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FINAL RESEARCH PLAN OF STATISTICAL ANALYSIS FOR
SUPPLEMENTAL MAINTENANCE EFFECTIVENESS RESEARCH
PROGRAM (SMERP) DATA

One of the tasks in this project is to develop a set of tools to analyze the
Supplemental Maintenance Effectiveness Research Program (SMERP) data. In pursuit of
this, we have reviewed several different models and approaches.

The repeated measures, linear covariate, and non-linear covariate models have
been fitted to the SMERP data. We treated the distresses (fatigue or alligator cracking, all
other cracking, and bleeding) as three univariate response variables in the models. Since
the results for each distress are similar, cracking data was selected to be representative.
In addition, in the following context, treatment types 1 - 7 refer to seven pavement
treatments: 1 - asphalt rubber, 2 - microsurfacing, 3 - polymer modified emulsion seal
coat, 4 - latex modified seal coat, 5 - conventional asphalt cement seal coat, 6 - fog seal,
and 7 — control section with no treatment applied.

A plot of all other cracking is shown graphically in Figure 1.
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Figure 1. Cracking.



REPEATED MEASURES MODEL

The repeated measures model was the first candidate model tested because for
each experimental section, the pavement condition was measured several times and the
inspection intervals were nearly equal.

There are two main ways to analyze a repeated measures design: split-plot and
multivariate approaches. Multivariate analysis is a necessary complement to verify the
validity of the split plot analysis.

For the cracking, the split plot model is

Y = B+ @+ P+ dy + B+ @By + ey

where
i =1,2,..7,
k =1,2,...,20,
j =12,...,9,

a, = fixed pavement treatment,
p,. = fixed site effect (block),

B ;= fixed time effect,
(aﬂ ),, = fixed treatment X time interaction effect, and

= whole plot random error.

The subplot errors are assumed to satisfy the Huynh-Feldt condition of equal variances
for differences between all inspection times.

The following is an example analysis of variance (ANOVA) table output for this

model:



Table 1. Example ANOVA Table for Repeated Measures Model

(R*=77%).
DF Sum of Mean Squares | F Value P-value
Source Squares
Model 195 76038405.6 389940.5 14.89 0.0001
TYPE 6 8895403.0 1482567.2 11.16 0.0001
INSP 8 12330871.5 1541358.9 58.86 0.0001
INSP*TYPE 48 2699722.8 56244.2 2.15 0.0001
PLACE 19 30689140.5 1615217.9 9.96 0.0001
TYPE*PLACE | 114 19096833.0 167516.1 6.40 0.0001
Error 866 22676605.2 26185.0
Corrected Total | 1061 98715010.8

The first p-value listed in the last column is less than 0.0001. A value this low

indicates that the model is significant with a satisfied squared multiple correlation, R’
value of 77 percent. This correlation means that 77 percent of variation in cracking is
captured by this split-plot model. The other p-values are all much less than 0.05, hence
the effects of treatment type, inspection date, site location, and interaction are all
significant. We are especially concerned with the effects of treatment type, so we
implemented a post-ANOVA analysis to provide more detail. The Tukey Honestly
Significant Difference (HSD) test (Kuehl, 1994), which was developed by Tukey for

pairwise comparison of all treatment types, gives the result shown in Table 2.



This table shows that types 2, 6, and 7 are not significantly different; types 1, 3, 4,
and 5 do not differ significantly. The data can be arranged into groups A (2, 6, and 7)

Table 2. Results of the Tukey’s HSD Test.

Grouping Mean N TYPE
A 313.54 139 6
A 298.80 143 7
A 27795 156 2
B 113.82 156 5
B 105.94 156 4
B 98.62 156 3
B 63.59 156 1

and B (1, 3, 4, and 5), and the types in the different groups are significantly different.

The trend analysis was conducted to determine the quantitative trend relationship
between cracking condition and inspection time, which can be simplified by examining
orthogonal contrasts among the inspection time levels that measure the linear, quadratic,
and higher-level polynomial effects. These contrasts, known as orthogonal polynomials,
enable us to evaluate the importance of each polynomial component with a specific

contrast. Table 3 shows the output of the orthogonal polynomial analysis.

Table 3. Analysis of Variance for the Orthogonal Polynomial Model.

