

TEXAS
TRANSPORTATION
INSTITUTE

STATE DEPARTMENT
OF HIGHWAYS AND
PUBLIC TRANSPORTATION

COOPERATIVE RESEARCH

ANALYSIS OF TRUCK USE AND HIGHWAY COST ALLOCATION IN TEXAS

in cooperation with the Department of Transportation Federal Highway Administration

RESEARCH REPORT 332-1
STUDY 2-18-83-332
TRUCK USE AND HIGHWAY COST ALLOCATION

				_
1. Report No.	2. Government Accession No.	3. 8	Recipient's Catalog P	10.
FHWA/TX- 85/41+332-1				
4. Title and Subtitle		5. F	Report Date	
Analysis of Truck Use and H	lighway Cost Allocati	J	une 1985 .	
in Texas	inghway cost Amocath	5. F	erforming Organizati	on Code
7 Author's) Alberto Garcia-Diaz, Dock E	Burke and Arturo Vil		erforming Organizati	on Report No
Cavazos	arke, and mound in	1 .	search Repor	t 332-1
9. Performing Organization Name and Address Texas Transportation Instit			Wark Unit No.	
The Texas A&M University Sy	rstem	t t	Contract or Grant No	
College Station, TX 77843		St	udy No. 2-18	-83-332
		13.	Type of Report and I	Period Covered
12. Sponsoring Agency Name and Address Texas State Department of H Transportation; Transportat		ı In		tember 1982 - 1985
P.O. Box 5051 Austin, TX 78763		14.	Sponsoring Agency (Code
The highway cost alloceach of the vehicle classes bridges. Previous attempts two major approaches: (a) in proportion to one or morwhich allocate costs on the accommodate gradually heavi This report develops textend the basic concepts on the new methods are referre "Generalized Method." Both costs are completely finance reduce their cost responsibility classes (rationality princience the cover their correexample using Texas pavement proposed methods.	sharing transportation at solving this prob proportional allocation measures of highway deservehicle classes. We new highway cost at the incremental and to as the "Modified methods fulfill the ed by users (complete ilities by sharing the ple); and (c) vehicle sponding marginal cost	on facilition of the can est on methods or usage; and ign differon language of the cation of the cat	es such as his sentially be which determed (b) incrementes necessant allocation al Approach conditions: (b) vers with other charged at allity principal such as all the such a	ighways and reduced to rmine costs ental methods, ary to sthat actually on procedures. and the (a) highway ehicle classes rehicle tleast ole). An
17. Key Words Highway Cost Allocation, Tri Highway Design Differences, Classes.	uck Use, Vehicle No rest able to Technic	al Informat	This documer through the ion Service, field, Virgi	National 5285 Port
19. Security Classif. (of this report)	20. Security Classif. (of this p	age)	21. No. of Pages	22. Price
Unclassified	unclassified	-3-,	185	
	, 4		j	

ANALYSIS OF TRUCK USE AND HIGHWAY COST ALLOCATION IN TEXAS

Alberto Garcia-Diaz Dock Burke Arturo Villarreal-Cavazos

Research Report 332-1

Research Study 2-18-83-332

Sponsored by

Texas State Department of Highways and Public Transportation

in cooperation with

The U. S. Department of Transportation Federal Highway Administration

June 1985

Texas Transportation Institute
The Texas A&M University System
College Station, TX 77843

ABSTRACT

The highway cost allocation problem is one of determining equitable charges for each of the vehicle classes sharing transportation facilities such as highways and bridges. Previous attempts at solving this problem can essentially be reduced to two major approaches: (a) proportional allocation methods, which determine costs in proportion to one or more measures of highway usage; and (b) incremental methods, which allocate costs on the basis of highway design differences necessary to accommodate gradually heavier vehicle classes.

This report develops two new highway cost allocation methodologies that actually extend the basic concepts of the incremental and proportional allocation procedures. The new methods are referred to as the "Modified Incremental Approach" and the "Generalized Method". Both methods fulfill the following conditions: (a) highway costs are completely financed by users (completeness condition); (b) vehicle classes reduce their cost responsibilities by sharing the facilities with other vehicle classes (rationality principle); and (c) vehicle classes are charged at least enough to cover their corresponding marginal costs (marginality principle). An example using Texas pavement data is utilized to illustrate the application of the proposed methods.

IMPLEMENTATION STATEMENT

The new cost allocation methodologies developed in this project have been computerized and tested using limited rehabilitation data from the Texas pavement data base. Proposed changes to the RENU2 program have been implemented and are currently being validated.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented within. The contents do not necessarily reflect the official views or policies of the Texas State Department of Highways and Public Transportation or the Federal Highway Administration. This report does not constitute a standard, a specification, or a regulation.

TABLE OF CONTENTS

Abstract	••••••••••••••••••	j
Implementation	on Statement	ii
Disclaimer		iii
Table of Cont	cents	iv
List of Table	es	vi
List of Figur	es	vii
Chapter 1	Introduction	1
Chapter 2	Literature Survey	4
Chapter 3	Pavement Rehabilitation: The RENU2 Program	8
	3.1 Pavement Performance Function	8
	3.2 Pavement Survival Function	15
	3.3 Age Adjustment Function	17
	3.4 Load Shifting Function	23
	3.5 Cost Estimating Function	23
Chapter 4	Methodology	27
	4.1 The Modified Incremental Approach	27
	4.2 The Generalized Method	32
	4.3 Environmental Factors	36
Chapter 5	Application of the Methodology	41
Chapter 6	Summary	46
References		47
Appendix l	Modified RENU2 Fortran Code	49
Appendix 2	Basic Input Data for the Modified RENU2 Program	120
Appendix 3	Cost Output from the Modified RENU2 Program	126
Appendix 4	Modified Incremental Approach BASIC Code	157
Appendix 5	Sample Run for the Modified Incremental Approach	164
Appendix 6	Generalized Method BASIC Code	166

Appendix 7	Sample	Run for	the	Generalized	Method	• • • • • • • • • • • • •	175

LIST OF TABLES

Table		Page No.
3.1	Serviceability Performance Curve Parameters by Pavement Type	12
3.2	Primary Distress Type and Curve Fit Parameters by Pavement Type	14
3.3	Design Parameters for PSI Survivor Curves	18
3.4	Design Parameters for Distress Survivor Curves	19
4.1	Vehicle Combinations	38
5.1	Vehicle Class Data	42
5.2	Illustrative Pavement System	43
5.3	Rehabilitation Cost Estimates	44

LIST OF FIGURES

Figure		Page No
2.1	Basic Approach of the Incremental Method	6
3.1	Performance Curves	10
3.2	Typical Survival Curve	17
3.3	Age Distribution Adjustment	22
3.4	Rehabilitation Cost as a Function of ESALs	26
4.1	Input Cost Estimates	29
4.2	Cost Allocation Using the Modified Incremental Approach	30
4.3	The Core in the Generalized Method	35
4.4	Effects of the Vehicle Classes on Cost as Functions of e	40

1. INTRODUCTION

An important problem currently receiving a great deal of attention from state legislatures is the highway financing problem. In recent years, this problem has become more acute due to the fact that a significant portion of U. S. highway pavements is reaching unacceptable levels of user serviceability.

Two basic questions must be answered by a highway cost allocation procedure: (a) how much is needed to keep a highway (or other transportation facilities) operational during a specified planning horizon? And (b) what fraction of the total cost must be charged to each vehicle class in the traffic stream served by the facility? This paper summarizes the results of recent work aimed at providing adequate answers to both of these questions. In particular, two new cost allocation methods are developed: a modified incremental approach and an optimization method; the optimization method will be referred to as a generalized procedure, since in fact it is based on an extension of the concepts used in the incremental [4,10,11] and proportional allocation [6,7,10] methods.

Proportional allocation methods determine cost responsibilities on the basis of a measure that reflects the amount of use of a highway facility by each of the various vehicle classes. Common measures include gross vehicle weight, vehicle-miles of travel, and equivalent single axle loads (ESALs). It must be noted that these methods may yield results that conflict with the perception of fairness by individual vehicle classes; this indeed hinders the acceptability of the results by all the users of the facility and questions the overall applicability of the proportional methods.

Incremental allocation methods identify cost responsibilities on the basis of the cost differences associated with the sequential introduction of

vehicle classes into the traffic stream. Inconsistent results are obtained when vehicle classes are introduced in different sequences, however. This inconsistency constitutes a serious flaw in any cost allocation method that seeks to be equitable.

The two procedures developed in this paper exhibit properties which make them superior to those previously used in the context of highway facility planning. In particular, they fulfill three fundamental requirements:

- (a) **Completeness:** the provision of highway facilities must be entirely financed by the various vehicle classes that utilize them.
- (b) Rationality: the common facility is the most economically attractive alternative for all vehicle classes to meet their transportation needs; that is, any other alternative to satisfy this need, such as using an exclusive facility, would be more expensive for any vehicle class.
- (c) Marginality: the allocated costs associated with any vehicle class must be sufficient to at least cover its corresponding marginal costs.

The completeness requirement insures that only funds provided by highway users are considered to finance the common highway facility. The rationality requirement is a well established concept in the economics literature [16] which deals with a fundamental characteristic of economic behavior. Any procedure which violates this condition would be strongly objected. The marginality requirement is another widely accepted economical principle [19]. The violation of this principle implies the existence of cross-subsidization among the vehicle classes involved. The rationality and marginality requirements establish an essential element of equity in the cost allocation procedure.

In conclusion, having an equitable cost allocation methodology (which satisfies the rationality and marginality principles) to analyze the many aspects related to the highway financing problem enhances the acceptability of the results among the various vehicle classes which must cover the total cost of the facility. In Chapter 2 this important issue is briefly discussed for both the proportional and the incremental methodologies.

This report presents a summary of the relevant previous work related to highway cost allocation procedures in Chapter 2. A brief description of the RENU2 program is given in Chapter 3. Chapter 4 delineates the basic methodology developed for this study. Such methodology includes two cost allocation procedures -the Modified Incremental Method and the Generalized Method- and a procedure to study the effect of environmental factors on highway costs. Applications of the proposed methodology using Texas pavement data are given in Chapter 5.

2. LITERATURE SURVEY

Currently available solution procedures for the highway cost allocation problem are not economically justifiable. Indeed, perhaps a non-controversial solution methodology to that problem does not exist; nevertheless, cost must be allocated in some rational way. Traditionally, it has been an accepted practice to define cost responsibilities on the basis of some criterion of efficiency which represents the use of the facility by the various vehicle classes.

One of the most widely used methods in highway cost allocation is the so-called incremental approach, which was adopted in the earlier cost allocation studies conducted in the United States. This approach was adequate while new construction was the principal cause of highway cost. However, now that a larger portion of the budget must be assigned to the maintenance and rehabilitation of existing facilities, the incremental approach has been reviewed and questioned, and some important problems, which will be discussed later, have been found.

The incremental method has been used in a number of cost allocation studies such as the first Federal Highway Cost Allocation Study [4], and studies conducted in several states including Virginia, Washington, North Dakota, Montana, Kentucky, and Rhode Island [3,10,11,12,13,15].

According to the incremental method, the cost of a highway facility designed for the lightest vehicle class is initially calculated; then vehicle classes are sequentially included in increasing order of axle weight and corresponding highway design or rehabilitation costs are calculated for the resulting traffic streams and a specified design period. At each step of the procedure, the cost difference between one design and the next is allocated to the vehicle class incorporated in that step. Some minor varia-

tions of the basic incremental method have also been considered [6].

Although it meets the completeness, rationality, and marginality requirements aforementioned, there is one important difficulty with the incremental method: it is not consistent. The method produces different results if vehicle classes are introduced in different orderings. This is due to the presence of overlapping requirements among the various vehicle classes. Figure 2.1 illustrates this inconsistency. The shaded areas in Figures 2.1(a), 2.1(b), and 2.1(c) represent costs allocated to vehicle classes 1, 2, and 3 if they are sequentially introduced in that order. However, the shaded areas in Figures 2.1(d), 2.1(e), and 2.1(f) represent the same costs when vehicle class 3 is included first, followed by vehicle classes 1 and 2.

Another accepted approach to the problem under consideration is to allocate costs in proportion to a single numerical criterion which, in the context of transportation systems, represents a measure of use or damage caused by the vehicle classes using a common highway facility. This method is known as the proportional method or the consumption approach [6,7]. The appeal of this method lies on its simplicity and on the fact that, if the appropriate basis is selected, the fairness of its results is less open to dispute.

A major issue with the proportional allocation method, however is that it may yield cost allocations which conflict with the interests of the individual vehicle classes. This difficulty is due to the fact that the method ignores the strategic alternatives (coalitions) available to the vehicle classes in order to meet their transportation needs. Such strategic alternatives include sharing a common facility with all vehicle classes, sharing a facility with some of the other vehicle classes, and having an exclusive facility. In other words, under the proportional allocation me-

Figure 2.1 Basic Approach of the Incremental Method

thod, it is possible for a particular vehicle class to pay more by sharing a common facility than it would have to pay by having its own exclusive one.

In a pioneering and enlightening article, Young, Okada, and Hashimoto [18] analyze several cost allocation methods used in water resources management. Among the methods discussed, those that stem from the theory of cooperative games [16,17] are of particular interest. These methods provide means for approaching the cost allocation problem by taking into account all the possible strategic alternatives available to each vehicle class in the provision of highway facilities needed to meet a specified traffic demand. These various strategic possibilities actually establish constraints which define a set of feasible solutions that satisfy the completeness, rationality and marginality requirements. The cost allocations resulting from these methods are more likely to be accepted because they are formulated on the basis of fundamental economic principles.

3. PAVEMENT REHABILITATION: THE RENU2 PROGRAM

The RENU2 program [8] estimates the maintenance and rehabilitation costs associated with changes in legal load limits. In this program, the number of equivalent loads (ESAL) is calculated for both current and proposed legal limits from given traffic compositions and axle distributions. Based on the resulting ESALs, life cycles of typical pavements are analyzed and rehabilitation and maintenance costs are estimated. The RENU2 program essentially performs five functions:

- (a) Pavement performance function.
- (b) Pavement survival function.
- (c) Pavement age adjustment function.
- (d) Load shifting function.
- (e) Cost estimating function.

The rest of this chapter will be dedicated to the discussion of each of these points.

3.1 Pavement Performance Function

The pavement performance function predicts the deterioration trend of a pavement in terms of the loss of PSI (present serviceability index) or the increase in area or severity of a distress (cracking, rutting, flushing, etc.) as the level of traffic loads increases. In this function, the life cycle of a pavement is identified for given traffic conditions. It is assumed that a terminal performance index (either a minimal PSI value or maximal distress area/severity values) is specified and that the life cycle of a pavement is completed when this critical value is reached.

A functional form that has been found to adequately represent the loss of PSI for Texas highways is:

$$g_{t} = e^{-(\rho/W)^{\beta}}$$
 (3.1)

where

W: No. of cumulative ESALs,

ρ: Scale parameter, and

 β : Form parameter

The damage function g(W) can also be expressed as the ratio of the loss in serviceability after W 18-kip ESALs to a specified maximum design loss.

Let P_0 be the initial PSI (at W = 0), P_t be the PSI after W_t 18-kip ESALs, and P_f be a lower bound on the PSI. Then the relative loss after W_t ESALs can be expressed as:

$$g_t = (P_0 - P_t)/(P_0 - P_f)$$
 (3.2)

From Eq. (3.2) it is possible to express P_{t} as a function of g_{t} , as follows:

$$P_t = P_0 - (P_0 - P_f)g_t$$
 (3.3)

Eq. (3.3) can be further rewritten after using Eq. (1). The final result is given by:

$$P_{t} = P_{0}^{-(P_{0} - P_{f})} e^{-(\rho/W)^{\beta}}$$
 (3.4)

Figure 3.1(a) shows the form of the loss of PSI (P_t) as a function of the cummulative number of ESALs (W) according to Eq. (3.4). Note that P_f

Figure 3.1 Performance Curves

(c)

W

represents an asymptotic minimum PSI value. Figures 3.1(b) and 3.1(c) show, respectively, the influence of parameters ρ and β on the form of the function.

The Texas Transportation Institute has estimated, through statistical procedures, values for P_f , ρ and β from measured pavement data [9]. Table 3.1 indicates mean, maximum, and minimum values of these parameters for hot mix, black base, and overlaid pavements.

Very frequently pavements may be seriously distressed an in need of major rehabilitation before the seviceability index drops to its terminal value. This is particularly true of pavements with severe alligator and transverse cracks. In cases where the asymptotic serviceability index, P_f , is higher than the terminal serviceability index, P_t , or when the remaining life calculated from the serviceability index equation is excessively long (say 30 to 40 years), the pavement will probably need major rehabilitation due to distress.

Pavement distress can appropriately be represented by estimating two separate components: density and severity. Density may be expressed either as the percent of the total pavement surface area that is covered by the distress, or total crack length per unit area, or crack spacing, or similar measures. Severity may be expressed as either an objective or subjective measure. Examples of objective measures are crack width, crack depth, and relative displacement at joint. Subjective measures may be assessed reliably by comparing the observed distress with photographs of different levels of severity which may be described as none, slight, moderate, or severe and may be given numerical ratings such as 0, 1, 2, and 3, respectively, or be assigned numbers that are proportional to these in a range between 0 and 1. The change of either area or severity of distress can be evaluated using the previously discussed equations.

Table 3.1 Serviceability Performance Curve Parameters by Pavement Type

Pavement Type	Black Base	Hot Mix Asphalt concrete	Overlays
Number of Test Sections	51	36	77
ρ (mean)	2.321	1.960	1.974
ρ (min)	0.005	0.100	0.013
ρ (max)	17.239	11.098	9.188
β (mean)	1.337	1.952	1.196
β (min)	0.300	0.095	0.095
β (max)	6.277	7.259	2.893
P _o (mean)	4.15	3.87	3.92
P _o (min)	2.79	2.86	2.07
P _O (max)	4.77	4.78	4.88
P _f (mean)	1.962	1.661	2.121
P _f (min)	0.000	0.000	0.004
P _f (max)	4.295	4.305	4.391

In order to study the behavior of the area covered by a given type of distress, and the corresponding level of severity, two indices will be introduced: (a) the distress area index, and (b) the distress severity index. Each of these indices represents a number between 1 and 0 which decreases as the level of traffic—is increased. Note that the present serviceability index (PSI) has a similar behavior, with the exception that it decreases from P_0 to P_f .

Specifically, the distress area index decreases from a value A_0 $(A_0 \le 1)$ to a value A_f $(0 \le A_f \le A_0)$ as the traffic increases; similarly, the distress severity index decreases from a value of S_0 $(S_0 \le 1)$ to a value S_f $(0 \le S_f \le S_0)$ as the traffic level increases; that is, a recently rehabilitated pavement will have indices close to one, as opposed to pavements in need of rehabilitation which will have indices close to zero.

The distress area index, A, is expressed by a relationship similar to that of Eq. (3.4), namely,

$$A = A_0^{-(A_0 - A_f)} e^{-(\rho/W)^{\beta}}$$
 (3.5)

Similarly the distress severity index, S, is expressed as

$$S = S_0 - (S_0 - S_f) e^{-(\rho/W)^{\beta}}$$
(3.6)

Using the A, S, and W data from the Texas Transportation Institute data base, the parameters and have been estimated for the most significant distress types affecting black base, hot mix, and overlaid pavements which are, respectively, alligator cracking area, alligator cracking severity, and transverse cracking severity [1]. Table 3.2 summarizes the results obtained [9]..cp 5

Table 3.2 Primary Distress Type and Curve Fit Parameters by Pavement Type

Black Base	Hot Mix Asphalt concrete	Overlays
lligator Cracking Severity	Alligator Cracking Area	Transverse Crack- ing Severity(*)
1.19	0.93	85.57
0.14	0.07	24.13
3.01	3.63	194.83
2.54	3.43	1.47
0.89	0.50	0.50
8.78	18.21	5.52
_	3.01 2.54 0.89	3.01 3.63 2.54 3.43 0.89 0.50

^(*) The ρ and β terms for this case are determined in terms of the number of months the pavement has been in service.

3.2 Pavement Survival Function

The pavement survival function estimates the percent of miles of pavement that <u>do not</u> need to be rehabilitated when the pavement performance function indicates that the specified critical performance index is reached. From this information it is possible to subsequently estimate the predicted number of miles that will need to be rehabilitated after a given number of load applications.

A survivor curve is a functional relationship that predicts the percentage of mileage in a given pavement category that does not require immediate rehabilitation at a specified time. This specified time can be considered as the time at which the pavement has reached a given traffic load level, or the time since last rehabilitation. Evidently, to decide if a pavement requires or does not require some kind of rehabilitation, it is first necessary to define a measure of pavement performance. This measure of performance has been defined in terms of PSI or distress as shown in the previous sections. The fundamental idea behind the development of a survivor curve is the concept that since the performance relationship is deterministic, it would be meaningful to determine a second relationship that estimates the percent of pavement mileage that actually survives when the performance function reaches a critical value.

Survival times are data that measure the time to failure. These times are subject to random variations, and like any random variables, form a distribution; the two-parameter Weibull distribution [14] is assumed as the survival distribution for predicting the survival or failure rate of pavements. The Weibull distribution is one of the well-known survival distributions; its applicability to various failure situations, such as electron tube failure, the fatigue life of deep-groove ball bearings, etc., has been

extensively investigated and recommended.

The Weibull distribution is characterized by two non-negative parameters λ and γ ; its probability density function, f(w), and the cumulative distribution function, F(w), are defined as follows:

$$f(w) = \lambda \gamma (\lambda w)^{\gamma - 1} e^{-(\lambda w)^{\gamma}}$$
(3.7)

$$F(w) = 1 - e^{-(\lambda w)^{\gamma}}$$
(3.8)

In the specific application of the Weibull distribution to the study of pavement survivability, w represents the traffic load at which the pavement reaches a critical performance level. The parameters λ and γ are referred to as a "scale parameter" and a "shape parameter", respectively.

The survival function, denoted by s(w), is defined as the probability that an individual mile of pavement of a given type survives a traffic load larger that w. From the definition of the cumulative distribution function F(w), it can be concluded that s(w) = 1-F(w). That is,

$$s(w) = e^{-(\lambda w)^{\gamma}}$$
 (3.9)

Figure 3.2 illustrates the typical shape of the survival function. As explained here, s(w) is the survival rate of a given type of pavement structure under w traffic loads.

Figure 3.2 Typical Survival Curve

Survival curves have been obtained for Texas flexible pavements using different critical levels for PSI and the most relevant types of distress [9]. Table 3.3 shows λ and γ values for PSI survival curves corresponding to hot mix, black base and overlaid pavements. Table 3.4 gives λ and γ values associated with distress survival curves for the same types of pavements.

3.3 Pavement Age Adjustment Function

The pavement age adjustment function updates the age distribution of the pavement mileage when it is rehabilitated. Typical rehabilitation actions include regular thin overlays when the pavement fails because of several distress types or medium to thick overlays when it fails as a result of PSI loss.

Figure 3.3 summarizes the age adjustment procedure for a representative pavement section and a given year of a specified analysis period. The procedure can be described as follows:

Table 3.3 Design Parameters for PSI survivor curves

•		
-	Black Base	
P _c	λ	Υ
1.0	0.276	2.111
2.0	0.417	1.549
3.0	0.607	1.497
	Hot Mix	
Pc	λ	Υ
1.0	0.423	1.363
2.0	0.687	1.365
3.0	0.787	1.012
	Overlays	
P _c	λ	Υ
1.0	0.327	1.524
2.0	0.555	1.163
3.0	0.818	1.088

Table 3.4 Design Parameters for Distress Survivor Curves

Black Base					
	g _c = 0.25		g _c = 0.50		
	λ	Υ	λ	Υ	
Rutting					
Area	0.010	2.801	0.006	2.133	
Severity	0.010	3.143	0.006	2.782	
Alligator Cracking					
Area	0.006	3.065	0.003	2.129	
Severity	0.007	4.380	0.004	2.681	
Longitudinal Cracking					
Area	0.006	2.815	0.003	2.068	
Severity	0.008	3.285	0.005	2.279	
Transverse Cracking					
Area	0.006	2.760	0.003	1.878	
Severity	0.008	3.382	0.004	2.443	

Table 3.4 Design Parameters for Distress Survivor Curves (Cont'd)

Hot Mix						
	g _c = 0.25		g _c = 0.50			
	λ	Υ	λ	Υ		
Rutting						
Area	0.007	2.617	0.004	2.696		
Severity	0.007	2.039	0.004	1.781		
Alligator Cracking						
Area	0.006	3.304	0.004	3.343		
Severity	0.007	3.227	0.005	2.610		
ongitudinal Cracking						
Area	0.006	2.819	0.003	1.836		
Severity	0.007	3.059	0.005	2.182		
Transverse Cracking						
Area	0.006	2.111	0.004	1.696		
Severity	0.008	2.551	0.005	2.129		

Table 3.4. Design Parameters for Distress Survivor Curves (Cont'd)

Overlays						
	g _c = 0.25		g _c = 0.50			
	λ	Υ	λ	Υ		
Rutting		171111111111111111111111111111111111111				
Area	0.009	1.604	0.004	1.219		
Severity	0.010	1.819	0.005	1.804		
Alligator Cracking						
Area	0.007	2.575	0.003	2.080		
Severity	0.009	2.280	0.005	2.056		
ongitudinal Cracking						
\rea	0.008	1.519	0.004	1.197		
Severity	0.011	1.919	0.006	1.693		
ransverse racki n g						
\rea	0.008	1.792	0.004	1.397		
Severity	0.011	1.916	0.006	1.797		

Figure 3.3 Age Distribution Adjustment

- (a) Calculate the number of accumulated ESALs for each pavement age category as illustrated in Figure 3.3(a) from traffic data and forecasts.
- (b) Obtain the expected fraction P of pavements to fail in the current year for each age category by using the number of accumulated ESALs calculated in the previous step and the appropriate survival curve as shown in Figure 3.3(b). The number of lane-miles that fail and hence are due for rehabilitation in the current year are indicated by the shaded portions of the rectangles representing the number of lane-miles in each pavement age category in Figure 3.3(c). The remaining portions of these rectangles represent the surviving pavement.
- (c) The new age distribution is obtained by creating a new age category composed of the total number of lane-miles just rehabilitated and updating the ages of the lane-miles that survived, as indicated in Figure 3.3(d).

3.4 Load Shifting Function

The load shifting function is a procedure that modifies a given axle load distribution to reflect a change in the current legal load limits. This module can be used to establish the most likely truck traffic distribution that will occur on a highway system after changing the legal axle load limits. This function will not be used in this study.

3.5 Cost Estimating Function

The cost estimating function computes maintenance and rehabilitation costs for both the present and proposed legal load limits in order to determine the impact of the change in such limits. The program computes maintenance costs for both routine and preventive maintenance. All costs

can be calculated for each year of a specified planning horizon and can be broken down according to several types of highway systems (i.e., Interstate, US, State, FM).

Rehabilitation activities considered in RENU2 consist of overlays with asphaltic concrete. When the pavement fails by reaching a critical value of PSI, the thickness of the overlay is calculated so that the pavement remains serviceable throughout the rest of the analysis period. If the pavement fails due to a critical value of distress index (area or serviceability), thin overlays are applied periodically. The time period between overlays is specified by the user in this case. The rehabilitation cost is a function of:

- (a) The geometry of the road (lane width, shoulder width, etc.).
- (b) The critical performance levels set for PSI and distress, which determine the timing of pavement rehabilitations.
- (c) The overlay thicknesses.

Routine maintenance costs are estimated using the EAROMAR procedure [5] and cost information provided by the user. These equations were actually developed to predict maintenance work loads for multilane freeways in terms of: (a) patching, (b) crack sealing, and (c) base and surface repairs. The general form of the EAROMAR model can be formulated as follows:

$$C_t = (1100C_1 + 1000C_2 + 5C_3)/(1 + e^{-(t-10)/1.16})$$
 (3.10)

where

 C_{t} = annual maintenance cost in year t per lane-mile,

 $C_1 = \$/sq$ yd of bituminous skin patching,

C₂ = \$/linear foot of crack sealing,

 $C_3 =$ \$/cu yd of bituminous base and surface repair.

Cost estimates by the Texas Highway Department for C_1 , C_2 , and C_3 are \$3.47, \$0.25 and \$450, respectively.

Preventive maintenance is implemented in terms of seal coats. These seal coats waterproof and improve the texture of the pavement. The user of the RENU2 program specifies the time between seal coats and the corresponding cost per lane mile. The preventive maintenance option is applicable to all flexible pavements and different values can be considered for each representative pavement section.

Cost estimates obtained from RENU2 are used to construct a cost function similar to that portrayed in Figure 3.4. This function represents costs incurred during a specified analysis period, and is dependent upon the number of cumulative ESALs acting on the pavement. The cost estimate for each vehicle class combination is obtained from Figure 3.4 by using the number of ESALs associated with that combination.

Figure 3.4 Rehabilitation Cost as a Function of ESALs $\,$

	•	

4. METHODOLOGY

4.1 The Modified Incremental Approach

A modified version of the incremental approach is proposed as a suitable methodology to allocate construction, reconstruction or rehabilitation costs. The proposed modification to the incremental approach attempts to overcome the lack of consistency mentioned in Chapter 2; however, an indirect result of this modification is that the computational complexity of the new procedure is increased.

In the Modified Incremental Approach cost estimates are prepared for every vehicle class, as well as for every combination of two or more vehicle classes. As an illustration, if a highway is designed to accomodate three types of vehicle classes 1, 2, and 3, the final cost allocation for each class is determined only after considering hypothetical designs for the following vehicle class combinations and computing the corresponding design costs: (a) class 1, (b) class 2, (c) class 3, (d) classes 1 and 2, (e) classes 1 and 3, (f) classes 2 and 3, and (g) classes 1, 2, and 3.

Using the cost estimates obtained for the above class combinations and a few fundamental operations, the total cost (corresponding to the combination including classes 1, 2, and 3) is partitioned into as many cost components as vehicle combinations; moreover, each cost component can be considered as the estimate of the cost effect of a vehicle class combination. In order to simplify the description of the method, the following notation is used:

- C_1 = cost of a highway designed for vehicle class 1 alone,
- C_2 = cost of a highway designed for vehicle class 2 alone,
- C_3 = cost of a highway designed for vehicle class 3 alone,

 c_{12} = cost of a highway designed for vehicle classes 1 and 2, c_{13} = cost of a highway designed for vehicle classes 1 and 3, c_{23} = cost of a highway designed for vehicle classes 2 and 3, c_{123} = Total cost of a highway designed (for vehicle classes 1, 2, and 3);

The shaded areas in Figure 4.1 illustrate the notation described above. In this Figure, each individual vehicle class is represented by a circle. When two or more vehicle classes are simultaneously considered, the corresponding circles exhibit a certain degree of overlapping. This overlapping represents the portion of the total cost that is due to a combined effect of two or more vehicle classes.

As can be illustrated in Figure 4.2(a), the portion of the total cost that can be attributed to only individual classes 1, 2, and 3 is given by Equations (4.1), (4.2), and (4.3), respectively:

$$P_1 = C_{123} - C_{23} \tag{4.1}$$

$$P_2 = C_{123} - C_{13} \tag{4.2}$$

$$P_3 = C_{123} - C_{12} \tag{4.3}$$

Similarly, the portions of the total cost attributed to the interaction of any two vehicle classes, (1 and 2, 1 and 3, and 2 and 3) can be calculated using Equations (4.1), (4.2), and (4.3) and the initial cost estimates (C_1 , C_2 , C_3 , and C_{123}), as follows:

$$P_{12} = C_{123} - C_3 - P_1 - P_2 \tag{4.4}$$

$$P_{13} = C_{123} - C_2 - P_1 - P_3 \tag{4.5}$$

$$P_{23} = C_{123} - C_1 - P_2 - P_3 \tag{4.6}$$

Figure 4.1 Input Cost Estimates

Figure 4.2 Cost Allocation Using the Modified Incremental Approach

Finally, the results from Equation (4.4), (4.5), and (4.6) are used to obtain P_{123} , the total portion of the cost attributed to the interaction of all vehicle classes, as shown below:

$$P_{123} = C_{123} - P_1 - P_2 - P_3 - P_{12} - P_{13} - P_{23}$$
 (4.7)

Figure 4.2(a) depicts the partitioning of the total cost C_{123} into the portions defined in Equations (4.1) through (4.7). As can be seen in this Figure, the allocated cost for vehicle class 1, for example, is equal to P_1 plus appropriate fractions of the portions P_{12} , P_{13} , and P_{123} . These fractions can be defined in terms of relative facility usage, as measured by vehicle miles of travel (VMT). If V_1 , V_2 , and V_3 represent the number of VMTs associated with classes 1, 2, and 3, respectively, the final allocated cost R_1 , is given by Equation (4.8):

$$R_1 = P_1 + \frac{V_1}{V_1 + V_2} P_{12} + \frac{V_1}{V_1 + V_3} P_{13} + \frac{V_1}{V_1 + V_2 + V_3} P_{123}$$
 (4.8)

Similar results can be obtained for the cost allocations corresponding to classes 2 and 3:

$$R_2 = P_2 + \frac{V_2}{V_1 + V_2} P_{12} + \frac{V_2}{V_2 + V_3} P_{23} + \frac{V_2}{V_1 + V_2 + V_3} P_{123}$$
 (4.9)

$$R_3 = P_3 + \frac{V_3}{V_1 + V_3} P_{13} + \frac{V_3}{V_2 + V_3} P_{23} + \frac{V_3}{V_1 + V_2 + V_3} P_{123}$$
 (4.10)

Figure 4.2(b) represents the final cost allocations given in Equations (4.8), (4.9), and (4.10). In this Figure, it can be observed that the

Modified Incremental Method meets the completeness condition since the sum of the areas representing R_1 , R_2 , and R_3 is equal to the area representing the total cost C_{123} of Figure 4.1. The shaded area shown in Figure 4.2(c) represents the marginal cost of vehicle class 1. As can be seen by comparing this Figure with Figure 4.2(a) this marginal cost is exactly equal to P_1 . Also, comparing Figures 4.2(b) and 4.2(c) it is clear that $P_1 \leq R_1$. Therefore, the cost allocated to vehicle class 1 is at least equal to its marginal cost. This shows that the marginality requirement is satisfied. Similarly, the fact that $R_1 \leq C_1$ indicates that the cost allocation corresponding to class 1 in a joint design is less that it would be in a design intended only for class 1. This means that the rationality requirement is satisfied.

The Modified Incremental Approach does not have the inconsistency limitation of the standard incremental method, since it considers all possible combinations of vehicle classes and does not require that vehicle classes be included in any sequence. The development presented in this Section can be generalized for any number of vehicle classes.

4.2 The Generalized Method

This procedure is based on concepts from the theory of cooperative games [16,17]. A linear programming model which includes a set of meaning-ful economic constraints is formulated and solved to determine the appropriate cost allocation among the vehicle classes that share a transportation facility. Although the procedure developed in this Section is valid for any number of vehicle classes, it will be illustrated with three vehicle classes 1, 2, and 3. The same notation given in Section 4.1 will be used in this illustration.

