos j 
+ 2 Sin ~ Cos 

w 
[xo Cos y - Zo Cos a~ (2.27) 

2 
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z = Zo - 2 s· 2 w 
~n 2 ~0 s· 2 ~n Y - :ko Cos y Cos a - 11o Cos y Cos~ 

+ 2 Sin ~ Cos 
w 

[Yo Cos a - Xb Cos ~ (2.28) 2 

2.4 The Rotation Parameters 

It was shown in section 2.3 that the coordinates (X, Y, Z) of 

the new position of a point whose original coordinates were (Xo, Yo, 

Zo) can be expressed by equations (2.29), (2.30) and (2.31), when 

the rigid body is rotated through an angle w about a line through the 

origin, whose direction-angles are a, 8, y. 

X = Xo - 2 Sin
2 ~ (Xo Sin

2 
a - Yo Cos y Cos 8 - Zo Cos a Cos y) 

+ 2 Sin ~ Cos ~ (Zo Cos 8 - Yb Cos y) (2.29) 

Y = Yo - 2 Sin2 ~ (Yo Sin
2 

8 - Zo Cos 8 Cos y - Xo Cos 8 Cos a) 

+ 2 s· w C w (X Cos y - Zo Cos a) ~n 2 OS 2 0 (2.30) 

Z = Zo - 2 Sin2 ~ (Zo Sin
2 

y - Xo Cos y Cos a - Yo Cos y Cos 8) 

+ 2 Sin ~ Cos ~ (Yo Cos a - Xo Cos 8) (2. 31) 

Now introduce parameters ~' n, ~' x, defined by the equations 

~ = Cos a Sin~ 
2 

n = Cos s Sih .!:1. 
2 

!,; Cos y Sin .!:!!. 

2 
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w 
X = Cos 2 (2.32) 

These parameters satisfy the relation ~2 + n2 + s2 + x2 
= 1. 

Substituting equation (2.19) into equations (2.16), (2.17) and 

(2.18), the equations for X, Y and Z become 

2 2 2 2 x = ( ~ - n + s + x ) Xo + 2(~n -sx) Yo + 2(~~;; + nx)zo 

(2. 33) 

These equations may also be written in matrix form as 

2 2 1;;2 + /) 2(~n - sx) 2(~1;; + T.lX) X ( ~ - n - Xo 

y 2C~n + sx) (- ~2 + 2 2 + x2) 2(n~;; - ~x) Yo = n - s 

z 2(~~;; - nx) 2(ns + ~x) (- ~2 2 + 1;;2 + x2) Zo - n 

If the coordinate axes are denoted by OX, Y, Z and if movable 

axes which originally coincide with these are brought into the 

position Ox, y, z by the given rotation, the direction-cosines of 

the two sets of axes with respect to each other are given by Table 5. 

2.5 Connection of the Eulerian Angles with the Rotation Parameters 

The relations between the Eulerian angles 6., ~, 1)! and the para-

meters ~' n, ~;;, x may be obtained by comparing the tables of direc-

tion-cosines given by Table 4 and Table 5 • 

• 
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TABLE 5.~-ftEb-ATION BETWEEN THE ROTATING AXES AND THE 

FIXED AXES IN TERMS OF THE ROTATION PARAMETERS 

X y z 

X 
_g2_ 11 2_~2 + x2 2(s11+~x) 2(£~-11x) 

y 2(£11-~x) -£2+ 11 2_~2+x2 2(11~+sx) 

z 2 (£~ + 11x) 2(11~-tx) -£2-7l2+~2+x2 
-~ ----~ --------------

I 

I 
I 



By comparison 

2(~s + nx) = Cos ~ Sin e (2.34) 

2(ns - ~x) Sin ~ Sin e (2.35) 

2(~s - nx) = [- Sin e Cos ~] (2.36) 

2(ns + ~x) = Sin e Sin ~ (2. 37) 

2(sn - sx) = -[Cos ¢ Cos 6 Sin ~ + Sin ¢ Cos ~] (2. 3-~sH)---~ 

2(~n + sx) = [Sin ~ Cos 6 Cos ~ + Cos ~ Sin ~ ] (2.39) 

From (2.34) and (2.36) 

Sin cJ> 
~s = 4 [Cos ¢ - Cos ~ ] (2.40) 

From (2.35) and (2.37) 

ns = Si~ 6 [Sin ¢ + Sin ~ (2.41) 

From (2.40) and (2.41) 

_ Cos p - Cos p 
~ - n <sin ~ + Sin ~ ) (2.42) 

From (2.38) and (2.39) after some trigonometric substitutions 

sn = 1/4 [Cos 6 Sin (¢- ~) + Sin (~- ¢)] (2. 43) 
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Substituting (2.43) into (2.42) and making some trigonometric sub-

stitutions 

(2.44) 

By making use of a trigonometric identity, equation (2.39) may 

be written as 

n = Sin~ Cos c-f- .t) 
2 2 (2. 45) 

Substituting (2.45) into (2.42) and again making use of trigonometric 

identities 

S . e s. <w - <I>) ~ = 1n z 1n - 2 -

Equation (2.40) may be rewritten as 

Substituting a.46)into(2.4~, the expression for s becomes 

e 
1;; = Cos -

2 
S

. <I>+ 1jJ 1n -
2 

-

(2.46) 

(2.47) 

(2.48) 

Performing some trigonometric substitutions and combining 

equations (2.35) and (2.37), the expression for sx becomes 

~X = Sin e 
2 

(2.49) 
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Substituting equation (2.46) into equation (2.49), the express-

ion for x becomes 

6 x = Cos 2 
1jJ + <I> Cos ( 2 ) (2.50) 

The equations for the rotation parameters in terms of the Euler-

ian angles are now given by 

?: s. 6 
<, = J..n 2 

S
• 6 

n = 1n 2 

s = Cos 6 
2 

6 x = Cos 2 

Cos (1/J - <I>) 
2 

( 1/J + <P) Sin 2 -

ljJ + 4> Cos ( 2 ) 

(2.51) 

Thus, using equations (2.33) and (2.51), one may obtain the dis-

placements due to a rotation about the center of mass, of a point in 

a rigid body having initial coordinates, Xo, Yo, Zo. 

2.6 The Displacement of any Point of a Rigid Body 

The displacement of any point of a rigid body is equal to the 

displacement of the center of mass plus the motion relative to the 

center or mass. 

The equations for motion relative to the center of mass are 

given by equations (2.33) and (2.51). 

Define XCM, YCM and ZCM to be the translations of the mass center 

in the x, y, and z directions, respectively. The expressions for the 

displacements of any point of the rigid body are now given 
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by 

+ 2(~c; + nx)zpo 

2 2 2 2 
YP = YCM + 2(~n + sx)xpo + (- ~ + n - c; + x )ypo (2. 52) 

+ 2(nc; - ~x)zpo 

. 2 2 2 2 
ZP = ZCM + 2(~£;; - nx)xpo + 2(nc; + ~x)ypo + (- ~ - n + c; + x )zpo 

Where zpo, ypo and zpo are the initial coordinates of any point 

P and~' n, c;, x are defined by equations (2.51). 
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C H A P T E R I I I 

FORMULATlON OF THE rOST rROBLEM 

3.1 Definition of Axes 

The origin of the coordinate systems will be established at the 

mass center of the post assembly. Let XX, YY, ZZ be a fixed right­

handed coordinate system having its XX-YY plane parallel to the plane of 

vehicular motion and its XX axis in the direction of the highway. Let 

X, Y, Z be a fixed right-handed coordinate system having its axes coin­

ciding with the initial positions of the principal 1, 2, 3 axes and 

obtained by rotating the XX, YY, ZZ system an angle a about the XX axis. 

The fixed directions I, J, K on Figure 1 correspond to X, Y and Z, 

respectively, and the moving axes (1, 2, 3) are the principal axes of 

the body. Let XV, YV, ZV be a fixed right-handed coordinate system 

obtained by rotating the XX, YY, ZZ system an angle a about the negative 

ZZ axis. The angle a is the angle that the path of travel of the 

vehicle makes with the XX axis. 

3.2 Representation of the Idealized Vehicle 

The model vehicle is assumed to be a single degree-of-freedom 

system consisting of a rigid mass and a massless spring as shown in 

Figure 3. The spring is assumed to be incapable of restitution and the 

rigid mass and its velocity simulate the momentum of the vehicle. The 

energy absorbed by the vehicle is obtained from the spring force­

deformation relation. 

The automobile is a highly redundant multidegree-of-freedom 
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system composed of various types of structural elements. All these 

elements have certain energy absorbing characteristics and under 

impact forces, are capable of absorbing various amounts of energy. 

The total energy absorbed by the vehicle is the sum of the incremen-

tal energies absorbed by each of its components. It is hoped that 

satisfactory results can be obtained for the simple system as long as 

the spring is capable of absorbing an amount of energy equivalent to 

that of an actual vehicle. 

Vehicle simulation is a vital part of the overall problem, but 

present research is concerned mainly with the development of a model 

to simulate the response of the "break-away" post and not to simulate 

vehicle response. 

The mass of the vehicle is Mv and K represents the spring con-

stant. The spring force is FS; thus the equation of motion for the 

vehicle becomes 

• Mv VV + FS = 0 

where VV is the vehicle velocity. 

3.3 Definition of Forces 

The forces that will be assumed to be acting on the post will 

be the frictional forces, the normal force, the gravity force and 

the spring force. The frictional forces will be such as to oppose 

motion and will be taken in the positive XX and negative YY direc-

tions. The normal force will be in the positive ZZ direction and 
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the gravity force in the negative ZZ direction. The spring force, 

which is due to vehicle impact, when considering the XX, YY plane 

may have components in the negative XX and positive YY directions or 

merely in the negative XX direction, depending on the angle of vehicle 

impact. 

The frictional forces will be assumed to be acting at a point Q 

at the base of the post and will be designated by FFXX and FFYY, 

referring to forces in the XX and YY directions respectively. The 

normal force will also be acting at the point Q and will be designated 

by FN. The gravity force will, of course, be acting at the mass 

center and will be represented by mg. The spring force will be 

assumed to be acting at a point S on the post and its components will 

be represented by FSXX and FSYY. 

With the above in mind, the equations for the summation of forces 

in the XX, YY and ZZ directions respectively, are given by 

l: FXX = - FSXX + FFXX 

l: FYY = FSYY - FFYY (3.1) 

l: FZZ = FN - mg 

where 

FSXX = FS Cos a 

(3.2) 

FSYY = FS Sin a 
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Equations (3.1) hold for the particular way the problem is being 

formulated, as long as the XX, YY and ZZ axes originally coincide 

with the principal axes of the post. This is not generally the case, 

so it will be convenient to modify equations (3.1). Figure 4 repre­

sents the general situation for the light post under consideration. 

The original position of the principal axes X, Y and Z are related 

to the XX, YY and ZZ system by the table of direction cosines, given 

by Table 6. 

It is convenient to resolve the forces acting in the XX, YY 

and ZZ directions to the X, Y and Z system. 

Using Table 6, the equations for the forces in the X, Y and Z 

system may be written as 

~ FX 

~ FY = FSYY Cos 8 + FN Sin 8 

- mg Sin 8 - FFY Cos 8 

~ FZ = FFYY Sin 8 + FN Cos 8 

- mg Cos 8 - FSYY Sin 8 

It is now desired to obtain expressions for Fl, F2 and F3 in 

order that they may be used in equations (2.12). 

To obtain these expressions, it is necessary to employ Table 4 

which relates the 1, 2, 3 or principal directions of the body to 

the X, Y, Z axes. 
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DEFINE: 

DlX = - Sin ¢ Sin ~ + Cos 8 Cos ¢ Cos ~ 

DlY = Cos ¢ Cos ~ + Cos 8 Sin ¢ Cos ~ 

DlZ = - Sin e Cos ~ 

D2X = - Sin ¢ Cos ~ - Cos e Cos ¢ Sin ~ 

D2Y = Cos ¢ Cos ~ - Cos e Sin ¢ Sin ~ (3.4) 

D2Z = Sin e Sin ~ 

D3X = Sin e Cos ¢ 

D3Y = Sin e Sin ¢ 

D3Z = Cos e 

Using equations (3.4) and (3.3), the expressions for Fl, F2 and 

F3 may be written as 

Fl = (~ FX) DlX + (~ FY) DlY + (~ FZ) DlZ 

F2 = (~ FX) D2X + (~ FY) D2Y + (~ FZ) D2Z (3.5) 

F3 = (~ FX) D3X + (~ FY) D3Y + (~ FZ) D3Z 

EquatUms (3.5) now constitute the right-hand side of the first 

set of equations (2.12). 
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3.4 Definition of Torques About the Mass Center 

It is now desired to obtain the right-hand side of the second set 

of equations (2.12). The same approach that was followed for the 

forces will be employed here. Torques about the X, Y, and Z axes 

will be obtained first, and they will then be resolved to the 1, 2 

and 3 directions. 

Consider taking moments about the center of mass of the body. 

Let r be a position vector arawn from the mass center to a point 

on the body where a force F is acting. 

r = xi+ yj + Zk 

F FXl + FYj + FZk 

The torque equation is defined by 

or 

= 

T = r x F 

X 

FX 

I 
y 

FY 

z 

FZ 

(3.6) 

(3.7) 

Expanding the determinant, the torque equation becomes 

T = [(FZ) Y - (FY) Z] i + [(FX) Z - (FZ) X] j 

+ [(FY) X- (FX) Y] k (3.8) 
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The vector equation (3.8) may be broken up into the three scalar 

equations given by equations (3.9). 

TX = (FZ) Y - (FY) Z 

TY (FX) Z - (FZ) X (3.9) 

TZ = (FY) X - (FX) Y 

Here TX, TY, TZ represent torques about the x, y and z axes 

respectively. 

Also, X, Y and Z in the right-hand side of equations (3.9) 

represent the moment arms and FX, FY and FZ represent the forces. 

Let XS and YS and FS represent the moment arms to the spring 

forces and let XQ and YQ and ZQ represent the moment arms to the 

frictional forces and the normal force. 

Substituting equations (3.3) into (3.9) and leaving out the 
J 

mg term, the expressions for the torques are given by 

TX = - (FSYY Sin o) (YS) + (FFYY Sin o + FN Cos 8 ) (YQ) 

- (FSYY Cos o) (ZS) + (FFYY Cos 8 - FN Sin 8 ) (ZQ) 

TY = - (FSXX) (ZS) + (FFXX) (ZQ) + (FSYY Sin o ) (XS) 

- (FFYY Sin o + FN Cos o ) XQ 

TZ - (FSYY Cos o) (XS) + (FN Sin o - FFYY Cos o ) (XQ) 

+ (FSXX) (YS) - (FFXX) (YQ) (3.10) 
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Using equations (3.4) the torques about the 1, 2 and 3 axes 

become 

Tl (TX) DlX + (TY) DlY + (TZ) DlZ 

T2 = (TX) D2X + (TY) D2Y + (TZ) D2Z (3.11) 

T3 (TX) D3X + (TY) D3Y + (TZ) D3Z 

There now remains the problem of obtaining expressions for the 

moment arms that appear in the right-hand side of equations (3.10). 

The displacement of any point in the rigid body is equal to the 

displacement of the center of mass plus the motion relative to the 

center of mass. Equations (2.52) give the displacements of any point 

of the rigid body. 

Consider the Z-X plane and a point Q of the post P-Q as shown 

in Figure 5. 