Contrast DF | Contrast SS | Mean Square | F Value P-value

Linear 1 11350662.1 11350662.1 433.47 0.0001
Quadratic 1 37030.4 370304 1.41 0.2347
Cubic 1 41671.3 41671.3 1.59 0.2075
Quartic 1 41048.2 41048.2 1.57 0.2109
Fifth 1 110755.0 110755.0 4.23 0.0400
Sixth 1 17843.2 17843.2 0.68 0.4093

This table indicates that the only significant trend is the linear model, but the small p-

value for the fifth order component stands, though it is not significant.




The Hynh — Feldt (H-F) condition is required for the usual analysis of variance for
the above model, which means that variance of the difference between any pair of
observations receiving the same treatment but at the different time must be equal. This
structure, also termed sphericity, is a necessary and sufficient condition for the F tests to
be appropriate. Multivariate analysis of variance can test the H-F condition. The basic
model for cracking values is:

Yijk = M, t e
where
i =treatment type (1, 2,..,7);
k  =site number (1, 2,..., 20); and
j  =inspection number (1,2, ..., 9).
The result of the Mauchly’s test, which can be applied to test the null hypothesis of
sphericity (Littell, Freund, and Spector, 1991) extracted from the multivariate analysis of

variance, is shown in Table 4.

Table 4. Test for Sphericity.

Mauchly's Chisquare
Criterion Aggroximation DF P-value
0.0000298 772.4463 35 0.0000

Data shown in Table 4 confirm that the split-plot analysis may not be valid. The Wilks’
Lambda likelihood ratio test on the general linear hypothesis of no-time effect has a p-
value < 0.0001 and the no-time-treatment interaction effect has a p-value = 0.5653, which
shows the significance of inspection time but a non-significant interaction effect between

time and treatment.

A final analysis forms contrast (orthogonal polynomials) in the time variable and
tests the differences in this contrast across the levels of the type variable. Since we have
nine time periods, we can form eight orthogonal polynomials, which summarize the data

across the repeated factor (time period). The polynomial trend can thus be considered the



response variable in a complete random design with seven treatments and eight

responses. Table 5 shows the p-values from the polynomial analysis.

Table 5. P-values of Tests for Polynomial Trends.

Polglrlc(i);?ial Mean Type
e ——
Linear 0.0001 0.4888
Quadratic 0.1279 0.4809
Cubic 0.0501 0.0035
Quartic 0.0368 0.6827
5 0.0002 0.8954
6" 0.6379 0.6043
7" 0.1878 0.0098
g™ 0.0279 0.2457

The column labeled “Mean” tests the hypothesis that, averaged over all the
observations, the mean of the specified contrast variable is 0. The column labeled
“Type” tests the hypothesis that the mean of the contrast variable is the same for each
level of type tested. Since the eight tests are not independent, we would use

o pe = 005/8 = 0.0063 as the significance level in these multiple comparisons. The SAS

output shows that the linear trend (p-value < 0.0001) and fifth order trend (p-value =
0.0002) are significant, but the non-significant type effects for linear and fifth order

shows that the curvatures are almost the same for the seven treatment types.

Although the data tested do not satisfy the H-F condition, the repeated measures
model is still a good approach for this project. We grouped the treatment types and found
the significant non-linear time trend by ANOVA and post-ANOVA. In the following

models, we treat inspection times as exact days rather than as several levels.



ANALYSIS OF COVARIANCE (ANCOVA)

Basically, ANCOVA (Huitema, 1980) is useful when the researcher wishes to
examine the relationship among at least two quantitative variables and at least one
additional categorical variable. Especially, the researcher may be interested in examining
the relationship between two quantitative variables but find that a categorical variable is
confounding that relationship. ANCOVA allows one to examine the relationship in
question “controlling for” the confounding categorical variable.

The model of ANCOVA can be presented as:
dependent variables = constant + (effect of treatment type) + (effect of covariate) + error,
which has two forms:

(1) Traditional model:

where

M, = treatment mean,

B = coefficient for the linear regression of y, on x;.

Two additional key assumptions for this model are that the regression coefficient
Bis the same for all treatment groups and the treatments do not influence the

covariate x.

(2) Heterogeneous ANCOVA model:

Y, = M, + IBi(xij - J?i.)"' €.
which allows different slopes for different treatments.

We applied this model to study the relationship among cracking, time, and sites
for each pavement treatment. Time is considered as the continuous covariate (here, we
calculated the exact days between the inspection date and the construction date, while in
the repeated measures model, we only used the approximate months) with type and site
as the categorical variable.