The Generalized Method expresses the completeness, rationality, and marginality principles in terms of a mathematical model. The completeness requirement, which establishes that the vehicle classes must entirely finance a highway facility, is stated below:

$$R_1 + R_2 + R_3 = C_{123} \tag{4.11}$$

The rationality principle, which imposes the condition that the common facility must be the best alternative for all individual vehicle classes 1, 2, and 3 and for all subgroups of vehicle classes 1 and 2, 1 and 3, and 2 and 3, is represented as follows:

$$R_1 \leq C_1 \tag{4.12}$$

$$R_2 \le C_2 \tag{4.13}$$

$$R_3 \le C_3 \tag{4.14}$$

$$R_1 + R_2 \le C_{12}$$
 (4.15)

$$R_1 + R_3 \le C_{13} \tag{4.16}$$

$$R_2 + R_3 \le C_{23} \tag{4.17}$$

The marginality principle establishes that the cost allocations for vehicle classes 1, 2, and 3, and the sum of allocations for subgroups 1 and 2, 1 and 3, and 2 and 3, must at least equal the corresponding marginal costs; this requirement is expressed by the following relationships:

$$R_1 > C_{123} - C_{23}$$
 (4.18)

$$R_2 > C_{123} - C_{13}$$
 (4.19)

$$R_3 > C_{123} - C_{12}$$
 (4.20)

$$R_1 + R_2 > C_{123} - C_3$$
 (4.21)

$$R_1 + R_3 > C_{123} - C_2$$
 (4.22)

$$R_2 + R_3 > C_{123} - C_1$$
 (4.23)

As indicated by Young et al. [18], if Constraint (4.11) holds, then Constraints (4.12)-(4.17) are equivalent to Constraints (4.18)-(4.23). This means that Constraints (4.18)-(4.23) are redundant and need not be considered in the analysis.

Constraints (4.11)-(4.17) define the set of feasible solutions for the cost allocation problem. This set is called the "core" [17] of the problem and is represented in Figure 4.3(a). In this Figure, the core is the shaded segment on the plane representing Constraint (4.11). The boundaries or sides of the core are indicated by Constraints (4.12)-(4.17).

The core may contain several solutions of which only one must be selected. One way to accomplish this is to systematically reduce the set of feasible solutions until it contains exactly one solution. The core reduction procedure is illustrated in Figure 4.3(b). The core is reduced by "moving" its sides (constraints) in the directions of the corresponding arrows while keeping them parallel to the original positions. Mathematically, the size of the core is reduced if an amount t is substracted from each right-hand side of Constraints (4.12)-(4.17). Since only one point is desired, the amount t should be as large as possible without violating any of the Constraints. In conclusion, the core reduction procedure can be formulated in terms of the following linear programming model:

Figure 4.3 The Core in the Generalized Method

maximize t

subject to
$$R_1 \leq C_1 - t$$
 (4.24)

$$R_2 < C_2 - t$$
 (4.25)

$$R_3 < C_3 - t$$
 (4.26)

$$R_1 + R_2 \le C_{12} - t$$
 (4.27)

$$R_1 + R_3 < C_{13} - t$$
 (4.28)

$$R_2 + R_3 < C_{23} - t$$
 (4.29)

$$R_1 + R_2 + R_3 = C_{123} \tag{4.30}$$

$$R_1, R_2, R_3, t \ge 0$$
 (4.31)

4.3 Environmental Factors

An attractive feature of the generalized method is that it lends itself to a meaningful analysis of environmental costs. Environmental costs are those caused by factors other than traffic loads and, therefore, cannot be directly attributed to the individual vehicle classes.

The procedure described in this section can be easily extended to more that three vehicle classes. Only for convenience in the presentation it is assumed that only three classes are involved. The total number of vehicle combinations in this case is equal to 8. Each of these eight combinations can be represented in terms of a sequence of "+" and "-" signs, as indicated in Table 4.1. In this Table a negative sign indicates that a vehicle is not included in a combination, and a positive sign indicates that it is included. As an illustration, Combination 2 corresponds to a design for class 1 only with cost C_1 , while Combination 4 corresponds to a design for classes 1 and 2, with cost C_{12} . In particular, Combination 8 corresponds to a design for vehicle classes 1, 2, and 3; this is the design whose cost C_{123} is to be allocated to the three vehicle classes. Combination 1 corresponds

to a scenario with no vehicle classes. Since the cost \mathbf{C}_0 associated with this scenario is not traffic-load related, it is assumed that it estimates the cost effect due to environmental factors.

It is always possible to express \mathbf{C}_0 as a fraction of the total cost; that is,

$$C_0 = eC_{123}$$
 (4.33)

where e is an unknown number between 0 and 1. The methodology given in this Section can be used to find a maximal value for e for given C_1 , C_2 ,..., C_{123} .

The proposed method is based on the concept of effects associated with a two-level factorial experiment [2]. This concept is illustrated here using Table 4.1. As can be seen in this Table, 4 combinations include vehicle class 1 and 4 combinations do not include it. The average cost associated with the combination not including class 1 is given by

$$E_1^- = (C_0 + C_2 + C_3 + C_{23})/4$$
 (4.34)

Similarly, the average cost associated with the vehicle combinations including class l is equal to

$$E_1^+ = (C_1 + C_{12} + C_{13} + C_{123})/4$$
 (4.35)

The statistical effect of class 1 is defined as $E_1^{\dagger} - E_1^{-}$ since this difference measures the average increase in cost due to vehicle class 1. Letting E_1 be equal to $E_1^{\dagger} - E_1^{-}$, and using Equations (4.34) and (4.35), E_1 can be written as

Table 4.1 Vehicle Combinations

Combination No.	Vehicle Class 1	Vehicle Class 2	Vehicle Class 3	Cost
1	_	_	-	c _o
2	+	. –	-	c ₁
3	MA	+	-	c ₂
4	+	+	-	c ₁₂
5	-	-	+	c ₃
6	+	-	+	c ₁₃
7	-	+	+	c ₂₃
8	+,	+	+	c ₁₂₃

$$E_1 = (C_1 - C_2 + C_{12} - C_3 + C_{13} - C_{23} + C_{123})/4 - eC_{123}/4$$
 (4.36)

Setting $A_1 = (C_1 - C_2 + C_{12} - C_3 + C_{13} - C_{23} + C_{123})/4$ and $B = C_{123}/4$, it is possible to rewrite Equation (4.36) as

$$E_1 = A_1 - Be$$
 (4.37)

The relationship given in Equation (4.37) is linear and indicates that the effect due to vehicle class a decreases as the impact of the environmental factors is increased. This behavior is illustrated in Figure 4.4(a).

A similar procedure is followed to find the relationships for vehicle classes 2 and 3. Figure 4.4(b) shows three hypothetical linear relationships for the three vehicle classes under consideration. Since E_1 , E_2 , and E_3 must be positive, the range for e is between zero and the minimal A_i/B value. In the case of the illustration given in Figure 4.4(b) this value is A_2/B . In general, $0 \le e \le e$ where

$$e' = min \{A_1/B, A_2/B, A_3/B\}$$
 (4.38)

Summarizing, the cost effect due to the environmental factors can at most be a fraction e' of the total cost. Values of e exceeding e' are not valid since they would yield a negative value for the effect associated with at least one vehicle class.

Figure 4.4 Effects of the Vehicle Classes on Cost as Functions of e

5. APPLICATION OF THE METHODOLOGY

An application of the Modified Incremental Approach and the Generalized Method using a small sample from Texas pavement data is presented in this Section. Although realistic, these data are by no means comprehensive and are utilized only for illustrative purposes.

It is intended to allocate the estimated rehabilitation costs incurred in an analysis period of 18 years among four vehicle classes for a highway system consisting of two kinds of pavements. Table 5.1 describes the vehicle classes considered in this example, accumulated ESALs throughout the analysis period for each vehicle class, and percentages of VMTs corresponding to each vehicle class. Table 5.2 displays highway classification, pavement type, and pavement mileage for each of the two kinds of pavement.

A modification of the RENU program [8] was performed in order to obtain rehabilitation costs for the various vehicle combinations. Using these figures and ESAL data, rehabilitation costs were estimated for all vehicle combinations using the cost function discussed in Chapter 3. Table 5.3 gives the rehabilitation cost estimates associated with each vehicle class combination.

The results obtained from the Modified Incremental Approach and the Generalized Method are given below:

(a) Modified Incremental Approach

 Vehicle Class 1
 \$ 947,000

 Vehicle Class 2
 \$ 33,000

 Vehicle Class 3
 \$1,047,000

 Vehicle Class 4
 \$ 213,000

Table 5.1 Vehicle Class Data

Vehicle Class	Truck Type	ESALs (millions)	VMT (%)
1	2D	3.590	96.43
2	3A	0.647	1.18
3	3-82	15.317	2.06
4	2-S1-S2	5.172	0.33

Table 5.2 Illustrative Pavement System.

Pavement	Highway Classification	Pavement Type	Mileage (lane-miles)
1	Interstate	Flexible Overlaid	57
2	u. s.	Hot Mix	135

Table 5.3 Rehabilitation Cost Estimates

Combination	Cost (millions)
1	1.06
2	0.76
1,2	1.11
3	1.87
1,3	2.04
2,3	1.90
1,2,3	2.06
4	1.18
1,4	1.46
2,4	1.24
1,2,4	1.51
3,4	2.105
1,3,4	2.22
2,3,4	2.13
1,2,3,4	2.24

(b) Generalized Method

Vehicle Class 1 \$ 410,000

Vehicle Class 2 \$ 320,000

Vehicle Class 3 \$1,030,000

Vehicle Class 4 \$ 480,000

It can be verified that both methods yield results which are consistent with the completeness, rationality and marginality principles. A considerable difference in the results can be observed between the two methods. This difference is explained by the influence of the measure of highway usage (VMT) on the allocation of common costs in the Modified Incremental Approach. In this example, a significant portion of the total cost C_{1234} is attributed to the interaction of all vehicle classes. A large percentage of this portion is allocated to vehicle class I due to the high percent of VMTs associated with it. On the other hand, the Generalized Method distributes the cost among the vehicle classes without considering VMTs; in case that the degree of pavement damage, and not highway utilization, is the dominant criterion in the decision making process, the generalized results are appropriate. The maximum percentage of the total cost that can be atributed to the environment e' is equal to 45%, as indicated by Equation (4.38).

6. SUMMARY

This report summarizes the work performed in relation to study 2-18-83-332 "Analysis of Truck Use and Highway Cost Allocation in Texas" during F. Y. 83-84. This Fiscal Year, emphasis was placed on the development of a sound conceptual methodology for the allocation of costs related to the provision and upkeeping of highway facilities.

In particular, two cost allocation methods were developed: the Modified Incremental Approach and the Generalized Method. These methods exhibit significant conceptual advantages over those previously used in the context of highway cost allocation. In particular, they fulfill the following conditions: (a) highway costs are completely financed by users; (b) vehicle classes reduce their cost responsibilities by sharing the facilities with other vehicle classes; and (c) vehicle are charged at least enough to cover their corresponding marginal costs.

In addition, a procedure was developed to assess a range of values for the percentage of the total rehabilitation and maintenance costs that can be attributed to the effect of the environment, that is, independent of traffic.

The proposed methodology was illustrated using two representative sections from the Texas pavement data base.

		,

7. REFERENCES

- Allison, J. T., A. Garcia-Diaz, and R. L. Lytton. A Model for Predicting Flexible Pavement Service Life and Its Impact on Rehabilitation Decisions. Paper presented at the 62nd Annual Meeting of the Transportation Research Board, Washington, D. C., January 1983.
- Box, E.P., W.G. Hunter and J.S. Hunter. Statistics for Experimenters: an Introduction to Design Data Analysis and Model Building, Wiley, New York, 1978.
- 3. Brown, J.E. and W.C. Allinson. The 1956 Rhode Island Highway Finance Study. Highway Research Board Bulletin No. 175, pp. 44-52.
- 4. Bureau of Public Roads. Final Report of the Highway Cost Allocation Study. H. Doc. 564 and 77, 87th. Congress, 1961.
- 5. Butler, B. D. Jr. Economic Analysis of Roadway Occupancy for Freeway
 Pavement Maintenance and Rehabilitation. Vols. I, II, and III, Report
 Nos. FHWA-RD-76-14 and FHWA-RD-76-15, 1974.
- 6. FHWA. Final Report on the Federal Highway Cost Allocation Study. May 1982.
- 7. Freeman P.N.W. The Recovery of Costs from Road Users in South Africa, Part II: Cost Allocation Study. National Institute for Transport and Road Research, CSIR, South Africa, 1981.
- 8. García-Diaz, A. Documentation of the Modified Computerized Procedure RENU2 to Estimate Pavement Network Rehabilitation and Maintenance Costs. Research Report 992-1, Texas Transportation Institute, March 1983.
- 9. Garcia-Diaz, A., M. Riggins, and S. J. Liu. Development of Performance Equations and Survivor Curves for Flexible Pavements. SDHPT

 Research Report No. 284-5, Texas Transportation Institute, February

1984.

- 10. Hall, W.L. and R.D. Johnson. Comparison of Incremental and Ton-Mile Allocation Methods. Highway Research Board Bulletin No. 175, pp. 27-32.
- 11. Hennes, R.G. and W.W. Mylroie. Washington State Highway Cost Allocation Study. Highway Research Board Bulletin No. 175, pp. 1-27.
- 12. JLARC. Vehicle Cost Responsibility in Virginia. Commonwealth of Virginia, Richmond, November, 1981.
- 13. Koenker, E.W. Comparative Highway Cost Allocation: Incremental and Other Methods. Highway Research Board Bulletin No. 175, pp. 22-26.
- 14. Lee, E. T. Statistical Methods for Survival Data Analysis. Lifetime Learning Publications, Behmst, California, 1980.
- 15. Martin, J.W., C.R. Lockyer and E.C. Holshouser. Results of the Kentucky Highway Finance Study. Highway Research Board Bulletin No. 175, pp. 33-43.
- 16. Newman, J. von and O. Morgenstern. Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944.
- 17. Owen, G. Game Theory, Academic Press, New York, 1982.
- 18. Young, H.P., N. Okada and T. Hashimoto. Cost Allocation in Water Resources Development -- A Case Study of Sweden. IIASA Research Report RR-80-32, Laxenburg, Austria, 1980.
- 19. Zajac, E. Fairness and Efficiency: An Introduction to Public Utility Pricing, Ballinger, Cambridge, 1978.

APPENDIX 1 MODIFIED RENU2 FORTRAN CODE

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTOOBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
                С
                                          RENU
                С
                      PROGRAM TO DETERMINE EFFECT OF LEGAL LOAD LIMITS ON LONG-RANGE
                C
                      PAVEMENT COSTS.
                С
                      THIS VERSION CREATED AUG 7-1981
  ISN 0002
                      REAL XLAMB
  E000 NZI
                      COMMON /MECH/XKT, NRU, NLH, ND, NDEL, IACR, IYR, JYR, CONSTR(20)
   ISN 0004
                      COMMON /COSTS/ COSM(20,2), COSV(20,2), COSMS(20,2), COSVS(20,2),
                                      CSMPW(2), CSVPW(2), CSMUA(2), CSVUA(2), COSC(20.2)
   ISN 0005
                      COMMON /EALPAY/ EALPT(10.2), APPT(10.2), EALFCT(20), IEQTRP
   ISN 0006
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
  ISN 0007
                      COMMON /FUNDS/ APOF(20,2), RTINT, RTINF
                      COMMON /IO/ LI, LO, LD
  ISN 0008
   ISN 0009
                      COMMON /LABELS/ MATLAB(5, 10)
  ISN 0010
                      COMMON /LMP/ XLM(30), YLM(30), POTLM(20,2), OUTP(20,2).
                             TOTALM, PPF, TPF, PFNO, NASL, NSLR, TOVLM(30,2), XLM2(30)
  ISN 0011
                      COMMON /MISC/ IPOT, IARMS, OLDMNT, AGF
                      COMMON /OUT/ PSIE(30,2), EALREM(30,2), COSTM(20,30,2),CSTOV(30,2)
  ISN 0012
                                   .PSIB(30)
  ISN 0013
                      COMMON /OVER/ TOV(30,2), SNOV(30,2), THOV(30,2)
  ISN 0014
                      COMMON /OVRLAY/ XHCIO.XHCIM.WLANE. WPSH, WGSH, PPVDSH, CAC. CGR
                           CSCOAT
   ISN 0015
                      COMMON / POV/ SNOVP(20,2), THOVP(20,2), CSTOVP(20,2), PP(20,2)
                                   , RLP(20,2)
  ISN 0016
                      COMMON /PSI/ PF, PICON, PTERM, PIOV, PTOV
  ISN 0017
                      COMMON /STRCOE/ STRCD(8),CC(4),MC(11),NC,STRC(5),RFS(4),RFB(4)
  ISN 0018
                      COMMON /TEMPC/ CONTP(25).DISTCT
  ISN 0019
                      COMMON /STRUC/ SN,SS,R,D,AGG,XJ,XK,E
  ISN 0020
                      COMMON /SUMARY/ SECTLE(2,10,8), SYSTLE(60,8), NSECT(8), DELC(10,8),
                                       COSR(10,8), DELCPW(10,8), COSRPW(10,8), DELCUA(10,8),
                                       COSRUA(10.8), RLRAT(10,8), TLM(10,8), DSLV(10,8), NSYS
  ISN 0021
                      COMMON /CMP/ COMP(30,34), PCOMP(30), AATP(30), PIH(30.8),QIH(30.8)
  ISN 0022
                      COMMON /SLVG/ ISLV, FLRP, VI(30), RI(30), VL(30), RL(30),
                                    U(30), PL(30), MI(30), P(20), VP(20), RP(20),
                                     PB. VPB. RPB, NS, NY, SV(6,2), SVB, FLRPTP(4)
  ISN 0023
                      COMMON /TIME/ ATP. OVLIF. NYAP, NYR. YR(40)
  ISN 0024
                      COMMON /TITLE/ TITLE(20,3), SECTTL(20)
  ISN 0025
                      COMMON/HOR/A(10),B(10),C(10),DT(10),DF(10),S(10),T(10),TR(5),PI(5)
                     *,PT(5),AC(5),AA,SCT(5),XMNW18(10),XKTD
  ISN 0026
                      COMMON /EXTRA/ PTOVTK, TPE, PFO, XMNOTK, XMXOTK, NIS
   ISN 0027
                      COMMON /BURKE/ XLAMB, GAMMA, TFBAP
                      COMMON /COMBI/ ICOMB, NVC, COFVCT(6)
  ISN 0028
  ISN 0029
                      COMMON /COST/ COSTRH(20), COSTRM(20), COSTPM(20)
  ISN 0030
                      DIMENSION TITLES(5)
  ISN 0031
                      REWIND 2
```

```
PAGE
```

```
ISN 0034
               WRITE (6,600) TITLES,NVC
ISN 0035
               600 FORMAT (1X,5A4,15)
ISN 0036
                   NCOMB=2**NVC-1
                   DO 1000 ICOMB=1,NCOMB
ISN 0037
ISN 0038
                   DO 1 I=1.8
ISN 0039
                   DO 1 J=1.30
ISN 0040
                   PIH(J,I)=0.
ISN 0041
                   QIH(J.I)=0.
ISN 0042
                 1 CONTINUE
ISN 0043
                   CALL INIT(1)
ISN 0044
                   CALL COMGEN
ISN 0045
                   REWIND 10
ISN 0046
               100 CALL INPUT (IGO)
                   GD TO (110, 200, 300,300), IGO
ISN 0047
               110 CALL INIT(2)
ISN 0048
ISN 0049
                   CALL INPRNT
ISN 0050
                   CALL EALGET
ISN 0051
                   CALL COSCAL
ISN 0052
                   GD TD 100
               200 CONTINUE
ISN 0053
ISN 0054
                   GO TO 100
ISN 0055
               300 CONTINUE
ISN 0056
              1000 CONTINUE
                   ENDFILE 2
ISN 0057
                   STOP
ISN 0058
ISN 0059
                   END
```

MAIN

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 58, PROGRAM SIZE = 974. SUBPROGRAM NAME = MAIN

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

920K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78) OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.01 PAGE

REQUESTED OPTIONS: NODUMP

٦

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

' ISN 0002 SUBROUTINE NPAGE

ISN 0003 RETURN END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 3, PROGRAM SIZE = 164, SUBPROGRAM NAME = NPAGE

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION ****** 928K BYTES OF CORE NOT USED

DATE 84.262/15.03.02

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSE NOTERM IBM FLAG(I)
   ISN 0002
                      BLOCK DATA
   ISN 0003
                      COMMON /TEMPC/ CONTP(25).DISTCT
   ISN 0004
                      COMMON /MECH/XKT, NRU, NLH, ND, NDEL, IACR, IYR, JYR, CONSTR(20)
   ISN 0005
                      COMMON/HOR/A(10).B(10).C(10).DT(10).DF(10).S(10).T(10).TR(5).PI(5)
                     *,PT(5),AC(5),AA,SCT(5),XMNW18(10),XKTD
   ISN 0006
                      COMMON /EXTRA/ PTOVTK, TPE, PFO, XMNOTK, XMXOTK, NIS
                      COMMON /CNSTS/ NAPOV, PAPOV, SIZE, AVRG
   ISN 0007
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0008
                      COMMON /FUNDS/ APOF(20,2), RTINT, RTINF
   ISN 0009
   ISN 0010
                      COMMON /IO/ LI. LO. LD
   ISN 0011
                      COMMON /LABELS/ MATLAB(5, 10)
   ISN 0012
                      COMMON /LMP/ XLM(30), YLM(30), POTLM(20.2), DUTP(20.2),
                            TOTALM, PPF, TPF, PFND, NASL, NSLR, TOVLM(30,2), XLM2(30)
   ISN 0013
                      COMMON /MISC/ IPOT, IARMS, OLDMNT, AGF
                      COMMON /OVRLAY/ XHCIO.XHCIM.WLANE, WPSH. WGSH. PPVDSH. CAC. CGR
   ISN 0014
                         , CSCOAT
   ISN 0015
                      COMMON /PSI/ PF.PICON. PTERM. PIOV. PTOV
                      COMMON /STEER/ EOFACT(15.5), PTST(4)
   ISN 0016
                      COMMON /STRUC/ SN, SS, R, D, AGG, XJ, XK, E
   ISN 0017
   ISN 0018
                      COMMON /STRCOE/ STRCD(8).CC(4).MC(11).NC.STRC(5).RFS(4).RFB(4)
   ISN 0019
                      COMMON /TIME/ ATP. DVLIF, NYAP, NYR, YR(40)
                      CDMMON /SLVG/ ISLV. FLRP, VI(30), RI(30), VL(30), RL(30),
   15N 0020
                                    U(30), PL(30), MI(30), P(20), VP(20), RP(20),
                                    PB.VPB.RPB. NS. NY, SV(6,2), SVB, FLRPTP(4)
                      COMMON /DCOM1/ TTOUTP(8).TTDC(8).TTT(8.20.3)
   ISN 0021
                C ****************
                  VARIBLES COMPARISON BETWEEN AASHO & TEXAS EQUATIONS
                C
                         TEXAS
                                       AASHO
                                                DESCRIPTIONS
                C
                        __ _ _ _ _ _ _
                C
                                       ALF
                                                HARMONIC MEAN TEMPERATURE
                         C(1)
                C
                         C(2)
                                      TI
                                                THORN THWAITE INDEX
                C
                         C(3)
                                       FTC
                                                ANNUAL AVERAGE FREEZE-THAW CYCLES
                C
                                       WFTC
                         C(4)
                C
                                       PR
                         C(5)
                                                ANNUAL AVERAGE RAINFALL
                C
                         C(6)
                                       TM
                                                MEAN MONTHLY TEMPERATURE
                C
                                       DMD
                                                MAXIMUM DEFLEXION
                         DF(1)
                C
                         DF(2)
                                       SCI
                                                SURFACE CURVATURE INDEX
                C
                         DF(3)
                                       VOL
                                                VOLUME OF DINAFLEX BASIN
                C
                         DT(1)
                                       AS
                                                ASPHALT STIFFNESS
                C
                         5(1)
                                       TTC
                                                TEXAS TRIAXIAL CLASS
                C
                          S(2)
                                       SLL
                                                LIQUID LIMIT
                 С
                          5(3)
                                       SPI
                                                PLASTICITY INDEX
                 C
                                       SPP
                          S(4)
                                                PERCENT PASSING #200
                C
                          T(1)
                                       7
                                                AGE IN YEARS
                                                AVERAGE DAILY TRAFFIC
                C
                                       ADT
                          TR(1)
                 ¢
                          TR(2)
                                       18-KIP
                                                18-KIP SINGLE AXLE LOADS
                 C
                                       W
                                                18-KIP SINGLE AXLE LOADS
                          TR(NPT)
                   *** REFER TO SUBROUTINES PSIT & RUTA
```

DATE 84.262/15.03.02

```
C ********************************
ISN 0022
                    DATA NAPOV, PAPOV, SIZE, AVRG /21, 5.0, 2.0, 100./
ISN 0023
                    DATA XHCIO/O.O/, XHCIM/O.O/
ISN 0024
                    DATA PICON, PTERM, PIOV, PTOV / 4*-1. /
ISN 0025
                    DATA IF, IR, IC /1, 2, 3 /
ISN 0026
                    DATA LI, LO, LD /10, 6, 1/
ISN 0027
                    DATA SS, R. AGG, XK, E /3., 1., 195.43, 150., 4.0E6/
ISN 0028
                    DATA NYAP, OVLIF, ATP, NYR / 20, 20., 20., 40 /
ISN 0029
                    DATA RTINT, RTINF /O., O. /
                   TABLE OF STEERING AXLE EQUIVALENCIES BY AXLE LOAD AND TERMINAL PSI
ISN 0030
                    DATA XMNW18/10*0.0/
                    DATA SCT/.5,.5,.5,.5/
ISN 0031
ISN 0032
                    DATA A/13., 13., 10., 8., 10., 10., 10., 10., 10., 0./
ISN 0033
                    DATA AC/.5,.5,.5,.5/
ISN 0034
                    DATA B/12., 12., 10., 7., 10., 10., 10., 10., 40., 0./
ISN 0035
                   DATA C/9.,-30.,125.,20.,16.,55.,0.,0.,0.,0./
ISN 0036
                    DATA DT/.5,0.,0.,0.,0.,0.,0.,0.,0.,0./
ISN 0037
                   DATA DF/1.5,1.,2.225,0.,0.,0.,0.,0.,0.,0./
ISN 0038
                    DATA T/15.,0.,0.,0.,0.,0.,0.,0.,0.,0.
ISN 0039
                    DATA TR/36000.,36000.,36000.,36000.,36000./
ISN 0040
                    DATA S/5.,50.,30.,40.,0.,0.,0.,0.,0.,0.,0./
ISN 0041
                    DATA PI/4.7,4.73,4.41,4.81,4.6/
ISN 0042
                   DATA PT/2.5,2.5,2.5,2.5,2.5/
ISN 0043
                    DATA NAPOV, PAPOV, SIZE, AVRG /21, 5.0, 2.0, 100./
ISN 0044
                   DATA PICON, PTERM, PIOV, PTOV / 4*-1. /
ISN 0045
                   DATA IF, IR, IC /1, 2, 3 /
ISN 0046
                    DATA NYAP, OVLIF, ATP, NYR / 20, 20., 20., 40 /
ISN 0047
                   DATA PPF, TPF, PFNO /O., O., O. /
ISN 0048
                    DATA RTINT, RTINF /O., O. /
ISN 0049
                   DATA PTST /1.5, 2.0, 2.5, 3.0/
ISN 0050
                   DATA EQFACT /2., 4., 6., 8., 10., 12., 14., 16., 18., 20., 22.,
                                 24., 26., 28., 30.,
                   2
                                 .0005, .008, .04, .13, .28, .52, .92, 1.42, 2.12,
                                 2.95, 4.02, 5.29, 6.73, 8.31, 10.19,
                                 .0009, .01, .05, .14, .31, .54, .86, 1.31, 1.94,
                                 2.52, 3.35, 4.4, 5.49, 6.67, 8.05,
                                 .002, .02, .06, .18, .36, .62, .93, 1.33, 1.9, 2.44,
                                 3.15, 3.95, 4.82, 5.83, 6.8,
                                 .004, .03, .09, .23, .41, .66, .94, 1.28, 1.74,
                                 2.16, 2.7, 3.28, 3.89, 4.59, 5.23/
ISN 0051
                   DATA STRCD /.44, .34, .23, .14, .30, .18, .11, .14 /
ISN 0052
                   DATA RFS /.9, .7, .5, .5/
                   DATA RFB /1., .9, .7, .5/
ISN 0053
ISN 0054
                   DATA CC / 1.0, 0.85, 0.75, 0.75 /
ISN 0055
                   DATA NC /11/
                   DATA MC /3HACP, 3HATB, 3HCTB, 3HAGB, 3HSAB, 3HLTB, 3HAGS, 3HLTS,
ISN 0056
                             3HJCP, 3HCRC, 3HACO /
ISN 0057
                   DATA MATLAB / 4HASPH, 4HALT , 4HSURF, 4HACE , 4H
                                  4HASPH, 4HALT, 4HBASE, 4H
                                                               , 4H
                                  4HCEME, 4HNT T, 4HREAT, 4HED B, 4HASE
                                  4HAGGR, 4HEGAT, 4HE BA, 4HSE , 4H
                   3
                                  4HSAND, 4H ASP, 4HHALT, 4H BAS, 4HE
                                  4HLIME, 4H TRE, 4HATED, 4H BAS, 4HE
                                  4HAGGR, 4HEGAT, 4HE SU, 4HBBAS, 4HE
                                  4HLIME, 4H TRE, 4HATED, 4H SUB, 4HBASE,
                  7
                                  4HJCP , 4HSURF, 4HACE , 4H
                                                                , 4H
                                  4HCRC . 4HSURF, 4HACE , 4H
                                                                 , 4H
```

TEMPC

LEVEL 2.3.0 (JUNE 78) TEMPC OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.02 PAGE 3 DATA FLRPTP /1.2, 1.4, 1.6, 1.8 / ISN 0058 DATA CONTP / 21.,22.,22.,9.,16.,23.,26.,26.,28.,24.,28.,33.,33.. ISN 0059 31.,31.,36.,30.,26.,25.,32.,38.,31.,25.,24.,19./ ISN 0060 END *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(GO) SIZE(MAX) AUTODBL(NONE) *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) *STATISTICS* SOURCE STATEMENTS = 59, PROGRAM SIZE = O, SUBPROGRAM NAME = TEMPC *STATISTICS* NO DIAGNOSTICS GENERATED

912K BYTES OF CORE NOT USED

***** END OF COMPILATION *****

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE COMGEN
                      COMMON /COMBI/ ICOMB, NVC, COFVCT(6)
   ISN 0003
   ISN 0004
                      DO 100 IND=1.NVC
   ISN 0005
                         COFVCT (IND) = 0.
                  100 CONTINUE
   ISN 0006
   ISN 0007
                      IND = 1
                      INQUOT = ICOMB
   ISN 0008
   ISN 0009
                  500 IF (INQUOT .EQ. 0) GO TO 900
   ISN 0011
                         QUOT = FLOAT(INQUOT)/2.
   ISN 0012
                         INQUOT = INT(QUOT)
   ISN 0013
                         IRES = INT((QUOT-FLOAT(INQUOT))*2.)
                         COFVCT(IND) = FLOAT(IRES)
   ISN 0014
   ISN 0015
                         IND = IND+1
   ISN 0016
                         GO TO 500
   ISN 0017
                  900 RETURN
   ISN 0018
                      END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
                                          17. PROGRAM SIZE =
*STATISTICS*
                 SOURCE STATEMENTS =
                                                                  518, SUBPROGRAM NAME =COMGEN
*STATISTICS* NO DIAGNOSTICS GENERATED
```

***** END OF COMPILATION *****

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME (MAIN) NOOPTIMIZE LINECOUNT (60) SIZE (MAX) AUTODBL (NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE INPUT (IGO)
   ISN 0003
                      COMMON /TEMPC/ CONTP(25), DISTCT
   ISN 0004
                      COMMON /EXTRA/ PTOVTK, TPE, PFO, XMNOTK, XMXOTK, NIS
   ISN 0005
                      COMMON /MNTPAR/ UNTCST(4).USRMDL(31.3).WDTH.S.DISS.DCON.DIN.MFLG
   ISN 0006
                      COMMON /MECH/XKT, NRU, NLH, ND, NDEL, IACR, IYR, JYR, CONSTR(20)
   ISN 0007
                      COMMON /EALPAY/ EALPT(10.2), APPT(10.2), EALFCT(20), IEQTRP
   ISN 0008
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0009
                      COMMON /FUNDS/ APOF(20,2), RTINT, RTINF
   ISN 0010
                      COMMON /INTVLS/ STARTS(6)
                      COMMON /IO/ LI. LD. LD
   ISN 0011
   ISN 0012
                      COMMON /LABELS/ MATLAB(5, 10)
   ISN 0013
                      COMMON /LDS/ PGVWL. PSAL. PTAL. PTRAL. FGVWL, FSAL. FTAL, FTRAL,
                                    PSTAW(10), FSTAW(10)
   ISN 0014
                      COMMON /LMP/ XLM(30), YLM(30), POTLM(20,2), OUTP(20,2), TOTALM, PPF,
                        TPF. PFNO. NASL. NSLR, TOVLM(30,2), XLM2(30)
                      COMMON /MISC/ IPOT, IARMS, OLDMNT, AGF
   ISN 0015
   ISN 0016
                      COMMON /NEWSYS/ NEWSYS
                      COMMON /NMBR/ SA(30,11), TA(30,11), TR(50,11), VE(30,11),
   ISN 0017
                                     VG(75.11), NLDI(6), EPI(10), ST(30,11)
   ISN 0018
                      COMMON /OUTSWH/ IDUT
   ISN 0019
                      COMMON /OVRLAY/ XHCIO, XHCIM, WLANE, WPSH, WGSH, PPVDSH, CAC, CGR
                           . CSCOAT
   ISN 0020
                      COMMON /PSI/ PF, PICON, PTERM, PIDV, PTOV
   ISN 0021
                      COMMON /STRCOE/ STRCD(8),CC(4),MC(11),NC,STRC(5),RFS(4),RFB(4)
   ISN 0022
                      COMMON /STRUC/ SN.SS.R.D.AGG.XJ,XK,E
   ISN 0023
                      COMMON /TIME/ ATP. GVLIF, NYAP, NYR, YR(40)
   ISN 0024
                      COMMON /TITLE/ TITLE(20,3), SECTTL(20)
                      COMMON /TRTYP/ TTYP(2,10), PTTYP(10,20,2), PCTTR(20,2), PERCT(4),
   ISN 0025
                                      NAXLES(10.4), NT(4), NTTY, NATT, NTT, NEWTRK
   ISN 0026
                      COMMON /SLVG/ ISLV, FLRP, VI(30), RI(30), VL(30), RL(30),
                                    U(30), PL(30), MI(30), P(20), VP(20), RP(20),
                                     PB, VPB, RPB, NS, NY, SV(6,2), SVB, FLRPTP(4)
                      COMMON /SWTCHS/ OVLIFE, PCTINT, PCTINF, TPFPC, PFNOPC, AGR, SPCJT,
   ISN 0027
                                       XMLI, CACI, CGRI, ICAC, ACDENS, ICGR, GRDENS,
                                       INTT, SAVMNT, IDST, NLD, MCODE(5), TECDNS
   ISN 0028
                      DIMENSION KWORD(5), IVAL(2), VAL(5), KEY(22), STRCIN(5)
   ISN 0029
                      DATA ISTOP /4HSTOP/
   ISN 0030
                      DATA SATP /O./
                      DATA KEY /4HSTOP, 4HEXEC, 4HFLEX, 4HRIGI, 4HPERF, 4HAGE, 4HOVER,
   ISN 0031
                                 4HMODE, 4HHIST, 4HNO M, 4HTRUC, 4HSYST, 4HOLD, 4HRUN
                                 4HLOAD, 4HSING, 4HTAND, 4HTRID, 4HGVW, 4HEMPT, 4HSTEE
                                 4HOUTP/
   ISN 0032
                      DATA IACO /4HACO /
   ISN 0033
                      DATA NKEY /22/
   ISN 0034
                      IDST = 0
   ISN 0035
                      NEWTRK = 0
   ISN 0036
                      NEWSYS = 0
   ISN 0037
                      ATP = SATP
   ISN 0038
                      CALL NPAGE
                C
                      READ AND ECHO PRINT A KEYWORD CARD
   ISN 0039
                    2 READ (LI,3) KWORD, IVAL, VAL
```