Now, consider the Z-Y plane and the same point Q of the post P-Q 

as shown in Figure 6. 

Again, consider the Z-Y plane and the point P of the post P-Q 

having moved to position P' as shown in Figure 7. 

From Figures 5, 6 and 7, it is clear that the moment arms from 

the center of mass for any time t, are equal to 

(XQ- XCM), (YQ- YCM), and (ZQ- ZCM) 

where Q denotes any point where a force may be acting. 
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The equations for the torques about the X, Y and Z axes now 

become 

TX = - (FSYY Sin o) (YS - YCM) + (FFYY Sin o + FN Cos o) (YQ - YCM) 

- (FSYY Cos o) (ZS - ZCM) + (FFYY Cos o - FN Sin o) (ZQ-ZCM) 

- TXO 

TY = - (FSXX) (ZS - ZCM) + (FFXX) (ZQ - ZCM) + (FSYY Sin o) (XS - XCW 

- (FFYY Sin o + FN Cos o) (XQ - XCM) 

TZ = (FSYY Cos o) (XS - XCM) + (FN Sin o - FFY Cos o) (XQ - XCM) 

+ (FSXX) (YS - YCM) - (FFXX) (YQ - YCM) (3.12) 

where TXO is the torque that is required to put the post initially 

in equilibrium (see Figure 3). 

The values of Tl, T2 and T3 are obtained by substituting equations 

(3.12) into equations (3.11). 

3.5 Definition of the Spring Force 

Consider Figure 8 and the XX-YY plane. The vehicle is approach­

ing the post along the line V which makes an angle a with the XX axis. 

The point "S" on the post, where it will be assumed that the vehicle 

strikes the post, will have X, Y and Z displacements as given by 

equations (2.52). At this stage, it is convenient to obtain 

expressions for the translations of the point "S" in the plane of 
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travel of the vehicle. From Figure 4, it is clear that the Y and 

Z displacements obtained from equations (2.39) are off by the rota­

tion o to the displacements that occur in the YY and ZZ directions. 

As before, defining by XX, YY and ZZ, the coordinate system that 

has its XX-YY plane in the same plane as vehicle motion is taking 

place and employing Table 6, it is possible to transform the dis­

placements obtained from equations (2.52) to the XX, YY and ZZ direc­

tions. 

The equations for the displacements are given by 

xxs = xs 

YYS = YS Cos o - ZS Sin o (3.13) 

ZZS = YS Sin o + ZS Cos o 

Now consider a coordinate axes transformation as shown in Figure 9. 

XV is along the line of vehicle motion and YV is normal to this 

direction. Table 7 now relates the XX, YY and ZZ axes to the XV, YV 

and ZV system. 

The equations for displacements in the XV, YV and ZV system are 

given by 

XV = XX Cos a - YY Sin a 

YV = XX Sin a + YY Cos a (3.14) 

zv = zz 
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\JI 
f-' 

TABLE 7. RELATION BETWEEN VEHICULAR 

AND BASE COORDINATE SYSTEMS 

XX yy zz 

XV cos C( -SINC( 0 

YV SIN C( cos ex 0 

zv 0 0 I 



Let XVS be the displacement of the point S of the post in the 

XV direction and let SV be the displacement of the center of mass of 

the vehicle in the XV direction. 

Consider Figure 10 and the post PQ having moved to posi~~?n 

P'Q'. It is clear that the spring force FS is given by 

FS = K [(SVO- SV) - (XVO- XVS)] (3.15) 

where K is the spring constant of the vehicle. 

3.6 Summary of ~quations 

Equations of Motion 

M(Vl - V2 w3 + V3 w2) = Fl 

M(V2 - V3 wl + Vl w3) = F2 (3.16) 

M(V3 - Vl w2 + V2 wl) = F3 

. 
A wl - (B - C) w2 w3 = Tl 

. 
B w2 - (C - A) w3 wl = T2 (3.17) 

. 
C w3 - (A - B) wl w2 = T3 

. 
Mv VV + FS = 0 (3.18) 
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Equations for Angti,lar Velocities 

. . 
wl = Sin ~ 6 - Sin 6 Cos ~ ~ 

. . 
w2 = Cos ~ 6 + Sin 6 Sin ~ ~ (3.19) 

. . 
w3 = Cos 6 ~ + ~ 

Rotation Parameters 

i; = s. e Sin ( 1jJ - cp) 
~n-

2 2 

= s. e Cos ( 1jJ - cp) n ~n-2 2 
(3.20) 

e Sin (1/J + cp) r; = Cos -2 2 

e Cos ( 1jJ + cp) X = Cos -2 2 

Translations of a Point P in X, Y and Z Directions 

XP = XCM + ( 1;
2 

- n
2 

- r;
2 + x

2
) XPO + 2(/;n - r;x) YPO 

+ 2(/;r; + nx) ZPO 

YP = YCM + 2(/;n + r;x) XPO + (- s2 + n
2 

- r;
2 + x2) YPO 

+ 2(nr; - sx) zpo (3.21) 

ZP = ZCM + 2(/;r; - nx) XPO + 2(nr; + sx) YPO 
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Direction Cosines 

DlX = - Sin ~ Sin ~ + Cos 8 Cos ~ Cos ~ 

DlY Cos ~ Sin ~ + Cos 8 Sin ~ Cos ~ (3.22) 

DlZ - Sin 8 Cos ~ 

D2X = - Sin ~ Cos ~ - Cos 8 Cos ~ Sin ~ 

D2Y Cos ~ Cos ~ - Cos 8 Sin ~ Sin ~ (3.23) 

D2Z Sin 8 Sin ~ 

D3X = Sin 8 Cos ~ 

D3Y = Sin 8 Sin ~ (3.24) 

D3Z = Cos 8 

Translations of a Point P in XX, YY and ZZ Directions 

XXP = XP 

YYP = (YP) Cos o - (ZP) Sin o (3.25) 

ZZP = (YP) Sin o + (ZP) Cos o 
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Translations of a Point P in XV. YV and ZV Directions 

XVP = (XXP) Cos a - (YYP) Sin a 

XVP = (XXP) Sin a + (YYP) Cos a 

ZVP = ZZP 

Spring Force 

FS = K [(SVO- SV) - (XVO- XVS)] 

FSXX = FS Cos a 

FSYY = FS Sin a 

Summation of Forces irl x. Y and Z Directions 

FX = - FSXX + FFXX 

FY = FSyY Cos o + FN Sin o 

- mg Sin o - FFYY Cos o 

FZ = FFYY Sin o + FN Cos o 

- mg Cos o - FSYY Sin o 

Forces in 1, 2 and 3 Dtrections 

Fl = (F~) DlX + (FY) DlY + (FZ) DlZ 

F2 = (FX) D2X + (FY) D2Y + (FZ) D2Z 

F3 = (FX} D3X + (FY) D3Y + (FZ) D3Z 
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Torques About the X, Y and Z Axes 

TX = - (FSYY Sin o ) (YS - YCM) + (FFYY Sin o + FN Cos o ) (YQ - YCM) 

- (FSYY Cos o ) (ZS - ZCM) + (FFYY Cos o - FN Sin 8 ) (ZQ - ZCM) 

- TXO 

TY = - (FSXX) (ZS - ZCM) + (FFXX) (ZQ - ZCM) + (FSYY Sin 0 ) (XS - XC~ 

- (FFYY Sin o + FN Cos o ) (XQ - XCM) (3.30) 

TZ = (FSYY Cos o ) (XS - XCM) + (FN Sin o - FFYY Cos o ) (XQ - XCM) 

+ (FSXX) (YS - YCM) - (FFXX) (YQ - YCM) 

Torques About the 1, 2 and 3 Axes 

Tl = (TX) DlX + (TY) DlY + (TZ) DlZ 

T2 (TX) D2X + (TY) D2Y + (TZ) D2Z 

T3 = (TX) D3X + (TY) D3Y + (TZ) D3Z 

(3.31) 

Equations (3.16) through (3.31) are used to describe the motion 

of the system while the post and the vehicle are in contact. 

3.7 Post Loses Contact with the Vehicle 

It is assumed that after the displacement of the point "S" on the 

post becomes greater than the displacement of the vehicle, the post 

and the vehicle are no longer in contact. After contact is lost, the 

post is essentially a rigid body moving in space under the influence 
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of gravity. 

Since the only force present is gravity, equations (3.28) now 

become 

FX = 0 

FY = - mg Sin o 

FZ = - mg Cos o 

and the equations for Fl, F2 and F3 are given by 

Fl = (FY) DlY + (FZ) DlZ 

F2 = (FY) D2Y + (FZ) D2Z 

F3 = (FY) D3Y + (FZ) D3Z 

(3.32) 

(3.33) 

The torque about the center of mass is equal to zero, so the 

equations of motion become 

. M(Vl - V2 w3 + V3 w2) = Fl 

M(V2 - V3 wl + Vl w3) = F2 

M(V3 - Vl w2 + V2 wl) = F3 

A ~1 - (B - C) w2 w3 = 0 

B ~2 - (C - A) w3 wl = 0 

C ~3 (A - B) wl w2 0 
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Equations (3.19) through (3.26) remain unchanged. 

3.8 Trajectory of the Post 

In section (3.7) the equations that determine the motion of the 

post after it loses contact with the vehicle are given. It is now 

desired to know where the post will first hit on its return path to 

the ground. The possibilities are that (1) it hits the vehicle, 

(2) is knocked out of the vehicle path, or (3) is knocked high enough 

into space that the vehicle passes under the post before the post 

strikes the ground. 

It will be assumed that the vehicle travels at constant velocity 

after it loses contact with the post and travels in the same direc­

tion as when it first contacted the post. To determine if the post 

strikes the vehicle,account must be kept of the displacements of 

various points on the post and on the vehicle. 

The displacements of the points on the post will first be resolved 

to the XV, YV and ZV directions (see Figure 9) and compared to the 

displacements of .the hood, top, and trunk of the ...ehicle to determine 

where the post has hit the vehicle. 

Figures 11 and 12 show the vehicle and the various names used to 

describe the position of the vehicle. To facilitate checking the 

vehicle displacements against the post displacements, equations (3.36), 

(3.37) and (3.38) are used. 

XBUMP = SV - HLEN 

XENTOP = SV + TLEN 

XTAIL = ZENTOP + TRLEN 
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The quantities XBUMP, XENTOP and XTAIL are the displacements of 

the front bumper, the end of the top, and the rear bumper of the 

vehicle, respectively, and are in the XV direction. The term SV is 

the displacement of the assumed center of mass of the vehicle and 

this point is assumed to remain directly below the end of the hood 

of the vehicle. The lengths of the hood, top and trunk of the vehicle 

are represented by HLEN, TLEN and TRLEN, respectively, and for this 

phase of the problem, may be assumed to remain constant. The quanti­

ties HHV, HTV and HTRV are the ZZ or ZV coordinates measured from the 

initial position of the mass center of the post to the hood, top and 

trunk of the vehicle, respectively, and they too will remain constant 

during the motion. 

The terms YLFEN and YRFEN (see Figure 12) represent the coordin­

ates, measured from the initial position of the post center of mass, 

of the left and right fenders of the vehicle, respectively. They are 

measured in the YV direction and remain constant. 
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C H A P T E R I V 

SOLUTION OF THE EQUATIONS OF MOTION 

4.1 Discussion of Numerical Techniques Employed 

Whenever a technical problem, as the one under consideration, 

leads to differential equations which cannot be integrated in closed 

form, approximate methods of solution must be employed. Initial 

value and boundary value problems involving either partial differen-

tial equations or ordinary differential equations, as is the case 

here, may be solved by such methods. 

In recent years, numerical methods for the solution of differ-

ential equations have become extremely popular because modern techni-

cal problems lead to complicated equations seldom solvable in closed 

form and because electronic computers have become widely available. 

The numerical solution of differential equations consists 

essentially in obtaining the numerical values of the unknown integral 

at some pivotal points, spaced along the time axis, for exa~ple, for 

the set of ordinary differential equations being considered. To 

obtain the pivotal values of the integral f, the derivatives of f 

appearing in the differential equation are approximated eitherby the 

derivatives of n th degree parabolas passing through a certain number 

of pivotal points, or by Taylor expansions of the unknown function f. 

Consider Figure 13 and the given values Vo, v1 , v
2 

-- VL, Vi, 

VR -- V 2, V 1 , V of a function V(t) at the pivotal points of its 
n- n- n 

interval of definition, evenly spaced by h. One calls the first 



v 

h h 

0 L R t 

FIGURE 13 REPRESENTATION OF EQUALLY SPACED 

POINTS USED IN FINITE DIFFERENCE DERIVATION 
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forward difference of V at i the difference 

Consider now the Taylor expansion of V(t + h) about t: 

V(t + h) 
h h2 .. h3 

= V(t) +iT V(t) + 2T V(t) + 3T V(t) + -----

Using the symbol D to indicate derivatives of V, (4.1) 

(4.1) becomes 

3 

V(t + h) = V(t) + ~! DV(t) + ~~ n2 V(t) + ~! D
3
V(t)+ 

(4. 2) 

or 

V(t + h) 
h h2 

2 h3 
3 

= (1 + iT D + 2f D + 3f D + -----) V(t) 

(4. 3) 

By means of the series expansion of ex 

2 3 
X 1 A_ X X 

e = + 1! + 2T + 3T + 

The differential operator on the right-hand side of equation 

(4.3) may be written symbolically as 

hD 
= e (4.4) 

and hence V(t + h) may also be written symbolically as 

hD V(t + h) = e V(t) (4.5) 

65 



Setting t = ti and indicating V(ti + h) by VR and V(ti) by 

V. equation (4.5) becomes 
~ 

(4. 6) 

The first forward difference ~V. may now be written by means of 
~ 

equation (4.5) as 

or by means of equation (4.4) 

liD h2D2 h3n3 h4n4 
~v. =-1, +-2, +-3, +-4, + 

l. • • • • 

(4. 7) 

----j 
(4.8) 

If h is very small, as will be the case for the problem under 

consideration, only the first term in equation (4.8) need be retained. 

Thus, 

or 

b.V. = 
~ 

= hD V. 
~ 

(4.9) 

There are many formulas for numerical integration, but for 

most engineering applications, the trapezoidal rule is quite adequate. 

To recall its derivation, let the required integral be 

lb 

af(t) dt 
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and let the range or integration be divided into n equal parts; the 

ordinates at the points of subdivision being 

as shown in Figure 14. 

A definite integral can always be interpreted as an area, and 

thus any method of approximating an area is essentially a method of 

approximating a definite integral. If the arc of V = f(t) is replaced 

over each subinterval, ti+l - ti by its chord and the sum of the 

areas of the resulting trapezoids is taken as an approximation to 

the true area under V = f(t), the trapezoidal rule results. 

Making use of the fact that the area of a trapezoid is equal 

to the average of the parallel sides times the perpendicular dis-

tance between them. 

f 2 + f 1 
A =( n-. n- ) h 

n-1 2 

f + f 
A =( n-1 n) h 

n 2 

or adding 

(4.10) 
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which is the trapezoidal rule. 

Equations (4.9) and (4.10) will be employed to solve the equa-

tions of motion obtained in Chapter III. 

4.2 Application of the Numerical Techniques to the Equations of 

Motion 

Equations (3.18) and (3.19) involve first derivatives of the 

velocities so equation (4.9) can be used along with (3.18) and (3.19) 

to solve for the velocities. After the velocities are obtained, the 

trapezoidal rule and equation (4.10) are employed to solve for the 

displacements. 

