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PREFACE

The information contained herein was developed on research study 2-5-62-33
entitled “Piling Behavior” which is a cooperative research study sponsored jointly
by the Texas Highway Department and the U. S. Department of Transportation,
Federal Highway Administration, Bureau of Public Roads. The broad objective of
this study 1s to fully develop the use of a computer solution of the wave equation so
that it may be used to predict driving stresses in piling and to estimate static load
bearing capacity of piling.

This report concerns itself with the following specific items in the work plan as
set forth in the study proposal:

1. To determine the effect of dynamic damping in concrete and steel piling on
the impact longitudinal stress waves. This was accomplished by correlating theoreti-
cal stress waves with data obtained from full scale piles tested under controlled
conditions.

2. To study the dynamic load-deformation properties of cushioning materials
and their effect on the stress waves in piling. This was accomplished by correlating
theoretical stress waves with data from full scale pile tests under controlled condi-
tions. Theoretical results were compared with experimental data gathered for various
cushion materials.

3. To evaluate the true energy output of different pile driving hammers (single
acting steam hammers, double acting steam hammers, and open and closed end diesel
hammers) using the wave equation to analyze portions of data obtained by the Michi-
gan State Highway Commission and published in a report entitled “A Performance
Investigation of Pile Driving Hammers and Piles.”

4. To determine a uniform basis of rating pile driver energy output applicable
to different type hammers.

5. To correlate the wave equation with suitable experimental test data.

During the course of investigation of the above items, the factors listed below
were also found to influence the wave equation results, and therefore were also in-
vestigated and are reported herein:

1. A study of the effect of ram elasticity on piling behavior.
2. A study of the influence of parameters used to describe soil behavior.

The information reported herein is necessary in order to understand the dynamic
behavior of piling and to properly simulate pile driving hammers, capblocks and
cushion blocks, piles, and soils for wave equation analysis of piling behavior.

The opinions, findings and conclusions expressed in this report are those of the
authors and not necessarily those of the Bureau of Public Roads.
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Pile Driving Analysis - Simulation of Hammers, Cushions,
Piles, and Soil

Chapter I
INTRODUCTION

General Background

The problem of pile-driving analysis has been of
great interest to engineers for many years. Ever since
the first engineer proposed a method for predicting the
load carrying capacity of a pile, the whole subject of pile
driving has become a much debated field in engineering.
In other areas new methods of analysis for structural
elements and systems are constantly being proposed with
little or no resulting discussion. However, the proposal
of a new piling analysis is sure to stir much interest and
often some rather heated discussions.

Since over four-hundred pile-driving formulas have
been proposed,! not including the countless formula
modifications which are used,? many engineers resort to
the use of only one or two formulas regardless of the
driving conditions encountered.? Although many of the
erroneous assumptions made in these formulas have been
widely discussed,*® the fact that they omit many signifi-
cant parameters which affect the problem seems to have
received less attention. However, when the driving for-
mulas omit parameters which change from case to case,
the engineer has no means of determining how signifi-
cant the parameter may be, nor can he tell in which
direction or to what extent the change will vary the
results. Thus, to obtain an accurate solution obviously
requires that fewer erroneous assumptions be made re-
garding the dynamic behavior of the materials and equip-
ment used in pile driving, and that all significant param-
eters are included in the analysis.

The first of these problems was solved when it was
noted that pile driving is actually a case of longitudinal
impact, governed by the wave equation rather than by
statics or rigid-body dynamics.®” However, since the
exact simulation and solution of the wave equation ap-
plied to piling are extremely complex for all but the
simplest problems, many significant parametérs still had
to be neglected.

The second problem was solved by Smith® who
proposed a numerical solution to the wave equation,
capable of including any of the known parameters in-
volved in pile-driving analysis. This method of :analysis
was applicable to tapered, stepped, and composite piles,
to nonlinear soil resistances and damping, to piles with
cushions, followers, helmets, etc. In other words, it was
a completely general method of analysis for the problem
of pile driving.

It should be noted that much of the experimental
work used in this report was reported by other investi-
gators. These cases are referenced, and the problem
number or name used herein will be the same as used
by the original reporter. This will enable the reader to

determine any additional information about the problem
being solved by referring to the original paper.

Objectives

The objectives of this research were:

1. To review and summarize Smith’s original meth-
od of analysis and to derive a more general solution.

2. To determine how the numerical solution is
affected by the elasticity of the ram. '

3. To determine the energy output of different type
pile hammers.

4. To compare results given by the wave equation
with those determined by laboratory experiments and
field tests.

5. To illustrate the significance of the parameters
involved, including cushion stiffness and damping, ram
velocity, material damping in the pile, soil damping and
quake, and to determine the quantitative effect of these
parameters where possible.

6. To show how the wave equation can be used to
determine the dynamic or impact characteristics of the
materials involved.

7. To determine the dynamic properties of the
cushion subjected to impact loading.

8. To study the effect of internal damping in the
pile and its significance.

Literature Review

The basic purpose of any pile driving formula is to
permit the design of a functional yet economical foun-
dation. According to Chellis,® there are four basic types
of driving formulas:

1. Empirical formulas, which are based on statisti-
cal investigations of pile load tests,

2. Static formulas, which are based on the side
frictional forces and point bearing force on the pile, as
determined by soils investigations,

3. Dynamic formulas, which assume that the dy-
namic soil resistance is equal to the static load capacity
of the pile, and

4. The wave equation, which assumes only those
material properties whose dynamic behavior is not com-
pletely understood and- has not yet been determined
experimentally. Each of the preceding formulas has
advantages and disadvantages which have been widely
noted!®!! and need not be restated at this time.
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Isaacs is thought to have first noted that the wave
equation is applicable to the problem of pile driving.!?
However, Fox*® was probably the first person to propose
that an exact solution be used for pile-driving analysis.
Shortly thereafter, Glanville, Grime, Fox, and Davies*
published the first correlations between experimental
studies and results determined by the exact solution to
the wave equation developed by Fox. Since this exact
solution was extremely complex, they were forced to use
simplified boundary conditions including zero side fric-
tional resistance, -a perfectly elastic cushion block, and
an elastic soil spring acting only at the tip of the pile.
However, even using these simplified boundary condi-
tions, they obtained reasonably accurate results.

In 1940 Cummings'® discussed several errors in-
herent in dynamic pile-driving formulas and reviewed
the previous work done using the wave equation. How-
ever, he also noted that even for the simplest problems,
“the complete solution includes long and complicated
mathematical expressions so that its use for a practical
problem would involve laborious numerical calculations.”

A practical pile-driving problem usually involves
side frictional soil resistance, soil damping constants,
nonlinear cushion and capblock springs, and other fac-
tors which prevent a direct solution of the resulting
differential equation. However, in 1950 Smith!® pro-
posed a mathematical model and a corresponding nu-
merical method of analysis which accounted for the
effects of many of these parameters. He has continued

to update this method and published various other
works.17:18:19,20,21

Smith’s method of analysis did not really become
popular until 1960 when bhe published a summary of the
method’s application to the problem of pile-driving analy-
sis.22 In this paper he recommended a number of ma-
terial constants and the material behavior curves re-
quired to account for the dynamic action of the soil,
cushion, and pile material.

Smith’s method of analyzing pile-driving problems
received considerable interest,?® and two immediate ap-
plications of the wave equation were suggested:

1. The immediate application of the wave equation,
using the most probable material properties to predict
ultimate driving resistance ‘and driving stresses.

2. Tts use to perform extensive parameter studies
in order to determine trends and to gain more insight
into the behavior of pile driving, and also determine the
relative significance of these parameters.

Immediately after the appearance of Smith’s paper
in 1960, the Bridge Division of the Texas Highway
Department initiated a research project with the Texas
Transportation Institute to perform exhaustive studies
of the behavior of piling by the wave equation. The first
report dealt with a computer program based on Smith’s
numerical solution.?# This program was used to deter-
mine the driving stresses induced in a number of pre-
stressed concrete piles which had failed during driving,?®
and later to check the conditions at similar sites at which
pile breakage due to excessive driving stresses might be
experienced.?®

Forehand and Reese?® investigated the possibility:
of predicting the ultimate bearing capacity of piling
using the wave equation, but since complete data were
available for relatively few problems, they were unable
to draw many firm conclusions. They also studied the
dynamic action of the soil during driving and recom-
mended some values for the soil parameters used in the
wave equation.

In August, 1963 several extensions of Smith’s method
were presented by the writers.?? Two simple cases for
which “exact” solutions were known were compared
with Smith’s numerical solution to indicate the method’s
accuracy. A third section of the paper presented the
results of a short parameter study which indicated how
certain trends in pile driving might be determined and
how to study the significance of various parameters.
The results for several theoretical and field test problems
were also compared.

In 1963 the writers®® published a study on the
methods employed in measuring dynamic stresses and
displacements of piling during driving, and presented
further experimental and theoretical comparisons “to
demonstrate that the computer solution of the wave
equation offers a rational approach to the problems
associated with the structural behavior of piling during
driving.” This report was based on an earlier study
dealing with driving prestressed concrete piles.3! :

An investigation by Hirsch3? involved a study of the
variables which affected the behavior of concrete piles
during driving. Over 2100 separate problems were
solved and the results were presented in the form of
graphs for use by design engineers.

Later publications dealt with the dynamic load-
deformation properties of various pile cushion materials
and other dynamic properties of materials required to
simulate as closely as possible the actual behavior of
a pile during driving.3334:35:36

Chapter II

A NUMERICAL METHOD OF ANALYSIS

The Basic Solution

Since 1931, it has been realized that pile driving
involved theories of longitudinal impact rather than
statics. However, the application of the wave equation
to pile driving was restricted to very simple problems
because the exact solution was complex, involved much
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labor, and for most practical cases, required many sim-
plifying assumptions.

In 1950, Smith3" proposed an approximate solution’
based on concentrating the distributed mass of the pile,
as shown in Figure 2.1a, into a series of small weights,
W (1) thru W(MP), connected by weightless springs
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K(1) thru K(MP—1), with the addition of soil re-
sistance acting on the masses, as illustrated in Figure
2.1b. Time also was divided into small increments. This
numerical solution was then applied by the repeated use
of the following equations, developed by Smith:%8

D(mt) = D(m,t—1) + 12AtV(m,t—1) Eq. 2.1
C(mit) = D(mt) — D(m+1t) Eq. 2.2
F(mt) = C(m,t)K(m) Eq. 2.3
R(mt) = [D(mt)—D (mt)]

K (m)[1+]J(m)V(mt—1)] Eq. 24

V(mt) = V(mit—1) +[F(m,t) —R(m,t)]
gAt/W () Eq. 2.5

where m is the mass number, ¢t denotes the time interval
number, At is the size of the time interval (sec), D(m,t)
is the total displacement of mass number m during time
interval number f(in.), V(m,t) is the velocity of mass
m during time interval ¢(ft/sec), C(m,t) is the compres-
sion of spring m during time interval ¢(in.), F(m,t) is
the force exerted by spring number m between segment
numbers (m) and (m+t) during time interval ¢(Ib),
and K(m) is the spring rate of mass m (lb/in.). Note
that since certain parameters do not change with time,
they are assigned single rather than double subscripts.

_ The quantity R{m,t) is the total soil resistance act-
" ing on segment m(lb/in.); K'(m) is the spring rate of
the soil spring causing the external soil resistance force
~on mass m(lb/in.); D(m,t) is the total inelastic soil
displacement or yielding during the ¢ at segment m (in.) ;

J(m) is a damping constant for the soil acting on seg-
ment number (m) (sec/ft); g is the gravitational accel-
eration (ft/sec?); and W(m) is the weight of segment
number m(lb).

The solution is begun by initializing the time-
dependent parameters to zero and by giving the ram an
initial velocity. Then an incremental amount of time
At elapses during which the ram moves down an amount
given by Equation 2.1. The displacements D (m,I) of
the other masses are computed in the same manner.

Equation 2.2 is then used to determine the com-
pressions C(m,l), after which the internal spring forces
acting between the masses are found from Equation 2.3
and the external soil forces R(m,I) are computed from
Equation 2.4.

Finally, a new velocity V(m,l) is determined for
each mass using Equation 2.5, after which another time
interval elapses. New displacements, compressions,
forces, and velocities are again computed using the same
equations and the cycle is repeated until the solution is
obtained. Smith®® and others,*** give a detailed expla-
nation of this method of solution and the computer pro-
gramming required. The dynamic behavior of various
parameters will be discussed later.

Smith would have probably caused little interest had
he simply given a numerical solution for the wave equa-
tion. Instead he presenied a simple, physical model,
easily visualized, using parameters which are readily
understood. This and the simplicity of the equations
required for a solution doubtlessly account for much
of the wave equation’s increasing popularity as a means
of studying the behavior of piling.

Modifications of the Original Solution

Although the original method of analysis proposed
by Smith can be used to solve many of the problems
given in this report, it has been greatly extended to in-
clude other idealizations. The major additions and
changes are summarized here for reference only, and are
fully discussed in later chapters.

1. The relationship between soil resistance to pene-
tration of the pile was originally limited to a series of
straight lines. The revised program allows the use of
any shape for this curve, as noted in Chapter VL.

2. The elastic soil deformation “Q” and the soil
damping constant “J” were each limited to one value at
the point of the pile and a second value for side resist-
ance. These parameters have been generalized to include
different values at each pile segment.

3. A new method by which internal damping in the
pile can be accounted for is now included. This method
is explained in Chapter V.

4. A second method is included to account for the
coefficient of restitution of the capblock or cushionblock.

5. For correlation with experimental data, it is now
possible to place forces directly on the head of the pile
rather than having to calculate them from the hammer-
cushion-anvil properties. This method was used exten-
sively where the force vs time curve at the head of the
pile was known; since then the hammer, cushion, and
anvil properties did not influence the solution.
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6. The linear force vs compression curve for vari-
ous cushion materials used previously has been general-
ized as noted in Chapter IV.

7. The effect of gravity on the solution can now
be accounted for.

8. A special “parameter study” sub-program was
written and included in the general program. This fea-
ture was used to vary specific parameters or groups of

parameters between specified limits in order to study

their influence on the solution, and to see if trends could
be found.

9. For possible later use, several pile-driving for-
mulas were included in the computer program.,

~ 10. The soil resistance on the point segment now
uses two springs, one for the side friction acting on the
side of the pile and a second spring for point bearing.

Chapter III
PILE DRIVING HAMMERS

Ram Idealization

Smith** suggests that since the ram is usually short
in length, in many cases it can accurately be represented
by a single weight having infinite stiffness. The exam-
ple illustrated in Figure 2.1 makes this assumption since
K(1) represents the spring constant of only the cap
block, the elasticity of the ram having been neglected.
He also notes that where greater accuracy is desired,
or when the ram is long and slender, it can also be
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‘Figure 3.1. Idedlization for P long ram striking directly
on a cushion block.
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divided into a series of weights and springs. However,
no work has been done to determine how long the ram
can be before its elasticity affects the accuracy of the
solution. The most common hammers in the above
class include drop, air, and steam hammers. Figures
3.1 and 3.2 show how the ram may be idealized.

In order to determine the significance of dividing
the ram into a number of segments, several ram lengths
ranging from 2 to 10 ft were assumed, driving a 100-ft

w
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Figure 3.2. Idealization for a long ram striking directly
on a steel anvil, |




TABLE 8.1, EFFECT OF BREAKING THE RAM INTO
SEGMENTS WHEN RAM STRIKES A CUSHION

Maximum Maximum Maximum

Length Compressive Tensile Point

Number of Pile Force Force Displace-
of Ram Segments in Pile in Pile ment
Divisions (ft) (kip) - (kip) (in.)
1 1.25 263.1 219.0 3.057
2 1.25 262.6 218.8 3.058

10 1.25 262.9 218.5 3.069

pile with point resistance only. For this parameter
study the total weight of the pile varied from 1,500 b
to 10,000 Ib, while the ultimate soil resistance ranged
from zero to 10,000 Ib. The cushion was assumed to
have a stiffness of 2,000 kip/in.

Table 3.1 lists the results found for a typical prob-
lem solved in this series, the problem consisting of a
10-ft ram traveling at 20 ft/sec, striking a cushion having
a stiffness of 2,000 kip/in. The pile used was a 100-ft
12H53 steel pile, driven by a 5,000-lb ram with an
initial velocity of 12.4 ft/sec.” No pile cap was included
in the solution, the cushion being placed directly between
the hammer and the head of the pile. Since the ram
was divided into very short lengths, the pile was also
divided into short segments.

As shown in Table 3.1, the solution is not changed
to any extent, regardless of whether the ram is divided
into 1, 2, or 10 segments. The time interval At was
held constant in each case.

In certain hammers such as a diesel hammer, the
ram strikes directly on a steel anvil rather than on a
cushion. This makes the choice of a spring rate be-
tween the ram and anvil difficult because the impact

occurs between two steel elements. One possible solu-
tion is to place the spring constant of the entire ram
between the weights representing the ram and anvil
Also, the ram can be broken into a series of weights
and springs as is the pile.

To determine when the ram in this case should be
divided, a parameter study was run in which the ram
length varied between 6 and 10 ft and the anvil weight
from 1,000 to 2,000 Ib. In each case, the ram diameter
was held constant and the ram was divided into equal
segment lengths as noted in Table 3.2. These variables
were picked because of their possible influence on the
solution.

The pile used was again a 12H53 point bearing pile
with a cushion of 2,000 kip/in, spring constant placed
between the anvil and head of the pile. The soil parame-
ters used were RUpo,t = 500 kip, Q = 0.1 in., and
J = 0.15 sec/ft. These factors were held constant for
all problems listed in Table 3.2.

The most obvious result shown by Table 3.2 is that
when the steel ram impacts directly on a steel anvil,
dividing a long ram (6, 8 and 10 ft) into segments has
a significant effect on the solution.

Energy Output of Hammer

One of the most significant parameters involved in
pile driving is the velocity of the ram immediately before
impact. This velocity is often used to determine the
maximum kinetic energy of the hammer and its energy
output rating, and must be known or assumed before
the wave equation or dynamic formulas can be applied.

Although the manufacturers of pile-driving equip-
ment furnish maximum energy ratings for their ham-
mers, these are usually downgraded by foundation ex-

TABLE 3.2. EFFECT OF BREAKING RAM INTO SEGMENTS WHEN RAM STRIKES A STEEL ANVIL

Maximum Compressive

Length ;
Number of Ega;ch Force on Pile Maximum
Anvil Ram of Ram Ram At At At . Point
Weight Length Divisions Segment Head Center Tip Displacement
(Ib) (ft) (ft) (kip) (kip) (kip) (in.)
2000 10 1 10 513 513 884 0.207
2 5 437 438 774 0.159
5 2 373 373 674 0.124
10 1 375 375 678 0.125
8 1 8 478 478 833 0.183
4 2 359 359 648 0.117
8 1 360 360 651 0.118
6 1 6 430 430 763 0.155
3 2 344 344 621 0.110
6 1 342 342 616 0.109
1000 10 1 10 508 509 878 0.160
2 5 451 451 789 0.159
5 2 381 382 691 0.151
10 1 371 372 681 0.153
8 1 8 487 488 846 0.151
4 2 443 444 785 0.144
8 1 369 370 675 0.134
10 0.8 337 338 665 0.133
6 1 6 457 457 798 0.137
3 2 361 362 666 0.128
6 1 316 316 562 0.109
10 0.6 320 320 611 0.113
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perts for various reasons. A number of conditions such
as poor hammer condition, lack of lubrication, and wear
seriously reduce the energy output of a hammer. In
addition the energy of many hammers can be controlled
by regulating the steam pressure or diesel fuel. To
determine how much the rated energy of any given
hammer should be reduced is not a simple task.

Chellis*® discusses several reasons for this energy
reduction and recommends a number of possible effi-
ciency factors for the commonly used hammers, based
on his observations and experience.

The Michigan Study of Pile Driving Hammers

In 1965 the Michigan State Highway Commission?*
completed an extensive research program designed to
obtain a better understanding of the complex problem
of pile driving. Though a number of specific objectives
were given, one was of primary importance. As noted
by Housel,* “Hammer energy actually delivered to the
pile, as compared with the manufacturer’s rated energy,
was the focal point of a major portion of this investiga-
tion of pile-driving hammers.” In other words, they
hoped to determine the energy delivered to the pile and
to compare these values with the manufacturer’s ratings.

The energy transmiited to the pile was termed
“ENTHRU” by the investigators** and was determined
by the summation

ENTHRU = X FAS

Where F, the average force on the top of the pile during
a short interval of time, was measured by a specially
designed load cell, and A S, the incremental movement
of the head of the pile during this time interval, was
found using displacement transducers and/or reduced
from accelerometer data. It should be pointed out that
ENTHRU is not the total energy output of the hammer
blow, but only a measure of that portion of the energy
delivered below the load-cell assembly.

Since so many variables influence the value of
ENTHRU, and since some of these variables were chang-
ing during the pile driving operation (e.g., condition of
the cushion, soil resistance, etc.), the investigators were
not able to determine the total energy output of the
hammer. As noted in the Michigan report:*¢ “Hammer
type and operation conditions; pile type, mass, rigidity,
and length; and the type and condition of cap blocks
were all factors that affected ENTHRU, but when, how,
and how much could not be ascertained with any degree
of certainty.” However, the wave equation can account
for each of these factors so that their effects can be
determined.

The Michigan report also noted that ENTHRU was
not actually a direct measurement of the hammer’s effi-
ciency or energy output since the forces and displace-
ments were measured below the capblock, as shown in
Figure 3.3. Thus, ENTHRU was defined as “the amount
of work done on the load cell.”

The maximum displacement of the head of the pile
was also reported and was designated LIMSET. Oscillo-
graphic records of force vs time measured in the load
cell were also reported. 'Since force was measured only

at the load cell, the single maximum observed values
for each case will be called FMAX.
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Figure 3.4. Idealization of a Vulcan hammer,




Problem Information

In selecting which of the Michigan pile problems to
solve by the wave equation, it wds decided to run at least
two problems for each hammer used at each of the three
testing sites. As shown in Table 3.3, cases selected from
the Belleville site include two pile lengths for each of
four different hammers. Otherwise, the problems were
selected at random and the hammer energies determined
are not necessarily typical of the hammer’s usual
operating characteristics.  Similarly, the Detroit and
Muskegon site problems are summarized in Tables 3.4
and 3.5. Figures 3.4 and 3.5 illustrate how these prob-
lems were idealized for purposes of analysis.

Even though the Michigan study is one of the most
completely documented and fully reported research proj-
ects published concerning pile driving, certain informa-.
tion was not reported which must be known in order to
apply the wave equation. This omission was not the
result of any failure in reporting the data, but was be-
cause this information was not required by the methods
of analysis used in the Michigan project and would have
been difficult to measure. Two examples are the lack
of information concerning the stiffness of the cushion
and the velocity of the ram at impact.

Preliminary Studies

Since cushion-block information was not given, and
because the cushion stiffness varies greatly during driv-
ing, a broad parameter study was made using the first
case mentioned in Table 3.3. In this study, the cushion
stiffness was varied by a factor of 50, from 54¢ kip/in.
up to 27,000 kip/in. Also studied was the effect of
varying the total soil resistance, RUT, using resistances
of 30, 90, and 150 kip and ram velocities of 8, 12, and
16 ft/sec.

} W(i} = RAM WEIGHT.
K1) = SPRING RATE OF
W{2) = ANVIL WEIGHT.

K{2}= SPRING RATE OF

W(3)= WEIGHT OoF
RIVING CAP +
l/2 LOAD CELL.

K(3) = SPRING RATE OF
LOAD CELL.

w{4)= WEIGHT OF i/2 THE
D CELL+UNIVERSAL
CAP + PIPE ADAPTER
{WHEN USED).

7
//////////
K= AT ChvEnT.
N w({5)= ggéel\;gw?f: PILE
//—j

W(MP-I1)= WEIGHT OF PILE
SEGMENT.

IN SHEAR ALONG
SEGMENT MP-

K'{(MP~|)——%

¥

SPRING RATE OF sou.}

K{MP -} = SPRING RATE OfF

PILE SEGMENT.
} W(MP} = WEIGHT OF FINAL

SPRING RATE OF sSnlIL PILE SEGMENT.
IN SHEAR AL(:'ug K'(MP)

SEGM SPRING RATE OF

5. - SOIL IN BEA
4 K'(MP+1) {aENEATH SEoMENT

Figure 3.5. Idealization of a diesel hammer.

TABLE 3.3 SUMMARY OF BELLEVILLE CASES SOLVED BY WAVE EQUATION

PILE INFORMATION

Total Embedded
Pile Length Length
1.D. Case™* Hammer** Cushion - Type (ft) (ft)
BLTP-6 10.0 V-1 Oak ' 12H53 32.5 10.0
57.9 V-1 Oak 12H53 725 57.9
BLTP-4 25.0 LB-312 Micarta lrg in.l 40.7 15.0
ipe
664 - LB-312 Micarta 0.25 81.6 56.4
in,
wall J
BRP-4 20.0 M-DE30 Qak 12H53 40.0 20.0
: 50.0 M-DE30 Oak 12H53 60.0 50.0
BLTP-5 15.0 D-D12 German 12 in. 40.0
Oak Pipe
0.179
66.0 D-D12 German in. 80.0 50.0
Oak wall

*Case number indicates pile length below ground surface and not necessarily embeddment.
**Hammer designations are as follows:

V-1 = Vulean 1
V-50C = Vulean 50C
V-80C = Vulcan 80C
LB-312 = Link Belt 312
LB-520 = Link Belt 520
M-DE30 = McKiernen-Terry DE-30
M-DE40 = McKiernen-Terry DE-40
D-D12 = Delmag D-12
D-D22 == Delmag D-22
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TABLE 34. SUMMARY OF DETROIT CASES SOLVED BY WAVE EQUATION

PILE INFORMATION

Total Embedded
Pile Length Length
L.D. Case* Hammer* Cushion Type (ft) (ft)
DLTP-8 415 V-1 Oak 12H53 80.1 415
) 80.2 V-1 Oak 12H53 97.0 80.2
DTP-5 20.0 V-50C " Micarta 12 in. 40.0 20.0
Pipe
0.179
79.0 V-50C Micarta in. 84.0 79.0
wall
DRP-3 40.0 LB-312 Micarta 12H53 80.0 40.0
60.0 LB-312 Micarta 12H53 80.0 60.0
DTP-13 40.0 M-DE30 Oak l12 in. 45.0 40.0
Pipe
0.179
80.7 M-DE30 Oak in. 90.7 80.7
wall
DTP-15 20.0 D-D12 German 12H53 46.1 20.0
80.5 D-Di12 Oak 12H53 86.1 80.5

*See Table 8.8 for notation.