Ų

```
ISN 0040
                 3 FORMAT(5A4,2I5,5F10,0)
ISN 0041
                    WRITE (LO,4) KWORD, IVAL, VAL
ISN 0042
                 4 FORMAT(1X,5A4,2I5,5(F10.2.2X))
             С
             С
                   TEST FOR NORMAL PROGRAM TERMINATION
             С
ISN 0043
                   IF (KWORD(1) .EQ. ISTOP) GO TO 9992
             С
             С
                   SEARCH THE KEY TABLE FOR THE KEYWORD READ IN
             С
ISN 0045
                   DO 10 I=1.NKEY
ISN 0046
                    IKEY = I
ISN 0047
                    IF (KWORD(1) .EQ. KEY(I)) GO TO 15
ISN 0049
                 10 CONTINUE
ISN 0050
                    GD TO 9996
ISN 0051
                 15 GD TD (9998, 9997, 100, 200, 300, 400, 500, 600, 700, 800, 900,
                  1
                           1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900,
                  2
                           2000) . IKEY
             С
                    *** FLEXIBLE SECTION ***
ISN 0052
                100 IP = IF
ISN 0053
                    WLANE = VAL(1)
ISN 0054
                    WDTH = WLANE
ISN 0055
                    SS = VAL(2)
ISN 0056
                    R = VAL(3)
ISN 0057
                   PF=VAL(4)
ISN 0058
                   PFO=VAL(5)
             С
             С
                   READ A TITLE CARD FOR THIS SECTION
ISN 0059
                101 READ (LI.102) SECTTL
ISN 0060
                102 FORMAT (20A4)
ISN 0061
                    WRITE (LO. 103) SECTTL
ISN 0062
                103 FORMAT (1X,20A4)
ISN 0063
                   IF(IP.EQ.IR) GO TO 105
             С
             С
                   READ AND ECHO PRINT THE MATERIALS CARD
ISN 0065
                   READ(LI, 19) NDIST, NIS, NPT, NRU, NLH, NDEL, TPE, XMNOTK, XMXOTK, PTOVTK,
                         IACR. IYR. JYR
ISN 0066
                   DISTCT=FLOAT(NDIST)
ISN 0067
                   ND = 1
ISN 0068
                    IF(NDIST.GT.1.AND.NDIST.LE.9) ND=2
ISN 0070
                    IF (NDIST.GE.22.AND.NDIST.LE.25) ND=2
ISN 0072
                   FORMAT(715,3F5,0,315)
ISN 0073
                    WRITE(LO,21) NDIST, NIS, NPT, NRU, NLH, NDEL, TPE, XMNOTK, XMXOTK, PTOVTK,
                         IACR, IYR, JYR
ISN 0074
                21 FORMAT(1X,715,3F5.2,3I5)
ISN 0075
                    READ(LI,20)(CONSTR(I),I=1,20)
ISN 0076
                20 FORMAT(15F5.0)
ISN 0077
                    WRITE(LO, 22)(CONSTR(I), I=1,20)
ISN 0078
                22 FORMAT(1X, 15F8.1/1X, 5F8.1)
ISN 0079
             105 READ (LI, 110) (MCODE(I), THICK(I), STRCIN(I), I=1,4)
ISN 0080
                    IF(IP.EQ.IR) GO TO 1010
ISN 0082
                   MCODE(1)=MC(1)
ISN 0083
                    MCODE(2)=MC(4)
ISN 0084
                    MCODE(3)=MC(8)
             С
```

```
59
```

```
С
                    THICK REPRESENTS THE LAYER THICKNESSES OF REPRESENTATIVE
             С
                    SECTIONS
             С
             С
ISN 0085
                    IF(THICK(1).NE.O) GO TO 1010
ISN 0087
                    IF(NPT.NE.3.OR.NRU.NE.1) GO TO 50
ISN 0089
                    THICK(1)=.75
ISN 0090
                   THICK(2)=6.0
ISN 0091
                   GO TO 1010
ISN 0092
             50
                   IF(NPT.NE.3.OR.NRU.NE.2) GO TO 51
ISN 0094
                   THICK(1)=0.75
ISN 0095
                    THICK(2)=8.0
ISN 0096
                   GO TO 1010
ISN 0097
               51 IF(NPT.NE.1.OR.NRU.NE.1.OR.NLH.NE.1) GO TO 52
ISN 0099
                   THICK(1)=2.0
ISN 0100
                   THICK(2)=8.0
ISN 0101
                    GO TO 1010
ISN 0102
                   IF(NPT.NE.1.OR.NRU.NE.1.OR.NLH.NE.2) GO TO 53
ISN 0104
                   THICK(1)=4.0
ISN 0105
                   THICK(2)=12.0
ISN 0106
                   GD TO 1010
ISN 0107
                   IF(NPT.NE.1.OR.NRU.NE.2.OR.NLH.NE.1) GO TO 54
             53
ISN 0109
                   THICK(1)=2.0
ISN 0110
                   THICK(2)=8.
ISN 0111
                   THICK(3)=6.0
ISN 0112
                   GO TO 1010
ISN 0113
                   IF(NPT.NE.1.OR.NRU.NE.2.OR.NLH.NE.2) GO TO 55
ISN 0115
                   THICK(1)=4.0
ISN 0116
                   THICK(2)=10.0
ISN 0117
                   THICK(3)=6.0
ISN 0118
                    GD TO 1010
ISN 0119
             55
                   MCODE(2)=MC(2)
ISN 0120
                   MCODE(3) = MC(4)
ISN 0121
                   MCODE(4)=MC(8)
ISN 0122
                    IF(NPT.NE.4.OR.NRU.NE.1.OR.NLH.NE.1) GO TO 56
ISN 0124
                   THICK(1)=2.0
ISN 0125
                   THICK(2) = 2.0
ISN 0126
                   THICK(3)=8.0
ISN 0127
                   GO TO 1010
ISN 0128
                   IF(NPT.NE.4.OR.NRU.NE.1.DR.NLH.NE.2) GO TO 57
ISN 0130
                   THICK(1)=3.0
ISN 0131
                   THICK(2) = 4.0
ISN 0132
                    THICK(3)=12.0
ISN 0133
                   GO TO 1010
ISN 0134
             57
                   IF(NPT.NE.4.OR.NRU.NE.2.OR.NLH.NE.1) GO TO 58
ISN 0136
                   THICK(1)=2.0
ISN 0137
                   THICK(2) = 2.0
ISN 0138
                   THICK(3)=8.0
ISN 0139
                   THICK(4)=6.0
ISN 0140
                   IF(NPT.NE.4.OR.NRU.NE.2.OR.NLH.NE.2) GO TO 1010
             58
ISN 0142
                   THICK(1)=3.0
ISN 0143
                   THICK(2) = 4.0
ISN 0144
                    THICK(3)=10.0
ISN 0145
                   THICK(4)=6.0
ISN 0146
              1010 CONTINUE
ISN 0147
               110 FORMAT(5(A3,2X,2F5.0,1X))
ISN 0148
                   WRITE (LO, 120) (MCODE(I), THICK(I), STRCIN(I), I=1,4)
```

1

4

```
DATE 84.262/15.03.07
```

```
ISN 0149
               120 FORMAT(1X,5(A3,2X,F5.1,F5.3,1X))
                   DETERMINE THE NUMBER OF LAYERS IN THE PAVEMENT STRUCTURE
             С
             С
ISN 0150
                   IPFLG = 0
ISN 0151
                   DO 140 I=1.4
ISN 0152
                   IF (THICK(I) .LE. O.O) GO TO 160
ISN 0154
                   NLAY = I
ISN 0155
                   STRC(I) = STRCIN(I)
ISN 0156
                   DO 135 J=1.NC
ISN 0157
                   IF (MCODE(I) .NE. MC(J)) GO TO 135
ISN 0159
                   IF ((IP .EQ. IF) .AND. ((J .EQ. 9) .OR. (J .EQ. 10))) GO TO 9994
ISN 0161
                   IF ((IP .EQ. IR) .AND. (J .EQ. 1)) IPFLG = I
ISN 0163
                   MTYPE(I) = J
ISN 0164
                   GO TO 140
ISN 0165
               135 CONTINUE
ISN 0166
                   GO TO 9993
ISN 0167
               140 CONTINUE
ISN 0168
               160 IF (IPFLG .EQ. O) GO TO 165
ISN 0170
                   IF (MTYPE(2) .NE. 9 .AND. MTYPE(2) .NE. 10) GO TO 9989
                   NIS=1
ISN 0172
ISN 0173
                   IP = IC
               165 STRC(5) = STRC(1)
ISN 0174
ISN 0175
                   MCODE(5) = IACO
ISN 0176
                   GO TO 2
             С
                    *** RIGID SECTION ***
ISN 0177
               200 \text{ IP} = \text{IR}
ISN 0178
                   WLANE = VAL(1)
ISN 0179
                   WDTH = WLANE
ISN 0180
                    XK=VAL(2)
ISN 0181
                   IF (VAL(3) .NE. O.O) AGG = VAL(3)
ISN 0183
                   IF (VAL(4) .NE. O.O) E = VAL(4)
ISN 0185
                   IF (VAL(5) .NE. O.O) DISTCT = VAL(5)
ISN 0187
                   IF (VAL(4) .NE. O.O) E = VAL(4)
ISN 0189
                   GO TO 101
             С
             С
                    *** PERFORMANCE SECTION ***
ISN 0190
               300 PICON = VAL(1)
ISN 0191
                   PTERM = VAL(2)
ISN 0192
                   PIOV = VAL(3)
ISN 0193
                   PTOV = PTERM
ISN 0194
                   OVLIFE = VAL(4)
ISN 0195
                   OVLIF = NYAP
ISN 0196
                   IF (VAL(4) .GT. O.) OVLIF = VAL(4)
ISN 0198
                   READ (LI,310) ATP
ISN 0199
               310 FORMAT(3F10.0)
ISN 0200
                   WRITE (LO, 320) ATP
ISN 0201
                   IF(ATP.LT.1) ATP=13.
ISN 0203
               320 FORMAT(1X,8F10.2)
ISN 0204
                   SATP = ATP
ISN 0205
                   GO TO 2
             С
                    *** AGE DISTRIBUTION SECTION ***
ISN 0206
               400 NASL = IVAL(1)
```

```
ISN 0207
                   ISLV = IVAL(2)
ISN 0208
                    FLRP = VAL(1)
             С
             C
                    READ AND ECHO PRINT THE DISTRIBUTION OF LANE MILES BY AGE
ISN 0209
                    READ (LI,410) (YLM(I), I=1, NASL)
ISN 0210
               410 FORMAT(16F5.0./.14F5.0)
ISN 0211
                    WRITE (LO.420) (YLM(I), I=1, NASL)
ISN 0212
               420 FORMAT(1X, 15F8.1/1X, 15F8.1)
ISN 0213
                    IF (ISLV .EQ. 0) GO TO 404
                    READ (LI.430) (VI(I), I=1, NASL)
ISN 0215
ISN 0216
                    WRITE (LO, 320) (VI(I), I=1, NASL)
ISN 0217
               430 FORMAT (16F5.0)
ISN 0218
                    READ (LI,430) (RI(I), I=1, NASL)
ISN 0219
                    WRITE (LD, 320) (RI(I), I=1, NASL)
ISN 0220
             404
                   IF(NASL.LE.25) GO TO 421
ISN 0222
                    DO 422 I=26.NASL
ISN 0223
               422 YLM(25)=YLM(25)+YLM(I)
ISN 0224
                    NASL=25
ISN 0225
               421 CONTINUE
ISN 0226
                    GO TO 2
             C
             С
                    *** OVERLAY SECTION ***
ISN Q227
               500 ICAC = IVAL(1)
ISN 0228
                    ICGR = IVAL(2)
             С
             С
                    READ AND ECHO PRINT THE OVERLAY PARAMETERS
ISN 0229
                    READ (LI,510) PPVDSH, WPSH, WGSH, CACI, CGRI, ACDENS, GRDENS, CSCDAT
ISN 0230
               510 FORMAT (8F10.Q)
ISN 0231
                    WRITE (LD, 52Q)PPVDSH, WPSH, WGSH, CACI, CGRI, ACDENS, GRDENS, CSCDAT
ISN 0232
               520 FORMAT (1X,8F10.2)
ISN 0233
                   GO TO 2
             C
             С
                    *** MODEL MAINTENANCE SECTION ***
ISN 0234
               GOO IARMS = IVAL(1)
ISN 0235
                    MFLG = 1
             C
             С
                    READ AND ECHO PRINT THE UNIT COSTS FOR BOTH FLEXIBLE AND RIGID
             C
                    PAVEMENTS, AND THE JOINT SEALING PARAMETERS
ISN 0236
                    READ (LI,610) (UNTCST(I), I=1.3)
ISN 0237
               610 FORMAT(3F10.0)
ISN 0238
                    READ (LI,620) UNTCST(4), DISS, DCON, DIN
                    WRITE (LO.630) (UNTCST(I).I=1,4), DISS, DCON, DIN
ISN 0239
ISN 0240
               620 FORMAT (4F to. 0, 2F5. 0, 15)
ISN 0241
               630 FORMAT(1X,3F10.2/1X,6F10.2,15)
ISN 0242
                   GD TO 2
             С
             С
                    *** HISTORICAL MAINTENANCE SECTION ***
ISN 0243
               700 IARMS = IVAL(1)
ISN 0244
                    MFLG = 2
             C
                    READ AND ECHO PRINT THE MAINTENANCE COSTS PER LANE MILE BY AGE FOR
             C
                    FLEXIBLE PAVEMENTS
```

ţ

```
С
ISN 0245
                    READ (LI,710) (USRMDL(I,1), I=1,24)
ISN 0246
                710 FORMAT(8F10.0)
ISN 0247
                    WRITE (LO.720) (USRMDL(I,1), I=1,24)
ISN 0248
                720 FORMAT(1X,8F10.0)
              С
              С
                    READ AND ECHO PRINT THE MAINTENANCE COSTS PER LANE MILE BY AGE FOR
              С
                    RIGID PAVEMENTS
              С
ISN 0249
                    READ (LI,710) (USRMDL(I,2), I=1,24)
              С
                    WRITE (LO,720) (USRMDL(I,2), I=1,24)
ISN 0250
                    GD TO 2
              С
              С
                    *** NO MAINTENANCE SECTION ***
ISN 0251
                800 \text{ MFLG} = 0
ISN 0252
                    GD TO 2
              С
              С
                    *** TRUCK TYPES SECTION ***
              С
ISN 0253
                900 NTTY = IVAL(1)
ISN 0254
                    NATT = IVAL(2)
ISN 0255
                    PERCT(1)=VAL(1)
ISN 0256
                    PERCT(2)=VAL(2)
                    PERCT(3)=VAL(3)
ISN 0257
ISN 0258
                    PERCT(4)=VAL(4)
ISN 0259
                    NEWTRK = NEWTRK + 1
ISN 0260
                    IF ((NTTY+NATT) .GT. 10) GD TO 9995
ISN 0262
                    NTT = NTTY
ISN 0263
                    K = 0
ISN 0264
                    INTT = NTT + NATT
              С
              С
                    READ AND ECHO PRINT THE TRUCK LABELS
ISN 0265
                    READ (LI,910) ((TTYP(M,J),M=1,2),J=1,INTT)
ISN 0266
                910 FORMAT(8(2A4,2X))
ISN 0267
                    WRITE (LO,920) ((TTYP(M,J),M=1,2),J=1,INTT)
ISN 0268
                920 FORMAT(1X,8(2A4,2X))
              С
              С
                    READ AND ECHO PRINT THE AXLE CONFIGURATIONS
                    READ (LI,921) ((NAXLES(M,J),J=1,4),M=1,INTT)
ISN 0269
ISN 0270
                921 FORMAT(8(412,2X))
ISN 0271
                    WRITE (LO,922) ((NAXLES(M,J),J=1,4),M=1,INTT)
ISN 0272
                922 FORMAT(1X,8(4I2,2X))
ISN 0273
                    DO 929 J=1.4
ISN 0274
                    NT(J) = 0
ISN 0275
                    DO 928 M=1,NTT
ISN 0276
                    NT(J) = NT(J) + NAXLES(M,J)
ISN 0277
                928 CONTINUE
ISN 0278
                929 CONTINUE
              С
              С
                    READ AND ECHO PRINT THE TRUCK PERCENTAGES
ISN 0279
                935 K = K+1
ISN 0280
                    DO 950 N=1,NYAP
ISN 0281
                    READ (LI,930) I, (PTTYP(J,I,K),J=1,10), PCTTR(I,K)
ISN 0282
                930 FORMAT(13.1X.11F6.0)
```

INPUT

PAGE

7'

```
05/360 FORTRAN H EXTENDED
```

DATE 84.262/15.03.07

```
WRITE (LO,940) I, (PTTYP(d,I,K),J=1.10), PCTTR(I,K)
ISN 0283
ISN 0284
                940 FORMAT (1X, 13, 1X, 11F6. 2)
LSN: 0285.
               950 CONTINUE
ISN 0286
                    IF ((NATT .GT. 0) .AND. (K .EQ. 1)) GO TO 935
ISN 0288
                    IF (K .EQ. 2) GO TO 2
ISN 0290'
                    DD 970 J=1.10
ISN 0291
                    DO 960 I=1,20
I'SN 0292
                    PTTYP(J,I,2) = PTTYP(J,I,1)
ISN: 0293
                960 CONTINUE
ISN 0294
               970 CONTINUE
ISN 0295
                    GO TO 2
             C
                    *** TITLE CARD SECTION ***
              C.
              C
                    READ AND ECHO PRINT THE THREE TITLE CARDS
ISN 0296
               1000 DU 1030 J=1,3
ISN 0297
                    READ (LI, 102) (TITLE(E, J), E=1,20)
ISN 0298
                    WRITE (LO, 103) (TITLE(I, J), I=1, 20)
ISN 0299
               1030 CONTINUE
ISN 0300
                    NEWSYS = 1
ISN 0301
                    GO TO 2
             C.
             C
                    *** OLD SECTIONS ***
15N 0302
               1100 SAVMNT = VAL((1))
ISN 0303
                    IPOT = IVAL(1)
ISN 0304
                    IFF = IVAL(2)
                    IF (IPOT .EQ. O.OR. IPOT .EQ. 3) GO TO 2
ISM 0305
TSN 0307
                    IF (IPOT .EQ. 1) GO TO 1150
ISN 0309
                    PFNOPC = VAL(3)
ISN 03110
                    PCTINF = VAL (4)
             C.
             C
                    READ AND ECHO PRINT THE ANNUAL PROLECTED OVERLAY FUNDS FOR PRESENT
                    REGULATIONS
ISN OUBTI
                    READ (LI. 1110) (APOF(I. 1), I=1, NYAP):
I'SN OF12
               1110 FORMAT (8F10.0)
ENEO MEI
                    WHETE (LUT, 1120): (APOF(E, 1), I=1, NYAP):
ISN 0314
               11120 FORMAT (1X.8F10.0)
ISN 0315
                    IF (IFF .EQ. 1) GO TO 1140
I'SN OST7
                    DO 1130 I = 1 NYAP
ISN 0318
                    APOF(1,2) = APOF(1,1)
1'SN 0319
               1130 CONTINUE
ISN 0320'
                    GO TO 2
              C
              C
                    READ AND ECHO PRINT THE ANNUAL PROJECTED OWERLAY FUNCS FOR FUTURE
             C
                    REGULATIONS
I'SN' 0921
               1140 READ (LI, 1110) (APOF(I, 2), I=1,NYAP)
ISN 0322
                    WRITE (LO. 1120) (APOF (I,2), I=1, NWAP)
ISN Ø323'
                    GO TO 2
               1150 TPFPC = VAL(2)
ISN 0324
                    PFNOPC = VAL(3)
ISN 0325
ISN 0326
                    GO TO 2
              C
              C
                    *** RUN PARAMETERS ***
             C
```

INPUT

```
1200 IF (IVAL(1) .NE. 0) NYAP = MINO(IVAL(1),20)
ISN 0327
ISN 0329
                    IEQTRP = IVAL(2)
ISN 0330
                    AGR = VAL(1)
                    PCTINT = VAL(2)
ISN 0331
ISN 0332
                    IF(VAL(3).NE.O.O)XHCIO=VAL(3)
ISN 0334
                    IF(VAL(4).NE.O.O)XHCIM=VAL(4)
ISN 0336
                    TFCDNS=VAL(5)
ISN 0337
                    GO TO 2
              С
                    *** LOAD LIMITS SECTION ***
              С
              С
                    READ THE PRESENT AND FUTURE LOAD LIMITS
ISN 0338
               1300 IEWS = IVAL(1)
ISN 0339
                    IDST = 1
ISN 0340
                    NEWTRK = NEWTRK + 2
ISN 0341
                    READ (LI, 1310) PGVWL, PSAL, PTAL, PTRAL
ISN 0342
               1310 FORMAT (4F10.0)
                    WRITE (LO, 1315) PGVWL, PSAL, PTAL, PTRAL
ISN 0343
ISN 0344
               1315 FORMAT(1x,4F10.2)
ISN 0345
                    READ (LI, 1310) FGVWL, FSAL, FTAL, FTRAL
ISN 0346
                    WRITE (LO.1315) FGVWL, FSAL, FTAL, FTRAL
                    READ THE PRESENT AND FUTURE STEERING AXLE WEIGHTS FOR EACH TRUCK TYPE
              С
ISN 0347
                    NTT = INTT
ISN 0348
                    READ (LI, 1320) (PSTAW(I), I=1, NTT)
ISN 0349
                    READ (LI, 1320) (FSTAW(I), I=1, NTT)
ISN 0350
               1320 FORMAT(10F8.0)
ISN 0351
                    WRITE (LO.1325) (PSTAW(I), I=1, NTT)
ISN 0352
                    WRITE (LO. 1325) (FSTAW(I), I=1, NTT)
ISN 0353
               1325 FORMAT(1X, 10F8.0)
              С
                    READ THE NEW EMPTY WEIGHT (AS A PERCENTAGE OF THE CURRENT EMPTY WEIGHT)
              С
                    FOR EACH TRUCK TYPE
ISN 0354
                    IF (IEWS .EQ. O) GO TO 2
ISN 0356
                    READ (LI, 1320) (EPI(I), I=1,NTT)
ISN 0357
                    WRITE (LO, 1330) (EPI(I), I=1,NTT)
ISN 0358
               1330 FORMAT(1X, 10F8, 2)
ISN 0359
                    GO TO 2
              С
                    *** SINGLE AXLE SECTION ***
               1400 NLDI(1) = IVAL(1)
ISN 0360
ISN 0361
                    NLD = IVAL(1)
ISN 0362
                    NTT = INTT
ISN 0363
                    STARTS(1) = VAL(1)
ISN 0364
                    NEWTRK = NEWTRK + 2
              С
                    READ THE LOAD INTERVALS AND, FOR EACH TRUCK TYPE, THE NUMBER OF
                    SINGLE AXLES FOR EACH INTERVAL
ISN 0365
                    DO 1420 L=1.NLD
ISN 0366
                    READ (LI, 1410) ELDINT, (SA(L,J),J=1,NTT)
ISN 0367
               1410 FORMAT(F10.0, 10F7.0)
ISN 0368
                    WRITE (LO.1415) ELDINT, (SA(L,J),J=1,NTT)
ISN 0369
               1415 FORMAT(1X.F10.0.10F7 0)
```

```
,
```

PAGE 9

```
LEVEL 2.3.0 (JUNE 78)
                               INPUT
                                               OS/360 FORTRAN H EXTENDED
                                                                                       DATE 84.262/15.03.07
  ISN 0370
                      SA(L,11) = ELDINT
  ISN 0371
                 1420 CONTINUE
  ISN 0372
                      DO 1422 K=1, NLD
  ISN 0373
                      SA(K.2)=0.000001
  ISN 0374
                      SA(K,3)=0.000001
  ISN 0375
                 1422 CONTINUE
  ISN 0376
                      GO TO 2
               C
                      *** TANDEM AXLE SECTION ***
  ISN 0377
                 1500 \text{ NLDI}(2) = \text{IVAL}(1)
  ISN 0378
                      NLD = IVAL(1)
· ISN 0379
                      NTT = INTT
  ISN 0380
                      STARTS(2) = VAL(1)
  ISN 0381
                      NEWTRK = NEWTRK + 2
                      READ THE LOAD INTERVALS AND NUMBER OF DOUBLES PER TRUCK TYPE PER INTERVAL
               С
  ISN 0382
                      DO 1510 L=1.NLD
  ISN 0383
                      READ (LI, 1410) ELDINT, (TA(L,J),J=1,NTT)
  ISN 0384
                      WRITE (LO, 1415) ELDINT, (TA(L,J),J=1,NTT)
  ISN 0385
                      TA(L.11) = ELDINT
  ISN 0386
                 1510 CONTINUE
  ISN 0387
                      GO TO 2
               C
                      *** TRIPLE AXLE SECTION ***
  ISN 0388
                 1600 \text{ NLDI}(3) = \text{IVAL}(1)
  ISN 0389
                      NLD = IVAL(1)
  ISN 0390
                      NTT = INTT
  ISN 0391
                      STARTS(3) = VAL(1)
  ISN 0392
                      NEWTRK = NEWTRK + 2
               С
                      READ THE LOAD INTERVALS AND NUMBER OF TRIPLES PER TRUCK TYPE PER INTERVAL
  ISN 0393
                      DO 1610 L=1.NLD
  ISN 0394
                      READ (LI, 1410) ELDINT, (TR(L,J), J=1,NTT)
  ISN 0395
                      WRITE (LO,1415) ELDINT, (TR(L,J),J=1,NTT)
  ISN 0396
                      TR(L,11) = ELDINT
  ISN 0397
                1610 CONTINUE
  1$N 0398
                      GO TO 2
               C
               С
                      *** GROSS VEHICLE WEIGHT SECTION ***
  ISN 0399
                 1700 \text{ NLDI}(4) = \text{IVAL}(1)
  ISN 0400
                      NLD = IVAL(1)
  ISN 0401
                      NTT = INTT
  ISN 0402
                      STARTS(4) = VAL(1)
 ISN 0403
                      NEWTRK = NEWTRK + 2
               С
               С
                      READ THE LOAD INTERVALS AND THE NUMBER OF EACH TRUCK TYPE WHOSE GVW FALLS
                      WITHIN EACH INTERVAL
               С
  ISN 0404
                      DO 1710 L=1,NLD
  ISN 0405
                      READ (LI, 1410) ELDINT, (VG(L,J),J=1,NTT)
  ISN 0406
                      WRITE (LO.1415) ELDINT, (VG(L,J),J=1,NTT)
  ISN 0407
                      VG(L,11) = ELDINT
  ISN 0408
                1710 CONTINUE
```

```
ISN 0409
                     GO TO 2
               С
                     *** EMPTY VEHICLE WEIGHT SECTION ***
               С
               С
 ISN 0410
                1800 \text{ NLDI}(5) = \text{IVAL}(1)
 ISN 0411
                     NLD = IVAL(1)
 ISN 0412
                     NTT = INTT
 ISN 0413
                     STARTS(5) = VAL(1)
 ISN 0414
                     NEWTRK = NEWTRK + 2
               С
                     READ THE LOAD INTERVALS AND THE NUMBER OF EACH TRUCK TYPE WHOSE EVW FALLS
               С
                     WITHIN EACH INTERVAL
 ISN 0415
                     DO 1810 L=1.NLD
                     READ (LI, 1410) ELDINT, (VE(L, J), J=1, NTT)
 ISN 0416
 ISN 0417
                     WRITE (LO, 1415) ELDINT, (VE(L,J),J=1,NTT)
 ISN 0418
                     VE(L,11) = ELDINT
 ISN 0419
                1810 CONTINUE
 ISN 0420
                     GO TO 2
               С
               С
                     *** STEERING AXLES SECTION ***
                1900 NLDI(6) = IVAL(1)
 ISN 0421
 ISN 0422
                     NLD = IVAL(1)
 ISN 0423
                     NTT = INTT
 ISN 0424
                     STARTS(6) = VAL(1)
 ISN 0425
                     IDST = 6
 ISN 0426
                     NEWTRK = NEWTRK + 2
               С
               С
                     READ THE LOAD INTERVALS AND, FOR EACH TRUCK TYPE, THE NUMBER OF
               С
                     STEERING AXLES FOR EACH INTERVAL
 ISN 0427
                     DO 1910 L=1,NLD
 ISN 0428
                     READ (LI, 1410) ELDINT, (ST(L,J),J=1,NTT)
 ISN 0429
                     WRITE (LO, 1415) ELDINT, (ST(L, J), J=1, NTT)
 ISN 0430
                     ST(L,11) = ELDINT
 ISN 0431
                1910 CONTINUE
· ISN 0432
                     GO TO 2
               С
               С
                     *** OUTPUT KEYWORD SECTION ***
 ISN 0433
                2000 IDUT = IVAL(1)
 ISN 0434
                     GO TO 2
               С
               С
                     *** KEYWORD ERROR PROCESSING SECTION ***
 ISN 0435
                9989 WRITE (LO,9089) IPFLG
 ISN 0436
                9089 FORMAT(/1X,19H*** ERROR IN LAYER ,11,4H ***/
                            38H ACP NOT PERMITTED FOR RIGID PAVEMENT /
                             30H UNLESS ABOVE JCP OR CRC LAYER//
                    3
                            15H RUN TERMINATED)
 ISN 0437
                     GO TO 9999
 ISN 0438
                9992 IGO = 3
 ISN 0439
                     GO TO 99999
 ISN 0440
                9993 WRITE (LO.9093)
 ISN 0441
                9093 FORMAT(/1X,37H*** UNRECOGNIZABLE MATERIALS CODE ***//
                            15H RUN TERMINATED)
                    1
 ISN 0442
                     GO TO 9999
```

```
DATE 84.262/15.03.07
LEVEL 2.3.0 (JUNE 78)
                              INPUT
                                             DS/360 FORTRAN H EXTENDED
                                                                                                              PAGE 11
  ISN 0443
                9994 WRITE (LO.9094)
  ISN 0444
                9094 FORMAT(/1X.51H*** ILLEGAL MATERIAL CODE FOR THIS TYPE OF PAVEMENT.
                            4H ***//15H RUN TERMINATED)
  ISN 0445
                     GO TO 9999
  ISN 0446
                9995 WRITE (LO.9095)
                9095 FORMAT(/1X.28H*** TOO MANY TRUCK TYPES ***//
  ISN 0447
                    1
                            15H RUN TERMINATED)
  ISN 0448
                     GO TO 9999
  ISN 0449
                9996 WRITE (LO.9096)
  ISN 0450
                9096 FORMAT(/1X,44H*** SPECIFIED KEYWORD NOT FOUND IN TABLE ***.
                            //15H RUN TERMINATED)
  ISN 0451
                     GO TO 9999
  ISN 0452
                9997 IGO = 1
  ISN 0453
                     GO TO 99999
  ISN 0454
                9998 WRITE (LO.9098)
  ISN 0455
                9098 FORMAT(/1X,44H*** STOP DIRECTIVE FOUND OUT OF SEQUENCE ***.
                   1 //15H RUN TERMINATED)
  ISN 0456
                9999 IGO = 4
  ISN 0457
                99999 DO 3500 I=1.30
                     XLM(I) = YLM(I)
  ISN 0458
  ISN 0459
                3500 CONTINUE
  ISN 0460
                     S = SPCJT
  ISN 0461
                     XML = 0.
                     IF (XMLI .NE. O.) XML = XMLI
  ISN 0462
  ISN 0464
                     LP = MINO(4. MAXO(1.INT(7.1 - 2.*PTERM)))
                     IF (FLRP .LE. O.) FLRP = FLRPTP(LP)
  ISN 0465
  ISN 0467
                     RETURN
  ISN 0468
                     END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTOOBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                 SOURCE STATEMENTS =
                                         467. PROGRAM SIZE = 10756. SUBPROGRAM NAME = INPUT
*STATISTICS* NO DIAGNOSTICS GENERATED
***** END OF COMPILATION *****
                                                                      836K BYTES OF CORE NOT USED
```