Letting R be replaced by i + 1 in equation (4.9) and substitut-

ing into equations (3.17), (3.18) and (3.19) the expressions for the 

velocities are obtained as 

Vli+l - Vl F\ V2. w3. - V3. w2. i 
h 

=--+ ]. ]. ]. ]. 
11 

V2i+l - V2. FZi V3. wl. - Vl. w3. ]. 

h =--+ ]. ]. ]. ]. 
M 

V3i+l - V3. F3i Vl. w2. - V2. wl. ]. 

h 
=--+ ]. ]. ]. ]. 

M 

wli+l - wl. Tli B-C ]. 
= ~ + ~ (w2i w3i) h 

w2i+l - w2. TZi C-A ]. 
(w3. wl.) = --+--

h B B ]. ]. 

w3i+l - w3. T3i A-B ]. 
( wl. w2.) h =--+--c c ]. ]. 
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FS. 
1 

=- --Mv (4.11) 

or [Fl. w21 J Vli+l h M1 + V2i w3. V3. + Vl. 1 1 1 

[F2. w3J V2i+l = h M1 + V3i wl. - Vl. + V2. 1 1 1 

[F3. wlJ V\+l = h M1 + Vli w2. - V2. + V3. 1 1 1 

wli+l = ~ [ Tli + (B-C) w2. w3. J + wl. 1 1 1 

w2i+l = ~ [ T2i + (C-A) w3. wl. J + w2. 1 1 1 

w3i+l = ~ [ T3i + (A-B) wl. wzi] + w3. 1 1 

vvi+l 
h 

(FSi) + VV. = --Mv 1 

Assuming that all velocities for a time increment ahead can be 

obtained from the values of a time behind from equations (4.11), 

there now remains the problem of obtaining the Eulerian angles 6, 

~and~ from equations (3.19). 

From equations (3.19) 

wli+l =(Sin ~i+~S i+l- (Sin 6i+l Cos ~i+l) ~i+l 

. . 
w2i+l = (Cos ~i+l) 8i+l + (Sin 8i+l Sin ~i+l) ~i+l 

. . 
w3i+l = (Cos 8i+l) ~i+l + ~i+l (4.12) 
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Also, from equations (4.10) and the trapezoidal rule 

• • h 
( ~i+l + ~i) 2 + ~i = ~i+l 

or 

. 
( ~~+1- ~.) 2 ~ 

.L ~ h - i (4.14) 

• 2 • 
~i+l = ( ~i+l - ~i) h - ~i 

At this stage it will be useful to solve equations (4.12) for 
. . . 
6i+l' ~i+l and ~i+l. 

Let 

A11 = Sin ~i+l 

A12 = - Sin ei+l Cos ~i+l 

A21 = Cos ~i+l 

(4.15) 
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Thus, 

• . 
wli+l = (All) e. 1 + J.+ (Al2) <j>i+l (4.16) 

. . 
w2i+l = (A21) 8i+l + (A22) <j>i+l (4.17) 

. . 
w3i+l = (A32) <j>i+l + 1/Ji+l (4.18) 

Now multiplying (4.16) by A21 and (4.17) by A11 , and subtract-
. 

ing, the expression for <j> is given by 

or 

or 

• (A21) wli+l - (All) w2i+l 
<j> = ~~~~~--~~~~~ 
i+l (A21) (Al2) - (All) (A22) 

From equation (4.17) 

A 
(_E) ~ 
A21 i+l 

• w2i+l A22 [ (A21) 

ei+l = A21 - A21 . (A21) 

From equation (4.18) 

~i+l = w3i+l -(A32) 
. 
<j>i+l 

. 
[ (A21) 1/Ji+l = w3i+l - A32 

(A21) 
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wli+l -

(Al2) -

wli+l -

(Al2) -

(4.19) 

{4.20) 

J 
(All) w2i+l 

(All) (A22) 

(4.21) 

(A11) w21+1] 
(All) (A22) 

(4.22) 



Substituting (4.15) into equations (4.19), (4.21) and (4.22) 

. 
<l>i+l = 

<'r 

-tCos >Hl) j . wli+l - (Sin ~i+l) w2i+l 
<Pi+l Sin ei+l 

(4.23) 

w2i+l Sin ~i+l [cos . 
~i+l)wli+l - (Sin ~i+l) 8i+l = Cos ~i+l 

+ Cos ~i+l 

w2i+l J (4.24) 

Cos 8i+l [(Cos . 
~i+l) (wli+l) - (Sin ~i+l) ~i+l = w3i+l +Sin 8i+l 

(4.25) 

Equations (4.23), (4.24) and (4.25) have a common factor in 

which the only Eulerian angle present is ~. 

Define 

(4. 26) 

so that 

(4. 27) 

• w2i+l + Sin ~i+l 
8 1 = c <~ ~+1) i+ Cos ~i+l os ~i+l L 

(4.28) 
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• Cos ei+l 
~i+l = w3i+l + Sin ei+l (~ i+l) (4.29) 

Substituting (4.14) into (4.27), (4.28) and (4.29) 

2 • 1 
( <l>i+l - <J>i) h - <l>i = - -S-in-=-e-i_+_l (~ ·i+l) 

2 • w2i+l + Sin ~i+l 
< 61·+1 - 61·) h - 61· = c c <~ 1) 

OS ~i+l OS ~i+l i+ 

or 

e = !!. ~w2i+l + Sin ~i+l J 
i+l 2 c ~ . ~ (~ J.'+l) + el.. + el.. 

OS i+l Cos i+l 
( 4 0 30) 

h [ Cos ei+l 
~i+l = 2 w3i+l + -S-in-e-=i~+=-l (~ (4.31) 

(4.32) 

Substituting equation (4.30) into equation (4.31), an equation 

where ~i+l is the only unknown, is obtained as 

[
h w2i+l Sin ~i+l 

Cos -2 <c '1' + -C--,~.~=- (~ i+l) + ei) 
h + OS o/i+l OS o/i+l 

Si 2 t i+l + J.n o/i+l ~J."+l = -2 w3J.'+l r 2 s· '1' 
Cos ~i+l Cos ~i+l 

+ ei J 
. l. +e. J . 

~i+l + ~i 
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+ e.) 
l. 

(4. 33) 



Then, 

h[w2i+l Sin tjJi+l • J 6i+l = Z Cos tjJi+l + -C-os--tjJ~i~+=l (~ i+l) + 6i + 6i 

1 
Sin ei+l 

Consider simplifying the term 

w2i+l + _s_in __ tJ!~i~+=l [ 
Cos tjJi+l Cos tjJi+l 

(Cos 

Expanding, one obtains 

or 

w2i+l 

Further simplifying one has 

The expressions for the Eulerian angles 

.Pi+l = t{ w3i+l + [cot:[~ (w2i+l Cos 

+ ii) + 9i J]~i+l + ~i }+ •i 
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(4-~ 35) 

(4.36) 



ai+l = ~ [w2i+l Cos >i+l + wli+l Sin >i+l + 8i J + ai 

Oi+l = ~[ Sin\i+l (~ i+l) + ;~ 

where 

+<P. 
1. 

(4.37) 

(4.38) 

(4.39) 

After the Eulerian angles are obtained from equations (4.36) 

through (4.38), the angular velocities 6,¢ and~ are computed from 

equations (4.27), (4.28) and (4.29). Having obtained values of 

velocities and angular displacements, it is now desired to obtain 

values of the translations of the center of mass in the 1, 2 and 3 

directions. 

Assuming Vli+l' V2i+l' and V3i+l have been obtained from equa­

tions (4.11), denoting by 81, 82, and 83, the translations in the 1, 

2 and 3 directions respectively and again employing the trapezoidal 

rule, the expressions for the translations of the mass center become 

h 81i+l = 2 (Vli+l + Vl.) 
1. 

(4.40) 

The values obtained from equations (4.38) may be resolved to 

the X, Y and Z directions by means of Table 4 and equations (3.23), 
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(3.24) and (3.25), so that the expressions for the translations of 

the center of mass become 

(4.41) 

Equations (4.41) resolved to the XX, YY and ZZ directions are 

given by 

XXCMi+l = XCMi+l (4.42) 

The rotation parameters are calculated from equations t3.21) 

and become 

8i+l 
!;i+l = Sin 2 

ni+l = Sin 
8i+l 
2 

l;;i+l 

8i+l =Cos--
2 

77 

Sin 
lj!i+l - ¢i+l 

( 
2 

Cos (lj!i+l - ¢i+l 
2 

(lj!i+l + ¢i+l ) 
Sin 

2 

} 

) 



8
i+l) c ljli+l + <Pi+l 

Xi+ l = Cos ( 2 OS ( 2 ) 

(4.43) 

The translations of any point P of the post are computed next 

by employing equations (3.22), (4.41) and (4.43). These translations 

are given by 

2 2 2 2 
XPi+l = XCMi+l + (s i+l -n i+l -~ i+l +x i+l)XPO + 2 (si+l ni+l 

2 2 
YPi+l = YCMi+l + 2(si+l ni+l + ~i+l xi+l)XPO + <-s i+l +n i+l 

2 2 
-~ i+l +x i+l)YPO + 2(ni+l ~i+l - si+l Xi+l)ZPO 

2 2 2 2 
+ si+l Xi+l)YPO + (-s i+l -n i+l + ~ i+l + X i+l)ZPO 

(4.44) 

Equations (4.44) may be resolved to the XX, YY and ZZ directions by 

using the same transformation that was used to obtain equations (4.4~ 

Thus 

XXP i+l = XP i+l 
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ZZPi+l = (YP.+l) Cos o + (ZP.+l) Cos o 
1 1 

. (4.45) 

Equations (4.45) may now be resolved to the XV, YV and ZV direc-

tions by employing Table 7. 

These equations become 

YVPi+l (4. 46) 

The values of the forces and the torques at time i+l may be 

obtained by using equations (3.29), (3.30), (3.31) and (3.32). 

All the quantities desired have now been calculated for the 

time i+l by knowing the values at time i. The values at time i+2 

are obtained from the values at time i+l and so on. At the start 

of the numerical procedure, the values at time i would correspond 

to the initial values at time equal to zero and the quantities 

obtained for time equal to i+l would correspond to the values at the 

end of the first time increment, h. 

In this section, the above has been done for the equations that 

govern while the post and the vehicle are in contact. The same 

technique applied to the solution of the equations that describe the 

motion when the post and the vehicle are no longer in contact except 

that the equations given in section 3.7 are used and the initial 

79 



conditions for this set of equations are obtained from the terminal 

values of the first set. 
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C H A P T E R V 

CORRELATION WITH TEST RESULTS 

In the Spring of 1967, a testing program was initiated to obtain 

information that could be used in the development and verification of 

the mathematical model. The test that was used for the purpose of 

correlation involved a 6 in. standard weight pipe that was 9 ft. long 

and had a triangular base with "break-away" characteristics. Instru­

mentation for the test employed: (1) An accelerometer mounted on the 

crash vehicle, (2) High-speed motion picture cameras, (3) A tach­

generator mounted on the vehicle and driven by the differential of the 

vehicle so that the vehicular velocity could be recorded, (4) A clock 

used to help determine the vehicular velocity, and (5) A tape switch, 

secured to the post, which gives an indication of impact by simulta~ 

neously giving a deflection on the recorder and flashing a bulb for 

the benefit of the cameras. 

The data from the test were analyzed and used to demonstrate the 

feasibility of the mathematical model. Successful correlation of the 

model with test data made it reasonable to assume that use of the 

model is feasible. 

5.1 Philosophy of the Correlation 

Before the model can be used, it is necessary to have a knowledge 

of the various parameters that are used as input information to the 

computer program. Accurate information can be obtained for the material 

properties of the post, but limited information is available for 
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predicting the frictional resisting forces at the base of the post and 

also the energy-absorption characteristics of the vehicle. 

In order to make a better prediction of the spring constant of the 

front end of the test vehicle, a leaf spring was attached to the front 

of the vehicle as is shown in Figure 15. After being carefully greased, 

the leaf spring was tested statically at the Civil Engineering Testing 

Laboratory, and constants were obtained as shown in Figure 17. 

In order to approach a condition of minimum frictional resistance, 

the bolts which fasten the post to the base were tightened only enough 

to hold the post erect, and the base was carefully greased. It was 

hoped that by having a spring with a known constant at the front end of 

the vehicle, and a condition approaching that of negligible resistance 

at the base of the post, the model would come closer to predicting the 

actual situation occurring in the crash test. 

The previous discussion shows some of the difficulties that are 

encountered in attempting to simulate a particular test. 

5.2 Model Parameters 

Slip-base force. Limited information is available for the resist­

ance offered by the slip base. For the purpose of correlation, it was 

assumed that the frictional resistance was negligible since the slip 

surfaces had been carefully greased and the bolts that hold the post to 

the base were tightened only enough to hold the post erect. 

Vehicle spring constant. Two ranges were used for the vehicle 

spring constant as can be seen from Figure 17. The leaf sp:ring employed, 

which is shown in Figure 16, had a dual set of leaves and the point 
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FIGURE 15 THE CRASH TEST VEHICLE 

FIGURE 16 THE LEAF SPRING USED ON THE 
CRASH TEST VEHICLE 
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of impact was assumed to be at the middle of the spring. This was the 

point for which the spring constants had been obtained in the static 

test. 

The static test of the spring revealed that the spring had a cer­

tain spring constant for defections between 0 and 3.0 in. and a differ­

ent constant for deflections between 3.0 in. and 4.5 in. This is due 

to the fact that in this second range the second set of leaves is 

engaged and the spring becomes stiffer. The spring also gave different 

force-deformation curves for the loading and unloading cycles. This 

can be explained by considering the manner in which the frictional 

forces between the leaves act for the two cycles. It should also be 

mentioned that the two sets of leaves were fastened together by means 

of U - clamps and the threaded end of the U - bolts came into contact 

with the I - beam to which the spring assembly was attached for a spring 

displacement of 4.5 in. This fact had to be accounted for in the mathe­

matical model. 

Vehicle weight. The vehicle used in the test is shown in Figure 

15 and consisted of the frame of a 1955 Ford complete with front and 

rear axles and wheels. The vehicle had a concrete slab weighing 

approximately 1000 lbs. and the leaf spring attached to it as shown. 

The entire assembly was found to weigh approximately 2800 lbs. 

Vehicle speed. The vehicle speed at impact was 40 ft./sec. 

The post. The postused for the test was a 6 in., standard weight, 

ASA Schedule No. 40 pipe, 9 ft. long. The pipe had a triangular plate 

with 12 in. sides welded to one end and a circular plate with a 10.75 
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in. diameter welded to the other end. Both plates were 0.75 in. thick 

and had three bolt cutouts to allow the post to be bolted to a base. 

The mass of the post and plates was found to be 215 lbs. and the m 

mass moment of 2inertia at the mass center was calculated to be 
lbs.f -sec. 

62 for an axis perpendicular to the longitudinal axis of ft. 

the post. The location of the center of mass was calculated to be 

4.63 ft. from the end with the triangular plate and along the longitu-

dinal axis of the post. 

5.3 The Correlation 

The correlation was obtained by use of the high-speed films of the 

crash test and a Vanguard Motion Analyzer. The analyzer is used to take 

information such as displacements and events from the high-speed photo-

graphic record of a test. 

