		Technical Report Documentation Page				
1. Report No. FHWA/TX-11/5-5135-01-1	2. Government Accession No.	3. Recipient's Catalog No.				
4. Title and Subtitle		5. Report Date				
IMPLEMENTATION OF THE SO		February 2011				
INTO TEST METHOD TEX-113-E	E: TECHNICAL REPORT	Published: April 2012				
		6. Performing Organization Code				
7. Author(s)		8. Performing Organization Report No.				
Stephen Sebesta and Ross Taylor		Report 5-5135-01-1				
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)				
Texas Transportation Institute						
The Texas A&M University System	1	11. Contract or Grant No.				
College Station, Texas 77843-3135	Project 5-5135-01					
12. Sponsoring Agency Name and Address	13. Type of Report and Period Covered					
Texas Department of Transportation		Technical Report:				
Research and Technology Implement	ntation Office	September 2008–August 2010				
P. O. Box 5080		14. Sponsoring Agency Code				
Austin, Texas 78763-5080						
15. Supplementary Notes	ith the Texas Department of Transpor	tation and the Eadoral Highway				
Administration.	iui ule rexas Department or Transpor	tation and the rederal Highway				
	Soil Compostor Analyzar for Tay 11	2 E				
•	Soil Compactor Analyzer for Tex-11	3-E				
URL: http://tti.tamu.edu/documents	/5-5135-01-1.pdf					
16. Abstract	hanatamy a some sota hasa taat maaimaa	a with an immant harmon				
	boratory aggregate base test specimen					
	ed for compaction characteristics and					
	ain amount of compaction energy, no					
	artment of Transportation (TxDOT) P					
1 5	CA measures the kinetic energy appli					
1 5 /	ystem was modified to control the con	1 ,				
-	pactor when the prescribed amount of					
00	achine operational parameters, such as					
1 · · 1	test results. In this evaluation, the SC					
the compactor, so the prescribed amount of total energy was always applied regardless of machine						

operational parameters. The results showed that while using the current TxDOT-approved SCA to control total energy per lift between 740 and 765 ft-lbf, the number of blows per lift may vary between 45 and 60 with no impact on test results. Finally, this project conducted an interlaboratory study to develop precision statistics of Tex-113-E compaction. This study showed that the SCA enables excellent precision of total compaction energy. Total compaction energy should be repeatable and reproducible within about 27 ft-lbf, or approximately 1 percent of the specification value. Compacted dry density should be repeatable within about 2.5 pounds per cubic foot (pcf) and reproducible within about 3.3 pcf.

17. Key Words					
Tex-113-E, Soil Compactor Analy	zer, Base	18. Distribution Statement			
Compaction, Coge	No restrictions.	No restrictions. This document is available to the			
mpaction Energy, Automatic	public through NTIS:				
Tamper, Lab Compaction			National Technical Information Service		
	Alexandria, Virginia 22312				
	http://www.ntis.g	ov			
19. Security Classification (of this report)	20. Security Classification	on (of this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified		54		

IMPLEMENTATION OF THE SOIL COMPACTOR ANALYZER INTO TEST METHOD TEX-113-E: TECHNICAL REPORT

by

Stephen Sebesta Associate Research Scientist Texas Transportation Institute

and

Ross Taylor Student Technician Texas Transportation Institute

Report 5-5135-01-1 Project 5-5135-01 Project Title: Implementation of the Soil Compactor Analyzer for Tex-113-E

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

February 2011 Published: April 2012

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration (FHWA) or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation. The researcher in charge was Stephen Sebesta.

ACKNOWLEDGMENTS

This project was conducted in cooperation with TxDOT and FHWA. The guidance provided by the project director, Caroline Herrera, P.E., and the input and assistance of Jaime Gandera, P.E., significantly contributed to the success of this project. Finally, the participation of labs in the interlaboratory study is greatly appreciated.

TABLE OF CONTENTS

List of Figures	viii
List of Tables	ix
Executive Summary	1
Chapter 1. Evaluation of Impact Hammer Adjustments on Measured Material Propertie	es 3
Introduction	3
Summary of Experiment	
Material Used in Testing	
Presentation of Results.	4
Summary of Machine Parameters Used.	4
Results from Moisture Density Relationship	5
Results from Dielectric, Modulus, and Strength Tests	7
Conclusions	. 10
Chapter 2. Precision of Tex-113-E Compaction with the SCA	
Summary	. 23
Method for Interlaboratory Study	
Materials Used in ILS	. 23
Results from Interlaboratory Study	. 24
Presentation of Precision Statistics	. 32
Conclusions	. 33
Chapter 3. Conclusions and Recommendations	. 35
Conclusions and Recommendations on Machine Operational Tolerances	. 35
Conclusions and Recommendations from Interlaboratory Study	. 35
Appendix A: Test Report from Flex Base Used in Impact Hammer Adjustments	. 37
Appendix B: Results from Specimens Tested for Impact Hammer Adjustments	. 43
Appendix C: Individual Lab Results from ILS	. 49

LIST OF FIGURES

Figure 1.1. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of	
12.5 ft-lbf and Total Energy per Lift of 750 ft-lbf.	5
Figure 1.2. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 1	15
ft-lbf and Total Energy per Lift of 750 ft-lbf	6
Figure 1.3. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of	
16.7 ft-lbf and Total Energy per Lift of 750 ft-lbf.	6
Figure 1.4. No Difference in Dry Density or Effort Observed among Samples from Different	
Energies per Blow	8
Figure 1.5. Summary of Results from Dielectric Testing.	9
Figure 1.6. Summary of Results from Modulus Testing.	9
Figure 1.7. Summary of Results from Unconfined Strength Testing after Tex-117-E Part II	. 10
Figure 1.8. Summary of Moisture Contents after Strength Testing	. 10
Figure 2.1. Between-Lab Consistency Statistics for Total Compaction Energy.	. 26
Figure 2.2. Within-Lab Consistency Statistics for Total Compaction Energy.	. 27
Figure 2.3. Between-Lab Consistency Statistics for Total Compaction Effort.	. 29
Figure 2.4. Within-Lab Consistency Statistics for Total Compaction Effort.	. 29
Figure 2.5. Between-Lab Consistency Statistics for Dry Density.	. 31
Figure 2.6. Within-Lab Consistency Statistics for Dry Density.	. 32

LIST OF TABLES

Table 1.1. Experimental Design to Investigate Impact of Number of Drops per Lift on Test	
Results	
Table 1.2. Summary of Machine Parameters for Treatments Investigated	5
Table 1.3. Tex-113-E Moisture-Density Results with Varying Energies per Blow	7
Table 1.4. Machine Parameters for Dielectric, Modulus, and Strength Specimens	7
Table 2.1. Summary of Materials Used in Interlaboratory Study.	24
Table 2.2. ILS Worksheet for Total Compaction Energy (ft-lbf)—Groesbeck	25
Table 2.3. ILS Worksheet for Total Compaction Energy (ft-lbf)—Spicewood.	25
Table 2.4. ILS Worksheet for Total Compaction Energy (ft-lbf)-Oklahoma.	26
Table 2.5. ILS Worksheet for Total Compaction Effort (ft-lbf/in ³)—Groesbeck	27
Table 2.6. ILS Worksheet for Total Compaction Effort (ft-lbf/in ³)—Spicewood	28
Table 2.7. ILS Worksheet for Total Compaction Effort (ft-lbf/in ³)—Oklahoma	28
Table 2.8. ILS Worksheet for Dry Density (pcf)—Groesbeck.	30
Table 2.9. ILS Worksheet for Dry Density (pcf)—Spicewood.	30
Table 2.10. ILS Worksheet for Dry Density (pcf)-Oklahoma.	
Table 2.11. Precision Statistics for Total Compaction Energy (ft-lbf) in Tex-113-E	32
Table 2.12. Precision Statistics for Total Compaction Effort (ft-lbf/in ³) in Tex-113-E	33
Table 2.13. Precision Statistics for Sample Dry Density (pcf) after Tex-117-E Part II.	33
Table 2.14. Precision Estimates from Pooled Data	21
Table B.1. Results from Samples Targeting 12.5 ft-lbf per Blow.	45
Table B.2. Results from Samples Targeting 15 ft-lbf per Blow.	46
Table B.3. Results from Samples Targeting 16.7 ft-lbf per Blow.	47
Table C.1. ILS Results from Laboratory 1.	51
Table C.2. ILS Results from Laboratory 2.	52
Table C.3. ILS Results from Laboratory 3.	53
Table C.4. ILS Results from Laboratory 4.	54
Table C.5. ILS Results from Laboratory 5.	55
Table C.6. ILS Results from Laboratory 6.	56

EXECUTIVE SUMMARY

In Test Method Tex-113-E, the Texas Department of Transportation (TxDOT) employs an impact hammer method of sample compaction for laboratory preparation of road base materials for testing. Although the historical Tex-113-E required a certain amount of compaction energy, no method to validate attainment of that energy existed until TxDOT Project 0-5135 developed the Soil Compactor Analyzer (SCA). The SCA measures the kinetic energy applied by each drop of the impact hammer. In this implementation project, the research team modified the SCA to not only measure the compaction energy, but also to control the automatic tamper and stop the machine upon attainment of the prescribed energy per lift. Fifteen SCA units with machine control capability were delivered to TxDOT in this implementation project. Additionally, the 12 SCA units delivered to TxDOT in prior Project 0-5135 were retrofitted with machine control capability in this implementation project, yielding 27 SCA systems in TxDOT with machine control capability.

As TxDOT prepared to officially implement the SCA into Test Method Tex-113-E, the researchers also investigated the influence of changing machine operational parameters on test results while using the SCA to maintain the prescribed amount of energy per lift. Machine operational parameters include the hammer weight, drop height, and number of drops per lift. Varying the hammer weight and drop height will result in different energies per drop, which results in a different number of drops per lift to attain the prescribed energy. In this project, parameters were varied to perform test series with average energies per drop between approximately 12.5 and 16.7 ft-lbf, which resulted in a range of 45 to 60 drops per lift. Tests investigated included the moisture-density relationship; the dielectric constant and seismic modulus, both at the time of molding and after Tex-117-E Part II conditioning; the unconfined compressive strength (UCS) per Tex-117-E Part II; and the moisture content after compressive strength testing. The results showed that while using the current TxDOT-approved SCA to control total energy per lift between 740 and 765 ft-lbf, the number of blows per lift may vary between 45 and 60 with no impact on test results.

As a final stage in this project, an interlaboratory study was conducted to develop precision statistics for Tex-113-E compaction. This study showed that the SCA enables excellent precision of total compaction energy. Total compaction energy should be repeatable and reproducible within about 27 ft-lbf, or approximately 1 percent of the specification value. Compacted dry density should be repeatable within about 2.5 pounds per cubic foot (pcf) and reproducible within about 3.3 pcf.

CHAPTER 1. EVALUATION OF IMPACT HAMMER ADJUSTMENTS ON MEASURED MATERIAL PROPERTIES

INTRODUCTION

With TxDOT's recent inclusion of the SCA in Tex-113-E, labs can now control and obtain the required amount of total energy applied to each lift during compaction of flexible base test specimens. The current Tex 113-E requires 750 ft-lbf per lift to be reached within 50 ± 5 blows of a 10 ± 0.02 lb hammer. To investigate these tolerances, researchers at the Texas Transportation Institute (TTI) employed a Grade 2 flexible base and systematically varied the automatic tamper's drop height and weight to yield blows per lift during sample fabrication ranging from 45 to 60 while still maintaining a total energy per lift of approximately 750 ft-lbf. Test series with three different target numbers of blows per lift were conducted. The results showed that while using the current TxDOT-approved SCA to control total energy per lift between 740 and 765 ft-lbf, the number of blows per lift may vary between 45 and 60 with no impact on test results. Tests investigated included the moisture-density relationship from Tex-113-E; the dielectric constant and seismic modulus, both at the time of molding and after Tex-117-E Part II conditioning; the UCS per Tex-117-E Part II; and the moisture content after compressive strength testing.

Kinetic energy during compaction with the automatic tamper used in Tex-113-E is most effectively increased by obtaining increases in the impact velocity. With the tampers used in TxDOT, this is best accomplished through decreasing friction losses as much as possible and increasing the drop height. If additional adjustment is necessary to obtain the prescribed total energy per lift within 45 and 60 blows, adding weight to the hammer is the next step to take.

SUMMARY OF EXPERIMENT

Table 1.1 presents the experiment used to investigate energy tolerances and drop height adjustments. In essence, the experiment was designed to use varying hammer drop heights and hammer weights to obtain the different target energies per blow. These different energies per blow in turn result in the different levels of target number of blows per lift while maintaining the total sample compaction energy requirement of 750 ft-lbf per lift.

Target Average Impact Energy per Blow (ft-lbf)	Target Number of Drops per Lift	Tests Performed in Triplicate for Each Target Level
12.5	60	 Tex-113-E moisture-density relationship. Compressive strength at 0 psi lateral pressure
15.0	50	(Tex-117-E Part II).
16.7	45	 Dielectric constant at molding and immediately before breaking. Seismic modulus at molding and immediately before breaking. Moisture content after breaking.

Table 1.1. Experimental Design to Investigate Impact of Number of Dropsper Lift on Test Results.

MATERIAL USED IN TESTING

For these tests, researchers used a Grade 2 base from the Vulcan Groesbeck pit. Appendix A presents the TxDOT test report from the material used.

PRESENTATION OF RESULTS

Appendix B presents the results from the specimens tested. In summary, the results revealed that when the target compaction energy was controlled by the current TxDOT-approved SCA and achieved within 45 to 60 drops per lift:

- No statistical difference existed in the maximum dry density or optimum water content.
- No statistical difference existed in the dielectric constant at time of molding or after Tex 117-E Part II conditioning.
- No statistical difference existed in the seismic modulus at the time of molding or after Tex 117-E Part II conditioning.
- No statistical difference existed in the unconfined compressive strength after Tex-117-E Part II conditioning.
- The moisture content after breaking was less with specimens compacted at average energies of 16.7 ft-lbf per drop (i.e., samples only requiring 45 blows to reach the target energy per lift). Although statistically significant, in terms of performance this difference is insignificant since the mean strengths did not differ among the treatments.

SUMMARY OF MACHINE PARAMETERS USED

Table 1.2 summarizes the machine parameters and average effort applied for each treatment. The research team tested a total of 45 specimens (15 for each treatment). The desired range of blows per lift and average energy per blow were obtained while maintaining efforts within the range implied in TxDOT's allowable tolerances on sample height. The average drop height of

18.6 inches when targeting 16.7 ft-lbf per blow was obtained by maximizing the distance between the engager and the releaser body on the automatic tamper (i.e., with this particular tamper, that drop height was the maximum drop height attainable).

Target Energy per Blow (ft-lbf)	Hammer weight used (Ib)	AVG # blows per lift	AVG Drop Ht (in.)	AVG Energy per blow (ft-lbf)	AVG Total Energy per Lift (ft-lbf)	AVG Effort (ft-lbf/in3)
12.5	10.31	61	16.2	12.4	750.7	13.3
15	11.04	52	18	14.6	751.3	13.6
16.7	12.21	45	18.6	16.8	759.2	13.2

Table 1.2. Summary of Machine Parameters for Treatments Investigated.

RESULTS FROM MOISTURE DENSITY RELATIONSHIP

Figures 1.1–1.3 illustrate the moisture-density relationships measured in triplicate for the three target energies per blow. Table 1.2 showed these target energies per blow were 12.5, 15, and 16.7 ft-lbf while maintaining total compaction energy of 750 ft-lbf per lift. Since each moisture-density curve requires 4 samples, a total of 36 samples were required to generate these data. Appendix B presents the entirety of each sample's results in the column labeled "113-E Moisture-Density Samples."