The results of this study indicate the significance
of the wave equation in helping to understand the many
factors that affect pile-driving behavior. The solutions
for ENTHRU, FMAX, and LIMSET resulting from a
change in the cushion stiffness, soil resistance, and ram
velocities are given in Tables 3.6, 3.7, and 3.8, respec-
tively. Whereas before it could not be determined
“when, how, or how much,” the results of this study
indicate that in general for these particular problems,

1) ENTHRU is nearly independent of the cushion
block stiffness used, since the cushion stiffness was in-
creased by a factor of 50 while influencing ENTHRU
only slightly,

2) FMAX is almost completely independent of the
driving resistance,

3) FMAX is almost linearly related to the ham-
mer velocity, and

TABLE 3.5. SUMMARY OF MUSKEGON CASES SOLVED BY WAVE EQUATION

PILE INFORMATION

Total Embedded
Pile Length Length
LD. Case* Hammer* Cushion Type (ft) (ft)
MLTP-2 20.0 V-1 Oak 12 in. 45.0 20.0
Pipe
0.250 ¢
53.0 V-1 Oak in. 60.0 53.0
wall |
MLTP-9 72.0 V-80C Micarta 12 in.) 80.0 ©72.0
Pipe
0.250
127.0 V-80C Micarta in. 134.0 127.0
wall |
MTP-12 30.5 LB-520 Micarta 12 in. 40.0 30.5
Pipe
0.250 |
70.8 LB-520 Micarta [ in. 80.0 70.8
wall |
MTP-11 69.5 M-DE40 Oak 12 in.) 80.0 69.5
and Pipe
Plywood 0.250 ¢
150.0 M-DE40 in. 165.0 150.0
{ wall |
MLTP-8 31.0 D-D22 German 12 in. ) 40.0 31.0
Oak Pipe 185.0
0.250 |
178.0 D-D22 German in. 185.0 178.0
Oak wall

*See Table 3.3 for notation.
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TABLE 3.6. EFFECT OF CUSHION STIFFNESS ON
ENTHRU FOR BLTP-6; 10.0

ENTHRU (kip ft)

Vﬁggilty RUT Cushion Stiffness (kip/in.)
(ft/sec) (kip) 540 1080 2700 27,000
30 3.0 3.0 3.0 2.9
8 90 3.1 3.2 3.3 2.9
150 3.0 3.2 3.3 3.0
30 6.6 6.4 7.1 6.4
12 90 7.0 7.1 7.2 6.4
150 6.9 7.2 74 6.7
30 11.8 119 122 11.3
16 90 12.3 12.6 12.8 11.5
150 124 129 13.2 114

TABLE 3.7. EFFECT OF CUSHION STIFFNESS ON
FMAX FOR BLTP-6; 10.0

FMAX (kip)
Vgggilty ROUT Cushion Stiffness (kip/in.)
(ft/sec) (kip) 540 1080 2700 27,000
30 132 185 261 1779

8 90 137 185 261 1779
150 143 186 261 779

30 198 278 391 1,169

12 90 205 278 301 1.169
150 215 279 391 1169

30 264 871 522 1,558

16 90 275 371 522 1558
150 288 371 522 1558

TABLE 3.8. EFFECT OF CUSHION STIFFNESS ON
LIMSET FOR BLTP-6; 10.0

LIMSET (in.)

V?l%é?ty RUT Cushion Stiffness (kip/in.)
(ft/sec) (kip) 540 1080 2700 27,000
30 1.09 1.08 1.08 1.13
8 . 90 044 044 045 045
150 032 033 0.33 0.33
30 221 214 219 2.25
12 90 0.80 0.82 0.84 0.84
150 0.56  0.57 0.58 0.58
30 3.62 3,59 3.63 3.68
16 90 1.30 1.31 1.32 1.34
150 0.856 0.87 0.88 0.90

4) FMAX consistently increases as the cushion
stiffness increases.

Thus for the first time, a number of trends may be
established for various pile driving situations by using
the wave equation.

In order to analyze other of the Michigan problems,
certain data given in the Michigan report were used.
This information is listed in Table 3.9.

Investigation of Steam Hammers

Used in the Michigan Study

As noted in Figure 3.4, the numerical solution to
the wave equation uses a series of concentrated weights
and springs which closely represent the actual system
involved. Time is also divided into small intervals in
order to arrive at a solution.

As shown by Smith,! the wave equation can be used
to determine (among other quantities) the displacement
D(m,t) of any mass “m” at time “t”, as well as the force
F(m,t) of any mass “m” at time “t.” Thus the equa-
tion for ENTHRU at any point in the system can be
determined by simply letting the computer calculate the
equation previously mentioned:

ENTHRU = >, FAS

or using the wave equation terms:
— F(mt) + F(mi—1) ]
ENTHRUMm) = > | o
[D(m+1,t) — D(m+l;t—1)]

where ENTHRU(m) = the work done on any weight

(m-+1),
m = the mass number, and
t = the time interval number.

For example, the Michigan report determined
ENTHRU(2) for the idealized system shown in Figure
3.4, since they recorded forces F(2,t) in the load cell
and displacements D(3,t) below the load cell. For the
system in Figure 3.5, ENTHRU(3) was determined.

~Although it may not have been possible, ENTHRU
should actually have been measured directly under the
driving hammer ENTHRU(1), since ENTHRU(3) is
greatly influenced by several parameters, especially the
type, condition, and coefficient of restitution of the

cushion, and the weights of the exira driving cap and
load cell.

As will be shown later, the coefficient of restitution
alone can change ENTHRU(2) by 20%, simply by
changing e from 0.2 to 0.6. Nor is this variation in e

unlikely since cushion condition varied from new to
“badly burnt” and “chips added.”

The wave equation was therefore used to analyze
the problems since what was needed was a method by
which the available data (ENTHRU, LIMSET, FMAX,
etc.) could be used to determine the actual hammer
energy involved, and also to compensate for the influence
of cushion stiffness, e, additional driving cap weights,
driving resistance encountered, etc.

Method Used to Correlate Theoretical
and Experimental Results

In order to get the best possible correlation between
experimental and theoretical solutions, an iterative meth-
od was used. This approach was suggested by the pre-
liminary studies mentioned earlier. To demonstrate the

method, an example problem, BLTP-6;10.0, will be

solved.
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TABLE 3.9,

DATA REPORTED IN THE MICHIGAN STUDY

Manufacturer’s

Maximum Estimated
Rated Permanent Static Soil
Driving Pile ) Hammer* Energy ENTHRU LIMSET Set Resistance
Location 1.D. Case Type (ft 1b) (ft 1b) (in.) (in.) (kip)
Belleville BLTP-6 10.0 V-1 15,000 6,380 0.75 0.48 48
57.9 V-1 15,000 4,440 0.42 0.02 400
BLTP-4 25.0 LB-312 18,000 8,010 0.94 0.36 140
66.4 LB-312 18,000 11,200 0.92 0.02 690
BRP-4- 20.0 M-DE-30 22,400 4,980 0.57 0.37 100
50.0 M-DE-30 22,400 4,470 041 0.12 320
BLTP-5 15.0 D-D12 22,500 9,040 1.86 1.43 80
60.0 D-D12 22,500 9,930 0.79 0.11 340
Detroit DLTP-8 415 V-1 15,000 5,760 1.22 1.00 60
80.2 V-1 15,000 4,540 0.54 0.50 360
DTP-5 20.0 V-50C 15,100 8,290 - 2.55 2.00 22
79.0 V-50C 15,100 11,420 0.82 - 0.09 235
DRP-3 40.0 LB-312 18,000 7,060 1.36 1.25 60
60.0 LB-312 18,000 6,620 141 0.77 76
DTP-13 40.0 M-DE30 22,400 9,100 2.21 2.00 30
80.7 M-DE30 22,400 9,480 1.12 0.07 265
DTP-15 20.0 D-Di12 22,500 10,100 - 2.07 2.00 40
80.5 D-D12 22,500 5,480 0.58 0.25 120
Muskegon MLTP-2 20.0 V-1 15,000 7,210 142 1.00 80
53.0 V-1 15,000 4,870 0.57 0.09 200
MLTP-9 72.0 V-80C 24,450 14,660 1.06 0.56 160
127.0 V-80C 24,450 . 13,110 1.03 0.23 470
MTP-12 30.5 LB-520 30,000 14,860 1.48 1.00 40
70.8 LB-520 30,000 13,140 1.02 0.77 156
MTP-11 69.5 M-DE40 32,000 16,760 1.16 0.67 160
150.0 M-DE40 32,000 17,900 141 0.05 500
MLTP-8 31.0 D-D22 39,700 25,500 2.35 1.25 40
178.0 D-D22 39,700 22,050 1.71 0.04 988

*See Table 3.3 for notation.

Since in nearly every case the condition of the
cushion is unknown, the first assumption must be for the
cushion rate K(1). For illustrative purposes, assume
that K(1) = 180 kip/in. and that soil resistances of
30 and 90 kip were assumed.

The next step was to run the problem with various
hammer energies. As shown in Figure 3.6, for each
energy input (EINPUT) the wave equation predicts a
corresponding theoretical value of ENTHRU. These
solutions are then used to plot the curves of Figure 3.6.
Also, since each solution predicts a value for LIMSET
and initial ram velocity, it is possible to plot the curves
of Figure 3.7.

Returning to Figure 3.6, the question becomes what

kinetic energy must the falling ram have had in order
to cause a value of ENTHRU = 6,380 kip ft (the meas-
ured experimental value reported by Michigan and listed
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in Table 3.9)? By entering ENTHRU = 6,380 kip fi,
and assuming RUT = 30 kip, project to the upper curve

where EINPUT is found to be 11,000 kip ft.

To further check the solution, determine the ram

velocity required for 11,000 kip {t of kinetic energy from:

(EINPUT) (64.4)
Ram Weight

Next, from Table 3.9, find the actual value of LIMSET
(determined experimentally) and enter this value of 0.75
in. and V = 11.9 ft/sec in Figure 3.7.

Should the projection of these points intersect on
the RUT = 30 kip curve, then that assumption was
correct. However, this indicates a soil resistance of
around 90 kip so that the RUT = 90 kip curve of Figure
3.6 should probably have been used.

VvV =

= 11.9 ft/sec



20

EINPUT Required To Give
ENTHRU Of 6380 ft Ib

‘____1_11999_!'_!'33 _______

Job<-—- lo100ftb _________ /.

EINPUT (kip ft)

BELLEVILLE SITE

1
}
1
1
|
1
|
]
|
I
1
1
1
|
1

=1

st &l CASEBLTP-6;10.0
. ol

@, .

m!

o
! ENTHRU=6380 ft 1b
! Determined Experimentally
L
1
1
1
1
1
1
]

. ! .
-] 10

ENTHRU~ (kip f1)

Figure 3.6. EINPUT vs ENTHRU.

Returning to Figure 3.6, the new value of EINPUT
is found to be 10,100 ft Ib, which gives a new ram ve-
locity of 11.4 ft/sec. Substituting this velocity into
Figure 3.7, the resulting value of RUT agrees closely
with the assumed value of 90 kip.

Since the ram velocity at impact is now known, the
assumed cushion stiffness of 1080 kip/in. can be checked.
Holding RUT = 90 kip and the initial ram velocity =
11.4 ft/sec, and solving for the change in FMAX as the
" cushion stiffness varies, the curve of Figure 3.8 can be
drawn. The experimental value of FMAX reported in
the Michigan paper was 244 kip, which entered into
Figure 3.8 gives a value of K (1) = 900 kip/in. Since
this is close to the assumed value of 1080 kip/in., the
solution was considered to be satisfactory. However,
even in cases where the cushion stiffness was quite inac-
curate, ENTHRU was only slightly changed when a more
accurate value of K (1) was used.

This solution now enables us to determine the energy
output of the hammer, and other quantities. Since this
hammer is rated at 15,000 ft b and its actual output
was only 10,100 ft Ib the hammer must have lost 3,900
ft 1b due to friction in the guides or from other causes.
Thus, the hammer efficiency is (10,100) X (100)/
15,000 = 67 percent. Furthermore, since only 6,380 ft

Ib (ENTHRU) of the 10,100 ft 1b output reached the
load cell, the difference must have been lost in the helmet-
cushion-load cell assembly. Thus the efficiency of this
assembly must have been (6,380) X (100)/10,100 =

63 percent.

The ability to determine these efficiencies separately -
is important since it indicates whether the driving ham-
mer or cushion-helmet assembly should be studied to
reduce energy losses during driving.

The preceding method was used to solve each of the
Michigan steam hammer cases listed in Tables 3.3, 3.4,
and 3.5.

Correlation of Experimental
and Theoretical Results

It is interesting to compare the final wave equation
solution with the experimental results reported in the
Michigan pile study. For the above case, comparisons
between the experimental results and those given by the
wave equation are shown in Figures 3.9 through 3.11.
These figures show the experimental and theoretical -
forces and accelerations, displacements, and energy, vs.
time, measured at the load cell. The correlations are
reasonably accurate, especially during the first 0.01 sec,
although the reflected compressive wave seems to be
overestimated, as shown in Figure 3.9A at 0.014 sec.
This did not greatly affect either the ENTHRU or dis-

5.0}

4.5

BELLEVILLE SITE
CASE BLTP-6;10.0

4.0l

3.5}

o
o

LIMSET (in)
g
(¢ ]

.0}

LIMSET
=0.78

0.5

1
i E—«~Ru1‘=so Kip
. 1 , ;
8 10 12 14. i6 I8 20
RAM VELOCITY (ft/sec)

Figure 3.7. " Ram velocity vs LIMSET.
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Figure 3.8. Cushion stiffness vs FMAX.

placement curves, although it may have caused the rather
large errors in the acceleration curve of Figure 3.9B.
g g

A summary of the results for the steam hammer
cases solved is given in Table 3.10. Listed are the
energy output of the hammer, the hammer efficiencies,
the ram velocity, and the total soil resistance, RUT,
necessary to obtain correlation for each case.

It should be noted that there was no way to deter-
mine the soil damping or elasticity constants. Therefore,
the constants recommended by Smith*? were used. As
shown by Forehand and Reese,*® these constants affect
the resulting RUT values. Therefore, the theoretical
RUT values shown in Table 3.10 were not expected to
agree closely with the experimental values reported in
Table 3.9. However, it is interesting to note that in
several cases the ratio of the soil resistance determined

experimentally to that predicted by the wave equation
is reasonably constant.

Investigation of Diesel Hammers
Used in the Michigan Study

Because the diesel explosive force is much smaller
than the impact force, it was found to have little effect
on the driving stresses.** However, if explosive pressure
is neglected, the ram velocity required to predict EN.
THRU is much greater than that calculated from the
free fall of the ram, even assuming 100 percent efficiency.
Therefore, it was necessary to run the diesel hammer
cases accounting for the explosive pressure in the
hammer.

During impact between the ram and anvil the force
on the anvil will reach some maximum value and then
decrease. Following this impact, the diesel explosion
occurs, exerting an explosive pressure and force between
the ram and anvil. This behavior has been studied and
reported by some of the hammer manufacturers.”™ In
order to simulate this action for wave-equation analysis,
the explosive force acting within the.diesel hammer is
assumed to behave as shown in Figure 3.12. The maxi-
mum explosive force is held on the anvil for 0.01 sec
after which the force is tapered to zero at 0.0125 sec.
Actually, the explosive hammer force lasts considerably
longer than this but its magnitude is too small to be a
significant factor in pushing the pile down except during
the initial driving stages when little or no soil resistance
is encountered. The magnitudes of explosive pressures
listed in Table 3.11 were obtained from the hammer
manufacturer or were assumed.

In previous solutions, it was an easy matter to solve
for the total energy of the ram at impact since only its
kinetic energy, EINPUT, was involved. Now, since
explosive pressure is included, the total energy devel-
oped includes both kinetic and explosive energy.

This total energy, ENTOTL, is the sum of the energy
transmitted to the anvil, ENTHRUI, and the kinetic re-
bound energy of the ram after impact, where ENTHRU1
is calculated by the same method as was used for EN-

TABLE 3.10. SUMMARY OF RESULTS FOR MICHIGAN STEAM HAMMERS

Ram-
] RUT
Ham- Cushion- .
mer** Helmet (Theﬁ{ﬁ}:‘lcal)
. Effi-  Assembly Ram (Experimental)
Driving ‘Pile Hammer* EINPUT ENTHRUY ciency Efficiency Velocity RUT — =
Location 1.D. Case Type (ft 1b) (ft 1b) (%) (%) (ft/sec) (kip) (%)
Belleville BLTP-6  10.1 V-1 10,100 6,380 67 63 11.9 90 190
57.9 V-1 7,000 4,440 47 63 9.5 200 50
Detroit DLTP-8 41.5 V-1 9,700 5,760 65 60 11.2 50 83
. 80.2 V-1 7,200 . 4,640 48 63 9.6 120 33
DTP-5 20.0 V-50C 12,800 8,290 85 65 12,9 25 110
79.0 V-50C 15,600 11,420 103 73 14.2 3004 1284
Muskegan MLTP-2 20.0 V-1 12,200 7,210 81 59 12.5 50 62
53.0 V-1 7,700 4,870 51 63 10.0 150 75
MLTP-9 720 V-80C 19,700 14,660 81 74 12.6 175 109
127.0 V-80C 19,200 13,110 79 68 12.5 300 64

*See Table 3.3 for notation.
**Hammer efficiency computed on basis of the manufacturer’s maximum rated output.

+Note: The problems were selected at random and the hammer energies determined are not necessarily typical of the
hammer’s  usual operating characteristics.
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Figure 3.9. Corﬁparison of theoretical and experimental
load cell forces and accelerations.

THRU at the load cell, and the kinetic rebound energy
remaining in the ram after impact is given by WV2/64.4,
where W is the weight of the ram and V is the rebound
velocity of the ram determined by the wave equation.

The efficiencies and initial ram velocities noted in
Table 3.11 were found by ploiting ENTHRU and EN-
THRU1 vs the initial ram velocity as shown in Figure
3.13. Plotting the values of LIMSET vs ram velocity as
in Figure 3.14 then gives the total soil resistance pre-
dicted by the wave equation. This procedure was used
on all diesel hammer cases, and the results are sum-
marized in Table 3.11.
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Figure 3.10. Comparison of theoretical and experimental
load cell displacements.
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Figure 3.11. Comparison of theoretical and experimental
values of ENTHRU.
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TABLE 8.11. SUMMARY OF RESULTS FOR MICHIGAN DIESEL HAMMERS
Ram-
: RUT
Ham- Cushion Ram :
Explosive mer* Assembly Velocity M
.. . -Force on Ef- - at RUT
Driving- Pile Hammer Anvil ENTOTL ENTHRU®** ficiency ficiency Impact RUT (Experimental)
Loecation  I.D. Case Type (kip) (ft 1b) (ft 1b) (%) (%) (ft/sec) (kip) %) -
Belleville BLTP-4 25.0 LB-312 98.0 10,630 8,010 59 75 8.2 70 50
66.4 16,030 11,200 89 70 6.4 250 36
BRP-4 20.0 M-DE30 98.0 9,450 4,980 42 53 9.8 100 100
50.0 9,100 4,470 41 49 10.6 200 63
BLTP-5 15.0 D-D12 93.7 13,000 9,040 58 69 12.8 40 50
60.0 14,730 9,930 66 67 15.0 400 118
Detroit DRP-3 40.0 LB-312 98.0 9,270 7,060 52 76 9.8 45 75
60.0 13,900 6,620 i 48 5.2 60 79
DTP-13 40.0 M-DE30 98.0 14,390 9,100 64 63 13.7 35 117
80.7 15,280 9,480 68 62 15.1 120 45
DTP-15 20.0 D-D12 93.7 15,270 10,100 68 66 15.2 45 112
80.5 9,430 5,480 42 58 11.6 110 92
Muskegon MTP-12 30.56 LB-520 98.0 22,140 14,860 74 67 164 75 187
70.8 21,260 13,140 71 62 14.4 70 45
MTP-11 69.5 M-DE40 138.0 32,800 ' 16,760 102 50 20.6 150 94
150.0 36,850 17,900 115 49 21.5 250 50
MLP-8 31.0 D-D22 1587 31,600 25,500 80 81 17.8 70 175
178.0 27,300 22,050 69 81 17.1 300 30

*Hammer efficiency based on manufacturer’s maximum rated energy.
**Note: The problems were selected at random and the hammer energies determined are not necessarily typical of the

hammer’s usual operating characteristics.

Determination of Hammer Energy Output
Diesel Hammers

At present the manufactures of diesel hammers ar-
rive at the energy delivered per blow by two different
methods. One manufacturer feels that “Since the amount
of (diesel) fuel injected per blow is constant, the com-
pression pressure is constant, and the temperature con-
stant, the energy delivered to the piling is also con-
stant.”® The energy output per blow is thus computed

MAXIMUM IMPACT FORCE
ON THE ANVIL CAUSED
BY THE FALLING RAM

FORCE BETWEEN RAM 'AND ANVIL

IDEALIZED DIESEL EXPLOSIVE
/ FORCE ON THE ANVIL AND RAM

‘50 150
TIME (SEC X 10°%)

Figure 3.12. Typical force vs time curve for a diesel
hammer.
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as the kinetic energy of the falling ram plus the explo-

sive energy found by thermodynamics.

Other manufac-

turers simply give the energy output per blow as the
product of the weight of the ram-piston Wy and the
length of the stroke h, or the equivalent stroke in the
case of closed-end diesel hammers.

The energy ratings given by these two methods dif-
fer considerably since the ram stroke h varies greatly
thereby causing much controversy as to which, if either,
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Figure 3.13. ENTHRUI and ENTHRU vs ram velocity

determined by wave equation analysis.
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Figure 3.14. LIMSET vs ram velocity determined by
wave equation analysis.

method is correct and what energy output should be used
in dynamic pile analysis.

In conventional single acting steam hammers the
steam pressure or energy is used to raise the ram for
each. blow. The magnitude of the steam force is too
small to force the pile downward and consequently it
works only on the ram to restore its potential energy,
Wz x h, for the next blow. In a diesel hammer on the
otherhand, the diesel explosive pressure used to raise the
ram is, for a short time at least, relatively large.

While this explosive force works on the ram to
restore its potential energy Wy x h, the initially large
explosive pressure also does some useful work on the
pile given by

J‘ F ds Eq. 3.1
where ' = the exploswe force, and
ds = the infinitesimal distance through which

the force acts.

Since the total energy output is the sum of the
kinetic energy at impact plus the work done by the
explosive force.

Etotal — Ek -+ Ee\ Eq. 3.2

where Eiai == the total energy output per blow,

Ex = the kinetic energy of the ram at the
instant of impact,
and E. = the diesel explosive energy which does

useful work on the pile.

It has been noted that after the ram passes the
exhaust ports, the energy required to compress the air-
fuel mixture is nearly identical to that gained by the

remaining fall of the ram.”™® Therefore the velocity of
the ram at the exhaust ports is essentially the same as
at impact, and the kinetic energy at impact can be closely
approximated by:

Ex = Wg (h — d) Eq. 3.3

where Wy = the ram weight,
h = the total observed stroke of the ram,
and d = the distance the ram moves after closing

the exhaust ports and impacts with the
anvil.

The total amount of explosive energy E. tota) is
dependent upon the amount of diesel fuel injected, com-
pression pressure and temperature and therefore may
vary somewhat.

Unfortunately, the wave equation must be used in
each case to determine the exact magnitude of E, since
it not only depends on the hammer characteristics but
also on the characteristics of the anvil, helmet, cushion,
pile, and soil resistance. However, values of E. deter-
mined by the wave equation for several typical pile prob-
lems indicates that it is usually small in portion to the
total explosive energy output per blow, and furthermore,
that it is on the same order of magnitude as Wr X d.

Thus, Eq. 3.1 can be simplified by assuming:
e = Wr X d Eq. 34
Substituting Eqgs. 3.3 and 3.4 into Eq. 3.1 gives:
Eeotat = Ex + E.=Wg (h—d) + Wrd Eq. 3.5

so that:
Eiotar = Wr h Eg. 3.6

The results given by this equation are compared with the
actual values found by the wave equation in Table 3.12.
Note that the resulis are relatively constant, the average
efficiency being 100% .

Steam Hammers

Again using the wave equation in conjunction with
the Michigan report, Tables 3.13 and 3.14 suggest effi-
ciency ratings of 60% for the single-acting steam ham-
mers, and 87% for the double-acting hammer, based on
an energy output given by:

Etoml — WR h Eq. 3.7

In order to determine an equivalent ram stroke for
the double-acting hammers, the internal steam pressure
above the ram which is forcing it down must be taken
into consideration. The manufacturers of such hammers
state that the maximum steam pressure or force should
not exceed the weight of the housing or casing, or the
housing may be lifted off the pile. Thus the maximum
downward force on the ram is limited to the total weight
of the ram and housing.

Since these forces both act on the ram as it falls
through the actual ram stroke h, they add kinetic energy
to the ram, which is given by:

Etotal - WR h + FR h Eq 3.8
where Wy = the ram weight,
Fr = a steam force not exceeding the weight
and h = the observed or actual ram stroke.

Since the actual steam pressure is not always applied at
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TABLE 8.12. COMPARISON OF ENERGY OUTPUT MEASURED EXPERIMENTALLY WITH THAT PREDICTED
BY EQUATION 3.6, FOR DIESEL HAMMERS

Ram Wt. Observed Wz X h
Pile ENTOTL Wr Ram Stroke Eoent ENTOTL
Hammer. 1.D. Case (ft 1b) (1b) h (ft) (ft 1b) Etoear
LB-312 BLTP-4 25.0 10,630 3,857 3.3* 12,800 .83
66.4 16,030 3,857 3.6% 13,900 1.15
DRP-3 40.0 9,270 3,857 2.9% 11,000 84
60.0 13,900 3,857 3.0* 11,600 1.20
DE-30 BRP-4 20.0 9,450** 2,800 6.6 18,500
50.0 9,100** 2,800 6.9 19,300
DTP-13 40.0 14,390 2,800 5.2 14,600 99
80.7 15,280 2,800 7.0 19,600 .78
D-12 BLTP-5 15.0 13,000 2,750 4.9 13,500 .96
60.0 14,730 2,750 6.1 16,800 .88
DTP-15 20.0 15,270 2,750 6.0 16,500 93
80.5 9,430%** 2,750 7.0 19,300
LB-520 MTP-12 30.5 22,140 5,070 3.7* 18,500 1.20
70.8 21,260 5,070 4.5% 22,750 93
DE-40 MTP-11 69.5 32,800 4,000 7.6 30,400 1.08
. 150.0 - 36,850 4,000 8.2 32,800 . 1.12
D-22 MLTP-8 31.0 31,600 4,850 5.6 27,200 1.16
178.0 27,300 4,850 5.5 26,700 1.02
Avg, = 1.00

*Equivalent stroke derived from bounce chamber pressures.
**Experimental results for these cases appear to be quite inaccurate.