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE INPRNT
   ISN 0003
                      COMMON /TEMPC/ CONTP(25), DISTCT
   ISN 0004
                      COMMON /EALPAY/ EALPT(10,2), APPT(10,2), EALFCT(20), IEQTRP
   ISN 0005
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0006
                      COMMON /FUNDS/ APOF(20,2), RTINT, RTINF
   ISN 0007
                      COMMON /INTVLS/ STARTS(6)
   ISN 0008
                      COMMON /IO/ LI, LO, LD
                      COMMON /LABELS/ MATLAB(5,10)
   ISN 0009
                      COMMON /LDS/ PGVWL. PSAL. PTAL, PTRAL, FGVWL, FSAL, FTAL, FTRAL,
   ISN 0010
                                   PSTAW(10), FSTAW(10)
                      COMMON /LMP/ XLM(30), YLM(30), POTLM(20,2), DUTP(20,2), TOTALM,
   ISN 0011
                            PPF, TPF, PFNO, NASL, NSLR, TOVLM(30,2), XLM2(30)
   ISN 0012
                      COMMON /MISC/ IPOT, IARMS, OLDMNT, AGE
                      COMMON /MNTPAR/ UNTCST(4).USRMDL(31,3),WDTH.S.DISS,DCON,DIN,MFLG
   ISN 0013
   ISN 0014
                      COMMON /EXTRA/ PTOVTK, TPE, PFO, XMNOTK, XMXOTK, NIS
   ISN 0015
                      COMMON /NEWSYS/ NEWSYS
   ISN 0016
                      COMMON /NMBR/ SA(30,11), TA(30,11), TR(50,11), VE(30,11),
                                    VG(75,11), NLDI(6), EPI(10), ST(30,11)
                      COMMON /OUTSWH/ IOUT
   ISN 0017
   ISN 0018
                      COMMON /OVRLAY/ XHCIO, XHCIM, WLANE, WPSH, WGSH, PPVDSH, CAC, CGR
                          . CSCDAT
                      COMMON /PSI/ PF, PICON, PTERM, PIOV, PTOV
   ISN 0019
   ISN 0020
                      COMMON /STRCOE/ STRCD(8), CC(4), MC(11), NC, STRC(5), RFS(4),
                                       RFB(4)
   ISN 0021
                      COMMON /STRUC/ SN,SS,R,D,AGG,XJ,XK,E
   ISN 0022
                      COMMON /TIME/ ATP, OVLIF, NYAP, NYR, YR(40)
   ISN 0023
                      COMMON /TITLE/ TITLE(20,3), SECTTL(20)
   ISN 0024
                      COMMON /TRTYP/ TTYP(2,10), PTTYP(10,20,2), PCTTR(20,2), PERCT(4),
                                      NAXLES(10,4), NT(4), NTTY, NATT, NTT, NEWTRK
                      CDMMON /SLVG/ ISLV. FLRP, VI(30), RI(30), VL(30), RL(30),
   ISN 0025
                                     U(30), PL(30), MI(30), P(20), VP(20), RP(20),
                                     PB, VPB, RPB, NS, NY, SV(6,2), SVB, FLRPTP(4)
   ISN 0026
                      COMMON /SWTCHS/ OVLIFE, PCTINT, PCTINF, TPFPC, PFNOPC, AGR, SPCJT,
                                       XMLI, CACI, CGRI, ICAC, ACDENS, ICGR, GRDENS,
                                       INTT, SAVMNT, IDST, NLD, MCODE(5), TFCDNS
   ISN 0027
                      RTINT = PCTINT * 0.01
   ISN 0028
                      RTINF = PCTINF * 0.01
   ISN 0029
                      TPF = TPFPC*.01
   ISN 0030
                      PFNO = PFNOPC * 0.01
   ISN 0031
                      AGF = AGR * 0.01
   ISN 0032
                      CAC = CACT
   ISN 0033
                      CGR = CGRI
                      IF (ICAC .EQ. 1) GO TO 4000
   ISN 0034
   ISN 0036
                      IF (ICAC .EQ. 2) GO TO 4010
   1SN 0038
                      CAC = CACI * 36.
   ISN 0039
                      GO TO 4010
   ISN 0040
                 4000 CAC = CACI * (ACDENS * 27.) / 2000.
   ISN 0041
                 4010 IF (ICGR .EQ. 2) GO TO 99999
   ISN 0043
                      IF (ICGR .EQ. 1) GO TO 4020
   ISN 0045
                      CGR = CGRI * 36.
   ISN 0046
                      GO TO 99999
   ISN 0047
                 4020 CGR = CGRI * (GRDENS * 27.) / 2000.
   ISN 0048
                99999 RETURN
```

LEVEL 2.3.0 (JUNE 78) INPRNT 0S/360 FORTRAN H EXTENDED DATE 84.262/15.03.11 PAGE 2

ISN 0049 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 48, PROGRAM SIZE = 676, SUBPROGRAM NAME =INPRNT

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

ISN 0043

```
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE INIT (IGO)
   ISN 0003
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0004
                      COMMON /STRUC/ SN.SS.R.D.AGG, XJ.XK.E
   ISN 0005
                      COMMON /STRCDE/ STRCD(8),CC(4),MC(11),NC,STRC(5),RFS(4),RFB(4)
   ISN 0006
                      COMMON /TIME/ ATP, OVLIF, NYAP, NYR, YR(40)
   ISN 0007
                      DATA ICON, F /2, 1, /
                      ICON IS THE INDEX ON CONDITION FACTOR USED TO RELATE AN OLD PCC
                      PAVEMENT WITH AN AC OVERLAY TO AN EQUIVALENT SLAB THICKNESS.
                      F IS A FACTOR ALSO USED IN THE ABOVE RELATION.
   ISN 0008
                      GO TO (100, 200, 300), IGO
                      HERE FOR PROGRAM INITIALIZATION, FIRST EXECUTION.
   ISN 0009
                  100 DO 110 J=1,NYR
   ISN 0010
                      YR(J) = FLOAT(J)
   ISN 0011
                  110 CONTINUE
   ISN 0012
                      GO TO 900
                С
                С
                      HERE FOR SET UP CHORES AFTER READING INPUT DATA.
   ISN 0013
                  200 CONTINUE
                      WE HAVE ALL THE INPUT FOR A REPRESENTATIVE SECTION. DETERMINE -SN-
                      OR -D- FOR COMPOSITE PAVTS, AS WELL AS SET UP STRUCTURAL COEF.
   ISN 0014
                      IF (IP .EQ. IR .OR. IP .EQ. IC) GO TO 230
   ISN 0016
                      SN = 0.
  ISN 0017
                      DO 215 L=1,NLAY
   ISN 0018
                      M = MTYPE(L)
                      REPLACE VALUE IN DATA STATEMENT WITH VALUE READ IN.
   ISN 0019
                      IF (STRC(L) .NE. O.) STRCD(M) = STRC(L)
                      IF NO VALUE READ IN, SET VALUE FROM THE DATA STATEMENT.
   ISN 0021
                      IF (STRC(L) . EQ. O.) STRC(L) = STRCD(M)
   ISN 0023
                  215 SN = SN + STRC(L)*THICK(L)
                      SET -A- VALUE FOR OVERLAY = -A- FOR AC IF NOT READ IN SEPARATELY.
  ISN 0024
                      IF (STRC(5) .EQ. O.) STRC(5) = STRCD(1)
  ISN 0026
                      GO TO 250
  ISN 0027
                  230 \text{ XJ} = 3.2
                      CONTINUITY FACTOR FOR PCC PAVEMENTS 3.2 FOR JCP, 2.2 FOR CRC.
                      TEST FOR COMPOSITE PAVEMENT (AC TOP LAYER READ UNDER -RIGID-.)
  ISN 0028
                      IF (MTYPE(1) .EQ. 1) GO TO 240
  ISN 0030
                      D = THICK(1)
  ISN 0031
                      IF (MTYPE(1) .EQ. 10) XJ = 2.2
  ISN 0033
                      GO TO 250
                      EQUIVALENT SLAB THICKNESS FOR INITIALLY COMPOSITE PAVT.
  ISN 0034
                  240 D = (THICK(1)/2.5 + CC(ICON)*THICK(2))/F
  ISN 0035
                      IP = IC
  ISN 0036
                      IF (MTYPE(2) .EQ. 10) XJ = 2.2
  ISN 0038
                  250 CONTINUE
  ISN 0039
                      GO TO 900
                С
  ISN 0040
                  300 CONTINUE
  ISN 0041
                  900 CONTINUE
  ISN 0042
                      RETURN
```

END

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 84.262/15.03.14

PAGE 2

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 42, PROGRAM SIZE = 992, SUBPROGRAM NAME = INIT

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

1

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE DISTR ( P, NHIST, NSLICE)
   ISN 0003
                      COMMON /SWTCHS/ OVLIFE, PCTINT, PCTINF, TPFPC, PFNOPC, AGR. SPCJT.
                                       XMLI, CACI, CGRI, ICAC, ACDENS, ICGR, GRDENS,
                                       INTT, SAVMNT, IDST, NLD, MCODE(5), TFCDNS
   ISN 0004
                      COMMON /BURKE/ XLAMB, GAMMA, TFBAP
   ISN 0005
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0006
                      DIMENSION P(25)
   ISN 0007
                      IF (IP .EQ. IF) GO TO 100
                C->FIX SURVIVAL CURVES FOR RIGID PAVEMENTS
   ISN 0009
                      P(1)=0
   ISN 0010
                      P(2)=0.
   ISN 0011
                      P(3)=0.
   ISN 0012
                      P(4)=0.0125
   ISN 0013
                      P(5) = .0125
   ISN 0014
                      P(6)=0.0295
   ISN 0015
                      P(7)=P(6)
                      P(8)=P(7)
   ISN 0016
   ISN 0017
                      P(9) = .03
   ISN 0018
                      P(10)=P(9)
   ISN 0019
                      P(11) = .085
   ISN 0020
                      P(12)=P(11)
   ISN 0021
                      P(13) = .0325
   ISN 0022
                      P(14)=P(13)
   ISN 0023
                      P(15) = .0595
  ISN 0024
                      P(16)=P(15)
   ISN 0025
                      P(17) = .0325
   ISN 0026
                      P(18) = .085
   ISN 0027
                      P(19) = P(18)
   ISN 0028
                      P(20) = .03
   ISN 0029
                      P(21) = .03
   ISN 0030
                      P(22) = .0295
   ISN 0031
                      P(23)=P(22)
   ISN 0032
                      P(24)=P(23)
   ISN 0033
                      P(25) = .025
   ISN 0034
                      GO TO 999
   ISN 0035
                 100 CONTINUE
                C->GET INITIAL TRAFFIC
   ISN 0036
                      AGF = AGR / 100.
   ISN 0037
                      WO=TFBAP*(1+AGF)**(-NSLICE)
                C->GET P(I) FOR I=1 TO NHIST
   15N 0038
                      ACUM=0
   ISN 0039
                      ACPLYR=0
   ISN 0040
                      DO 10 I=1, NHIST
                C---->TRANSFORM YEARS INTO ACCUMULATED LOADS AT AGE I
   ISN 0041
                          ACUM=ACUM + WO*(1+AGF)**I
                C---->GET CUMMULATIVE FRACTION OF PAVEMENTS THAT FAILED
                          "ACUMIL" STANDS FOR ACCUMULATED EAL IN MILLIONS
   ISN 0042
                          ACUMIL = ACUM/1000000
   ISN 0043
                         POWER = -(XLAMB*ACUMIL)**GAMMA
   ISN 0044
                          IF (POWER .GT. -5.4E-79) POWER = -5.4E-79
   ISN 0046
                         ACPNOW=1-EXP(POWER)
                C---->GET FRACTION OF PAVEMENTS THAT FAILED DURING YEAR I
   ISN 0047
                         P(I)=ACPNOW-ACPLYR
```

LEVEL 2.3.0 (JUNE 78) DISTR 05/360 FORTRAN H EXTENDED DATE 84.262/15.03.15 PAGE 2

C---->UPDATE POINTER AND DO IT AGAIN

ISN 0048 ACPLYR=ACPNOW

ISN 0049 10 CONTINUE

ISN 0050 999 RETURN ISN 0051 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 50, PROGRAM SIZE = 1066, SUBPROGRAM NAME = DISTR

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION ****** 924K BYTES OF CORE NOT USED

1

```
REQUESTED OPTIONS: NODUMP
```

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) ISN 0002 SUBROUTINE EALGET С THIS ROUTINE CALCULATES THE RATIO OF EAL PER UNIT TIME UNDER THE С PROPOSED REGULATIONS TO THAT UNDER THE PRESENT REGULATIONS, SUBJECT TO THE RESTRAINT OF EQUAL PAYLOAD PER UNIT TIME(IEQTRP=0), OR TO THE RESTRAINT OF EQUAL NUMBER OF TRIPS (IEQTRP=1). COMMON /EALPAY/ EALPT(10,2), APPT(10,2), EALFCT(20), IEQTRP ISN 0003 COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC ISN 0004 ISN 0005 COMMON /PSI/ PF, PICON, PTERM, PIOV, PTOV ISN 0006 COMMON /STRUC/ SN.SS.R.D.AGG.XJ.XK.E COMMON /TIME/ ATP, OVLIF, NYAP, NYR, YR(40) ISN 0007 COMMON /SWTCHS/ OVLIFE, PCTINT, PCTINF, TPFPC, PFNOPC, AGR, SPCJT, ISN 0008 XMLI, CACI, CGRI, ICAC, ACDENS, ICGR, GRDENS, INTT, SAVMNT, IDST, NLD, MCODE(5), TFCDNS COMMON /TRTYP/ TTYP(2,10), PTTYP(10,20,2), PCTTR(20,2), PERCT(4), ISN 0009 NAXLES(10.4), NT(4), NTTY, NATT, NTT, NEWTRK COMMON /BURKE/ XLAMB, GAMMA, TFBAP ISN 0010 ISN 0011 DIMENSION \$1(10), \$2(10), T1(10), T2(10) ISN 0012 IPVT = IPISN 0013 IF (IP .EQ. IC) IPVT = IRCALL -TRAFIC- ONLY IF NEW LIMITS OR WEIGHT DISTRIBUTIONS HAVE BEEN READ FOR THIS PROBLEM IF (NEWTRK .GT. 1) CALL TRAFIC ISN 0015 ISN 0017 CALL EAL18 (SN, D, PTERM, IPVT) С EAL18 RETURNS 18K EAL PER AVERAGE TRUCK, EALPT, AND PAYLOAD PER AVERAGE TRUCK, APPT, FOR EACH TRUCK TYPE. FOR EACH YEAR OBTAIN THE (NORMALIZED) TOTAL PAYLOAD AND TOTAL 18K С EAL ISN 0018 DO 10 J=1.NYAP CALL MULT (PTTYP(1,J,1), APPT(1,1), NTTY, S1) ISN 0019 CALL MULT (PTTYP(1,J,1), EALPT(1,1), NTTY, T1) ISN 0020 ISN 0021 CALL SUM (S1, NTTY, SUM1) ISN 0022 CALL SUM (T1, NTTY, TUM1) ISN 0023 IF (J .EQ. 1) TFBAP=TUM1*TFCDNS 10 CONTINUE ISN 0025 ISN 0026 RETURN ISN 0027 END *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) *STATISTICS* SOURCE STATEMENTS = 26. PROGRAM SIZE = 702. SUBPROGRAM NAME = EALGET *STATISTICS* NO DIAGNOSTICS GENERATED ***** END OF COMPILATION ***** 924K BYTES OF CORE NOT USED

OS/360 FORTRAN H EXTENDED

ISN 0015

ISN 0010

ISN 0011

ISN 0012

ISN 0013

ISN 0014

LEVEL 2.3.0 (JUNE 78)

REQUESTED OPTIONS: NODUMP

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(GO) SIZE(MAX) AUTODBL(NONE)

PAVEMENT OVERLAY COST

PAVED SHOULDER COST PSHOC = CAC*F*VPSO

TOTAL OVERLAY COST

RETURN

END

UNPAVED SHOULDER OVERLAY COST UPSHOC = CGR*(1.-F)*VGSO

OVCST = PVTOC + UPSHOC + PSHOC

PVTOC = VPO*CAC

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 14. PROGRAM SIZE = 386, SUBPROGRAM NAME =DVCDST

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

924K BYTES OF CORE NOT USED

DATE 84.262/15.03.17

PAGE 1

REQUESTED OPTIONS: NODUMP

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(GO) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 SUBROUTINE ACCTFC (TFC1, AGF, NYR, TFCA) CUMULATIVE TRAFFIC BY YEAR FROM BASE YEAR (18 KIP EAL). С INPUT TFC1 - 18KIP EAL IN BASE YEAR (YEAR 1) С AGF - ANNUAL GROWTH FACTOR (PERCENT/100.) NYR - NUMBER OF YEARS FOR WHICH ACCUMULATED TRAFFIC DESIRED. С OUTPUT TFCA - ARRAY OF CUMULATIVE 18 KIP EAL THROUGH END OF INDEX YEAR. ISN 0003 DIMENSION TECA (NYR) ISN 0004 TFCA(1) = TFC1T = TFC1ISN 0005 ISN 0006 DO 10 I=2,NYR ISN 0007 T = T*(1. + AGF)ISN 0008 TFCA(I) = TFCA(I-1) + TISN 0009 10 CONTINUE ISN 0010 RETURN ISN 0011 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 10, PROGRAM SIZE = 398, SUBPROGRAM NAME =ACCTFC

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

928K BYTES OF CORE NOT USED

PAGE 1

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 84.262/15.03.19

PAGE 1

REQUESTED OPTIONS: NODUMP

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 SUBROUTINE OUTPUT (LOCSW)

ISN 0003 RETURN ISN 0004 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 3, PROGRAM SIZE = 176, SUBPROGRAM NAME =OUTPUT

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE OVTHKF (XNOV, THOV, YR)
   E000 NZI
                      REAL*8 THICK1(5), DMDRU, DMDRE
   ISN 0004
                      COMMON /MECH/XKT, NRU, NLH, ND, NDEL, IACR, IYR, JYR, CONSTR(20)
   ISN 0005
                      COMMON/HOR/A(10),B(10),C(10),DT(10),DF(10),S(10),T(10),TR(5),PI(5)
                      *.PT(5),AC(5),AA,SCT(5),XMNW18(10) ,XKTO
   ISN 0006
                      COMMON /EXTRA/ PTOVTK, TPE, PFO, XMNOTK, XMXOTK, NIS
   ISN 0007
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0008
                      COMMON /PSI/PF, PICON, PTERM, PIOV, PTOV
   ISN 0009
                      COMMON /STRCOE/ STRCD(8),CC(4),MC(11),NC,STRC(5),RFS(4),RFB(4)
   ISN 0010
                      DIMENSION BETA(5,2,2),CO(5,2,2)
   ISN 0011
                      BETA(1,1,1)=-1.5287
   ISN 0012
                      BETA(1,1,2)=-1,5387
   ISN 0013
                      BETA(3,1,1)=-1.4370
   ISN 0014
                      BETA(3,1,2)=-1.4370
   ISN 0015
                      BETA(4,1,1)=-1.5605
 · ISN 0016
                      BETA(4,1,2)=-1.5776
   ISN 0017
                      BETA(1,2,1)=-1.53
   ISN 0018
                      BETA(1,2,2)=-1.562
   ISN 0019
                      BETA(3,2,1)=-1.4649
   ISN 0020
                      BETA(3,2,2)=-1,4649
   ISN 0021
                      BETA(4,2,1)=-1.5700
   ISN 0022
                      BETA(4,2,2)=-1.6085
   ISN 0023
                      CO(3,1,1)=600.
   ISN 0024
                      CO(3,1,2)=600
   ISN 0025
                      CO(1,1,1)=10000.0
   ISN 0026
                      CO(4,1,1)=10000.0
   ISN 0027
                      CO(1,1,2)=50000.0
   ISN 0028
                      CO(4,1,2)=50000.0
   ISN 0029
                      CO(3,2,1) = 1000.
   ISN 0030
                      CO(3,2,2) = 1000.0
   ISN 0031
                      CO(1,2,1)=10000.0
   ISN 0032
                      CO(4,2,1)=10000.0
   ISN 0033
                      CO(1,2,2)=100000.0
   ISN 0034
                      CO(4,2,2) = 100000.0
   ISN 0035
                      NLAY1=NLAY+1
   ISN 0036
                      DO 10 K=2, NLAY1
   ISN 0037
                   10 THICK1(K)=THICK(K-1)
   ISN 0038
                      THICK1(1)=XMNOTK
                      IF (PF.GT.PTERM.OR.TPE.EQ.O) GO TO 100
   ISN 0039
   ISN 0041
                      TNPT=NPT
   ISN 0042
                      NPT=4
   ISN 0043
                      CALL PSIT (P.PFO.W.XKTO)
   ISN 0044
                      NPT=TNPT
   ISN 0045
                      IF (PFO.GE.PTOV) GOTO 3
   ISN 0047
                      GO TO 8
                      IF (PFO.GE.PTOV) GOTO 3
   ISN 0048
                 100
   ISN 0050
                      IF(PFO.EQ.PTERM) PTERM=PTERM+O.05
   ISN 0052
                      XKTO=-.8*XNOV*ALOG((PIOV-PTERM)/(PIOV-PFO))
   ISN 0053
                8
                      DMDRE=(100.0+XKTO/CO(NPT,NRU,NLH))**(BETA(NPT,NRU,NLH))
   ISN 0054
                      N=(XMXOTK-XMNOTK)*4+0.9999
   ISN 0055
                      DO 1 I=1.N
   ISN 0056
                      CALL RUSIAN (THICK1, DMDRU, NLAY1, NPT, NRU, NLH)
   ISN 0057
                      IF(DMDRU.LE.DMDRE)GO TO 2
```

LEVEL 2.3.0 (JUNE 78) OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.21 OVTHKE PAGE 2 ISN 0059 1 THICK1(1)=THICK1(1)+.25 ISN 0060 2 THOV=THICK1(1) ISN 0061 GO TO 4 3 THOV=XMNOTK ISN 0062 ISN 0063 4 RETURN ISN 0064 END *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) *STATISTICS* SOURCE STATEMENTS = 63. PROGRAM SIZE = 1704, SUBPROGRAM NAME =OVTHKF *STATISTICS* NO DIAGNOSTICS GENERATED

920K BYTES OF CORE NOT USED

***** END OF COMPILATION *****

LEVEL 2.3.0 (JUNE 78) US/360 FORTRAN H EXTENDED DATE 84.262/15.03.21

REQUESTED OPTIONS: NODUMP

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 FUNCTION RWT18L(D,PI,PT)

AASHO-RIGID PREDICTION OF 18 KIP EAL TO TERMINAL PSI

ISN 0003 GT = ALOG10((PI-PT)/(PI-1.5))

ISN 0004 GTERM = GT/(1.+1.624E7/(D+1.)**8.46) ISN 0005 RWT18L= 7.35*ALOG10(D+1.)-0.06+GTERM

ISN 0006 RETURN ISN 0007 END

С

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 6, PROGRAM SIZE = 480, SUBPROGRAM NAME =RWT18L

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

928K BYTES OF CORE NOT USED

PAGE

```
LEVEL 2.3.0 (JUNE 78)
                                              OS/360 FORTRAN H EXTENDED
                                                                                    DATE 84.262/15.03.22
                                                                                                               PAGE 1
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      FUNCTION RNAASH(DA)
                С
                      MODIFY AASHO-RIGID PREDICTION FOR NON-AASHO CONDITIONS
   ISN 0003
                      COMMON /STRUC/ SN.SS.R.D.AGG.XJ.XK.E
   ISN 0004
                      Z = E/XK
                      CT = 223.3
   ISN 0005
   ISN 0006
                      IKK = AGG
   ISN 0007
                      IF( IKK .EQ. 0 ) CT=204.16
                      D75 = DA**.75
   ISN 0009
   ISN 0010
                      RNAASH = ALOG10((CT/215.63)*(D75-1.132)/
                     1 (D75-18.42/Z**O.25))
   ISN 0011
                      RETURN
   ISN 0012
                      END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                 SOURCE STATEMENTS =
                                          11, PROGRAM SIZE =
                                                                  478, SUBPROGRAM NAME =RNAASH
```

928K BYTES OF CORE NOT USED

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

1

LEVEL 2.3.0 (JUNE 78) OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.23 REQUESTED OPTIONS: NODUMP OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) ISN 0002 FUNCTION GPSIR (XN. PI. D) AASHO-RIGID PREDICTION OF PSI AFTER GIVEN 18 KIP EAL ISN 0003 DATA MAX, TEST /10, .001 / ISN 0004 EXP10(X) = EXP(2.302585*X)ISN 0005 PTN = 3.ITER = 0ISN 0006 ISN 0007 RN = RNAASH(D)1SN 0008 XNL = ALOG10(XN)ISN 0009 DT1 = 7.35*ALOG10(D+1.) - 0.06ISN 0010 DT2 = 1. + 1.624E7/(D+1.)**8.46ISN 0011 10 ITER = ITER + 1 IF (ITER .GT. MAX) GO TO 30 ISN 0012 ISN 0014 PT = PTN ISN 0015 GT = (XNL - DT1 - (4.22 - 0.32*PT)*RN)*DT2ISN 0016 PTN = PI - (PI - 1.5)*EXP1O(GT)ISN 0017 IF (ABS(PTN - PT) .LT. TEST) GO TO 20 ISN 0019 GO TO 10 ISN 0020 20 GPSIR = PTN ISN 0021 RETURN ISN 0022 30 GPSIR = PTN ISN 0023 WRITE (6.1) MAX, PTN, PT, XN ISN 0024 1 FORMAT (1X, 37HFUNCTION GPSIR DID NOT CONVERGE AFTER, 15, 11H ITERATIONS / 1X.33HLAST AND PREVIOUS PSI VALUES WERE. 2F10.6 / 1X, 3HFOR, F10.0,26H 18KIP EAL TO DATE, ABORT.) 2 ISN 0025 STOP ISN 0026 END *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

25. PROGRAM SIZE = 944. SUBPROGRAM NAME = GPSIR *STATISTICS* SOURCE STATEMENTS =

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

ţ

DATE 84.262/15.03.24 LEVEL 2.3.0 (JUNE 78) OS/360 FORTRAN H EXTENDED PAGE 1 REQUESTED OPTIONS: NODUMP OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSE NOTERM IBM FLAG(I) ISN 0002 SUBROUTINE GETD (W18, PI, PT, DB, DF) AASHO-RIGID SLAB THICKNESS FOR GIVEN LIFE (18 KIP EAL) AND INITIAL С С AND TERMINAL PSI ISN 0003 DATA MAX, TEST /10, .001 / ISN 0004 EXP10(X) = EXP(2.302585*X)ISN 0005 ITER = O ISN 0006 DN = DBISN 0007 10 ITER = ITER + 1 ISN 0008 IF (ITER .GT. MAX) GO TO 99 ISN 0010 D = DNISN 0011 W = RWT18L(D,PI,PT) + (4.22-.32*PT)*RNAASH(D)ISN 0012 DTERM = 7.35*ALOG10(D + 1.)D1NLOG = (W18 - (W - DTERM))/7.35ISN 0013 ISN 0014 DN = EXP10(D1NLOG) - 1.ISN 0015 IF (ABS(D-DN) .LT. TEST) GO TO 20 ISN 0017 GO TO 10 20 DF = DN ISN 0018 ISN 0019 RETURN ISN 0020 99 DF = D ISN 0021 WRITE (6.1) D. DN, W18, PI,PT,DB ISN 0022 RETURN

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTOOBL(NONE)

1X, 4F10.4 /)

1 FORMAT (1X, 27HT00 MANY ITERATIONS IN GETD /

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSE NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 23. PROGRAM SIZE = 870, SUBPROGRAM NAME = GETD

1X, 20HLAST TWO VALUES WERE . 2F8.4 /

1X, 36HINPUT LOG N18, PI, PT, STARTING D = /

STATISTICS NO DIAGNOSTICS GENERATED

2

3

END

***** END OF COMPILATION *****

ISN 0023

ISN 0024

:

1

REQUESTED OPTIONS: NODUMP

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

1

ISN 0002 SUBROUTINE OVTHER (D. EXD. TH) OBTAIN THICKNESS OF AC OVERLAY TO BRING EQUIVALENT SLAB С THICKNESS, D. OF COMBINATION UP TO NEW DESIGN VALUE. (EXISTING D DISCOUNTED FOR USE) ISN 0003 COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC ISN 0004 COMMON /PSI/ PF, PICON, PTERM, PIOV, PTOV ISN 0005 COMMON /STRCOE/ STRCD(8),CC(4),MC(11),NC,STRC(5),RFS(4),RFB(4) DATA F/1./ ISN 0006 INDX = 7.5 - 2.*PTERMISN 0007 ISN 0008 INDX = MINO(4, MAXO(1, INDX))ISN 0009 C = CC(INDX)TH = 2.5*(F*D - C*EXD)ISN 0010 ISN 0011 RETURN ISN 0012 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 11, PROGRAM SIZE = 424, SUBPROGRAM NAME =OVTHKR

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

1

REQUESTED OPTIONS: NODUMP

С

С

С

С

С

С

C

С

C

С

С

С

C

С

С

C

C

E

С

C

C

C

С

С

C

С

c

C

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(1)

ISN 0002

SUBROUTINE TRAFIC

THIS ROUTINE COMPUTES THE FOLLOWING

- 1. THE ADJUSTED AVERAGE EMPTY WEIGHT OF VEHICLES WEIGHED EMPTY
- 2. ADJUSTED GROSS WEIGHT AND TOTAL PAYLOAD CARRIED PRESENT AND PROPOSED REGULATIONS
- 3. DISTRIBUTION OF AXLE WEIGHTS PRESENT AND PROPOSED REGS.
- 4. AXLE WEIGHT DISTRIBUTIONS BY VEHICLE CLASSIFICATION PROPOSED REGULATIONS

THE INPUTS ARE

- 1. NAXLES(10,4) THE NUMBER OF SINGLE, TANDEM, TRIPLE AND STEERING AXLES FOR EACH TRUCK TYPE
- 2. NTTY NUMBER OF TRUCK TYPES TO BE CONSIDERED (EXISTING)
- 3. NATT NUMBER OF ADDED TRUCK TYPES (FUTURE DESIGN)
- 4. NEWTRK SHIFTING INDICATOR
 - O SHIFTING PROCEDURE TO BE DONE
 - 1 SHIFTING PROCEDURE NOT TO BE DONE (ALREADY DONE)
- 5. SA(30,11) NUMBER OF SINGLE AXLES WEIGHED BY INTERVAL AND TRUCK TYPE
- 6. TA(30,11) NUMBER OF TANDEM AXLES WEIGHED BY INTERVAL AND TRUCK TYPE
- 7. TR(50,11) NUMBER OF TRIPLE AXLES WEIGHED BY INTERVAL AND TRUCK TYPE
- 8. ST(30,11) NUMBER OF STEERING AXLES WEIGHED BY INTERVAL AND TRUCK TYPE
- 9. VE(30,11) NUMBER OF VEHICLES WEIGHED EMPTY BY INTERVAL AND TRUCK TYPE
- TO. VG(75,11) NUMBER OF VEHICLES WEIGHED GROSS BY INTERVAL AND TRUCK TYPE
- 11. NLDI(6) NUMBER OF INTERVALS INPUT FOR EACH OF THE ABOVE SIX ARRAYS. WHERE.
 - 1 = SA 2 = TA 3 = TR 4 = VG 5 = VE 6 = ST
- 12. EMPTY(10) PERCENT INCREASE IN AVERAGE EMPTY WEIGHT FOR EACH TRUCK TYPE
- 13. PGVWL PRESENT GROSS VEHICLE WEIGHT LIMIT
- 14. PSAL -- PRESENT SINGLE AXLE WEIGHT LIMIT
- 15. PTAL -- PRESENT TANDEM AXLE WEIGHT LIMIT
- 16. PTRAL PRESENT TRIPLE AXLE WEIGHT LIMIT
 - 17. PSTAW(10) PRESENT STEERING AXLE WEIGHT LIMIT BY TRUCK TYPE 18-22.
 - FGVWL, FSAL, FTAL, FTRAL, FSTAW(10) SAME AS 13 THROUGH 17

 EXCEPT THAT THESE ARE VALUES UNDER PROPOSED REGULATIONS
 - 23. SIZE STANDARD INTERVAL SIZE (2-KIPS)
 - 24. AVRG AVERAGE VARIABLE (AVRG = 100. GIVES AVERAGE VALUES PER 100 TRUCKS)
 - 25. NAPOV NUMBER OF SELECTED CUMULATIVE PERCENTAGES FOR THE DISTRIBUTION OF AXLE WEIGHTS PROPOSED REGS. SECTION
 - 26. PAPOV PERCENTAGE INCREMENT CORRESPONDING TO NAPOV ABOVE

ISN 0003 COMMON /TRFFIC/ ELVWI(75), APVWE(75), APVWG(75), SAAPV(75), TAAPV(75), TRAPV(75), STAPV(75), NGVW
), MTYPE(4), NLAY, IP, IF, IR, IC

G

```
ISN 0005
                    COMMON /TRTYP/ TTYP(2,10), PTTYP(10,20,2), PCTTR(20,2), PERCT(4),
                                   NAXLES(10,4), NT(4), NTTY, NATT, NTT, NEWTRK
ISN 0006
                    COMMON /NMBR/ SA(30,11), TA(30,11), TR(50,11), VE(30,11),
                                  VG(75,11), NLDI(6), EMPTY(10), ST(30,11)
ISN 0007
                    COMMON /LDS/ PGVWL, PSAL, PTAL, PTRAL, FGVWL, FSAL, FTAL, FTRAL,
                                 PSTAW(10), FSTAW(10)
ISN 0008
                    COMMON /CNSTS/ NAPOV, PAPOV, SIZE, AVRG
ISN 0009
                    COMMON /TRINDX/ ITT
                    COMMON /IO/ LI, LO, LD
ISN 0010
ISN 0011
                    COMMON /OUTPTS/ TD4(10,6,2)
ISN 0012
                    COMMON EVWI(75), EVWMP(75), ELVWMP(75), GLVWNI(75), VWE(75),
                              PVWE(75), TWFAV(75), TPFAV(75), TVWE(75),
                              APPV(75), PPV(75), FACT(75), SAI(75), TAI(75), TRI(75),
                   3
                   4
                              SAA(75), TAA(75), TRA(75), SLA(75), TLA(75),
                   5
                              TRLA(75), APSA(75), APTA(75), APTR(75), APOV(75),
                              GWA(75), GWAF(75), SLAR(75), TLAR(75), TRLAR(75),
                   7
                              SANOV(75), TANOV(75), TRNOV(75), PSA(75), PTA(75).
                              PTR(75), SLAT(75), TLAT(75), TRLAT(75), STA(75),
                   9
                              PST(75), STLA(75), STLAR(75), STLAT(75), APST(75).
                              STI(75), STNOV(75), NLDISV(6)
ISN 0013
                    IF (NEWTRK .EQ. 1) GO TO 9999
ISN 0015
                    DO 6 K=1.1
ISN 0016
                    DO 4 J=1,6
ISN 0017
                    DO 2 I=1.10
ISN 0018
                    TD4(I,J,K) = 0.0
ISN 0019
                  2 CONTINUE
ISN 0020
                  4 CONTINUE
ISN 0021
                  6 CONTINUE
ISN 0022
                    DO 7 I=1,6
ISN 0023
                    NLDISV(I) = NLDI(I)
ISN 0024
                  7 CONTINUE
ISN 0025
                    DO 160 IT=1,NTT
ISN 0026
                    PERC =PERCT(IT)
ISN 0027
                    ITT = IT
ISN 0028
                    VTN = 0.
ISN 0029
                    NSA = 0
OEOO NZI
                    NTA = 0
ISN 0031
                    NTR = 0
ISN 0032
                    NNA = 0
ISN 0033
                    NNT = 0
ISN 0034
                    NNR = O
ISN 0035
                    APV = 0.
ISN 0036
                    PAPV = 0.
ISN 0037
                    DO 8 I=1,75
BEOO NSI
                    PSA(I) = 0.
ISN 0039
                    PTA(I) = 0.
ISN 0040
                    PTR(I) = 0.
ISN 0041
                    PST(I) = 0.
ISN 0042
                    SAI(I) = 0.
ISN 0043
                    TAI(1) = 0.
ISN 0044
                    TRI(I) = 0.
ISN 0045
                    STI(1) = 0.
ISN 0046
                    SANOV(I) = O.
ISN 0047
                    TANOV(I) = O.
ISN 0048
                    TRNOV(I) = 0.
ISN 0049
                    STNOV(I) = 0.
ISN 0050
                    ELVWI(I) = 0.
ISN 0051
                    APVWE(I) = 0.
```