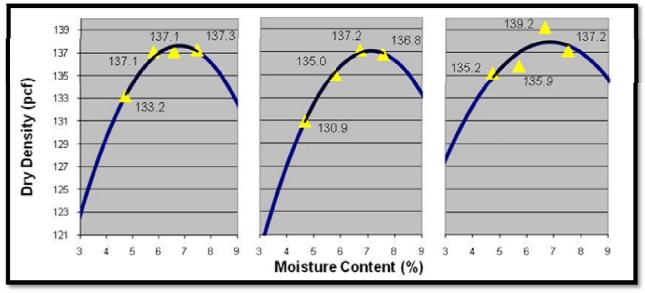


Figure 1.1. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 12.5 ft-lbf and Total Energy per Lift of 750 ft-lbf. Left to right: Replicate 1, 2, and 3

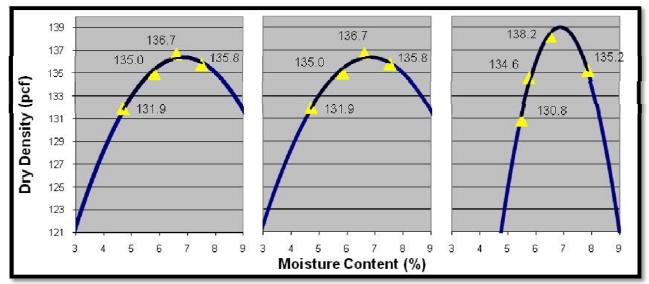
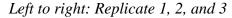



Figure 1.2. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 15 ft-lbf and Total Energy per Lift of 750 ft-lbf.

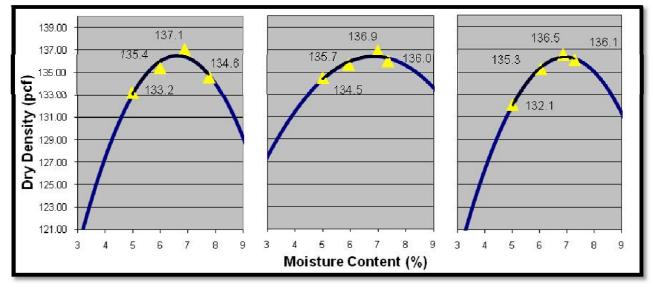


Figure 1.3. Triplicate Moisture-Density Curves for Samples Molded at Energies per Blow of 16.7 ft-lbf and Total Energy per Lift of 750 ft-lbf.

Left to right: Replicate 1, 2, and 3

Each replicate in Figures 1.1–1.3 generated optimum moisture content (OMC) and maximum dry density output using TxDOT's approved Tex-113-E spreadsheet. Table 1.3 summarizes these OMC and maximum dry density results from each replicate. The data suggest, and statistical tests confirm, that no significant difference in the average maximum dry density or optimum water content existed among the treatments. So long as the SCA was used to control the compaction energy at 750 ft-lbf per lift, the optimum moisture and max density were statistically equivalent regardless of whether the average energy per blow was 12.5, 15, or 16.7 ft-lbf.

	1	12.5 ft-lbf p	er blow	15 ft-lbf per blow			16.7 ft-lbf per blow		
Replicate	Max Density (pcf)	OMC (%)	AVG Total Energy per Sample (ft-Ibf)	Max Density (pcf)	OMC (%)	AVG Total Energy per Sample (ft-lbf)	Max Density (pcf)	OMC (%)	AVG Total Energy per Sample (ft-lbf)
1	137.6	6.8	3002	138.7	7	3000	136,5	6,6	3034
2	137.1	7.1	2997	136.4	6.8	2991	136.5	6.8	3036
3	138	6.8	3025	139	6.9	3023	136,3	6.9	3036
AVG	137.6	6.9	3008.0	138.0	6.9	3004.7	136.4	6.8	3035.3

Table 1.3. Tex-113-E Moisture-Density Results with Varying Energies per Blow.

RESULTS FROM DIELECTRIC, MODULUS, AND STRENGTH TESTS

To evaluate the potential impact of the different energy treatments on the dielectric, modulus, and strength tests, specimens were made at each treatment level while targeting the appropriate average maximum density and optimum water content from Table 1.3. The dielectric and modulus tests were performed on the same specimens used for strength testing. Table 1.4 presents the machine parameters from these tests; the results are the average of three replicates per target energy level. Appendix B presents the entirety of each sample's results in the column labeled "Test Samples at 113-E Optimum."

Table 1.4. Machine Parameters for Dielectric, Modulus, and Strength Specimens.

Target Energy per Blow (ft-lbf)	Hammer weight (Ib)	AVG # blows per lift	AVG Drop Ht (in.)	AVG Energy per blow (ft-lbf)	Avg Effort (ft-lbf/in3)
12.5	10.31	59	17.2	12.8	13.4
15	11.04	52	18.2	14.6	13.45
16.7	12.21	45	18.6	16.9	13.45

Figure 1.4 illustrates, and statistical tests confirm, that no difference in mean sample dry density or compaction effort existed among the specimens compacted at the different energies per blow for the dielectric, modulus, and strength testing experiments. This is important since varying efforts could potentially impact density, which in turn could impact modulus and strength.

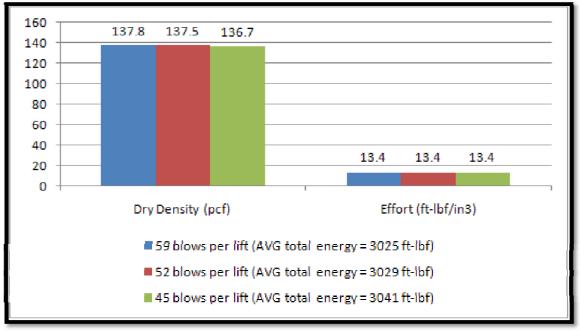


Figure 1.4. No Difference in Dry Density or Effort Observed among Samples from Different Energies per Blow.

Note: Each result is the average of three specimens. No significant difference exists among means.

Figures 1.5 through 1.8 illustrate that no statistically significant differences existed among the means for dielectric, seismic modulus, or compressive strength at 0 psi lateral pressure per Tex-17-E Part II. Figure 1.8 presents the moisture content results after breaking, which showed specimens prepared with 45 blows per lift had average water content 0.2 percentage points lower than the other treatments. This observation was deemed unimportant from a performance standpoint, since no differences in modulus or strength were observed.

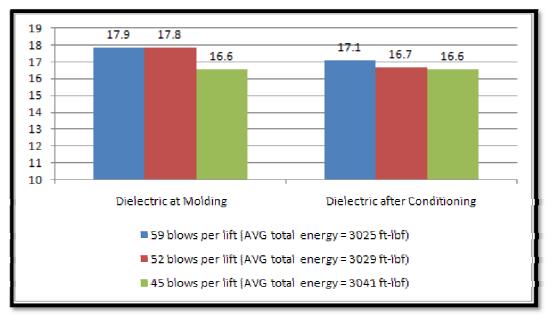


Figure 1.5. Summary of Results from Dielectric Testing.

Note: Each result is the average of three specimens. No significant difference exists among means.

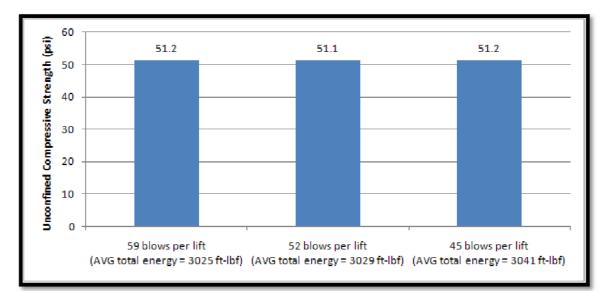
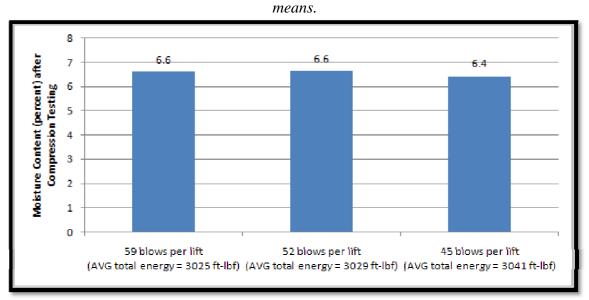




Figure 1.6. Summary of Results from Modulus Testing.

Note: Each result is the average of three specimens. No significant difference exists among means.

Figure 1.7. Summary of Results from Unconfined Strength Testing after Tex-117-E Part II. Note: Each result is the average of three specimens. No significant difference exists among

Note: Each result is the average of three specimens. Mean water content after conditioning from specimens with 45 blows per lift was lower than other treatments.

CONCLUSIONS

The data show the range of blows per lift in Tex-113-E can vary from at least 45 to 60 as long as the total energy per lift is controlled by the SCA to average approximately 750 ft-lbf. In the experiment conducted to determine this finding, the total energy per lift was always between 740 and 765 ft-lbf. When achieving this energy per lift with no less than 45 and no more than 60 blows, no differences in important test results, such as maximum dry density, optimum water content, dielectric constant, seismic modulus, or unconfined compressive strength, existed.

CHAPTER 2. PRECISION OF TEX-113-E COMPACTION WITH THE SCA

SUMMARY

With the implementation of the SCA into Test Method Tex-113-E, TxDOT desired to determine if the precision of the test method improved. To facilitate answering this question, an interlaboratory study was conducted to develop precision statistics for both the applied total compaction energy and effort, and for important measured sample properties including moisture content and specimen dry density. The end of this chapter presents precision statements for each of these parameters. The results show excellent precision of total compaction energy when the SCA is used to control the compactor. Total compaction energy should be repeatable and reproducible within 30 ft-lbf, or approximately 1 percent of the specification value. Compacted dry density should be repeatable within 2 to 3 pounds per cubic foot and reproducible within 3 to 4 pcf.

METHOD FOR INTERLABORATORY STUDY

To develop precision statistics for Tex-113-E compaction, TTI researchers followed American Society for Testing and Materials (ASTM) E691-09. With the help of TxDOT, the participation of six laboratories was obtained. Next, three materials were selected for use in the experiment. These are the minimum participatory and testing requirements for conducting an interlaboratory study (ILS) per E691-09.

To gather the necessary data, the research team recombined samples from each of the materials and delivered three samples of each material to each participating lab. The laboratories then:

- Molded the samples at the provided optimum moisture content.
- Dried the samples and determined sample compacted dry density.
- Reported the compaction energy and density results to TTI.

MATERIALS USED IN ILS

In conjunction with the TxDOT project director, two limestones and one sandstone base were selected for use in the interlaboratory study. Table 2.1 summarizes the key properties of the materials reconstituted for distribution to the participating laboratories.

		Groesbeck Spicewood Oklahoma					
		Groesbeck	Spicewood	Oklahoma			
Dry Screen Gradation Cumulative Percent Retained	1 3/4	2.5	0.0	0.0			
e l ne	1 1/4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0				
Screen adation nulative t Retain	7/8	29.2	15.9	11.6			
Sci dat nula t R.	5/8	41.0	26.9	28.9			
Jry Gra Jum	3/8	54.7	42.1	44.1			
D C C	#4	66.8	59.3	61.5			
<u>д</u>	#40	89.3	95.3	81.5			
Plasticity Index		2*	7	6			
Wet Ball Mill V	Value	40	24	36			
Percent Soil Bin	nder Increase	16	6	10			
Molding Moist	are (Tex-113-E Optimum)	6.9	5.4	7.6			

Table 2.1. Summary of Materials Used in Interlaboratory Study.

*Calculated from linear shrinkage.

RESULTS FROM INTERLABORATORY STUDY

Appendix C presents reported data by testing laboratory. The following sections present the worksheets and consistency evaluation for the parameters evaluated. These parameters included:

- Total compaction energy.
- Total compaction effort.
- Sample dry density.

In this ILS, with the number of labs and number of replicates, the critical value of the betweenlab consistency statistic h was 1.92, and the critical value of the within-lab consistency statistic kwas 1.98. Data generating consistency statistics exceeding these values were investigated for possible sources of error.

Calculation and Display of Statistics—Total Compaction Energy

Tables 2.2–2.4 present each lab's data and the ILS worksheet for the measured total compaction energy. Figures 2.1 and 2.2 present the between-lab consistency statistic, h, and the within-lab consistency statistic, k, for these data. No problematic patterns were observed in the consistency statistics, and no consistency statistic exceeded the critical value.

		Sample						
Lab	1	2	3	x _{bar}	s	d	h	k
1	3023.16	3032.44	*	3027.80	6.56	3.04	0.48	0.63
2	3017.43	3034.27	2995.33	3015.68	19.53	-9.08	-1.44	1.88
3	3031.28	3031.61	3037.05	3033.31	3.24	8.56	1.36	0.31
4	3014.39	3022.75	3022.8	3019.98	4.84	-4.78	-0.76	0.47
5	3034.335	3021.4	*	3027.87	9.15	3.11	0.49	0.88
6	3035.69	3019.35	3016.66	3023.90	10.30	-0.86	-0.14	0.99
			X _{barbar}	3024.76				
*not te	*not tested due to		S _{xbar}	6.30				
sample damage		s _r	10.39					
			(s _r)*	10.57				

 Table 2.2. ILS Worksheet for Total Compaction Energy (ft-lbf)—Groesbeck.

 Table 2.3. ILS Worksheet for Total Compaction Energy (ft-lbf)—Spicewood.

	Sample						_	
Lab	1	2	3	X bar	s	d	h	k
1	3028.21	3019.16	3045.63	3031.00	13.45	6.54	1.30	1.50
2	3025.36	3032.06	3016.49	3024.64	7.81	0.17	0.03	0.87
3	3033.85	3022.51	*	3028.18	8.02	3.72	0.74	0.89
4	3006.88	3024.14	3022.59	3017.87	9.55	-6.59	-1.31	1.06
5	3022.79	3010.16	3025.29	3019.41	8.11	-5.05	-1.00	0.90
6	3023.57	3022.59	3030.88	3025.68	4.53	1.22	0.24	0.50
			X _{barbar}	3024.463				
*Not tes	*Not tested due to		S _{xbar}	5.040589				
sample prep error		Sr	8.979374					
			(s _r)*	8.897208				

		Sample						
Lab	1	2	3	X _{bar}	S	d	h	k
1	3026.96	3020.14	3011.80	3019.63	7.59	-6.91	-1.13	0.82
2	3034.71	3038.00	3030.67	3034.46	3.67	7.91	1.29	0.40
3	3029.24	3038.46	3031.31	3033.00	4.84	6.46	1.06	0.52
4	3025.74	3015.02	3027.91	3022.89	6.90	-3.66	-0.60	0.74
5	3031.00	3015.45	3019.37	3021.94	8.09	-4.61	-0.75	0.87
6	3025.58	3010.71	3045.75	3027.35	17.59	0.80	0.13	1.89
			x _{barbar}	3026.546				
			S _{xbar}	6.121048				
			s _r	9.281308				
			(s _r)*	9.741442				

 Table 2.4. ILS Worksheet for Total Compaction Energy (ft-lbf)—Oklahoma.

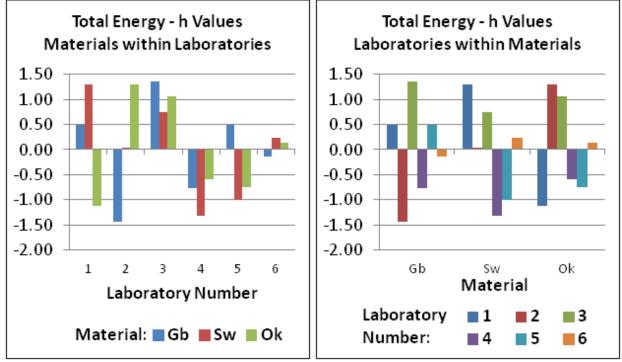


Figure 2.1. Between-Lab Consistency Statistics for Total Compaction Energy.