Table 8 shows information obtained by means of the motion analyzer 

at two critical times. The two times are when the post and the vehicle 

lose contact and when the post strikes the vehicle on its return path 

to the ground. 

XCM and ZCM refer to translations of the mass center of the post 

in the XX and ZZ directions, respectively. Vl and V3 refer to linear 

velocities of the post mass center along the principal directions, 8 

and e refer to the angular displacement and velocity, respectively, of 

the post mass center and SV is the distance the vehicle has travelled. 

HIT is the distance from the front end of the vehicle to the point on 

the vehicle where the post strikes after being impacted. 
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S V (FT.) 

XCM (FT.) 

ZCM(FT.) 

VI (FT./SEC.) 
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TABLE 8. CRASH TEST DATA 

AT TWO CRITICAL TIMES 

70 MILLISECONDS 270 MILLISECONDS 

25.0 122.0 

3.2 12.60 

- 1.50 - 7 .I 0 

+ 0.01 - 0.19 

-28.5 -
- 12.5 -

8.75 8.75 
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To assure that the set of equations describing the motion after 

the post and the vehicle lose contact were consistent with the actual 

situation, values obtained from the motion analyzer at the beginning 

of this stage of motion were used as input information to the computer 

program for the mathematical model. A good agreement was seen to exist 

and a comparison is made in Table 9 at the time the post strikes the 

vehicle. 

The different values of the spring constants obtained from Figure 

17 and shown below were used in the equation for the spring force in the 

model. 

Loading cycle: 

C = 12000 lbs./ft. 

C 26400 lbs./ft. 

Unloading cycle: 

C 38400 lbs./ft. 

C = 12000 lbs./ft. 

A constant spring force was applied after the displacement of the spring 

exceeded 4.5 in. and the U-bolts came into contact with the I-beam to 

which the spring assembly was attached. This force was assumed to be 

equal to the maximum value developed in the second set of springs when 

being subjected to the condition imposed by the U-bolts. This force 

was kept present until displacements reached values such that the spring 

started to unload. A comparison between model and crash test results 

using this approach is shown in Table 10 and Figure 18. 
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TABLE 9. COMPARISON OF MODEL DATA WITH 

CRASH TEST DATA AT 270 MILLISECONDS 

MODEL CRASH TEST 

HIT (FT.) 7.55 7.83 

9 (DEG.) 121.0 122.0 
. - -

XCM (FT.) 7.61 7.10 

ZCM (FT.) 0.27 0.19 

S V (FT.) 11.5 II .04 

TIME (MILLISEC.) 273.0 270.0 
----



1.0 
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TABLE 10. COMPARISON OF MODEL DATA WITH 

CRASH TEST DATA AT 70 MILLISECONDS 

MODEL CRASH TEST 

TIME (MILLISEC.) 71.8 70.0 

8 (OEG.) 26.0 25.0 

• 8 (RAO/SEC) 12.50 8.75 

XCM(FT.) - 1.20 - 1.50 

ZCM(FT.) - 0.04 + 0.01 

VI (FT./SEC) -28.75 -28.50 

V 3 (FT./ SEC.) - 15.47 ... 12.50 

SV (FT.) 2.80 3.20 
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The biggest discrepancy in Table 10 between model and crash test 

results is seen for the value of the angular velocity. This discrep­

ancy accounts for the further disagreemen~ between the model and the 

real post behavior in the second stage of motion. Table 9 contrasts 

the behavior of the model and the real post when values obtained from 

the motion analyzer at the beginning of the second stage of motion are 

used as input information to the computer program for the mathematical 

model. A good correlation is seen to exist. 

The purpose of this chapter is to present the behavior pattern 

that can be expected from the model under the assumptions made and to 

try and obtain a correlation. An attempt to find values of the unknown 

parameters that will force the model to fit the test data will not be 

shown. 

5.4 Correlation for Non-Planer Motion 

The non-planer motion case occurs when the behavior of the lumin­

aire support assembly complete with luminaire and luminaire support arm 

and post is considered. 

The model has verified the phenomenological behavior of this type 

of motion and like the crash test shows that: 

(1) The luminaire support arm rotates clockwise when the post is 

struck by the vehicle in the manner described in Chapter III. 

(2) For vehicular speeds of 30 miles/hr and 40 miles/hr, the 

vehicle is seen to pass under the post and not be struck by 

the post on its return path to the ground. 

(3) The rotation of the support arm for the vehicular speeds 
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mentioned previously is large enough so that the luminaire 

comes to rest at the edge of the highway and therefore does 

not cause an unsafe condition for other motorists. 

(4) Variations of up to 15 degrees in the angle Alpha do not 

significantly affect the trajectory of the luminaire---support 

assembly for the speeds considered. 

5.5 Conclusions Based on Correlation 

From the correlations in this chapter, it may be concluded that 

the mathematical model can reasonably simulate the behavior of a break­

away post that is assumed to behave like a rigid body. Even when no 

attempt is made to find values of the unknown parameters that would 

force the model to match the test data, a reasonable phenomenological 

simulation of the behavior of the post can be expected. 

The assumptions made in the mathematical model for the stage of 

motion where the post and the vehicle are in contact require some modi­

fication. It can be seen in Figure 18 that the model post lags the 

crash test post in this initial phase of the motion and overtakes it in 

the final phase. This is due to the fact that the conditions imposed 

on the model bring about a longer application of the larger forces than 

is actually the case. The larger force produces a larger torque about 

the mass center of the post and this larger torque brings about a 

higher angular velocity. 

A careful study of the high-speed photographic films of the crash 

test reveals that after the second set of leaf springs have reached 

their maximum deflected position, the post seems to ride the front end 
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of the vehicle. This can best be observed to occur for about 20 milli­

seconds. An assumption of this nature is not made in the model. 

The model assumes that after the post and the vehicle lose contact 

the post is essentially a rigid body moving in space undet the influence 

of gravity and having a constant angular velocity. This assumption was 

verified by employing post displacements and velocities obtained from 

the motion analyzer. The displacements and velocities were used as 

input information to the computer program for the mathematical model. 

A good correlation was seen to exist. 
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C H A P T E R V I 

PARAMETER STUDY 

The study presented in this chapter was conducted to illustrate 

the value of the mathematical model and to investigate the crasfi~dynamic 

effects of some of the parameters of the luminaire support assembly. 

No effort was made to force the model to fit the limited test data that 

were available and the findings are based on the assumption that the 

luminaire support post assembly behaves as a rigid body. It was also 

assumed that the assembly had a base exhibiting break-away characteris-

tics, and that a constant frictional resisting force of 900 lbs. was 

applied at the base. The force remained present during a base trans-

lation of one inch. 

Three different luminaire support posts were employed in the study. 

They included a 9.5" x 4" x 36' - 8.5" steel post, an 8" x 6" x 30' - O" 

aluminum post and an 8" x 4.1" x 27' x 9" steel support post with twin 

luminaires. The mass of the luminaire was taken to be 35 lbs and the 
m 

luminaire support arm, in all cases, was taken to have a length of 10.5 

ft. and a mass of 83.5 lbs • The different support assemblies are shown 
m 

in Figure 21. 

A vehicle having a mass of 3200 lb and the dimensions of a 1955 
m 

Ford Sedan was used for this study. The investigation was carried out 

for vehicular velocities of 20 miles and 40 miles per hour. The 

values of the vehicular approach angle ~ (see Figure 9) used in the 

investigation were 0°, 15°, and 30°. 
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6.1 General Discussion 

In order to facilitate the interpretation of the results obtained 

from the mathematical model it was deemed necessary to define a new 

coordinate system. This coordinate system has its origin at the base 

of the support of the post and is determined by translating the XX, YY, 

ZZ coordinate system defined in Chapter III. The letters, P, Q, R, and 

U refer to different points on the luminaire support post assembly and 

are defined in Figure 21. The values XPL, YPL, ZPL, etc., presented 

in Tables 11 and 12 are cOordinates of the points defined in Figure 

21 and with respect to the XL, YL, ZL coordinate system. These coor­

dinates, depending upon which occurrence takes place first, are taken 

at a time when the post, on its return path, has struck either the 

vehicle or the ground. Figures 22 through 29 show the posts at 

various positions for different values of the angle ~ and the vehicular 

velocity. 

6.2 Effect of the Vehicular Velocity 

The reader may observe from Table 11 that for a vehicular velocity 

of 20 miles per hour the support post, with one exception, strikes the 

vehicle before striking the ground. Table 12 shows that for a vehicular 

velocity of 40 miles per hour the support assembly clears the vehicle 

in all cases. 

The overall behavior of the support post assembly for the two 

vehicular velocities considered is very similar. In the case of a 

vehicular velocity of 20 miles per hour the slow~r moving vehicle 

imparts less energy to the support assembly and causes it to encounter 

the vehicle before striking the ground. 

98 



6.3 Effect of the Vehicular Approach Angle ~ 

The study showed that an increase in the vehicular approach angle 

~ caused the support post assembly to have a smaller absolute terminal 

coordinate in the XL direction and a larger one in the YL direction. 

This fact gives the assembly a tendancy to fall more in the direction 

away from the highway as the angle ~ is increased. This conclusion 

is obtained by assuming that the post does not first encounter the 

vehicle and the terminal coordinates are taken as the coordinates 

describing the position of the assembly when it strikes the ground. 

6.4 Observations 

The study presented in this chapter, although not broad in scope, 

indicates the value of the model and also some of the impact charac­

teristics of the luminaire support post assembly. 

From the values presented for point R in Tables 11 and 12 and from 

Figure 24, it is clear that regardless of the vehicular speed, type of 

post used, or vehicular approach angle, the tendancy is for the single 

luminaire support arm to have a negative rotation (according to the 

right hand rule) about the ZL axis. This rotation causes the support 

arm to rotate in a direction away from the highway after the post is 

impacted and not strike the highway causing an unsafe condition for 

other motorists. 

The case involving the support post with twin luminaires shows that 

here the tendancy is for the rotation to be positive about the ZL axis. 

This is shown in Figure 29. A positive rotation causes point U to 

displace towards the highway but for the cases investigated this effect 
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always causes the striking point to increase in the direction away 

from the assumed edge of the pavement. Tables 11 and 12 reveal 

that for these cases, the point R is the first to contact the ground. 

As the vehicle approach angle is increased, the terminal position of 

the point R increases in the direction away from the highway. The 

same effect had been noticed in the case of the single luminaire 

support assembly. 

The values of the maximum vehicle deceleration presented in 

Tables 11 and 12 show that in all the cases considered the impact 

forces are kept within tolerable limits. This indicates the feasi­

bility of the "break-away" luminaire support post design. 
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TABLE II 

ALUMINUM POST STEEL POST TWIN LUMINAIRE 
STEEL POST 

VEHICLE VELOCITY (MPH) 20 20 20 

WEIGHT OF UJMINAIRE AND 
SUPPORT ASSEMBLY ILBS) 316.63 485.07 502.45 

APPROACH ANGLE a (DEG) 0 15 30 0 15 30 0 15 30 

DECREASE IN VEHICLE 
1.07 1.07 1.09 1.15 1.17 1.24 1.43 1.43 1.43 VELOCITY (MPH) 

MAXIMUM VEHICLE 
2.85 DECELERATION lv'sl 2.86 2.88 3.31 3.33 3.37 3.31 3.33 3.35 

XPL(FT) -0.48 -0.96 0.04 3.39 2.43 1.65 -4.33 -3.75 -2.74 

YPL (FT) -6.39 -4.35 -1.02 ·6.96 -7.15· -6.34 0.0 1.68 2.67 

ZPL (FT) 6.90 5.07 4.28 19.77 16.66 12.07 3.93 5.36 7.78 

XRL (FT) 2.24 2.07 0.34 6.64 7.14 6.35 0.42 -0.76 ·0.13 

YRL (FT) ·1.51 -1.30 -6.59 0.30 -1.84 -4.53 ·10.5 -8.12 -5.52 

ZRL (FT) 16.14 15.40 13.53 27.62 25.30 22.05 3.76 0.08 o.o 

XQL (FT) -29.09 -27.87 ·25.13 ·26.51 -26.59 ·25.29 -31.56 -30.43 -27.07 

YQL (FT) 00.39 7.73 14.23 2.00 9.15 16.56 0.0 7.15 14.32 

ZQL (FT) 3.76 5.04 6.32 0,46 1.19 2.23 4.91 4.58 3.98 

XUL (FT) 0.42 2.56 3.15 

YUL(FT) 10.5 9.57 6.79 

ZUL(FT) 3.76 10.90 16.80 

TIME TO HIT CAR (MILUSEC) 820.0 829.0 836.4 760.4 807.6 873.0 975.0 971-2 -
TIME TO HIT GROUND (MILLISEC) - - - - - - - - 992.0 

POST HITS POST HITS POST HITS POST HITS POST HITS POST HITS POST HITS POST HITS 
POST HITS 

COMMENTS 
TOP OF CAR TOP OF CAR TOP OF CAR FRONT OF CAR I FRONT OF CAR FRONT OF CAR TOP OF CAR TOP OF CAR GROUND WITH 

POlloi~ 

A COMPARISON OF MODEL RESULTS FOR A VEHICULAR VELOCITY OF 20 MPH 
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TABLE 12 

ALUMINUM POST STEEL POST 
TWIN LUMINAIRE 

STEEL POST 

VEHICLE VELOCITY (MPH) 40 40 40 

WEIGHT OF LUMINAIRE AND 316.63 485.07 502.45 SUPPORT ASSEMBLY (LBS) 

APPROACH ANGLE a (DEG) 0 15 30 0 15 30 0 15 30 

DECREASE IN VEHICLE 1.90 1,91 1.94 2.05 2.05 2.06 2.56 2.58 2.62 
VELOCITY (MPH) 

MAXIMUM VEHICLE 5.52 5.54 5.59 6.58 6.61 6.70 6.60 6,62 6.71 
DECELERATION (g'sl 

XPL (FT) -8.91 ·11.28 -13.49 -4.31 -3.52 -5.13 ·12.99 -8.10 -5.96 

YPL (FT) -6.76 -4.10 1.04 0.06 -0.97 -2.05 0.00 3.05 4.7 

ZPL(FT) 5.81 3.37 0.00 8.82 10.48 8.88 3.49 8.72 10.81 

XRL(FT) -6.81 -5.62 -3.55 -0.30 -0.03 1.26 -9.68 -7,97 -5.50 

YRL (FT) 2.15 4.49 5.17 -5.66 -3.14 0.56 -10,50 -4.58 0.52 

ZRL (FT) 0.00 0.00 0.99 0.00 0.00 o.oo 0.00 0.00 0.00 

XQL (FT) -35.40 -33.28 ·28.77 -40.60 -38.43 ·33.63 -32.01 ·32.67 -30.16 

YQL(FT) -1.23 7.80 15.52 -1.45 9.74 20.09 0.00 7.02 15.12 

ZQL (FT) 17.56 19.00 20.75 14.16 14.18 15.59 23.01 19.84 17.76 I 
I 

XUL (FT) -9.68 0,33 2.01 
. 