```
)
```

PAGE 3

```
LEVEL 2.3.0 (JUNE 78)
                             TRAFIC
                                              05/360 FORTRAN H EXTENDED
  ISN 0052
                     APVWG(I) = 0.
  ISN 0053
                     SAAPV(I) = 0.
  ISN 0054
                     TAAPV(I) = 0.
  ISN 0055
                     TRAPV(I) = 0.
  ISN 0056
                     STAPV(I) = 0.
  ISN 0057
                     FACT(I) = 0.
  ISN 0058
                     GLVWNI(I) = 0.
  ISN 0059
                     APSA(I) = 0.
  ISN 0060
                     APTA(I) = 0.
  ISN 0061
                     APTR(I) = 0.
  ISN 0062
                     APST(I) = 0.
  ISN 0063
                   8 CONTINUE
  ISN 0064
                     DO 9 I=1.6
  ISN 0065
                     NLDI(I) = NLDISV(I)
  ISN 0066
                   9 CONTINUE
               С
  ISN 0067
                  35 CONTINUE
  ISN 0068
                  50 CONTINUE
  ISN 0069
                     IF (NAXLES(IT, 1) .EQ. 0) GO TO 64
               C
               С
                     SINGLE AXLES
  ISN 0071
                     NLDS = NLDI(1)
  ISN 0072
                     CALL COUNT (SA(1, IT), NLDS)
  ISN 0073
                     CALL INTVL (SA, SAI, NLDS, NSA, 1, 30, SAA, IT)
  ISN 0074
                     CALL PCTAGE (SAA, NSA, PSA)
  ISN 0075
                     CALL ACMLTE (PSA, NSA, APSA)
 ISN 0076
                     NNA = NSA
 ISN 0077
                  64 IF (NAXLES(IT.2) .EQ. 0) GO TO 66
               C
                     TANDEM AXLES
  ISN 0079
                     NLDS = NLDI(2)
  ISN 0080
                     CALL COUNT (TA(1,IT), NLDS)
  ISN 0081
                     CALL INTVL (TA, TAI, NLDS, NTA. 2, 30, TAA, IT)
                     CALL PCTAGE (TAA, NTA, PTA)
  ISN 0082
 ISN 0083
                     CALL ACMLTE (PTA, NTA, APTA)
 ISN 0084
                     NNT = NTA
  ISN 0085
                  66 IF (NAXLES(IT,3) .EQ. 0) GO TO 68
               C
                     TRIPLE AXLES
               C
  ISN 0087
                     NLDS = NLDI(3)
  ISN 0088
                     CALL COUNT (TR(1,1T), NLDS)
  ISN 0089
                     CALL INTVL (TR. TRI, NLDS, NTR, 3, 50, TRA, IT)
  ISN 0090
                     CALL PCTAGE (TRA, NTR, PTR)
  ISN 0091
                     CALL ACMLTE (PTR, NTR, APTR)
  ISN 0092
                     NNR = NTR
  ISN 0093
                  68 IF ((NAXLES(IT,4) .EQ. O) .OR. (IP .NE. IF)) GO TO 69
               С
               С
                     STEERING AXLES
  ISN 0095
                     NLDS = NLDI(6)
  ISN 0096
                     CALL COUNT (ST(1, IT), NLDS)
  ISN 0097
                     CALL INTVL (ST, STI, NLDS, NST, 6, 30, STA, IT)
```

CALL PCTAGE (STA, NST, PST)

NNS = NST

CALL ACMLTE (PST, NST, APST)

ISN 0098

ISN 0099

ISN 0100

1

DATE 84.262/15.03.27

ISN 0129

ISN 0130

ISN 0131

ISN 0132

ISN 0133

ISN 0134

ISN 0135

ISN 0136

ISN 0137

ISN 0138

ISN 0139

ISN 0140

ISN 0141

ISN 0142 ·

```
١
LEVEL 2.3.0 (JUNE 78)
                             TRAFIC
                                              OS/360 FORTRAN H EXTENDED
                                                                                     DATE 84.262/15.03.27
                                                                                                                 PAGE
  ISN 0101
                  69 IF (IT .GT. NITY) GO TO 146
  ISN 0103
                     NGVW = NJ
               С
               С
                     *** DISTRIBUTION OF SINGLE/TANDEM/TRIDEM AXLE WEIGHTS - PROPOSED LIMITS **
               С
               С
                     SET UP THE TABLE OF SELECTED CUMULATIVE PERCENTAGES DEFINING THE
                     GROSS WEIGHT AND AXLE WEIGHT CURVES
               С
  ISN 0104
                     P = 0.0
  ISN 0105
                     DO 70 I=1, NAPOV
  ISN 0106
                     APOV(I) = P
  ISN 0107
                     P = P + PAPOV
  ISN 0108
                  70 CONTINUE
               С
  ISN 0109
                     GO TO 150
  ISN 0110
                  146 DO 147 I=1,NSA
  ISN 0111
                     SAAPV(I) = APSA(I)
  ISN 0112
                     SANOV(I) = PSA(I)
  ISN 0113
                     PSA(I) = 0.
  ISN 0114
                 147 CONTINUE
  ISN 0115
                     NNA = NSA
  ISN 0116
                     DO 148 I=1,NTA
  ISN 0117
                     TAAPV(I) = APTA(I)
  ISN 0118
                     TANOV(I) = PTA(I)
  ISN 0119
                     PTA(I) = 0.
  ISN 0120
                  148 CONTINUE
  ISN 0121
                     NNT = NTA
  ISN 0122
                     DO 149 I=1,NTR
  ISN 0123
                     TRAPV(I) = APTR(I)
  ISN 0124
                     TRNOV(I) = PTR(I)
 ISN 0125
                     PTR(I) = 0.
  ISN 0126
                  149 CONTINUE
  ISN 0127
                     NNR = NTR
  ISN 0128
                     DO 151 I=1,NST
```

WRITE TO DISK FOR RECALL IN EQUIVALENT LOAD APPLICATIONS ROUTINE

(PST(I), I=1, NNS), (SANOV(I), I=1, NSA),

(TANOV(I), I=1, NTA), (TRNOV(I), I=1, NTR),

(PSA(I), I=1, NNA), (PTA(I), I=1, NNT), (PTR(I), I=1, NNR),

(STNOV(I), I=1, NST), (SAI(I), I=1, NSA), (TAI(I), I=1, NTA),(TRI(I), I=1, NTR), (STI(I), I=1, NST), VTN, APV, PAPV

WRITE (LD) NSA, NTA, NTR, NST, NNA, NNT, NNR, NNS,

NGVW = MAXO(NSA,NTA,NTR,NST,NJ)

STAPV(I) = APST(I)

APVWG(I) = APVWE(I)

STNOV(I) = PST(I)

PST(I) = 0.

DO 152 I=1,NJ

150 CALL OUTPUT (3)

NNS = NST

151 CONTINUE

152 CONTINUE

2

3

160 CONTINUE

END

9999 RETURN

С С

С

LEVEL 2.3.0 (JUNE 78) TRAFIC OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.27 PAGE 5

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(1)

STATISTICS SOURCE STATEMENTS = 141, PROGRAM SIZE = 3510, SUBPROGRAM NAME =TRAFIC

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

ISN 0017

ISN 0018

С

TSN18 = 0.

IF (NAXLES(IT, 1) .EQ. 0) GO TO 50

```
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME (MAIN) NOOPTIMIZE LINECOUNT (60) SIZE (MAX) AUTODBL (NONE)
                    SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                       SUBROUTINE EAL18 (STRNUM, SLBTHK, TPSI, IPVT)
                С
                С
                      THIS ROUTINE CALCULATES THE EQUIVALENT 18-KIP AXLE LOAD
                С
                       APPLICATIONS FOR EACH VEHICLE USING INFORMATION WRITTEN ON DISK BY
                С
                       SUBROUTINE TRAFIC
                С
                       THE INPUTS ARE
                С
                         1. STRNUM - STRUCTURAL NUMBER FOR A FLEXIBLE PAVEMENT
                С
                         2. SLBTHK - SLAB THICKNESS FOR A RIGID PAVEMENT
                С
                         3. TPSI --- TERMINAL PSI
                         4. IPVT --- PAVEMENT TYPE SWITCH
                         5. APPT(10.2) - AVERAGE PAYLOAD PER VEHICLE, PRESENT + PROPOSED
                С
                         6. COFVCT(6) - A VECTOR WITH ZERO-ONE ELEMENTS THAT DEFINE THE
                                        PRESENT TRAFFIC COMBINATION BEING CONSIDERED
                С
                С
                       THE OUTPUT IS
                С
                         EALPT(10.2) - 18-KIP EAL PER TRUCK - PRESENT AND PROPOSED REGS.
                С
   ISN 0003
                       DIMENSION PSA(75), PTA(75), PTR(75), SANOV(75), TANOV(75),
                                 TRNOV(75), EFSA(75), EFTA(75), EFTR(75), SAN18(75),
                                 TAN18(75), TRN18(75), SPN18(75), DPN18(75), TPN18(75),
                                 SAI(75), TAI(75), TRI(75), SAM(75), TAM(75), TRM(75),
                      3
                                 PST(75), STNOV(75), EFST(75), STN18(75), STPN18(75),
                                 STI(75), STM(75)
                       COMMON /EALPAY/ EALPT(10,2), APPT(10,2), EALFCT(20), IEQTRP
   ISN 0004
                       COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0005
   ISN 0006
                       COMMON /CNSTS/ NAPOV, PAPOV, SIZE, AVRG
                       COMMON /TRTYP/ TTYP(2,10), PTTYP(10,20,2), PCTTR(20,2), PERCT(4),
   ISN 0007
                                      NAXLES(10,4),NT(4), NTTY, NATT, NTT, NEWTRK
   ISN 0008
                       COMMON /IO/ LI, LO, LD
   ISN 0009
                       COMMON /PSI/ PF.PICON, PTERM, PIOV, PTOV
                       COMMON /COMBI/ ICOMB, NVC, COFVCT(6)
   ISN 0010
   ISN 0011
                       DATA PSI1, PK1, PSI2, PK2 /4.2, 2.7, 4.5, 3.0/
                       REWIND 1
   ISN 0012
                       NTT = NTTY + NATT
   ISN 0013
   ISN 0014
                       DO 1000 IT=1.NTT
                С
                С
                       READ FROM DISK THE INFORMATION STORED BY SUBROUTINE TRAFIC
                       READ (LD) NSA, NTA, NTR, NST, NNA, NNT, NNR, NNS,
   ISN 0015
                                  (PSA(I), I=1, NNA), (PTA(I), I=1, NNT), (PTR(I), I=1, NNR),
                                  (PST(I), I=1, NNS), (SANOV(I), I=1, NSA),
                      2
                                  (TANOV(I), I=1, NTA), (TRNOV(I), I=1, NTR),
                                  (STNOV(I).I=1.NST). (SAI(I).I=1,NSA), (TAI(I),I=1,NTA),
                                  (TRI(I), I=1, NTR), (STI(I), I=1, NST), VTN, APV, PAPV
                       APPT(IT, 1) = APV
   ISN 0016
                 С
                       COMPUTE THE 18-KIP EAL FOR EACH AXLE TYPE
```

PAGE

2

FIGAT(NAYIFS(IT.2)) + TTN18*FLOAT(NAXLES(IT,3)) +

1

DATE 84.262/15.03.29

```
£
ISN 0020
                    CALL MIDPNT (SAI, NSA, SAM)
ISN 0021
                    IF (IPVT .EQ. 2) GO TO 10
ISN 0023
                    GT = ALDG10((PSI1 - TPSI) / PK1)
ISN 0024
                    CALL FLEXEQ (SAM, NSA, 1.0, STRNUM, GT, EFSA)
ISN 0025
                    GO TO 20
ISN 0026
                 10 \text{ GT} = ALOG10((PSI2 - TPSI) / PK2)
ISN 0027
                    CALL RIGEQ (SAM, NSA, 1.0, SLBTHK, GT, EFSA)
ISN 0028
                 20 CALL MULT (EFSA, PSA, NNA, SAN18)
ISN 0029
                    CALL SUM (SAN18, NNA, TSN18)
ISN 0030
                 50 CONTINUE
ISN 0031
                    TDN18 = 0.
ISN 0032
                    TYN18 = 0.
ISN 0033
                    IF (NAXLES(IT, 2) .EQ. 0) GO TO 100
              C
              C
                    TANDEM AXLES
              Ċ
ISN 0035
                    CALL MIDPNT (TAI, NTA, TAM)
ISN 0036
                    IF (IPVT .EQ. 2) GO TO 12
ISN 0038
                    GT = ALOG1O((PSI1 - TPSI) / PK1)
                    CALL FLEXEQ (TAM, NTA, 2.0, STRNUM, GT, EFTA)
ISN 0039
ISN 0040
                    GO TO 22
ISN 0041
                 12 GT = ALOG10((PSI2 - TPSI) / PK2)
ISN 0042
                    CALL RIGEQ (TAM, NTA, 2.0, SLBTHK, GT, EFTA)
ISN 0043
                 22 CALL MULT (EFTA, PTA, NNT, TAN18)
ISN 0044
                    CALL SUM (TAN18, NNT, TDN18)
ISN 0045
                100 CONTINUE
ISN 0046
                    TTN18 = 0.
ISN 0047
                    TZN18 = 0.
ISN 0048
                    IF (NAXLES(IT,3) .EQ. 0) GO TO 150
              C
              C
                    TRIPLE AXLES
              C
ISN 0050
                    CALL MIDPNT (TRI, NTR, TRM)
ISN 0051
                    IF (IPVT .EQ. 2) GO TO 14
ISN 0053
                    GT = ALOG10((PSI1 - TPSI) / PK1)
ISN 0054
                    CALL FLEXEQ (TRM, NTR, 3.0, STRNUM, GT, EFTR)
ISN 0055
                    GO TO 24
ISN 0056
                 14 GT = ALOG10((PSI2 - TPSI) / PK2)
ISN 0057
                    CALL RIGEQ (TRM, NTR, 3.0, SLBTHK, GT, EFTR)
ISN 0058
                 24 CALL MULT (EFTR, PTR, NNR, TRN18)
ISN 0059
                    CALL SUM (TRN18, NNR, TTN18)
ISN 0060
                150 CONTINUE
ISN 0061
                    TSTN18 # O.
ISN 0062
                    TWN18 = 0.
ISN 0063
                    IF ((NAXLES(IT,4) .EQ. O) .OR. (IP .NE. IF)) GO TO 200
              C
              C
                    STEERING AXLES
ISN 0065
                    CALL MIDPNT (STI, NST. STM)
ISN 0066
                    IA = -1.5 + 2. * TPSI
ISN 0067
                    IF(IP. EQ. IF) IA = -1*PF + 2*TPSI
ISN 0069
                    IA = MAXO(1, MINO(4, IA))
ISN 0070
                    CALL STEREQ (IA, EFST, NST, STM)
ISN 0071
                    CALL MULT (EFST, PST, NNS, STN18)
ISN 0072
                    CALL SUM (STN18, NNS, TSTN18)
                200 EALPT(IT,1) = (TSN18*FLOAT(NAXLES(IT,1)) + TDN18 *
ISN 0073
```

LEVEL 2.3.0 (JUNE 78) EAL18 OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.29 PAGE 3

TSTN18*FLOAT(NAXLES(IT,4))) * 0.01

ISN 0074 EALPT(IT,1) = EALPT(IT,1)*COFVCT(IT)

ISN 0075 1000 CONTINUE ISN 0076 RETURN ISN 0077 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 76, PROGRAM SIZE = 9882, SUBPROGRAM NAME = EAL18

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION ****** 908K BYTES OF CORE NOT USED

```
OS/360 FORTRAN H EXTENDED
LEVEL 2.3.0 (JUNE 78)
                                                                                    DATE 84.262/15.03.30
                                                                                                               PAGE 1
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                  SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(1)
   ISN 0002
                      SUBROUTINE RIGEQ (XL, NL, ST, D, GT, EQ)
   EOOO NZI
                      DIMENSION XL(1), EQ(1)
   ISN 0004
                      D1 = D + 1.0
   ISN 0005
                      D1P = D1 ** 8.46
   ISN 0006
                      C = 3.28 * ALOG10(ST)
   ISN 0007
                      GTB18 = GT / (1.Q + 1.620E+7 / D1P)
   ISN 0008
                      STP = ST ** 3.52
   ISN 0009
                      CON = 5.908 + C - GTB18
   ISN 0010
                      DO 10 L=1.NL
   ISN 0011
                      B2 = 3.63 * (XL(L) + ST) ** 5.20
                      BX = 1.0 + B2 / (D1P * STP)
   ISN 0012
   ISN 0013
                      E = CON - 4.62 * ALQG10(XL(L) + ST) + GT / BX
   ISN 0014
                   10 EQ(L) = 10.0 ** (-E)
                      RETURN
   ISN 0015
   ISN 0016
                      END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(GO) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                 SOURCE STATEMENTS =
                                          15. PROGRAM SIZE =
                                                                  836. SUBPROGRAM NAME = RIGEO
*STATISTICS* NO DIAGNOSTICS GENERATED
***** END OF COMPILATION *****
                                                                       928K BYTES OF CORE NOT USED
```

1

```
DATE 84.262/15.03.32
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
                      SUBROUTINE FLEXEQ (XL, NL, ST, SN, GT, EQ)
   ISN 0002
   E000 NZI
                      DIMENSION XL(1), EQ(1)
   ISN 0004
                      SNP = (SN + 1.0) ** 5.19
   ISN 0005
                      GTB18 = GT / (0.40 + 1094.0 / SNP)
   ISN 0006
                      B1 = SNP * ST ** 3.23
                      CON = 6.125 + 4.33 * ALOG10(ST) - GTB18
   ISN 0.007
   1SN 0008
                      DO 20 L=1,NL
   ISN 0009
                      B2 = 4.79 * ALOG10(XL(L) + ST)
   ISN 0010
                      BX = 0.40 + 0.081 * (XL(L) + ST) ** 3.23 / B1
                     E = CON - B2 + GT / BX
   ISN 0011
   ISN 0012
                   20 EQ(L) = 10.0 ** (-E)
   ISN 0013
                      RETURN
                      END
   ISN 0014
```

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

13, PROGRAM SIZE = 810, SUBPROGRAM NAME =FLEXEQ *STATISTICS* SOURCE STATEMENTS =

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                    SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                       SUBROUTINE STEREQ (IEQ, SEQ, NEQ, EQM)
                С
                       THIS ROUTINE COMPUTES STEERING AXLE EQUIVALENCY FACTORS
                 С
                 С
                       THE INPUTS ARE
                 С
                         1. EQM - ARRAY OF INTERVAL MIDPOINTS
                 С
                         2. NEQ - NUMBER OF MIDPOINTS IN EQM
                 С
                         3. IEQ - INDICATES WHICH COLUMN OF THE EQUIVALENCY FACTOR TABLE
                 €
                                  (BY PSI) IS TO BE USED
                 С
                 €
                       THE OUTPUT IS
                 С
                         SEQ - ARRAY OF STEERING AXLE EQUIVALENCIES
   ISN 0003
                       DIMENSION SEQ(1), EQM(1)
   ISN 0004
                       COMMON /STEER/ EQFACT(15,5), PTST(4)
                 С
                       EQFACT(J, 1) CONTAINS THE LOAD VALUES (J).
                 C
                 С
                       EQFACT(J.K) CONTAINS THE EQUIVALENCY FOR LOAD J. TERM PSI PTST(K-1)
   ISN 0005
                       DO 30 I=1, NEQ
                       IF (EQM(I) .LT. EQFACT(1,1)) GO TO 25
   ISN 0006
   ISN 0008
                       DO 10 J=2.15
   ISN 0009
                       IF (EQFACT(J.1) .GE. EQM(I)) GO TO 20
   ISN 0011
                    to CONTINUE
   ISN 0012
                       SEQ(I) = EQFACT(15, IEQ)
   ISN 0013
                    20 K = J-1
   ISN 0014
                       SEQ(I) = EQFACT(K, IEQ) + (EQM(I) - EQFACT(K, t)) *
                                ((EQFACT(J, IEQ)-EQFACT(K, IEQ)) / (EQFACT(J, 1)-EQFACT(K, 1)
   ISN 0015
                       GD TD 30
   I'SN 0016
                    25 SEQ(I) = EQFACT(t, IEQ) * EQM(I) / EQFACT(t, t)
   ISN 00.17
                    30 CONTINUE
                       RETURN
   ISN 0018
   ISN 0019
                       END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOAMSF NOTERM IBM FLAG(1)
```

STATISTICS SOURCE STATEMENTS = 18, PROGRAM SIZE = 852, SUBPROGRAM NAME *STEREQ

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

928K BYTES OF CORE NOT USED

PAGE 1

DO 30 I=1.K

A3(I) = 0.

ISN 0024 ISN 0025

1

į

```
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE INTVL (A1, A2, N. N1, IS, NN, A3, NM)
                С
                С
                      THIS ROUTINE CONVERTS THE END-OF-INTERVAL KIP TABLES TO EVENLY
                С
                      DISTRIBUTED INTERVALS BASED ON THE VARIABLE *SIZE*.
                С
                      THE INPUTS ARE
                        1. A1 - ARRAY OF END-OF-INTERVAL KIP VALUES
                С
                        2. N -- NUMBER OF VALUES IN A1
                С
                        3. IS - ARRAY IDENTIFIER WHERE.
                С
                                 IS=1 - SINGLE AXLE ARRAY
                С
                                 IS=2 - TANDEM AXLE ARRAY
                С
                                 IS=3 - TRIPLE AXLE ARRAY
                С
                                 IS=4 - GROSS WEIGHT ARRAY
                                 IS=5 - EMPTY WEIGHT ARRAY
                С
                                 IS=6 - STEERING AXLE ARRAY
                        4. NN - MAXIMUM ALLOWABLE ROW LENGTH OF A1
                С
                        5. NM - INDICATES WHICH TRUCK TYPE IS CURRENTLY BEING CONSIDERED
                С
                С
                      THE OUTPUTS ARE
                        1. N1 - THE NEW LENGTH OF THE END-OF-INTERVAL KIP TABLE
                        2. A2 - THE NEW END-OF-INTERVAL KIP TABLE
                С
                        3. A3 - THE NUMBER OF TRUCKS (OR AXLES) WEIGHED IN EACH INTERVAL
   ISN 0003
                      COMMON /INTVLS/ STARTS(6)
   ISN 0004
                      COMMON /CNSTS/ NAPOV. PAPOV. SIZE, AVRG
   ISN 0005
                      DIMENSION A1(NN.11), A2(75), A3(75), ACC(75)
   ISN 0006
                      XMLOAD = A1(N.11)
   ISN 0007
                      A2(1) = SIZE
                      SET *S* TO THE LARGEST EVEN NUMBER GREATER THAN OR EQUAL TO THE
                С
                      FIRST END-OF-INTERVAL KIP VALUE
   ISN 0008
                      S = 0.
   ISN 0009
                      K = 0
                    5 IF (S .GE. STARTS(IS)) GO TO 7
   ISN 0010
   ISN 0012
                      S = S + SIZE
   ISN 0013
                      K = K+1
                      GO TO 5
   ISN 0014
                      SET UP THE EVENLY DISTRIBUTED END-OF-INTERVAL KIP TABLE AND ZERO
                      ALL INTERVALS AT BEGINNING OF TABLE IN WHICH NO TRUCKS/AXLES WERE
                      WEIGHED
                    7 I = 1
   ISN 0015
   ISN 0016
                      J = 1
                    10 IF (A2(I) .GE. XMLDAD) GO TO 20
   ISN 0017
   ISN 0019
                      I = I+1
   ISN 0020
                      A2(I) = A2(J) + SIZE
   ISN 0021
                      J = J+1
   ISN 0022
                      GO TO 10
   ISN 0023
                    20 N1 = I
```

LEVEL 2.3.0 (JUNE 78) INTVL OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.38 PAGE 2 ISN 0026 30 CONTINUE ISN 0027 I = K+1ISN 0028 CALL ACMLTE (A1(1,NM), N, ACC) ISN 0029 CALL ITRP (A1(1,11), ACC, A2, I, N1, N, A3, 1) RETURN ISN 0030 ISN 0031 END *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) *STATISTICS* SOURCE STATEMENTS = 30, PROGRAM SIZE = 1236, SUBPROGRAM NAME = INTVL *STATISTICS* NO DIAGNOSTICS GENERATED

928K BYTES OF CORE NOT USED

***** END OF COMPILATION *****

1

1

ISN 0029

ISN 0031

ISN 0032

ISN 0033

IF (K .LE. NL) GO TO 50

V2(K) = V2SV

V1(K) = V1SV

50 CONTINUE

С

LEVEL 2.3.0 (JUNE 78) OS/360 FORTRAN H EXTENDED DATE 84.262/15.03.41 REQUESTED OPTIONS: NODUMP OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(GO) SIZE(MAX) AUTODBL(NONE) SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) ISN 0002 SUBROUTINE ITRP (V1, V2, V3, LIS, NV, NL, V4, IV) С С THIS ROUTINE PERFORMS LINEAR INTERPOLATION С С THE INPUTS ARE С 1. V1 -- ARRAY OF X1 VALUES С 2. V2 -- ARRAY OF F2(X) VALUES С 3. V3 -- ARRAY OF X-VALUES С 4. LIS - FIRST NON-ZERO VALUE IN V3 С 5. NV -- LAST VALUE IN V3 С 6. NL -- LAST VALUE IN V1 С 7. IV -- INTERPOLATION INDICATOR WHERE, С IV=1 - VALUES ARE CUMULATIVE С O ~ VALUES ARE NOT CUMULATIVE С С THE OUTPUT IS С V4 -- ARRAY OF INTERPOLATED RESULTS **EOOO NSI** DIMENSION V1(75), V2(75), V3(75), V4(75) ISN 0004 IF (LIS .EQ. 1) V4(1) = 0.0ISN 0006 J = 1 ISN 0007 DO 50 I=LIS,NV ISN 0008 D0 10 K=J.NL С С FIND THE SMALLEST X1 GREATER THAN OR EQUAL TO X ISN 0009 IF (V1(K) .GE. V3(I)) GO TO 20 ISN 0011 10 CONTINUE ISN 0012 K = NL+1ISN 0013 V2SV = V2(K)ISN 0014 V1SV = V1(K)ISN 0015 V2(K) = V2(NL)ISN 0016 V1(K) = V3(I)ISN 0017 L = NL ISN 0018 GO TO 25 С С SET X1 AND F1 VALUES APPROPRIATELY, THEN INTERPOLATE ISN 0019 20 J = KISN 0020 L = K-1ISN 0021 IF (L .EQ. O) GD TO 30 ISN 0023 25 F1 = V2(L)ISN 0024 X1 = V1(L)ISN 0025 GO TO 40 ISN 0026 $30 \times 1 = 0.0$ ISN 0027 F1 = V4(1)ISN 0028 40 V4(I) = F1 + (V3(I)-X1) * ((V2(K)-F1) / (V1(K)-X1))

```
LEVEL 2.3.0 (JUNE 78)
                             ITRP
                                            OS/360 FORTRAN H EXTENDED
                                                                                 DATE 84.262/15.03.41
                                                                                                            PAGE 2
               С
                     INTERVAL
  ISN 0034
                     IF (IV .EQ. O) GO TO 999
  ISN 0036
                     J = NV
  ISN 0037
                     DO 60 I=2,NV
  ISN 0038
                     V4(J) = V4(J) - V4(J-1)
  15N 0039
                     J = J - 1
                  60 CONTINUE
  ISN 0040
  ISN 0041
                 999 RETURN
  ISN 0042
                     END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SQURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                SOURCE STATEMENTS =
                                        41, PROGRAM SIZE = 1132, SUBPROGRAM NAME = ITRP
*STATISTICS* NO DIAGNOSTICS GENERATED
```

928K BYTES OF CORE NOT USED

***** END OF COMPILATION *****

```
REQUESTED OPTIONS: NODUMP
```

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 SUBROUTINE PCTAGE (P1, NP, P2) С С THIS ROUTINE SUMS THE *NP* VALUES IN ARRAY P1 AND DETERMINES, FOR С EACH VALUE IN P1, ITS PERCENTAGE OF THE TOTAL ISN 0003 DIMENSION P1(75), P2(75) ISN 0004 TOT = 0.0DO 10 I=1.NP ISN 0005 TOT = TOT + P1(I)ISN 0006 ISN 0007 10 CONTINUE ISN 0008 DO 20 I=1,NP ISN 0009 P2(I) = P1(I) / TOT * 100.0ISN 0010 20 CONTINUE ISN 0011 RETURN ISN 0012 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 11, PROGRAM SIZE = 440, SUBPROGRAM NAME =PCTAGE

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

```
LEVEL 2.3.0 (JUNE 78)
                                             OS/360 FORTRAN H EXTENDED
                                                                                   DATE 84.262/15.03.45
                                                                                                               PAGE 1
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME (MAIN) NOOPTIMIZE LINECOUNT (60) SIZE (MAX) AUTODBL (NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE COUNT (CA, ICA)
                С
                      THIS ROUTINE DETERMINES WHICH OF THE *ICA* VALUES IN ARRAY CA IS
                С
                      THE LAST NON-ZERO VALUE
                      DIMENSION CA(75)
   ISN 0003
   ISN 0004
                      DO 10 I=1, ICA
                      IF (CA(I) .GT. O.O) J = I
   ISN 0005
   ISN 0007
                   10 CONTINUE
   ISN 0008
                      ICA = J
   ISN 0009
                      RETURN
                      END
   ISN 0010
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                 SOURCE STATEMENTS =
                                           9, PROGRAM SIZE =
                                                                  326, SUBPROGRAM NAME = COUNT
*STATISTICS* NO DIAGNOSTICS GENERATED
***** END OF COMPILATION *****
                                                                       928K BYTES OF CORE NOT USED
```

REQUESTED OPTIONS: NODUMP

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 SUBROUTINE ACMLTE (AIN, NA, AOUT) С С THIS ROUTINE CONVERTS ARRAY AIN TO A CUMULATIVE ARRAY С ISN 0003 DIMENSION AIN(75), AOUT(75) ISN 0004 AOUT(1) = AIN(1)ISN 0005 NB = NA-1ISN 0006 DO 10 I=1,NB ISN 0007 J = I+1AOUT(J) = AOUT(I) + AIN(J)ISN 0008 ISN 0009 10 CONTINUE ISN 0010 RETURN END ISN 0011

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 10, PROGRAM SIZE = 410, SUBPROGRAM NAME =ACMLTE

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

```
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE MIDPNT (X1, NM, X2)
                C
                С
                      THIS ROUTINE DETERMINES THE MIDPOINT OF EACH INTERVAL IN ARRAY X1.
                С
                      WHERE EACH VALUE IN X1 IS AN END-OF-INTERVAL KIP VALUE
                      COMMON /CNSTS/ NAPOV, PAPOV, SIZE, AVRG
   ISN 0003
   ISN 0004
                      DIMENSION X1(75), X2(75)
   ISN 0005
                      I = 0
   ISN 0006
                      J = 1
                      ELI = X1(NM)
   ISN 0007
   ISN 0008
                      X2(1) = X1(1) - (SIZE/2.)
   ISN 0009
                   10 I = I + 1
   ISN 0010
                      J = J+1
                      X2(J) = X2(I) + SIZE
   ISN 0011
   ISN 0012
                      IF (X1(J) .LT. ELI) GO TO 10
   ISN 0014
                      RETURN
   ISN 0015
                      END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*DPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                 SOURCE STATEMENTS =
                                           14, PROGRAM SIZE =
                                                                  448, SUBPROGRAM NAME =MIDPNT
*STATISTICS* NO DIAGNOSTICS GENERATED
```

OS/360 FORTRAN H EXTENDED

DATE 84,262/15.03.48

928K BYTES OF CORE NOT USED

PAGE

LEVEL 2.3.0 (JUNE 78)

***** END OF COMPILATION *****

```
REQUESTED OPTIONS: NODUMP
```

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 SUBROUTINE MULT (YA, YB, NU, YC)

C THIS ROUTINE MULTIPLIES TWO VECTORS SUCH THAT YC(I) = YA(I)*YB(I)

Č

DIMENSION YA(75), YB(75), YC(75)

ISN 0003 DIMENSION YA(75 ISN 0004 DD 10 I=1,NU

ISN 0005 YC(I) = YA(I) * YB(I)

ISN 0006 10 CONTINUE ISN 0007 RETURN ISN 0008 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 7, PROGRAM SIZE = 396, SUBPROGRAM NAME = MULT

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

```
LEVEL 2.3.0 (JUNE 78)
                                              OS/360 FORTRAN H EXTENDED
                                                                                    DATE 84.262/15.03.51
                                                                                                               PAGE 1
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME (MAIN) NOOPTIMIZE LINECOUNT (60) SIZE (MAX) AUTODBL (NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE AVRGE (AV, NV, AN, AVG)
                С
                C
                      THIS ROUTINE COMPUTES THE AVERAGE OF THE VALUES IN ARRAY AV
                С
                      OVER *AN*
   ISN 0003
                      DIMENSION AV(75)
   ISN 0004
                      AVG = 0.0
   ISN 0005
                      DO 10 I=1.NV
                      AVG = AV(I) + AVG
   ISN 0006
   ISN 0007
                   10 CONTINUE
   ISN 0008
                      AVG = AVG / AN
   ISN 0009
                      RETURN
   ISN 0010
                      END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                 SOURCE STATEMENTS =
                                           9, PROGRAM SIZE =
                                                                  350, SUBPROGRAM NAME = AVRGE
*STATISTICS* NO DIAGNOSTICS GENERATED
***** END OF COMPILATION *****
                                                                        928K BYTES OF CORE NOT USED
```

REQUESTED OPTIONS: NODUMP

ISN 0009

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 SUBROUTINE SUM (S1, NS, S2)

C

THIS ROUTINE COMPUTES THE SUM OF THE VALUES IN ARRAY S1

C

ISN 0003 DIMENSION S1(75)
ISN 0004 S2 = 0.0
ISN 0005 DD 10 I=1,NS
ISN 0006 S2 = S2 + S1(I)
ISN 0007 10 CONTINUE
ISN 0008 RETURN