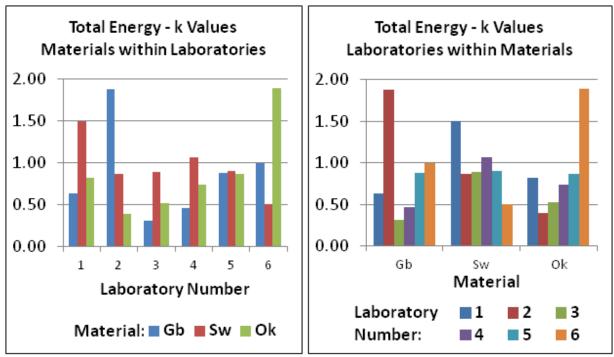


Figure 2.2. Within-Lab Consistency Statistics for Total Compaction Energy.

Calculation and Display of Statistics—Total Compaction Effort

Tables 2.5–2.7 present each lab's data and the ILS worksheet for the measured total compaction effort. Figures 2.3 and 2.4 present the between-lab consistency statistic, h, and the within-lab consistency statistic, k, for these data. No problematic patterns were observed in the consistency statistics, and no consistency statistic exceeded the critical value.

	Sam	ple ft-lb	f/in3					
Lab	1	2	3	x _{bar}	S	d	h	k
1	13.27	13.36	*	13.32	0.06	0.11	0.90	0.57
2	13.17	13.20	12.97	13.11	0.13	-0.09	-0.71	1.18
3	13.02	13.07	12.96	13.02	0.06	-0.19	-1.49	0.55
4	13.28	13.39	13.38	13.35	0.06	0.15	1.18	0.57
5	13.22	13.16	*	13.19	0.04	-0.02	-0.12	0.38
6	13.26	13.02	13.42	13.23	0.20	0.03	0.24	1.87
			X _{barbar}	13.203				
*not teste	*not tested due to			0.1252				
sample da	sample damage			0.1067				
			(s _r)*	0.1526				

 Table 2.5. ILS Worksheet for Total Compaction Effort (ft-lbf/in³)—Groesbeck.

		Sample						
Lab	1	2	3	x _{bar}	s	d	h	k
1	13.57	13.57	13.64	13.59	0.04	0.06	0.48	0.30
2	13.73	13.41	13.60	13.58	0.16	0.05	0.36	1.25
3	13.46	13.41	*	13.44	0.04	-0.09	-0.73	0.31
4	13.75	13.77	13.67	13.73	0.05	0.20	1.57	0.41
5	13.66	13.46	13.29	13.47	0.19	-0.06	-0.49	1.43
6	13.37	13.20	13.57	13.38	0.19	-0.15	-1.19	1.43
			x _{barbar}	13.53099				
*Not teste	*Not tested due to			0.129047				
sample prep error			s _r	0.129985				
			(s _r)*	0.167084				

 Table 2.6. ILS Worksheet for Total Compaction Effort (ft-lbf/in³)—Spicewood.

 Table 2.7. ILS Worksheet for Total Compaction Effort (ft-lbf/in³)—Oklahoma.

		Sample						
Lab	1	2	3	x _{bar}	s	d	h	k
1	13.42	13.01	13.54	13.32	0.28	-0.06	-0.25	1.82
2	13.52	13.54	13.53	13.53	0.01	0.15	0.67	0.09
3	13.23	13.23	13.25	13.24	0.01	-0.14	-0.64	0.04
4	13.83	13.77	13.69	13.76	0.07	0.38	1.72	0.45
5	13.09	13.27	13.27	13.21	0.11	-0.17	-0.77	0.69
6	13.05	13.15	13.47	13.22	0.22	-0.16	-0.72	1.41
			x _{barbar}	13.3808				
			s _{xbar}	0.22271				
			s _r	0.15388				
			(s _r)*	0.25571				

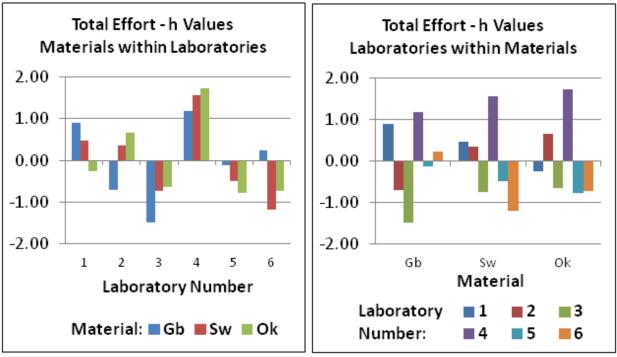


Figure 2.3. Between-Lab Consistency Statistics for Total Compaction Effort.

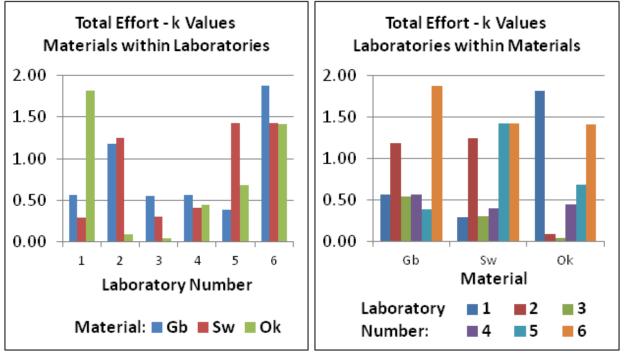


Figure 2.4. Within-Lab Consistency Statistics for Total Compaction Effort.

Calculation and Display of Statistics—Sample Dry Density

Tables 2.8–2.10 present each lab's data and the ILS worksheet for molded sample dry density. Figures 2.5 and 2.6 present the between-lab consistency statistic, h, and the within-lab consistency statistic, k, for these data. While no problematic patterns were observed in the consistency statistics, the k within-lab consistency statistic for lab 6 exceeded the critical value. The data were examined, and no procedural or tabulation errors were discovered, so the data were retained for use in the tabulation of the precision statistics.

		Sample						
Lab	1	2	3	x _{bar}	S	d	h	k
1	137.00	136.30	*	136.65	0.49	0.79	1.21	0.50
2	136.90	136.90	136.00	136.60	0.52	0.74	1.13	0.52
3	135.60	135.50	134.10	135.07	0.84	-0.80	-1.22	0.84
4	135.30	135.60	135.20	135.37	0.21	-0.50	-0.76	0.21
5	135.59	135.60	*	135.60	0.01	-0.27	-0.41	0.01
6	135.81	133.78	138.12	135.90	2.17	0.04	0.06	2.18
			x _{barbar}	135.864				
*not test	ed due to)	S _{xbar}	0.65061				
sample damage			s _r	0.99809				
			(s _r)*	1.0428				

Table 2.8. ILS Worksheet for Dry Density (pcf)—Groesbeck.

Table 2.9. ILS Worksheet for Dry Density (pcf)—Spicewood.

		Sample						
Lab #	1	2	3	x _{bar}	s	d	h	k
1	149.50	149.70	149.20	149.47	0.25	0.92	0.70	0.39
2	150.10	150.50	149.90	150.17	0.31	1.62	1.24	0.47
3	149.00	148.70	*	148.85	0.21	0.30	0.23	0.33
4	149.00	148.50	147.50	148.33	0.76	-0.22	-0.17	1.19
5	148.90	148.20	147.20	148.10	0.85	-0.45	-0.35	1.33
6	146.38	145.40	147.37	146.38	0.99	-2.17	-1.66	1.53
			x _{barbar}	148.55				
*Not teste	*Not tested due to			1.302903				
sample pr	sample prep error		S _r	0.643588				
				1.404882				

		Sample						
Lab	1	2	3	X _{bar}	5	d	h	k
1	136.10	136.20	136.20	136.17	0.06	0.06	0.09	0.06
2	136.30	136.40	135.00	135.90	0.78	-0.21	-0.30	0.82
3	135.50	136.20	136.70	136.13	0.60	0.03	0.04	0.63
4	137.30	138.00	136.80	137.37	0.60	1.26	1.84	0.63
5	133.70	136.70	136.70	135.70	1.73	-0.41	-0.59	1.81
б	134.14	135.99	135.99	135.37	1.07	-0.73	-1.07	1.12
			X _{barbar}	136.11				
			s _{xbar}	0.6838				
			s _r	0.9558				
			(s _r)*	1.0376				

Table 2.10. ILS Worksheet for Dry Density (pcf)—Oklahoma.

Figure 2.5. Between-Lab Consistency Statistics for Dry Density.

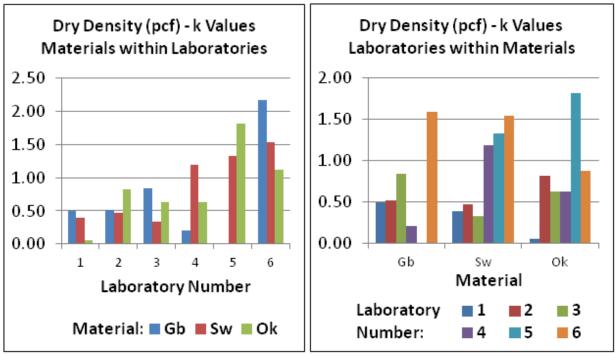


Figure 2.6. Within-Lab Consistency Statistics for Dry Density.

PRESENTATION OF PRECISION STATISTICS

Based upon the ILS worksheets in Tables 2.2–2.10, the precision statistics for total compaction energy, total compaction effort, and sample dry density are presented in Tables 2.11 through 2.13. The results suggest:

- Total compaction energy applied in Tex-113-E with the SCA exhibits excellent precision. The specification total compaction energy is 3000 ft-lbf. Both the repeatability and reproducibility limit are around 30 ft-lbf, or about 1 percent of the specification value.
- Total compaction effort exhibits good precision, with repeatability and reproducibility limits typically between 0.3 and 0.5 ft-lbf/in³, or approximately 5 percent of the specification value.
- Density should be repeatable within 2 to 3 pcf and reproducible within 3 to 4 pcf.

Material	X bar	S _{xbar}	Sr	S _R	r	R
Groesbeck	3024.8	6.30	10.39	10.57	29.10	29.58
Spicewood	3024.5	5.04	8.98	8.89	25.14	25.14
Oklahoma	3026.6	6.12	9.28	9.74	25.98	27.23

Table 2.11. Precision Statistics for Total Compaction Energy (ft-lbf) in Tex-113-E.

I dole Iti		otatistics for 1	i otai Compac		, 101/111) 111 1 (
Material	X bar	S _{xbar}	Sr	S _R	r	R
Groesbeck	13.20	0.125	0.107	0.153	0.299	0.427
Spicewood	13.53	0.129	0.130	0.167	0.364	0.468
Oklahoma	13.38	0.223	0.154	0.256	0.431	0.716

Table 2.12. Precision Statistics for Total Compaction Effort (ft-lbf/in³) in Tex-113-E.

Table 2.13. Precision Statistics for Sample Dry Density (pcf) after Tex-117-E Part II.

Material	X bar	S _{xbar}	Sr	S _R	r	R
Groesbeck	135.9	0.65	1.00	1.04	2.79	2.91
Spicewood	148.6	1.30	0.64	1.40	1.80	3.93
Oklahoma	136.1	0.68	0.96	1.04	2.68	2.90

While ASTM E 691 does not call for pooling data from different materials to determine globallyapplicable precision estimates, for purposes of provided a single numeric precision estimate to TxDOT the research team determined the pooled repeatibility and reproducibility standard deviations. These pooled standard deviations allow for estimating a single repeatibility and reproducibility limit as Table 2.14 presents.

Table 2.14. I recision Estimates non robed Data.								
	Energy (ft-lbf)	Effort (ft-lbf/in ³)	Dry Density (pcf)					
Repeatability Limit	26.80	0.368	2.46					
Reproducibility Limit	27.32	0.552	3.29					

Table 2.14. Precision Estimates from Pooled Data.

CONCLUSIONS

The SCA addresses equipment variability during the sample fabrication process, and this interlaboratory study demonstrated that the SCA provides excellent precision in the application of compaction energy during that process. With the implementation of the SCA, TxDOT should generally expect the total compaction energy among samples to differ by no more than 27 ft-lbf. Additionally, the compacted dry density of samples constructed with Tex-113-E compaction should generally be repeatable within about 2.5 pcf and reproducible within about 3.3 pcf.

CHAPTER 3. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS AND RECOMMENDATIONS ON MACHINE OPERATIONAL TOLERANCES

Many factors in the stages of sample fabrication, conditioning, and testing can impact the precision of strength results in Tex-117-E Part II. Since this test method is a specification requirement in Item 247, achieving the most homogenous compaction is in the best interest of producers, contractors, and the state. This project focused on homogenizing the application of compaction energy during the sample fabrication process. The impact of varying hammer weights and drop heights, while the Soil Compactor Analyzer controlled compaction to apply between 740 to 760 ft-lbf total energy per lift, was evaluated with a particular focus on:

- Moisture-density relationship.
- Molded specimen dry density when molded at Tex-113-E optimum.
- Specimen dielectric constant immediately after molding and after Tex-117-E Part II conditioning.
- Seismic modulus immediately after molding and after Tex-117-E Part II conditioning.
- Unconfined compressive strength after Tex-117-E Part II.
- Percent moisture after Tex-117-E Part II.

The results showed that while using the current TxDOT-approved SCA to control total energy per lift between 740 and 765 ft-lbf, the number of blows per lift may vary between 45 and 60 with no impact on important test results. TxDOT should require the prescribed amount of energy to be obtained within this number of blows per lift.

CONCLUSIONS AND RECOMMENDATIONS FROM INTERLABORATORY STUDY

As a final stage in this project, an interlaboratory study was conducted to develop precision statistics for total compaction energy, total compaction effort, and specimen dry density when molded at Tex-113-E optimum. These results showed that the SCA enables excellent precision of total compaction energy and good precision of total compaction effort. TxDOT should generally expect the total compaction energy among samples constructed with Tex-113-E to differ by no more than 27 ft-lbf and incorporate that precision information into the test procedure.

The dry density of replicate samples constructed at optimum water content within a single lab should generally not vary by more than 2 to 3 pcf, with 2.5 pcf representing the pooled repeatability limit. The dry density of replicate samples compacted at different labs should generally not vary by more than 3 to 4 pcf, with 3.3 pcf representing the pooled reproducibility limit. The precision statement for dry density should be added to the Tex-113-E test procedure.