YUL(FT) 10.50 9.30 5.25 
I 

ZUL(FT) 0.00 13.48 19.12 

TIME TO HIT CAR (MILLISEC) 

TIME TO HIT GROUND (MILLISEC) 730.0 739.0 746.8 819.2 795.2 792,0 808.0 695.2 657.2 

POST HITS POST HITS POST HITS POST HITS POST HITS POST HITS POST HITS POST HITS POST HITS 
COMMENTS GROUND WITH GROUND WITH GROUND WITH GROUND WITH GROUND WITH GROUND WITH GROUND WITH GROUND WITH GROUND WITH 

POINT R POINT R POINT P POINT R POINT R POINT R POINTS R&U POINT R POINT R 

A COMPARISON OF MODEL RESULTS FOR A VEHICULAR VELOCITY OF 40 MPH 
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FIGURE 26 THE TERMINAL POSITION OF THE STEEL SUPPORT POST 
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CHAPTER VII 

CONCLUSIONS.. 

The correlation of the mathematical model with data obtained from 

the full-scale crash test demonstrates the feasibility of the applica­

tion of the model to the luminaire support pole problem. Since some of 

the significant parameters are not known precisely, and since the model 

vehicle is highly idealized, the correlation can only be termed approx­

imate. When more experimental data on the unknown parameters becomes 

available, a closer correlation can be expected. In any case, the 

general behavior of the real system can be simulated with this model. 

Even though a case exhibiting planer motion was chosen for the 

correlation, the model has also verified the phenomenological behavior 

for the non-planer motion case of a vehicle striking a luminaire sup­

port. With the model simulating the true physical situation, studies 

can be conducted to evaluate the hazard potential of existing and 

proposed designs. Parameter studies can be made of promising designs, 

and these designs can be investigated to determine the response of the 

post to a variety of conditions. The effect of such variables as pole 

weight, pole weight per unit length, length of luminaire arm, weight of 

luminaire, weight of base assembly, weight and speed of impacting 

vehicle and angle of attack of impacting vehicle can be investigated; 

and this information may be utilized to establish basic design criteria 

and to establish critical limitations on such things as pole weight, 

height, and base connections. 

The model can prove invaluable in reducing the number of full-scale 
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crash tests required to develop and evaluate a particular design. The 

testing program would reduce to the interpretation of the results 

obtained from the mathematical model and the testing of the most 

promising designs obtained from the model study. 
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C H A P T E R V I I I 

RECOMMENDATIONS FOR FURTHER RESEARCH 

Due to the difficulty encountered in the correlation, it is 

recommended that a testing program be initiated to investigate certain 

areas. 

Static and dynamic tests of the break-away base should be conducted 

to determine information that would enable one to obtain reasonable 

values of the frictional resisting forces for various conditions. 

These values would then be used as input information to the computer 

program for the mathematical model. 

A further investigation into the energy-absorption characteristics 

of representative vehicles should also be made. Force-deformation 

characteristics obtained from such a study would be of great value to 

the researcher. These data would produce a more accurate value of the 

spring force and bring about a better prediction of the motion of the 

support assembly. 

It is further recommended that the present mathematical model 

be verified by conducting a fully instrumented crash test of a luminaire 

support assembly. Such a test would determine whether the rigid body 

motions assumed in the model are in harmony with the motions of a 

deformable body. 
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A P P E N D I X 

FORTRAN PROGRAM AND FLOW DIAGRAM 
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ALPHA 

A,B,C 

BL 

BOL 

CARLEN 

CFA 

CK 

DELTA 

DIFF 

DIRClX 
DIRClY 
DIRClZ 

DIRC2X· 
DIRC2Y 
DIRC2Z 

DIRC3X 
DIRC3Y 
DIRC3Z 

E 

FFXA, FFYA 

FNA 

FSA 

DEFINITION OF FORTRAN STATEMENT NAMES 

Angle the XX, YY, ZZ coordinate system is 
rotated about the negative ZZ axis to obtain 
the XV, YV. and ZV system. 

= Principal mass moments of inertia at the mass 
center of the post. 

= Length of the base of the post. 

= Length of the bolts holding the post to the 
base. 

= The absolute value of the displacement of the 
vehicle while it is in contact with the post. 

= Coefficient of friction. 

= Spring constant of the vehicle. 

= Angle the XX, YY, ZZ coordinate system is 
rotated about the XX axis to obtain the X, Y, 
Z system. 

= The difference between Poslen and Carlen. 

= Direction cosines between the 
1 axis and the X, Y, Z axes 
respectively. 

= Direction cosines between the 
2 axis and the X, Y, Z axes 
respectively. 

= Direction cosines between the 
3 axis and the X, Y, Z axes 
respectively. 

= Print interval. 

= Frictional forces in the XX and YY directions 
respectively. 

The normal force. 

The spring force. 
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FSXA, FSYA 

FlA, F2A, F3A, 
FlB, F2B, F3B 

FlFB, F2FB, F3FB 

G 

H, HI 

HEIGHT 

HLEN 

HHV, HTRV, HTV 

I, M 

POSLEN 

Q 

SQUIGA, ETAA, 
ZETAA, CHIA 

SQUIFA, ETAFA, 
ZETAFA, CHIFA 

SlA, S2A, S3A 

SlFa, S2FA, S3FA 

SVA, SVB 

= The components of the spring force in the 
XX and YY directions respectively. 

Forces in the 1, 2 and 3 directions for the 
times under consideration and a time increment 
behind, respectively, while the post and the 
vehicle are in contact. 

= Forces in the 1, 2 and 3 directions respectively 
for a time increment behind the time under con­
sideration when the post and the vehicle are no 
longer in contact. 

= Gravity. 

= Time increments. 

= The initial ZZ coordinate of the ground. 

= Length of the hood of the vehicle. 

= Coordinates of the hood, trunk, and top of 
the vehicle respectively. 

= Counting indices. 

= The absolute value of the translation of 
the post at the point of impact while the 
post and the vehicle are in contact. 

= The value of the time while the post and the 
vehicle are in contact. 

= The rotation parameters while the post and the 
vehicle are in ccrntact. 

The rotation parameters after the post and the 
vehicle lose contact. 

= Translations of the post center of mass in 
the 1, 2 and 3 directions respectivel~while 
the post and the vehicle are in contact. 

Translations of the post center of mass in the 
1, 2 and 3 directions respectively, after the 
post and the vehicle have lost contact. 

= Displacements of the vehicle for the times 
under consideration and a time increment behin~ 

128 



SVFA, SVFB 

T 

THA, PHIA, PSIA, 
THB, PHIB, PSIB 

THDA, PHIDA, 
PSIDA, THDB, 
PHIDB, PSIDB 

THFA, PHIFA, 
PSIFA, THFB, 
PHIFB, PSIFA 

THDFA, PHIDFA, 
PSIDFA, THDFB, 
PHIDFB, PSIDFB 

TXA, TYA, TZA 

TlA, T]A, T3A, 
TlB, T2B, T3B 

VlA, V2A, V3A, 
VlB, V2B, V3B 

VVA, WB 

respectively, while the post and the vehicle 
are in contact. 

= Displacements of the vehicle for the times 
under consideration and a time increment behind, 
respectively, after the post and the vehicle 
have lost contact. 

= The value of the time after the post and the 
vehicle have lost contact. 

= The Eulerian Angles for the times under con­
sideration and a time increment behind, respec­
tively, while the post and the vehicle are in 
contact. 

= The time-rate of change of the Eulerian angles 
for the times under consideration and a time 
increment behind, respectively, while the post 
and the vehicle are in contact. 

= The Eulerian angles for the times under con­
sideration and a time increment behind, respec­
tively, after the post and the vehicle have 
lost contact. 

= 

= 

= 

= The time-rate of change of the Eulerian 
angles for the times under consideration and 
a time increment behind, respectively, after 
the post and the vehicle have lost contact. 

The torques about the X, Y and Z axes respec­
tively. 

The torques about the 1, 2 and 3 axes at the 
times under consideration and a time increment 
behind, respectively. 

The linear velocities of the post center of 
mass in the 1, 2 and 3 directions for the times 
.under consideration and a time increment 
behind, respectively, while the post and the 
vehicle are in contact. 

The linear velocities of the vehicle while it 
is in contact with the post for times under 
consideration and a time increment behind, 
respectively. 
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VlFA, V2FA, V3FA, 
VlFB, V2FB, V3FB 

VVFA, WFB 

WlA, W2A, W3A, 
W2B , W2B, W3B 

WlFA, W2FA, W3FA, 
WlFB, W2FB, W3FB 

XCMA, YCMA, ZCMA, 
XCMB, YCMB, ZCMB 

XCMFA, YCMFA, 
ZCMFA, XCMFB, 
YCMFB, ZCMFB 

YYCMA, ZZCMA 

XXCMFA, YYCMFA, 
ZZCMFA 

XPA, YPA, ZPA, 
XQA, YQA, ZQA, 
XSA, YSA, ZSA 

YYPA, ZZPA, 
YYQA, ZZQA, 
YYSA, ZZSA 

= The linear velocities of the post center 
of mass in the 1, 2 and 3 directions for the 
times under consideration and a time increment 
behind, respectively, after the post and the 
vehicle have lost contact. 

= The linear velocities of the vehicle after 
it has lost contact with the post for times 
under consideration and a time increment 
behind, respectively. 

= The angular velocities of the ~ost about the 
1, 2 and 3 axes for the times under considera­
tion and a time increment behind, respectively, 
while the post and the vehicle are in contact. 

= The angular velocities of the post about the 
1, 2 and 3 axes for the times under considera­
tion and a time increment behind, respectively, 
after the post and the vehicle have lost con­
tact. 

= The translations of the post center of 
mass in the X, Y and Z directions for the times 
under consideration and a time increment behind, 
respectively, while the post and the vehicle 
are in contact. 

= The translations of the post center of mass 
in the X, Y and Z directions for times under 
consideration and a time increment behind, 
respectively, after the post and the vehicle 
have lost contact. 

= YCMA and XCMA resolved to the YY and ZZ direc­
tions. 

XCMFA, YCMFA and ZCHFA resolved to the XX, 
YY and ZZ directions. 

= The translations of the points P, Q and S 
in the X, Y and Z directions respectively, 
while the post and the vehicle are in contact. 

= YPA, ZPA, YQ~, ZQA, ZSA resolved tO the YY 
and XX directions. 
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XVSA, YVSA 

XPFA, YPFA, ZPFA, 
XQFA, YQFA, ZQFA, 
XRFA, YRFA, ZRFA 

YYPFA, ZZPFA, 
YYQFA, ZZQFA, 
YYRFA, ZZRFA 

XVPFA, YVPFA, 
XVRFA, YVRFA 

XPO, YPO, ZPO, 
XQO, YQO, ZQO, 
XRO, YRO, ZRO, 
XSO, YSO, ZSO 

XXPO, YYPO, ZZPO, 
XXQO, YYQO, ZZQO, 
XXRO, YYRO, ZZRO, 
XXSO, YYSO, ZZSO 

= XSA and YSA resolved to the XV and YV 
directions. 

= The translations of the points P, Q and R 
in the X, Y and Z directions respectively, 
when the post and the vehicle are no longer 
in contact. 

= YPFA, ZPFA, YQFA, ZQFA, YRFA and ZRFA 
resolved to the YY and ZZ directions. 

= XPFA, YPFA, XRFA and YRFA resolved to the 
XV and YV directions. 

= The initial coordinates of the points P, 
Q, R and S measured from the post center 
of mass with respect to the X, Y, Z coordinate 
system. 

= The initial coordinates of the points P, Q, 
R and S measured from the post center of 
mass with respect to the XX, YY and ZZ coordi­
nate system. 
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1-' 
w 
N 

$EXECUTE IBJOB 
$IBJOB 
$1BFTC MAIN 

REA0(5~1)VlB,V28,V3B,VVB,FlB,F28,F38,PSIOB 

l FORMAH8Fl0.5) 
REA0(5~2)THOB,PHI08,W,WV,A,.B,C,G 

2 FORMAT.( 8F 10.5) 
REA0(5,3)XCM8~YCMB,ZCHB,CK,W18,W2B,W3B,HEIGHT 

3 FORMATt8Fl0.5) 
READf5~4)PSIB,THS,PHIBtSVB~XSO,YYSO,ZZSO,FNA 

4 FORMAH8Fl0.5) 
REA0(5,5)XPO,YYPO,ZZPO,XQO,YYQO,ZZQO,SVO,ALPHA 

5 FORMAT18F10.5) 
REA0(5,89}Tl8,T2B,T38,HLEN~TLEN,OELTA,YLFEN,YRFEN 

89 FORMAT(8F10.5) 
REAOCS,90lTRLEN,HTRV,FSB,HTV,HHV,XRO,YYRO,ZZRO 

90 FORMATC8Fl0.5) 
READ( 5,.130) XCO,YYCO, ZZCO, XTO, YYTO, ZZTO, CT, FCONST 

130 fORMATt8Fl0.5) 
HI=0.0004 
E=O.O 
1=0 
M=O 
H=0.0004 
Q=O.O 
LL=O 
N=O 
K=O 
YPO=YYPO•COSlOELTA)+ZZPO•SIN(DELTA) 
ZPO=-YYPO•SINIOELTA)+ZZPO•COS(OELTA) 
YQO=YYQO•COS(OELTA)+ZZQO•SINlOELTA) 
ZQO=-YYQO•SINtOELTAJ+ZZQO•COS(OELTA) 
YSO=YYSO•COS(DELTA)+ZZSO•SINlOELTAJ 
ZSO=-YYSO•SINfOELTAJ+ZZSO•COStDELTA} 
YTO=YYTO•COS(OELTA)+ZZTO•SINlOELTAl 



1-' 
w 
w 

c 

ZTO=-YYTO•SINfOELTA)+ZZTO•COS(DELTAl 
YRO=YYRO•COS(OELTAl+ZZRO•SINlOEllA) 
ZRO=-YYRO•SIN(OELTA)+ZZRO•COSIDELTAl 
YCO=YYCO•COSCDELTA)+ZZCO•StNlDELTA) 
ZCO=-YYCO•SINlOELTAl+ZZCO•COS(OELTA) 
XVSO=XSO•COSlALPHA)-YYSO•SINIALPHA) 
XVTO=XJO•COS(AlPHA)-YYTO•SlNCALPHA) 

125 CONTINUE 
IFCQ-0~0004)123,44,44 

123 CONTINUE 
WlA=O.O 
W2A=0.0545 
W3A=O •. :() 
FSB=lOOOO.O 
FlB=-10000.0 
THOA=0.0545 
PltiOA=O.O 
PSIOA=O.O 
THA=0.:000022 
PH'll A=O:. 0 
PSIA=O:.O 
GO TO 124 

C ANGULAR VELOCITY CALCULATIONS 1,2,3 
c 

c 

44 CONTINUE 
W1A=ClH•TlBl/A)+H•liCB-C)/A)•W2B•W3B)+W1B 
W2A=lH/B)•T2B+H•(((C-Al/Bl•WlB•W3B)+W2B 
W3A=fH/Cl•T3B+H•(((A-B)/Ct•WlB•W2Bl+W3B 

C EULERIAN ANGLE CALCULATIONS 
c 

CAll EO(W1A,W2A,W3A,THOB,PHIOB,PSIOB,HI,O,PSIB,TH8} 
PSIA=O 
PSIAD=PSIA•57.3 
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c 

PFORK={WlA•COSfPSIAlJ-(W2A•SIN(PSIA)) 
THA=tH/2.)•tW2A•COStPSIA)+WlA•SINCPSIA)+THOB)+THB 
THAO=THA•57.3 
PHil A= (H/2. l •I C l {SIN( THAJ) •PFORK) /(I COS ( THA)) •COS{ THA )-1.0) )+PHIOB) 