END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 8, PROGRAM SIZE = 322, SUBPROGRAM NAME = SUM

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

LEVEL 2.3.0 (JUNE 78) OS/360 FORTRAN H EXTENDED

DATE 84.262/15.03.53

PAGE 1

REQUESTED OPTIONS: NODUMP

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

ISN 0002 SUBROUTINE ZERO (A,N)

ISN 0003 DIMENSION A(N)

ISN 0004 DO 10 I=1,N

ISN 0005 10 A(I) = 0. ISN 0006 RETURN

ISN 0006 RETU ISN 0007 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 6, PROGRAM SIZE = 280, SUBPROGRAM NAME = ZERO

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE PSIT(P,PF,W,XKT)
   ISN 0003
                      COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0004
                      DOUBLE PRECISION PWR
   ISN 0005
                      COMMON/HOR/A(10), B(10), C(10), DT(10), DF(10), S(10), T(10), TR(5), PI(5)
                     *,PT(5),AC(5),AA,SCT(5),XMNW18(10),XKTO
   ISN 0006
                      COMMON /EXTRA/ PTOVTK.TPE.PFO.XMNOTK.XMXOTK.NIS
   ISN 0007
                      W = TR(1)*0.1
   ISN OOOB
                      P=PI(NPT)
   ISN 0009
                      GO TO (10.20.30.40.50).NPT
   ISN 0010
                    10 CONTINUE
   ISN 0011
                      XKT=89.15+.00367*T(1)**.99*DT(1)**(-2.83)*S(1)**2.1*DF(2)**.85
   ISN 0012
                      PF=3.663+1236.1*S(2)**(-.086)*C(6)**.3*C(3)**.12*C(4)**(-.21)
                     **C(2)**(-.22)*DT(1)**.25*C(1)**(-3.13)*C(5)**.31
   ISN 0013
                      GO TO 60
   ISN 0014
                   20 CONTINUE
   ISN 0015
                      XKT=92.83+.27*10.0**(-12.0)*S(2)**1.64*DF(1)**(-.46)*C(1)**7.97
                     **DT(1)**(-1.45)*C(5)**(-3.38)*TR(NPT)**(-.25)*T(1)**1.09
                      PF=3.667+117.44*S(2)**(-.08)*DF(2)**(-.034)*C(1)**(-1.67)*C(4)**
   ISN 0016
                     *(-.085)*DT(1)**.49*T(1)**(-.059)*C(5)**.25
   ISN 0017
                      GO TO 60
   ISN 0018
                    30 CONTINUE
   ISN 0019
                      XKT=91.51+.6837*DF(1)**.23*C(2)**.38*C(4)**(-.18)*TR(NPT)**(-.15)*
                      *T(1)**1.45
   ISN 0020
                      PF=2.367+15.598*S(3)**(-.018)*C(1)**(-.55)*C(3)**(-.24)*S(1)**
                      *(-.17)*T(1)**(-.085)*TR(NPT)**.03
   ISN 0021
                      GO TO 60
   ISN 0022
                    40 CONTINUE
   ISN 0023
                      XKT=81.84+5.052*DF(2)**(-.32)*DF(1)**1.4*C(2)**.89*T(1)**.25*
                      *S(1)**(-1.74)
   ISN 0024
                      PF=3.719+3.327*C(1)**(-.38)*C(4)**.033*S(3)**(-.09)*C(3)**
                      *(-.061)*S(4)**.071*S(2)**.16*S(1)**(-.017)*T(1)**(-.075)
   ISN 0025
                      GO TO 60
                    50 CONTINUE
   ISN 0026
   ISN 0027
                      XKT=-.0737+231.63*T(1)**1.26*S(4)**.3*TR(NPT)**(~.47)
   ISN 0028
                      PF=.00804+7.6131*DF(2)**(-.15)*T(1)**.021*C(5)**(-1.37)
   ISN 0029
                  60 CONTINUE
   ISN 0030
                      PFO=PF
   ISN 0031
                       RETURN
   ISN 0032
                       END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                  SOURCE STATEMENTS =
                                           31. PROGRAM SIZE =
                                                                  3838. SUBPROGRAM NAME = PSIT
*STATISTICS* NO DIAGNOSTICS GENERATED
***** END OF COMPILATION *****
                                                                         912K BYTES OF CORE NOT USED
```

ISN 0054

ISN 0055

E(2) = 130000.0

E(3) = 90000.0

```
LEVEL 2.3.0 (JUNE 78)
                                                                                       DATE 84.262/15.04.00
REQUESTED OPTIONS: NODUMP
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                       SUBROUTINE RUSIAN (DPTEMP.DMDRU, NLAY, NPT, NRU, NLH)
                C
                C
                      E REPRESENTS THE ELASTICITY MODULI FOR THE REPRESENTATIVE
                С
                      SECTIONS
   ISN 0003
                       IMPLICIT REAL*8 (A-H.D-Z)
   ISN 0004
                       REAL*8 MTERM, NTERM
   ISN 0005
                       DIMENSION X(5), EX(5), DP(5), R(6), E(6), WHAT(5), DPTEMP(5)
   ISN 0006
                       IF(NPT.NE.3.OR.NRU.NE.1) GO TO 112
   ISN 0008
                      E(1)=65000.0
   ISN 0009
                      E(2)=20000.0
   ISN 0010
                      E(3)=12000.0
   ISN 0011
                      E(4) = 5000.0
   ISN 0012
                112 IF(NPT.NE.3.OR.NRU.NE.2) GO TO 120
   ISN 0014
                       E(1)=65000.0
   ISN 0015
                      E(2)=20000.0
   ISN 0016
                      E(3)=12800.0
   ISN 0017
                      E(4)=5100.0
   ISN 0018
                      IF(NPT.NE.1.OR.NRU.NE.1.OR.NLH.NE.1)GO TO 30
   ISN 0020
                      E(1)=300000.0
   ISN 0021
                      E(2)=80000.0
   ISN 0022
                      E(3)=15000.0
  ISN 0023
                      £(4)=6000.0
   ISN 0024
                30
                      IF(NPT.NE.1.OR.NRU.NE.1.OR.NLH.NE.2) GO TO 40
   ISN 0026
                       E(1)=305000.
   ISN 0027
                      E(2) = 1000000.0
   ISN 0028
                      E(3) = 16500.0
   ISN 0029
                       E(4)=6000.0
   ISN 0030
                      IF (NPT.NE. 1. OR. NRU. NE. 2. OR. NLH. NE. 1) GO TO 50
   ISN 0032
                       E(1)=300000.
   ISN 0033
                      E(2) = 85000.0
   ISN 0034
                       E(3)=22000.0
                      E(4)=16400.0
   ISN 0035
   ISN 0036
                      E(5)=6000.
   ISN 0037
                       IF(NPT.NE.1.OR.NRU.NE.2.OR.NLH.NE.2) GO TO 60
   ISN 0039
                      E(1)=325000.
   ISN 0040
                       E(2) = 95000.0
   ISN 0041
                       E(3)=35000.0
   ISN 0042
                       E(4)=18500.0
   ISN 0043
                       E(5) = 6000.
   ISN 0044
                       IF(NPT.NE.4.OR.NRU.NE.1.OR.NLH.NE.1) GD TD 70
   ISN 0046
                       E(1)=325000.
   ISN 0047
                       E(2) = 130000.0
   ISN 0048
                       E(3) = 90000.0
   ISN 0049
                       E(4) = 16800.0
                       E(5)=6000.0
   ISN 0050
   ISN 0051
                70
                       IF(NPT.NE.4.OR.NRU.NE.1.DR.NLH.NE.2) GO TO 80
   ISN 0053
                       E(1)=325000.
```

1

1

```
110
```

```
ISN 0058
             80
                    IF(NPT.NE.4.OR.NRU.NE.2.OR.NLH.NE.1) GO TO 90
ISN 0060
                    E(1)=325000.
ISN 0061
                    E(2) = 130000.0
ISN 0062
                    E(3) = 90000.0
ISN 0063
                    E(4) = 38000.0
ISN 0064
                    E(5)=19000.0
ISN 0065
                    E(6)=6000.
ISN 0066
                    IF(NPT.NE.4.OR.NRU.NE.2.OR.NLH.NE.2) GO TO 100
ISN 0068
                    E(1)=325000.
ISN 0069
                    E(2) = 150000.0
ISN 0070
                    E(3)=115000.0
ISN 0071
                    E(4)=42000.0
ISN 0072
                    E(5)=22000.0
ISN 0073
                    E(6) = 6000.
ISN 0074
               100 CONTINUE
ISN 0075
                    DO 915 K=1.5
ISN 0076
                     RTEMP = 10.**2.+(12*(K-1))**2.
ISN 0077
             915
                     R(K) = DSQRT(RTEMP)
ISN 0078
                    DO 916 K=1, NLAY
ISN 0079
                   DP(K)=DPTEMP(K)
ISN 0080
                    IPVMT = 3
ISN 0081
                    NW = 5
ISN 0082
                   LEQ = O
ISN 0083
                    NOL = NLAY
             С
ISN 0084
                   DO 5 K = 1, NLAY
ISN 0085
                  5 X(K) = E(K)/1000000.
ISN 0086
                    IF(DP(NOL-1).LE. 10.0) LEQ = 1
ISN 0088
                    NC = NOL
ISN 0089
                    IF(LEQ.EQ.1)NC = NOL - 1
ISN 0091
                    IF( LEQ .EQ. 1 ) X(NOL-1) = X(NOL)
ISN 0093
                53 BTERM = 10.0 ** (-0.05071) * DP(1) ** 0.10148
ISN 0094
                    NTERM = 10.0 ** (-0.50233) * DP(1) ** 0.087879
                    CTERM = 10.0 ** (-0.060039) * DP(1) ** 0.0095198
ISN 0095
ISN 0096
                    MTERM = 0.704 - 0.026 * DP(1)
ISN 0097
                    HTERM = 10.0 ** 1.8631 * DP(1) ** (-0.0038499)
             С
ISN 0098
                    TMB = 2.0 * MTERM * BTERM
             С
ISN 0099
                    NL = NLAY
ISN 0100
                    EI = X(NC)
ISN 0101
                    N1 = NL - 1
ISN 0102
                    SUM = 0.0
ISN 0103
                    DO 10 I = 1, N1
ISN 0104
                 10 \text{ SUM} = \text{SUM} + \text{DP(I)}
ISN 0105
                   HS = HTERM - SUM
ISN 0106
                    DP( NL) = HS
             C
ISN 0107
                    NT = NC - 1
ISN 0108
                    DO 11 I = 1, NT
ISN 0109
                 11 EX(I) = X(I)
ISN 0110
                    EX(NL) = X(NC)
ISN 0111
                    EXT = EX(NL) * 1000000.0
ISN 0112
                    IF( LEQ .EQ. O ) GO TO 14
```

```
)
```

```
LEVEL 2.3.0 (JUNE 78)
                             RUSIAN
                                             OS/360 FORTRAN H EXTENDED
                                                                                   DATE 84.262/15.04.00
                                                                                                              PAGE 3
               С
  ISN 0114
                     GD TD ( 12, 12, 13, 13, 12, 12 ), IPVMT
  ISN 0115
                     GO TO 14
  ISN 0116
                  12 EX(NL - 1) = EX(NL) * (1.0 + 7.18 * DLDG10( DP( NC)) - 1.56 *
                    = ( DLOG10( EXT
                                     )* DLOG10( DP( NC)) ))
  ISN 0117
                     GO TO 14
               С
  ISN 0118
                  13 EX(NL - 1) = EX(NL) * (1.0 + 10.52 * DLOG10( DP( NC)) - 2.10 *
                    = ( DLOG10( EXT ) * DLOG10( DP( NC)) ))
                  14 CONTINUE
  ISN 0119
               C
  ISN 0120
                     HPR = 0.0
  ISN 0121
                     DO 15 I = 1, NL
  ISN 0122
                     XNUM = EX(I)/EI
                     HPR = HPR + ( XNUM
  ISN 0123
                                             ** NTERM) * DP( I)
  ISN 0124
                  15 CONTINUE
               C
               C
  ISN 0125
                     PHIALF = TMB * ((TMB + 1.0)/(TMB - 1.0)) ** 0.5
  ISN 0126
                     ALPHA = PHIALF/HPR
  ISN 0127
                     TTM = 2.0 * MTERM
               C
  ISN 0128
                     DO 20 I = 1. NW
  ISN 0129
                     ARG = ALPHA * R(I)
               C
  ISN 0130
                     WHAT( I) = 0.47746 * (CTERM/( EI *1000000.0)) * (1000.0/HPR) *
                    = (TTM + 1.0) * BESJO( ARG )
  ISN 0131
                  20 CONTINUE
  ISN 0132
                     DMDRU=WHAT(1)
  ISN 0133
                     RETURN
  ISN 0134
                     END
*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTOOBL(NONE)
*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
*STATISTICS*
                                        133. PROGRAM SIZE =
                                                                4166, SUBPROGRAM NAME =RUSIAN
                 SOURCE STATEMENTS =
*STATISTICS* NO DIAGNOSTICS GENERATED
***** END OF COMPILATION *****
                                                                      908K BYTES OF CORE NOT USED
```

1

REQUESTED OPTIONS: NODUMP

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                  SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
  ISN 0002
                     FUNCTION BESJO ( X )
  ISN 0003
                     IMPLICIT REAL*8 (A-H, O-Z)
               С
                     A FUNCTION TO CALCULATE BESSEL FUNCTION JO(X) USING POLYNOMIAL
                                                                                            20
               С
                     APPROXIMATION - REFERENCE HANDBOOK OF MATH. FUNCTIONS, BUREAU OF
                                                                                            30
                     STANDARDS, PAGES 369-370
                                                                                      BES
                                                                                            40
  ISN 0004
                     ASSIGN 2 TO JOJ1
                                                                                      BES
                                                                                            60
  ISN 0005
                     CONTINUE
                                                                                      BES
                                                                                            70
                     X3 = X/3.0
  ISN 0006
                                                                                      BES
                                                                                            80
  ISN 0007
                     IF( X.GT. 3.0) X3 = 3.0/ X
                                                                                      BES
                                                                                            90
  ISN 0009
                     X32= X3*X3
                                                                                      BES
                                                                                           100
  ISN 0010
                     X33=X32*X3
                                                                                      BES
                                                                                           110
  ISN 0011
                     X34=X32*X32
                                                                                      BES
                                                                                           120
  ISN 0012
                     X35=X32*X33
                                                                                      BES
                                                                                           130
  ISN 0013
                     X36=X33*X33
                                                                                      BES
                                                                                           140
                     GD TO JOJ1, (2, 10)
  ISN 0014
                                                                                      RES
                                                                                           150
  ISN 0015
                    2 IF(DABS( X ) .LE. 3.3 ) GO TO 3
  ISN 0017
                     X1 = X - 0.7853982 - 0.04166397*X3 - 0.3954E-04 * X32 +
                                                                                      RES
                                                                                           200
                       0.262573E-02*X33 - 0.54125E-03* X34 - 0.29333E-03 * X35 + BES
                                                                                           210
                        O.13558E-03 * X36
                                                                                      BES
                                                                                           220
  ISN 0018
                     BESJO=((.7978846 -.77E-6 * X3 - 0.552740E-02 * X32 -
                                                                                      BES
                                                                                          170
                        0.9512E-04 * X33 + 0.137237E-02 * X34 - 0.72805E-03 * X35 +BES
                                                                                           180
                    + O.14476E-O3 * X36 ) /DSQRT(X) ) * DCOS(X1 )
                                                                                      BES
                                                                                           190
  ISN 0019
                     RETURN
                                                                                      BES
                                                                                           230
  ISN 0020
                     BES JO= 1.0 - 2.2499997 * X32 + 1.2656208 * X34 -
                                                                                           240
                        0.3163866 * X36 + 0.0444479*(X34*X34)-0.0039444 *(X35*X35) + BES
                                                                                           250
                        0.000210* (X36*X36)
                                                                                      BES
                                                                                           260
  ISN 0021
                     RETURN
                                                                                      BES
                                                                                           270
  ISN 0022
                     ENTRY BES J1(X)
                                                                                      BES 280
                     BESSEL FUNCTION J1 WHERE X IS BETWEEN -3 AND + INFINITY.
                                                                                      BES 290
  ISN 0023
                     ASSIGN 10 TO JOJ1
                                                                                      BES
                                                                                           320
  ISN 0024
                     GO TO 1
                                                                                      BES 360
  ISN 0025
                   10 IF ( DABS (X) .LT. 3.0 ) GO TO 30
  ISN 0027
                                   X - 2.3561945 + 0.1249961 * X3 + 0.565E-4 * X32 -
                     ¢ 0.637879E-02 * X33 + 0.74348E-03 * X34 + 0.79824E-03 * X35
                     ' - 0.29166E-03 * X36
  ISN 0028
                     BESJ1 = DCOS(X1) *
                                              (0.79788456 + 0.156E-05 * X3
                       + 0.01659667 * X32 + 0.17105E-03 * X33 - 0.249511E-02 * X34 BES 340
                     2 + 0.113653E-02 * X35 - 0.20033E-03 * X36 ) / DSQRT(X)
                                                                                      BES 350
  ISN 0029
                                                                                           400
  ISN 0030
                    BES J1 = X * ( 0.5 - 0.5624999 * X32 + 0.2109357 * X34 -
                                                                                      BES
                                                                                           410
                        0.03954289 * X36 + 0.443319E-02 * (X34 * X34) - 0.31761E-03 BES
                                                                                           420
                     2 * (X35*X35) + 0.1109E-04* (X36*X36) )
                                                                                      BES
                                                                                           430
  ISN 0031
                     RETURN
                                                                                      BES
                                                                                           440
  ISN 0032
                     END
                                                                                      BES
                                                                                          450
```

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 31, PROGRAM SIZE = 1934, SUBPROGRAM NAME = BESJO

STATISTICS NO DIAGNOSTICS GENERATED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED DATE 84.262/15.04.02

PAGE 2

***** END OF COMPILATION *****

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK DBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)
   ISN 0002
                      SUBROUTINE SURVIV (IACR)
   ISN 0003
                      COMMON /EXPVT/ NPT, THICK (4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0004
                      COMMON /PSI/ PF, PICON, PTERM, PIOV, PTOV
  ISN 0005
                      COMMON /BURKE/ XLAMB, GAMMA, TFBAP
   ISN 0006
                      DIMENSION XLAM (5.3), GAM(5.3)
                C->THIS SUBROUTINE SETS SURVIVAL CURVE PARAMETER VALUES (XLAMB AND GAMMA)
                C FOR FLEXIBLE PAVEMENTS
   ISN 0007
                      IF (IP .NE. IF) GO TO 999
                C->FIND OUT TYPE OF FAILURE (PSI OR DISTRESS)
   ISN 0009
                      IF (PF .GE. PTERM) GO TO 200
                C->SET XLAMB AND GAMMA FOR PSI SURVIVAL CURVES BY QUALITY STD. AND PAVT TYPE
   ISN 0011
                      XLAM (1,1)=0.276
   ISN 0012
                      GAM(1,1)=2.111
   ISN 0013
                      XLAM (1,2)=0.417
   ISN 0014
                      GAM(1,2)=1.549
   ISN 0015
                      XLAM (1.3)=0.607
   ISN 0016
                      GAM(1,3)=1.497
   ISN 0017
                      XLAM (3.1)=0.423
   ISN 0018
                      GAM(3,1)=1.363
   ISN 0019
                      XLAM (3,2)=0.687
   ISN 0020
                      GAM(3,2)=1.365
   ISN 0021
                      XLAM (3.3)=0.787
   ISN 0022
                      GAM(3.3)=1.012
   ISN 0023
                      XLAM (4,1)=0.327
   ISN 0024
                      GAM(4.1)=1.524
   ISN 0025
                      XLAM (4.2)=0.555
   ISN 0026
                      GAM(4,2)=1.163
   ISN 0027
                      XLAM (4,3)=0.818
   ISN 0028
                      GAM(4.3)=1.088
   ISN 0029
                      GO TO 300
   ISN 0030
                 200 CONTINUE
                C->SET XLAMB AND GAMMA FOR DISTRESS SURV. CURVES BY QUAL. STD. AND PAVT. TYPE
   ISN 0031
                      XLAM (1,1)=0.004
   ISN 0032
                      GAM(1.1)=2.681
   ISN 0033
                      XLAM (1,2)=0.007
   ISN 0034
                      GAM (1,2)=4.380
   ISN 0035
                      XLAM(1.3)=0.009
   ISN 0036
                      GAM(1,3)=5.000
   ISN 0037
                      XLAM (3.1)=0.003
   ISN 0038
                      GAM (3.1)≈2.129
   ISN 0039
                      XLAM (3,2)=0.006
   ISN 0040
                      GAM(3.2)=3.065
   ISN 0041
                      XLAM (3.3)=0.008
   ISN 0042
                      GAM (3,3)=4.023
   ISN 0043
                      XLAM (4,1)=0.004
   ISN 0044
                      GAM(4,1)=2.443
   ISN 0045
                      XLAM (4.2)=0.008
   ISN 0046
                      GAM (4,2)=3.382
   ISN 0047
                      XLAM (4,3)=0.011
   ISN 0048
                      GAM(4,3)=4.119
   ISN 0049
                 300 XLAMB=XLAM (NPT, IACR)
   ISN 0050
                      GAMMA=GAM(NPT, IACR)
   ISN 0.051
                 999 RETURN
```

LEVEL 2.3.0 (JUNE 78) SURVIV 05/360 FORTRAN H EXTENDED DATE 84.262/15.04.02 PAGE 2

ISN 0052 END

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 51, PROGRAM SIZE = 918, SUBPROGRAM NAME =SURVIV

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION ***** 928K BYTES OF CORE NOT USED

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
                   SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM 1BM FLAG(I)
   ISN 0002
                       SUBROUTINE COSCAL
   ISN 0003
                       COMMON /PSI/ PF, PICON, PTERM, PIOV, PTOV
   ISN 0004
                       COMMON /TITLE/ TITLE(20,3), SECTTL(20)
   ISN 0005
                       COMMON /MECH/ XKT. NRU, NLH, ND, NDEL, IACR, IYR, JYR, CONSTR(20)
                       COMMON /LMP/ XLM(30), YLM(30), POTLM(20,2), OUTP(20,2).
   ISN 0006
                              TOTALM. PPF. TPF. PFNO. NASL. NSLR, TOVLM(30.2).XLM2(30)
                       COMMON /OVRLAY/ XHCIO, XHCIM, WLANE, WPSH, WGSH, PPVDSH, CAC, CGR, CSCOAT
   ISN 0007
   ISN 0008
                       COMMON /TIME/ ATP, OVLIF, NYAP, NYR, YR(40)
   ISN 0009
                       COMMON /MNTPAR/ UNTCST(4), USRMDL(31,3), WDTH, S, DISS, DCON, DIN, MFLG
                       COMMON /SWTCHS/ OVLIFE, PCTINT, PCTINF, TPFPC, PFNOPC, AGR, SPCUT,
   ISN 0010
                                       XMLI, CACI, CGRI, ICAC, ACDENS, ICGR, GRDENS,
                                       INTT, SAVMNT, IDST, NLD, MCODE(5), TFCDNS
   ISN 0011
                       COMMON /BURKE/ XLAMB, GAMMA, TFBAP
   ISN 0012
                       COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
   ISN 0013
                       COMMON /COST/ COSTRH(20), COSTRM(20), COSTPM(20)
   ISN 0014
                       COMMON /IO/ LI, LO, LD
   ISN 0015
                       COMMON /COMBI/ ICOMB, NVC. COFVCT(6)
                       DIMENSION PR(50), PR1(30,20), PR2(19.20), ZLM(30), YMILES(20).
   ISN 0016
                                 ZMILES(20), REHPLM(20)
   ISN 0017
                       EARMAR(T)=(1100*UNTCST(1)+1000*UNTCST(2)+5*UNTCST(3))/
                                  (1+EXP(-(T-10)/1.16))
   ISN 0018
                       WRITE (LO,610) (IN, IN=1,6)
   ISN 0019
                  610 FORMAT (1H1,20X,32HVEHICLE COMBINATION (1=IN,0=OUT),/
                               .30X.6I2)
   ISN 0020
                       WRITE (LO.611) (COFVCT(IN), IN=1, NVC)
   ISN 0021
                  611 FORMAT (30X.6F2.0)
   ISN 0022
                       CALL SURVIV (IACR)
   ISN 0023
                       DO 3 K=1.NASL
   ISN 0024
                          CALL DISTR (PR,K+NYAP-1,K)
   ISN 0025
                          DO 4 IAHE=1.NYAP
   ISN 0026
                             PR1(K, IAHE)=PR(K+IAHE-1)
   ISN 0027
                          CONTINUE
   ISN 0028
                    3 CONTINUE
   ISN 0029
                       LL=NYAP-1
   ISN 0030
                       DO 5 L=1,LL
   ISN 0031
                          CALL DISTR (PR.NYAP-L.-L)
   ISN 0032
                          IAHEF=L+1
   ISN 0033
                          DO 6 IAHE=IAHEF.NYAP
   ISN 0034
                             PR2(L.IAHE)=PR(IAHE-L)
   ISN 0035
                          CONTINUE
                    6
   ISN 0036
                    5 CONTINUE
   ISN 0037
                       CALL RHBLT (REHPLM)
   ISN 0038
                       XMAIN1=O.
                       FAILML=O.
   ISN 0039
   ISN 0040
                       DO 10 K=1, NASL
   ISN 0041
                          FAILML=FAILML+PR1(K.1)*YLM(K)
   ISN 0042
                          ZLM(K)=YLM(K)*(1-PRI(K,1))
   ISN 0043
                          XMAIN1=XMAIN1+EARMAR(K)*XLM(K)
   ISN 0044
                    10 CONTINUE
   ISN 0045
                       COSTRH(1)=(FAILML*REHPLM(1))*(1.+XHCID)
   ISN 0046
                       YMILES(1)=CONSTR(1)+FAILML
   ISN 0047
                       ZMILES(1)=YMILES(1)
   ISN 0048
                       COSTRM(1)=XMAIN1*(1,+XHCIM)
```

2

,

```
117
```

```
ISN 0049
                   DO 20 I=2.NYAP
ISN 0050
                      XMAIN1=O.
ISN 0051
                      FAILML=O.
ISN 0052
                      DO 30 K=1.NASL
ISN 0053
                         FAILML=FAILML+PR1(K,I)*YLM(K)
ISN 0054
                         ZLM(K)=ZLM(K)-YLM(K)*PR1(K,I)
ISN 0055
                         XMAIN1=XMAIN1+ZLM(K)*EARMAR(K+I-1)
ISN 0056
                30
                      CONTINUE
ISN 0057
                      XMAIN2=0.
ISN 0058
                      IF (PF.GE.PTERM.AND.NDEL.GT.O.AND.I.GT.NDEL) GO TO 70
ISN 0060
                      LL=I-1
ISN 0061
                      DO 40 L=1.LL
ISN 0062
                         FAILML=FAILML+YMILES(L)*PR2(L.I)
ISN 0063
                         ZMILES(L)=ZMILES(L)-YMILES(L)*PR2(L,I)
ISN 0064
                         XMAIN2=XMAIN2+ZMILES(L)*EARMAR(I-L)
ISN 0065
                40
                      CONTINUE
ISN 0066
                      COSTRH(I)=(FAILML*REHPLM(I))*(1.+XHCIO)**I
ISN 0067
                      YMILES(I)=CONSTR(I)+FAILML
ISN 0068
                      ZMILES(I)=YMILES(I)
ISN 0069
                      COSTRM(I)=(XMAIN1+XMAIN2)*(1.+XHCIM)**I
ISN 0070
                      GO TO 20
ISN 0071
                70
                      DELTA=YMILES(I-NDEL)-CONSTR(I-NDEL)
ISN 0072
                      YMILES(I-NDEL)=CONSTR(I-NDEL)
ISN 0073
                      LL=I-1
ISN 0074
                      DO 50 L=1,LL
ISN 0075
                         FAILML=FAILML+YMILES(L)*PR2(L,I)
ISN 0076
                         ZMILES(L)=ZMILES(L)-YMILES(L)*PR2(L.I)
ISN 0077
                         XMAIN2=XMAIN2+ZMILES(L)*EARMAR(I-L)
ISN 0078
                50
                      CONTINUE
ISN 0079
                      PROB=0.
ISN 0080
                      ML=NDEL-1
ISN 0081
                      DO 60 M=1.ML
ISN 0082
                         PROB=PROB+PR2(I-NDEL, I-NDEL+M)
ISN 0083
                      CONTINUE
ISN 0084
                      YMILES(I)=CONSTR(I)+FAILML+DELTA*(1-PROB)
ISN 0085
                      ZMILES(I)=YMILES(I)
ISN 0086
                      COSTRH(I)=((FAILML+DELTA*(1-PROB))*REHPLM(I))*(1.+XHCIO)**I
ISN 0087
                      COSTRM(I)=(XMAIN1+XMAIN2)*(1.+XHCIM)**I
ISN 0088
                20 CONTINUE
ISN 0089
                   DO 100 I=1.20
ISN 0090
                      COSTPM(I)=O.
ISN 0091
               100 CONTINUE
ISN 0092
                   IF (IP.NE.IF.OR.JYR.EQ.O) GO TO 99
ISN 0094
                   TINTML=O.
ISN 0095
                   DO 110 K=1, NASL
ISN 0096
                      TINTML=TINTML+YLM(K)
ISN 0097
               110 CONTINUE
ISN 0098
                   TCNSTR=O.
ISN 0099
                   DO 120 I=1.NYAP
ISN 0100
                      TCNSTR=TCNSTR+CONSTR(I)
ISN 0101
               120 CONTINUE
ISN 0102
                   DO 130 I=1,NYAP
                      COSTPM(I)=CSCOAT*(TINTML+(TCNSTR/2))/FLOAT(JYR)
ISN 0103
ISN 0104
                      COSTPM(I)=COSTPM(I)*(1.+XHCIM)**I
ISN 0105
               130 CONTINUE
ISN 0106
                   WRITE (LO,613) (SECTTL(J), J=1,20)
ISN 0107
               613 FORMAT (//,20X,20A4,///)
ISN 0108
                   WRITE (LO.600)
```

LEVEL 2.3.0 (JUNE 78) COSCAL OS/360 FORTRAN H EXTENDED DATE 84.262/15.04.04 PAGE 3 GOO FORMAT (10X,5HYEAR ,10X,10HROUT MAINT,10X,10H REHAB ,10X, ISN 0109 10HPREV MAINT,/,25X,10H COST ,10X,10H COST ,10X, 10H COST ,/) ISN 0110 WRITE (LO,601) (I,COSTRM(I),COSTRH(I),COSTPM(I),I=1,NYAP) ISN 0111 601 FORMAT ((10X, I5, 3(10X, E10.3))) ISN 0112 WRITE (LD.620) ISN 0113 620 FORMAT (1H1) ISN 0114 99 RETURN ISN 0115 END *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE) *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I) *STATISTICS* SOURCE STATEMENTS = 114, PROGRAM SIZE = 8812, SUBPROGRAM NAME = COSCAL *STATISTICS* NO DIAGNOSTICS GENERATED

900K BYTES OF CORE NOT USED

1

***** END OF COMPILATION *****

REQUESTED OPTIONS: NODUMP

LEVEL 2.3.0 (JUNE 78)

```
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)
```

SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

```
SUBROUTINE RHBLT(REHPLM)
ISN 0002
                   COMMON /MISC/ IPOT, IARMS, OLDMNT, AGF
ISN 0004
                   COMMON /BURKE/ XLAMB, GAMMA, TFBAP
                   COMMON /TIME/ ATP. OVLIF, NYAP, NYR, YR(40)
ISN 0005
ISN 0006
                   COMMON /EXPVT/ NPT, THICK(4), MTYPE(4), NLAY, IP, IF, IR, IC
                   COMMON /PSI/ PF, PICON, PTERM, PIOV, PTOV
ISN 0007
ISN 0008
                   COMMON /IO/ LI, LO, LD
ISN 0009
                   COMMON /STRUC/ SN.SS.R.D.AGG.XJ.XK.E
ISN 0010
                   DIMENSION REHPLM(20), CUMEAL(50)
ISN 0011
                   CALL ACCTFC(TFBAP.AGF.50.CUMEAL)
                   DO 10 I=1,NYAP
ISN 0012
                      NOVLF=IFIX(OVLIF+.5)
ISN 0013
ISN 0014
                      IF (I+NOVLF.GT.50) GO TO 40
ISN 0016
                      XNOV=CUMEAL(I+NOVLF)-CUMEAL(I)
ISN 0017
                      IF (IP.NE.IF) GO TO 20
ISN 0019
                      CALL OVTHKF(XNOV, THOV, YR)
ISN 0020
                      GO TO 30
ISN 0021
                20
                      CALL GETD(ALOG1O(XNOV), PIOV, PTOV, D.DOV)
                      DEX=D
ISN 0022
ISN 0023
                      CALL OVTHKR(DOV.D.THOV)
ISN 0024
                30
                      CALL DVCDST(THOV.REHPLM(I))
                 10 CONTINUE
ISN 0025
ISN 0026
                   GO TO 99
ISN 0027
                40 WRITE (LD.601)
ISN 0028
               601 FORMAT (10X.32HTRAFFIC FORECAST PERIOD EXCEEDED)
ISN 0029
                99 RETURN
ISN 0030
                   END
```

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(MAX) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK OBJECT NOMAP NOFORMAT GOSTMT NOXREF ALC NOANSF NOTERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 29, PROGRAM SIZE = 970, SUBPROGRAM NAME = RHBLT

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

928K BYTES OF CORE NOT USED

STATISTICS NO DIAGNOSTICS THIS STEP

APPENDIX 2 BASIC INPUT FOR THE MODIFIED RENU2 PROGRAM

SAMPLE SECTION DATA

Item	Section 1	Section 2		
No. of vehicle classes	4	4		
Analysis Period	18 yrs.	18 yrs.		
Annual Growth Rate in 18-kip ESAL per year	3.35 %	3.35 %		
Interest Rate	4.0 %	4.0 %		
Average No. of Vehicles per Year	320,000	320,000		
Type of Pavement	Overlaid	Hot Mix		
Pavement Classification	Interstate Flexible	U. S. Flexible		
Truck Types	2D 3A 3-S2 2-S1-2	2D 3A 3-S2 2-S1-2		
Load Limits:				
GVW	80,000 lb.	80,000 lb.		
Single Axle	20,000 1ь.	20,000 lb.		
Tandem Axle	34,000 1ъ.	34,000 lb.		
Critical PSI	1.50	1.50		
PSI after Overlay	4.80	4.70		
Overlay Design Life	20 yrs.	20 yrs.		
Avg. percent of Paved Shoulders	95 %	10 %		
Avg. Paved Shoulder Width per lane	4.75 ft.	0.80 ft.		
Avg. Granular Shoulder Width per lane	0.25 ft.	7.20 ft.		