APPENDIX A: TEST REPORT FROM FLEX BASE USED IN IMPACT HAMMER ADJUSTMENTS

Datasak Masterak

TEXAS DEPARTMENT OF TRANSPORTATION

ATTERBERG LIMITS Tex-104-E, Tex-105-E, Tex-106-E

	85					Hate Version; (08/17/09 11:35:1
	SAMPLE ID:			SAI	MPLED DATE:	03/04/2010	
TE	ST NUMBER:			LE	TTING DATE:		
SAM	PLE STATUS:			CONTR	ROLLING CSJ:	0458-03-015	
		FREESTONE			SPEC YEAR:		Selicular Street
	SAMPLED BY:				SPEC ITEM:		
CALIDI	SAMPLED D1:	STKPL#01-10		ODEOIA		241	alara a
		and the second sec		SPECIAL	PROVISION:	Accession of the Array	est of a second of
	ERIAL CODE:				GRADE:	2	-90-1-12-12-
MAT	'ERIAL NAME:				<u> </u>		
	PRODUCER:						
ARE	A ENGINEER:			PROJEC	T MANAGER:		
	OURSEVENTS	Contraction of the second	STATION:		08	ST. FROM CL:	I
	oonseier n		A REAL PROPERTY OF THE PARTY OF THE PARTY.	-	- Dis	ST. FROM OF.	
	Dish No.	Mass of Wet Sample + Tare (g)	Liquid Limit Mass of Dry Sample + Tare (g)	Tare Mass (g)	Moisture Content (%)	Number of Blows	Liquid Limi (%)
1	10.093042943	ABAN 201888	THE REPORT OF	教授的主要ではそれ、		3573438434	
		5	Plastic Limit	- Tex-105-E	8 a.	Liquid Limit	
	Dish No.	Mass of Wet Sample + Tare (g)		Tare Mass (g)	Mass of Water (g)	Plastic Limit (%)	
1		34.13	31.94	16.65	2.19	14	
		34,13	31,84	10.03	<u>z.</u> 18 .	14	
2		DISTORT CONTRACTO	2214002302500				
3	1112(20)5202030	Street Court M	ean ceangéar	CANKIN PRODUCT	Diama di Allanda		
					Plastic Limit	14	
			Plasticity Inde	ix - Tex-106-E		1 dia 1	
	Plasticity	Index Calcula	ted from Lines	ar Shrinkane:	*See Note	1	
					A REAL PROPERTY AND ADDRESS AND ADDRESS ADDRES		
	Use Bar Lin	ear Shrinkage t	to Calculate Pla	isticity Index?	Yes		
	1.1	Test Tx16	07 Test Numbe	er Reference:	10-074		
	ee Test Tx107	Test Nbr (10-0	74) - Bar Linea	r Shrinkage A	ssociated to thi	s Sample for P	lasticity Index
	ee Test Tx107	Test Nbr (10-0	74) - Bar Linea	r Shrinkage A	ssociated to thi	s Sample for P	lasticity Inde
Remarks:	ee Test Tx107	Test Nbr (10-0	74) - Bar Linea	r Shrinkage A	ssociated to thi	s Sample for P	lasticity Inde
Remarks: Test Method: TX104		Tested By:		Tested Date:	ssociated to thi	s Sample for P	lasticity Inde
Remarks: Test Method: TX104 TX105	TERRY GREE	Tested By:		Tested Date: 03/18/10	ssociated to thi	s Sample for P	lasticity Inde
Remarks: Test Method TX104 TX105 TX106	TERRY GREE	Tested By:		Tested Date: 03/18/10 03/18/10]	s Sample for P	lasticity Inde
Remarks: Test Method: TX104 TX105 TX106	TERRY GREE	Tested By:		Tested Date: 03/18/10]	s Sample for P	lasticity Inde
Remarks: Test Method: TX104 TX105 TX106 Test Stamp Code	TERRY GREE	Teeted By: EN	Omit Tost:	Tested Date: 03/18/10 03/18/10]	a Sample for P	lasticity Inde
Remarks: Test Method: TX104 TX105 TX106 Test Stamp Code	TERRY GREE	Tested By: EN EN		Tested Date: 03/18/10 03/18/10]	a Sample for P	lasticity Inde
Remarks: Test Method TX104 TX105	TERRY GREE	Teeted By: EN	Omit Tost:	Tested Date: 03/18/10 03/18/10]	a Sample for P	lasticity Inde

stockpile 01-10 FM80 Freestone Co.10-074 Tx117-2.xls 1 of 1

3/23/2010

TEXAS DEPARTMENT OF TRANSPORTATION

BAR LINEAR SHRINKAGE

TEX-107-E

Refresh Workbook	2	1EX-107-E	File Version: 08/26/09 22:36:38
SAMPLE ID:		SAMPLED DATE:	03/04/2010
TEST NUMBER:	10-074	LETTING DATE:	
SAMPLE STATUS:		CONTROLLING CSJ:	0456-03-015
COUNTY:	FREESTONE	SPEC YEAR:	2004
\$AMPLED BY:		SPEC ITEM:	247
SAMPLE LOCATION:	STKPL#01-10	SPECIAL PROVISION:	 Service and the service of the service
MATERIAL CODE:		MIX TYPE / GRADE:	2
MATERIAL NAME:		-	the second s
PRODUCER:	VULCAN		
AREA ENGINEER:		PROJECT MANAGER:	
COURSE\LIFT:	STATI	ION:	DIST. FROM CL:

Bar Linear Shrinkage - Tex-107-E

Unit	Initial Length (percent)	Final Length (percent)	Linear Shrinkage	
percent	100	99	- 1.0	

1.6

Calculate Plasticity Index from Bar Linear Shrinkage? Yes

Plasticity Index Calculated from Linear Shrinkage:

Remarks:				
ROUNDS	UP	TO.	A 2.	0 PI
\$\$\$\$\$\$\$\$\$\$.5;14	2.0	2645	0.00	2.22

lest Method:		Tested B)	с -	Tested Date:		
FX107	TERRY G	REEN	영화 작 화가가?	03/18/10		
fest Stamp Co	xde:		Omit Test:	Completed Date:	Reviewed By:	
on paragraph () in the	an Carrie	0040543799343		2월 값값은 소설했는		
.ocked By:	TxDOT:	District:	Area:			

stockpile 01-10 FM80 Freestone Co.10-074 Tx117-3.xlsof 1

3/23/2010

TEXAS DEPARTMENT OF TRANSPORTATION

PARTICLE SIZE ANALYSIS Tex-110-E

Refresh Workbook	-	Tex-11	10-E		File Version: 10/06/09 11:04:06
SAMPLE ID:			SAN	(PLED DATE:	03/04/2010
TEST NUMBER:	10-074		LE	TTING DATE:	
SAMPLE STATUS:			CONTR	OLLING CSJ:	0456-03-015
COUNTY:	FREESTONE			SPEC YEAR:	2004
SAMPLED BY:	BA			SPEC ITEM:	247
SAMPLE LOCATION:	STKPL#01-10		SPECIAL	PROVISION:	사람이 안 다 나는 것을 것 같아요.
MATERIAL CODE:				GRADE:	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
MATERIAL NAME:			1		
PRÓDUĆER:	VULCAN				
AREA ENGINEER:			PROJEC	T MANAGER:	
COURSEVLIFT:	21-22-2	STATION:		DIS	ST. FROM CL:

Particle Size Analysis - Tex-110-E

Retained (g) (g)	Retained	Retained	Limit %	Limit %	Master Grading
and, O riente	0	0.0	0	0	Yes
0	0	0.0	0	10	Yes
3233.8	3233.8	64.7	45	75	Yes
3780.8	547	75.6	· 60	85	Yes
	(g) 0 0 3233.8	(g) 0 0 0 0 3233.8 3233.8	(g) 0 0 0.0 0 0 0.0 3233.8 3233.8 64.7	(g) 0 0 0.0 0 0 0 0.0 0 3233.8 3233.8 64.7 45	(g) 0 0 0.0 0 0 0 0 0.0 0 0 3233.8 3233.8 64.7 45 75

Remarks:

Test Method:		Tested B	y:	Tested Date:	_		
TX110	TERRY G	REEN NUMBER	ren ir Afrik Calo	03/16/10]		
Test Stamp Co	de: -		Omit Test:	Completed Date:	Reviewed By:		
		adda radd regeld	an a	教育部公司的保证 。		1 A	
acked By:	TxDOT:	District:	Area:				
Authorized By:			Authorized Date:				

stockpile 01-10 FM80 Freestone Co.10-074 Tx117-4.xls for Tex-110-E Flexbase 1 of 1

3/23/2010

APPENDIX B: RESULTS FROM SPECIMENS TESTED FOR IMPACT HAMMER ADJUSTMENTS

per Blow.	
.5 ft-lbf per	
12.5	
Targeting	
Samples	
from	
. Results	
Table B.1.	