TABLE 3.13. COMPARISON OF MEASURED OUTPUT WITH THAT GIVEN BY EQUATION 3.7, FOR SINGLE
ACTING STEAM HAMMERS

Pile Hammer EINPUT* Wa B Erotal EINPUT
1D. Case Type (£t 1b) (b) (£t) (£t 1b) Evornt
BLTP-6 10.0 V-1 10,100 5,000 3 15,000 0.67
57.9 Vi 7000 5,000 3 15,000 0.47
DLTP-8 415 V1 9,700 5,000 3 15,000 T 065
, 80.2 v 7200 5,000 3 15,000 048
MLTP-2 20.0 V1 12,200 5,000 3 15,000 0.81
53.0 V-1 77700 5,000 3 15,000 0.51
Avg, = 0.60

*EINPUT found by wave equation and listed in Table 3.10.
**The observed ram stroke h or equivalent ram stroke h. was given in the Michigan report text.

TABLE 314, COMPARISON OF MEASURED ENERGY OUTPUT WITH THAT PREDICTED BY EQUATION 3.11,
FOR DOUBLE ACTING STEAM HAMMERS

Pile Hammer EINPUT* We ho** Etotal EINPUT
1.D. Case Type (ft 1b) (1b) (ft) (ft 1b) Etota
DTP-5 20.0 V-50C 12,800 5,000 3.02 15,100 0.85
79.0 V-50C 15,600 5,000 3.02 15,100 1.03
MLTP-9 72.0 V-80C 19,700 8,000 3.05 24,450 0.81
127.0 V-80C 191200 8,000 3.05 24,450 0.79
Avg, = 0.87

*EINPUT found by wave equation and listed in Table 3.10.
**The observed ram stroke h or equivalent ram stroke h. was given in the Michigan report text.
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the rated maximum, the actual steam force can be ex-

pressed as:

Frp = ( P ) Wa Eq. 3.9
Prated

where Wy is the housing weight, p is the operating
pressure, and P ,..q is the maximum rated steam pressure.

The total energy output is then given by

Ewtaa = Wg h + P Wr h

Pratea

Eq. 3.10

This can be reduced in terms of Eq. 3.7 by using
an equivalent stroke h, which will give the same energy
output as Eq. 3.10.

Thus:
Etotat = Wg b, Eq. 3.11
Setting Egs. 3.10 and 3.11 equal yields
WR he — WR h + WH h
Prated
Pratea
or solving for the equivalent stroke:
he =h| 1 + pp — V;YHJ Eq. 3.12
’ rated R

Conclusions

The preceding discussion has shown that it is possi-
ble to determine reasonable values of hammer energy
output simply by taking the product of the ram weight
and its observed or equivalent stroke, and applying an
efficiency factor listed in Tables 3.12 thru 3.14. This
method of energy rating can be applied to all types of
impact pile drivers with reasonable accuracy.

A brief summary of this simple procedure for arriv-
ing at hammer energies and initial ram velocities is as
follows:

Open End Diesel Hammers

E = Wgrh (e)
Ve = V 2g (h—d) (e)
where W = ram weight
Ve = initial ram velocity
h = observed total stroke of ram
d = Distance from anvil to exhaust ports
e = efficiency of open end diesel hammers,

approximately 100% when energy is
computed by this method.
Closed End Diesel Hammers
E* = Wy h, (e)
Ve = V 2g (h—d) (e)
*Note: For the Link Belt Hammers, this energy can be

read directly from the manufacturer’s chart using bounce
chamber pressure gage.

where Wy = ram weight
Vr = initial ram velocity
h = equivalent stroke derived from bounce
chamber pressure gage
d = distance from anvil to exhaust ports
e = efficiency of closed end diesel hammers,

approximately 100% when energy is
computed by this method.

Double-Acting Steam. Hammers

E = Wg h, (e)
V = V2 h. (e)
where Wy = ram weight
he = equivalent ram stroke
— p Wa
h 1+ Pratea % Wxr
h = actual or physical ram stroke
p = operating steam pressure
Pratea — maximum steam pressure recommended
by manufacturer
Wu = weight of hammer housing

e = efficiency of double-acting steam ham-
mers, approximately 85 % by this method.

Single-Acting Steam Hammers
E = Wr h (e)

Ve =  V2gh (e)
where Wy = ram weight
h = ram stroke
e = efficiency of single-acting steam hammers,

normally recommended around 75% to
85%.** In this study of the Michigan
data, a figure of 60% was found. The
writers feel the 60% figure is unusually
low and would not recommend it as a typ-
ical value.

A summary of the properties and operating character-
istics of the various hammers is given in Table 3.15.

Effects of the Experimental
Measuring Devices

Another example of the application of the wave
equation to the Michigan pile study is the solution of
each of the previous problems, but excluding any effects
of the experimental apparatus. When the question was
first raised as to how the elasticity of the load cell and
the additional weight of the load cell and extra driving
cap might affect the results, it was decided to drive a
Belleville H pile to refusal with a Delmag D-12 hammer
with the load cell and extra driving cap removed. The
data recorded for this pile were then compared with the
data for similar piles which were driven by the same
hammer but which included the extra driving cap and
load cell.

The only data obtainable for the noninstrumented
pile were the blow count and rate of penetration at vari-
ous depths, since there was no way to measure the forces,
displacements, ENTHRU, etc. It is also possible that a
pipe pile might have been affected differently than the
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TABLE 3.15. SUMMARY OF HAMMER PROPERTIES AND OPERATING CHARACTERISTICS
Hammer Hammer Maximum Ram Casing Anvil Maximum d Rated Explosive Cap
Manu- Type Rated Weight Weight Weight or Equiva- (ft) Steam Pressure Block
facturer (ft 1b) (1b) (1b) (1b) lent Pressure (Ib)
Stroke (psi)
(ft)
Vulcan #1 15,000 5,000 4,700 3.00
014 42,000 14,000 13,500 3.00
50C 15,100 5,000 6,800 3.02 120
80C 24,450 8,000 9,885 3.06 120
140C 36,000 14,000 13,984 2.68 140 )
Link Belt 312 18,000 3,857 1188 4.66 0.50 98,000 5 Micarta
disks
17" x 10%"
dia.
520 30,000 5,070 1179 5,93 0.83 98,000
MKT Corp DE20 16,000 2,000 640 8.00 0.92 46,300 r21y10n disk
”n x 9”
dia.
DE30 22,400 2,800 775 8.00 1.04 98,000 nylon disk
2-” x 19/[
dia.
DE40 32,000 4,000 1350 8.00 1.17 138,000 nylon disk
2” X 24"
‘ dia.
Delmag D-12 - 22,600 2,750 764 8.19 1.25 93,700 15; x 15”7
x n
German
Oak
D-22 39,700 4,850 1147 8.19 1.48 158,700 15'{'_)")( 15"
X
German
Oak

H-pile tested, and that the soil conditions of the Detroit
or Muskegon sites could be of influence. Furthermore,
only one hammer was studied (the Delmag D-12) and
the effect on the other hammers could be different.
Obviously, these questions cannot be completely an-
swered experimentally since this would mean that every
time the hammer, pile type, driving location, or any
other parameter changed, a similar noninstrumented pile
would also have to be driven under identical conditions.

K(l) = SPRING RATE OF
CUSHION.

W)= \gREIGH'g gp .
PIPE ADAPTER
{(WHEN USED).

K{2)= SPRING RATE OF
} FIRST PILE SEGMENT.

W(3) = WEIGHT OF FIRST
PILE SEGMENT.

W(MP-1)= WEIGHT OF PILE
SEGMENT.
K(MP-1) = SPRING RATE OF

PILE SEGMENT.

W(MP) = WEIGHT OF FINAL
PILE SEGMENT.

SPRING RATE OF SOIL
IN SHEAR ALONG > K'(MP~1)
SEGMENT MP-t

SPRING RATE OF

SPRING RATE OF SOIL
IN SHEAR ALONG ¢ K'(MP) :
- : SOIL IN BEARING
K'(MP+1) BENEATH SEGMENT

SEGME

Figure 3.15. ldealization of a Vulcan hammer without
measuring devices.
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These effects are easily determined by the wave
equation, simply by omiiting the weights and springs
corresponding to the extra driving cap and load cell
shown in Figures 3.4 and 3.5. The modified idealiza-
tions are shown in Figures 3.15 and 3.16.

m } W{l} = RAM WEIGHT.
K{l} = SPRING RATE OF
THE RAM.

W(2) = ANVIL WEIGHT.

K(2) = SPRING RATE OF
CUSHION.

W(3) = WEIGHT OF
DRIVING CAP +
PIPE_ADAPTER
{WHEN USED).

= S

K(3) = SPRING RATE OF
FIRST PILE SEGMENT.

W(4) = WEIGHT OF PILE
SEGMENT.

mMp- } W{MP-0)= WEIGHT OFPILE

K'(MP- |)—""‘

\*@T

IN SHEAR ALONG

SPRING RATE OF SOIL
SEGMENT MP-1

><———— K{MP-l) = SPRING RATE OF
PILE SEGMENT

W (MP) = WEIGHT OF FINAL
SPRING RATE OF SOIL PILE SEGMENT.
IN SHEAR ALONG » K*{MP}
SEGMENT WP, SSIE'.‘ﬁ BEARING
KMP +1) BENEATH SEGMENT

Figure 3.16. Idealization of a diesel hammer without
measuring devices.




TABLE 3.16. EFFECT OF REMOVING LOAD CELL ON ENTHRU, LIMSET, AND PERMANENT SET OF PILE

ENTHRU LIMSET PERMANENT SET
(kip ft) (in.) (in.)

Ram With Without With Without With Without
Velocity Load Load Load Load Load Load
Case (ft/sec) Cell Cell Cell Cell Cell Cell
8 15 1.6 0.27 0.34 0.23 0.25
DTP-15, 12 3.3 3.6 0.53 0.67 0.57 0.57
80.5 16 5.8 6.5 1.02 1.08 0.94 0.97
20 9.1 10.1 1.54 1.54 1.43 1.47
8 3.1 3.8 0.62 0.71 0.51 0.62
DLTP-8, 12 71 8.5 1.15 1.32 1.06 1.29
80.2 16 12.5 15.1 1.91 2.10 1.82 2.15
270 3.08 2.65 3.13

20 19.5 23.6

Although no problems were solved which involved
H piles driven by a Delmag D-12 hammer at the Belle-
ville site, a similar pile was driven at Detroit for which
a wave equation solution was obtained.

The results for this problem with the load cell as-
sembly included and excluded are given in Table 3.16.
This agrees with the Michigan study conclusion that for
case DLTP-15;80.5 the permanent set per blow including
the load cell agrees with that found when the load cell
is excluded. The corresponding values for ENTHRU
do not agree nearly so well.

The results for a similar problem solved at the
Detroit site, DLTP-8;80.2, do not agree with this con-
clusion. This pile was also an H-pile, was embedded
to within 0.3 ft of the first H-pile, and also had 55 kip
soil resistance. However, DLTP-8;80.2 differs from the
Michigan test pile in that this pile was 11 ft longer, and
was driven by a Vulcan-1 hammer rather than the Del-
mag D-12. As shown in the lower half of Table 3.16,
ENTHRU, LIMSET, and the permanent set per blow all
show large changes when the measuring devices are
omitted. This might be overlooked if only the experi-
mental results for case DLTP-15;80.5 were known.

Table 3.17 shows how ENTHRU increases when the
load cell assembly is removed.

Effects of Cushion Properties on Driving

Although the general effects of cushioning materials
on pile driving are discussed in Chapter IV, the follow-
ing discussion is given since it deals with the Michigan
pile study.

As previously noted, the Michigan report states that
the cushion properties influence the values of ENTHRU
significantly, although “how, when, or how much”
ENTHRU was affected could not be determined. It was
thought that ENTHRU could be increased by using a
more resistant cushion block, in the case of the Vulcan 1
and McKiernan-Terry DE-30 hammers. Although this
conclusion seems reasonable, resulis given by the wave
equation did not seem to agree. For example, as seen
in Table 3.6, ENTHRU does not always increase with
increasing cushion stiffness, and furthermore, the maxi-
mum increase in ENTHRU noted here is relatively small

—only about 10 percent. This effect can also be seen
in Table 3.18, in which the cushion stiffness varies
greatly, while the displacement of the pile point changes

less than 10 percent. ,

However, if a different cushion is used, the coeffi-
cient of restitution will probably change too. Since the
coefficient of restitution of the cushion may affect EN-
THRU, a number of cases were solved with “e” ranging
from 0.2 to 0.6. As shown in Tables 3.19 and 3.20, an
increase in “e” from 0.2 to 0.6 normally increases
ENTHRU from 18 to 20 percent, while increasing the
permanent set from 6 to 11 percent. Thus, for the case
shown, the coefficient of restitution of the cushion has
a greater influence on rate of penetration and ENTHRU
than does its stiffness. This same effect was noted in

- the other solutions, and the cases shown in Tables 3.19

and 3.20 are typical of the results found in other cases.

As was noted in Table 3.7, any increase in cushion
stiffness also increases the driving stress. Thus, accord-
ing to the wave equation, increasing the cushion stiff-
ness to increase the rate of penetration (for example by
not replacing the cushion until it has been beaten to a
fraction of its original height or by omitting the cushion
entirely) is both inefficient and poor practice because
of the high stresses induced in the pile. It would be
better to use a cushion having a high coefficient of resti-
tution and a low cushion stiffness in order to increase

ENTHRU and to limit the driving stress.

This suggests that a long micarta cushion having
a relatively low spring rate, and a high coefficient of
restitution might be very effective.

Comparison of Various Hammers
Driving the Same Pile

One of the objectives of the Michigan pile study
was to determine just how effective the various hammers
actually were during driving. Therefore, every attempt
was made to equalize any variables which would affect
the results, such as choosing the driving location to give
comparable driving conditions. However, it would be
impossible to test several hammers without having some
variations occur, perhaps in the soil resistance or ham-
mer condition. Since the wave equation does not have
this limitation, it can be used to advantage here.
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TABLE 3.17. EFFECT ON ENTHRU RESULTING FROM REMOVING THE LOAD CELL ASSEMBLY

ENTHRU
(ft 1b) Increase
, With Without ENTHRU

Driving Pile Load Load in

Location 1.D. Case Cell Cell (%)
Belleville BLTP-6 10.0 6380 7500 18
57.9 4440 5300 19

BLTP-4 25.0 8010 8800 10

66.4 11200 12000 8

BRP-4 20.0 4980 5750 15

. 50.0 4470 6450 44

BLTP-5 - 15.0 9040 10750 19

60.0 9930 12300 ‘ 24

Detroit DLTP-8 415 5760 6900 21
80.2 4540 5400 19

DTP-5 20.0 8290 10000 23

79.0 11420 12700 12

DRP-3 40.0 7060 7600 13

60.0 6620 7200 11

DTP-13 40.0 . 9100 10850 13

80.7 9480 11400 20

DTP-15 20.0 10100 11500 14

80.5 5480 6600 20

Muskegon MLTP-2 20.0 . 7210 8800 23
53.0 4870 5700 17

MLTP-9 72.0 14660 17000 16

127.0 13110 16000 22

MTP-12 30.5 14860 17000 14

70.8 13140 15000 14

MTP-11 69.5 16760 22000 31

150.0 17900 25300 41

MLTP-8 31.0 25500 31000 22

178.0 22050 26600 21

TABLE 3.18. EFFECT OF CUSHION STIFFNESS ON MAXIMUM POINT DISPLACEMENT FOR CASES BLTP-6;

10.0 AND 579
R Maximum Point Displacement (in.) Maxi
am ; - — aximum
Pile RUT Velocity Cushion Stiffness (kip/in.) Change
1.D. (kip) (ft/sec) 540 © 1080 2700 27,000 (%)
BLTP-6; 10.0 30 12 2.20 2.14 2.22 2.26 5
16 3.54 3.47 3.62 3.70 6
- 20 4.66 4.93 5.00 5.01 7
BLTP-G; '57.9 e 150 12 0.45 0.48 0.38 0.48 6
16 0.72 0.76 0.76 0.79 9
20 1.06 1.10 1.11 1.15 8

TABLE 3.19. EFFECT OF COEFFICIENT OF RESTITUTION ON ENTHRU FOR CASE BLTP-6; 10.0 AND 57.9

. Ram ) . Maximum
Pile RUT Velocity ENTHRU (kip ft) Change
1.D. _ (kip) (ft/sec) e = 0.2 e = 04 e = 0.6 (%)
BLTP-6; 100 30 12 6.0 6.5 7.3 18
. 16 10.5 118 12.8 18
) 20 16.5 174 20.0 17
BLTP-6; 57.9 - 150 - 12 6.7 7.2 8.2 18
’ ) 16 11.6 12.7 14.5 20
20 18.2 199 224 19
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"TABLE 3.20. EFFECT OF COEFFICIENT OF RESTITUTION ON MAXIMUM POINT DISPLACEMENT FOR CASE
BLTP-6; 10.0 AND 57.9

Ram : . . i o Maximum
Pile RUT Velocity Maximum Point Displacement (in.) Change
1.D. (kip) (ft/sec) e = 0.2 e = 04 e = 0.6 (%)
BLTP-6; 10.0 30 12 2.13 2.14 2.36 10
16 3.38 347 - 3.58 6
20 4.73 4.93 5.17 8
BLTP-6; 57.9 150 12 0.46 0.48 0.50 8
16 0.73 0.76 0.81 10
20 1.05 1.10 1.18 11
TABLE 3.21. STUDY OF VARIOUS HAMMERS DRIVING THE SAME PILE
Permanent
Maximum Set of
Ram Explosive Point Pile Per
Velocity Force Displacement Blow Blows
Hammer (ft/sec) (kip) (in.) (in.) Per Inch
Vulcan-1 10.0 0 0.125 0.025 8
Vulean-50C 14.5 0 0.284 0.184 3
Vulcan-80C 12,5 0 0.360 0.260 2
Link Belt 812 7.0 98.0 0.119 0.019 8
Link Belt 520 16.0 98.0 0.357 0.257 3
McKiernen-Terry DE-30 13.0 98.0 0.139 0.039 7
MecKiernen-Terry DE-40 21.0 138.0 0.592 0.492 1
Delmag D-12 15.0 93.7 0.173 0.073 5
Delmag D-22 17.5 158.7 0473 0.373 2

As an example of such a comparison, Case BLTP-
6;57.9 is used, with the load cell and extra helmet
omitted, and with a soil resistance of 300 kips. This
pile was then analyzed by the wave equation to deter-
mine its penetration per blow when driven by each of
the hammers listed in Table 3.10. In each case, the soil
and pile parameters were held constant. Thus, for ex-
ample, even though the values of the soil damping con-
stant or quake may not be exact, they remained constant
for each problem while experimental results would vary
unless Q and J did not change at each new driving
location.

Again, certain quantities had to be known for each
hammer before the wave equation could be applied. For

example, the ram velocity at impact must be known, as
well as the dynamic behavior of the cushion, the diesel
explosive pressure in the hammer, and the length of time
it exerts a force on the pile. Since the above data were
not directly measured in the Michigan research pro-
gram, they were being calculated from the previous data
reported. The ram velocities at impact and explosive
forces on the pile for the diesel hammers were based on
the results given in Table 3.11, assuming the explosive
force to be acting as shown in Figure 3.12. The Vulcan
hammer properties were based on Table 3.10.

The results of driving this pile with the eight differ-
ent hammers are listed in Table 3.21 in the form of per-
manent set of the pile per blow and blows per inch.

Chapter IV
CHARACTERISTIC CUSHION PROPERTIES

Introduction

Although a pile cushion serves several purposes,
its primary function is to limit impact stresses in both
the pile and hammer.?® In general, it has been found
that a wood or rope cushion is more effective in reducing
the driving stresses than one of a relatively stiff material
such as Micarta. However, a stiffer cushion is usually
more durable and transmits a greater percentage of the
hammer’s energy to the pile.

For example, the results given in Tables 3.10 and
3.11 give an overall average efficiency of 52 percent for

cushion assemblies using wood, while the Micarta as-
semblies have an average efficiency of 66 percent. As
shown in Table 3.7, an increase in cushion stiffness will
also cause an increase in impact stresses which might
damage the pile or hammer during driving. This in-
crease in stress is particularly important when driving
concrete or prestressed concrete piles.

Dynamic Stress-Strain Curves

In order to apply the wave equation to pile driving,
Smith? assumes that the cushion’s stress-strain curve is
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Figure 4.3. Cushion test stand.

a series of straight lines as shown in Figure 4.1. Even
though this curve might be sufficiently accurate to pre-
dict maximum compressive stresses in the pile, the shape
of the stress wave often disagrees with that of the actual
stress wave.? This discrepancy was at first thought to
be the result of inaccurate soil data, since very litile was
known concerning the soil behavior during driving. It
was therefore decided to suspend several test piles hori-
zontally above the ground® as shown in Figure 4.2 to
eliminate the effects of soil resistance.

Table 4.1 lists the pertinent information concerning
these piles. The cushion was then hit by the ram and
the resulting strains were measured at six poinis along
the pile. Displacements and accelerations of both the
ram and the head of the pile were also measured. How-
ever, even though the soil resistance had now been ex-

TABLE 4.1. SUSPENDED PILE DATA

Pile Cushion Ram
E Ap L Ac t Weight Velocity
Case Material (psi) (in?) (ft) Material (in.h) (in.) (1b) (ft/sec)
Class A
LT-48 - Concrete 6.12x10° 254 65 Fir 62.8 9.0 4160 13.91
Class A -
LT-41 Concrete 6.12x10° 254 65 Micarta 89.1 9.0 4160 8.03
LT-39  Steel 30x10° 21.46 85 Oak ’ 225.0 7.5 2128 11.42
Class Y ]
Oak 225.0 9.5 2128 13.98

LT-15 Concrete *3.96x10° 225 65

*Esonte = 4.64x10° psi
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Figure 4.4. Dynamic and static stress-strain curves for
& fir cushion.

cluded, the shape of the stress wave still did not agree
with the theoretical shape, and so the device illustrated
in Figure 4.3 was used to see if the cushion’s stress-strain
diagram was actually a straight line.

Using this method, the dynamic stresses and strains

were measured for several cushion materials. It was

_ later discovered that for a given material, the dynamic

stress-strain curves were almost identical to the cor-

responding static curves. This is demonstrated in Figure

4.4 in which the dynamic and static curves for a fir
cushion are compared. '

Since the stress-strain curves are not linear as
assumed, the shape of the theoretical stress wave in the
pile is not likely to agree with the experimental shape
and so the “dynamic” curves were used.

< (MP-
\ \\memp-l Lana] WIMP)

Figure 4.5. Idealized test pile with known forces applied
at head of the pile. ,

L] K@) K(3)

Ft)

Furthermore, it is not known how much the rigidity
of the pedestal shown in Figure 4.3 affects the cushion’s
behavior. Therefore, the wave equation was used to
check the results. The second method required the fol-
lowing information: 1) the stresses determined experi-
mentally at the head of the pile vs time, 2) the velocity
of the ram at impact, and 3) the physical properties of
the pile system required for solution by the wave
equation.

As shown in Figure 4.5, both the cushion and ram
are omitted and the previously determined stresses meas-
ured experimentally at gage 1 (see Figure 4.2) are
placed on the head of the pile. The wave equation is
then used to determine the motion of the ram and the
pile, from which the compression of the cushion at any
instant of time is known. By plotting the measured
cushion forces against the corresponding compressions
of the cushion, the dynamic stress-strain curve may be
determined. The curves obtained by this method are
illustrated in Figures 4.6, 4.7, and 4.8. Comparing these
with Figure 4.4, it is noted that the curves are generally
similar in shape.

Dynamic Coefficz;ent of Reslitution

Although the cushion is needed to limit the driving
stresses in both hammer and pile, it reduces the avail-
able hammer energy because of internal damping. The
load diagram shown in Figure 4.1 illustrates this energy
loss since the energy input is given by the area ABC

5000
SLOPE OF CURVE AT
ONE-HALF OF THE
MAXIMUM STRAIN = E,ye
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8
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o] 004, 0.6 0.20 0.24 0.26
STRAIN (IN./IN.)

Figure 4.6. Dynamic stress-strain curve for fir cushion
(Case LT-48).

PAGE TWENTY-THREE




4000 |
3500
3000 [-
L 2500}
w
(/2]
w
£
% 2000 F
SLOPE OF CURVE AT
ONE-HALF OF THE
MAXIMUM STRAIN:EAVG
1500 Epvg 212,000 PSI

1000

750

500

250

At

Q.010

1 1 i
0015 0.020 0.025 0.030

STRAIN (IN/IN)

1
(] 0.008

Figure 4.7. Dynamic stress-strain curve for a micarta
cushion (Case LT-41).

while the energy output is given by area BCD. Usually
this energy loss is accounted for by a coefficient of resti-

tution of the cushion “e,” in which

Area under BCD
Area under ABD

When the dynamic stress-strain curve for the cushion
is known, such as for the previous problem, the coeffi-
cient of restitution can be computed. As shown in Figure
4.6, the area under the dynamic curve ABC is computed
by summing elemental areas ijkl until point B is reached
(i-e., until the strain reaches a maximum), then the area
under BCD is determined by summing elemental areas
mnop until point D is reached.

e —

Table 4.2 summarizes the results found for the
curves of Figures 4.6, 4.7, and 4.8. These coefficients
of testitution agree closely with values recommended by
Hirsch.® It is interesting that although e = 0.8 is
commonly recommended for a micarta capblock, these

TABLE 4.2. DYNAMIC CUSHION PROPERTIES

Commonly
Case Cushion Dynamic - Recommended
Material e e
LT-48 Fir 0.35 0.40%
LT-41 Micarta 0.60 0.80%
LT-39 Osak 047 0.48%
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Figure 4.8. Dynamic stress-strain curve for an oak
cushion (Case LT-39).

experiments indicate that e is actually much lower,
probably around 0.6.