At first, we fit a more general covariate model:

Vi =M+ O+ p,+ Box, + e,



i =127,
i =1,2,..,20,

k =1,2,...,9, a,=fixed pavement treatment,

p; = fixed site effect (block),
B; = coefficient for the linear regression of y,, on x

Yy = cracking index - ratio of cracking area to pavement area.

ko and

The ANCOVA table output for this model is listed in Table 6.

Table 6. Example ANCOVA Table for Linear Covariate Model ( R* =91%).

Source DF | Sum of Squares | Mean Squares F Value P-value
TIME 1 0.28783045 0.28783045 1256.67 0.0001
TYPE 6 0.24615822 0.04102637 179.12 0.0001
SITE 19 0.67984932 0.03578154 156.22 0.0001
TIME*TYPE*SITE | 133 0.81704049 0.00614316 26.82 0.0001
Error 889 0.20361924 0.00022904

Corrected Total 1048 2.23449772

The first p-value listed in the last column is less than 0.0001. This small value

indicates that the model is significant with a very high squared multiple correlation, R*

value of 91 percent. This correlation means that 91 percent of the variation in cracking is

captured by this linear covariate model. The other p-values are all much less than the

0.05 level. The significant interaction among time, treatment type, and site indicates a

heterogeneous ANCOV A model.

We further tried the ANCOVA for each type of treatment. Tables 7 through 13

contain extracted ANCOVA data showing that for each type of pavement, the model is

significant and the heterogeneous ANCOVA is necessary.



Table 7. ANCOVA Table for Treatment Type 1 (R’ =85%).

Source DF | Sum of Squares | Mean Squares F Value P-value
TIME 1 0.00819032 0.00819032 111.60 0.0001
SITE 19 0.02891665 0.00152193 20.74 0.0001

TIME*SITE 19 0.01113912 0.00058627 7.99 0.0001

Table 8. ANCOVA Table for Treatment Type 2 (R*>=92%).

Source DF | Sum of Squares | Mean Squares | F Value P-value
TIME 1 0.09764018 0.09764018 301.76 0.0001
SITE 19 0.22332694 0.00152193 36.33 0.0001

TIME*SITE 19 0.08718655 0.00458877 14.18 0.0001

Table 9. ANCOVA Table for Treatment Type 3 (R*>=94%).

Source DF | Sum of Squares | Mean Squares | F Value P-value
TIME 1 0.01651027 0.01651027 283.81 0.0001
SITE 19 0.05657327 0.00297754 51.18 0.0001

TIME*SITE 19 0.02648082 0.00139373 23.96 0.0001

Table 10. ANCOVA Table for Treatment Type 4 (R>=92%).

Source DF | Sum of Squares | Mean Squares | F Value P-value

TIME 1 0.02687644 0.02687644 245.41 0.0001

SITE 19 0.06861267 0.00361119 32.97 0.0001

TIME*SITE | 19 0.05267105 0.00277216 25.31 0.0001

Table 11. ANCOVA Table for Treatment Type 5 (R*>=94%).

Source DF | Sum of Squares | Mean Squares | F Value P-value

TIME 1 0.03112358 0.03112358 420.09 0.0001

SITE 19 0.07002234 0.00368539 49.74 0.0001

TIME*SITE | 19 0.04408005 0.00232000 31.31 0.0001

Table 12. ANCOVA Table for Treatment Type 6 (R>=92%).

Source DF | Sum of Squares | Mean Squares | F Value P-value




TIME 1 0.06774384 0.06774384 154.94 0.0001
SITE 17 0.32281973 0.01898940 43.43 0.0001
TIME*SITE 16 0.08458547 0.00528659 12.09 0.0001
Table 13. ANCOVA Table for Treatment Type 7 (R’ =91%).
Source DF | Sum of Squares | Mean Squares | F Value P-value
TIME 1 0.05575945 0.05575946 118.42 0.0001
SITE 17 0.3519001 0.02070000 43.96 0.0001
TIME*SITE | 16 0.07847784 0.00490486 10.42 0.0001

The linear covariate model captures the data more precisely than the other
models, since we treat the inspection time as a continuous covariate. From the view of
the goodness-of-fit, this model is better than the repeated measures model. However, as
with the split-plot model, the data cannot satisfy an important assumption of the linear
covariate model which requires that the errors be independent. Therefore, this approach is

still an approximation.