Image:									T13-E INIVISIUE-DENSIN'S JAININES	הבווסורל כמ	2							
			Sample ID		90 O	up 4			Grot	up 5			Gro	up 6		Test samp	les at 113-F	Opti
Image: weight: Decay:				1	2	m	4	1	2	m	4	1	2	m	4	1	2	
Image: consist and the probability of the proba			Hammer Weight	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.089	10.31	10.31	
(17) (16) <t< td=""><td></td><td></td><td>AVG drop ht (in)</td><td>15.28</td><td>15.03</td><td>16.25</td><td>16.88</td><td></td><td>16.60</td><td>14.84</td><td>15.92</td><td>14.21</td><td>16.37</td><td>15.45</td><td>16.23</td><td>16.48</td><td>17.32</td><td></td></t<>			AVG drop ht (in)	15.28	15.03	16.25	16.88		16.60	14.84	15.92	14.21	16.37	15.45	16.23	16.48	17.32	
Image: constraint (i=1) Mode (i=1) Mode (i=1) <		Lfft.1	# drops	99	99	61	61	60*	61	62	62	3	62	62	2	28	<mark>65</mark>	
Image: control (i) Each Each <td></td> <td></td> <td>Total Energy (ft-lbf)</td> <td>746.63</td> <td>750.35</td> <td>742.85</td> <td>744.74</td> <td></td> <td>745.95</td> <td>750.5</td> <td>748.7</td> <td>749.01</td> <td>747.85</td> <td>751.34</td> <td>751.1</td> <td>751.41</td> <td>759.32</td> <td></td>			Total Energy (ft-lbf)	746.63	750.35	742.85	744.74		745.95	750.5	748.7	749.01	747.85	751.34	751.1	751.41	759.32	
(17) fragmentation etc. (13)			AVG drop ht (in)		15.63	16.07	16.1	16.91	15.23		14.86	16.31	16.17	16.56	16.72	17.35	17.49	
		1/#2	# draps	65 *	62	19	61	09	63	*09	25	2	25	62	61	80	8	
$ \ $			Total Energy (ft-lbf)		749.7	749.93	752.97	745.66	756.18		750.07	751.81	747.76	754.87	747.25	757.39	750.8	
			AVG drop ht (in)	16.74	14.45	14.05	14.22	16.38	16.22	16.37	16.76	16.67		14.65	15.95	17.3	17.49	
$ \ $		U#3		61	61	62	3	8	8	09	8	8	65 *	8	62	8	8	
$ \ $	eje		Total Energy (ft-lbf)	745.1	743.3	752.81	748.58	745.75	754.72	746.41	761.82	743.06		751.54	751.19	754.76	762.43	
	3		AVG drop ht (in)	15.15	16.25	16.6	14.07	16.15	16.67	16.99	17.17	15.39		14.79		17.5	17.49	
$ \ $	uip	Lift 4	# drops	19	9	9	12	19	28	61	61	8	65 *	62	*09	58	8	
Image is all integration in the second or the se	οM		Total Energy (ft-lbf)	743.8	743.58	744.97	748.91	747.69	750.49	753.91	750.8	748.17		750.92		753.41	761.36	
Subsectivity u_1 u_2 u_1 u_1 u_1 u_1 u_2 u_1 u_2	J	Total Fm	erøv Measured (ft-lbf)	2235.53	2986.93	2990.56	2995.2	1,939.1	3007.34	0250.82	3011.39	20,092,05	1495.61	3008.67	2249.54	3016.97	3033.91	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Sample	Http://www.com/com/com/com/com/	68	8	×	8	8.4	8.1	8	8	8	81	7.9	7.8	7.9	8.05	·
Tricritisement (i): fullicity) Seciet is Statical is Stat		Sample	Volume (ft^3)	0.134177	0.1309	0.1309	0.1309	0.137445	0.132536	0.1309	0.1309	0.1309		0.129263	0.177627	0.1292634	0.1317178	6
$ \ $		Lfort M	easured [(ft-lbf/ft^3)]	16661.65	22818.46		22881.64	16200.92	22600.75	17195	23005.32	22857.58		23275.40	17625.87	2330.600	20003.406	8
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		add and	contraction of the second s	Ŀ	4	-	0	4	4	-	•	4	ų	-		60	0 7	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			water content (/a) day domaity (ave)	L 001	0	1071	0	0	105.00	10717	0 001	n 100 001	100.00	1001	0	10 0 11	C-0	
		Sample	ary density (pct)	155.2	12/1	13/1	TS/.70	150.35	T20.07	137.17	130.8	123-22	150.80	T23.7	137.17		130.7	
Optimum water content (5) Image: content (5) <th< td=""><td></td><td>Max dry</td><td>density (pcf)</td><td></td><td><u></u></td><td>17.6</td><td></td><td></td><td>13</td><td>1.1</td><td></td><td></td><td>-</td><td>8</td><td></td><td>Ž</td><td>nt Applicabl</td><td>٩</td></th<>		Max dry	density (pcf)		<u></u>	17.6			13	1.1			-	8		Ž	nt Applicabl	٩
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		optimu	m Water Content (%)			89			F	Ţ			ø	×		Ż	ot Applicabl	۷
Model Image Image <t< td=""><td></td><td></td><td>Reading 1</td><td>12.2</td><td>17.1</td><td>16.3</td><td>17</td><td>51</td><td>16.3</td><td>18.9</td><td>21.9</td><td>13.9</td><td>17.2</td><td>17.9</td><td>18.1</td><td>19.2</td><td>18.8</td><td></td></t<>			Reading 1	12.2	17.1	16.3	17	51	16.3	18.9	21.9	13.9	17.2	17.9	18.1	19.2	18.8	
Modeling 136 136 131 203 143 133 133 134 133 13			Reading 2	12.9	16.7	17.5	19.6	15.1	16.3	17	16.7	13.7	И	18.2	19.7	18.9	17.6	
			Reading 3	13.6	15.6	1.01	20.9	14.7	14	19.9	18.5	13.9	12.7	17.7	19.5	17.9	17.4	
Final freeding Fina freeding Final freeding Final fr			Reading 4	1	16.6	17.9	21.2	14.7	17.2	et	20	12	16.9	18.6	17.2	18.4	19.2	
Application 13.6 13.6 13.6 14.4 15.3 15.3 15.1 15.3			Reading 5	14.1	15.8	17.1	22	14.7	17.7	17.1	19.2	11.8	14.7	19.2	17.3	19.9	17.4	
Heading 1 0 257 226 9.2 3.1 4.73 9.2 1.52 1.47 2.24 9.2 9.3 1.5 Reading 2 243 13.3 10.6 32.4 13.5 10.6 32.4 7.9 7.66 6.61 7.66667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.466667 7.47 8.69 7.4		AVG Die	ectric at Molding	13.16	16.36	17.58	20.14	14.44	16.3	18.38	19.26	13.06	15.1	18.32	18.36	18.86	18.08	
$ I = 0.1 \ A =$			Reading 1	ŋ	26.7	22.6	9.2	53.1	47.3	9.2	15.2	14.7	22.4	9.2	m	9.3	5	
Meding weating from the stand of			Reading 2	24.2	22.4	13.5	10.6	38.7	31.2	7.9	7.9	10.2	22.4	7.9	<mark>5.5</mark>	80	5	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Keading 3	19.5	1/.3	6.11	101	32./	36.2	<u>5</u>	101	<mark>6.8</mark>	28.2	6.7	14	8,8	М	
			smic E at Molding	17.56667	22.13333	16	9.966667	41.5	38.23333	8.2	11.06667	11.26667		7.933333	7.3	8.8666667	14.666667	1 8
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $		Water of	ontent (%) after conditioning	4.73	5.82	6:59	7.48	4.67	5.78	6.7	7.56	4.72		6.65	7.5	9.9	6.61	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	sə		Reading 1	12,4	15.6	17.4	16.7	13.1	15.5	18.4	15.1	12.7	16.4	18.1	17.4	18	17	
Reading 3 11.9 15. 15.5 15.7 3.8 13 17.2 18.4 12.2 15.4 18.5 18.1 Reading 4 17.4 15.9 15.5 15.5 15.5 15.6 13.8 15.7 18.3 15.9 11.9 13.9 13.8 18.1 Reading 5 12.7 14.3 15.6 17.5 17.8 17.7 19.9 11.9 13.8 18.8 18.8 AvGDIelertertextonclioning 12.1 15.3 17.5 17.9 13.8 18.1 18.1 17.6 17.7 18.1 18.7 18.8 17.5 17.7 18.1 AvGDIelertertexteronclioning 12.1 15.5 17.5 17.5 17.7 18.1 17.5 17.7 18.1 17.6 17.70 18.1 AvGDIelertertexteronclioning 12.1 25.2 41.5 47.5 47.5 47.5 47.9 45.9 45.9 45.9 45.9 45.9 45.9 45.9 <t< td=""><td>nje</td><td></td><td>Reading 2</td><td>11.2</td><td>15.5</td><td>14</td><td>16.8</td><td>11.4</td><td>9</td><td>17.5</td><td>14.6</td><td>11.3</td><td>12.5</td><td>16.2</td><td>18.5</td><td>17.3</td><td>18.6</td><td></td></t<>	nje		Reading 2	11.2	15.5	14	16.8	11.4	9	17.5	14.6	11.3	12.5	16.2	18.5	17.3	18.6	
$ \begin{array}{[c] \label{conditional} conditiona$	Уþ		Reading 3	11.9	51	15.5	19.7	9.6 8	13	17.2	18.4	12.2	13.2	16.4	18.5	18.1	16.1	
Reading 5 12.7 14.3 16.4 17.3 17.3 11.6 15.6 17.7 19.9 11.6 15.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.7 13.6 17.0 13.16 AVGDIelertricater conditioning 12.12 15.26 15.56 17.51 17.20 17.01 13.16 13.6 <td>ctri</td> <td></td> <td>Reading 4</td> <td>12.4</td> <td>15.9</td> <td>16.5</td> <td>16.6</td> <td>13.8</td> <td>16.7</td> <td>18.3</td> <td>16.9</td> <td>11.9</td> <td>13.9</td> <td>19.9</td> <td>13.8</td> <td>18.8</td> <td>16.7</td> <td></td>	ctri		Reading 4	12.4	15.9	16.5	16.6	13.8	16.7	18.3	16.9	11.9	13.9	19.9	13.8	18.8	16.7	
AVG Dialerticaties conditioning 12.12 15.36 17.37 15.8 17.97 16.98 11.94 17.07 18.16 18.16 Areading 1 59.2 47.4 60.5 9.2 41.5 47.3 15.1 27.7 18.1 67 36.7 26.4 26.9 Reading 1 53.0 36.3 42.3 36.1 44.4 15.1 27.7 18.1 67 36.7 26.9 24.7 Reading 2 36.3 36.5 21.4 36.1 44.4 15.1 20.7 18.1 53.6 24.8 24.7 Areading 2 41.1 36.3 36.5 21.4 36.1 48.4 16.3 17.6 18.1 16.6 24.7 Areading 2 41.1 36.3 36.5 21.4 36.1 48.4 16.3 17.6 18.1 16.6 24.7 24.7 Areading 2 41.1 36.3 36.5 21.4 36.1 48.4 16.3 17.6	ələ		Reading 5	12.7	14.3	16.4	17.9	13.3	17.8	17.7	19.9	11.6	15	17.5	17	18.6	15.2	
Reading 1 59.2 47.4 60.5 9.2 41.5 47.3 15.1 27.7 18.1 6.7 36.7 26.4 26.9 Reading 2 38.4 36.3 42 29.4 36.1 44.4 15.1 20.7 18.1 67 36.7 26.4 26.9 Reading 2 36.3 36.3 42 29.4 36.1 44.4 15.1 20.7 18.1 57.6 24.8 24.7 Reading 3 40.1 36.3 36.5 21.4 36.1 48.4 16.3 17.6 18.1 51.6 24.8 24.7 AVG Seismic Enferconditioning 46.20000 20.1 20.1 20.1 20.1 20.1 20.1 24.5 24.7 24.7 24.7 AVG Seismic Enferconditioning 46.20000 20.1 30.1 24.1 24.1 24.1 24.1 AVG Seismic Enferconditioning 46.20000 20.1 30.1 24.1 24.1 24.1 24.1 24.1 </td <td>D</td> <td>AVG Die</td> <td>dectric after conditioning</td> <td>12.12</td> <td>15.26</td> <td>15.96</td> <td>17.54</td> <td>12.28</td> <td>15.8</td> <td>17.82</td> <td>16.98</td> <td>11.94</td> <td>14.2</td> <td>17.62</td> <td>17.0M</td> <td>18.16</td> <td>16.72</td> <td></td>	D	AVG Die	dectric after conditioning	12.12	15.26	15.96	17.54	12.28	15.8	17.82	16.98	11.94	14.2	17.62	17.0M	18.16	16.72	
Reading 2 38.4 36.3 4.2 29.4 36.1 4.4 15.1 20.7 18.1 53.6 24.8 16.6 24.7 Reading 3 41.1 36.3 36.5 21.4 36.1 43.4 16.3 17.6 18.1 51.5 21.3 18.4 24 AVG Seismic Lefter conditioning 40.1 36.5 21.4 36.1 45.0 37.5 45.0 37.5 20.3 18.1 51.5 21.3 18.4 24 AVG Seismic Lefter conditioning 46.23333 20 37.5 45.03333 15.5 20.33333 18.1 57.36667 25.2 26.5 7.4 7.5 24.4 7.5 25.2 More of compressive Strength (psf) 4.2 5.1 5.3 53.1 14.0 24.7 25.2 26.5 7.5 26.5 7.5 6.5 7.5 6.5 7.2 6.5 7.4 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5 <	san		Reading 1	59.2	47.4	60.5	9.2	41.5	47.3	15.1	22.7	18.1	67	36.7	26.4	26.9	31.2	
Reading 3 41.1 36.3 21.4 36.1 43.4 16.3 17.6 18.1 51.5 21.3 18.4 24 AVG 5eismic fafter conditioning 46.23333 40 46.33333 20 37.9 45.03333 15.5 20.33333 18.1 51.5667 21.4 24. AVG 5eismic fafter conditioning 46.23333 20 37.9 45.03333 15.5 20.33333 18.1 57.36667 25.6 26.5 25.2 Cinconfined Compressive Strength (ps1) 41.4 50.4 50.1 71.0 27.8 71.4 24.7 5.69 5.65 7.5 6.5	lsV		Reading 2	38.4	86.3	64	79.4	36.1	44.4	15.1	20.7	18.1	33.6	24.8	16.6	24.7	31.7	
AVG Seismic Enter conditioning 4.1. 30.3 30.3 21.4 30.1. 45.4 10.3 1/.0 15.1. 31.3 12.3 13.4 24 24 AVG Seismic Enter conditioning 46.23333 40 46.33333 20 37.9 45.03333 15.5 20.33333 18.1 57.36667 27.6 20.46667 25.2 Chronnfined Compressive Strength (ps/) 41.4 5.1 53.3 53.1 35.1 53.3 53.1 41.0 24.4 41.6 74.6 75.5 26.5 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 6.5 75.6 6.5 75.6 6.6 72.6 6.6 75.5 6.6	3) I		Reading 2										1			č		
AVG Seismic Lefter conditioning 46.23333 40 46.33333 20 37.9 45.03333 15.5 20.33333 18.1 57.36667 27.6 20.46667 25.2 C/nconfined Compressive Strength (ps/) 41.4 56.4 51.1 35.1 53.3 53.1 41.0 27.8 73.6 75.7 20.46667 25.2 Water compressive Strength (ps/) 41.4 56.4 51.1 35.1 53.3 53.1 41.0 27.8 47.4 83.8 53.9 26.6 72.6 6.5 75.6 6.5 7.5 6.6	wsi			41.1	30.3	202	21.4	30.1	43.4	10.3	1/.0	18.1	C.LC	21.3	18.4	74	4.4	
12.1 56.4 51.1 35.1 55.1 71.0 21.8 71.4 83.8 55.9 26.6 72.6 4.73 5.82 6.59 7.48 4.67 5.78 6.7 7.56 4.72 5.69 6.65 7.5 6.6	98	AVG Sel	smic E after conditioning	46.23333	40	46.33333	20	6.7 E	45.03333	15.5	20.33333	18.1	57.36667	27.6	20,46667	25.2	35.933333	
4.73 5.82 6.59 7.48 4.67 5.78 6.7 7.56 4.72 5.69 6.65 7.5 6.6		Unconfi	neo' Compressive Strength (psr)	42.4	56.4	51.1	35.1	55.3	56.1	44.0	24.8	44.4	83.8	55.9	26.6	42.6	64.4	
		Water of	ontent (%) after compression test	4.73	5.82	<mark>6.5</mark> 9	7.48	4.67	5.78	6.7	7.56	4.72	5.69	6.65	7.5	6.6	6.61	