Idealized Dynamic Stress-Strain Curves

The major difficulty in using the dynamic curves
derived in the previous section is that numerous points
on the curve must be specified in the input data, unless
the curve can be input in equation form. Although the

B
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—STRAIGHT LINE DEFINED BY

Prixyay) Suax+ €2 » AND e.

STRAIN

Figure 4.9. Idealized dynamic stress-strain curve for
cushion (parabolic).
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Figure 4.10. Dynamic force vs compression curves for
a fir cushion (Case LT-48).

increasing load curve for each of the curves is nearly
parabolic, the unloading segment is rather complex.
Therefore, for convenience, the unloading segment will
be approximated by .a straight line having a slope such
that the areas under the two curves result in the use of
the correct coefficient of restitution for the cushion
material being used.

Thus, the curve shown in Figure 4.9 can be defined
by two different points on the loading curve (other than
0.0) and “e” of the material. The points on the curve
are used to define the equation of the loading curve, and
as long as the cushion strain increases, the increased
input energy is computed as described earlier. When
the strain in the cushion begins to decrease, the total
input energy and the coefficient of restitution are used
to determine the slope of the unloading curve in order
to give the correct value of “e.”

As shown in Figure 4.9, the total input energy is
given by the area under the parabolic curve, A; + A,
while the output energy is given by the area under the
unloading curve, Ay. Since e is defined by

e = Ay/(A1+Ay),

then
A2 — 62(A1+A2).
But A, is also given by

400
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INPUT

B—5—a SOLUTION USING KNOWN
FORCE ON HEAD OF PILE
(FROM THE TRUE FORCE VS
COMPRE SSION CURVE SHOWN
IN FIGURE 4.7)
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Figure 4.11. Dynamic force vs compression curve Jor
‘@ micarta cushion (Case LT-41).
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Figure 4.12. Dynamic force vs compression curve for
an oak cushion (Case LT-39).

Slnax"—o .
Ay, = (—2*—) (e2—€4)

(At Ay = ('Sn%) (€2—¢€)

262 (A1 + Ag)

€€ —
( * ! ) Smax

Since the slope of the straight line BD is given by:

Ku — Smax
(e2—e€1)
where Ku defines the slope of the unloading curve, e
is the coefficient of restitution of the material, (A;+ A,)
is the total area under the curve ABD (calculated by the
computer), and Sy, is the maximum stress in the cush-
ion determined by the wave equation.

Figures 4.10, 4.11, and 4.12 compare experimental
force vs compression curves obtained for the first three
cases listed in Table 4.1, with those resulting from the
parabolic idealization of Figure 4.9, and the straight line
shown in Figure 4.1. Note that the parabolic curves
closely represent the actual force-displacement curves
while the linear curves are not nearly so close. In each
case the parabolic curves tend to “over-shoot” the true
maximum force, while the linear curve does not. The
effect this has on the stress wave in the pile will be
discussed in Chapter V.
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Chapter V
STRESS WAVES IN PILING

Comparison of Actual
and Experimental Stress Waves

As noted in Chapter IV, the shape and magnitude
of the siress wave in a pile is greatly dependent upon
the properties of the cushion used. This will become
apparent by comparing the actual stress wave determined
experimentally with results found by using the idealized
cushion properties mentioned earlier.

The solution for stresses in the pile should be more
accurate if the effects of the cushion and ram can be
omitted. To accomplish this, the force measured at the
head of the pile and the stresses at other gage points were
then determined by using the wave equation, The cases
solved by this method are listed in Table 4.1. Compari-
sons between the experimental results and wave equation
solutions at two points on the pile are shown in Figures

5.1 through 5.6.

One of the major factors which influenced these
comparisons was the fact that the prestressed concrete
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Figure 5.1. Theoretical vs experimental solution for
Case LT-48, Gage #3.
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Figure 5.2. Theoretical vs experimental solution for
Case LT-48, Gage #5.
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test piles cracked while setting up the experiment. There-
fore, any reflected tensile forces greater than the pre-
stressing force opened a small gap at the crack such that
the prestressing strands alone could transmit the tensile
stress down the pile. This is seen by the relative agree-
ment shown in Figures 5.1 through 5.6. Note that the
stress-waves shown for the concrete piles (Figures 5.1
through 5.4) do not agree nearly so well as those for
the steel pile (Figures 5.5 and 5.6).

Still, the results agree closely in each case, not only
in magnitude, but also in the over-all shape of the wave,
thus indicating that the numerical solution to the wave
equation is quite accurate. Further, any inaccuracies are
likely due to faulty assumptions concerning the dynamic
behavior of other variables such as the cushion, soil, etc.

As mentioned earlier, the stress-strain curve for the
cushion is normally assumed to be linear as in Figure
4.1. The true stress-strain curves shown in Figures 4.6
through 4.8 indicate that the curves are not actually
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Figure 5.3. Theoretical vs experimental solution. for
Case LT-41, Gage #3.
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Figure 5.6. Theoretical vs experimental solution for Case
LT.39, Gage #35.

linear and this assumption might therefore cause

inaccuracies.

To determine how the shape of the curve affects the
solution, the previous three problems were run using the
cushion stress-strain curves shown in Figures 4.1
(straight line), 4.6 through 4.8 (true stress-strain
curves), and 4.9 (parabolic curve). These solutions are
compared in Figures 5.7 through 5.12. In each case,
it is noted that the straight line solution is more accurate
than the solution using the parabolic curve. This is
because a simple parabolic curve was used which, even
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Figure 5.7. Theoretical vs experimental solution for Case
LT-48, Gage #3.

though it agrees with the actual stress-strain curve most
of the time, it cannot follow the reversed curvature at
the peak of the actual curve and thus “over-shoots” the
true peak force. Figures 4.10 through 4.12 show how
closely the parabolic curves follow the true cushion
forces, and also how far off the straight line assumption
is. The parabolic curve always peaks above the true
force vs compression curve, while the spring rate of the
straight line can be raised or lowered so that the true
maximum cushion force is not exceeded.

Thus the use of the straight-line assumption seems
reasonable since it gives fairly accurate results. The
linear spring constants used for the curves shown in
Figures 5.7 through 5.12 were first varied between wide
limits to obtain the most accurate maximum stresses.
These spring rates were then used to determine what
dynamic modulus of elasticity was required to give the
desired spring rate, using the equation: Edynamic =
(K cushion) (Length)/(Area of cushion). As shown
in Table 5.1, these results give a lower value of E for
oak than for fir, which in this case is correct since the
fir capblock was highly stressed (4,170 psi) while the
oak capblock was stressed only slightly (765 psi).

Further consideration of the dynamic stress-strain
curves revealed that the dynamic modulus of elasticity
of the capblock is almost exactly 10 percent greater than
that given by the slope of the stress-strain curve (Figures
4.6 through 4.8) taken at a point halfway between zero
and the maximum strain. As noted by Hirsch,% the
static and dynamic stress-sirain curves are quite similar,
so that curves like those shown in Figures 4.6 through
4.8 are easily determined for any other cushion material.

TABLE 5.1 DYNAMIC PROPERTIES OF NEW CUSHION BLOCKS OF VARIOUS MATERIALS

Slope at
Linear Spring Depth of Area of Midpoint SMAX in
Cushion Rate - K Cushion Cushion Eaynamie of Curve Cushion
Case Material (Ib/in.) (in.) (in.?) (psi) (psi) (psi)
LT-48 Fir 295,000 9.0 62.8 42,200 37,300 4170
LT-41 Micarta 2,320,000 9.0 89.1 234,000 212,000 3850
LT-39 Oak 585,000 7.5 225.0 19,500 17,300 765
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Figure 5.8. Theoretical vs experimental solution for Case
LT-48, Gage #5.

It was also recommended that the dynamic modulus be
increased as the cushion consolidated.%?

Internal Damping in Piling

As noted earlier, differences between experimental
and theoretical results were assumed to be the result of
inaccurate soil information. Other parameters were also
varied in an attempt to obtain more accurate results,?®
one of which was the material damping or internal damp-
ing capacity of the pile material.

Smith3 first suggesied that the internal damping
in the pile might prove significant, and proposed the
following equation by which hysterisis in the pile could
be accounted for:

F(m,) = C(m,t)K(m)

BK(m) . .
+ B e m ) —Cimi—1)]
in which B is the internal damping constant. He also
recommended that B be given a value of about 0.002 in
order to produce a narrow hysteresis loop. This equa-
tion was derived from the model shown in Figure 5.13
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Figure 5.9. Theoretical vs experimental solution for Case
LT-41, Gage $#3.
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Figure 5.10. Theoretical vs experimental solution for
Case LT-41, Gage 5.

(b) and if B is set equal to zero, no damping is present,
as seen in Figure 5.13 (a).

The model shown in Figure 5.13 (c) has one major
advantage over the previous model in that it is able to
account for damping by considering the difference be-
tween the material’s static modulus of elasticity E, and
its sonic modulus of elasticity E,. This is because a
slowly applied load gives the dashpot time to relax with-
out causing the spring K to exert a force, thereby result-
ing in a spring rate equal to K,. However, when the
loads are applied rapidly the dashpot has no chance to
deform, resulting in a spring rate of K,—K,. Thus for
the model of Figure 5.13 (c), K, is determined from
the static modulus of elasticity E, while K,+ K, would
use the sonic value E..

It is interesting to note that when K is infinitely
large, model (c) becomes equivalent to model (b), and
if K, = 0, model (c) becomes equivalent to model (a).

In order to derive the equation, Figure 5.14 is pro-
vided. Figure 5.14 (a) illustrates the damping model
wherein point “m” (on the upper mass) has moved a
distance x;, point “n” (between the dashpot and spring)
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Figure 5.11. Theoretical vs experimental solution for
Case LT-39, Gage 3.




has moved a distance x,, and point “0” (on the lower
mass) has moved a distance of x5, Assume that at time
L = t, there exists a force Folo in the spring K,. There
is also a force in the spring K, given by Fto, and a
force in the dashpot equal to Fpto.

As shown in Figure 5.14 (b), after a single time
interval passes, point m moves an additional distance
Ax,;, point na moves Axs, and point o moves Axz At
this time, t = t; = t, + At, and the forces in K,, K,
and B are designated F,'1, F;t1, and Fp'l, respectively.

At time t,:
Fgo = Ki(x1—x.). Eq. 5.1
At time t; = t, + At;:
Fofl = K[ (x1 + Axy) — (x + Axa) ].
Fefl = K [(x1—x2) + (Ax;—Ax.)]. Eq. 5.2
Substituting Equation 5.1 into 5.2:
Ff1 = Flo+ K, (Ax;—Ax.). Eq. 5.3
By definition, at all times:
Fpt, = B____(A’Q;Af"‘*) . Eq. 54
Because point n must be in equilibrium:
Ffl = Fptl. Eg. 5.5
Substituting Equation 5.3 and 5.4 into 5.5:
Fyto+ K, (Ax;—Axy) = B {2 f%)
BAx, BAx;
t _— , :
Fpto + K Ax; K.Ax, + At At

FptoAt + K Ax;At+BAxy = Ax,(K.At+B).

Solving for Ax,:

A . FDtOAt+KsAX1At+BAX3 Eq 56
Xo —
K.At+B
Substituting Equation 5.6 into 5.4 produces:
¢ o A
FDt]_ — FD 0+K (AXl AXg) Eq. 5‘7

(KsAt/B) +1

The solution begins by setting Fpto equal to zero,
and calculating it for the next time interval from Equa-
tion 5.7. The quantity K is a constant and (Ax;—Axy)
is simply the change in compression during a single time
interval. Therefore, returning to the earlier terminology,
Equation 5.7 can be written:

_ DF(Lt) +DK(I) [C(Lt+ 1) — C(Lt) ]
DF(Lt+1) = [DK(I)At/B] F1.0  Eq. 5.8

where DF(Lt) is the damping force in dashpot number
“I” during time interval “t,” DK(I) is the dynamic
spring rate of damping spring “I,” C(Lt) is the com-
pression in spring I during time interval number t, At
is the time increment, and B is a damping constant.

The static force in spring I will be computed as
before, by

F(It+1) = K(I)[CIt+1)]. Eq. 5.9

" Thus by adding the Equations 5.8 and 5.9, the total force

acting on each mass can be determined for the next time
interval.

Since as far as is known this derivation does not
appear elsewhere, the boundary conditions for the damp-
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Figure 5.12. Theoretical vs experimental solution for
Case LT-39, Gage #5.

(b} INTERNAL DAMPING PROVIDED

(a) NO DAMPING PRESENT
BY DASHPOT

(c) INTERNAL DAMPING PROVIDED 8Y AN
ELASTIC SPRING AND DASHPOT CONNECTED .
IN SERIES ’

Figure 5.13. Various idealizations for the spring seg-

ment of & pile.

ing force given by Equation 5.7 were checked. From
Equation 5.7,

to 4
(a) Letting Ky = 0 : Fptl = &f%) = Fypto.
This is correct since Fp begins at zero and cannot in-
crease in magnitude when K, — 0.
. Fpto+ e __
(b) Letting Ky = o0 : Fptl :_DO?O_*__]-EQ —=w/w.
Since this is indeterminate,
d
1im dK, [F.to+K,(Ax;—Ax3)]
FDt]. — Kg—)OO d
- [KAt+1]
dK, B
lim 0+ (AXI_AX3) — B(AX1_AX3)
= K> At/B+0 At

This checks since it is the equation found when K, = o«
and only the dashpot remains. In this case the models
of Figures 5.13 (b) and (c) would be identical
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Figure 5.14. Idealized pile segment with standard linear
solid damping.
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Figure 5.15. Comparison of experiinental and theoreti-
cal solutions for stresses at Gage H#3 with damping
omitted (Case LT-15).

(¢) Letting B = 0:Fptl = Fpto+ K, (Ax; —Axj)
. K At
1+
0
— _1_ = 0.
0

This checks since if the dashpot has no damping ability,
the damping force must be zero.
FDtO+K (AXI_
KAt KAt 4
)

AXg )

(d) Letting B = oo : Fptl = Axs)

- FDtO+K (AXl
But FDtO — FstO — K (Xl )
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Substituting this into the previous equation one finds

Fptl = [KJ][(z1—x2) + (Ax;—Axs) ]
= [Ke][(x1+Ax) — (x2+ Axs) ]

= [K;][Total compression at time t].

This is correct since it is the equation for the spring and
when B = 0, the dashpot is “locked” and no damping
occurs.

. Fpto+ K, (Ax;—
(e) Letting At = 0 : Fptl = =2 o 0(_1_ )1{1
This result agrees because it gives the same result as
letting B = . (See part {(d) above.)
(f) Letting At—c0 :Fp'l
Fyto + K (Ax;—
o +B

This checks because the force stored in the damping

spring would be released by relaxation of the dashpot
if At = oo.

(g) Let Ax; = Axp and assume that the damping

Ax, )

=0

spring has an initial force stored at t = t,. Although
this force should diminish with time, it cannot go to zero
during a single time interval, unless At = 0.
Fril = Fo'otK.(0) _ Fplo
P “KAt KAt o,
B ) B )

This is correct since the force in the spring is reduced,
but will never actually reach zero unless At = 0.

Figures 5.15 through 5.18 compare the effects of
damping in a pile using the damping models shown in
Figure 5.13. The results given are for test pile number
LT-15 which is described in Table 4.1. This particular
pile was of lightweight concrete with E = 3.96 X 10°
and E; = 4.63 X 10° psi. This problem was chosen
since E; was relatively larger than E, indicating the
possﬂolhty of rather high damping.

However, one is often more interested in the maxi-
mum stresses found in the pile, which usually occurs
during the first or second pass of the siress wave along
the pile. During this time the effects of damping are
small and can usually be neglected.
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Figure 5.16. Comparison of experimental and theoreti-
cal solutions for stresses ot Gage #3 for different damp-
ing models (Case LT-15).
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Figure 5.17. Comparison of experimental and theoreti-
cal solutions for stresses at Gage H5 with damping
omitted (Case LT-15).

This conclusion may not be accurate for timber

piles since wood has a much higher damping capacity

than either the sieel or concrete piles for which experi-
mental data were available. This higher damping ca-
pacity might affect the results earlier in the solution
which might in turn lower the accuracy of the results.
Nevertheless, if more testing should indicate that the
damping models are accurate for timber piling too, then
the problem, or rather the uncertainties of damping
effects will no longer be a problem.

In any case, if the wave is to be studied for an ex-
tended period of time, damping in the pile cannot be

STRESS {PS1)

&
. g2
@ [— TEXPERIMENTAL sOLUTION _~~ "7
ceao STANDARD LINEAR SOLID DAMPING WITH B=0.8
L L ouma_SMITH'S DAMPING MODEL WITH 8200005
. MpDEL WITH B O

.
i 2 3 4 5 6 7 8 9 10 n 2 13 14 5 16 17 8 -] 20
TIME (SEC x 1073)

Figure 5.18. Comparison of experimental and theoreti-
cal solutions for stresses at Gage #5 for different damp-
ing models (Case LT-15).

neglected. This is illustrated in Figures 5.15 and 5.17
where fairly large errors resulted when damping was
neglected. On the other hand, Figures 5.16 and 5.18
suggest that in certain cases damping should be account-
ed for using either of the damping models of Figure 5.13.

The most surprising result of this study is not the
accuracy of the damping models, but rather that both
models give nearly identical results even though Smith’s
model is extremely simple while the other is rather com-
plex. Again, this may also prove incorrect for timber
piling or other piling which has a large damping ca-
pacity. For example, one of the above methods might
be more accurate than the other.

Chapter VI
SOIL PROPERTIES

Idealized Soil Resistance Curves

The load-deformation characteristics assumed for
the soil in Smith’s numerical solution are shown in
Figure 6.1 (a). This curve excludes the damping effects
of the soil caused by rapid loading, and illustrates only
the soil resistance caused by static loading. As shown,
the two parameters required to define the load-deforma-
tion curve are the ground quake “Q(m)” and the ulti-
mate static soil resistance “Ru(m).”

When the soil is located along the side of the pile,
it is assumed to resist any rebound of the pile as well as
any downward motion. This is typified by the curve
OABCDEFG. However, the soil located at the tip of the
pile can only exert upward forces, as represented by the

curve OABCFCB.

The spring rate for the curve between point O and
A may now be determined from

<o =13

In order to include the damping effects of the soil,
a third variable J(m) is defined as the damping con-
stant of soil spring “m.” Thus the total resistance of

the soil, including the effect of loading rate, is given by
R(m;t) = [D(mt) — D'(m;t)] K'(m)[1
+ J(m)V(mt—1)]

where m denotes the segment number of the pile, t is the
time interval number, D(m,t) is the displacement of
segment m at time interval number t, K'(m;t) is the
plastic deformation -of the soil, J(m) is the soil damp-
ing constant, K'(m) is the soil spring constant, V(m,t)
is the velocity of mass number m at time interval number
t, and R(m,t) is the soil resistance acting on that ele-
ment at time t.

In cases in which more accurate soil data are avail-
able, the general soil resistance curve of Figure 6.1 (b)
may be used to advantage. This curve also uses the
variables Q(m) and Ru(m), but the curve no longer
must be linear. In this case, the ground quake Q(m)
is divided into ten equal segments, and the static soil
resistances corresponding to these ten points comprise
the input data required to establish the curve. Also,
as shown in Figure 6.1 (b), the slope of the unloading
curve is given by K'(m). A more complete discussion
of the use of this method is given in the appendix.

To check out the programming changes involved in
this method, several problems were first solved using

PAGE THIRTY-ONE




!

G Ru{m}

|
|

STATIC
SOIL
RESISTANCE

DEFORMATION

Ru(m)
E "D
(a) ELASTIC-PLASTIC OR"LINEAR" SOIL RESISTANCE CURVE
Q(m) |
w ° . -
o 2
o,z
kah
=N
6@ SLOPE = K' (m) — Ru(m)
) |
1 1 ] ] 1 Ll 1 i )
%((r)_n)__ ! DEFORMATION
Q(m) l

(b) GENERALIZED SOIL- RESISTANCE CURVE

Figure 6.1. Load-deformation. characteristics assumed
for the soil.

the regular elastic-plastic curve of Figure 6.1 (a). These
problems were then solved again using the generalized
soil resistance method with soil resistance values lying
on the same curve, the two solutions then being checked
for identical results.

A number of other problems were also solved to
see what changes might result when the shape of the soil
resistance curve was altered. For example, the linear
soil resistancé curve used in a problem originally solved
by Smith®® is shown in Figure 6.2 (a). This problem
was then solved using the nonlinear curve of Figure

6.2 (b).

The solutions for these two problems, shown in
Table 6.1, are typical of the resulis found for the other
cases studied, in that a rather large change in the soil
curve changed the results only slightly. In this case,

TABLE 6.1. COMPARISON OF RESULTS FOUND BY
USING ELASTIC-PLASTIC VS NONLINEAR SOIL
RESISTANCE CURVES

Maximum Force (kip)

Maximum
: At At At Point
Type Head Center Point Displace-
of Soil of of of ment
Resistance Pile Pile Pile (in.)
Elastic Plastic 290 300 405 0.203
Nonlinear 290 301 370 0.218
Percent Change 0.0 +0.3 —-87 474
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for example, although the soil quake was doubled and
the curve made nonlinear, the maximum change in stress
was less than 9 percent, and the permanent set increased
less than 8 percent. Only a drastic change in the soil
resistance curve was found to cause an appreciable dif-
ference in the solution.

Therefore, if the soil resistance curve for the prob-
lem even slightly resembles the curve of Figure 6.2 (a),
the linear resistance equation will probably be satisfac-
tory. Whenever it becomes necessary, the nonlinear soil
resistance can be used as explained in the appendix.

Significance of the Soil Quake “Q”

The properties of the soil under the action of dy-
namic loading are probably the least understood of the
many variables affecting the problem.®* Although a
number of values for the soil quake may be used, the
value Q = 0.1, recommended by Chellis®® is probably
the most widely accepted for general use, except when a
more accurate value can be determined. As might be
expected, the trouble stems mainly from the large num-
ber of variables influencing the value of Q- at any given
driving location, the most obvious of course being the
type of soil encountered. Much work is presently being
done to define these factors and to more accurately de-
termine the actual values for both “Q” and “J” to in-
crease the solution’s accuracy.%6:7
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4 200 | >
Q ~
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T 2
=w
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2 4
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Figure 6.2. Soil resistance vs deformation curves.




While it is beyond the scope of this paper to attempt
to determine values for Q, it is interesting to see how
the value of Q affects the solution. After a number of
the Michigan research problems with varying values of
Q were studied, Case BLTP—6; 57.9 was chosen as
being fairly representative. The problems were solved
with Q ranging from 0.1 to 0.5, as seen in Table 6.2.
To determine whether Q would have similar effects at
all magnitudes of soil resistance, Ruy, was also varied.
The results of this parameter study are given in Table 6.2.

One of the trends noted in Table 6.2 is the small
effect Q has on the maximum compressive force found in
the pile. The effect on tensile force is more pronounced,
although no conclusion could be reached as to whether
the tensile stress will increase or decrease as ( changes
since the results did not indicate an apparent trend.
Maximum ENTHRU values are also relatively inde-
pendent of the soil quake, with ENTHRU tending to
decrease as the soil quake increases.

The most pronounced and consistent trend is the
marked increase in maximum point displacement cor-
responding to increasing values of . It is also noted

that the percent increase in maximum point displace--

ment is relatively small for a small soil resistance, but
greatly increases as the total soil resistance becomes
large. This is also shown in Figure 6.3. Similar results

TABLE 6.2. INFLUENCE OF SOIL QUAKE AT DIF-
FERENT SOIL RESISTANCES FOR CASE BLTP-6; 57.9
WITH NO SOIL DAMPING

Maxi- Maxi-

mum mum Maxi-

Point Com- mum
Total Soil Displace- Maximum pressive Tensile
Resistance Q ment ENTHRU Force Force
(kip) (in.) (in.) (kip ft)  (kip) (kip)
50 0.1 1.49 6.80 225 109
0.2 1.51 6.80 222 109

0.3 1.51 6.73 221 114

04 1.54 6.71 221 119

0.5 1.58 6.69 221 124

100 0.1 0.84 6.96 230 68
0.2 0.88 6.88 224 85

0.3 0.90 6.86 223 97

0.4 0.93 6.84 222 98

0.5 0.97 6.83 222 97

150 0.1 0.56 7.10 235 91
0.2 0.57 7.05 227 90

0.3 0.61 6.93 225 128

0.4 0.64 6.88 223 163

0.5 0.69 6.85 223 188

200 0.1 0.41 7.21 240 79
0.2 0.44 7.13 230 67

0.3 048 7.06 226 m

0.4 0.52 6.99 224 107

0.5 0.56 6.90 224 118

300 0.1« 0.22 7.28 250 82
0.% 0.30 7.24 234 108

0.8+ 0.36 7.16 229 111

04 0.42 710 - 225 59

0.5 047 7.05 224 73

400 0.1 0.11 7.30 260 127
02 0.21 7.28 239 114

0.3 0.29 7.24 233 158

04 0.36 7.18 228 158

05 041 7.12 226 102

were found for the other Michigan cases studied, except
that the tensile force often varied substantially more than
indicated for the case of Table 6.2. '

Significance of the Soil Damping

Michigan Case BLTP-6;57.9 was also chosen to
illustrate the damping effects of the soil. These damp-
ing constants were given values ranging from 0.0 to 0.5,
and as was done in the previous section, the total soil
resistance was varied from 50 to 400 kip to see if trends
found at low resistances would also be noted when the
soil resistance was large. Since the soil damping con-
stants most commonly used are those recommended by
Smith,% ie., a soil damping constant of 0.05 sec/ft .
along the side of the pile and 0.15 sec/ft at the point
of the pile, the variation of ] = 0.0 to 0.5 very likely
covers the values typical for many conditions and soils.
These results are given in Table 6.3.

As was previously determined for Q, the soil damp-
ing constants also have liitle effect on the maximum
ENTHRU values. The maximum compressive forces do

TABLE 6.3. INFLUENCE OF SOIL. DAMPING ON
DIFFERENT SOIL RESISTANCES FOR CASE BLTP-6;
57.9 (Q = 0.1 FOR ALL CASES)

Maxi- Maxi- .
mum mum Maxi-
Point Com- mum

Total Soil
Resistance J
(kip) (sec/ft) (in.)