X+PHIB 
PH-IAO=PHIA•57.3 

C ANGULA~ VELOCITY CALCULATIONS T,P,P 
c 

c 
c 
c 

c 

THDA=tW2A/COSlPSIAJ)+f(SINtPSIA))/COStPSIA))•PFORK 
PKIDA=J-1.0/SINlTHA)J•PFORK 
PSIDA=W3A-CCOSITHA))•PHIOA 

124 CONTINUE 

LINEAR VELOCITY CALCULATIONS 

VlA=H•tfF18/W)+V2B•W3B-V3B•W28)+VlB 
V2A=H•(lF2B/W)+V3B•WlB-VlB•W38)+V2B 
V3A=H•({F3B/Wl+VlB•W2B-V2B•Wl8)+V3B 
VVA=VVB+lH/WVJ•FSB 

C PRINCIPAL TRANSLATIONS OF MASS CENTER 
c 

c 

SlA=(H/2.)•(VlA+VlBl 
S2A=(H/2.)•{V2A+V28) 
S3A=(H/2.)•(V3A+V38) 
SVA=(H/2.)•(VVA+VV8J+SV8 

C CALCULATION OF DIRECTION COSINES 
c 

DIRClX~(((-SIN(PHIA)J•SIN(PSIA))+{(COS(THAll•COS(PHIA)l•COStPSIA)) 
OIRClY~(((COSIPHIAJ)•SINtPSIAJ)+((COStTHAl)•SIN(PHIAll•COStPSIA)) 
OIRClZ·=f (-SIN( THA) J•COS(PSIA)) 
OIRC2X=(((-SIN(PHIA))•COSCPSIA))-((COSITHA))•COSIPHIA))*SINtPSIA)) 
OIRC2Y=CilCOS(PHIA)J•COS(PSIA))-IlCOSlTHAJ)•SINlPHIAJ)•SIN(PSIA)) 
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c 

OIRC2lt:((SIN(THAJ)•StNlPSIAl) 
OIRC3Xt=(fSIN(THAl}•COStPHJA)) 
OIRC3Y:((SINtTHAll•SINlPHIA)) 
OIRC3Z::;COS(THA) 

C x,y,z, TRANSlATIONS OF MASS CENTER 
c 

c 
c 
c 

c 
c 
c 

c 

XCMA=SlA•OIRClX+S2A*OIRC2X+S3A•DIRC3X+XCMB 
YCMA=SlA•DIRClY+S2A•OIRC2Y+S3A•OIRC3Y+YCMB 
ZCMA=SlA•OIRClZ+S2A•DIRC2Z+S3A•OIRC3Z+ZCM8 
YYCMA=YCMA*COStOELTAl-ZCMA•SINCOELTA) 
ZZCMA=YCMA•SINCOELTA)+ZCMA+COSlDELTA) 

CALCULATION OF ROTATION PARAMETERS 

SQUIGA:SJNlTHA/2.)*SINlCPSIA-PHIAJ/2.) 
ETAA=SIN(THA/2.)•COSilPSIA-PHIA)/2.) 
ZETAA=tOStTHA/2.l•SIN(lPSIA+PHIA)/2.) 
CHlA=COSlTHA/2.J•COS((PSIA+PHIAJ/2.) 

TRANSLATIONS OF A POINT P 

XPA=XCMA+(XPOl•tSQUIGA••2-ETAA••2-ZETAA••2+CHIA••2)+(2.•YPOl•ltSQU 
XIGA+ETAAl-(ZETAA•CHIAl)+(2.•ZPO)•ItSQUJGA•ZETAA)+lETAA•CHIA)) 

YPA=YCMA+t2.•XPO)+ltSQUIGA•ETAA)+(ZETAA+CHIA))+{YPOl•l-SQUIGA••2+E 
XTAA••2~ZETAA••2+CHIA••2)+(2.+ZP0l+l(ETAA•ZETAA)-{SQUIGA•CHIA)) 

ZPA=ZCMA+t2.•XPOJ•CtSQUIGA*ZETAAl-lETAA•CHIA))+(2.•YPOJ•I(ETAA•ZET 
XAAJ+(SQUIGA•CHLA))+(ZPOJ•l-SQUJGA••2-ETAA••2+ZETAA••2+CHIA••2) 

YYPA=YPA•COStDELTAl-ZPA+SINlDELTA) 
ZZPA=YPA+SINtDELTA)+ZPA•COSlOELTA) 

C TRANSLATIONS OF A POINT Q 
c 

XQA=XCMA+(XQO)+(SQUIGA••2-ETAA••2-ZETAA••2+CHIA••2}+(2.•YQO)•(CSQU 
XIGA•ETAA)-CZETAA•CHIAl)~(2.+ZQO)+(lSQUIGA•ZETAAJ+(ETAA•CHIAll 
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c 
c 
c 

c 
c 
c 

c 

YQA=YCMA+l2.+XQO)+(:(SQUIGA•ETAA)+lZETAA•CHIAJ)+(YQ0)•t-SQUIGA••2+E 
XTAA••2~ZETAA••2+CHIA••2l+(2.+ZQOl•tfETAA•ZETAAl-tSQUIGA•CHIA)} 

ZQA=ZCMA+(2.+XQO)+((SQUIGA•ZETAA)-tETAA•CHIA))+(2.•YQO)+((ETAA•ZET 
XAA)"+lSQUIGA+CHIA))+(ZQO)•(~SQUIGA••2-ETAA••2+ZETAA++2+CHIA++2) 

YYQA=YQA+COSIOELTAJ-ZQA•SINCOELTA) 
ZZQA=YQA+SINlOELTA)+ZQA~COSCOELTA) 

TRANSLATIONS OF A POINT S 

XSA=XCMA+fXSOJ•tSQUIGA*•2-BTAA••2-ZETAA••2+CHIA++2)+(2.+YSO)+(fSQU 
XIGA•ETAAl-CZETAA•CHIA)J~t2.•ZSOJ•((SQUIGA+ZETAA)+CETAA•CHIA)J 

YSA=YCMA+(2.+XSOl•ClSQUIGA•ETAA)+(ZETAA•CHIA))+CYS0)•(-SQUIGA••2+E 
XTAA••2-ZETAA••2+CHIA••2l+(2.•ZSOJ•(lETAA•ZETAA)-(SQUIGA+CHIAll 

ZSA=ZCMA+C2.•XSO)+((SQUIGA•ZETAAl-fETAA•CHIA))+(2.•YSOJ•(fETAA•ZET 
XAAl+ISQUtGA•CHlA))~CZS0)+(-SQUIGA++2-ETAA••2+ZETAA••2+CHIA••2) 

YYSA=YSA+COS(06lTAJ-ZSA+SINlOELTAl 
ZZSA=YSA+SlN(OSLTA)+ZSA+COSCDELTAl 
XVSA=XSA+COSCALPHAl-YYSA+SINtALPHA) 
YVSA=XSA+SlN(AlPHA)+YYSA+COSlALPHA) 

TRANSLATIONS OF A POINT R 

XRA=XCMA+lXRO)+(SQUIGA••2-ETAA••2-ZETAA••2+CHIA••2l+l2.•YRO)+~(SQU 
XIGA•ETAA)-(ZETAA•CHIA))+(2.•ZRO)+{(SQUIGA+ZETAA)+(ETAA•CHIAJ) 

YRA=YCMA+( 2. +XRO) + t( SQUIGA•ETAA) + ( ZET AA+CHI A))+{ YRO) •t -SQUIGA++2+E 
XTAA••2~ZETAA••2+CHIA++2)+f2.+ZRO)+((ETAA+ZETAAl-lSQUIGA•CHIA)) 

ZRA=ZCMA+t2.•XRO)+({SQUIGA+ZETAA)-tETAA+CHIA))+(2.•YROl•flETAA•ZET 
XAA)+(SQUIGA+CHlA)l+lZROl•C~SQUIGA++2-ETAA••2+ZETAA••2+CHIA++2) 

YYRA=YRA•COStOELTAl-ZRA+SIN(OElTA) 
ZZRA=YRA+SINIDELTAl+ZRA+COSCOELTA) 
XVRA=XRA+COS(ALPHAl-YYRA+SIN(AlPHA) 
YVRA=XRA•SINlAlPHAJ+YYRA+COS(AlPHA) 

C TRANSLATIONS OF A POINT T 
c 



~ 
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"'-.! 

c 
c 
c 

c 
c 
c 

XTA=XCMA+tXTOl•lSQUIGA••2-ETAA••2-ZETAA••2+CHIA••2)+t2.•YTOl•I.(SQU 
XIGA•ETAAl-CZETAA•CHtA)}+(2.•ZTO)•l(SQUIGA•ZETAA)+(ETAA•CHJA)J 

YTA=YCMA+(2.•XTO)•((SQUIGA•ETAA)+(ZETAA•CHJA))+(YTO)•(-SQUIGA••2+E 
XTAA••2-ZETAA••2+CHIA••2J+(2.•ZTO)•ffETAA•ZETAA)-(SQUIGA•CHIA)J 

ZTA=ZCMA+C2.•XTOJ•CtSQUIGAti!ZETAAl-(ETAA•CHIA))+(2.•YTO)•ttETAA•ZET 
XAA)+(SQUIGA•CHX.A))+{ZTOJ•t-SQUIGA••2-ETAA••2+ZETAA••2+CHIA••2) 

YYTA=YTA•COSIDELTA)-ZTA•SINCOELTA) 
ZZTA=YTA•SINCOELTA)+ZTA•COSCOELTA) 
XVTA=XTA•COSlALPHA)-YYTA•SLNIALPHA) 
YVTA=XTA•SIN(AlPHA)+YYTA•COS(AlPHA) 

DIFFERENCE CALCULATIONS 

POSLEN=ABS(XVSA-XVSOl 
TDISP=ABSCXVTA-XVTO) 
CARLEN=ABSlSVA-SVO) 
DIFF=POSLEN-CARLEN 
DIFFT=TOISP-CARLEN 

CALCULATION OF FORCES 

IFCQ-.0004)83,84,84 
83 FSA=l320.0 

GO TO 85 
84 CONTINUE 

IF(OIFF-0•01)356,356,357 
356 CONTINUE 

FSA=ABStCK•CCSVO-SVAJ-(XVSO-XVSAJ)) 
FSA=0.8•FSA 
GO TO 358 

357 CONTINUE 
FSA=ABSCCT•lCSVO-SVA)-(XVTO-XVTAl)) 
FSA=0.8•FSA 
ZSA=ZTA 
XSA=XTA 
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501 
502 
504 
600 

102 
101 

104 
85 
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105 

107 
106 

c 

YSA=YTA 
GO TO 358 
CONTINUE 
IF~LL-201600.501,501 
IFCOifF-OIFFBl600.502,502 
IF t<FSA-FCONST) 600,504.504 
FSA=FCONST 
CONTINUE 
lf(XQA*0.083333)101,101.102 
If1XQA~0.083333-0.004)101.101,104 
CONTINUE 
FFXA=Ol. 0 
GO TO 105 
CONTINUE 
CfA=0.25 
FNAC=63.5.0 
T=300.0 
FFXA=3i.l * T 
CONTINUE 
IflXQA*0.4166ll07•107,106 
FNA=O.O 
CONTINUE 
FFYA=OJ. 0 
FSXA=FSA•COSCALPHA) 
FSYA=FSA•SINlALPHA) 
F1A=CFFXA-FSXAl•tOIRC1X)+(fSYA•COStDELTA)+FNA•SINCDELTAl-W•G•SIN(0 

XELTA )-FFYA~COS (.DELTA)) •I DIRCl Y) + ( FFYA•S I Nt OEL T A) +FNA•COS {DELTA )-W• 
XG•COSlDELTAl-fSYA•SINCDELTAl)•CDIRClZl 

F2A=CFFXA-fSXAl•COIRC2X)+CFSYA•COS(OELTAJ+FNA•SINCDELTA)-W•G•SINCO 
XELTAl-fFYA•COSCDELTA))•IDIRC2Y)+CFFYA•SINCOELTA)+FNA•COSIOELTAl-W• 
XG•£0S(OELTA)-FSYA•SINCDELTAIJ•COIRC2Zl 

f3.A·= ( Ff XA-FSXA) * { DIRC3X) + ( FSYA•COS C DELTA J +FNA•S IN (DELTA )-W•G•SINI 0 
XELTA)-FFYA•COStOELTA))•tDIRC3Y)+{FFYA•SINlDELTAl+FNA•COS(DELTAl-W• 
XG•COSCDELTAl-FSYA•SINCDELTA))•(DIRC3Z) 
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C CALCULATION OF TORQUES 
c 

c 
c 
c 

TXA=IFFYA•COSCDELTAll•tZQA~ZCMAJ+IFNA•COStOELTA))•(YQA-YCMA)-(fNA• 
XSIN(OElTA))•(ZQA-ZCMA)+(FFYA•SIN(OELTAJl•(YQA-YCMAl-(FSYA•COS(DELT 
XAJl•tZSA-ZCMAJ-(FSYA•SIN(OELTAJ1•lYSA-YCMA) 

TYA=FFXA•IZQA-ZCMA)-(fNA•COS(OELTA))•(XQA-XCMAJ-FSXA•(ZSA-ZCMA)-(F 
XfYA•SIN(OELTA)l•(XQA-XCMA)+{FSYA•SINtOELTAJ)•tXSA-XCMA) 

TZA·=-Ff XA• l YQA-YCMA l -{ FFYA*COS (DELTA)) • ( XQA-XCMA) +FSXA• ( YSA-YCMA) + 
X(FSYA•COS(DELTA)}+(XSA-XCMAJ+(FNA•SINlOELTA)l•fXQA-XCMA) 

TlA=CTXA•DlRClX)+(TYA•OIRClYJ+(TZA•DIRClZJ 
T2A=(TXA•OIRC2X)+(TYA•OIRC2Y)+(TZA•OIRC2Zl 
T3A=tTXA•OIRC3X)+(TYA•DIRC3Y)+(TZA•DIRC3Z) 

TIME CALCULATION 

LL=ll+l 
Q=Q+H 
E=E+.0004 
IFJE-0~0016154.87,87 

87 E=O.O 
88 CONTINUE 

WRITE(6,l5JVVA 
15 FORMATI1Hl/5X,20HTHE VALUE OF VVA IS ,Fl5.5) 

WRITEt6,19)SVA 
19 FORMATt//,5X,20HTHE VALUE OF SVA IS ,Fl5.5) 

WR1TE(6,120JTHAO 
120 FORMATJ//,5X,20HTHE VALUE OF THA IS ,Fl5.5) 

WR1TEt6,12l)PHlAO 
12I FORMATl//,5X,2lHTHE VALUE OF PHIA IS ,Fl5.5l 

WRITE(6,122)PSIAO 
122 FORMATJ//,5X,21HTHE VALUE OF PSIA IS ,Fl5.5) 

WRITE(6,20)XCMA 
20 FORMAT(//,5X,2IHTHE VALUE OF XCHA IS tFl5.5) 

WRITEC6,27lXPA 
27 FORHATJ//,5X,20HTHE VALUE OF XPA IS ,Fl5.5) 



WRITE(6,33)XSA 
33 FORMAT{// 1 5X 1 20HTHE VALUE OF XSA IS ,F15.5} 

WRITE(6,30)XQA 
30 FORMAH//,5X 1 20HTHE VALUE OF XQA IS ,F15.5) 