Image: constration of transmet in transmet								í	Saidilips filsilan-ainisiniki a-stt	Delibity Jak	mpies							
othome is is <th< th=""><th></th><th></th><th>-</th><th></th><th>Grou</th><th>1p 1</th><th></th><th></th><th>Gro</th><th>up 2</th><th></th><th></th><th>Gro</th><th>up 3</th><th></th><th>Test samp</th><th>es at 113-E</th><th>Optimur</th></th<>			-		Grou	1p 1			Gro	up 2			Gro	up 3		Test samp	es at 113-E	Optimur
Image: weight in the problem of the proble			Sample ID	-			4	1		m	4	1		m	4	1	2	m
			llammer Weight	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041	11.041
If a contractional contenecontenecontenectional contractional contractional c			AVG drop ht (in)	17.83	17.05	16.96	17.57	18.41		17.79	17.8	18,41	18.41	18.41	17.49	18.23	18.22	18.24
		Lift.1	# drops	58	23	23	7	49	*S	20	20	8	20	20	50	52	22	52
$ \ $			Total Energy (ft-lbf)	746.66	744.36	749.77	746.09	745.1		753.95	742.51	755.72	753.37	750.39	757.81	758.53	752.24	759.26
			AVG drop ht (in)	17.49	17.55	17.6		18.16		17.37	18.4		17.79	18.17	17.27	18.23	18.23	18.22
		uft.2	# drops	56	왂	6	*09	4		5	5	20*	5	5	20	S	R	S
			Total Energy (ft-lbf)	748.19	750.8	751.38		744		750.21	747.13		743.68	755.01	750.49	764.72	750.61	758.71
				17.79	18.3	17.83	18.31	18.39		18.16	17.98	17.38	17.84	18.39	17.21	18.22	18.22	18.22
Image: constraints Image:	e	C 11		ន	3	3	3	4		3	3	25	5	3	3	32	32	32
	æC		Total Energy (tt Ibt)	744.31	748.01	753.05	752.3	747.32		752.18	744.99	756.73	756.88	751.74	743.69	760.68	757.89	752.5
] ØL		AVG drop ht (in)	17.51	18.31	18.35	18.33	17.66		17.96	17.5	18,42	17.47		17.83	18.22	18.23	18.21
	ldir	Lift 4	# drops	22	51	2	89	20		<mark>.5</mark>	<mark>20</mark>	<mark>8</mark>	20	22*	<mark>51</mark>	52	23	52
Inclusion Inclusion <t< td=""><td>οM</td><td></td><td>Total Energy (ft-lbf)</td><td>749.03</td><td>749.11</td><td>751.75</td><td>750.93</td><td>749.47</td><td></td><td>752.08</td><td>743.75</td><td>744.71</td><td>748.7</td><td></td><td>754.47</td><td>755.15</td><td>755.7</td><td>761.66</td></t<>	οM		Total Energy (ft-lbf)	749.03	749.11	751.75	750.93	749.47		752.08	743.75	744.71	748.7		754.47	755.15	755.7	761.66
Model Model <th< td=""><td></td><td>Total Ene</td><td>ergy Measured (ft-lbf)</td><td>2988.19</td><td>2992.28</td><td>3005.95</td><td>2249.32</td><td>2985.89</td><td>0</td><td>3008.42</td><td>2978.38</td><td>2257.16</td><td>3002.63</td><td>2257.14</td><td>3006.46</td><td>3039.08</td><td>3016.44</td><td>3032.13</td></th<>		Total Ene	ergy Measured (ft-lbf)	2988.19	2992.28	3005.95	2249.32	2985.89	0	3008.42	2978.38	2257.16	3002.63	2257.14	3006.46	3039.08	3016.44	3032.13
Same is a simple volume (if-a) Control (if-a) <thcontrol (if-a)<="" th=""> Control (if-a)</thcontrol>		Sample	Ht (In)	7.9	7.8	7.8	7.6	7.6	7.8	~	8.2	×	80	7.8	7.9	80	00	6.7
Interplace Interp		Sample	Volume (ftv3)		0.127627			0.124355	0.127627	0.1309	0.134172	0.1309	0.1309	0.127627	0.129263	0.1308997	0.1308997	0.12926
		Effort M	easured [(ft-lbf/ft^3)]					24011.07	0	22982.64		17243.43	22938.4	17685.41	23258.39	23216.861	23043.904	23456.979
Simple dynametry (m ¹) 13.04 13.44 13.		Molded	water content (%)	5	9	7	~	S	و	7		S	9	7	ø	6.9	6.9	6.9
Modeline interference Modeline interference Image		Samula	dovidensity (ncf)	137.64		138 42	138 20	131 43	PP No 1	136.01	135.78	130.87	130 SS	W. 881	135.21	137.38	137.38	1378
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Max dry	density (pcf)			17			136	5.4			1	6			ot Applicabl	
Moding 10 170 102 121 150 150 151 150 151 150 </td <td></td> <td>Optimur</td> <td>m Water Content (%)</td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td>9</td> <td>80</td> <td></td> <td></td> <td>ġ</td> <td>م م</td> <td></td> <td>ž</td> <td>ot Applicabl</td> <td>a</td>		Optimur	m Water Content (%)		~				9	80			ġ	م م		ž	ot Applicabl	a
Motion 132 111 127 123<			Reading 1	1	C/1	10.2	21	16	17.5	12.6	14.1	15.6	15.1	15.8	53		17.5	
Modeling Feeding 4 Interview Interview <t< td=""><td></td><td></td><td>Reading 2</td><td>13.2</td><td>12.7</td><td>19.7</td><td>8</td><td>61</td><td>18.3</td><td>12.7</td><td>12.9</td><td>20.4</td><td>17.3</td><td>15.7</td><td>6.9</td><td>16.2</td><td>ព</td><td>16.8</td></t<>			Reading 2	13.2	12.7	19.7	8	61	18.3	12.7	12.9	20.4	17.3	15.7	6.9	16.2	ព	16.8
			Reading 3	13.8	111	19.3	20.4	18.5	17.9	16.1	12.9	19.7	15.2	171	9.6	19.2	ព	18.9
Imagine <			Reading 4	12.3	16.9	61	21.4	18.2	16.8	9	13	18.7	158	15.7	12.1	16.7	16.5	19.9
Modeling 12.96 14.56 19.48 17.56 17.54 17.54 17.54 17.54 17.24			Reading 5	12.5	14.2	20.2	20.1	17.6	17.2	14.6	12.2	19.2	14.0	13.3	9.5	17.7	17.5	18
Model Matrix 9 30.4 6.1 4.2 5.1 4.8 4.51 5.2 6 6.7 2.2 Image Image 8 31.7 24.4 7.7 8.7 2.6 6.7 7.3 7.4 7.7 7.4 7		AVG Die	ectric at Molding	12.96	14.56	19.48	20.58	17.86	17.54	14.2	13.02	18.72	44.1	15.52	9.52	17.24	17.9	18.38
			Reading 1	91	30.9	30.4	6.1	4.2	21.5	15.1	4.8	45.1	26.2	ŋ	6.6	6.7	22.6	11.9
Matrix Reading 3 22.5 7.1 6.7 20.3 16.2 4.2 31.3 23.4 9.9 7.4 11 16.3 Voc Science 5 working 31.7 5.86667 6.83 2.4333 5.333 2.266667 9.9 7.4 11 16.3 Voc Science 5 working 31.7 5.71 6.66 7.83 5.733 5.733 2.266667 9.9 7.4 11 16.3 Voc Science 5 working 11.3 14.7 5.7 7.86 6.66 6.67 Matrix 11.1 11.4 15.7 7.87 7.83 7.35 7.86 6.66 6.67 Reading 2 11.1 11.4 15.7 7.9 17.2 17.3 17.2 17.3 17.3 17.4 17.3 Reading 2 11.1 11.4 15.7 15.7 17.2 17.4 17.5 17.5 17.5 17.5 17.5 17.5 Reading 2 11.1 11.4 15.3			Reading 2	96	31.7	24.4	C.7	8.7	19.6	16.8	3.9	32.1	24	10.3	7.8	12	16.9	13.4
Not contact and matrix 11.7 for contact 28.6667 28.66667 28.66667 28.66667 28.66667 28.66667 28.3333 2.266667 3.9 18.6 Matrix Matrix 17.3<			Reading 3	88.3	32.5	25.8	7.1	6.7	20.3	16.2	4.2	31.3	23.4	6.6	7.4	11	16.3	10.9
$ \text{ Water conditioning } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			smic E at Molding	91.76667	31.7	26.86667		6.366667	20.46667	16.03333	4.3	36.16667	24.53333	9.733333	7.266667	6.6	18.6	12.06666
Reading1 12.3 14.7 17.7 10.7 11.3 11.4 11.4 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.6 11.7 11.2 11.3 11.2 11.3 11.2 11.3 11.2 11.3 11.2 11.3 11.2 11.3 11.3 11.2 11.3		Water co	pntent (%) after conditioning	4.37	5.71	6.66	7.63	4.72	5.84	6 .6	7.53	5.49	5.76	6.52	7.86	6.66	6.67	6.6
Reading 2 11.5 16.7 17.5 6.3 17.3 17.2 13.8 17.3 18 16.8 16.9 16.9 Reading 3 11.1 11.4 18.3 15.3 17.3 17.3 18.8 16.3 16.3 16.9 16.9 16.9 16.9 16.9 16.9 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 17.3 16.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.4 15.4	sə		Reading 1	12.3	14.2	17.7	8	12.7	14.7	16	17	13.7	13.3	15.3	15.1	16	17.1	18.2
Heading 3 11.1 11.4 18.3 15.3 15.4 15.5 15.6 17.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	nje		Reading 2	11.5	16	16.7	17.5	6.3	15.5	17.3	17.2	12.5	13.8	17.3	18	16.8	16.9	14.4
$ \begin{array}{[c] c] cliccleck link link link link link link link lin$	V oi		Reading 3	11.1	11.4	18.3	15.9	9.2	9.ct	đ	21	11.8	c.cI	16.8	c./I	1//2	E./1	1/.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ctri		Reading 4	11.7	9.2	16.7	16.3	9.7	14.7	14.9	17.5	13.5	13.8	16.2	18	14	15.4	18
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ələ		Reading 5	12	10.9	16.9	16.6	9.7	11.3	12	17.5	12.7	14.4	16.7	17.5	17	16.8	16.9
Reading1 49 428 61.2 14.3 6 40 41.9 15.5 35.4 15.9 15.9 15.9 15.9 36.7 36.	IQ	AVG Die	lectric after conditioning	11.72	12.34	17.26	17.26	9.52	14,42	15.04	18.04	12.84	14.16	16.46	17.22	16.2	16.82	16.94
Reading 2 47 47.5 59 16 9.4 40 41.9 19.1 34.6 49.5 26.4 13.3 31.6 39.4 Reading 3 45.8 49.2 55.7 58.1 18.1 10.7 36.6 49.5 26.4 13.3 31.6 39.4 Reading 3 45.8 49.2 55.7 18.1 10.7 36.6 41.5 48.5 31.1 13.8 30.4 30.4 AVG Setsmic Eafter conditioning 47.5 58.5 16.1333 8.7 38.36667 39.5333 17.1 36.9 50.16667 31.1 14 32.766667 38.8 Unconfined compressive Strength (psi) 60.0 55.7 33.4 43.5 26.0 55.4 57.9 50.8 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.6 56.7 56.7 57.3 57.9 50.8 50.8 50.8 50.8 56.6 56.6 56.6 56.6	san		Reading 1	64	42.8	61.2	14.3	9	40	41.9		34.6	52.5	35.9	14.9	36.7	36.7	22.4
Reading 3 45.8 49.2 55.3 18.1 10.7 36.0 34.8 16.7 41.5 48.5 31 13.8 30 40.3 AVG Selsmic Enferconditioning 47.26667 46.5 58.5 16.1333 8.7 88.66667 39.5333 17.1 36.9 50.16667 31.1 14 3.7766667 38.8 Unconfined Compressive Strength (ps) 60.0 55.7 39.4 31.0 24.3 24.3 25.0 50.4 37.9 40.5 38.8 46.5 38.8 46.5 36.0 55.4 57.9 47.3 28.9 50.3 46.5 38.8 46.5 36.0 36.5 56.5	PA 3		Reading 2	47	47.5	5	16	9.4	4	41.9			49.	26.4	13.3	31.6	39.4	31.3
AVG Selsmic Eafter conditioning 47.26667 46.5 58.5 16.13333 8.7 38.36667 39.53333 17.1 36.9 50.16667 31.1 14 32.766667 38.8 Unconfined Compressive Strength (psi) 60.0 56.7 33.4 31.0 24.8 41.3 43.5 26.0 55.4 57.3 28.9 50.8 46.5 Water content (%) after compression text 4.37 5.71 6.66 7.63 4.72 5.84 6.6 7.35 5.49 5.76 6.56 6.66 6.66 6.67	oi ma		Reading 3	45.8	49.2	55.3	18.1	10.7	36.6					31	13.8	30	40.3	29.7
60.0 56.7 33.4 31.0 24.8 41.3 43.5 26.0 55.4 57.9 47.3 28.9 50.8 46.5 4.37 5.71 6.66 7.63 4.72 5.84 66 7.53 5.49 5.76 6.52 7.86 6.66 6.67	ias	AVG Sei:	smic E after conditioning	47.26667	46.5		16.13333	8.7	38.86667	39.53333	17.1	36.9	50.16667	31.1	14	32.766667	38.8	27.8
4. 37 5.71 6.66 7.63 4. 72 5.84 6.6 7.53 5.49 5.76 6.52 7.86 6.66 6.67		Unconfir	ned Compressive Strength (psi)	60.0	56.7	39.4	31.0	24.8	41.3	43.5	26.0	55.4	57.9	47.3	28.9	50.8	46.5	56.0
		Water co	ontent (%) after compression test	4.37	5.71	6.66	7.63	4.72	5.84	99	7.53	0 V 2	22.2	ŝ	201	000	ļ	ų

Table B.2. Results from Samples Targeting 15 ft-lbf per Blow.

item item <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>113-1</th><th>Moisture-L</th><th>113-E Moisture-Density Samples</th><th>nples</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								113-1	Moisture-L	113-E Moisture-Density Samples	nples							
			2		B	1 dni			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80			00 0	5 dn		Test samp	les at 113-E	Optimum
			sample ID	1	2	m	4	1	2	m	4	Ļ	2	en	4	1	2	m
Interfactory (i)			llammer Weight	12.20675	12.20675		12.20675	12.20675	12.20675		12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675	12.20675
Image: constrained with the constratex with the constrained with the constrained with the c			AVG drop ht (in)	18.73	18.72	18.69	18.73	18.7	18.72	18.71	18.73	18.75	18.72	18.68	18.75	18.77	18.76	18.76
		Lift 1	# drops	44	45	45	45	15	15	15	46	46	45	15	46	45	15	45
			Total Energy (ft-(bf)	751.54	762	760.84	754.61	753.67	761.05	757.27	765.63	765.25	753.36	765.71	766.23	765.37	762.78	760.97
			AVG drop ht (in)	18.73	18.7	18.53	18.73	18.67	18.5	18.74	18.69	18.71	18.72	18.52	18.74	18.05	18.51	18.74
		Lift 2	# drops	45	45	4	45	45	45	45	45	45	45	45	45	37	45	4 5
			Total Energy (ft-lbf)	767.12	761.93	751.13	755.39	756.86	752.79	766.18	759.5	755.51	757.46	762.09	758	763.69	754.59	761.99
			AVG drop ht (in)	18.05	18.34	18.72	18.72	18.36	18.7	18.73	18.68	18.73	18.71	18.69	18.75	18.75	18.32	18.73
$ \ $		uft 3	# drops	å	\$	Ą	ð	46	46	\$	\$	\$	46	\$	46	46	45	46
$ \ $	ejje(Total Energy (ft [bf])	751.72	770.15	758.1	752.97	764.08	764.16	752.81	755.23	751.36	763.37	751.52	755.54	755.17	750.2	763.7
	3		AVG drop ht (in)	18.74	18.69	18.71	18.72	18.06	18.68	18.66	18.49	18.72	18.75	18.69	18.74	18.75	18.69	18.75
$ \ \ eq: contractic co$	niþl	1684	# drops	đ	쳥	첛	46	4	46	\$	\$	45	46	46	46	45	46	45
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	٥N		Total Energy (ft-lbf)	760.94	759.22	756.57	763.77	753.32	765.49	750.38	765.6	753.84	768.37	764.85	756.46	766.36	762.07	757.43
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	I	Total Ener	rgy Measured (ft-lbf)	3031.32	3053.3	3026.64	3026.74	3027.93	3043.49	3026.64	3045.96	3025.96	3037.56	3044.17	3036.23	3050.59	3029.64	3044.0
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Sample Ht	t (in)	8.25	8.1	8.05	8.1	8.1	8.1	8.05	7.95	8.25	8.2	8.05	00	8,1	00	7.9
Hold weares (if - if (if - i) 2 2 5 <th< td=""><td></td><td>Sample V</td><td>olume (ft^3)</td><td>0.13499</td><td>0.132536</td><td></td><td></td><td>0.132536</td><td>0.132536</td><td>-</td><td>0.130082</td><td>0.13499</td><td>0.134172</td><td>0.131718</td><td>0.1309</td><td>0.1325359</td><td>0.1308997</td><td>0.12926</td></th<>		Sample V	olume (ft^3)	0.13499	0.132536			0.132536	0.132536	-	0.130082	0.13499	0.134172	0.131718	0.1309	0.1325359	0.1308997	0.12926
$ \begin{array}{ c c c c c c } \mbox{Molecle field were contract (8), } Molecle field were field we$		Effort Me	asured [(ft-lbf/ft^3)]	22455.83	23037.52			22846.1	22963.51		23415.77	22416.13		23111.3	23195.09	23017.077	28144.745	23549.5
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Molded w	vater content (%)	υ,	9		8	s	و	2	80	5		2	8	6.8	6.8	6.8
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Sample dr	ry density (pcf)	133.21	135.43	137.08	134.62	134.49	135.69	136.92	136.01	132.08	135.28	136.52	136.06	136.09	136.37	137.66
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Max dry d	Hensity (pcf)		Ŧ	36.5			136	5			13	6.3			ot Applicab	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		Optimum	1 Water Content (%)		Ţ	5.6			ÿ	60			ÿ	6		Z	of Applicabl	a
Methoding Multiple <			Reading 1								18.4				17.4	16.8	17.9	18.8
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Keading 2								19.6				20.9	14.6	18	18.5
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Reading 3					alate a			20.7				22.9	18.1	16.7	17.7
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Reading 4					T int ic and	_		21.2				21.9	17.3	18.5	19.8
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Reading 5								22.7					16	16.3	18.7
Modeling Solid		AVG Diele	ectric at Molding								20.52				20.775	16.56	17.48	18.7
Modeline			Reading 1	36.1	36.4	15.2	6.8	14.8	47.6	15.2	6.8	46.8	15	12	6.8	18.7	9.1	22.2
Model fielding 28 38.2 14.1 4.7 11.7 34.7 9.2 8.3 4.68 11.3 5.63 11.5 15.2 16.1 Ave Science et Molding 5 6.01 6.88 7.78 5 5.333 11.2 7.66667 45.8333 11.3 15.3333 11.3 15.3333 11.366667 Ave Science et Molding 5 6.01 6.88 7.78 5 5.01 6.04 6.5833 11.3 <td< td=""><td></td><td></td><td>Reading 2</td><td>28.8</td><td>36.4</td><td>13.5</td><td>5.7</td><td>10.3</td><td>44.7</td><td>6.9</td><td>7.9</td><td>43.9</td><td>11.9</td><td>6.8</td><td>15.2</td><td>18.7</td><td>10.4</td><td>13.3</td></td<>			Reading 2	28.8	36.4	13.5	5.7	10.3	44.7	6.9	7.9	43.9	11.9	6.8	15.2	18.7	10.4	13.3
Noticity of the conditioning 30.96667 37.3333 1.2 26667 4.23333 1.2 7666667 4.533333 1.1 7.333333 1.1 7.333333 1.1 7.333333 1.1 7.333333 1.1 7.333333 1.1 7.333333 1.1 7.333333 1.1 7.333333 1.1 8.66667 4.533333 1.1 7.333333 1.1 8.66667 4.533333 1.1 7.3 7.33333 1.1 8.66667 4.533333 1.1 7.3 7.33333 1.1 8.66667 4.533333 1.1 7.3 7.33333 1.1 8.66667 4.533333 1.1 7.3 7.33333 1.1 8.66667 4.533333 1.1 7.3 7.33333 1.1 8.66667 4.533333 1.1 8.66667 4.533333 1.1 8.66667 4.533333 1.1 8.66667 4.533333 1.1 8.66667 4.533333 1.1 8.66667 4.533333 1.1 8.66667 4.533333 1.1 8.6667 4.533333 1.1 8.6667 4.533333 1.1 8.6667 4.533333 1.1 8.6667 4.533333 1.1 8.6667 4.533333 1.1 8.6667 4.533333 1.1 8.667 4.533333 1.1 8.667 4.533333 1.1 8.667 4.533333 1.1 8.667 4.533333 1.1 8.7 4.696 4.533333 1.1 8.7 1.1 8.7 1.1 8.7<			Reading 3	28	38.2	14.1	4.7	11.7	34.7	9.2	8.3	46.8	11.9	6.8	Ħ	15.2	16.1	11.8
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		AVG Scisn	mic E at Molding	30.96667	37	14.26667	5.7333333	12.26667	42.33333		7.666667	45.83333	12.93333	8.5333333	11	17.533333	11.866667	15.766667
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Water cor	ntent (%) after conditioning	'n	6.01	6.88	7.78	Ś	5.93	6.98	7.35	5.01	6.04	6.85	7.27	6.48	6.38	6.45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	sə		Reading 1	12.8	14.3	18.3	20.2	12.8	14.2	15.9	19.9	1 3	15.6	17.8	15.8	16.9	17.7	18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nje		Reading 2	13.3	13.6	16.8	17.9	12.1	12.5	13	20.1	13	13.5	14.2	18.8	16.6	16.8	18.1
Reading 4 103 13.5 15.1 18.4 11.6 11.3 13.3 11.5 11.3 13.5 20.1 13.5 15.9 15.9 AvG Dielectric attractioning 12.3 14.6 16.7 18.3 11.2 15.2 15.6 15.3 15.9 15.6 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.4 15.9 15.4 15.9 15.4 15.9 15.4 15.7 15.9 15.4 15.7 15.9 15.4 15.9 15.4	V o		Keading 3	6.LT	14.4	11	19.1	15	12.1	16.9	1.61	13.3	12.9	12.9	1/4	14.9	16	1/.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	into		Reading 4	10.9	13.5	15.1	18.4	11.6	11.3	13.3	17.5	11.5	12.3	13.5	20.1	13.5	15.9	16.7
AVG Dielectric after conditioning 12.74 13.78 15.06 18.22 15.68 16.48 AVG Dielectric after conditioning 12.74 13.78 13.78 15.06 18.22 15.68 16.48 Reading 1 Ace 3 53.3 17.3 48.9 35.4 18.82 15.68 15.68 16.48 Reading 1 Ace 3 53.4 15.5 48.9 36.4 24.8 26 27.7 33.5 26.4 Reading 2 45.9 34.5 15.5 48.9 36.4 24.8 26.6 27.7 34.5 26.4 Reading 2 47.9 34.7 15.5 49.9 36.4 24.8 26.6 31.7 34.5 26.4 Reading 2 47.9 31.7 15.5 49.9 36.6 23.3 26.6 26.5 26.4 26.4 26.4 26.4 26.4 26.5 26.4 26.4 26.5 26.4 26.4 26.5 26.4 26.6 26.5 26.5<	slə		Reading 5	12.3	14.6	16.7	18.3	11.6	13.5	17.3	20	12.9	14.6	16.9	<mark>ول</mark>	16.5	16	17.1
Reading 1 46.9 5.3 1.7.3 48.9 35.4 18.8 5.9 26.7 31.5 26.4 Reading 2 8.9 34.5 15.5 9.6 34.5 15.5 9.6 48.9 36.4 24.8 49.6 31.7 34.5 26.4 Reading 2 8.9 34.5 15.5 9.6 48.9 36.4 24.8 49.6 31.7 34.5 26.4 Reading 2 47.9 31.7 13.5 36.4 24.8 49.6 21.3 34.5 26.4	ja	AVG Diele	ectric after conditioning	12.24	14.08	16.78	18.78	12.02	12.72	15.28	19.32	12.74	13.78	15.06	18.22	15.68	16.48	17.5
Reading 2 End of the sector of the condition of the	san		Reading 1	c	46.9	53.3	17.3	c	48.9	36.4	18.8		36	9.64	22.7	33.5	26.4	36.4
Reading 3 $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{47.9}$ $\frac{1}{30.7}$ $\frac{1}{24.5}$ $\frac{1}{49.5}$ $\frac{1}{24.5}$ $\frac{1}{24.$	PA 3		Reading 2		46.9	34.5	15.5		48.9	36.4	24.8	1 - 3		49.6	31.7	34.5	26.4	50.4
AVG Seismic Eafter conditioning 47,23333 35.5 15,43333 36.6 23.03333 7 6 51.43333 28.166667 25.933333 0.00000 20.033333 0.00000 20.033333 28.6 51.033333 7 5 2 6 51.43333 28.166667 25.933333 28.166667 20.9333333 28.16667 20.9333333 28.16667 20.9333333 28.16667 20.9333333 28.16667 20.9333333 28.16667 29.133333 28.16667 29.133333 28.16667 29.133333 28.16667 28.933333 28.16667 28.933333 28.16667 28.933333 28.16667 28.933333 28.16677 20.4 40.9 58.9 Unconfined Compressive Strength (psi) 32.3 77.5 48.7 37.7 65.9 81.6 49.6 26.8 38.5 41.5 46.4 26.4 40.9 58.9	o j Uis		Reading 3		47.9	30.7	5.51		49.9	8	222	iid Bis		1755	30.L	34.5	25	55.8
32.3 77.5 48.7 37.7 65.9 81.6 49.6 26.8 38.5 41.5 46.4 26.4 40.9 58.9	195	AVG Seisr	mic E after conditioning	5	47.23333	39.5	15.43333	5	49.23333		23.03333		26	51.43333	28.16667	34.166667	25.933333	47.533333
		Unconfine	ed Compressive Strength (psi)	32.3	77.5	48.7	37.7	62:39	81.6	49.6	26.8	38.5	41.5	46.4	26.4	40.9	58.9	53.7