Displace-Maximum pressive Tensile
ment ENTHRU Force Force
(kip £t)  (kip) (kip)

50 0.0 1.49 6.80 225 109
0.1 1.11 6.89 221 68

0.2 0.85 7.03 221 41

0.3 0.72 7.21 221 18

04 0.63 7.23 222 6

0.5 0.56 7.25 222 5

100 0.0 0.84 6.96 230 68
0.1 0.58 712 222 31

0.2 0.49 7.20 223 11

0.3 0.43 7.25 223 14

04 0.38 7.27 224 12

0.5 0.34 7.28 225 17

160 0.0 0.56 7.10 235 91
0.1 0.42 7.23 223 23

0.2 0.34 7.26 224 21

0.3 0.28 7.28 225 26

04 0.24 7.27 239 24

0.5 0.21 7.26 251 22

200 0.0 041 7.21 223 79
0.1 0.28 7.28 225 35

0.2 0.22 7.28 239 37

0.3 0.18 7.25 255 31

0.4 0.15 7.22 267 27

0.6 0.13 7.20 274 26

300 0.0 0.22 7.28 250 82
0.1 0.12 7.23 272 63

0.2 0.09 7.18 286 41

0.3 0.08 7.14 293 33

04 0.07 711 298 31

0.5 0.07 7.07 302 30

400 0.0 0.11 7.20 260 127
0.1 0.07 7.13 308 61

0.2 0.06 7.07 313 41

0.3 0.05 7.02 314 35

04 0.05 6.96 314 33

0.5 0.05 6.90 314 33
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Figure 6.3. Maximum point displacement vs quake (Case
BLTP-6; 57.9).

have a tendency to increase as J increases, especially
when the soil resistance is large. While the tensile forces
still do not follow any definite pattern, they are some-
what more regular than those determined by varying

11 22
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Figure 6.4. Maximum point displacement vs soil damp-
ing constant (Case BLTP-6; 57.9).

The maximum point displacements again show the
most consistent trend as J is varied, as shown in Figure
6.4. The other cases studied showed this same trend,
i.e., as J increases, the maximum displacement decreases
rapidly.

Chapter VII
CONCLUSIONS

The correlation between the numerical solution and
the experimental data presented in Chapter V indicates
the potential accuracy of Smith’s method, but the prob-
lem involves so many important parameters that it is
extremely important to know as much as possible about
their actual behavior.

As shown in Chapter III, it is possible to determine
valuable information from the wave equation even
though exact values for some of these parameters are
unknown. For example, several problems can be solved
in which the unknown parameter varies between upper
and lower limits as was done to determine the effect of
the ram’s elasticity. This study shows that only for steel
on steel impact does the elasticity of the ram affect the
solution.

In order to study the Michigan da%l over 5,000
problems had to be solved because ceitain ‘key informa-
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tion such as the ram velocity was not reported. Still, it
was possible to study the behavior of the pile-driving
hammers discussed. For example, the efficiency of the
cushion assembly was remarkably consistent, in that they
were nearly independent of the type of pile, pile length,
and soil resistance. The correlation between the wave
equation and the field data shown in Chapter 111 further
illustrates that Smith’s method is accurate, especially
when the required data are known and need not be
assumed.

Much of the value of this method of analysis is its
flexibility. As illustrated in Chapter III, the wave equa-
tion can be used for any number of studies which other-
wise would not be possible.

It was shown that the stress-strain curve for a cush-
ion is not a straight line. Instead, it follows a curve
which is closely parabolic. However, a straight line




which has a slope equal to that of the true stress-strain
curve taken at a point halfway between zero and the
maximum strain gives accurate resulis. The cushion’s
dynamic coefficient of restitution was found to agree
with commonly recommended values,

The effect of internal damping in the concrete and
steel piles was shown to be negligible in these cases,
although it can be accurately accounted for by the wave
equation if desired.

The data from the Michigan Study of Pile Driving
Hammers were extrapolated to evaluate the true energy
output of different pile driving hammers. It was found
that the energy output for all types of hammers (steam

and diesel) can be determined by the simple equation:
E=Wgxhxe
where E = energy output in ft-Ib
Wr = ram weight in Ib,

h = ram stroke or equivalent stroke in ft,
and
e = hammer efficiency (found to be 60%

for the Vul. No. 1, 87% for the Vul.
50C and 80C, and 100% for the diesel
hammers investigated by the Michigan
Study).
This is believed to be a most significant finding in
view of the existing controversy over the manufacturers’
rated energies for diesel hammers.

Recommendations
RECOMMENDATIONS FOR FURTHER RESEARCH

The following areas are recommended for further
research:

1. A complete evaluation of the data collected by
the Michigan State Highway Commission, including cor-
relation of hammer energy, permanent set of pile per
blow, etc. This would require a major research effort
because of the quantity of data reported. Also, because
certain variables were not determined, several theoreti-
cal solutions must be solved for each attempt correlation
until the unknown parameter can be “pinned down” with
reasonable accuracy. For example, the solutions for
over 5,000 problems were required to complete the 28-
case study made in Chapter IIL

2. A study to determine how to improve the effi-

ciency of the pile-driving hammers presently in use, This
type of research should be most interesting to the ham-
mer manufacturers since present equipment could be
optimized to drive piling faster and/or reduce the driv-
ing stresses during driving. The possibility that today’s
pile-driving hammers are as efficient as possible through
trial and error is remote.

3. Further research is needed to insure that the
damping models proposed in Chapter IV are also ac-
curate for timber piling, and to determine what damping
constants should be used.

4. Major research efforts are needed to investigate
every aspect of the soil resistance acting on the pile
during driving. :
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ID1 and ID2 —

1/At —
MP . —

VELMI -
MH —

CARD 101 (Required)

NR —
| EEM(NR) —
| EEM(NR+1) —
|

GAMMA (NR) —

GAMMA
(NR+1) —

NSTOP —

Appendix A

PROGRAM INPUT DATA

All “ID” values are for identifica-
tion only and can be either alpha-
betic or numeric.

Time interval. If left blank, Ater/2
will be used. (1/sec)

Total number of segments in the
system to be analyzed.

Initial velocity of the ram. (ft/sec)

Element number of the first pile
segment.

Number of divisions of the ram.

Coefficient of Restitution of spring
number NR, directly under ram.

Coefficient of Restitution of spring
number NR+1.

The minimum force in the spring
beneath the ram once that force
has reached a maximum. ° (kip)
For example, if the diesel hammer
explosive pressure causes 158.7 kip
minimum force in this spring, set
GAMMA (NR) = 158.7 kip. If the
minimum force the spring ecan
transmit is zero (for example,
when no tensile force can exist be-
tween the ram and anvil) set the
corresponding GAMMA (1) = 0.0.
If the spring represents a continu-
ous body such as the spring be-
tween any two pile segments, it can
transmit tensile forces between the
elements. This is signified by set-
ting GAMMA(I) equal to any
negative value, usually —1.0 kip.

Same as above, but for spring num-
ber NR-1.

Total number of time intervals the
program is to run.

NOP(I) VALUE

FUNCTION

NOP(1)

Used to read cards 103-106 and
print out the data for problem
identification.

No identification card is to be used.

Read and print a single ID card.
(card 103)

Read and print two ID cards.
(cards 103 -and 104)

Read and print ID cards 103, 104,
and 1

Read and print ID cards 103, 104,
105, and. 106.

Used to specify the input method
for the segment weights WAM(I).

=2
PAGE THIRTY-EIGHT ~

Read one weight for each segment
(card series 200).

Read the segment Welghts for only
the first five and last five seg-
ments of the pile system from a
single card’ (card 200), and equate
all remaining segment weights to
the sixth weight in the system.
(NOP(2) = 2is used when a large
number of equal weights are pres-
ent except for the first or last few
weights.)

NOP(I)

VALUE

FUNCTION

NOP(3)

Used to specify the input method
for the internal spring stlffness
(XKAM(I).

Read one stiffness for each inter-
nal spring from card series 300.

Read the stiffness values for only
the first five and last five internal
springs on a single card 300, and
assign the fifth value to all re-
maining internal springs.

(NOP(8) = 2 is used under the
same conditions as NOP(2) = 2.

NOP(4)

Used to specify what soil resist-
ance distribution act along the pile.

Read RUM(I) for "each element

. from card series 400, and set the

point bearing soil resmtance RUM
(MP+1) equal to RUP.

Set all side resistances equal to
ﬁeé% and set RUM(MP+1) =

Distribute RUT-RUP uniformly
along the side of the pile from
segment MO thru MP, and set
RUM(MP-+L) = RUP.

Distribute RUT-RUP triangularly
along the pile between segments
MORaUndP MP, and set RUM(MP+-1)

Read one 450 series card for each
mass upon which a nonlinear re-
sistance vs displacement curve
acts. If a linear curve also hap-
pens to be acting on an .element,
it must also be input on a 450
series card.

NOP(5)

Used to specify the input method
for GAMMA (I). Note: The sig-
nificance of GAMMA(I) is dis-
cussed in the “500 card series.”

Read GAMMALl and GAMMA2
from card 101 and assign GAM-
MA1l to internal spring number
NR, and assign GAMMA2 to spring
number NR-+1. Then set GAM-
%\IA(Il) Oof the remaining springs
o —1.0.

Same as for NOP(5)=2, except
that GAMMA (NR--2) is also set
equal to 0.0.

Same as for NOP(5)=2, except
GAMMA (NR+2)=0.0 and GAM-
MA(NR+8)=0.0. -This option is
used when a large number of ele-
ments such as an anvil, follower,
load cell and pile cap are encoun-
tered, since these elements cannot
transmit a tensile force to the next
element. This option can be used
to set up to eight consecutive val-
ues of GAMMA (I) =0.0 by setting
NOP(5) =8.

Read GAMMA (I) for each spring
from card series 500.




NOP(I) VALUE FUNCTION NOP(I) VALUE FUNCTION
NOP(86) Used to specify the input method =2 In this case, the force at the head
for EEM(I). of ’i)h% lpﬂl? at all tlmets 115 k&;mén,
imental methods,
=1 Read EEMI1 and EEM2 from card gﬁ‘é %}HZ fgrﬁﬁpﬁgwe is to %e ap-
101 set EEM(NR)=EEMI1, and plied at the head of the pile. The
EEM(NR+1) —EEM(2). Then set force at each time interval FOR-
EEM(I) for all other springs equal CIN(t) is read from card series
to 1.0 (perfectly elastic). 1300 (kip).
=2 Read EEM(I) for each spring =38 Same as when NOP(14) =2, except
from card series 600. tﬂa’c %alvanometer }I;ea{’dings rather1
3 N t s at each time interva
NOP(7) Used to 1\s/[peimfy the input method arzningﬁie an?i t?l?e cushi%n ff,ﬁ‘c’es
for BEEM(I). are determined by the computer.
=T Set all BEEN()=00. I s cage, the information on ghe
=2 Read B}%EM(.I) for each spring lowed by the galvanometer deflec-
from card series 700. tion at each time interval from
NOP(8) Used to specify the input method card series 1400.
for VEL(I). NOP(15) Used to specify how gravity is to
—1 Read VI]‘E(II'MI i;rom calrid 101 and be accounted for in the solution.
set VE ,6=0) for all segments - itv i _
of the ram (usually one segment) 1 ?;}égeffea of gravity is to be neg
%lil(l;:o:ov (F LML~ Set all other =2 Ghravity is1 tg bels considerecé, witlﬁ
oy the initial displacement of eac
=2 g‘(’)‘;‘g CV}%L(I) fogooea‘"'h segment segment, D(L,0), and the initial
ard series soﬂbreSIStances RAM(I,0) assumed
OP(9 Used t if £ method for to be zero.
N, ) Q?f) 0 specify input me =3 gral.vét)y isdt% 21‘\3/_[ ((Izo(r)x?idered, aréd
an are to be
=1 Read QSIDE and QPOINT from ap(prox1mated by Smith’s suggest-
ca(;'d 102 hand 1se’c all1 C% (I)Q SaIIlo)I]lég ed method.”
side of the pile equal fo : =4  Gravity is to be considered, and the
g:tQ%(Ol\g’Iflq 1) under pile tip equal values fort B(bI og and RAM(J, ot)
. are compute amson’s suggest-
= 2  Read Q(I) for each element includ- ed method.® v &8
ing Q(MP-1) from card series
900. NOP(16) Usel()i1 to speck:fy tlhednumber }(:f
- problems to be solved using the
NOP(10) Used to specify input method for basic data given on cards 101
SI(I). : through the 1700 card series.
—1 Read SIDEJ and POINTJ from =1 1?;%}1{; s Taot oF dagar 0° SoIved
card 102. Set all SJ(I) along side .
=2 Run more than one problem with
of pile equal to SIDEJ and SJ(MP h in th dat ified
+1) under pile tip equal to changes in these data as specifie
“POINTJ. on card 1600. 7
=2 Read SJ((I) for each element in- NOP(17) Used to specify whether the ulti-
cluding SJ(MP+-1) from card se- mate pile capacities predicted by
ries 1000. :lrarlou; -pile driving equations are
NOP(11) Used to specify the input method osire
for DYNAMK(I). =1 No capacities are to be computed.
=7 Set all DYNAMK()~00. ~ 2 Jeine the information from erd
=2 Read DYNAMK() for each spring by the wave equation solution,
from card series 1100. iolx%e 1for the uli(:ilmaizie bres1stancei
- P o failure as predicted by severa
NOP(12) X?i()i to specify input method for popular pile driving equations.
1 Read AREA from card 102 and set CARD 102 (Required)
all A(I) equal to AREA ID3 — Identification.
=2 ?ead A(ﬁ) for ea(lzlzxolnternal spring ID4 — identification.
0
rom card series RUT — The total static soil resistance act-
NOP(13) Used to specify which method of ing on the pile (kip).
}.'I}llter;l?é damping is to be used in RUP — The }i):otal Eﬁatti}f‘ soil resi(slfan)ce act-
ing benea e point (kip
=1 Use Smith’s method (refer to Fig- MO — Number of first element upon
) %re 5. };3b()i - ld thod which soil resistance acts.
= se standard linear solid metho
(ot o Figore B50). QSIDE — Sofl quaks along ido of ple it
NOP(14) Used to specify how the-force in QSIDE=0.0 (in.). .
Eléiefgfi}ﬁ&n after impact is to be QPOINT — Soil quake beneath pile point (in.).
: SIDEJ — Soil damping factor in shear along
=1 Calculate cushion forces from the the side of the pile if a single value

wave equation applied to the mov-
ing ram after impact.

exists. If not, set SIDEJ=0.0

(sec/ft).
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POINTJ — Soil damping factor in compres-
%i;on beneath' the pile point (sec/

NUMR — Number of elements for which the
soil spring does not have a linear
stress-strain curve.

IPRINT — Print frequency. For example, if
the solution at every 5th time in-
terval is wanted, set IPRINT=5.

AREA — A constant used to convert the
forces into stresses or other more
convenient values (such as chang-
ing 1b. to kip by setting AREA=
1000.0).

NS1-NS6 — The element numbers for which
solutions vs time interval will be
printed. Maximum values and
other information are always
printed for each element after
NSTOP time intervals have
elapsed.

CARDS 103-106 (Required only if NOP(1)=2,3,4,5)

If NOP(1)=1, no identification card will be read. If
NOP (1) =2, read card 103 containing 72 columns of alpha-
betic or numeric identification and print this information
above the problem. If NOP(1)==3, read and print two
identification eards, up to a maximum of four cards
(NOP(1)=5).

200 CARD SERIES (Required)

IDW1, IDW2 — Throughout this Input, variables
beginning with the letters “ID” are
for identification, in this case to
help identify what segment
weights are being used.

WAM(I) — The weight of element number I
’ (kip). a) If NOP(2)=1, the com-
puter will read MP segment
weights, ten segment weights to a
card from cards 201-230, up to a
maximum of 300 segments. For
example, if the system is divided
into 87 segments, four 200 series
cards must be included in the data:
201 through 204. b) If NOP(2) =2,
in this case the pile must have a
constant weight per foot along its
length. Since the pile is usually
divided into equal segment lengths,
only a few of the element weights
are different. Therefore, only the
top five weights (the ram, anvil,
.) and the bottom five weights
. ., pile segment, pile point)
must be read from the card 200.
The computer then sets all other
element weights equal to the sixth
value punched in the card.

800 CARD SERIES (Required)

IDK1, IDK2 — Identification.
XKAM(I) — The internal spring rate of spring
I (kip/in.).

a) If NOP(8) = 1, the computer
reads MP-1 ‘spring rates from
cards 301-330.

b) If NOP(3) =2, the first and last
five XKAM(I) are read from card
300, and the remaining XKAM(I)
are set equal to the sixth
XKAM(I) value, ie., XKAM
(MP-4).

400 CARD SERIES (Required if NOP(4)=1)

IDRL1, IDRL2 — Identification.

RUM(I) -~ The ultimate static resistance of
the soil acting on pile segment I
(kip). a) If NOP(4) =1, read MP
ultimate soil resistances, from
cards 401-430, and set RUM(MP
+1) equal to RUP.
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b) If NOP(4) =2, set all side fric-
tion=0.0 and set RUM(MP+1)=
RUP.

c) If NOP(4) =3, distribute (RUT-
RUP) unlformly along the pile
starting from segment number MO
to number MP, and set RUM(MP
+1)=RUP.

d) If NOP(4) =4, distribute (RUT-
RUP) triangularly between MO
and MP set RUM(MP+1)=RUP.

e) If NOP(4)=5, read NUMR
cards, each of which can define a
linear or nonlinear force-displace-
ment curve for the soil (see card
series 450).

450 CARD SERIES (Required if NOP(4)=5)

When NOP(4) =5, the soil resistance vs displacement
curve is nonlinear. ThlS requires ten soil resistances to be
read for each soil spring, one for each displacement cor-
responding to a multiple of Q/10. As shown on data card
451, T is the number of the element upon which the non-
hnear resistance is acting, XKIM(I) is the unloading
spring rate (kip/in.), and R(I,J) are the soil resistances
(klp) at each of the displacements Q/10, 2Q/10, . . . ,

, Whenever NOP(4)=5, one 450 series card is
reqmred for each element upon which soil resistance acts.

500 CARD -SERIES (Required when NOP(5)=2)

IDG1, IDG2 — Identification.

GAMMA (I) — The minimum force possible in
spring I after a peak compressive
force has passed, except that any
negative GAMMA (I) is construed
to mean that that spring can trans-
mit a tensile force of any magni-
tude (kip).

600 CARD SERIES (Required when NOP(6)=2)

IDE1, IDE2 — Identification.

EEM() — The coefficient of restitution for

MP-1 internal springs. This deter-
mines the slope of the unloading
curve (dimensionless).

700 CARD SERIES (Required when NOP(7)=2)
IDB1, IDB2 — Identification.

BEEM(1) — The damping coefficient of the
MP-1 internal springs (in. sec/ft).

800 CARD SERIES (Required when NOP(8)=2)
IDV1, IDV2  — Identification.

VEL(T) — The initial velocities of each of the
MP weights (ft/sec).

900 CARD SERIES (Required when NOP(9)=2)
IDQ1, IDQ2  — Identification.
Q(I) — The soil “quake” for MP41 soil
springs (in.).
1000 CARD SERIES (Required when NOP(10)=2)
IDJ1, IDJ2 —— Identification.

SJI(I) — The soil damping factor for MP+41
soil spring (sec/ft).

1100 CARD SERIES (Required when NOP(11)=2)
IDDK1, IDDK2 — Identification.
DYNAMK(I) — The dynamic spring rate of MP-1
internal springs (Kip/in.).

1200 CARD SERIES (Required when NOP(12)=2)
IDA1, IDA2 — Identification.
A() — The cross-sectional area of each of
the MP-1 internal springs (in.?).

1300 CARD SERIES (Required when NOP(13)=2)

FORCIN(INTV) — The force acting on the head of the
pile (kip) at time interval INTV,
for NSTOP intervals with a maxi-
mum NSTOP equal to 100 time
intervals.




1400 CARD SERIES (Required when NOP(14)=2)

CARD 1400 ~— Header Card.

APILE —_ '(I‘_hez)area of the head of the pile
in?).

EMODUL — The modulus of elasticity of the
pile (kip/in?).

RGAGE — The strain gage resistance (ohm).

RCAL —- Calibration resistance (ohm).

ACTIVG — Number of active gages.

GFACTR — Gage factor for the gages used.

Di — Displacement of the galvanometer

trace when RCAL is thrown into
the bridge at the head of the pile
(in.).

— Galvo displacements corresponding
to RCAL at any other four strain
gage points (in.).

CARDS 1401 UP TO 1410

DGALVI(INTV) — The galvanometer deflection for
the gage at the head of the pile, at
interval number INTV (in.).

CARD 1500 (Required when NOP(15)==4)

D2 Through
D5

F1 and F2 — Forces known to lie on the true
dynamic force vs compression
curve .of the cushion (kip).

Cl1 and C2 — The cushion compressions corre-

sponding to F'1 and F2, respective-
ly (in.).

CARD 1600 (Required when NOP(16)=2)

NOPP(I) -— When a number of cases are to be
solved for which only a few pa-
rameters will change, NOPP(I)
designates which parameter to
vary and how many different val-
ues it should be assigned. For ex-
ample: NOPP(1) =5 indicates that
five problems are to be solved, for
which only the ram’s initial veloci-
ty will vary. Each NOPP(I) con-
trols a single variable as shown in

. Table A.l.
DV1 Through
DK1 — These parameters control the per-
cent change in the variables men-
tioned above. For example, assume

that the effects of ram velocities
of 10, 12, 14, 16, 18, and 20 ft/sec

are being studied. The value of
DV1 would be
(12 ft/sec - 10 ft/sec)

10 ft/sec
or DV1-=0.20. In this case, NOPP
(1) would equal 6 since 6 separate
problems are to be run.
The variables controlled by DV1
to DK1 are also listed in Table A.1.

TABLE A.l. LIST OF PARAMETER VARJATIONS
AND THEIR CONTROLLING OPTIONS
Controlling = Per Cent Increase Parameter
Option in Original Value Controlled
NOPP(1) DV1 VELMI (Initial ram
velocity)
NOPP(2) DW1 W(1)
NOPP(3) DW2 Ww(2)
NOPP(4) DW1 W(38) through W(MP)
NOPP(5) DK1 XKAM(1)
NOPP(6) DK2 XKAM(2)
NOPP(7) DKI XKAM(3) through
XKAM(MP-1)
NOPP(8) DQI QSIDE
NOPP(9) DQP QPOINT
. NOPP(10) DJI - SIDEJ
NOPP(11) DJP POINTJ
NOPP(12) DRI RUT
NOPP(13) DRP RUP
NOPP(14) DRI RUT & RUP
NOPP(15) DE1 EEM(1)
NOPP(16) DE2 EEM(2)
CARD 1700 (Required when NOP(17)=2)
AREAP Cross-sectional area of pile (in.?).
XLONG Length of pile (ft).
ELAST Modulus of elasticity of pile
(kip/in.%).
CENR Value for use in ENR pile driving
formula.
QAVG Average ground “Quake” (in.).
WRAM Ram weight (kip).
WPILE Pile weight (kip).
ENERGY Actual energy output of the ram

(ft 1b).
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Appendix B

EXAMPLE PROBLEM

Introduction

The following example problem is given to illustrate
the steps necessary to arrive at a solution. In the previ-
ous chapters, the functional components involved were
discussed separately; for example, the driving hammer,
pile, soil properties, etc. However, the input data is
more easily handled by grouping according to similar
physical quantities rather than functional quantities. For
example, one series of cards is used to input all segment
weights, another for the spring rates. The order in which
the input data is set up for the example problems is by
no means unique, but it probably should be followed
until the programmer becomes familiar with the opera-
tions involved.

It should be noted that any variable without a deci-
mal point (such as MP, MH, NR, NSTOP, and NOP(I)
on card 101) is always an integer and must be entered
as far to the right in its field as. possible. Also, the
decimal point does not have to be punched for any varia-
ble which has a decimal place already shown on the
data sheet unless it is desired to change its position,
For example, if the initial ram velocity (IVEL on card
101) is 13.48 ft/sec, the numbers 1, 3, 4, and 8 should
be punched in columns 19 through 22, respectively. How-
ever, to enter a velocity of 127 ft/sec into IVEL, punch
1, 2, and 7 in columns 19, 20, and 21, and punch a deci-
mal point in column 22.

Except for this last case, decimal points need never
be punched.

Example Problem

Since case BLTP-6; 57.9 (from the Michigan Pile
Study) was one of the problems most often used in this
report, the input data required for its solution will be
determined first. Figures 3.3 and 3.4 show the real
system and the idealized system.

A. Given Information—Case BLTP-6; 57.9

1. Hammer Data-Vulcan #1

a. Manufacturer’s Rated Energy = 15,000
ft 1b, normal stroke == 3 ft.

b. Ram Weight = 5,000 lb, velocity at im-
pact not measured.

¢. Driving Cap Weight = 1,000 lb.

d. Cushion Data = QOak block, 6-14 in.
deep by 11-14 in. in diameter, direction
of grain unknown, condition of cushion
unknown (somewhere between new and
“crushed and badly burnt”).

2. Pile Data-CBP 124 H-section

a. Area = 15.58 in2

b. Weight = 53 1b/ft.

c. Total Length = 72.5 ft.

d. Driven Length = 57.9 ft.

e. Modulus of Elasticity = 30 x 108,

3. Soil Data

a, Ultimate Soil Resistance = 300 kip
(static value from load test after soil
“set-up’).

b. From driving log, 75 percent of the soil
resistance is assumed point bearing and
25 percent side resistance.
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¢. Soil damping factor “J” and soil quake
“Q”—not known.

4. Miscellaneous Data
a. Load Cell Weight = 580 1lb.
b. Additional Helmet Weight = 1,080 1b.

B. Input Data Calculations

Card 101

1. IDl—Identification Tag, use BLTP-6

2. ID2—Identification Tag, use 57.9.

3. Segment Lengths — Although segment

© 0~

10.

11.

lengths of 10 ft are usually satisfactory, a
5 ft length will be used to increase the ac-
curacy of the solution.