VEHICLE CLASSES 4						
RUN PARAMETERS 18 0	3.35 4	4.00 0.0	0.0	320000.00		
SYSTEM TITLE O O	0.0	0.0	0.0	0.0		
INTERSTATE FLEX PAVEMENTS DIST						
TEXAS TRANSPORTATION INSTITUTE SAMPLE RUN FOR FLEXIBLE PAVEME						
FLEXIBLE O O		0.0 0.0	0.40			
INTELX B INTERSTATE FLEX RURAL		0.0 F	2.10	2.10		
17 1 4 1 2 10	0 1.75 6.00 4.5		6			
	0.0 0.0			0.0 0.0	0.0 0.0	0.0 0.0
	0.0		• • • • • • • • • • • • • • • • • • • •	0.0	0.0	0.0 0.0
ACP 3.CO.O ATB 4.00.0		LTS 0.00.0				
AGE DISTRIBUTION 30 0		0.0	0.0	0.0		
	0.0 0.0			0.0 0.0	0.0 0.0	3.0 16.0
0.0 2.0 0.0 0 TRUCK TYPE 4 0	0.0 0.0 0.0 0.0 0			0.0	0.0 0.0	0.0 0.0
	?-\$1-2	0.0	0.0	0.0		
1000 0100 0200	4000					
1 3.77 0.58 18.22 0.55		0.0 0.0 0.0	23.11			
2 3.83 0.58 18.29 0.55 (0.0 0.0 0.0	23.25			
		0.0 0.0 0.0	23.44			
		0.0 0.0 0.0	23.56			
		0.0 0.0 0.0	23.73			
		0.0 0.0 0.0 0.0 0.0 0.0	23.77			
		0.0 0.0 0.0 0.0 0.0 0.0	23.89 23.82			
		0.0 0.0 0.0	24.05			
		0.0 0.0 0.0	24.10			
	0.0 0.0 0.0 0	0.0 0.0 0.0	24.15			
		0.0 0.0 0.0	24.19			
		0.0 0.0 0.0	24.21			
		0.0 0.0 0.0	24.22			
		0.0 0.0 0.0	24.24			
	· · · · · · · · · · · · · · · · · · ·	0.0 0.0 0.0 0.0 0.0 0.0	24.27 24.30			
		0.0 0.0 0.0	24.34			
LOAD LIMITS O O		0.0	0.0	0.0		
80.00 20.00 34.00	56.00					
120.00 22.40 36.00						
	} .					
	S.					
5INGLE AXLES 11 0 3. 1. 0. 0		0.0	0.0	0.0		
7. 566. 26. 71						
8. 70. 20. 329						
12. 92. 33. 1459	. 126.					
16. 59. 8. 24						
18. 30. 0. 2						
19. 9. 0. 0						
20. 31. 0. 0 22. 10. 0. 0						
24. 0. 0. 0	·					
26. 0. 0. 0						
TANDEM AXLES 15 O		0.0	0.0	0.0		
6. 0. 0. 0		Ţ. Ų	3.3			
12. 0. 38. 568						
18. 0. 18. 552						
24. O. 15. 518 30. O. 9 815						
30. 0. 9 815 32. 0. 2. 428						
J. U. Z. 420	. •					

G∨w	33. 34. 36. 38. 40. 44. 46. 50. 10. 14. 22. 24. 26. 28. 30. 31. 31. 32. 33. 34. 34. 34. 34. 34. 34. 34	0. 0. 0. 0. 0. 0. 0. 130. 100. 86. 33. 26. 33. 19. 6. 1. 0.	1. 0. 0. 3. 1. 0. 0. 0. 28 0. 34. 4. 5. 3. 3. 3. 3. 4. 5. 3. 3. 4. 5. 5. 6. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	88. 244. 246. 133. 70. 26. 15. 14. 3. 0 0. 0. 0. 0. 5. 24. 54. 92. 82. 74. 54. 41.	0. 0. 0. 0. 0. 0. 0. 10.000 0. 0. 0. 0. 1. 4. 1. 2. 3.	0.0	0.0	0.0	0.0
	40. 45. 50. 55. 65. 70. 72. 75. 80. 85. 90. 100.	0. 0. 0. 0. 0. 0. 0. 0. 0.	2. 2. 5. 0. 1. 0. 0. 0. 0. 0. 0. 0.	45. 91. 96. 112. 126. 154. 221. 112. 159. 171. 99. 31. 9. 7.	3. 1. 4. 7. 6. 7. 8. 2. 9. 8. 7. 0. 1. 0. 0.	0.0	0.0	0.0	0.0
	6. 8. 10. 12. 14. 16. 18. 20. 25. 30. 40.	14. 78. 143. 107. 75. 50. 9. 7. 4. 0. 0.	0. 0. 4. 10. 26. 47. 35. 14. 23. 6. 0.	0. 0. 0. 0. 2. 4. 19. 290. 262. 120. 24.	0. 0. 0. 0. 0. 0. 3. 10. 4.				
PERFORM			0	o ·	4.80	1:50	4.80	20.00	0.0
OVERLAY	Υ	A 7-	2	3	0.0	0:0	0.0	0.0	0.0
MODEL N		4.75	1	0.25	66.00 0.0	0.50 0.0	0.0 0.0	0.0 32 00.00 0.0	0.0
1000	3.47 0.00	0.25 3.86		4.00 8.75	12.90				
OLD SEC	CTIONS		3	0	1800.00	10.00 0.0	0.0 0.0	0.0	0.0 0.0

EXECUI	F		o	o	0.0	0.0		0.0	0.0		0.0				
FLEXIB	LE		0	0	12.00	0.0		0.0	1.70)	2.10				
USFLX		S RURAL	. HUT MI	X HIGH	TRAFFIC					-					
17	3	1	1 2	10	0 1.25 6	.00 3.30	1	10 6							
	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	.0	0.0	0.0	0.0	0.0										
ACP	4.00.				TS 0.00		0.	00.0							
AGE DI			30	0	0.0	0.0		0.0	0.0		0.0				
	.0	8.0	8.0	2.0	1.0	9.0	2.0	15.0	2.0	12.0	6.0	3.0	2.0	6.0	30.0
		12.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.0	1.0
SINGLE	3.		11	0	3.00	0.0		0.0	0.0		0.0				
	7.	4. 354.	0. 10.	0.	0.										
	8	53.	7.	26. 117.	12.										
	12.	75.	38.	856.	5.										
	16.	44.	14.	14.	36. 24.										
	18.	23.	1.	1.	7.										
	19	3.	o .	i.	3.										
	20.	2.	0.	1.	1.										
	22.	4.	0.	0.	2.										
	24.	2.	. 0.	0.	0.										
	26	0.	0.	0.	0. 0.										
TANDEM			16	0.	6.00	0.0		0.0							
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6.	Ο.	0.	Ö.	0.	0.0		0.0	0.0		0.0				
	12.	Ö.	12.	237	o.										
	18.	Ö.	16.	442.	Ö.										
	24.	Ö.	7.	238.	Ö.										
	30.	Ö.	20.	347.	0.										
	32.	Ö.	5.	187.	0.										
	33.	0.	1.	62.	Ö.										
	34.	0.	0.	125.	Ö.										
	36.	0.	1.	154.	Ö.										
	38.	Ο.	4.	98.	0.										
	40.	Ο.	2.	51.	0.										
	42.	0.	Ο.	29.	0.										
	47	Ο.	1.	22	Ο.										
	46	Ο.	0.	11.	Ο.										
	50	Ο.	Ο.	6.	Ο.										
	55 .	Ο.	1.	1.	Ο.										
GVW			29	0	10.00	0.0		0.0	0.0		0.0				
	10.	97.	Ο.	Ο.	Ο.						0.0				
	1.1.	53 .	3.	Ο.	Ο.										
	20.	80.	9.	Ο.	Ο.										
	22.	8.	3.	0.	Ο.										
	24.	15.	4.	0.	Ο.										
	26. 28.	29.	4.	0.	Ο.										
	28. 20	5.	2.	6.	0.										
	30 32.	1. 3.	5. 3.	13.	0.										
	34.	1.	5. 6.	44. E0	2.										
	36.	0.	3.	59. 53.	0.										
	38.	o .	3. 7.	53. 61.	1".										
	40.	0.	4.	44.	0.										
	45.	o.	8.	44. 59.	1.										
	50.	0.	4.	46.	0. 0.										
		• •		чч.	0 .										

55 .	Ο.	3.	46.	3.				
60.	Ο.	1.	49	3.				
65.	Ο.	1.	58.	1.				
70.	Ο.	Ο.	88.	Э.				
72.	Ο.	Ο.	55 .	Ο.				
75.	Ο.	Ο.	79.	2.				
80.	Ο.	Ο.	117.	1.				
85.	Ο.	Ο.	25.	1.				
90.	Ο.	Ο.	28.	Ο.				
95.	Ο.	Ο.	8.	Ο.				
100.	Ο.	0.	5 .	Ο.				
105.	Ο.	Ο.	1.	Ο.				
110.	Ο.	Ο.	1.	Ο.				
120.	Ο.	Ο.	1.	Ο.				
OLD SECTIONS		3	0	750.00	10.00	0.0	0.0	0.0
PERFORMANCE		0	0	4.70	1.50	4.70	20.00	0.0
0.0					,			
OVERLAY		2	3	0.0	0.0	0.0	0.0	0.0
10.00	0.80		7.20	66.00	0.50	0.0	0.0 3200.00	
EXECUTE		0	0	0.0	0.0	0.0	0.0	0.0

•

APPENDIX 3

COST OUTPUT FROM THE MODIFIED RENU2 PROGRAM

,			
		,	

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 1.0.0.0.

YEAR	ROUT MAINT	051145	
ILAK		REHAB	PREV MAINT
	COST	COST	COST
1	O.160E+06	O.193E+01	0.304E+05
2	O.194E+06	O.235E+01	0.304E+05
3	0.239E+06	O.272E+O1	0.304E+05
4	O.284E+06	0.337E+01	0.304E+05
5	0.316E+06	0.389E+01	0.304E+05
6	O.334E+06	O.456E+O1	0.304E+05
7	O.343E+06	O.528E+O1	0.304E+05
8	O.347E+06	O.615E+O1	0.304E+05
9	O.349E+06	O.707E+01	0.304E+05
10	0.349E+06	O.811E+O1	0.304E+05
11	O.350E+06	O.112E+02	0.304E+05
12	O.350E+06	O.128E+02	0.304E+05
13	O.350E+06	O.147E+02	0.304E+05
14	O.350E+06	O.169E+02	0.304E+05
15	0.350E+06	O.191E+02	0.304E+05
16	0.350E+06	O.218E+02	0.304E+05
17	0.350E+06	0.245E+02	0.304E+05
18	0.350E+06	0.278E+02	0.304E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 0.1.0.0.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	O.160E+06	O.926E-02	0.304E+05
2	O.194E+06	O.389E-Q1	0.304E+05
3	O.239E+06	O.100E+00	0.304E+05
4	0.284E+06	O.389E-01	0.304E+05
5	O.316E+06	O. 106E+00	0.304E+05
6	0.334E+06	0.109E+00	0.304E+05
7	O.343E+06	0.141E+00	0.304E+05
8	0.347E+06	O.109E+00	0.304E+05
9	O.349E+06	O.145E+00	0.304E+05
10	0.349E+06	0.211E+00	0.304E+05
11	O.350E+06	0.193E+00	0.304E+05
12	O.350E+06	O.254E+00	0.304E+05
13	0.350E+06	0.350E+00	0.304E+05
14	O.350E+06	0.395E+00	0.304E+05
15	O.350E+06	O.456E+00	0.304E+05
16	O.350E+06	0.465E+00	0.304E+05
17	O.350E+06	0.602E+00	0.304E+05
18	0.350E+06	0.574E+00	0.304E+05

VEHICLE COMBINATION (1=IN.O=DUT) 1 2 3 4 5 6 1.1.0.0.

INTFLX B INTERSTATE FLEX RURAL OVRLAY HIGH TRAFF

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	O.160E+06	O.305E+O1	0.304E+05
2	0.194E+06	O.370E+O1	0.304E+05
3	0.239E+06	O.448E+O1	0.304E+05
4	0.284E+06	0.533E+01	0.304E+05
5	0.316E+06	0.622E+01	0.304E+05
6	0.334E+06	O.732E+O1	0.304E+05
7	0.343E+06	0.846E+01	0.304E+05
8	0.347E+06	0.980E+01	0.304E+05
9	0.349E+06	O.113E+02	0.304E+05
10	0.349E+06	O.129E+02	0.304E+05
11	0.350E+06	O. 179E+02	0.304E+05
12	0.350E+06	O.206E+02	0.304E+05
13	0.350E+06	O.236E+02	0.304E+05
14	0.350E+06	O.270E+02	0.304E+05
15	0.350E+06	0.306E+02	0.304E+05
16	0.350E+06	O.348E+O2	0.304E+05
17	0.350E+06	O.393E+02	0.304E+05
18	0.350E+06	O.444E+02	0.304E+05

1

VEHICLE COMBINATION (1=IN.O=OUT) 1 2 3 4 5 6 0.0.1.0.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	0.160E+06	0.937E+04	
2	0.191E+06	0.937E+04 0.113E+05	0.304E+05
3	0.234E+06		0.304E+05
		O.134E+05	0.304E+0 5
4	O.276E+06	O.158E+05	0.304E+05
5	0.304E+06	O.185E+05	0.304E+05
6	0.317E+06	0.214E+05	0.304E+05
7	O.321E+06	0.246E+05	0.304E+05
8	0.319E+06	O.280E+05	0.304E+05
9	0.315E+06	0.318E+05	0.304E+05
10	0.309E+06	O.358E+05	0.304E+05
11	0.303E+06	0.490E+05	0.304E+05
12	O.296E+06	0.552E+05	0.304E+05
13	O.289E+06	0.618E+05	0.304E+05
14	O.282E+06	0.688E+05	0.304E+05
15	O.274E+06	O.760E+05	0.304E+05
16	O.266E+06	0.834E+05	0.304E+05
17	O.257E+06	0.910E+05	0.304E+05
18	O.249E+06	O.987E+05	0.304E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.0.1.0.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	O.160E+06	O.101E+05	0.304E+05
2	O.191E+06	O.121E+05	0.304E+05
3	O.233E+06	O.144E+05	0.304E+05
4	O.275E+06	O.170E+05	0.304E+05
5	O.303E+06	O.198E+05	0.304E+05
6	O.316E+06	O.229E+05	0.304E+05
7	0.319E+06	O.263E+05	0.304E+05
8	0.317E+06	0.300E+05	0.304E+05
9	0.313E+06	O.339E+05	0.304E+05
10	O.307E+06	O.382E+05	0.304E+05
11	0.300E+06	O.523E+05	0.304E+05
12	O.293E+06	O.588E+05	0.304E+05
13	O.285E+06	O.657E+05	0.304E+05
14	O.277E+06	0.729E+05	0.304E+05
15	O.269E+06	0.804E+05	0.304E+05
16	O.261E+06	O.881E+05	0.304E+05
17	O.252E+06	0.959E+05	0.304E+05
18	0.243E+06	0.104E+06	0.304E+05

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 0.1.1.0.

YEAR	ROUT MAINT COST	REHAB Cost	PREV MAINT COST
1	O.160E+06	0.951E+04	0.304E+05
2	O.191E+06	O.115E+05	0.304E+05
3	0.234E+06	O. 136E+05	0.304E+05
4	O.276E+06	O.160E+05	0.304E+05
5	O.304E+06	O. 187E+05	0.304E+05
6	O.317E+06	0.217E+05	0.304E+05
7	O.321E+06	0.249E+05	0.304E+05
8	O.319E+06	O.284E+05	0.304E+05
9	O.315E+06	O.322E+05	0.304E+05
10	O.309E+06	O.363E+05	0.304E+05
11	0.302E+06	O.497E+05	0.304E+05
12	O.296E+06	O.560E+05	0.304E+05
13	O.288E+06	O.626E+05	0.304E+05
14	O.281E+06	O.696E+05	0.304E+05
15	O.273E+06	O.769E+05	0.304E+05
16	O.265E+06	O.844E+05	0.304E+05
17	O.256E+06	O.921E+05	0.304E+05
18	O.248E+06	0.998E+05	0.304E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.1.1.0.

INTFLX B INTERSTATE FLEX RURAL OVRLAY HIGH TRAFF

- 1

YEAR	ROUT MAINT	051115	
ILAK		REHAB	PREV MAINT
	COST	COST	CDST
1	O. 160E+06	0.102E+05	0.304E+05
2	O.191E+06	O.123E+05	0.304E+05
3	O.233E+06	O.146E+05	0.304E+05
4	O.275E+06	O.172E+05	0.304E+05
5	O.303E+06	0.201E+05	0.304E+05
6	O.316E+06	O.232E+05	0.304E+05
7	O.319E+06	O.266E+05	0.304E+05
8	O.317E+06	O.304E+05	0.304E+05
9	O.312E+06	0.344E+05	0.304E+05
10	0.306E+06	O.387E+05	0.304E+05
11	O.299E+06	O.530E+05	0.304E+05
12	O.292E+06	O.595E+05	0.304E+05
13	O.284E+06	O.665E+05	0.304E+05
14	O.276E+06	O.738E+05	0.304E+05
15	O.268E+06	O.813E+O5	0.304E+05
16	O.260E+06	O.890E+05	0.304E+05
17	O.251E+06	0.969E+05	0.304E+05
18	O.242E+06	O.105E+06	0.304E+05

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 0.0.0.1.

INTFLX B INTERSTATE FLEX RURAL OVRLAY HIGH TRAFF

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	0.160E+06	0.625E+01	0.304E+05
2	O.194E+06	O.757E+O1	0.304E+05
3	O.239E+06	O.903E+Of	0.304E+05
4	O.284E+06	0.107E+02	0.304E+05
5	O.316E+06	O. 127E+02	0.304E+05
6	O.334E+06	O.148E+02	0.304E+05
7	0.343E+06	O. 172E+02	0.304E+05
8	O.347E+06	0.199E+02	0.304E+05
9	0.349E+06	0.229E+02	0.304E+05
10	0.349E+06	O.263E+02	0.304E+05
11	0.350E+06	O.363E+02	0.304E+05
12	O.350E+06	0.417E+02	0.304E+05
13	0.350E+06	O.478E+02	0.304E+05
14	O.350E+06	0.545E+02	0.304E+05
15	0.350E+06	0.622E+02	0.304E+05
16	O.350E+06	0.706E+02	0.304E+05
17	O.350E+06	0.798E+02	0.304E+05
18	O.350E+06	0.902E+02	0.304E+05

134

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.0.0.1.

INTFLX B INTERSTATE FLEX RURAL OVRLAY HIGH TRAFF

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	0.160E+06	0.202E+02	0.304E+05
2	O.194E+06	0.244E+02	0.304E+05
3	O.239E+06	0.293E+02	0.304E+05
4	O.284E+06	0.347E+02	0.304E+05
5	0.316E+06	0.410E+02	0.304E+05
` 6	0.334E+06	0.479E+02	0.304E+05
7	0.343E+06	0.558E+02	0.304E+05
8	O.347E+06	O.645E+02	0.304E+05
9	O.348E+06	0.742E+02	0.304E+05
10	0.349E+06	O.851E+O2	0.304E+05
11	0.349E+06	0.117E+03	0.304E+05
12	O.350E+06	0.135E+03	0.304E+05
13	O.350E+06	O.155E+03	0.304E+05
14	0.350E+06	O.177E+03	0.304E+05
15	0.350E+06	0.201E+03	0.304E+05
16	0.350E+06	O.228E+03	0.304E+05
17	0.350E+06	0.259E+03	0.304E+05
18	0.350E+06	0.292E+03	0.304E+05

ţ

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 0.1.0.1.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	O. 160E+06	0.842E+01	0.304E+05
2	O.194E+06	O.102E+02	0.304E+05
3	O.239E+06	O.122E+02	0.304E+05
4	O.284E+06	O.145E+02	0.304E+05
5	O.316E+06	O. 171E+02	0.304E+05
6	O.334E+06	O.200E+02	0.304E+05
7	0.343E+06	O.233E+02	0.304E+05
8	O.347E+06	O,268E+02	0.304E+05
9	O.349E+06	O.310E+02	0.304E+05
10	0.349E+06	O.355E+O2	0.304E+05
11	O.350E+06	O.489E+02	0.304E+05
12	0.350E+06	O.563E+O2	0.304E+05
13	0.350E+06	O.646E+02	0.304E+05
14	0.350E+06	O.737E+02	0.304E+05
15	Q.350E+06	O.839E+02	0.304E+05
16	O.350E+06	0.952E+02	0.304E+05
17	O.350E+06	0.108E+03	0.304E+05
18	0.350E+06	O. 122E+03	0.304E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.1.0.1.

YEAR	ROUT MAINT	REHAB	DDEV MATNET
	· · · · · · · · · · · · · · · · · · ·		PREV MAINT
	COST	COST	COST
1	O.160E+06	0.244E+02	0.304E+05
2	O.194E+06	0.295E+02	0.304E+05
3	0.239E+06	0.355E+02	0.304E+05
4	O.284E+06	0.420E+02	0.304E+05
5	0.316E+06	0.495E+02	0.304E+05
6	0.334E+06	O.579E+02	0.304E+05
7	0.343E+06	O.674E+02	0.304E+05
8	O.347E+06	0.779E+02	0.304E+05
9	O.348E+06	O.898E+O2	0.304E+05
10	0.349E+06	0.103E+03	0.304E+05
11	0.349E+06	O.142E+03	0.304E+05
12	O.350E+06	O.163E+03	0.304E+05
13	0.350E+06	O.187E+03	0.304E+05
14	O.350E+06	0.214E+03	0.304E+05
15	0.350E+06	0.243E+03	0.304E+05
16	0.350E+06	O.276E+03	0.304E+05
17	O.350E+06	0.313E+03	0.304E+05
18	O.349E+06	0.353E+03	0.304E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 0.0.1.1.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	O.160E+06	O. 105E+05	0.304E+05
2	O.191E+06	O.126E+05	0.304E+05
3	O.233E+06	O.150E+05	0.304E+05
4	O.275E+06	O.177E+05	0.304E+05
5	O.302E+06	0.206E+05	0.304E+05
6	O.315E+06	0.238E+05	0.304E+05
7	O.318E+06	O. 274E+05	0.304E+05
8	0.316E+06	O.312E+05	0.304E+05
9	0.311E+06	O.353E+05	0.304E+05
10	0.305E+06	O.397E+05	0.304E+05
11	O.298E+06	0.543E+05	0.304E+05
12	0.290E+06	0.610E+05	0.304E+05
13	0.283E+06	0.681E+05	0.304E+05
14	O.275E+06	0.755E+05	0.304E+05
15	Q.266E+06	O.831E+05	0.304E+05
16	0.258E+06	0.909E+05	0.304E+05
17	0.249E+06	0.988E+05	0.304E+05
18	0.240E+06	0.107E+06	0.304E+05

VEHICLE COMBINATION (1=IN.O=OUT) 1 2 3 4 5 6 1.O.1.1.

INTFLX B INTERSTATE FLEX RURAL OVRLAY HIGH TRAFF

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT
	6031	CUST	COST
1	O.160E+06	O.112E+05	0.304E+05
2	O.190E+06	O.135E+05	0.304E+05
3	O.233E+06	O.161E+05	0.304E+05
4	O.274E+06	O.189E+05	0.304E+05
5	O.301E+06	O.220E+05	0.304E+05
6	0.314E+06	0.254E+05	0.304E+05
7	0.317E+06	O.292E+05	0.304E+05
8	0.314E+06	0.332E+05	0.304E+05
9	0.309E+06	0.375E+05	0.304E+05
10	0.302E+06	0.421E+05	0.304E+05
11	0.295E+06	O.576E+05	0.304E+05
12	0.287E+06	0.647E+05	0.304E+05
13	0.279E+06	0.720E+05	0.304E+05
14	0.270E+06	0.797E+05	0.304E+05
15	0.261E+06	O.875E+05	0.304E+05
16	0.252E+06	0.955E+05	0.304E+05
17	0.243E+06	0.104E+06	0.304E+05
18	0.235E+06	O.112E+06	0.304E+05

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 0.1.1.1.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	O. 160E+06	0.107E+05	0.304E+05
2	O.191E+06	O.128E+05	0.304E+05
3	O.233E+06	O. 152E+05	0.304E+05
4	O.274E+06	O.179E+05	0.304E+05
5	0.302E+06	0.209E+05	0.304E+05
6	0.315E+06	O.242E+05	0.304E+05
7	O.318E+06	0.277E+05	0.304E+05
8	O.316E+06	0.316E+05	0.304E+05
9	0.311E+06	O.358E+05	0.304E+05
10	0.304E+06	0.402E+05	0.304E+05
11	0.297E+06	0.550E+05	0.304E+05
12	0.290E+06	0.618E+05	0.304E+05
13	0.282E+06	O.689E+05	0.304E+05
14	O.274E+06	0.764E+05	0.304E+05
15	0.265E+06	0.840E+05	0.304E+05
16	0.256E+06	O.919E+05	0.304E+05
17	0.248E+06	O.998E+05	0.304E+05
18	0.239E+06	0.108E+06	0.304E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.1.1.1.

INTFLX B INTERSTATE FLEX RURAL OVRLAY HIGH TRAFF

YEAR	ROUT MAINT	REHAB	DOEM MATEUT
			PREV MAINT
	COST	COST	COST
1	O.160E+06	O.114E+05	0.304E+05
2	O.190E+06	O.137E+05	0.304E+05
3	O.233E+06	O.163E+05	0.304E+05
4	O.274E+06	0.192E+05	0.304E+05
5	O.301E+06	0.223E+05	0.304E+05
6	O.314E+06	O.258E+05	0.304E+05
7	O.316E+06	0.296E+05	0.304E+05
8	O.314E+06	O.336E+05	0.304E+05
9	O.308E+06	0.380E+05	0.304E+05
10	0.301E+06	O.427E+05	0.304E+05
11	O.294E+06	O.583E+05	0.304E+05
12	O.286E+06	O.654E+05	0.304E+05
13	O.278E+06	0.729E+05	0.304E+05
14	O.269E+06	O.806E+05	0.304E+05
15	O.260E+06	O.885E+05	0.304E+05
16	O.251E+06	0.965E+05	0.304E+05
17	O.242E+06	O.105E+06	0.304E+05
18	O.233E+06	O.113E+06	0.304E+05

1

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.0.0.0.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	O.505E+06	O.108E+01	0.720E+05
2	O.549E+06	O. 134E+O1	O.720E+05
3	0.593E+06	0.160E+01	0.720E+05
4	O.635E+06	O. 193E+01	0.720E+05
5	O.671E+06	0.226E+01	0.720E+05
6	0.703E+06	O.263E+O1	0.720E+05
7	0.732E+06	O.316E+O1	0.720E+05
8	0.759E+06	0.365E+01	0.720E+05
9	O.785E+06	O.425E+O1	0.720E+05
10	0.804E+06	O.487E+O1	0.720E+05
11	O.817E+06	O.678E+O1	0.720E+05
12	0.823E+06	0.784E+01	0.720E+05
13	O.826E+06	0.907E+01	0.720E+05
14	0.827E+06	0.104E+02	0.720E+05
15	0.828E+06	0.120E+02	0.720E+05
16	0.828E+06	0.137E+02	0.720E+05
17	0.828E+06	0.157E+02	0.720E+05
18	O.828E+06	O.179E+02	0.720E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 0.1.0.0.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	0.505E+06	O.888E-02	0.720E+05
2	0.549E+06	0.333E-02	0.720E+05
3	0.593E+06	0.388E-01	0.720E+05
4	0.635E+06	0.155E-01	0.720E+05
5	0.671E+06	0.621E-01	0.720E+05
6	0.703E+06	0.277E-01	0.720E+05
7	0.732E+06	0.344E-01	0.720E+05
8	0.759E+06	0.732E-01	0.720E+05
9	0.785E+06	0.566E-01	0.720E+05
10	0.804E+06	0.910E-01	0.720E+05
11	0.817E+06	0.832E-01	0.720E+05
12	0.823E+06	0.943E-01	0.720E+05
13	0.826E+06	0.162E+00	0.720E+05
14	0.827E+06	0.136E+00	0.720E+05
15	0.828E+06	0.203E+00	0.720E+05
16	0.828E+06	0.243E+00	0.720E+05
17	O.828E+06	0.195E+00	0.720E+05
18	O.828E+06	0.321E+00	0.720E+05

VEHICLE COMBINATION (1=IN.O=OUT) 1 2 3 4 5 6 1.1.O.O.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	O.505E+06	O.184E+01	0.720E+05
2	0.549E+06	O.222E+O1	0.720E+05
3	O.593E+06	0.270E+01	0.720E+05
4	O.635E+06	0.318E+01	0.720E+05
5	0.671E+06	0.382E+01	0.720E+05
6	O.703E+06	0.443E+01	0.720E+05
7	O.732E+06	0.521E+01	0.720E+05
8	O.759E+06	0.611E+01	0.720E+05
9	O.785E+06	0.713E+01	0.720E+05
10	0.804E+06	0.819E+01	0.720E+05
11	O.817E+06	0.113E+02	0.720E+05
12	0.823E+06	0.131E+02	0.720E+05
13	O.826E+06	O.152E+02	0.720E+05
14	0.827E+06	0.175E+02	0.720E+05
15	0.828E+06	0.201E+02	0.720E+05
16	0.828E+06	O.229E+02	0.720E+05
17	0.828E+06	0.263E+02	0.720E+05
18	0.828E+06	0.299E+02	0.720E+05

VEHICLE COMBINATION (1=IN,O=OUT)
1 2 3 4 5 6
0.0.1.0.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	
	C031	CUST	COST
1	O.505E+06	O.123E+05	0.720E+05
2	O.541E+06	O.147E+05	0.720E+05
3	O.580E+06	O.175E+05	0.720E+05
4	O.615E+06	0.207E+05	0.720E+05
5	O.644E+06	O.243E+05	0.720E+05
6	O.666E+06	O.283E+05	0.720E+05
7	O.684E+06	O.328E+05	O.720E+05
8	O.699E+06	O.377E+05	0.720E+05
9	O.711E+06	O.431E+05	0.720E+05
10	O.716E+06	0.490E+05	0.720E+05
11	O.712E+06	O.672E+05	0.720E+05
12	O.702E+06	O.762E+05	0.720E+05
13	O.688E+06	O.858E+05	0.720E+05
14	O.671E+06	0.961E+05	0.720E+05
15	O.652E+06	O.107E+06	0.720E+05
16	O.631E+06	O.118E+06	0.720E+05
17	O.610E+06	0.130E+06	0.720E+05
18	O.588E+06	O.141E+06	0.720E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.0.1.0.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	0.505E+06	O.133E+05	0.720E+05
2	O.541E+06	O. 159E+05	0.720E+05
3	O.579E+06	O. 189E+05	0.720E+05
4	O.613E+06	0.224E+05	O.720E+05
5	O.642E+06	O.262E+05	0.720E+05
6	O.663E+06	O.305E+05	0.720E+05
7	O.680E+06	O.353E+05	0.720E+05
8	O.695E+06	O.405E+05	0.720E+05
9	O.706E+06	O.463E+05	0.720E+05
10	0.709E+06	O.525E+05	0.720E+05
11	0.705E+06	O.720E+05	0.720E+05
12	O.694E+06	O.815E+05	0.720E+05
13	O.678E+06	O.916E+05	0.720E+05
14	O.660E+06	O.102E+06	0.720E+05
15	O.640E+06	O.114E+Q6	Q.720E+05
16	O.619E+06	0.125E+06	0.720E+05
17	0.597E+06	O.137E+06	0.720E+05
18	0.574E+06	0.149E+06	0.720E+05

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 0.1.1.0.