53.7 6.45

58.9 6.38

40.9 6.48

81.6 s,

Water content (%) after compression test Unconfined Compressive Strength (psi)

47.23333 6.01

7.27

6.85

6.04

5.01

7.35

6.98

5.93

7.78

88

46.9 46.9 47.9 77.5 in)

0W.
B
6.7 ft-lbf per Blow
of]
ft-lbf per
r.
16.
geting
Targ
ples
Sampl
ts from
esults
ž
le B.3. R
Table B.3.

APPENDIX C: INDIVIDUAL LAB RESULTS FROM ILS

Triaxial Test Data Sheet											
Specimen Data	Specimen Data										
Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3		
Cell No.:											
Wet Mass Spec. & Mold, (lb): (38.649	38.505	No Sample	39.638	39.637	39.638	38,390	38.960	38.161		
Wet Mass Specimen, (lb):	19.361	19.218		20.351	20.350	20.351	19.102	19.672	18.874		
Initial Height of Specimen, in :	8.056	8.029		7.890	7.871	7.899	7.976	8.211	7.865		
New Height of Specimen, in.:	8.000	8.000		8.000	8.000	8.000	8.000	8.000	8.000		
Average Diameter, in.:	6.00	6.00		6.00	6.00	6.00	6.00	6.00	6.00		
Circumference, in. (manual):	19,100	19,100		19.000	19.000	19.000	18,900	18,900	18,900		
Circumference, in. (auto):	19.100	19,100		19.000	19.000	19.000	18.900	18.900	18.900		
Area, in.^2:	28.65	28.65		28.50	28.50	28.50	28.35	28.35	28.35		
Avg. Cross Sectional Area, in^2:	29.84	29.56		29.35	29.44	29.62	28.99	29.01	28.81		
			1 1		1			1			
Dry-Back Data											
Wet Mass of Pan & Specimen, (lb)	22.271	22.401	1	23.482	23.519	23.453	22.161	22.787	23.007		
Dry Mass of Pan & Specimen, (lb):	21.031	21.138		22.485	22.494	22.436	20.875	21.466	21.644		
Mass of Pan, (lb):	3.210	3.239		3.210	3.239	3.231	3.210	3.239	3.231		
Dry Mass of Material, (lb):	17.821	17.899		19.275	19.255	19.205	17.665	18.227	18.413		
Mass of Water, (lb):	1.240	1.263		0.997	1.025	1.017	1.286	1.321	1.363		
Moisture Content, (%):	7.0	7.1		5.2	5.3	5.3	7.3	7.2	7.4		
Wet Density, (pcf).:	146.5	145.9		157.3	157.6	157.1	146.0	146.1	146.3		
Dry Density, (pcf):	137.0	136.3		149.5	149.7	149.2	136.1	136.2	136.2		
SCA Data											
Total Energy (Ib-ft) Lift 1:	759.620	759.710		758.000	755.000	760.760	757.170	754.610	750.470		
Total Energy (Ib-ft) Lift 2:	759.640	752.220		759.560	751.690	763.130	753.000	753.450	750.600		
Total Energy (Ib-ft) Lift 3:	751.140	758.860		757.430	762.460	761.400	761.670	752.910	759.470		
Total Energy (Ib-ft) Lift 4:	752 760	761 650		753 220	750 010	760 340	755 120	759 170	751 260		
Energy/Lift (Ib-ft) Lift 1:	13.330	12.880		12.850	13.260	13.350	13.050	13.240	12.940		
Energy/Lift (lb-ft) Lift 2:	13.330	12.970		13.330	13.670	13.390	12.980	12.150	12.720		
Energy/Lift (Ib-ft) Lift 3:	13.180	13.080		13.530	13.620	13.840	13.360	12.980	12.870		
Energy/Lift (Ib-ft) Lift 4:	13.210	13.360		13.450	13.640	13.580	13.360	12.650	12.520		
Avg. Drop Ht. (Ib-ft) Lift 1:	18.300	15.990		18.470	18.480	18.400	17.180	17.810	16.520		
Avg. Drop Ht. (Ib-ft) Lift 2:	17.550	18.290		18.490	18.490	18.400	18.010	17.120	17.370		
Avg. Drop Ht. (Ib-ft) Lift 3:	17.960	18.000		18.490	18.500	17.420	17.960	18.470	18.040		
Avg. Drop Ht. (Ib-ft) Lift 4:	17.260	18.490		18.490	18.490	17.970	17.050	17.660	17.050		
No. of Blows (lb-ft) Lift 1:	57.000	59.000		59.000	57.000	57.000	58.000	57.000	58.000		
No. of Blows (Ib-ft) Lift 2:	57.000	58.000		57.000	55.000	57.000	58.000	62.000	59.000		
No. of Blows (Ib-ft) Lift 3:	57.000	58.000		56.000	56. 00 0	55.0 00	57.000	58.000	59.000		
No. of Blows (Ib-ft) Lift 4:	57.000	57.000		56.000	55.000	56.0 00	59.000	60.000	60.000		

Table C.1. ILS Results from Laboratory 1.

Triaxial Test Data Sheet											
Specimen Data	Specimen Data										
Specimen Number:	GB-1	GB-2	GB-3	OK-1	OK-2	OK-3	SW-1	SW-2	SW-3		
Cell No.:	57	60	72	94	103	105	34	36	56		
Wet Mass Spec. & Mold, (lb):	37.840	37.874	37.880	37.553	37.548	37.330	38.646	39.213	38.745		
Wet Mass Specimen, (lb):	19.454	19.488	19.494	19.167	19.162	18.944	20.260	20.827	20.359		
Initial Height of Specimen, in.:	8.105	8.127	8.168	7.940	7.933	7.925	7.793	7.999	7.847		
New Height of Specimen, in.:	8.105	8.127	8.198	7.940	7.933	7.925	7.793	7.999	7.847		
Average Diameter, in.:	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00		
Circumference, in. (manual):											
Circumference, in. (auto):	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850		
Area, in.^2:	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27		
Avg. Cross Sectional Area, in^2:	28.99	28.90	29.00	28.72	28.81	28.84	28.87	28.96	29.09		
Dry-Back Data											
Wet Mass of Pan & Specimen, (lb)	24.424	24.031	22.891	25.662	25.560	25.623	26.373	26.815	25.404		
Dry Mass of Pan & Specimen, (lb):	23.297	22.936	21.749	24.328	24.231	24.287	25.415	25.851	24.454		
Mass of Pan, (lb):	5.285	5.143	3.762	6.188	6.054	6.106	6.107	6.066	5.087		
Dry Mass of Material, (Ib):	18.012	17.794	17.987	18.140	18.177	18.182	19.308	19.785	19.368		
Mass of Water, (lb):	1.127	1.095	1.143	1.334	1.330	1.336	0.959	0.964	0.950		
Moisture Content, (%):	6.3	6.2	6.4	7.4	7.3	7.3	5.0	4.9	4.9		
Wet Density, (pcf).:	145.5	145.3	144.6	146.3	146.4	144.9	157.6	157.8	157.2		
Dry Density, (pcf):	136.9	136.9	136.0	136.3	136.4	135.0	150.1	150.5	149.9		
SCA Data											
Total Energy (lb-ft) Lift 1:	753.520	758.040	753.130	759.620	761.420	761.750	760.070	761.310	750.620		
Total Energy (lb-ft) Lift 2:	750.540	758.930	761.340	752.770	757.180	751.160	757.690	756.300	758.760		
Total Energy (lb-ft) Lift 3:	762.010	762.700	7 50.4 30	759.540	756.960	759.760	754.020	760.590	752.050		
Total Energy (lb-ft) Lift 4:	751. 360	754.600	7 50 .460	762.780	762.440	758.000	753.580	753.860	755.060		
Energy/Lift (lb-ft) Lift 1:	13.220	13.300	13.210	13.100	13.130	13.130	13.570	13.130	13.170		
Energy/Lift (lb-ft) Lift 2:	13.170	13.080	13.130	12.950	13.050	12.950	13.060	13.040	13.080		
Energy/Lift (lb-ft) Lift 3:	13.140	13.150	13.170	13.100	13.050	13.100	13.000	13.11 0	13.190		
Energy/Lift (lb-ft) Lift 4:	13.180	13.240	13,170	13.150	13,150	13.070	13.220	13.230	13.250		
Avg. Drop Ht. (lb-ft) Lift 1:	18.400	18.380	18.390	18.380	18.360	18.330	18.380	18.410	18.390		
Avg. Drop Ht. (lb-ft) Lift 2:	18.400	18.410	18.380	18.390	18.390	18.310	18.360	18.380	18.360		
Avg. Drop Ht. (lb-ft) Lift 3:	18.390	18.370	18.390	18.370	18.380	18.390	18.340	18.360	18.360		
Avg. Drop Ht. (lb-ft) Lift 4:	18.390	18.400	18.400	18.400	18.390	18.380	18.390	18.380	18.390		
No. of Blows (lb-ft) Lift 1:	57.000	5 7.000	57.000	58.000	58.000	58.000	56.000	58. 000	57.000		
No. of Blows (lb-ft) Lift 2:	57.000	58. 000	58.000	58.000	58.000	58.000	58.000	58. 000	58.000		
No. of Blows (lb-ft) Lift 3:	58.000	58. 000	57.000	58.000	58.000	<u>58.000</u>	58.000	58.000	57.000		
No. of Blows (lb-ft) Lift 4:	57.000	5 7.000	57.000	58.000	58.000	58.000	57.000	57.000	57.000		

Table C.2. ILS Results from Laboratory 2.