Time Interval—The normal time interval
of 1/4000 to 1/5000 iterations/sec must be

-halved since the normal segment length of

10 ft was reduced by half. Therefore, use
At = 1/10,000 sec or 1/At = 10,000.
MP—The total number of segments as
shown in Figure 3.4 is 3 above the pile
plus 14 pile segments. Thus, MP = 17.
Since the ram velocity at impact was not
recorded, the following ram velocities will
be studied: IVEL = 8, 12, 16, and 20
ft/sec.

MH—The first pile segment weight == 4.
NR—Number of divisions of the ram = 1.
EEMI—Coefficient of restitution of cush-
ion = 0.4, EEM2——coefficient of restitu-
tion of load cell = 1.0.

Since springs 1, 2, and 3 cannot transmit
tensile forces, GAMMA (1), (2), and (3)
are 0.0. The remaining GAMMA (I) are
set equal to —1.0. This is done by setting
GAMMAL = GAMMA2 = 0.0 and desig-
nating NOP(5) = 3 so that GAMMA(3)
will also be set = 0.0.

To allow the wave time to make two com-
plete passes up and down the pile, NSTOP
is set = 173 iterations. This is found from
the velocity of travel of the stress wave and
the value of At.

N 30,000,000
Vwave = VE/p = \/ 5383/386)
= 202,000 ips or
Vwave = %O(L = 16,300 ft/sec.

Total distance wave must travel = 4(72.5)
= 290 ft.
290 ft

Total time required :lm: 0173
sec. '
__ Total time
NSTOP = AL
_ 0173 sec _ . .
= (1710,000) sec/iteration 1'° iterations.

Therefore, use NSTOP — 173 iterations.




12. Option Calculations—NOP (I)

a. NOP(1)—No header cards to be read
in and printed out, so NOP(1) = 1.

b. NOP(2)—Read segment weights from
card series 200 (long form), so NOP(2)
= 1.

c. NOP(3)—Read spring constants from
card series 300 (long form), so NOP(3)
= L

d. NOP(4)—Assume triangular soil dis-
tribution along the side of the pile, so
NOP(4) = 4.

e. NOP(5)—Since GAMMA (3) is to be
set equal to 0.0, NOP(5) = 3.

f. NOP(6)—Since all the internal springs
are considered perfecily elastic, except
for the first one or two for which values
of “c¢” are given by EEM1 and EEM2,
set NOP(6) — 1 (short form, no series
600 cards).

g. NOP(7)—Assume zero internal damp-
ing in the steel pile, thus set NOP(7)
= 1 and do not include the 700 card
series.

h. NOP(8)—Only the ram has an initial
velocity, so NOP(8) = 1, no 800 card
series,

i. NOP(9) and NOP(10)—Since more
exact soils information is not available,
Smith’s recommended values for ) and
J will be used and input on card 102
(short form). Thus, NOP(9) =
= NOP(10) = 1.

j.- NOP(11)—No damping, set NOP(11)
= L

k. NOP(12)—Use a single factor to
change force to stress for all springs—
NOP(12) = 1.

L. NOP(13)—Use the damping procedure
illustrated in Figure 5.13(a), so NOP
(13) = 1.

m. NOP(14)—Calculate the force at the
pile head from the action of the ram
so NOP(14) = 1. .

n. NOP({15)—Neglect gravity effects—
NOP(15) = L

o. NOP(16)—Since several parameters
are to be varied, set NOP(16) — 2,
thus card 1600 must be included in the
data.

p. NOP(17)—Do not calculate driving re-
sistance predicted by pile driving equa-
tions. NOP(17) = 1.

Card 102

1. ID3—Identification Tag, use 12HS53.

2. ID4—Identification Tag, use L = 72.

3. RUT—Since the Michigan Report noted a

soil “set-up” of about 2.0, the static resist-
ance actually encountered during driving
was probably around half of the measured
400 kip, so RUT = 200 kip.

. RUP-—Assuming 75 percent.of the total soil

resistance at the point, RUP = 150 kip.

6.

10.

11.

MO—Since the length of pile in the ground
was 57.9 ft, the first segment upon which
soil resistance acts is given by:

_ o Depth Driven
MO = MP +1 (Segment Length

_ 579
=17+1— 25

= 18 — 11.6

=18 — 12
so MO = 6
QSIDE and QPOINT—Smith’s recommend-
ed value of 0.1 in, will be used due to lack
of better soils data.
SIDEJ and POINTJ—For the same reasons
above for values of Q, use SIDEJ = 0.05
sec/ft and POINTJ] = 0.15 sec/ft.
NUMR—Since the soil springs all act as
shown in Figure 6.1(a), NUMR = 0.
Set IPRINT == 5 to print out the solution
at every 5th iteration.
AREA—A single factor will be used to
change all forces from 1b to kip, thus AREA
= 1000.0.
NS1 through NS6—1In this case, the solu-
tions for segments 1, 2, 3, 4, 11, and 17
are desired and, therefore, NSI1 through
NS6 are given these values.

Cards 201-202

Segment Weights—As shown in Figure 3.4,

several weights normally present during

driving have been added between the pile

and the driving cap to obtain experimental

data.

a. W(l) = ram weight = 5.0 kip.

b. W(2) = driving cap weight + 14 of
the load cell weight = 1.29 kip.

c. W(3) = 14 load cell weight + helmet
= 1.37 kip.

d. W(4) through W(17) = pile segment
weights = (53 1b/ft) (5 ft) — 0.265
kip.

Cards 301-302

Segment Stiffness A

a. Because of the lack of data concerning
cushion stiffness, several values of K(1)
will be run: K(1) — 500, 1,000, and
1,500 kip. in.

b. The helmet was found to be extremely
stiff compared to the load cell, so K(2)
was taken as the stiffness of the load
cell alone. From dimensions of the load
cell given in the Michigan Report and
using K = AE/L, the spring rate of the
load cell was found to be 86,500 kip/in.

c. The spring rate of each 5 ft pile segment
is found by:

K = AE  _  (15.58) (30x108%)
L 5x12
= 7,790 kip/in.
So K(3) through K(16) = 7,790
kip/in.
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Card 1600 2. Parameter Change Constanis—DV1, DEIL,

1. Parameter Options—NOPP(I)—Note that DEZ» etc. The§e values specify the desired
all values of NOPP(I) are set = 1 except increase in a given parameter based on the
when an option is used to vary its assigned parameter’s original value: They may be
parameter, in which case NOPP(I) can calculated from the equation:
equal 2 through 9. Second Vaue - Initial Value

Initial Value

Thus, since the initial value of IVEL is

8 ft/sec and the second value is 12 ft/sec

Constant =

a. Since IVEL is to be given the four
values of 8, 12, 16, and 20 ft/sec,
NOPP(1) = 4.

_12—8 _ 4 _
b. NOPP(2) through NOPP(4) = 1 since DVl = —— = 5= 10
no segment weights are to be varied. The value for DK1 is therefore given by
c. NOPP(5) = 3 since three different 1000— 500 500 __
cushion stiffnesses are to be gsec.l (K(1) DK1 = =00 500 1.0
= 500, 1,000, and 1,500 kip/in.) All other values such as DW1, DW2, etc.,
d. NOPP(6) through NOPP(7)—1 since may be left blank or given any value for
no other parameter changes are re- later use since they are not used as long as
quired. the corresponding NOPP(I) = 1.
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Appendix C
PROGRAM LISTING
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$EXECUTE
$18408
$IBFTC MAIN
C - PROGRAM CONSISTS OF APPROXIMATELY 1200 LINES OUTPUT

C - LINES/PROBLEM = 50 +2=MP +NSTOP/IPRINT [(UNLESS J5 CHANGES)

C - RUN TIME FOR PROGRAM IS ABOUY 1 MINUTE

C - RUM TIME FOR ONE PROBLEM IS ABOUT = (MP=NSTOP)/60,000 (MINUTES)

nnnnnnnnnnnnnnnnnnnnnnnnnmnn

NOP{1)

NOP(2)

NOP(3)

NOP(4)

NOP(5)

NOP{6)

NOPLT)

L T T |

L T O T | (T S T T (S T A O A O O 1 I

18408

0s14NO IDENTIFICATION CARDS (SERIES 103)

2y READ IDENTIFICATION CARD 103 (72 COLS OF ALPHAMERIC PO0OOP)
3y READ 2 IDENTIFICATION CARDS

4, ETC. UP TO 4 CARDS

0

1,READ NEW WAMI(I),I=1,MP

2y READ CARD 200 MAXIMUM DIFFERENT WAMI{I) = TEN

0

1,READ NEW XKAM{I),I=1,N

2y READ CARD 300 MAXIMUM DIFFERENT XKAM{I) = TEN

0,USE OLD SOIL RESISTANCE VALUES,STANDARD OR GENERAL METHOD
1.,READ NEW STANDARD RUMI{I),I=1,MPP

2,ZERD SIDE RESISTANCE, SET RUM{MPP) RUT

2y2ERD SIDE RESISTANCE, SET RUM(MPP) RUP

3,UNIFORM SIDE RESISTANCE(RUT-RUP) WITH RUMIMPP) = RUP

4 TRIANGULAR SIDE RESISTANCE(RUT-RUP) WITH RUM{MPP) = RUP
5.READ NUMR CARDS AND USE GENERAL SOIL BEHAVIOR ROUTINE

0, USE OLD GAMMAI(I)

192 SET GAMMA(NR)=GAMMA1 AND GAMMA(NR+1)=GAMMAZ2 (50P)

3, USE SOP ABOVE AND SET GAMMA(NR+2) = 0.0

4, USE SOP ABOVE AND SET GAMMAS{NR+2) AND (NR+3) = 0.0

4, ETC,

9, USE LONG FORM INPUT

NOTE THAT NOP(5) IS USED TO SET ADOUITIONAL GAMMA{I)S = 0.0
0, USE OLD EEM{I)sI=1,N

1,USE SHORT FORM INPUT

2y USE LONG FORM INPUT

0y, USE OLD BEEM{I), I=1,N

]




1,USE SHORT FORM INPUT

2y USE LONG FORM INPUT

0,USE OLD VEL(I), I=1,MP

1,USE SHORT FORM INPUT

2y USE LONG FORM INPUT

0,USE OLD Q(I1), I=1,MPP

1,USE SHORT FORM INPUT

2y USE LONG FORM INPUT

0,USE OLD SJ(1), I=1,MPP

1,USE SHORT FORM INPUT

2, USE LONG FORM INPUT

0,USE OLD DYNAMK{I), I=1,N

1+DYNAMK=0.0

2y USE LONG FORM INPUT

O0,USE OLD A(I), I=1,N

1,USE SHORT FORM INPUT

2y USE LONG FORM INPUT

0,1,USE SMITHS EEM ROUTINE

2y USE LINEAR SOLID DAMPING

0»1,USE FOM(MI) COMPUTED FROM RAMS BEHAVIOR

2, READ NSTOP VALUES OF FORCIN(INTV) (CARD SERIES 1300)
3,READ HEADER CARD + NSTOP GALVO DEFLECTIONS(IN.) CARDS 1400
4,READ CARD 1500 AND USE PARABOLIC FOM(1l) VvS, CEEM(1)
1sNO GRAVITY

2yGRAVITY WITH DEM(I,0) = 0.0

3+GRAVITY WITH DEM(1,0) BY SMITH

4,GRAVITY WITH DEM{1,0) BY EXACT

5,GRAVITY WITH DEM(I,0) AS USED FOR PREVIOUS PROBLEM
0+19NO PARAMETER CHANGES

2y READ CARD 1600 WITH PARAMETER CHANGES

NOP(17) =0,1,NO PILE DRIVING FORMULA QUTPUT

2y READ CARD 1700 WITH PILE DRIVING CONSTANTS

LHDIZ-AL¥O4 ADVd

NOP(8)

NOP(9)

NOP(10)

NOP(11)

NOP(12)

NOP(13)

NOP{14)

L O L T I T T T T O T T O O I VI 1}

NOP(15)

NOP(16)

NUMBER OF CASES = NOPP{1)=NOPP(2)# ... # NOPP(14)

slalsNslslalzEsNelaNaNsNalaNsNeNelsNaloRalaNaNe ks kiR inin i inin k]
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c
c
c
c
C
c
c
c
C
C
c
C
C
c
c
c
c
c
c
c
c
C
c

NOPPI1)

NOPP(2)
NOPP{3)
NOPP(4)
NOPP(5)
NOPPL(6)
NOPPL(T)
NOPP 8)
NOPP(9)
NOPP(10)
NOPP(11)
NOPP(12)
NOPP{13)
NOPP(14)
NOPP(15)
NOPP(16)

LU N | [ T L T O I | T I 1

COMMON
COMMON

. COMMON

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON

1,RAM VELOCITY = VELMI
2,RAM VELOCITY=VELMI,{1.0+DV1)=VELM]
3sRAM VELOCITY=VELMI, {1.04DV1)*VEIMI,(1.04+2.2DV]1)=VELMI
44ETC.
WAM{1l) CHANGE
WAM(2) CHANGES
WAM{(3,MP} CHANGES
XKAM{1) CHANGES
XKAM{2) CHANGES
XKAM{3,N} CHANGES
QSIDE CHANGES
QPOINT CHANGES
SIDEJ CHANGES
POINTJ CHANGES
RUM{1,MP) CHANGES
RUM{MPP) CHANGES
BOTH RUM{1,MP)} AND RUM{MPP) CHANGE
EEM({1) CHANGES
EEM{2) CHANGES

WAM{100), XKAM{100), RUM{100), BEEM(100), EEM{100)
GAMMA{100), XKIM{100),CEEMAS{100), NFOM(100), XDEM(100)
DEM(100), XCEEM{100), CEEM(100}, FOM{100), XFOM(100)
VEL{(100), DIM{100), RAM(100), RMAX(100), RSTAT(100)
R{100,10) , ITRIG(100), Q(100),FORCIN{100), DFOM(100)
FOMAX(100),1FOMAX(100), FOMIN{100),IFOMIN(100), A(100)

sJ(100), NOP{ 22),DYNAMK(100)
50)SE{50,51) + [IROW( 51)
WAMC{100), XKAMC{100), QA{100), SJA(100)
NOPP{ 20),ENTHRU(100),ENTMAX{100), IDS( 50)
SIDEJ , POINTJ, NQDIV , NORAMS, NSTOP

¢ F1 y F2 s C1 v C2

DEMAX(100),IDEMAX(100),
CEEMIN{100) ,HOLDEM(100) s ANSVECH
RUMA{100)},
ICOL( 51),
QSIDE , QPOINT,
ISECTN, NUMR

INTV

O NN WN
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COMMON IPRINT, DELTEE, EEM1 , EEM2 , GAMMALl, GAMMA2, INT 52
COMMON INTT , I o ITST 4 IX s NR sy MO y MP 53
COMMON NPAGE , N + QUAKE , RUP + RUT » VELMI , ID1 54
COMMON 1D2 s ID3 » ID4 » IDW1 , IDW2 , IDK1 , IDK2 55
COMMON IDRLY , IDRLZ2 , IDG1 , IDG2 , IDEl , IDE2 , IDB1 56
COMMON IDB2 , IDV1 , IDV2 , IDQL , IDQ2 , IDJ1 , IDJ2 57
COMMON IDDK1 , IDDK2 , IDAl , IDA2 , KGRADD, J5 s+ TMIN 58
COMMON TMAX 4 SMIN , SMAX , NOPNTS, AREA , NS1 » NS2,NS6 59
COMMON NS3 » NS4 s NSS s IDEEM , MH » VEL1 , ACCELR 60

COMMON B s C » AREAP o XLONG , ELAST , ACELMX 61
COMMON DV1,DE1,DE2,DRI,DRP+DQI+DQPsDJI1,DJIP,DW1,DOW2,DNI+DK14DK2,DKI

OOOO

NPAGE =0
9 CONTINUE ;
NS1 = O }
CALL INPUT
= MP
MD = MO
= NR
MH=MH
N = MP-1
MPP = MP+1
c ' INITIALIZE PARAMETER CONSTANTS
DELTAA = DELTEE .
WAMA = WAM(1)
WAMB = WAM(2)
XKAMA = XKAM{1)
XKAMB = XKAM{2)

DO 1 I=1,MP
RUMA(I) = RUM(I}
WAMCI(I) = WAM(I)
XKAMC(I) = XKAM(I)




QA{I) = Q(I)
- SJA(I) = SJ(I)
1 CONTINUE

NOPA = NOPP{ 1)
NOPB = NOPP( 2)
NOPC = NOPP(3 )
NOPD = NOPP( 4)
NOPE = NOPP(5 )
NOPF = NOPP( 6)
NOPG = NOPP( 7)
NOPH = NOPP( 8)
NOPI = NOPP( 9)
NOPJ = NOPP(10)
NOPK = NOPP(11)
NOPL = NOPP(12)
NOPM = NOPP(13)
NOPN = NOPP{14)
NOPO = NOPP(15)
NOPQ = NOPP(16) |
c BEGIN PARAMETER VARIATIONS
DO 98 IQ = 1,NOPQ
DO 98 10 = 1,NOPO
11 DO 98 IN = 1,NOPN
IM = IN
IL = IN
DO 98 IK = 1,NOPK
DO 98 IJ = 1,NOPJ
DO 98 I1 = 1,NOPI
DO 98 IH = 1,NOPH
DO 98 IG = 1,NOPG
DO 98 IF = 1,NOPF
DO 98 IE = 1,NOPE
DO 98 ID = 1,NOPD
DO 98 IC = 1,NOPC
= 1,NOPB

DO 98 IB
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DO 98 IA = 1,NOPA
DELTEE = DELTAA
DO 4 I=1,MP

VEL(I) = 0.0

WAM{I) = WAMCI(I) #{(1.0 + FLOAT(ID-1) = DWI)
XKAM{I) = XKAMC(I) #{1.0 + FLOAT{IG-1) » DKI)
Q(I) = QA(I) #{1.0 + FLOAT(IH-1) = DQI)
SJ(I) = SJYALIL) #(1.0 + FLOAT(IJ-1) = DJI)
RUM(I) = RUMA(I) #(1.0 + FLOAT(IL-1) = DRI)

4 CONTINUE
DO 3 I=1,NR
VEL(I) = VELMI #«{1.0 + FLOAT(IA-1) = DV1)
3 CONTINUE

VELL = VELI(1l)

WAM(1) = WAMA #(1.0 + FLOAT{IB-1) « DWl)
WAM(2) = WAMB #(1.0 + FLOAT(IC-1) * DwW2)
XKAM(1) = XKAMA #{1.,0 + FLOAT(IE-1) = DK1)
XKAM(2) = XKAMB #{(1.0 + FLOAT{(IF-1) = DK2)
Q(MPP) = QPOINT #{1.0 + FLOAT(II-1) = DQP)
SJ(MPP) = POINTJ #{1.0 + FLOAT(IK-1) = DJP)
RUM(MPP) = RUP #{1.0 + FLOAT(IM-1) » DRP)
EEMINR)= EEM] #(1.0 + FLOAT(IO-1) = DEl)
EEM(NR+1)= EEM2 #(1.0 + FLOAT(IQ-1) * DE2)

IFINOP(4)-5)13,16,13
13 00 15 I=1,MPP
15 XKIM{I) = RUM(I)/Q(I)
16 CONTINUE
C IF DELTEE IS LEFT BLANK, 1/2 THE CRITICAL TIME INTERVAL WILL BE USED
IF(DELTEE)32,32,31

32 DO 33 I=1.N
33 DELTEE = AMAX1{DELTEE,39.296+SQRT{XKAM(I)/WAM{I)),
1 39.296#SQRT{XKAM{ ]} /WAM({I+1)))

31 CONTINUE
c END PARAMETER VARIATIONS

c1pC2 = 0.0
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43
42
44

45

47

48
49

ACELMX = 0.0
CALL PRINT 1

CALL REP 1
J5 = IPRINT
KXT=1

INTV = ©
INTT =1

MP = MP

N = MP-1
MPP = MP+l

NOP15P = NOP(15)+1

GO TO(50,50+49,48,47+43,50,50,50) ,NOP15P
DO 42 1 = 1,MP

DEM(I) = HOLDEM(I)

RAM(MP) = DEM(MP)=XKIM{MP)
RAM{MP+1) = DEM{MP)=XKIM{MP+1)
HOLDEM(MP) = DEM(MP)

HOLDEM{1) = DEM{1)

CEEM(1) = DEM({1) - DEM(2)
FOM(1) = CEEM{1)=XKAM(1)

DO 45 1 = 2,N

"HOLDEM{I) = DEMII)

CEEM(I) = DEM(I)-DEM(I+1)
FOM(I) = CEEM(I)#XKAM{I)

RAM{I) = FOM{I-1)=FOM{I)4+WAM{I)
GO TO 49

CALL EXACTG

60 TO 49

CALL SMITH

CONTINUE

WRITE(6,8002) {DEM(1),I=1,MP}
WRITE{6,8001){DIM(I),I=1,MP)
WRITE(6,8003) (FOM(I),I=1,MP)
WRITE(6,8004) (CEEM{I),1=1,N)
WRITE(6,8005) (RAM({I),I=1,MPP)
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50

12

22

24

23

25

26
27

94

14

WRITE(6,8006) (XKIM{I),I=1,MPP)

CONTINUE

NSM = MP-1

NSM=MINO(NS6,NSM) ‘

WRITE{691104)NS1,NS2,NS3,NS4,NS5,NSMsNS1,NS2,NS3,NS54,NS5,NS6,MPP
BEGIN ITERATION LOOP

CALL REP N

INTT=INTT

GO T0(22,9 ),INTT

CONTINUE

CMAX = 0.0

00 24 I=NR,N

CMAX = CMAX+CEEMI(I)

ClPC2 = AMAX1{C1PC2,CMAX)

IF(INTV-999)25.23:25

J5 = 25

CDNTINUE
IFCUUINTV/J5)%d5)~INTV)94,26, 94
CONTINUE

FOMA = FOM(NS1)/A(INS1)
FOMB = FOM(NS2)/7A(NS2)
FOMC = FOM(NS3)/A(NS3)
FOMD = FOMINS4)/A(NS4)
FOME = FOMINS5)/A{NSS)
FOMF = FOMINSM)/A(NSM)
RAMP = RAM{MP)/1000.0

WRITE{6,99)INTV ,FOMA,FOMB,FOMC,FOMD,FOME, CEEM(1),DEM(NS3),
1 DEM(NS4),DEMINSS5) sDEMINSSP) o {ENTHRU(I)s1=254),ENTHRU(N),ACCELR
WRITE{6499)INTV,FOMA,FOMB,FOMC,FOMD, FOME, FOMF,DEMINS1),DEM(NS2),
IDEM(NS3),DEMINS4) DEMINSS) ,DEMINS6 ), RAMP

CONTINUE

IFCINTV-NSTOP )12,14,14

WRITE(6,105)

MP = MP

N = MP-1
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MH = MH

DO20I=1,N

FOMAX{(I) = FOMAX{I)/A{(1)

FOMIN(I) = FOMIN(I)/ZA(I)
WRITE(6,106)1,IFOMAX(I),FOMAX(T),IFOMIN(I),FOMIN(I),

1 ENTHRU(I),ENTMAX(I)

20 CONTINUE
BLOWS = 1.0/DIM(MP) OLD STATEMENT.
WRITE(642107)DIM{MP)},BLOWS OLD STATEMENT

WRITE(6+2108)DEMAX{MH-1) ,DEMAX(MP)
SMIN = SMIN/12.0

SMAX SMAX/12.0

ERES1 = SQRT(SMIN/SMAX)
WRITE{(6,109)SMIN,SMAX, ERES1

EINPUT = (WAMI(1)*VEL1#%2)/64.4
WRITE(6,110)EINPUT
WRITE(6,111)ACELMX

BEGIN ULTIMATE LOAD FORMULAS
IF(NOP{17)-1)98,98,5

5 CONTINUE
C4 = 0.1
AEL = AREAP*ELAST/XLONG
NRP = NR+1
C3 = QAVG
S = DIMIMPP)
W =WRAM
U = ENERGY
P = WPILE
RWAVE = 0.0

00 6 I=1+MPP

RWAVE = RWAVE+RUM{LL/1000.0
6 CONTINUE :

SEGL = XLONG/(ELOATI(MP-MH+1))

SUMR = 0.0 ‘

00 10 I=MH,MP
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10 SUMR SUMR+RUM{I )#*SEGL*(FLOAT(I -MH)+0.5)
SUMR = SUMR+RUM{MPP) #XLONG

HILEYL = SUMR/RWAVE

RENEWS = U/{S+CENR)

REYTEL = U/(S+(C4*P/W))

RTERZG = AEL#(-S+SQRT(S##2+(2.0#Un(W+P*EEM1#%2)/ (AEL=(W+P)))))
REDTEN = AEL#{-S+SQRT(S##24+(2,.02UxW/{AEL®{W+P)))))

RHILYD =AEL#{-(S+C3)+SQRT{(S+C3)»#24(2.0%Us{W+P*EEM1==2)/
1 (AEL+(W4P)})))
RHILYC=U# (W+P#EEML#%2) /{ (S+0.5#(CLPC2+C3) ) #(W+P))
RCOAST ={AEL/2.)#(-S+SQRT(S#22+ (4 . #Un(W+P*EEMIun2)/ (AEL®(W4+P)))))
WRITE(6,107) :
WRITE{6+108)RENEWS,REYTEL yRTERZG,REDTEN,RHILYD,RHILYC,RCOAST,RWAVE
END ULTIMATE LOAD FORMULAS
98 CONTINUE
GO 70 9
99 FORMAT(1Xs13,6F9.2,6F9.3,F9.1)
99 FORMAT(1X, I3, 5Fl0.2, 5F1l.7,F9.1)
105 FORMAT{1HO»//» 18X, 63HMAXIMUM COMPRESSIVE AND TENSILE STRESSES {
1PSI) IN THE SEGMENTS 2//+19Xy THSEGMENT , 11X, SH TIME ,
2 3Xy G6HSTRESS 9y 5Xy 4HTIME,3X,6HSTRESSy7X,6HENTHRUy7X,
3 1O0HMAX ENTHRU ’ /7)
106 FORMAT{20Xs14,18,F9.1,19,F9.1,2F13.1)

107 FORMAT( 16Xs30H ULTIMATE PILE LOADS (KIPS) -
108 FORMATI{ 21Xy25H BY ENG NEWS FORMULA = , F15.3,7

1 22X925H BY EYTELWEIN = F15.3,/7

2 22X925H BY TERZAGHI = s F15.34/

3 22X9,25H BY REDTENBACHER = s F15.3¢/

4 22X925H BY HILEY (DUNHAM) = F15.347 »

5 22X+25H BY HILEY (CHELLIS) = F15.3,/7 »

6 22Xy 25H BY PACIFIC COASTY = F15.34/7 »

7 22X, 25H BY THE WAVE EQUATION = , F15.3)

109 FORMAT(17X,7THSMIN = F10.1,y THSMAX = F10.1, 10HERES{1) = F10.7)
110 FORMAT{16X,18H EINPUT (FT LBS) = F9.1)
111 FORMAT{16X,24H MAX ACCELERATION (GS) = F9.1)




1104 FORMAT{3H T,6{6Xs1HF+12)91Xy 6{6X,1HDy12) 46X,1HR,12,//)
C1104 FORMAT(115H TIME F(1l) F(2) F{3) F(4) F(5) D(2) ©D(3) DI

c 14) D(5) O(P) ENT(2) ENT(3) ENT{4) ENTI(N) ACC{MH-1) )
Cl104 FORMAT(SH TIME,5(2X,4HFOM{ 13, 1H) ) ,5(3X,4HDEM{ I3, 1H) ) ,
c 1 3X, 12HENTHRU (1) /7)

2107 FORMAT(1H / 217Xy 24HPERMANENT SET OF PILE = F13.8,8H INCHES/
1 217X, 2THNUMBER OF BLOWS PER INCH = F13.8) "

2108 FORMAT{1H / 2 1TX324HLIMSET FOR (MH-1) = F13.8,8H INCHES/
1 2 17X,27HMAX DISPLACEMENT OF POINT= F13.8)

8001 FORMAT(33HOINITIAL VALUES FOR DIM(I),I=1,MP /(6E£19.8))

8002 FORMAT(33HOINITIAL VALUES FOR DEM{I),1I=1,MP /(6E19.8))

8003 FORMAT{33HOINITIAL VALUES FOR FOM(I),I=1,MP /(6E19.8))

8004 FORMAT{33HOINITIAL VALUES FOR CEEM{IJ,I=1,N /(6E19.8})

8005 FORMAT{3SHOINITIAL VALUES FOR RAM{1),I=1,MP+1 /{6E19.8))

8006 FORMAT{3B8HOCONSTANT VALUES FOR XKIM{I),I=1,MP+1 /(6E19.8))
END

$IBFTC INPUTT
SUBROUTINE INPUT.