NON-LINEAR COVARIATE MODEL
The above linear covariate model has already shown to be a good approximation.
However, some high order polynomial trends presented in the above polynomial trend
analyses indicate strong non-linearity. Previous pavement studies (Freeman, 2000)
recommend an S-shaped curve:
5
L

where

g =damage index,

W = pavement age depending upon the distress type under consideration, and

p.p

= scale and shape parameters, respectively.

An assumed exponential error structure:

10



can give us a linear model after transformation:

log|- log(g)] = Blog(p) - flogW) + ¢
It was interesting to exert more covariate analysis with this general linear relation,
called non-linear covariate analysis. We applied this model to study the relationship
among log[-log(cracking)] (the new response variable), log(time) (the new covariate),
and site (still the categorical variable) for each pavement treatment. The results are very
close to the linear covariate analysis. In order to compare these two approaches, we also
did the linear covariate analysis based on the formula:

g=a+bW+e.

As with the linear covariate modeling, we fit a more general covariate model after the

above transformation. The ANCOVA table output for this model is included in Table 14.

Table 14. Example ANCOVA Table for Non-linear Covariate Model ( R* = 90%).

Source DF | Sum of Squares | Mean Squares | F Value P-value

Model 121 82.5054439 0.6818632 30.61 0.0001
\% 1 6.4265315 6.4265315 288.47 0.0001
TYPE 6 12.5931327 2.0988555 94.21 0.0001
SITE 18 40.9097879 2.2727660 102.02 0.0001

W*TYPE*SITE 96 22.5759918 0.2351666 10.56 0.0001

Error 400 8.9113327 0.0222783

Corrected Total 521 91.4167766

The first p-value listed in the last column is less than 0.0001. This very small
value indicates that the model is significant with a very high squared multiple correlation,
R’ value of 90 percent. This correlation means that 90 percent of the variation in
cracking is captured by this non-linear covariate model. The other p-values are all much
less than the 0.05 level. The significant interaction among time, treatment type, and site
indicates a heterogeneous ANCOVA model.

Further, we tried this ANCOVA model for each type of treatment. All of the

ANCOVA results show that for each type of pavement, the model is significant and the

heterogeneous ANCOVA is necessary. We list the R for both models in Table 15.

11



Table 15. Results of ANCOVA for Each Treatment.

T Non-linear Linear
ype Model Model
1 81.9% 85.0%
2 96.3% 91.6%
3 92.7% 93.7%
4 92.2% 92.1%
5 89.2% 94.4%
6 95.4% 91.7%
7 95.5% 91.2%

The R’ values are all very similar. Figures 2 and 3 illustrate this point. In Figure
2, the linear model is better than the non-linear, but the non-linear model fits more
closely in Figure 3. Overall, the S-shaped covariate analysis is slightly better than linear
covariate analysis.

Obviously, we still cannot overcome the problem of the existence of the
covariance when modeling by linear ANCOVA. Also, because there are many zeros in
the original dataset, the logarithm transformation leads to more undefined values.

However, the S-shaped modeling is an appropriate way to handle non-linearity.

CONCLUSION

We have tried several statistical models. The linear models work well, but non-
linearity also exists, which has been proven by several analyses. We will continue to
study the univariate analysis by the more complicated non-linear models with more
parameters (Haas, Hudson and Zaniewski; 1994, Han and Lukanen, 1994; and Visser,
Queiroz and Caroca, 1994) then move to multivariate analysis, Finally, we will cope

with the data sets where the sites were taken out of service (right censored, with

competing risks).

12
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RESULTS OF LITERATURE SEARCH

The following is a list of much of the reference material used to develop the
models. Not all models studied were used, but valuable information was discovered that
helped guide the research. Other sources were consulted, but these represent the majority
of the reference.

Allison, P. D. (2001) Missing Data, Sage University Series Paper on Quantitative
Applications in the Social Sciences, Thousand Oaks, CA: Sage.

This report provided a basic idea about mechanisms for handling missing data
which was to help us to model the missing data in SMERP.

Chinchill, V. M. and Vonesh, E. F. (1997), Linear and Nonlinear Models for the Analysis
of Repeated measurements, New York: M. Dekker.

A review of the general repeated measures models, which were used in the data
analysis, was provided in this reference.

Diggle, R. J., Liang, K. — Y. and Zeger, S. L. (1994), Analysis of Longitudinal Data,
Oxford University Press Inc.

This document reviews the general strategy for analyzing longitudinal data. This
approach was followed in the exploratory data analysis stage.

Fox, J. (1999), Nonparametric Regression Analysis: Smoothing Scatterplots, University
Series Paper on Quantitative Applications in the Social Sciences, Thousand Oaks, CA:
Sage.