Triaxial Test Data Sheet									
Specimen Data			Παλιαι	Test Data 2	neet				
Specimen Number:	1	2	3	4	5	6	7	8	9
Cell No.:	G-1	G-2	G-3	0-5	0-6	0-7	S-A	S-B	-
Wet Mass Spec. & Mold, (lb):	38.866	38.756	38.776	38.514	38.664	38.667	39.776	39.738	
Wet Mass Specimen, (lb):	19.549	19.439	19.459	19.197	19.347	19.350	20.459	20.421	
Initial Height of Specimen, in.:	8.235	8.202	8.291	8.096	8.120	8.094	7.969	7.973	
New Height of Specimen, in.:	8.235	8.202	8.291	8.096	8.120	8.094	7.969	7.973	
Average Diameter, in.:	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	
Circumference, in. (manual):									
Circumference, in. (auto):	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18,850
Area, in.^2:	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27	
Avg. Cross Sectional Area, in^2:	28.96	28.99	28.78	28.78	28.69	29.05	28.84	28.72	
Dry-Back Data									
Wet Mass of Pan & Specimen, (lb)	25.650	25.222	25.543	24.474	25.445	24.999	25.349	26.396	
Dry Mass of Pan & Specimen, (lb):	24.421	24.011	24.321	23.278	24.247	23.807	24.371	25.427	
Mass of Pan, (lb):	6.141	5.833	6.116	5.409	6.246	5.793	4.939	6.031	
Dry Mass of Material, (Ib):	18.280	18.178	18.205	17.869	18.001	18.014	19.432	19.396	
Mass of Water, (lb):	1.229	1.211	1.222	1.196	1.198	1.192	0.978	0.969	
Moisture Content, (%):	6.7	6.7	6.7	6.7	6.7	6.6	5.0	5.0	
Wet Density, (pcf).:	144.7	144.5	143.1	144.6	145.3	145.8	158.5	156.2	
Dry Density, (pcf):	135.6	135.5	134.1	135.5	136.2	136.7	149.0	148.7	
SCA Data									
Total Energy (lb-ft) Lift 1:	751.500	763.990	761.530	759.200	757.720	760.230	762.180	759.710	
Total Energy (lb-ft) Lift 2:	760.510	750.180	761.340	758.000	762.650	758.990	764.060	757.220	
Total Energy (lb-ft) Lift 3:	758.790	761.270	760.340	760.150	761.030	759.100	754.840	753.520	
Total Energy (lb-ft) Lift 4:	760.480	756.170	753.840	751.890	757.060	752.990	752.770	752.060	
Energy/Lift (lb-ft) Lift 1:	14.180	14.150	14.100	14.060	14.030	14.080	13.860	14.070	
Energy/Lift (lb-ft) Lift 2:	18.080	14.150	14.100	14.040	14.120	14.060	13.890	14.020	
Energy/Lift (lb-ft) Lift 3:	18.050	14.100	14.080	14.080	14.090	14.060	13.980	13.950	
Energy/Lift (lb-ft) Lift 4:	18.080	14.000	13.960	13.920	14.020	13.940	13.940	13.930	
Avg. Drop Ht. (lb-ft) Lift 1:	18.530	18.530	18.510	18.520	18.540	18.530	18.490	18.530	
Avg. Drop Ht. (lb-ft) Lift 2:	18.520	18.510	18.520	18.510	18.540	18.540	18.490	18.510	
Avg. Drop Ht. (lb-ft) Lift 3:	18.520	18.520	18.520	18.520	18.530	18.530	18.510	18.51 0	
Avg. Drop Ht. (lb-ft) Lift 4:	18.510	18.500	18.500	18.520	18.510	18.500	18.510	18.510	
No. of Blows (lb-ft) Lift 1:	53.000	54.000	54.000	54.000	54.000	54.000	55.000	54.000	
No. of Blows (lb-ft) Lift 2:	54.000	53.000	54.000	54.000	54.000	54.000	55.000	54.000	
No. of Blows (lb-ft) Lift 3:	54.000	54.000	54.000	54.000	54.000	54.000	54.000	54.000	
No. of Blows (lb-ft) Lift 4:	54.000	54.000	54.000	54.000	54.000	54.000	54.000	54.000	

Table C.3. ILS Results from Laboratory 3.

Triaxial Test Data Sheet											
Specimen Data	Specimen Data										
Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3		
Cell No.:	4	5	6	7	8	9	1	2	3		
Wet Mass Spec. & Mold, (lb):	29.382	29.347	29.273	30.250	30.274	30.262	28.995	29.122	29.113		
Wet Mass Specimen, (lb):	19.421	19.386	19.312	20.289	20.313	20.301	19.034	19.161	19.152		
Initial Height of Specimen, in.:	8.028	7.985	7.989	7.733	7.765	7.818	7.737	7.746	7.820		
New Height of Specimen, in.:	8.028	7.985	7.989	7.733	7.765	7.818	7.737	7.746	7.820		
Average Diameter, in.:	6.00	6.00	6.00	6.00	6.00	6.00	6.00)	6.00)	6.00		
Circumference, in. (manual):											
Circumference, in. (auto):	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850	18.850		
Area, in.^2:	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27	28.27		
Avg. Cross Sectional Area, in^2:	28.65	28.68	28.66	28.60	28.69	28.64	28.71	28.69	28.66		
Dry-Back Data											
Wet Mass of Pan & Specimen, (lb)	22.95 5	23.161	23.158	24.056	23.852	24.124	22.532	23.016	22.806		
Dry Mass of Pan & Specimen, (lb):	21.778	21.970	21.993	23.125	22.912	23.200	21.342	21.819	21.635		
Mass of Pan, (Ib):	3.534	3.774	3.836	3.777	3.546	3.836	3.558	3.895	3.794		
Dry Mass of Material, (Ib):	18.244	18.196	18.157	19.348	19.366	19.364	17.784	17.924	17.841		
Mass of Water, (lb):	1.177	1.191	1.165	0.931	0.940	0.924	1.190	1.197	1.171		
Moisture Content, (%):	6.5	6.5	6.4	4.8	4.9	4.8	6.7	6.7)	6.6		
Wet Density, (pcf).:	144.0	144.5	143.9	156.2	155.7	154.6	146.4	147.2	145.8		
Dry Density, (pcf):	135.3	135.6	135.2	149.0	148.5	147.5	137.3	138.0	136.8		
SCA Data											
Total Energy (lb-ft) Lift 1:	752.570	761.310	753.370	751.030	755.450	755.560	750.510	753.260	752.060		
Total Energy (lb-ft) Lift 2:	754.140	758.790	758.700	750.48 <mark>0</mark>	756.570	755.040	751.130	758.880	762.160		
Total Energy (lb-ft) Lift 3:	756.110	752.000	751.350	754.730	758.060	758.190	761.690	751.560	760.410		
Total Energy (lb-ft) Lift 4:	751.570	750.650	759.380	750.64 0	754.060	753.800	762.410	751.320	753.280		
Energy/Lift (lb-ft) Lift 1:	12.760	12.480	12.560	12.520	12.380	12.190	12.940	12.770	12.750		
Energy/Lift (lb-ft) Lift 2:	12.570	12.440	12.440	12.510	12.200	11.980	12.950	12.650	12.490		
Energy/Lift (lb-ft) Lift 3:	12.600	12.330	12.320	12.370	12.230	12.230	12.690	12.530	12.670		
Energy/Lift (lb-ft) Lift 4:	12.530	12.310	12.050	12.110	12.160	11.970	12.500	12.320	12.350		
Avg. Drop Ht. (lb-ft) Lift 1:	18.010	17.120	17.990	17.990	17.510	17.980	18.000	18.000	17.870		
Avg. Drop Ht. (lb-ft) Lift 2:	17.980	17.170	17.330	17.490	17.080	17.320	17.510	17.280	17.620		
Avg. Drop Ht. (lb-ft) Lift 3:	18.000	17.310	17.200	17.980	16.700	17.980	17.990	17.290	17.120		
Avg. Drop Ht. (lb-ft) Lift 4:	17.510	18.000	17.250	17.390	17.610	16.790	18.000	18.000	18.000		
No. of Blows (lb-ft) Lift 1:	59.000	61.000	60.000	60.000	61.000	62.000	58.000	59.000	59.000		
No. of Blows (lb-ft) Lift 2:	60.000	61.000	61.000	60.000	62.000	63.000	58.000	60.000	61.000		
No. of Blows (lb-ft) Lift 3:	60.000	61.000	61.000	61.000	62.000	62.000	60.000	60.000	60.000		
No. of Blows (lb-ft) Lift 4:	60 .000	61.000	63.000	62.0 00	62.000	63.000	61.000	61.000	61.000		

Table C.4. ILS Results from Laboratory 4.

	Triaxial Test Data Sheet									
Specimen Data										
Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3	
Cell No.:	8	9		8	9	28	8	9	28	
Wet Mass Spec. & Mold, (lb):	38.678	38.694	1	39,456	39.799	39.804	38.591	38.687	38.693	
Wet Mass Specimen, (lb):	19.208	19.224		19.986	20.329	20.334	19.121	19.217	19.223	
Initial Height of Specimen, in.:	8.120	8.121		7.827	7.991	8.052	8.192	8.035	8.050	
New Height of Specimen, in.:	7.991	8.052		7.827	7.991	8.052	8.192	8.035	8.050	
Average Diameter, in.:	6.00	6.00		6.00	6.00	6.00	6.00	6.00	6.00	
Circumference, in. (manual):	18.850	18.850		18.900	18.850	18.900	18.900	18.850	19.000	
Circumference, in. (auto):	18.850	18.850		18.900	18.850	18.900	18.900	18.850	19.000	
Area, in.^2:	28.28	28.28		28.35	28.28	28.35	28.35	28.28	28.58	
Avg. Cross Sectional Area, in^2:	28.95	28.84		29.04	28.95	28.92	30.64	29.65	29.04	
Dry-Back Data										
Wet Mass of Pan & Specimen, (lb)	22.932	22.953		23.679	24.068	24.068	22.745	22.869	22.856	
Dry Mass of Pan & Specimen, (lb):	21.782	21.791		22.806	23.158	23.172	21.592	21.672	21.689	
Mass of Pan, (lb):	3.763	3.765		3.763	3.773	3.782	3.765	3.789	3.769	
Dry Mass of Material, (Ib):	18.019	18.026		19.043	19.385	19.390	17.827	17.883	17.920	
Mass of Water, (lb):	1.150	1.162		0.873	0.910	0.896	1.153	1.197	1.167	
Moisture Content, (%):	6.4	6.4		4.6	4.7	4.6	6.5	6.7	6.5	
Wet Density, (pcf).:	144.2	144.3		155.7	155.1	154.0	142.3	145.8	145.6	
Dry Density, (pcf):	135.6	135.6		148.9	148.2	147.2	133.7	136.7	136.7	
SCA Data										
Total Energy (lb-ft) Lift 1:	759.190	753.740		754.540	753.110	755.120	761.850	758.560	761.920	
Total Energy (lb-ft) Lift 2:	751.150	753.610	•••••••	750.790	750.720	756.350	760.300	751.370	752.030	
Total Energy (lb-ft) Lift 3:	763.600	754.370			753.690	756.040	753.100	751.000	755.270	
Total Energy (lb-ft) Lift 4:	760.395	759.680		761.760	752.640	757.780		754.520	750.150	
Energy/Lift (lb-ft) Lift 1:	13.319	13.460		13.010	12.980	12.590	13.850	13.080	13.140	
Energy/Lift (lb-ft) Lift 2:	13.180	13.460		12.940	12.940	12.200	13.340	13.420	13.190	
Energy/Lift (lb-ft) Lift 3:	13.640	13.720			12.990	11.120	13.210	13.180	12.380	
Energy/Lift (lb-ft) Lift 4:	13.840	13.570		13.360	12.760	8.880		13.010	12.930	
Avg. Drop Ht. (lb-ft) Lift 1:	17.450	18.410		17.630	17.650	17.600	18.420	17.880	18.340	
Avg. Drop Ht. (lb-ft) Lift 2:	17.690	18.390		17.410	17.380	16.770	18.290	18.360	18.430	
Avg. Drop Ht. (lb-ft) Lift 3:	18.21 0	18.430			18.200	15.190	18.070	18. 380	18.190	
Avg. Drop Ht. (lb-ft) Lift 4:	18.340	18.420		17.800	16.970	13.290		18.410	18.400	
No. of Blows (lb-ft) Lift 1:	57.000	56.000		58.000	58.000	60.000	55.000	58. 000	58.000	
No. of Blows (lb-ft) Lift 2:	57.000	56.000		58.000	58.000	62.000	55.00 0	56. 000	57.000	
No. of Blows (lb-ft) Lift 3:	56.000	55.000			58.000	68.000	57.000	57.000	61.000	
No. of Blows (lb-ft) Lift 4:	55.000	56.000		57.000	59.000	78.000		58. 000	58.000	

Table C.5. ILS Results from Laboratory 5.

Triaxial Test Data Sheet										
Specimen Data										
Specimen Data Specimen Number:	GB-1	GB-2	GB-3	SW-1	SW-2	SW-3	OK-1	OK-2	OK-3	
Cell No.:	00-1	00-2	00-5	500-1	011-2	011-0	UK-1	011-2	010-5	
Wet Mass Spec. & Mold, (lb):	30.354	30.347	30.348	31.330	31.446	31.182	30.383	30.414	30.315	
Wet Mass Spec. & Mold, (Ib): Wet Mass Specimen, (Ib):	19.089	19.081	19.083	20.065	20.181	19.917	19.118	19.148	19.050	
Initial Height of Specimen, in.:	8.100	8.200	7.950	8.000	8.100	7.900	8.200	8.100	8.050	
New Height of Specimen, in.:	8.105					7.900	7.793			
Average Diameter, in.:	6.00	8.127 6.00	8.198 6.00	7.940 6.00	7.933 6.00	6.00	6.00	7.999	7.847 6.00	
v	6.UU	0.00	0_00	6.00	6.00	6.00	6.00	0.00	0.00	
Circumference, in. (manual):	40.050	40.050	40.050	40.050	40.050	40.050	40.050	40.050	40.050	
Circumference, in. (auto):	18.850 28.27	18.850 28.27	18.850	18.850	18.850	18.850 28.27	18.850 28.27	18.850	18.850	
Area, in.42:			28.27	28.27	28.27			28.27	28.27	
Avg. Cross Sectional Area, in^2:	28.74	28.84	28.95	28.89	28.75	28.93	28.60	28.74	28.68	
Dry-Back Data										
Wet Mass of Pan & Specimen, (lb)	20.199	20.359	19.940	20.737	20.979	21.288	20.343	20.405	20.065	
Dry Mass of Pan & Specimen, (lb):	19.156	19.271	18.871	19.887	20.116	20.463	19.273	19.328	18.975	
Mass of Pan, (lb):	1.177	1.321	0.947	0.888	0.864	1.321	1.373	1.384	1.113	
Dry Mass of Material, (lb):	17.978	17.950	17.924	18.998	19.252	19.142	17.900	17.944	17.862	
Mass of Water, (lb):	1.044	1.088	1.069	0.850	0.863	0.825	1.070	1.077	1.091	
Moisture Content, (%):	5.8	6.1	6.0	4.5	4.5	4.3	6.0	6.0	6.1	
Wet Density, (pcf).:	143.7	141.9	146.4	152.9	151.9	153.7	142.2	144.1	144.3	
Dry Density, (pcf):	135.8	133.8	138.1	146.4	145.4	147.4	134.1	136.0	136.0	
ony conteny, (poly.	100.0	100.0	100.1	110.1			10	100.0		
SCA Data										
Total Energy (lb-ft) Lift 1:	762.500	754.070	753.410	751.030	762.150	760.810	756.550	753.500	769.770	
Total Energy (lb-ft) Lift 2:	758.360	755.990	755.530	762.190	757.990	757.970	756.120	751.180	759.410	
Total Energy (lb-ft) Lift 3:	754.720	756.920	753.890	756.880	751.720	757.080	756.830	752.770	758.170	
Total Energy (lb-ft) Lift 4:	760.110	752.370	753.830	753.470	750.730	755.020	756.080	753.260	758.400	
Energy/Lift (lb-ft) Lift 1:	12.924	12.568	12.557	12.517	12.918	12.895	12.823	12.771	13.272	
Energy/Lift (lb-ft) Lift 2:	13.075	13.034	13.026	12.918	13.069	13.068	13.037	12.951	12.871	
Energy/Lift (lb-ft) Lift 3:	13.012	12.829	13.226	13.050	13.188	13.053	13.049	12.979	13.072	
Energy/Lift (lb-ft) Lift 4:	13.105	12.540	13.225	13.219	13.171	12.797	13.036	12.987	13.076	
Avg. Drop Ht. (lb-ft) Lift 1:	17.880	18.290	18.310	18.320	18.290	18.070	18.130	18.110	18.230	
Avg. Drop Ht. (lb-ft) Lift 2:	17.830	17.780	18.320	18.280	18.300	18.180	18.280	18.290	18.100	
Avg. Drop Ht. (lb-ft) Lift 3:	18.240	18.090	18.310	18.260	18.290	18.130	18.280	18.270	18.280	
Avg. Drop Ht. (lb-ft) Lift 4:	18.240	17.960	18.240	18.290	18.240	18.020	18.250	18.240	18.250	
No. of Blows (lb-ft) Lift 1:	59	60	60	60	59	59	59	59	58	
No. of Blows (lb-ft) Lift 2:	58	58	58	59	58	58	58	58	59	
No. of Blows (lb-ft) Lift 3:	58	59	57	58	57	58	58	58	58	
No. of Blows (lb-ft) Lift 4:	58	60	57	57	57	59	58	58	58	

Table C.6. ILS Results from Laboratory 6.