COMMON WAM(100), XKAM(100), RUM(100), BEEM(100), EEM{100) 1
COMMON GAMMA{100}, XKIM(100),CEEMAS{100), NFOM(100), XDEM{100) 2
COMMON DEM{100)}, XCEEM(100), CEEM{100), FOM(10G), XFOM(100) 3
COMMON VEL{100), DIM{100), RAM(100), RMAX{100}, RSTAT{100) 4
COMMON R({100,10) , ITRIG(100), Q(100),FORCIN(100), DFOM(100) 5
COMMON FOMAX(100),IFDMAX{100), FOMIN(100),IFOMIN{(100), A{100) 6
COMMON DEMAX{100),IDEMAX(100), SJ1{100), NOP( 22),DYNAMK(100) 7
COMMON CEEMIN{100),HOLDEM(100),ANSVEC{ 50),SE{50,51) , IROW( 51) 8
COMMON RUMA{100), WAMC(100), XKAMC(100}, Qa{100), SJA(100) 9
COMMON ICOL{ 51), NOPP{ 20),ENTHRU(100),ENTMAX(100), IDS{ 50) 10
COMMON QSIDE , QPOINT, SIDEJ o POINTJ, NQDIV 4 NORAMS, NSTOP 50
COMMON INTV , ISECTN, NUMR , F1 s F2 + C1 s C2 51
COMMON IPRINT, DELTEE, EEM1I , EEM2 ,» GAMMAl, GAMMA2, INT 52
COMMON INTT , I + ITSY , IX + NR y MO » MP 53
COMMON NPAGE » N s+ QUAKE , RUP y RUT y VELMI , ID1 : 54
COMMON D2 y 1D3 » ID4 sy IDW1 , IDWZ2 , IDK1l -, IDK2 55
COMMON IDRLY , IDRL2 , IDG1 , IDG2 ., IDEl1 , IDE2 , IDBIl 56

NIATS-ALdId 3DV
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COMMON IDB2

¢+ IDV1 4 IDV2 , IDQ1 , IDQ2 , IDJ1 , IDJ2
COMMON IDDK1 , IDDK2 , IDAl , IDA2 , KGRADD, J5 + TMIN
COMMON TMAX , SMIN , SMAX , NOPNTS, AREA , NS1 r+ NS2,NS6
COMMON NS3 » NS4 s+ NS5 » IDEEM o MH » VEL1 , ACCELR

COMMON B8 s C AREAP 4 XLONG , ELAST , ACELMX
COMMON DV1,DE1,DE2, DRI DRP,DQI,DQP,DJI,D3P,DW1,DW2,DWI4DK1,NK2,DKI

READ(5'100)IDloIDZ;DELTEE;MP:VELMI:MH.NR»EEMlvEEMZ,GAMMAI,

1 GAMMA2,NSTOP, (NGP{1)»I=1,20)

READ(5,101)ID3,1D4,RUT»RUP,M0,QSIDE,QPOINT,SIDEJ,POINTJ, NUMR,

1 IPRINT,AREA/NS1,NS2,NS3,NS4,NS54NS6

RUT = RUT#1000.0
RUP = RUP#1000.0
NR = MAXO(NR,1)

N = MP-1

MPP = MP+1

WAM({MPP) = -0.0

XKAM{MP) = -0.0
- XKAM(MPP) = -0.0

14

IFINOP(1)=2)9,7,7

NOIDS = 12#(NOP(1)-1)
READ(5,103) (IDS(I),1I=1,NOIDS)
CONTINUE

IFINOP(2)-1) 1s1,14

‘READ(59102)IDW1,IDW2, (WAM(I),I=1,MP)

1

GO 70 2

NRP1 = NR+1
NRP5 = NR+5
NRP6 = NR+6
MPM3 = MP-3

READ{(54111)IDW1,IDW2,WAM{ 1), {WAMIL), I=NRPLyNRPS),
(WAMLT) o I=MPM3 , NP}

111 FORMAT{A5,A4,:-3P10F6.4)

76

DO 76 I=1,NR
WAM{I) = WAM(1)

57
58
59
60
61
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DO 77 I=NRP6,MPM3

WAM{I) = WAM{NRPS)

CONTINUE

IF(NOP(3)~-1) 343,15
READ{5,104)IDK1,IDK2,y { XKAM{I),I=1,N)

GO TO 4
NRM1 = NR-1
- NRP5 = NR+5
NRP6 = NR+6
MPM3 = MP-3 :
READ{5,112) IDK1,IDK2,XKAM(1), {XKAM(I), I=NRyNRP5),
1 ( XKAM{I) 4 I=MPM3,N)

112
78

79
4

5
6
10
C INP
11
12

13
16

C GEN

FORMAT{AS5A%,-3P10F6.0)

DO 78 I=1,NRML

XKAM{I) = XKAM(1)

DO 79 I=NRP6,MPM3

XKAM{I) = XKAM(MPM3)

CONTINUE

IF (NOP{4)-1)22,5,5

NOP4 = NOP(4)

DO 6 I=1,MP

RUMII) = 0.0

RUM{MPP) = RUP

GO T0(10,22,11,13,17522+22,22,22),N0P4
READ{5,;106) IDRL1,IDRL2, (RUM{1) ,I=1,MPP)
UT RUM{I) IN UNITS OF KIPS - THE COMPUTER WILL CONVERT TO LBS.
GO TO 22

RCONST = (RUT=RUP)/FLOAT {MPP-MO)

DO 12 I=MO,MP

RUM(I) = RCONST

GO TO 22

DO 16 I=MO,MP

RUM(I) = (2.0%{RUT-RUP)=*{FLOAT(I-MO)+0.5))/(FLOAT(MPP-MQO))*=2
60 TO 22

ERAL R{I,J) INPUT
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17 DO 20 1=1,MPP
20 XKIM(I) = 0.0
DO 21 K=1,NUMR
21 READ{S5,115)I, XKIM{I)},{R(15J),J=1,10)
22 CONTINUE
C THE R(I,J) INPUT CARDS CAN BE IN RANDOM ORDER
C THE R{I,J) ARRAY NEED NOT BE ZEROED SINCE IF XKIM{I)=0 THE GENERAL
C SOIL RESISTANCE ROUTINE FOR SEGMENT(I) IS NOT CONSIDERED
C NUMR = TOTAL NUMBER OF SEGMENTS W/GEN. R (DONT FORGET TG ADD MPP)
CC I = THE SEGMENT NUMBER FOR WHICH R{I,J) VALUES ARE BEING INPUT
C R{LsJ) = STATIC RESISTANCE ON SEGMENT I AT EACH OF TEN POINTS J
IFINOP{5)-1)29,27,26
26 IF{NOP(5)-9)24,25,24
25 READ{5,106)IDG1+IDGZ {GAMMALI) yI=1,4N)
GO 10 29
24 IGAMMA = NOP(5)+NR-1
DO 23 I=1,4,N .
23 GAMMA{I) = -1000.0
DO 19 I=NR,IGAMMA
19 GAMMA(I) = 0.0
GAMMA{NR) = GAMMAL
GAMMA(NR+1) = GAMMA2
GO 10 29
27 DO 28 I=1,N ,
28 GAMMA(I) = -1000.0
GAMMA(NR) = GAMMAl
GAMMA(INR+1) = GAMMA2
29 GAMMA{MP) = -0.0
GAMMA {MPP) = -0.0
IFINOP(6)-1)33,31,30
30 READ(5,107)IDEl,IDE2,(EEM{I),I=1,N)
GO TO 33
31 DO 32 I=1,N
32 EEM(I) = 1.0
EEMINR) = EEM1
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33

34

35
36
37

=

EEM(NR+1) = EEM2

EEM(MP) = -0.0

EEM(MPP) = -0.0
IF(NOP(T)~-1)37435,34
READ(5,107)1I0B1,IDB2,(BEEM{),I=1,N)
GO 70 37

DO 36 I=14N

BEEM(I) = 0.0

BEEM(MP) = -0.0

BEEM(MPP) = -0.0

C DO NOT TRY TO USE LAST PROBLEMS VALUES OF VELII)

38

39
40

41
71

42
43
44

45
46

47
48

49
50

IF{NOP(8)-1)39,39,38
READ(5,108)IDV1,1DV2,{ VEL{I)sI=1,MP)
GO TO 71

DO 40 I=NR,MPP

VEL(I) = 0.0

DO 41 I=1,NR

VEL(I) = VELMI

VEL (MPP) = -0.0

IFINOP(9)-1)45,43,42
READ(5,107)IDQ1,10Q2,(Q(1),1=1,MPP)
GO TO 45

DO 44 I=1,MPP

Q{I) = QSIDE

CONTINUE

Q{MPP) = QPOINT

IF(NOP{10)-1)49,47,46
READ{5,107)IDJ1,1DJ2,{S3{1),1=1,MPP)
GO TO 49

po 48 I=1,MP

SJ{1) = SIDEJ

SJ(MPP) = POINTY
IF(NOP(11)-1)53,51,50
READ(5,104)1DDK1,IDDK2, {DYNAMK(I),I=1,N)
DO 72 1=1,N

- e e
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72

51
52

DYNAMK({I) = DYNAMK{I)}-XKAM{])
GO TO 53
DO 52 I=1,N

DYNAMK{I) = 0.0

C STATEMENT 52 SETS DYNAMK{I) = 0.0 SO SMITHS ROUTINE WILL BE USED

53

54

55
56
57

58
59
60
61

DYNAMK{MP) = -0.0
DYNAMK(MPP) = -0.0
IF(NOP(12)-1157,55,+54
READ(5+109)IDA1,yIDA2,(A(I)sI=1yN)
GO 10 57

DO 56 I=1,N

A(IY = AREA

A{MP) = -0.0

A(MPP) = -0.0
IFINOP{4)~-1)61,58,58
IFINOP(4)-5)59,461,461

DO 60 I=1,MPP

XKIM({I) = RUM(I)/Q(I)
CONTINUE '

NOP14 = NOP(14)+1

GO TO(65+65962963,65)4N0OPLS

C READ NSTOP VALUES OF FOM(1,T) - MAXIMUM NSTOP = 300

62
63

64
65

READ(S5,120) (FORCIN(I),I=1,NSTOP)

GO TO 65
READ{5,122)AREAP,,EMODULyRGAGE,RCAL,ACTIVG,GFACTR,D1,02,+D3,D4,D5
READ(5,121) (FORCIN(I),I=1,NSTOP)

CE = (AREAP*EMODUL#RGAGE#1000.0)/{ACTIVG*GFACTR#RCAL)
A(NS1) = CE/D1

A(NS2) = CE/D2

A(NS3) = CE/D3

A(NS4) CE/D4

A(NS5) = CE/D5

DO 64 I=1,NSTCP

FORCIN{I) = FORCIN(I)»A{l)

CONTINUE
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66
67

90

68
1
69

8
73

T4
100
101
102
103
104
106
107
108
109
115
120
121
122
123
124
125

$IBFTC

IFINOP(14)-4)67,66467
READ(5,123)F1,F2,C1,C2
CONTINUE

DO 90 I=1,20

NOPP(I) =1
IFINOP({16)-2)69,68,69

READ(5,124) (NOPP(I),1=1,20),0V1,DW1,DW2,DW1,DK1,DK2,DKI,D0I,
DQP,DJI,DJP+DRI4DRPHDEL1,DE2

CONTINUE

DO 8 I=1,20

NOPP(I) = MAXO(NGPPII),1)
CONTINUE
IFINOPULT)=-1)74,74,73

READ(59125)AREAP s XLONG yELAST,CENR,QAVG , WRAM, WP ILE) ENERGY

XLONG = XLONG#12.0
CONTINUE

FORMAT(AS.A4§F6-0113:F4.2’ZI3:2F4.3,2F6.0,I4)20l1)
FORMAT(AS4A442FT7+.2913,4F4.3,213,F6.2,613)

FORMATIAS5,A4,-3P10F6.4,/(9X,~-3P10F6.4))

FORMAT{12A6)

FORMAT{AS 4A%44-3P10F6.0,/19X,~3P10F6.0))
FORMAT{AS yA%4 ,~3P10F6.1,/19X,-3P10F6.1))

FORMAT{AS5, A%, 10F6.5,/{9X,
FORMAT{AS,A4, 10F6.3,/19X,
FORMAT(AS,A4, 10F6.2+719X,
FORMAT{13,-3P11F6.1)
FORMAT{-3P10F6.1)
FORMAT(  10F6.4)
FORMAT(F7.2,3F7.0yTF4.2)
FORMAT(-3P2F6.130P2F6.5)
FORMAT{2011,17F3.2)
FORMAT{F6.2sF5.2+F7.2)
RETURN
END
PRINT

10F6.5))
10F6.3))
10F6.2))
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SUBROUTINE PRINT 1

COMMON WAM(100), XKAM(100), RUM{100), BEEM(100), EEM(100) 1
COMMON GAMMA(100), XKIM(100),CEEMAS(100), NFOM(100), XDEM{(100) 2
COMMON DEM{100), XCEEM(100}, CEEM(100), FOM(100), XFOM(100) 3
COMMON VEL(100), DImM(100), RAM(100), RMAX(100), RSTAT(100) 4
COMMON R{100,10) , ITRIG{100), Q(100),FORCIN{100), DFOM(100) 5
COMMON FOMAX{100),IFOMAX(100), FOMIN(100),IFOMIN(1GO), A(100) 6
COMMON DEMAX({100),IDEMAX{100), $J{100), NOP( 22),DYNAMK{100) 7
COMMON CEEMIN(100),HOLDEM(100),ANSVEC( 50),SE(50,5Y) , IRCOW( 51) 8
COMMON RUMA(100), WAMCL100), XKAMC(100), QA(100), SJA(100) 9
COMMON ICOL(U 51)s NOPP( 20),ENTHRU(100),ENTMAX(100), IDSt 50) 10
COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NQDIV , NORAMS, NSTQOP 50
COMMON INTV , ISECTN, NUMR , F1 y» F2 v Cl1 y C2 51
COMMON IPRINT, DELTEE, EEM1 , EEM2 , GAMMAL, GAMMAZ, INT 52
COMMON INTTY 4 I s ITST 4, IX s+ NR y MO y MP 53
COMMON NPAGE , N - vy QUAKE , RUP y RUT » VELMI , ID1 54
COMMON 1ID2 y 1D3 v 1D4 » IDW1 , IDWZ2 , IDK1 ., IDK2 55
COMMON IDRL1 4 IDRLZ2 , IDG1 , IDG2 , IDEl , IDE2 , IDB1 56
COMMON 1DB2 , IDV1 , IDV2 , IDQl , IDQ2 , IDJ1 , IDJ2 57
COMMON IDDK1 , IDDK2 , IDAl , IDA2 , KGRADD, J5 y TMIN 58
COMMON TMAX , SMIN , SMAX , NOPNTS, AREA , NS1 » NS2,NS6 59
COMMON NS3 y NS4 » NS5 s+ IDEEM , MH » VELLT + ACCELR 60
COMMON B » C + AREAP , XLONG » ELAST , ACELMX 61
COMMON DvV1,.DEl,DE2,DRI,DRP,DQI,DQP,DJI,DJPyDW1,DW2,DWI,DK1,DK2,4DKI

c

NPAGE = NPAGE+1
WRITE(6+102)NPAGE
IFINOP(1)-2)3,2,42

2 NOIDS = 12#{NOP(1)-1)
WRITE(6,101)
WRITE(6,103 ){IDS(I),I=1,NOIDS)
WRITE(6+101)

3 CONTINUE




MPP=MP+]
RCT = 0.0
D0 6 I= 1,MPP
RCT = RCT+RUM(1)/1000.0

6 CONTINUE
RCP = RUM(MPP)/1000.0
WRITE(6+105)DELTEE,NOPI{1),NOP(16)
DELTEE = 1.0/DELTEE
WRITE(6,106)MP,NCP{2},NOP{17)
WRITE(6,4107)1D1,ID2,VELMI,NOP(3),NOP(18)
WRITE(6,108)ID3,ID4,NSTOP,NOP(4),NOP(19)
WRITE(6,110) IDW1,IDW2,RCTyNOP{5),NOP(20)
WRITE{64+111)IDK1,IDX24RCP,NOP(6)
WRITE(6+112) IDRL],IDRL2,MO,NOP{T)
WRITE(64113)1DG1,1IDG2,QSIDE,NOP(8)
WRITE(6,114)IDEL,IDE2,QPQINT,NOP(9)
WRITE(6,115)1IDB1,IDB2,SIDEJ,NOP(10)
WRITE(6,116)IDV1,IDV2,POINTJ,NOP(11)
WRITE(6,117)1IDQ1,1IDQ2,NUMR,NOP(12)
WRITE{6,118)IDJ1,IDJ2,IPRINT,NOP(13)
WRITE(6,119)IDDK1,IDDK2,AREA,NOP(14)
WRITE(6,120) IDAL,IDA2,NR,NOP{15) |
WRITE(6,101)
WRITE(6,121)
MPP = Mp+1l
LINES = 19
DO 5 1I=1,MPP
WRITE(64122)1,WAMII) »XKAMII) yRUMII),GAMMA(I),EEM(I),BEEM(T),
1 VELUI),QtlI), SJUI)+DYNAMK(I) ,A(T)
LINES = LINES+1
IF{LINES-58)5,4,4

4 NPAGE = NPAGE
LINES = 5
WRITE{64102)NPAGE
WRITE(6,101)

JAIF-ALXIS 3OV
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20

23

24
29

30

40
41
101

‘LINADD

WRITE(6,121)

CONTINUE
IF(NOP{4)=5)30,7,30
IF{LINES-50)9,9,8
NPAGE = NPAGE

LINES = -1
WRITE{6,102)NPAGE

GO TO 10

WRITE{64101)
WRITE(6+123) (JyJ=1,410)
LINES = LINES+6
LINADD = NQDIV/10
IF(NQDIV-LINADD=10JI3,14413
L INADD+1
LINADD = LINADD+1

DO 29 I=1,MPP
IF(XKIM{1)-0.0)29,29,20
LINES = LINES+LINADD
IF(LINES-59)24424,23
NPAGE = NPAGE
WRITE(6,102)NPAGE
WRITE(6+123) (JyJ=1,10)
LINES = 6

WRITE(6,124)1,{R{14J)5J=1,10)

CONTINUE

WRITE(6,101)

LINES = LINES+2
WRITE{6,101)

LINES = LINES#2

LINADD = MP/8
IF(MP-LINADD#8)40,41,40
LINADD = LINADD+1
LINADD = LINADD+2
FORMAT{1HO)
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102 FORMAT{1H1l, 20H

103 FORMAT{1X,12A6)

123 FORMAT(85H  R(M,N) = STATIC SOIL RESISTANCE FOR GIVEN SEGMENTS -
1 OTHERS HAVE R(I,J} = 0.0 77 5%410(8X,12) )

b6X o THPROBLEM 14)

105 FORMAT(4X,29H CARD iD1 102 1/DELTEE = F8.0,12H NOP(1) =
1 12, 12H NOP(16) = 12)

106 FORMAT{28X, 5H MP = I8,12H NOP(2) =12,12H NOP(17) =12)

107 FORMAT(11H 101 A6yA4,12H VELMI =F8.2,12H NOP(3) =
1 12, 12H NOP{18) = 12)

108 FORMAT{11H 102 AbyA4,12H NSTOP = I8 »12H NOP(4) =
1 12, 12H NOP{19) = I2)

110 FORMAT(11H WAM  A645A4412H RUT =F8.1,12H NOP(5) =12,
1 12H NOP(20) = 12)

111 FORMAT{11H XKAM  Ab6,A4,12H RUP =FB.1ls12H NOP(6) =12)

112 FORMAT{11H RUM Ab69A44+12H MO =18 ,12H NOP(7) =12)

113 FORMATI{11H GAMMA Ab6,A4,12H QSIDE =FB8.4412H NOP(8) =12)

114 FORMAT(11H EEM A6sA44912H QPOCINT =F8.4,12H NOP(9) =12)

115 FORMAT(11H BEEM A6,A4,12H SIDEJ =FB.4,412H NOP{10) =12)

116 FORMAT(11H VEL Ab6sA4+12H POINTJ =FB8,4,12H NOP(11) =12)

117 FORMAT{11H Q Ab69A4,y12H NUMR =18 412H NOP(12) =12)

118 FORMATI(11H SOILJ A64A4,12H IPRINT =18 ,12H NOP(13) =12)

119 FORMAT(11H DYNAMK A6,A%4,12H AREA =F8.2,12H NOP(14) =12)

120 FORMATI(11H A Ab6:A4,12H NR =18 ,+12H NOP(15) =12)

121 FORMAT(116H M WAM{M) XKAM{M) RUM{M) GAMMAIM) EEM(M)
1 BEEMIM) VEL (M) QI{M) SOILJ{M) DYNAMKI(M) AlM) /s
2 116H {KIPS) (KIPS/IN) {KIPS) {(KIPS) {NONE) (SECIN/
3FT) {FT/SEC) {IN) (SEC/FT) (KIPS/IN) {SQ IN) )

122 FORMAT{14,-3PF10.4+43F10.1,0P2F10.6,F10.3,2F10.6+-3PF10.3,0PF12.3)

124 FORMAT{/4H 7 = 13,42X410F10.1,(/9X,10F10.1))
RETURN
END

$IBFTC REPONE

SUBROUTINE REP1
COMMON WAM{100),
COMMON GAMMA(100),

BEEM{100),
NFOM(100),

EEM{100) 1
XDEM{100) 2

XKAM(100), RUM{100),

XKIM{100)sCEEMAS{100),
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COMMON DEM(100), XCEEM{(100), CEEM(100), FOM(100), XFOM(100)
COMMON VEL(100), DIm{100), RAM(100), RMAX{100), RSTAT(100)
COMMON R{100,10) , ITRIG(100), Q{100),FORCIN(100), DFOM(100)
COMMON FOMAX{100),IFOMAX{100), FOMIN(100), IFOMIN{100), A(100)
COMMON DEMAX(100),IDEMAX{100), SJ4(100), NOP({ 22),DYNAMK(100)
COMMON CEEMIN(100),HOLDEM(100),ANSVEC{ 50),SE(50,51) 4 IROW( 51)
COMMON RUMA{100), WAMC(100), XKAMC(100), QA{100), SJA{100)
COMMON ICOL( 51), NOPP( 20),ENTHRU{100),ENTMAX(100), IDS( 50)
COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NQDIV , NORAMS, NSTOP
COMMON INTV , ISECTN, NUMR , F1 y F2 sy C1 y C2

COMMON IPRINT, DELTEE, EEM1 , EEM2 , GAMMALl, GAMMA2, INT

COMMQON INTT 4, 1 » ITST o, IX » NR y MO ) MP

COMMON NPAGE 4 N » QUAKE , RUP » RUT y VELMI , ID1

COMMON ID2 s ID3 » ID4 s IDW1 , IDW2 s IDK1 , IDK2

COMMON IDRLY1 , IDRLZ2 » IDGY , IDG2 , IDE1l , IDE2 , 1DB1
COMMQN IDB2 , IDV1 o IDV2 , IDQl , IDQ2 , IDJ1 , IDJ2
COMMON IDDK1 , IDDK2 , IDAl , IDA2 , KGRADD, J5 y» TMIN
COMMON TMAX , SMIN , SMAX , NOPNTS, AREA , NSI + NS2,4NS6
COMMON NS3 » NS4 s NS5 » IDEEM » MH » VEL1 » ACCELR
COMMON B » C » AREAP , XLONG , ELAST , ACELMX

COMMON DvV1,DE1,DE2,DR1,DRP,DQI,DQP,DJI,DJP,DW1,DW2,0WI,DK1,DK2,DKI
MP = MP

MPP = MP+1

SMAX = 0.0

SMIN = 0.0

DO 64 I = 1,MPP

ITRIG(I) = 1

DEM(1) = 0.0

XDEM(I} = 0.0

DEMAX{I) = 0.0

IDEMAX(I) = O

CEEMI(I) = 0.0

XCEEM(I) = 0.0

CEEMAS{I) = O.