WRITE(6,206lYYCMA 
206 FORMATt// 1 5X,22HTHE VALUE Of YYCMA IS ,Fl5.5) 

WRITE(6 1 200)YYPA,XRA 
200 FORMATt// 1 5X 1 2IHTHE VALUE OF YYPA IS ,Fl5.5,30X,20HTHE VALUE Of XR 

1A IS ,Fl5.5) 
WRITE(6,202)VYSA,YYRA 

202 FORMAT1//,5X,21HTHE VALUE OF YYSA IS ,Fl5.5,30X,21HTHE VALUE OF YY 
3RA IS ;.f15.5} 

WRITE(6,204)YYQA,ZZRA 
204 FORMATC//,5X,21HTHE VALUE OF YYQA IS ,F15.5,30X,21HTHE VALUE OF ZZ 

2 R A I S , .. f 15. 5 l 
...... WRITE{6,207JZZCMA 
~ 207 FORMAT{// 1 5X,22HTHE VAlUE OF ZZCMA IS ,Fl5.5) 
0 

WRITE(6,20llZZPA 
201 FORMATJ//,5X,21HTHE VALUE OF ZZPA IS ,Fl5.5) 

WRITEl6,203)ZZSA 
203 FORMAT(//,5X,21HTHE VALUE OF ZZSA IS ,Fl5.5) 

WRITE(6,205)ZZQA 
205 FORMATt//,5X,21HTHE VALUE OF ZZQA IS ,Fl5.5) 

WRITE{6,39)FSA 
39 FORMATJ//,5X,20HTHE VALUE OF FSA IS ,Fl5.5) 

WRITE(6,53)0Iff 
53 FORMAT,//,5X,21HTHE VAlUE OF OIFF IS ,F15.5) 

WRITEI6,40)Q 
40 FORMATt//,5X,2IHTHE VAlUE OF TIME IS ,Fl0.6) 
54 CONTINUE 

IFJM-1155,354,350 
55 CONTINUE 

IF{OIFF)41,354,43 
43 IF { 0 IFF-0. 01) 5o, 56,108 
56 M=l 
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GO TO 88 
350 lf(N-1[351,42,351 
351 CONTINUE 

IF10IFFT)41,42,352 
352 IFlOIFFT-0.01)353,353,108 
353 N=l 

GO TO 88 
108 Q=Q-H 

H=H/2. 
HI=H I /2. 
GO TO 44 

41 VlB=VlA 
V2B=V2A 
V38=V3A 
WlB=WlA 
W28=W2A 
W38=W3A 
TlB=TlA 
T28=T2A 
T38=T3A 
FlB=flA 
F2B=F2A 
F3B=f3A 
OIFFB=OIFF 
VVB=VVA 
THB=THA 
PHIB=PHIA 
PSIB=PSIA 
THOB=THOA 
PHIOB=PHIDA 
PSIDB=PSIOA 
FSB=FSA 
SVB=SVA 
XCMB=XCMA 
VCMB=VCMA 



1-' 
-P­
N 
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ZCMB=ZCMA 
GO TO 125 

C POST LOSES CONTACT WITH VEHICLE 
c 

354 CONTINUE 
M=2 
H=0.0004 
HI=0.0004 
WRITEt6,355) 

355 FORMATI//,5X,43HTHE POST HAS LOST CONTACT WITH FIRST SPRING) 
GO TO 41 

42 CONTINUE 
WRITE(6,100) 

100 FORMATt//,5X,42HTHE POST HAS LOST CONTACT WITH THE VEHICLE) 
H=0.0004 
HI=0.0004 
E=O.O 
XCMFB=XCMA 
YCMFB=YCMA 
ZCMFB=ZCMA 
THDFB=THOA 
PHlOFB'=PHIOA 
PSIOFB'=PSIOA 
THFB=THA 
PH·IFB=PHIA 
PSIFB=PSIA 
W1fB=WlA 
W2FB=W2A 
W3FB=W3A 
VlfB=VlA 
V2FB=V2A 
V3fB=V3A 
VVFB=VVA 
TF=Q 
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SVFB=SVA 
57 CONTINUE 
59 T:;iTF+H 

C FREE ANGULAR VELOCITY CALCULATIONS 
c 

c 
c 
c 

c 
c 
c 

c 

WlfA=~f((8-Cl/A)•W2FB•W3FBl+WlFB 
W2FA=H•tttC-Al/Bl•WlFB•W3f8)+W2FB 
W3FA=H•tttA-8)/C)•WlFB•W2FB)+W3FB 

EULERIAN ANGLE CALCULATIONS (FREEl 

CALL EDtWlFA,W2fAtW3FA,THOFS,PHIDFB,PSIOFB,HI,O,PSIFS,THfB) 
PSIFA=O 
PSIFAD~PSIFA•57.3 
PFORKF=tWlfA•COStPSIFAll-lW2FA•SIN(PSIFA)J 
THFA=(H/2.J•CW2FA•COStPSIFAl+WlfA•SINtPSIFAJ+THOFB)+THFB 
THFAO=THFA•57.3 
PH1FA=(M/2.l•f((($1NtTHFAll•PFORKf)/t(C0SfTHfA))•COStTHFA)-1.0))+P 

XHIDFS)+PHIFB 
PHIFAO~PHIFA•57.3 

ANGULAR VELOCITY CAlCULATIONS T,P,P tfREEJ 

THOFA=tW2FA/COSlPSIFA))+({SINtPSIFA))/COStPSIFA))•PFORKF 
PHt.OFA'=(-1.0/SlNtTHFA) l•PFORKF 
PSIOFA=W3FA-tCOStTHFAJl•PHIOFA 

C FORCE CALCULATIONS (FREE) 
c 

flFB=~G•COStOELTAl•SIN(THFBJ•COStPSIFB)-W•G•SINlDELTA)•(COS(PHIFB 
X)•SINlPSIFBJ+COSlTHFBJ•SINtPHIFBJ•COStPSIFB)J 

F2FB=-W•G•COSlDELTAl•SIN(THF8)*SIN(PSIF8)-W•G•SINtDELTAl•lCOStPHIF 
XB)*COSCPSIFBl-COS(THFB)•SIN(PHIFBl•SINfPSIFBll 

f3FB=-W•G•COStDELTAl•COSlTHFB)-W•G•SIN{OELTAl•SINtTHFBJ•SINIPHIFBl 
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c 
c 
c 

c 

LINEAR VELOCITY CALCUAlTIONS (fREE} 

VlFA=H•ttflfB/W)+V2FB•W3FB-V3fB•W2FBJ+VlfB 
V2fA=H*l(F2fB/W)+V3fB•WlfB-VlfB•W3FBJ+V2FB 
V3FA=H•ltF3FB/WJ+VlFB*W2FB-V2FB•WlFB)+V3fB 
VVFA=VVfB 

C PRINCIPAl TRANSLATIONS Of MASS CENTER (fREE) 
c 

c 
c 
c 

c 

SlfA=tH/2.J•(VlfA+VlFBJ 
S2FA=(H/2.l•IV2FA+V2FB) 
S3FA=(H/2.1•1V3FA+V3FB) 
SVFA=lH/2.)•lVVfA+VVFBJ+SVFB 
XBUMP=SVFA-HlEN 
XENTOPcSVFA+TlEN 
XTAIL=XENTOP+TRLEN 

x.v,z TRANSLATIONS OF MASS CENTER lFREEJ 

XCMFA=( SlFAJ•H-SINfPHIFA) J•CSIN(PSIFA) )+( tCOSlTHfA) )•{COStPHIFAJ J 
X•COSlPSifA)))+(S2FAl•ll-SINlPHIFA))•(C0S(PSIFAJ)-((COS(THFA)l•(COS 
XfPHIFAtJ•SlNfPSIFAt))+(S3FA)*((SIN(THFAJJ•COS(PHIFA))+XCMFB 

YaMFA=,(SlfAJ•ltCOS(PHIFA) J•fSINlPSIFA) )+{ lCOStTHfA) )•lSINCPHIFA) )* 

XCOSfPSlfA)})+(S2FAJ•llCOSlPHIFAJ)•(COSCPSifA))-((COS(THFAJ)•(SINCP 
XHIFAJl•SINlPStFA)l)+(S3FAJ•f(SIN(THFAJl•SINCPHIFA))+YCMFB 

ZCMFA=fSlfAJ•l-SINlTHFA))•lCOSlPSIFAl)+(S2fA)•(SINlTHFAl}•(SIN(PSI 
XFAtJ+IS3FAl•lCOSfTHFA)J+ZCMfB 

YYCMfA=YCMFA•COSlOElTAJ-ZCMFA•SINlOElTAJ 
ZZCMFAcYCMFA•SlNlOElTAJ+ZCMFA*COSlOElTA) 

C CAlCULATION OF ROTATION PARAMETERS {fREE) 
c 

SQUIFA~SINlTHFA/2.)•SIN((PSifA-PHifA)/2.) 

ETAfA=SINlTHFA/2.J•COS((PSIFA-PHIFA)/2.J 
1ETAFAt=COSlTHFA/2.}•SINt{PSifA-t:PHifA)/2.) 



I-' 
+:­
Vl 

CKIFA=COS(THFA/2.)•COS((PSIFA+PHIFA)/2.) 
c 
C TRANSLATIONS OF A POINT P (FREEl 
c 

c 
c 
c 

c 

XPFA=XCMFA+(XPO)•(SQUIFA••2-ETAFA••2-ZETAFA••2+CHIFA••2)+(2.•YP0l• 
X((SQUIFA•ETAFAJ-(ZETAFA•CHIFA))+t2.•ZPOJ•lfSQUIFA•ZETAFA)+{ETAFA•C 
XHIFA) J 

YPFA=YCMFAi(2.•XPOJ•liSQUIFA•ETAFA1+tZETAFA•CHIFA))+(YPOJ•I-SQUIFA 
X••2+ETAFA••2-ZETAFA••2+CHIFA••2l+l2.•ZP0l•ttETAFA•ZETAfA)-tSQUIFA• 
XCHIFA);) 
ZPFA=ZCMFA~(2.•XPO)•((SQUIFA•ZETAFAl-tETAFA•CHIFA))+(2.•YPOJ•ltETA 

XFA•ZETAFAJ+{SQUIFA•CHifA)l+lZPOl•l-SQUIFA••2-ETAFA••2+ZETAFA••2+CH 
XIF.A••2} 

YYPFA=YPFA*C0$(0ELTAJ-ZPFA•SINlDELTAJ 
ZZPFA=YPFA.SIN(OELTAJ+ZPFA•COS(DELTA) 
XVPFA=XPFA.COS(ALPHA)-YYPFA•SIN(ALPHA) 
YVPFA=XPFA*SINlALPHA)+YYPFA•COS(AlPHAJ 

TRANSLATIONS OF A POINT Q (fREE) 

XQFA=XCMFA+OEQO) * f SQUlfA++2-ET AFA••2-ZET AFA••2+CH IFA••2l-+ tz;. •YQ'OT• 
X({SQUIFA•ETAFAJ-(Z6TAFA•CHIFA)l+t2.•ZQO)•f(SQUIFA•ZETAFA)+(ETAFA•C 
XHIFA)) 

YQFA=YCMFA+t2.•XQO)*((SQUIFA•ETAfA)+(ZETAFA•CHIFAJ)+(YQO)•l-SQUIFA 
X••2+ETAFA••2-ZETAFA••2+CHIFA••2)+(2.•ZQ0)•ClETAFA•ZETAFAl-(SQUIFA• 
XCKlFAU 
ZQFA=ZCMFA~(2.•XQOJ•ttSQUIFA•ZETAFA)-lETAFA•CHlfA))+{2.•YQOl•ltETA 

XFA•ZETAFAl+lSQUIFA•CHIFAll+(ZQOl•l-SQUIFA••2-ETAFA••2+ZETAFA••2+CH 
XIFA••2) 

YYQFA=YQFA•COSlOELTA)-ZQFA•SINlOELTAJ 
ZZQFA=YQFA•SINtDELTAl+ZQFA•COSlOELTA) 

C TRANSlATIONS OF A POINT R (FREE) 
c 

XRFA=XCMFA+(XRO)•(SQUIFA••2-ETAFA••2-ZETAFA••2+CHIFA••2)+(2.•YRO)• 



1-' 
~ 

0\ 

c 
c 
c 

XllSQUIFA•ETAFAl-CZETAFA•CHIFA))+(2.•ZRO)•((SQUIFA•ZETAFA)+(ETAFA•C 
XHIFA)) 

YRfA=YCMFA+.(2.•XROJ•IISQUIFA•ETAfA)+(ZETAFA•CHifA))+{YRO)•(-SQUIFA 
X••2+ETAFA••2-ZBTAFA••2+CHIFA••2)+l2.•ZROl•ltETAFA•ZETAFAl-tSQUIFA• 
XCH1FA)J 

ZRFA=ZCMFA+(2.•XRO)•((SQUIFA•ZETAFAJ-(ETAFA•CHIFA)l+t2.•YROl•JlETA 
XFA•ZETAFA)+,(SQUIFA•CHIFA))+(ZRO)•(-SQUIFA••2-ETAFA••2+ZETAFA••2+CH 
XIFA••2) 
YYRFA=YRFA•COStDELTAl-ZRFA•SINtOELTA) 
ZZRFA=YRFA.SINtDELTAJ+ZRFA•COSlOELTAl 
XVRFA=XRFA.COStALPHAl-YYRFA•SINCALPHA) 
YVRFA=XRFA•SINlALPHA)+YYRFA•COS(ALPHA) 

TRANSLATIONS OF A POINT C lFREE) 

XCfA=XCMfA+;(XCO)•(SQUIFA••2-ETAFA••2-ZETAFA••2+CHIFA••2)+(2.•YCOl• 
XllSQUIFA•ETAFAJ-tZETAFA•CHIFA))+(2.•ZC0)•(lSQUIFA•ZETAFA)+(ETAFA•C 
XHlFA)) 

YCFA=YCMFA+t2.•XCOJ•tiSQUIFA•ETAfA)+(ZETAFA•CHifA))+(YCOl•l-SQUIFA 
X••2+ETAFA••2-ZETAFA••2+CHIFA••2)+tz.•ZCOl•t(ETAFA•ZETAFA)-(SQUIFA• 
XCH*IFA) l 

ZCFA=ZCMFA+(2.•XCOl•CCSQUIFA•ZETAFAJ-(ETAFA•CHIFAll+(2.•YCO)•((ETA 
XFA•ZETAFAJ+,(SQUIFA•CHIFA))*(ZCOl•l-SQUIFA••2-ETAFA••2+ZETAFA••2+CH 
XIFA••2l 

YYCFA=YCFA*COS (DELTA 1-ZCFM•SINlDEl TA) 
ZZCFA=YCFA•SINtDELTAl+ZCFA•COStOElTAl 
XVCFA=XCFA•COStALPHAJ-YYCFA•SINlAlPHA) 
YVCfA=XCFA•SIN(' ALPHA)+YYCFA•COS (AlPHA) 
E=E+0.-0002 
IFtE-0~008)77,80,80 

80 CONTINUE 
E=O.O 

98 CONTINUE 
WRITE(6,60)THFAO 

60 FORMATtlHl/5X,21HTHE VALUE Of THFA IS tfl0.5) 



WRlTEt6,6l)PHIFAO 
61 FORMATA// 1 5X,22HTHE VALUE OF PHIFA IS ,Fl0.5) 