USFLX A US RURAL HOT MIX HIGH TRAFFIC

Į

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	O.505E+06	O.125E+05	0.720E+05
2	0.541E+06	O.150E+05	0.720E+05
3	O.580E+06	O.178E+05	0.720E+05
4	0.615E+06	O.211E+05	0.720E+05
5	0.643E+06	O.247E+05	0.720E+05
6	0.666E+06	O.288E+05	0.720E+05
7	0.683E+06	0.333E+05	0.720E+05
8	O.698E+06	0.383E+05	0.720E+05
9	O.710E+06	O.438E+05	0.720E+05
10	O.715E+06	O.497E+05	0.720E+05
11	0.711E+06	0.682E+05	0.720E+05
12	0.700E+06	0.773E+05	0.720E+05
13	O.686E+06	0.870E+05	0.720E+05
14	O.668E+06	0.974E+05	0.720E+05
15	0.649E+06	0.108E+06	0.720E+05
16	0.629E+06	0.120E+06	0.720E+05
17	0.607E+06	0.131E+06	0.720E+05
18	0.585E+06	0.143E+06	0.720E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.1.1.0.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	0.505E+06	0.135E+05	0.720E+05
2	O.541E+06	O.162E+05	. 0.720E+05
3	0.579E+06	O.192E+05	0.720E+05
4	O.613E+06	O.227E+05	0.720E+05
5	0.641E+06	O.266E+05	0.720E+05
6	O.663E+06	O.310E+05	0.720E+05
7	O.680E+06	0.358E+05	0.720E+05
8	O.694E+06	0.411E+05	0.720E+05
9	0.704E+06	O.470E+05	0.720E+05
10	O.708E+06	0.533E+05	0.720E+05
11	O.703E+06	O.730E+05	0.720E+05
12	O.692E+06	O.826E+05	0.720E+05
13	O.676E+06	O.928E+05	0.720E+05
14	O.658E+06	O. 104E+06	0.720E+05
15	O.637E+06	O. 115E+06	0.720E+05
16	O.616E+06	0.127E+06	0.720E+05
17	O.594E+06	0.139E+06	0.720E+05
18	0.571E+06	0.150E+06	0.720E+05

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 0.0.0.1.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	O.505E+06	0.406E+01	0.720E+05
2	0. 549 E+06	O.486E+O1	0.720E+05
3	0.593E+06	0.582E+01	0.720E+05
4	0.635E+06	0.697E+01	0.720E+05
5	O.671E+06	0.823E+01	0.720E+05
6	0.703E+06	0.966E+01	0.720E+05
7	0.732E+06	O.114E+02	0.720E+05
8	0.759E+06	O.133E+02	0.720E+05
9	0.785E+06	O.154E+02	0.720E+05
10	O.804E+06	O. 179E+02	0.720E+05
11	O.817E+06	O.246E+02	0.720E+05
12	O.823E+06	O.285E+O2	0.720E+05
13	O.826E+06	O.330E+02	0.720E+05
14	0.827E+06	O.380E+02	0.720E+05
15	O.828E+06	O.436E+02	0.720E+05
16	O.828E+06	O.499E+02	0.720E+05
17	O.828E+06	0.571E+02	0.720E+05
18	O.828E+06	0.650E+02	0.720E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 1.0.0.1.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	O.505E+06	O.146E+02	0.720E+05
2	0.549E+06	O.177E+O2	0.720E+05
3	O.593E+06	0.212E+02	0.720E+05
4	O.635E+06	O.252E+02	0.720E+05
5	O.671E+06	O.299E+02	O.720E+05
6	O.703E+06	O.352E+O2	0.720E+05
7	0.732E+06	O.413E+02	0.720E+05
8	O.759E+06	O.482E+02	0.720E+05
9	O.784E+06	O.560E+O2	0.720E+05
10	O.804E+06	O.648E+02	0.720E+05
11	O.817E+06	0.895E+02	0.720E+05
12	0.823E+06	O.104E+03	0.720E+05
13	O.826E+06	O.120E+03	0.720E+05
14	O.827E+06	O. 138E+03	0.720E+05
15	O.828E+06	O.158E+03	0.720E+05
16	0.828E+06	O. 181E+03	0.720E+05
17	O.828E+06	O.207E+03	0.720E+05
18	O.828E+06	O.236E+O3	0.720E+05

VEHICLE COMBINATION (1=IN,O=OUT) 1 2 3 4 5 6 0.1.0.1.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT Cost
1	0.505E+06	O.559E+O1	0.720E+05
2	O.549E+06	O.674E+O1	0.720E+05
3	0.593E+06	O.810E+O1	0.720E+05
4	O.635E+06	O.966E+O1	0.720E+05
5	O.671E+06	O.115E+02	0.720E+05
6	O.703E+06	O. 135E+02	0.720E+05
7	O.732E+06	O. 158E+02	0.720E+05
8	O.759E+06	O.184E+02	0.720E+05
9	O.785E+06	O.214E+O2	0.720E+05
10	0.804E+06	O.248E+O2	0.720E+05
11	O.817E+06	O.342E+02	0.720E+05
12	O.823E+06	O.397E+O2	0.720E+05
13	O.826E+06	O.458E+O2	0.720E+05
14	O.827E+06	O.527E+O2	0.720E+05
15	O.828E+06	O.607E+02	0.720E+05
16	O.828E+06	O.694E+02	0.720E+05
17	O.828E+06	0.793E+02	0.720E+05
18	O.828E+06	O.904E+02	0.720E+05

VEHICLE COMBINATION (1=IN,0=DUT) 1 2 3 4 5 6 1.1.0.1.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	O.505E+06	O.180E+02	0.720E+05
2	O. 549E+06	O.217E+O2	0.720E+05
3	O.593E+06	O.261E+02	0.720E+05
4	0.635E+06	0.311E+02	0.720E+05
5	O 671E+06	O.36BE+02	0.720E+05
6	O.703E+06	O.434E+02	0.720E+05
7	O.732E+06	O.508E+02	0.720E+05
8	O.759E+06	O.593E+02	0.720E+05
9	O.784E+06	0.689E+02	0.720E+05
10	O.804E+06	0.798E+02	0.720E+05
11	O.817E+06	0.110E+03	0.720E+05
12	O.823E+06	O. 128E+03	0.720E+05
13	O.826E+06	O. 147E+03	0.720E+05
14	O.827E+06	O.170E+03	0.720E+05
15	O.828E+06	O. 195E+03	0.720E+05
16	O.828E+06	0.223E+03	0.720E+05
17	O.828E+06	0.255E+03	0.720E+05
1'8	0.828E+06	0.291E+03	0.720F+05

VEHICLE COMBINATION (1=IN,0=OUT) 1 2 3 4 5 6 0.0.1.1.

YEAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	0.505E+06	0.139E+05	0.720E+05
2	0.540E+06	0.167E+05	0.720E+05
3	0.578E+06	O.198E+05	0.720E+05
4	O.612E+06	O.234E+05	0.720E+05
5	0.640E+06	O.274E+05	0.720E+05
6	O.661E+06	0.319E+05	0.720E+05
7	O.678E+06	0.369E+05	0.720E+05
8	O.692E+06	0.423E+05	0.720E+05
9	O.702E+06	0.483E+05	0.720E+05
10	O.705E+06	0.547E+05	0.720E+05
11	0.700E+06	0.750E+05	0.720E+05
12	O.688E+06	0.848E+05	0.720E+05
13	0.672E+06	O.952E+05	0.720E+05
14	O.653E+06	0.106E+06	0.720E+05
15	0.633E+06	O.118E+06	0.720E+05
16	0.611E+06	O.129E+06	0.720E+05
17	0.588E+06	0.141E+06	0.720E+05
18	O.566E+06	O.153E+06	0.720E+05

VEHICLE COMBINATION (1=IN,0=0UT) 1 2 3 4 5 6 1.0.1.1.

YÉAR	ROUT MAINT COST	REHAB COST	PREV MAINT COST
1	0.505E+06	O.150E+05	O.720E+05
2	O.540E+06	O.179E+05	0.720E+05
3	0.577E+06	O.213E+05	0.720E+05
4	O.611E+06	O.251E+05	0.720E+05
5 6	0.638E+06	0.294E+05	0.720E+05
6	O,658E+06	0.342E+05	0.720E+05
7	0.674E+06	O.395E+05	0.720E+05
8	O.687E+06	O.453E+05	0.720E+05
9	O.696E+06	O.516E+05	0.720E+05
10	0.698E+06	O.584E+05	0.720E+05
11	O.692E+06	0.800E+05	0.720E+05
12	O.679E+06	O.903E+05	0.720E+05
13	O.662E+06	O. 101E+06	0.720E+05
14	O.642E+06	O.113E+06	0.720E+05
15	0.620E+06	O.124E+06	0.720E+05
16	O.598E+06	O. 136E+06	0.720E+05
17	0.575E+06	0.149E+06	0.720E+05
18	O.552E+06	0.161E+06	0.720E+05

VEHICLE COMBINATION (1=IN.O=OUT) 1 2 3 4 5 6 0.1.1.1.

YEAR	ROUT MAINT	REHAB	PREV MAINT
	COST	COST	COST
1	0.505E+06	0.141E+05	0.720E+05
2	0.540E+06	0.169E+05	0.720E+05
3	0.578E+06	0.201E+05	0.720E+05
4	0.612E+06	0.238E+05	
5	0.640E+06	0.278E+05	0.720E+05
6	0.661E+06		0.720E+05
7	O.677E+06	0.324E+05	0.720E+05
8		0.374E+05	0.720E+05
9	0.691E+06	0.429E+05	0.720E+05
	0.701E+06	0.490E+05	0.720E+05
10	0.704E+06	0.555E+05	0.720E+05
11	0.698E+06	0.761E+05	0.720E+05
12	0.686E+06	O.859E+05	0.720E+05
13	0.670E+06	O.965E+05	0.720E+05
14	0.651E+06	O.108E+06	0.720E+05
15	0.630E+06	O.119E+06	0.720E+05
16	0.608E+06	0.131E+06	0.720E+05
17	0.585E+06	0.143E+06	0.720E+05
18	O.563E+06	O.155E+06	O.720E+05

VEHICLE COMBINATION (1=IN,O=OUT·) 1 2 3 4 5 6 1.1.1.1.

USFLX A US RURAL HOT MIX HIGH TRAFFIC

YEAR	COST COST		PREV MAINT COST	
1	0.505E+06	O. 152E+05	0.720E+05	
2	O.540E+06	O. 182E+05	0.720E+05	
3	O.577E+06	O.216E+05	0.720E+05	
4	O.610E+06	O.255E+05	0.720E+05	
5	O.637E+06	0.299E+05	0.720E+05	
6	O.658E+06	0.347E+05	0.720E+05	
7	O.673E+06	O.401E+05	0.720E+05	
8	O.686E+06	0.459E+05	0.720E+05	
9	O.695E+06	O.523E+05	0.720E+05	
10	O.697E+06	O.592E+05	0.720E+05	
11	O.690E+06	0.811E+05	0.720E+05	
12	O.677E+06	0.914E+05	0.720E+05	
13	O.659E+06	O. 102E+06	0.720E+05	
14	O.639E+06	O. 114E+06	0.720E+05	
15	O.618E+06	0.126E+06	0.720E+05	
16	O.595E+06	O.138E+06	0.720E+05	
17	O.572E+06	0.150E+06	0.720E+05	
18	O.549E+06	O. 162E+Q6	0.720E+05	

156

APPENDIX 4

MODIFIED INCREMENTAL APPROACH BASIC CODE

•		

MODIFIED INCREMENTAL APPROACH BASIC CODE

FILE NAME: MIA

THE MODIFIED INCREMENTAL APPROACH IS EXECUTED BY CALLING THIS ROUTINE, WHICH ASKS FOR INPUT DATA AND CALCULATES COST PARTITIONS (P) AS DISCUSSED IN CHAPTER 4.

```
1 COMMON NVC, NDIM, P()
10 '
20 '
           INPUT ROUTINE
30 '
35 PRINT CHR$(26):PRINT:PRINT:PRINT
40 INPUT "NUMBER OF VEHICLE CLASSES"; NVC
41 LPRINT "NUMBER OF VEHICLE CLASSES: "; NVC
50 \text{ NDIM} = 2^{\circ} \text{NVC} - 1
60 DIM COMBI(NDIM), BIN(NVC), P(NDIM)
61 DIM SUMP(NDIM)
70 PRINT: PRINT: LPRINT: LPRINT: LPRINT
80 FOR INDEX=0 TO NDIM
85 PRINT
90 	ext{ IEXP} = 1
95
         IF INDEX=0 THEN PRINT"COST OF DESIGN FOR NO
                          CLASSES"::LPRINT "COST OF DESIGN FOR
                          NO CLASSES";:GOTO 220
100 PRINT "COST OF DESIGN FOR CLASSES";
101
        LPRINT "COST OF DESIGN FOR CLASSES ":
110 INQUOT = INDEX
120 \text{ QUOT} = \text{INQUOT}/2
130 \text{ INOUOT} = \text{INT(OUOT)}
140 \text{ RES} = (QUOT-INQUOT)*2
150
             IND = RES*IEXP
160 IF IND <> 0 THEN PRINT IND::LPRINT IND:
170 WHILE INQUOT>0
             IF IND<>0 THEN PRINT ",";:LPRINT ",";
130
190
             IEXP = IEXP+1
200
             GOTO 120
210 WEND
215 PRINT TAB(60);:LPRINT TAB(60);
220 INPUT ": ",COMBI(INDEX)
221 LPRINT ": "; COMBI(INDEX)
230 NEXT INDEX
240 GOSUB 1000
300 '
309 '
        CREATE COST PARTITIONS
        CONVERT INDEXES TO BINARY
315 PRINT CHR$(26)
320 '
```

```
330 FOR IOTA=1 TO NDIM
340 FOR J=1 TO NVC
350 BIN(J)=0
360 NEXT J
370 INQUOT=IOTA
380 J=1
390 QUOT=INQUOT/2
400 INQUOT=INT(QUOT)
410 RES=(QUOT-INOUOT)*2
420 BIN(J)=RES
430 IF INQUOT=0 THEN GOTO 493
440 J=J+1 : GOTO 390
493 '
600 '
610 '
        IDENTIFY POSITIONS FOR ONES
620 '
622 FOR K=1 TO NVC:PST(K)=0:NEXT K
630 IDX=0
640 FOR J=1 TO NVC
650 IF BIN(J)=0 THEN GOTO 680
660 IDX=IDX+1
670 \text{ PST(IDX)=J}
680 NEXT J
700 NCOMB=2@IDX-2
705 DIM CB(NCOMB)
710 FOR J=1 TO NCOMB
720 CB(J)=0
730 INOUOT=J
740 PINX=0
750 INX=1
760 QUOT=INQUOT/2
770 INQUOT=INT(QUOT)
780 RES=(QUOT-INQUOT)*2
790 PINX=PINX+RES*(2^{\Theta}(PST(INX)-1))
800 \text{ INX=INX+1}
810 IF INQUOT<>0 THEN GOTO 760
820 CB(J) = P(PINX)
830 NEXT J
900 '
901 '
        SUM OF COMBINATIONS
902
923 SUMP(IOTA)=0
925 FOR J=1 TO NCOMB
930
      SUMP(IOTA)=SUMP(IOTA)+CB(J)
940 NEXT J
950 P(IOTA)=P(IOTA)-SUMP(IOTA)
952 PRINT"COST DUE TO THE ACTION OF CLASSES";
953 FOR W=1 TO IDX:PRINT PST(W);:NEXT W:PRINT "IS
960 PRINT P(IOTA):PRINT
962 ERASE CB
970 NEXT IOTA
980 CHAIN "GENER",,ALL
```

```
1000 FOR INDEX=0 TO NDIM

1010 P(INDEX)=COMBI(NDIM)-COMBI(NDIM-INDEX)

1020 NEXT INDEX

1030 RETURN
```

FILE NAME: GENER.BAS

THIS PROGRAM ACCEPTS VEHICLE-MILES-OF-TRAVEL DATA FOR EACH VEHICLE CLASS, CALCULATES ALLOCATED COSTS, AND REPORTS RESULTS FROM THE MODIFIED INCREMENTAL APPROACH.

```
10 DIM PMAT(NVC,NDIM), VREC(NDIM), VMT(NVC), VMTMAT(NVC,NVC)
20 '
30 '
       *** INPUT VALUES OF VMT ***
40
45 LPRINT:LPRINT:LPRINT
50 FOR I=1 TO NVC
      PRINT "VEHICLE MILES OF TRAVEL FOR VEHICLE CLASS":1:
60
70
      INPUT ": ",VMT(I)
71
      LPRINT "VEHICLE MILES OF TRAVEL FOR VEHICLE CLASS";
             I;": "; VMT(I)
80 NEXT I
90 '
100 '
        *** GENERATE J'th COLUMN OF PMAT AND J'th ELEMENT OF
        VREC ***
110 '
120 FOR J=1 TO NDIM
130
       POSITION=1
140
      SUMVMT=0
150 '
160 '
       CONVERT J TO BINARY
170 '
180
       INQUOT=J
190
       OUOT=INOUOT/2
200
       INOUOT=INT(OUOT)
210
       RES=(QUOT-INQUOT)*2
220 '
           STORE P(J) IN APPROPRATE POSITION IN COLUMN J
230
       PMAT(POSITION, J) = RES*P(J)
240 '
           ACCUMULATE DENOMINATOR OF J'th VREC ELEMENT
250
      SUMVMT=SUMVMT+RES*(VMT(POSITION))
260
       POSITION=POSITION+1
       IF INQUOT>0 THEN GOTO 190
270
280 '
           GENERATE J'th ELEMENT OF VREC
290
       IF SUMVMT=0 THEN VREC(J)=0 ELSE VREC(J)=1/SUMVMT
300 NEXT J
310 '
320 '
        *** GENERATE VMTMAT ***
330 '
340 FOR I=1 TO NVC
350
       FOR J=1 TO NVC
360
          IF I=J THEN VMTMAT(I,J)=VMT(I) ELSE VMTMAT(I,J)=0
370 NEXT J:NEXT I
470 '
480 '
      *** MULTIPLY [VMTMAT] [PMAT] [VREC] TO GET [ALLOC]
481 '
490 FLAG=0
500 ADIM=NVC
```

```
510 ABDIM=NVC
520 BDIM=NDIM
530 DIM A(ADIM, ABDIM), B(ABDIM, BDIM)
540 FOR I=1 TO ADIM
550
        FOR J=1 TO ABDIM
560
          A(I,J) = VMTMAT(I,J)
       NEXT J
570
580
       FOR K=1 TO BDIM
590
           B(I,K) = PMAT(I,K)
600
       NEXT K
610 NEXT I
620 GOSUB 2000
630 DIM ALLOC(NVC,NDIM)
640 FOR I=1 TO NVC
650
       FOR J=1 TO NDIM
          ALLOC(I,J)=C(I,J)
660
670 NEXT J:NEXT I
680 ERASE A.B.C
690 ADIM=NVC
700 ABDIM=NDIM
710 BDIM=1
720 DIM A(ADIM, ABDIM), B(ABDIM, BDIM)
730 FOR J=1 TO ABDIM
740
       FOR I=1 TO ADIM
750
          A(I,J) = ALLOC(I,J)
760
       NEXT I
770
       B(J,BDIM) = VREC(J)
780 NEXT J
785 FLAG=1
790 GOSUB 2000
800 ERASE ALLOC
810 PRINT CHR$(26):PRINT:PRINT:PRINT
811 LPRINT:LPRINT:LPRINT
820 FOR I=1 TO NVC
830
        ALLOC (I)=C(I,1)+VMT(I)*VREC(NDIM)*COMBI(0)
840
       PRINT: LPRINT
850
       PRINT "COST ALLOCATED TO VEHICLE CLASS"; 1; ": $";
             ALLOC(I)
851
       LPRINT "COST ALLOCATED TO VEHICLE CLASS"; I; ": ";
              ALLOC(I)
860 NEXT I
870 ZARRAP$=INKEY$
890 IF ZARRAP$="" THEN GOTO 870
900 END
2000 CHAIN "MATPROD",,ALL
2010 IF FLAG THEN 800 ELSE 630
2020 RETURN
```

FILE NAME: MATPROD.BAS

THIS ROUTINE PERFORMS MATRIX PRODUCTS.

```
10 DIM C(ADIM, BDIM)
20 '
30 '
            PERFORM MATRIX MULTIPLICATION
40 '
50 FOR I=1 TO ADIM
60 FOR J=1 TO BDIM
70
            C(I,J)=0
80
            FOR K=1 TO ABDIM
90
                      C(I,J)=C(I,J)+A(I,K)*B(K,J)
100
            NEXT K
110 NEXT J
120 NEXT I
130 CHAIN "GENER", 2010, ALL
```

	·	

APPENDIX 5

SAMPLE RUN FOR THE MODIFIED INCREMENTAL APPROACH

NUMBER OF VEHICLE CLASSES: 4

COST	0 F	DESIGN	FOR	NO CLASS	ES	:	0						
COST	OF	DESIGN	FOR	CLASSES	1							:	1.06
COST	OF	DESIGN	FOR	CLASSES	2							:	.76
COST	OF	DESIGN	FOR	CLASSES	1	,	2					:	1.11
COST	0 F	DESIGN	FOR	CLASSES	3	•						:	1.87
COST	OF	DESIGN	FOR	CLASSES	1	,	3					:	2.04
COST	0 F	DESIGN	FOR	CLASSES	2	,	3					:	1.9
COST	OF	DESIGN	FOR	CLASSES	1	,	2	,	3			:	2.06
COST	\mathbf{OF}	DESIGN	FOR	CLASSES	4							:	1.18
COST	OF	DESIGN	FOR	CLASSES	1	,	4					:	1.46
COST	OF	DESIGN	FOR	CLASSES	2	,	4					:	1.24
COST	OF	DESIGN	FOR	CLASSES	1	,	2	,	4			:	1.51
COST	\mathbf{OF}	DESIGN	FOR	CLASSES	3	,	4					:	2.105
COST	\mathbf{OF}	DESIGN	FOR	CLASSES	1	,	3	,	4			:	2.22
COST	\mathbf{OF}	DESIGN	FOR	CLASSES	2	,	3	,	4			:	2.13
COST	\mathbf{OF}	DESIGN	FOR	CLASSES	1	,	2	,	3	,	4	:	2.24

VEHICLE MILES OF TRAVEL FOR VEHICLE CLASS 1: 96.43
VEHICLE MILES OF TRAVEL FOR VEHICLE CLASS 2: 1.18
VEHICLE MILES OF TRAVEL FOR VEHICLE CLASS 3: 2.06
VEHICLE MILES OF TRAVEL FOR VEHICLE CLASS 4: .33

COST ALLOCATED TO VEHICLE CLASS 1: 1.03065

COST ALLOCATED TO VEHICLE CLASS 2: .0393068

COST ALLOCATED TO VEHICLE CLASS 3: .95709

COST ALLOCATED TO VEHICLE CLASS 4: .212958

APPENDIX 6 GENERALIZED METHOD BASIC CODE

GENERALIZED METHOD BASIC CODE

FILE NAME: GM2.BAS

THIS ACCEPTS INPUT DATA AND CONSTRUCTS THE INITIAL MATRIX FOR THE LINEAR PROGRAMMING PROCEDURE INVOLVED IN THE GENERALIZED METHOD.

```
PRINT CHR$(26)
20 INPUT "Number of vehicle classes: ",NVC
21 LPRINT "Number of vehicle classes: ":NVC
30 PRINT CHR$(26)
40 NDIM=2@NVC-1
50 DIM INTABLE(NDIM+2,NVC+2)
60 FOR I=1 TO NDIM+2
7.0
      FOR J=1 TO NVC+2
8.0
         INTABLE(I,J)=0
90 NEXT J:NEXT I
95 LPRINT:LPRINT:LPRINT
100 FOR I=1 TO NDIM
110
    JCOLUMN=1
120
     INQUOT=I
130
    PRINT"COST WHEN SYSTEM IS USED BY VEHICLE CLASSES";
131
     LPRINT "COST WHEN SYSTEM IS USED BY VEHICLE CLASSES";
140
     QUOT=INQUOT/2
150
     INQUOT=INT(QUOT)
160
     RES=(OUOT-INOUOT)*2
     INTABLE(I, JCOLUMN) = RES
170
180 LABL=RES*JCOLUMN
190
    IF LABL><0 THEN PRINT LABL;:LPRINT LABL;
200
     WHILE INOUOT><0
210
        IF LABL<>0 THEN PRINT ",";:LPRINT ",";
220
        JCOLUMN=JCOLUMN+1
230
        GOTO 140
240
    WEND
250
     PRINT TAB(60);:LPRINT TAB(60);
     INPUT ": ", INTABLE(I,NVC+2)
260
     LPRINT ": "; INTABLE(I,NVC+2)
261
270 NEXT I
280 FOR I=1 TO NDIM-1
290
       INTABLE(I,NVC+1)=1
300 NEXT I
310 INTABLE(NDIM, NVC+1)=0
320 FOR J=1 TO NVC+2
330
       INTABLE(NDIM+1,J)=-INTABLE(NDIM,J)
340 NEXT J
350 INTABLE(NDIM+2,NVC+1)=1
360 PRINT CHR$(26)
```

FILE NAME: SLP.BAS

THIS FILE SOLVES THE LINEAR PROGRAMMING PROBLEM ASSOCIATED WITH THE GENERALIZED METHOD AND PERFORMS A TEST FOR MULTIPLE SOLUTIONS. THE LINEAR PROGRAMMING PROBLEM IS SOLVED THROUGH THE SO-CALLED SYMMETRIC METHOD.

```
30 X$="X":Y$="Y":TOL=.0001
40 GOSUB 1200
50 FOR I=1 TO NR:R$(I)=Y$:IROW(I)=I:NEXT I
60 FOR J=1 TO NC:C$(J)=X$:JCOL(J)=J:NEXT J
70 GOTO 90
80 GOTO 390
90 \text{ PIV} = -1\text{E} + 38
100 LL=1
110 MM = 5
120 IF MM>NC THEN MM=NC
130 REM PRINT TABLE HEADINGS. COLUMN INDICATORS
140 PRINT:PRINT "
                     "; KNT;" -----"
150 PRINT
160 PRINT TAB(9);
170 FOR J=LL TO MM
       PRINT USING" !";C$(J);
PRINT USING"## ";JCOL(J);
180
190
200 NEXT J
210 IF MM=NC THEN PRINT " R.H.S." ELSE PRINT
220 PRINT
230 \text{ MMM} = \text{MM} + 1
240 FOR I=1 TO NR
       PRINT USING" !";R$(I);
       PRINT USING"## ";IROW(I');
260
270
       FOR J=LL TO MMM
          PRINT USING" ##.###@@@@ ";TABLE(I,J);
280
290 NEXT J:PRINT
300 NEXT I:PRINT
310 PRINT " OBJ ";
320 FOR J=LL TO MMM
        PRINT USING" ##.###@@@@ ";TABLE(NI,J);
330
340 NEXT J:PRINT:PRINT
350 LL=LL+5
360 IF LL>NC GOTO 390
370 MM=MM+5
380 GOTO 120
390 KNT=KNT+1
400 MM = 0
410 REM
          CHECK ROW INDICATORS
420 FOR I=1 TO NR
430 IF TABLE(I,NJ)>=0 GOTO 600
440 MM = 1
450 CH=1E+38
460 FOR J=NEP TO NC
```

```
470 IF TABLE(I,J)>=0 GOTO 530
480 IF TABLE(NI,J)>0 GOTO 530
490 VALUE=TABLE(NI,J)/TABLE(I,J)
500 IF VALUE>=CH GOTO 530
510 CH=VALUE
520 JC=J
530 NEXT J
540 IF CH=1E+38 GOTO 600
550 VALUE = -TABLE(NI,JC)*TABLE(I,NJ)/TABLE(I,JC)
560 IF VALUE<=PIV GOTO 600
570 PIV=VALUE
580 II=I
590 JJ=JC
600 NEXT I
610 REM
           CHECK COLUMN INDICATORS
620 FOR J=NEP TO NC
630 IF TABLE(NI,J)<=0 GOTO 800
640 MM = 1
650 CH=1E+38
660 FOR I=1 TO NR
670
           IF TABLE(I,J)\leq=0 GOTO 730
680
          IF TABLE(I,NJ)<0 GOTO 730
690
           VALUE=TABLE(I,NJ)/TABLE(I,J)
700
          IF VALUE>=CH GOTO 730
710
          CH=VALUE
720
          IR=I
730
       NEXT I
740
       IF CH=1E+38 GOTO 800
750
       VALUE=TABLE(NI,J)*TABLE(IR,NJ)/TABLE(IR,J)
760
       IF VALUE<PIV GOTO 800
770
       PIV=VALUE
780
       II=IR
790
       JJ=J
800 NEXT J
810 REM
            OPTIMAL SOLUTION
820 IF MM=0 GOTO 1050
830 REM
            INFEASIBLE SOLUTION
840 IF PIV=-1E+38 GOTO 1070
850 REM PERFORM INVERSION WITH INDICATED PIVOT ELEMENT
860 FOR I=1 TO NI
870
       IF I=II GOTO 920
880
       FOR J=1 TO NJ
890
          IF J=JJ GOTO 910
900
          TABLE(I,J) = TABLE(I,J) -
                      TABLE(II,J)*TABLE(I,JJ)/TABLE(II,JJ)
910
       NEXT J
920 NEXT I
930 FOR J=1 TO NJ
940 IF J=JJ GOTO 960
950
       TABLE(II,J)=TABLE(II,J)/TABLE(II,JJ)
960 NEXT J
970 FOR I=1 TO NI
```

```
980 IF I=II GOTO 1000
990
       TABLE(I,JJ)=-TABLE(I,JJ)/TABLE(II,JJ)
1000 NEXT I
1010 TABLE(II,JJ)=1/TABLE(II,JJ)
1020 SWAP IROW(II), JCOL(JJ)
1030 SWAP R$(II),C$(JJ)
1040 GOTO 90
                                   ***** OPTIMAL SOLUTION
1050 PRINT "
             *****":PRINT
1060 GOTO 1080
                                  ***** INFEASIBLE SOLUTION
1070 PRINT "
             *****":PRINT:END
1080 FOR J=1 TO NC
1090 IF TABLE (NI,J)<>0 THEN GOTO 1130
                                 **** MULTIPLE SOLUTIONS
1100
       PRINT "
                ****
1110
        INPUT "Press <RETURN> to continue", DUM$
        CHAIN "EFECT", ALL
1120
1130 NEXT J
1140 INPUT "Press <RETURN> to continue", DUM$
1150 CHAIN "RESULTS", ALL
1200 FOR I=1 TO NI
1210
      FOR J=1 TO NJ
1220
          TABLE(I,J)=INTABLE(I,J)
1230
     NEXT J
1240 NEXT I
1250 RETURN
```

FILE NAME: EFECT.BAS

THIS ROUTINE CALCULATES RELATIVE STATISTICAL COST EFFECTS FOR EACH OF THE VEHICLE CLASSES.

```
10 DIM EFFC(NVC), Al(NDIM+1,NVC), B(NDIM+1)
20 SUMEFC=0
30 INPUT "FRACTION OF THE TOTAL COST ATTRIBUTABLE TO THE
           ENVIRONMENT :", PENV
40 FOR JCL=1 TO NVC
50
      EFFC(JCL)=0
60
         FOR IRW=1 TO NDIM
70
             IF INTABLE(IRW,JCL)=1 THEN EFFC(JCL)=EFFC(JCL)+
                                        INTABLE(IRW,NVC+2)
                                   ELSEEFFC(JCL)=EFFC(JCL)-
                                        INTABLE(IRW, NVC+2)
75
            Al(IRW,JCL)=INTABLE(IRW,JCL)
80
         NEXT IRW
85
         Al(NDIM+1,JCL) = -Al(NDIM,JCL)
90
         EFFC(JCL)=(EFFC(JCL)-PENV*INTABLE (NDIM,NVC+2))/2<sup>©</sup>(NVC-1)
100
         SUMEFC=SUMEFC+EFFC(JCL)
110 NEXT JCL
120 FOR JCL=1 TO NVC
130
       EFFC(JCL)=EFFC(JCL)/SUMEFC
140
       PRINT EFFC(JCL), EFFC(JCL)*SUMEFC
150 NEXT JCL
160 FOR I=1 TO NDIM+1
       B(I)=INTABLE(I,NVC+2)
170
180 NEXT I
190 FOR I=1 TO NR
200
       IF IROW(I)=NVC+1 THEN IF R$(I)="X" THEN T=TABLE(I,NJ)
                                               : GOTO 250
210 NEXT I
220 T=0 : PRINT "
                       ***** NO BASIC SOLUTION FOR T *****"
250 CHAIN "NEWMAT",,ALL
260 END
```

FILE NAME: NEWMAT.BAS

AN INITIAL LINEAR PROGRAMMING MATRIX FOR THE SECOND PHASE OF THE GENERALIZED METHOD IS GENERATED IN THIS ROUTINE. THIS ROUTINE IS EXECUTED ONLY WHEN THE FIRST PHASE YIELDS MULTIPLE SOLUTIONS.

```
ERASE INTABLE, TABLE, R$, C$, IROW, JCOL
10 DIM INTABLE (2<sup>©</sup>NVC+2*NVC+1,3*NVC+1)
20 FOR IRW=1 TO 20NVC
30
      FOR JCL=1 TO NVC
40
          INTABLE (IRW,JCL)=Al(IRW,JCL)
45
      NEXT JCL
5.0
       IF IRW<2@NVC-1 THEN INTABLE (IRW,3*NVC+1)=B(IRW)-T
                        ELSE INTABLE (IRW, 3*NVC+1)=B(IRW)
60 NEXT IRW
100 FOR JCL=1 TO NVC
       IRW=2*JCL-1
110
120
       IX=2©NVC+IRW
130
      JX=NVC+IRW
      INTABLE(IX,JCL)=1/B(2@NVC-1)
140
150
      INTABLE(IX+1,JCL)=-1/B(2@NVC-1)
160
     INTABLE(IX,JX)=1
170 INTABLE(IX+1,JX)=-1
180
      INTABLE(IX,JX+1)=-1
190 INTABLE(IX+1,JX+1)=1
200
      INTABLE(IX,3*NVC+1)=EFFC(JCL)
210
      INTABLE(IX+1,3*NVC+1)=-EFFC(JCL)
220 NEXT JCL
230 FOR J=NVC+1 TO 3*NVC
240
       INTABLE(2^{\circ}NVC+2^{*}NVC+1,J)=-1
250 NEXT J
260 FOR I=1 TO 2^{\circ}NVC+2*NVC+1
       FOR J=1 TO 3*NVC+1
270
280
           IF J<>3*NVC+1 THEN PRINT INTABLE(I,J);"
                         ELSE PRINT INTABLE(I,J)
290 NEXT J,I
300 DIM TABLE(2@NVC+2*NVC+1,3*NVC+1),IROW(2@NVC+2*NVC+1),
        JCOL(3*NVC+1)
310 DIM R$(2^{\circ}NVC+2*NVC+1), C$(3*NVC+1)
320 NR=2^{\circ}NVC+2^{*}NVC : NC=3^{*}NVC
330 NI=NR+1 : NJ=NC+1
340 CHAIN "SLP2", ALL
```

FILE NAME: RESULTS.BAS

FINAL RESULTS OF THE GENERALIZED METHOD ARE OUTPUT USING THIS PROGRAM.

```
10 DIM ALLOC(NVC)
20 REM THIS PROGRAM PRINTS THE RESULTS OF THE
30 REM GENERALIZED COST ALLOCATION METHOD
40 '
50 '
       LOOK FOR BASIC VARIABLES
60 '
70 FOR I=1 TO NR
80
      IF R$(I)<>"X" THEN GOTO 110
90
         IF IROW(I)>NVC THEN GOTO 110
100
             ALLOC(IROW(I))=TABLE(I,NJ)
110 NEXT I
120 '
130 '
        PRINT COST ALLOCATIONS
140
145 LPRINT:LPRINT:LPRINT
150 PRINT CHR$(26):PRINT:PRINT:PRINT
160 FOR J=1 TO NVC
170
       PRINT:LPRINT
180
       PRINT "COST ALLOCATED TO VEHICLE CLASS"; J; ": ";
              ALLOC(J)
181
       LPRINT "COST ALLOCATED TO VEHICLE CLASS"; J; ":";
               ALLOC(J)
190 NEXT J
200 END
```

		·

APPENDIX 7

SAMPLE RUN FOR THE GENERALIZED METHOD

*			

Number of vehicle classes: 4

COST	FOR	VEHICLE	CLASSES	1									:	1.06
COST	FOR	VEHICLE	CLASSES	2									:	.76
COST	FOR	VEHICLE	CLASSES	1	,	2							:	1.11
COST	FOR	VEHICLE	CLASSES	3									:	1.87
COST	FOR	VEHICLE	CLASSES	1	,	3							:	2.04
COST	FOR	VEHICLE	CLASSES	2	,	3						:		
COST	FOR	VEHICLE	CLASSES	1	,	2	,	3					:	2.06
COST	FOR	VEHICLE	CLASSES	4								;	:	1.18
COST	FOR	VEHICLE	CLASSES	1	,	4						;		
COST	FOR	VEHICLE	CLASSES	2	,	4						:		
COST	FOR	VEHICLE	CLASSES	1	,	2	,	4				;	:	1.51
COST	FOR	VEHICLE	CLASSES	3	,	4								
COST	FOR	VEHICLE	CLASSES	1	,	3	,	4				;		
COST	FOR	VEHICLE	CLASSES	2	,	3	,	4				:	:	2.13
COST	FOR	VEHICLE	CLASSES	1	,	2	,	3	,	4		:	:	2.24

COST ALLOCATED TO VEHICLE CLASS 1: .41

COST ALLOCATED TO VEHICLE CLASS 2: .32

COST ALLOCATED TO VEHICLE CLASS 3: 1.03

COST ALLOCATED TO VEHICLE CLASS 4: .48