This report provides an excellent review of non-parametric smoothing techniques
to help us understand the “LOWESS” procedure used in the exploratory data analysis
stage.

Freeman, T. (2000), Project 0-4040 Proposal.

An introductory background of the SMERP study and some terminology used
throughout the whole statistical analysis was included in this report. An attempt was
made during the first research stage to fit the nonlinear model included in this proposal.
We are currently revisiting that analysis.

Gallant, A. R. and Fuller, W. A. (1973), Fitting Segmented Polynomial Regression
Model Whose Joint Points Have to Be Estimated, Journal of the American Statistical
Association, 68, 144-147.

The information in this journal helped us to understand the numerical techniques
for segmented regression. Since the method outlined in this paper requires stronger
conditions on the data than we have, we cannot use the method directly.

15



Haas, R., Hudson, W. and Zaniewski, J., (1994), Modern Pavement Management,
Krieger Publishing Company.

This book was used a background book to help the statisticians know more about
pavement knowledge, terminology, and especially, the many kinds of distress.

Han, C. and Lukanen, E. O., (1994), “Performance History and Prediction Modeling for
Minnesota Pavements”, Third International Conference on Managing Pavements,
Volume L.

The methods proposed for a modeling procedure based on simple, two variable
models which relate distress density to age, and additional variables such as surfaces
type, traffic and structure were described. We did not use this procedure.

Hand, D. J. and Crowder, M. J. (1996), Practical Longitudinal Data Analysis, Chapman
& Hall.

Information in this reference compares several models for longitudinal data. We
used the random-coefficient model and some ideas of handling non-normal and non-
linear in current study.

Hazelrig, J. B., Turner, M. E. and Blackstone, E. H. (1982), Parametric Survival Analysis
Combining Longitudinal and Cross-sectional-censored and Interval censored Data with
Concomitant Information, Biometrics, 38, 1-15.

The analysis techniques included in this report were studied very carefully during
the second research stage. In the final analysis, the methods were not used it treated the
missing data as dropouts, but not as censored.

Huitema, B. E. (1980), The Analysis of Covariance and Alternatives, Wiley-Interscience
Publication.

This book helped us to understand the covariance model, and was used in the first
research stage.

Kuehl, R. O. (1994), Statistical Principles of Research Design and Analysis, Duxbury
Press.

This report reviews classical experimental designs. We used the split-plot and
covariance models introduced in the book.

Laird, N. C. and Ware, J. H. (1982) Random-effects Models for Longitudinal Data,
Biometrics, 38, 963-974.

This report is the pioneering work on longitudinal data. We used the random-
coefficient model found in this report.

Littell, R. C., Freund, R. J. and Spector, P. C. (1991), SAS System for Linear Models, 31
Edition, SAS Institute Inc.

This programming reference helped us to program in the SAS statistical language
using PROC GLM to implement the repeated measures and covariance models in the first
research stage.
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Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996), SAS System
for Mixed Models, SAS Institute Inc.

This programming reference helped us to program in the SAS statistical language
using PROC MIXED to implement the linear mixed model in the current study.

Palmer, M. J. and Phillips, B. F. and Smith, G. T. (1991), Applications of Nonlinear
Models with Random Coefficients to Growth Data, Biometrics, 47, 623-635.

In this reference, we learned to combine the nonlinearity and random coefficients
to model the growth curve which aids us in our current model development.

Rutherford, A. (2001), Introducing ANOVA and ANCOVA: a GLM Approach, SAGE
publications.

This is a general introduction to ANOVA and ANCOVA which helped us in
beginning modeling stage.

Smith, P. L. (1979), Spline: as a Useful and Convenient Statistic Tool, The American
Statistician, 30, 57-62.

The information in this reference introduced the topic of splines, which we used
to explore piecewise regression. However, the model described assumes fixed knots,
which we cannot use directly.

Verbek, G. and Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data,
Springer-Verlag New York, Inc.

This book is a good review for this field and introduces pattern-mixture models
for dropout in longitudinal data. We used this efficient model.

Visser, A. T., Queiroz, C. and Caroca, A. (1994), “Total Cost Rehabilitation Design
Method for use in Pavement Management”, Third International Conference on Managing
Pavements, Volume I.

We studied the multiple regression techniques in pavement management
modeling including relating cracking index to many variables provided in this reference.
We were enlightened by some of the ideas, but did not apply the model.
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