WRITE(6,62)PSIFAO 
62 FORMAT(//,SX,22HTHE VALUE OF PSIFA IS ,FlO.Sl 

WRITEt6,63}XCMFA 
63 FORMAT1//,5X,22HTHE VALUE Of XCMFA IS ,Fl0.5) 

WRITEt6 1 64)XPFA 
64 FORMAT4//,SX,21HTHE VALUE OF XPFA IS ,FlO.Sl 

WRITE(6,66)XQFA 
66 FORMAT4//,5X,21HTHE VALUE OF XQFA IS ,Fl0.5) 

WRITE(6 1 ll3JXRFA 
113 FORMAT(//,5X,21HTHE VALUE OF XRfA IS ,fl0.5) 

WRITEt6,1311XCFA 
131 FORMATf// 1 5X,21HTHE VALUE Of XCfA IS ,fl5.5) 

WRITEI6 1 208)YYCMfA 
208 FORMAT(//,5Xr23HTHE VALUE Of YYCMFA IS ,Fl5.5l 

I-' WRITEt6,210)YYPFA .p.. 
-....! 210 f0RMATI//,SX,22HTHE VALUE Of YYPFA IS ,fl5.5) 

WRITE(6,212lYYQfA 
212 FORMATt//,SX,22HTHE VALUE OF YYQfA IS ,Fl5.5) 

WRITEt6,216)YYRFA 
216 FORMATJ//,SX,22HTHE VALUE Of YYRfA IS ,Fl5.5) 

WRITEl6,132lYYCFA 
132 FORMAT(//,5X,22HTHE VALUE Of YYCFA IS ,Fl5.5) 

WRITE(6,209lZZCMfA 
209 fORMATJ//,SX,23HTHE VALUE Of ZZCMFA IS ,fl5.5) 

WRITEt6,211lZZPFA 
211 FORMAT(//,5X,22HTHE VALUE Of ZZPFA IS ,f15.5) 

WRITE(6,213lZZQFA 
213 FORMAT(//,SX,22HTHE VALUE OF ZZQFA IS ,F15.5) 

WRITEt6,217JZZRFA 
21? FORMAT(//,5X,22HTHE VALUE Of ZZRFA IS ,Fl5.5) 

WRITE(6,133JZZCFA 
133 FORMAT{//,5X,22HTHE VALUE Of ZZCFA IS ,Fl5.5J 

WRITE{6,75)SVFA 



...... 
.1::--
co c 

c 
c 

c 

75 

76 
11 

81 

91 
94 
95 

111 

103 
230 

141 
500 

FORMAT(//,5X,21HTHE VALUE OF SVFA IS ,Fl0.5) 
WRITE(6,76lT 
FORMATt//,5X,21HTHE VALUE OF TIME IS ,Fl0.5) 
CONTINUE 
IF( I-1),:81,82,81 
CONTINUE 
IFJZZPFA+HEIGHT191,93,91 
IFtABStZZPFA+HEIGHTJ-0.1193,93,94 
lf(.ZZQfA+HE IGKT l 95,.96, 95 
IFlABStZZQFA+HElGHTl-0.01)96,96,111 
CONTINUE 
IFlZZRFA+HEIGHTl103,109,103 
IFtABStZZRFA+HEIGHTJ-0.11109,109,230 
CONTINUE 
IFtZZCFA+HEIGHT)141,140,141 
IFtABStZZCFA+HEIGHT)-0.1)140,140,500 
CONTINUE 

CHECK ON THE POINT P 

IFlYVPFA-YLFENll12,250,249 
249 IF(YVPFA-YRFEN1250,250tll2 
250 1FtXVPFA-X8UMPll12,231,232 
232 IFtXVPFA-SVFAl231,233,234 
231 lf(ZZPfA-HHVl235t236,235 
235 IFtABSJZZPFA-HHV)-0.1)236,236,112 
233 1Ft ZZPFA-H1Wl238,240,241 
241 IF(ABStZZPFA-HTVl-0.1)240,240,112 
234 IftXVPFA-SVFA-0.1)233,233,243 
243 lf(XVPFA-XENTOP)233,240,244 
244 IFlXVPFA-XTAILl245,245,112 
245 IFtZZPFA-HTRVl246,247,246 
246 IFtABSlZZPFA-HTRVl-0.11247,247,112 
112 CONTINUE 



I-' 
-1>-
1.0 

C CHECK VN THE POINT R 
c 

c 
c 
c 

IF(YVRFA-YLFEN)300,251,252 
252 IF(YVRFA-YRFEN)251,251,300 
251 IF( XVRFA-XBUMP1300,253,254 
254 IF(XVRFA-SVFA)253t255,256 
253 IF{ZZRFA-HHV)257,236,257 
257 IFOABS{ZZRFA-HHV)-0.1)236,236,300 
255 IF(ZZRFA-HTV)238,240,258 
258 IF(ABSCZZRFA-HTV)-0.1)240,240,300 
256 IF(XVRFA-SVFA-0.1)255,255,259 
259 IF(XVRFA-XENTOPJ255,240,260 
260 lflXVRFA~XTAIL1261,261,300 
261 IFlZZRFA-HTRVJ262,247,262 
262 IFJABStZZRFA-HTRVl-0.11247,247,300 
300 CONTINUE 

CHECK ON THE POINT C 

IF{YVCFA-YLFEN)400,451,452 
452 lf(YVCFA-YRFEN)451,451 1 400 
451 lf(XVCFA-XBUMP1400,453,454 
454 IF(XVCFA-SVFAJ453t455,456 
453 IFtZZCFA-HHV}457,236,457 
457 IF(ABS<ZZCFA-HHV)-0.1)236,236,400 
455 IFtZZCFA-HTVJ238,240,458 
458 IFIABSCZZCFA-HTVJ-0.1)240,240,400 
456 lf{XVCFA-SVFA-0.1)455,455,459 
459 IF (;XVCFA•XENTOP }455, 240,460 
460 IFJXVCFA-XTA1ll461,461,400 
461 IFlZZCFA-HTRV)462,247,462 
462 IFCABSJZZCFA-HTRV)-0.1}247,247,400 
140 1=1 

WRITE(6,134) 
134 FORMAT(//,5X,40HTHE POST HAS HIT THE GROUND WITH POINT C) 



GO TO 98 
96 1=1 

WRITEI6,97J 
97 FORMATL//,5X,40HTHE POST HAS HIT THE GROUND WITH POINT Q) 

GO TO 98 
93 1=1 

WRITE(6,99) 
99 FORMATC//,5X,40HTHE POST HAS HIT THE GROUND WITH POINT P} 

GO TO 98 
109 I=l 

WR1TE(6,110l 
lLO FORMATJ//t5X,40HTHE POST HAS HIT THE GROUND WITH POINT Rl 

GO TO 98 
236 1=1 

WRITE(6,237) 
237 FORMATC//,5X,40HTHE POST HAS HIT THE HOOD OF THE VEHICLE) 

I-' GO TO 98 V1 
0 238 I=l 

WRITE(6,239) 
239 FORMATt//,5X,46HTHE POST HAS HIT THE WINDSHIELD Of THE VEHICLE) 

GO TO 98 
240 f:;:} 

WRITE(6,242) 
242 FORMAH//,SX,39HTHE POST HAS HIT THE TOP OF THE VEHICLE) 

GO TO 98 
247 1=1 

WRlTEt6,248) 
248 FORMAT(//,5X,41HTHE POST HAS HIT THE TRUNK Of THE VEHICLE) 

GO TO 98 
400 CONTINUE 

TF'=T 
THFB=THFA 
PHlFB=PHIFA 
PSIFB=PSIFA 
VVFB=VVFA 



I-' 
V1 
I-' 

VlFB=VlFA 
V2FB=V2FA 
V3F8=V3FA 
WlFB=WlFA 
W2f8=W2FA 
W3F8=W3FA 
THOFB=THOFA 
PHIOFB=PHIOFA 
PSIDFB=PSIOFA 
XCMFB=XCMFA 
YCMFB=YCMFA 
ZCMFB=ZCMFA 
SVFB=SVFA 
GO TO 57 

82 CONTINUE 
STOP 
END 

$IBFTC SRl 

c 

SUBROUliNE EO(WlAtW2A,W3A,TH08,PHI08,PSIOB,HI,O,PSIB,THBl 
0f(0)=0-((HI/2.)*{~3A+lCOSttHI/2.)•(W2A•COS(0)+WlA•SINIOl+THOB)+TH 
XBJ/SINt(HI/2.}~(W2A•COS(O}+WlA•SIN(O}+TH081+THB))•(WlA•COStD)-W2A• 
XSINtO))+PSIDBl+PSIB) 

IFJL-25121,21,22 
21 0=.15 

H=-0.01 
lf{0f(0))1,20,10 

22 O=PSIB 
H=-0.01 
If(Of(0))1,20,10 

C ROOT GOES NEGATIVE TO POSITIVE 
c 

1 DH=O+H 
lf(Oft0Hl)2,20,15 

2 D=DH 



f-' 
L/1 
N 

15 

4 
3 

5 

c 
c 
c 

10 

ll 

16 

13 
12 

14 

20 

$DAliA 
o.o 
o.o 
o.o 
o.o 
o.o 
o.o 

GO TO 1 
OH=D+H/2. 
IFIABSJDF{OH)l-.0001)20.20~4 
IF(0f(OH1)5,20.3 
H=H/2. 
GO TO 15 
O=DH 
H=H/2. 
GO TO 15 

ROOT GOES POSITIVE TO NEGATIVE 

OH=O+H 
IFIOFfOHl)l6,20,11 
D=DH 
GO TO 10 
OH=D+H/2. 
1FtABSfDF(OHJ)-.0001)20,2rn,13 
IFIOF(0H)112,20,14 
H=H/2. 
GO TO 16 
O=DH 
H=Ji/2. 
GO TO 16 
O=OH 
l=l+1 
RETURN 
END 

o.o o.o -58.66 
o.o 15.1 100.0 
o.o o.o 33000.0 
o.o o.o 5.0 
1.53 16.938 o.o 
o.o o.o 5.0 

o.o o.o o.o o.o 
3351.41 3282.6 69.68 32.174 
o.o o.o o.o 20 1.27 
o.o 1.53 -18.77 485.07 
1.53 -19.77 5.0 o.o 
7.0 0.1463 -1.47 4.53 
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INITIALIZE I 

COMPUTE I 

+ 

COMPUTE 2 INITIALIZE 2 

COMPUTE 3 

DEFINITIONS OF INITIALIZE, COMPUTE, EQUIVALENCE, 

AND WRITE ARE GIVEN IN THE LAST PAGE OF 

THIS SECTION. 

154 



COMPUTE 
FSA 

COMPUTE 
FNA 

COMPUTE 
FNA 

COMPUTE 4 

155 

FSA=I320.0 

FFXA=O.O 

FNA=O.O 



+ 

EQUIVALENCE 

.... 

EQUIVALENCE 
2 

156 

E=O.O 

M=l 



T=TF+H 

COMPUTE !5 

E=O.O 

+ 

STOP 

0 + 

1=1 0 

157 



I =I 

158 



0 

1=1 

159 



1=1 

160 



EQUIVALENCE 
3 

+ 

161 



+ 

+ 

0 

162 
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INITIALIZE 

HI=0.0002 

E=O.O 

1=0 

M=O 

H=0.0002 

Q=O.O 

N=O 

K=O 

COMPUTE I 

YPO, ZPO 

YQO,ZQO 

YSO,ZSO 

YRO, ZRO,XVSO 

INITIALIZE 2 

WIA =0.0 

W2A=O.O 

W3A=O.O 

FSB=IOOO.O 

THOA= 0.0545 

PHIDA=O.O 

PSIOA=O.O 

THA=0.000022 

PHIA=O.O 

PSIA=O.O 

COMPUTE 2 

WIA, W2A, W3A 

THA, PHIA, PSIA 

THDA, PHIOA, PSIDA 

COMPUTE 3 

VIA, V2A, V3A, VVA, SIA, S2A, S3A, SVA 

OIRCIX, DIRCIY, OIRCIZ, DIRC2X, DIRC2Y, OIRC2Z, 

DIRC3X, DIRC3Y, DIRC3Z, XCMA, YCMA, ZCMA, YYCMA, 

ZZCMA, SQUIGA, ETAA, ZETAA, CHIA, XPA, YPA, 

ZPA, YYPA, ZZPA, XQA, YQA,ZQA, YYQA,ZZQA, 

XSA, YSA, ZSA,YYSA, ZZSA, XVSA,YVSA 
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COMPUTE 4 

FFYA, FSXA, FSYA, FIA 

F2A, F3A, TXA, TVA, TZA, 

TIA, T2A, T3A, POSLEN, 

CARLEN, DIFF, Q, E 

COMPUTE 5 

WIFA, W2FA, W3FA, THFA, PHIFA, PSIFA 

THOFA, PHIDFA, PSIOFA, FIFB, F2FB, F3FB, 

VIFA, V2FA, V3FA, VVFA, SIFA, S2FA, S3FA, 

SVFA, XBUMP, XENTOP, XTAIL, XCMFA, YCMFA, 

ZCMFA, YYCMFA~ ZZCMFA, SQUIFA, ETAFA, 

ZETAFA, CHIFA, XPFA, YPFA, ZPFA, YYPFA, 

ZZPFA, XVPFA, YVPFA, XQFA, YQFA, ZQFA, 

YYQFA, ZZQFA, XRFA, YRFA, ZRFA, YYRFA, 

ZZRFA, XVRFA, YVRFA, E, T 

EQUIVALENCE 

VIS= VIA, V28= V2A, V3B=V3A, WIB=WIA, W2B=W2A, 

W3B= W3A, TIB=TIA, T2B=T2A, T3B=T3A, FIB=FIA, 

F2B=F2A, F3B=F3A, VVB=VVA, THB=THA, PHIB=PHIA, 

PSIB=PSIA, THDB=THOA, PHIOB=PHIOA, PSIDB=PSIOA, 

FSB=FSA, SVB=SVA, XCMB=XCMA, YCMB=YCMA, 

ZCMB=ZCMA 

165 



EQUIVALENCE 2 

VIFB=VIA, V2FB=V2A, V3FB=V3A, SVFB=SVA, 

H=0.0002, Hl=0.0002, E=O.O, XCMFB=XCMA, 

YCMFB=YCMA, ZCMFB=ZCMA, THDFB=THDA, 

PHIOFB=PHIOA, PSIOFB=PSIDA, THFB=THA, 

PHIFB=PHIA, PSIFB=PSIA, WIFB=WIA, W2FB=W2A, 

W3FB=W3A, TF=Q 

EQUIVALENCE 3 

VIFB=VIFA, V2FB=V2FA, V3FB=V3FA, SVFB=SVFA, 

TF=T, THFB=THFA, PHIFB=PHIFA, PSIFB=PSIFA, 

VVFB=VVFA, WIFB=WIFA, W2FB=W2FA, W3FB=W3FA, 

THOFB= THOFA, PHIOFB=PHIOFA, PSIDFB=PSIOFA, 

XCMFB= XCMFA, YCMFB= YCMFA, ZCMFB = ZCMFA, 

SVFB=SVFA 

WRITE I 

ANY OF THE QUANTITIES IN COMPUTE I THROUGH 

COMPUTE 4 

WRITE 2 

ANY OF THE QUANTITIES IN COMPUTE 5 
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