FOM(I) = 0.0
XFOM(I} = 0.
FOMAX(I) = 0O
FOMINI{I) = O
IFOMAXI{I)
IFOMIN(I)
NFOM(1) =
RAMIIY = O
RMAX(1) =
RSTATI(I) =
DIM({I) = 0O
ENTHRUL{TI)
ENTMAX(1)
64 CONTINUE
IFINOP(14)-4)18,65,18
65 CONTINUE A |
C = (FlsC2 - F2=C1)/7({C1#C2%(C1-C2))
. B = (F2eClux2 - F1laC2%#2) /(C1%C2»{C1-C2))
IF{B)22,22,18
22 1F(F1~-F2)24,23,23
23 C = F1/Cl#»2
GO 1O 25
24 C = F2/C2#%2
25 B = 0.0
WRITE(6,104)
104 FORMAT{4THOPARABOLA BASED ON F2 AND C2 ONLY MUST BE USED )
18 CONTINUE
RETURN
END
$IBFTC REPREP
SUBROUTINE REP N
COMMON WAM{100), XKAM{10Q0), RUM{.100), BEEM(100}, EEM(100)
COMMON GAMMA{100}, XKIM{100),CEEMAS{100), NFOM(100), XDEM{100)
COMMON DEM{100), XCEEM(100), CEEM{100), FOM{100), XFOM(100)
COMMON VEL{100), DIM{100), RAM{100), RMAX(100), RSTAT(100)

0
.0
.0
= 0
=0
1
«0
0.0
0.0
0
0.0
0.0
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COMMON R{100,10) o ITRIG(100), "Q({100),FORCIN(100), DFOM{100) 5
COMMON FOMAX(100),IFOMAX{100), FOMIN{100),IFOMIN(100), A({100) 6
COMMON DEMAX{(100),IDEMAX{100), $4(100), NOP( 22)4,DYNAMK(100) 7
COMMON CEEMIN{(100),HOLDEM(100),ANSVEC( 50),SE(50,51) + IROW( 51) 8
COMMON ~ RUMA(100), WAMC{100), XKAMC{100), QA(100), SJA{100) 9
COMMON ICOL( 51), NOPP{ 20),ENTHRU(100),ENTMAX{100), IDSC 50) 10
COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NOQDIV , NORAMS, NSTOP 50

COMMON INTVY , ISECTN, NUMR , F1 s F2 s C1 9 C2 51
COMMON IPRINT, DELTEE, EEM1 , EEM2 , GAMMALl, GAMMAZ2, INT 52
COMMON INTT , I s ITST 4, IX s NR y MO y MP 53
COMMON NPAGE , N + QUAKE ,» RUP ¢+ RUT s VELMI , IDI1 ’ 54
COMMON ID2 sy ID3 s 1D4 s IDW1 o IDW2 4 IDK1 , IDK2 55
COMMON IDRL1 , IDRL2 , IDGL , IDG2 , IDElL , IDEZ , IDBI1 56
COMMON IDB2 4, 1DVl , IDVZ2 , IDQl 4, IDQ2 4 IDJ1 o IDJ2 57
COMMON IDDK1 , IDDK2 » IDAY , IDA2 + KGRADD, J5 y TMIN 58
COMMON TMAX 4 SMIN 4 SMAX o+ NOPNTS, AREA 4 NS1 » NS2Z2,NS6 59
COMMON NS3 s NS4 » NS5 sy IDEEM , MH s VEL1 o ACCELR 60
COMMON B s C AREAP , XLONG , ELAST , ACELMX 61
COMMON DV1,DE]l, DEZ9DRI'DRP DQI+DQP+DJI+DIPyDW1,DW2,DWI, DKI,DKZ,DKI

C
INTV = INTV+1
MP=MP
MPP = MP+]
NOP{4) = NOP{4)
NOP(13) = NOP(13)
NOP(14) = NOP({14)
NOP({15) = NOP(15)
ITEST1 =1
ITESTP = 1
DO 68 1 = 1, MNP
1=1

IF(I-MP)18,17,18
17 ITESTP = 2
18 CONTINUE

XDEM{1) = DEMI(I)




DEM{I) = XDEM(I) +VEL(I)*12.0%DELTEE
IF{DEMAX(I)-DEM(I))20,21,21

20 DEMAX(I)= DEMI(I)
IDEMAXTIY = INTV

21 GO TO(34,19),ITESTP

34 XCEEM{I) = CEEM(I])

c STATEMENT 34 MUST USE A COMPUTED VALUE FOR THE ACTUAL DEM(I+1)
CEEM(I) = DEMII) -DEM(I+1) -VEL{I+1)*12.0%DELTEE
XFOM(I) = FOM(I)

IF{BEEM(1)-0.000001)36,36,30
30 IF{DYNAMK(I))31,31,32

c SMITHS DAMPING METHOD
31 DFOMII) = BEEM(I)*XKAMlL’*(CEEM(I)~XCEEM(I))/(DELTEE*IZ.O)
GO 70 33
c STANDARD LINEAR SOLID DAMPING
32 DFOMI{I) = (DFOM(I)+DYNAMK{I)*#(CEEM(I)-XCEEM(I)))/
1 (1.0+DYNAMK(I)=DELTEE/(1000.0#BEEM(I)))
33 FOM(I) = CEEM(I)#XKAM(I) + DFOM(I)
GO 10O 43

36 IF(0.99999-EEM(1))38,38,39
38 FOM(I) = CEEMI{I)=XKAM(I)
CEEMAS(I) = AMAXL(CEEMAS(I),XCEEM(I))

GO TO 43
39 CEEMASII) = AMAX1(CEEMAS{I),XCEEM(I))
CEEMIN(I} = AMINI(CEEMIN(I) XCEEM(I))

IF(CEEM(I))13,43,5

5 IF(CEEM(I)-CEEMAS(I))11,11,38

11 FOM(I)=AMAX1(XKAMII)*(CEEMASII)-(CEEMAS(I)-CEEM(1))/EEM(I)*%2),0.)
GO T0O 43

13 IF (CEEM(I)-CEEMIN(I))38,14,14

14 FOM(I)=AMINL(XKAM{I)*(CEEMINC(IY-{CEEMINCE)-CEEM(1))/EEM(I)*%2),0.)

43 CONTINUE
IF NOP(14)=2, SET FOM(1) = FORCINCINTV)

o

GO TO(1,16),ITESTL
NOP1l4 = NOP(14)+1
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GO TO(6969292+6)sN0OP14
FOM(1) = FORCIN(INTV)
IF(FOM(1)-1.0)3,3,4
DEM(1) = XDEMI(1)
CEEM{1) = XCEEMI(1l)

GO TO 16

C IF NOP(14) = 4, USE PARABOLIC FOM{1l) VS. CEEM(1) CURVE

C THE
6
7

8

4
9

12
16

44
45
48
47
49

COMME
COMME

RAM MUST BE A SINGLE MASS IF FOM VvS. DEM IS PARABOLIC
IFINOP{14)-4)4,7,4

IF{(CEEM(1) - CEEMASI(1))9,8,8

FOM(1l) = CoCEEM(1l)»n2 + BaCEEMI(])

GO 10 12

IF{CEEM(1)-CEEMAS(1))16,12,12

FOMAX{1) = AMAX1(XFOM(1l),FOMAX{1))

FOM{1) = FOMAX(1)-((CEEMAS(1)-CEEM{1))=FOMAX(1)2%#2)/(2.0#SMAX»
1 EEM(1)»22)

GO TO 16 A

SMAX = SMAX+(I{FOM(L)+XFOM(1))/2.0)={CEEM{1)-XCEEM(1))

CONTINUE

IFIGAMMALI) )} 46,4445

FOM(I) =AMAX1 (.0, FOM(1))

60 TU 46

IF(FOM{I) - XFOM(I))48,47,47

NFOM(I) = 2

IX = NFOM(I)

GO TO (46449),I1X

HOLDF = FOMLI)

FOMCIY = AMAXI{FOMII),GAMMA(L}))
NI THE o0l HOLDS MINL.PRESSURE AT GAMMA(L) FOR .01 SECONDS WHILE THE
NT .0025 REDUCES THE PRESSURE TO ZERD IN .0025 ADDITIONAL SECONDS.
TINT = INTV

IF(TINT - .O1/DELTEE)46+46990

90 FOM(I1) = AMAX1{0.0, GAMMA{I)#{(1.0-(DELTEE#*TINT-.01)/.0025),HOLDF)
46 CONTINUE

ENTHRU(I) = ENTHRU{I)+{FOM(I)+XFOM{1))#{DEM{I+1)-XDEM(I+1))/24.0




FIYHL-ALNIAIS IAOV4

22
15
19

28

155
156
50
51
52
70
54
53

10
56

171

29

ENTMAX(I) = AMAX1(ENTMAX(I),ENTHRU(I))

GO 70(22,19),ITESTL

IF(CEEM(1) - CEEMAS(1))15,19,19

SMIN = SMIN~((FOM(1)+XFOM(1))/2.0)*(CEEM(1)-XCEEM(1))

CONTINUE

IF(NOP{4)-5)29,28,29

GENERALIZED SOIL RESISTANCE

CALL GENRAM

G0 TO 55

CONTINUE

| SMITHS SOIL RESISTANCE

IF{XKIM(1)150,155,50

GO TO(55,156),ITESTP

IF(XKIM{MPP ))50,55,50

IF(DIM(I) -DEM(1) +Q(I) )51,52,52

DIM(I) = DEM(I) -Q(I)

CONTINUE

IF(DIM(I) ~DEM(I) -Q(1) 153,53,54

DIM(E) = DEM(I) +Q(I)

CONTINUE

DIM(MPP ) =AMAX1 (DIM{MP),DIM(MPP ))

ITST = ITRIG(I)

GO TO(10,57),ITST

IF{DEM(I) -DIMII) ~-Q(I) 156,57,57

RAM(I) = (DEM(I)=DIM{I))#XKIM{I)®(1.0+(SJ(I) *VEL(I)))

G0 TO(55,171),ITESTP

RAM(MP) = RAM(MP)+(DEM(MP)~DIM(MPP ))=XKIMIMPP )=
1 (1.0+({SJ(MPP)*VEL(MP)))

SEGMENT MP HAS RAM(MP) + RAM(MP+1) APPLIED
RAM{MP+1) MAY BE TENSILE

60 TO 55

57 RAM(1) = (DEM(I)-DIMIII+ SJ(I) =QiI}) SVELEI) ) =XKIM(I)

172

ITRIG(I) = 2
GO TO(55,172),ITESTP
RAM(MP)=RAM(MP)+(DEM(I)-DIM(MPP)+SJ(MPP)*Q(MPP)*VEL(MP))*XKIM(MPP)
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55
58
12
59

83
85

65

617

66
69

68
60
105
61

62
106

63

71

73

CONTINUE

GO T0{58,72),ITESTL

VEL(1) = VEL({1)-(FOM(1) +RAM(1))#32.17T*DELTEE/WAM(1)
ITESTL = 2

GO TO 59

VEL(I) = VEL{I)+(FOM({I-1) —FOM(I) —RAM(I))#32.17#DELTEE/WAM(I)
CONTINUE

IF(NOP(15)~-1)85,85,83

VEL{I) = VEL(I) + 32.17#DELTEE

CONTINUE

IF{FOMAX(T)-FOM(1))67,67+66

FOMAX(I) = FOM(I)

IFOMAX{I) = INTV

IF(FOMIN(I)-FOM(1))68,69,69
FOMIN{(I) = FOM(I)

IFOMIN(I) = INTV

CONTINUE

IF(VEL(2)/VEL1 -2.1)61,60, 60
WRITE(6,105)

INTT = 2

RETURN

FORMAT(T76HO THE RATIC OF THE VELOCITY OF W(2) TO THE VELOCITY OF
1THE RAM EXCEEDS 2.1. )

IF(VELIMP)/VELL =2.1)63+462,62

WRITE(6,106)

FORMAT{76HO THE RATIO OF THE VELOCITY OF W{(P) TO THE VELOCITY OF
1THE RAM EXCEEDS 2.1. )

INTT = 2

RETURN

CONTINUE

LDCELL = MH-1

ACCELR = (FOM{LDCELL-1)-FOMILDCELL))/WAM(LDCELL)

ACELMX=AMAX1 (ACELMX,ACCELR)
CONTINUE
RETURN
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(s EaNeNeNaNel

END
$IBFTC RAMGEN
SUBROUTINE GENRAM

MP = MP
K =1

NQDIV = NO. OF EQUAL SEGMENTS INTO WHICH Q(I) IS

DIVIBED

= 10

RSTAT(I) = STATIC SOIL RESISTANCE NEGLECTING THE SOIL DAMPING EFFECTS

RMAX(I) = A TEMPORARY MAXIMUM STATIC SOIL RESISTANCE

PERCQ = DISTANCE FROM ZERQ DISPLACEMENT TO DEM(I) IN UNITS (1.732,..)
COMMON WAM(100), XKAM(100}, RUM(100), BEEM{100), EEM{100)
COMMON GAMMA{100), XKIM(100),CEEMAS(100), NFOM(100), XDEM{100)
COMMON DEM{100), XCEEM(100), CEEM(}100), FOM(100}, XFOM{100)
COMMON VEL({1007, DIM(100), = RAM(100), RMAX(100), RSTAT(100)
COMMON R(100,10) , ITRIG(100), Q(100),FORCIN(100), DFOM{100)
COMMON FQOMAX{100), IFOMAX{100), FOMIN(100), IFOMIN(100), A(100)
COMMON DEMAX{100),IDEMAX(100), SJ1100), NOP( 22),DYNAMK(100)
COMMON CEEMIN(100),HOLDEM(100),ANSVEC( 50),SE(50,51) , IROW( 51)
COMMON  RUMA{100), WAMC(100), XKAMC(100), QA{100}, SJA(100)
COMMON ICOL( 51), NOPP( 20),ENTHRU(100),ENTMAX{100), IDS({ 50)
COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NQDIV , NORAMS, NSTOP
COMMON INTV , ISECTN, NUMR , F1 s F2 y C1 y C2
COMMON IPRINT, DELTEE, EEM1 , EEM2 , GAMMAl, GAMMA2, INT
COMMON INTT , 1 s ITST , IX + NR sy MO v MP
COMMON NPAGE , N »y QUAKE , RUP s RUT + VELMI , ID1
_COMMON 1D2 s ID3 y ID& s+ IDW1 , IDW2 , IDK1 , IDK2
COMMON IDRL1 , IDRL2 , IDGL , IDG2 , IDEL , IDE2 , IDel
COMMON 1DB2 , IDVYI , IDV2 , IDQ1 , IDQ2 , IDJ1 , IDJ2
COMMON IDDK1 , IDDK2 , IDA1 , IDA2 , KGRADD, JS + TMIN
COMMON TMAX , SMIN , SMAX , NOPNTS, AREA , NS1 y NS2,NS6
COMMON NS3 y NS4 » NS5 s+ IDEEM , MH s VELL , ACCELR
COMMON B. y C » AREAP , XLONG » ELAST , ACELMX
COMMON DV1,DELl,DEZ2,DRIDRP,DQF+DQP4+DII,DJIP,DWlDW2,0OWNL+DKI,0K2,DK1
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QDIV = 10.0
NQDIV = 10
IF(XKIM(K)~-0.1) 1,2,2
1 RAM(K) = 0.0
GO 10 70
2 IF(DEM(K)~- DIM(K))32 3,3
3 DIM(K) = DEM(K)
IF{DEMIK}=Q{K) )} 79646
6 RSTAT(K) = R{K,NQDIV)

GO TO 50
7 PERCQ = DEMIK)/(Q(K)/QDIV)
IPERCQ = PERCQ
XPERCQ = IPERCQ
IF(IPERCQ)8,8,9
8 RSTAT(K) = PERCQ=R(Ksl)
GO T0 50
9 RSTAT(K) = R{K,IPERCQ)+(PERCQ-XPERCQ)*{RI{K,IPERCQ+1)-R(K,IPERCQ))
GO TO S50

32 RMAX{K) =AMAX1(RMAX(K)sRSTAT(K))
RSTAT(K) = RMAX(K)-{DIM(K)-DEM(K))=#XKIM(K)
C THE STATIC FORCE SHOULD REALLY LEAVE THE XKIM{I) SLOPE AND REMAIN
C CONSTANT IF RMAX(I)+RSTAT(I) EVER EXCEEDS 0.0
IF{RMAX(K)+RSTAT(K))39,50,50
39 WRITE(69200)RMAX(K) sRSTAT(K),K :
200 FORMAT(11HORMAX(I) = F10.2, 6X, 12H RSTAT(I) = F10.2,6Xy4H I =16)
C STATEMENTS 50 THRU 70 INCLUDE THE SOIL DAMPING EFFECT
50 ITST = ITRIG(K)
GO TO{(51,57)I7ST
51 IFIDEM{K)-Q(K)})56+57,57
56 RAM{K) = RSTATIKI+RSTATIK) *SI{K]*VEL(K)
GO TO 70
57 RAM{K) = RSTAT{K)+R(KyNQDIV)*SJ(K)*VEL(K)
ITRIG(K) = 2
G0 170 70
70 IF{K-MP)80,71,73
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71
72

73
c 73
cC 74
74
75

80

CONTINUE

K = MP+1
IFI{XKIM(K)~-0.01)80,80,72
DEM(K) = DEMIMP)
VEL{K) = VEL{MP)
GO 710 2

CONTINUE ‘
IF(RAMIK))T74,75,75 (OLD STATEMENT)
RAM(K) = 0.0 (OLD STATEMENT) 1
CONTINUE

RAM(MP) = RAM{MP)+RAM(MP+1)

RAM(MP+1) CAN

RETURN
END

$IBFTC EXCTG

SUBROUTINE EXACTG

COMMON WAM(100), XKAM(100), RUM(100),
COMMON GAMMA(100)y, XKIM{100),CEEMAS(100),

COMMON DEM{100), XCEEM(100), CEEM(100),

COMMON VEL(100), DIM(100}, RAM(100),

COMMON RI(100,10) o ITRIG(100),

COMMON DEMAX(100), IDEMAX(100), sJtio00)y,

COMMON CEEMIN(100),HOLDEM{100),ANSVEC(

50} s SEL

COMMON RUMA{100)s WAMC(100), XKAMC(100),

COMMON QSIDE , QPOINT, SIDEJ , POINTJ,

COMMON INTV , ISECTN, NUMR , F1 ’
COMMON IPRINT, DELTEE, EEM1 , EEM2 ,
COMMON INTT 4, 1 y ITST , IX ’
COMMON NPAGE , N + QUAKE , RUP '
COMMON ID2 » ID3 y ID4 » IDW1
COMMON IDRL! , IDRL2 , IDGYI , IDG2 ,
COMMON IDB2 , IDVI , IDV2 , IDQ1 ,
COMMON IDDK1 , IDDK2 , IDAl , IDA2 ,

NGD1V
F2 '
GAMMAL,
NR )
RUT '
iDwz2
IDE1
10Q2
KGRADD,

GO INTO TENSION

BEEM(100},
NFOM(100),
FOM{100),
RMAX(100),
Q{100),FORCIN(100),
COMMON FOMAX(100),IFOMAX(100), FOMIN{100), IFOMIN(100),

EEM(100)
XDEM(100)
XFOM(100)

RSTAT(100)
DFOM(100)
A(100)

NOP( 22),DYNAMK(100)

50,51)

QA{100),
COMMON ICOL( 51), NOPP({ 20),ENTHRU(100),ENTMAX(100),

NORAMS,
C1 K]
GAMMAZ,
MO '
VELMI
IDK1
IDE2
1041
J5

“ @ 9 @ 9w

IROW( 51)
SJA(100)
IDS( 50)

NSTOP
C2
INT
MpP
D1
IDK2
Ibgi
1DJ2
TMIN

U -
OO WDVD~NOUVHWN =




COMMON TMAX , SMIN , SMAX , NOPNTS, AREA , NSl + NS2,NS6 59

" LHOI3-ALNIAIS 39Vd

COMMON NS3 1+ NS4 + NS5 s+ IDEEM , MH » VEL1 , ACCELR 60
COMMON B + C » AREAP , XLONG s ELAST , ACELMX 61
COMMON DV1+,DEL1+DE2,DRI»DRP4DQI,DQP,DJII,DIPsDW14DW2,DWI,DK1,DK2,DKI

C L
MP = MP ..
MO = MO
MMO = MO-1

MMOO = MO - 2

MAO = MP - MO

NSDD = MP-MO+1

DO 6 NSEW = 1,NSDD

DO 6 NSE = 1,NSDD
6 SE(NSEWsNSE) = 0.0

SE(1l,1) = XKAM(MO) + XKIM(MQO)
SE(2,1) = -XKAM{MO)
DO 13 K = 2,MAC

NN = K + MMOQC
NNN = K + MMO
SE(K-14K) = SE(K,K-1)
SE(KsK) = XKAM{NN) + XKAMINNN) + XKIM{NNN)
SE(K+1,K) = -XKAM{NNN)
13 CONTINUE
SE{MAO,NSDD) = SE(NSDD,MAQ)
SE(NSDDsNSDD) = XKAM(MP-1)+XKIM(MP) + XKIM(MP+1)
.DET = TAMINVI(SE,ICOL,NSDD,50,0.00001)
IF(0.00001 - ABS(DET))14,12412
12 WRITE(6,100)DET
100 FORMATI33HOTHE VALUE OF THE DETERMINANT = F10.7)
INTF = 2
RETURN
14 CONTINUE
WAMTL = 0.0
DO 15 NSEW = 2,M0
15 WAMTL = WAMTL + WAM(NSEW)
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16

17

23

26

27

28

29

SE(1,NSDD+1
DO 16 NSEW
NUTZ = MMO+
SE (NSEW,NSD
DO 17 IANS
ANSVEC{ IANS
DO 23 IMl =
DO 23 IM2 =
ANSVEC ( IM1)
NAT = 0

DO 26 NST =
NAT = NAT+1
DEM(NST) =
HOLDEM(NST)
CONTINUE
WOS = 0.0
DO 27 NST =
WOS = WOS+W

CEEM (NST)

FOM(INST) =
CONTINUE

DO 28 NST =
NEL = MO-NS
DEMINEL) =
HOLDEM(NEL)
CONTINUE
MAM = MP-1
DO 29 NST
CEEMINST) -
FOM(NST) =
RAM{NST) =
CONTINUE
RAM(MP) = D
RAM(MP+1) =
RETURN

} = WAMTL

= 24,NSDD

NSEW

D+1) = WAMINUTZ)

= 14NSDD

) = 0»0 !
1,NSDD
1,NSDD

= ANSVEC(IML)+SE{IM1,IM2)=SE(IM2,NSDD+1) -

MO, MP

ANSVEC (NAT)
= DEM(NST)

2+ MMO
AMINST)
= WOS/XKAMINST)
WOS

1,MMO

T

DEM(NEL+1) + CEEMINEL)
= DEM(INEL)

MO, MAM

DEMINST) - DEM{NST+1)
CEEMINST)=XKAM(INST)
DEMINST) #XKIMONSTY

EM{MP) 2 XKIM(MP)
DEM(MP) 2« XKIM(MP+1)
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END
$IBFTC SMTH
SUBROUTINE SMITH

COMMON WAM{100), XKAM{100), RUM{100), BEEM(100), EEM(100) 1
COMMON GAMMA(100), XKIM{100),CEEMAS(100), NFOM{100), XDEM(100) 2
COMMON DEM(100), XCEEM{100), CEEM(100), FOM{100), XFOM(100) 3
COMMON VEL(100), 0IM(100), RAM(100), RMAX({100), RSTAT(100) 4
COMMON R{100,10) , ITRIG(100), Q{100),FORCIN{(100), ODF0OMI(100) 5
COMMON FOMAX{100),IFOMAX(100), FOMIN(100),IFOMIN(100), A{100) 6
COMMON DEMAX(100),1DEMAX{(100), SJ{100}, NOP( 22),DYNAMK{100) 7
COMMON CEEMIN(100),HOLDEM{100),ANSVEC( 50),S€(50,51) , IROW( 51) 8
COMMON RUMA{100), WAMCI{100), XKAMC{100), QA{100), SJA(100) 9
COMMON ICOL( S1)s NOPP( 20),ENTHRU{100),ENTMAX(100), IDS{ 50) 10
COMMON QSIDE , QPOINT, SIDEJ , POINTJ, NODIV , NORAMS, NSTOP 50
COMMON INTV , ISECTN, NUMR , F1l sy F2 s Cl y C2 51
COMMON IPRINT, DELTEE, EEM1 , EEM2 4, GAMMAl, GAMMA2, INT 52
COMMON INTT 4 I s ITST 4 IX » NR y MO s MP 53
COMMON NPAGE , N » QUAKE , RUP + RUT s+ VELMI , ID1 54
COMMON 1D2 y ID3 s ID4 + IDWYI , IDW2 , IDK1 , IDK2 55
COMMON IDRL1 , IDRL2 , IDGl , IDG2 , IDEl , IDE2 , IDB1 56
COMMON IDB2 , IDVI , IDV2 , IDQ1 , IbQ2 , IDJ1 , IDJ2 57
COMMON IDDK1 , IDDK2 , IDA1 , IDA2 , KGRADD, J5 y TMIN 58
COMMON TMAX , SMIN , SMAX 4 NOPNTS, AREA , NS1 » NS2,NS6 59
COMMON NS3 y NS4 s NS5 s+ IDEEM , MH » VEL1L , ACCELR 60

COMMON B y C » AREAP , XLONG , ELAST , ACELMX 61
COMMON DV1,DE1,DE2,DRI,DRP,DQI,DQP,DJI+DJP+sDW1,DW2,DNI,DK1,DK2yDKI

MP = MP

WAMTL = 0.0
RAMTL = 0.0
DO 5 JT = 2,MP
v = WAMTL + WAMUJT)
S RAMTL = RAMTL + RUM{JT)
= RAMTL + RUM(MP+1)
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$DATA

DO 8 JT = 2,N
RAM(JT) = (RUM(JT)#*WAMTL) /RAMTL
FOMUJT) = FOM{JT-1)+WAM(JT)-RAM{JT)

RAM(1) = RUMI{1)=WAMTL/RAMTL

RAM{MP) = RUM(MP)=WAMTL/RAMTL
RAM(MP+1) = RUM(MP+1)#WAMTL/RAMTL
DEM(MP) = (RAM(MP)+RAMIMP+1) )/ (XKIM{MP)+XKIM(MP+1))
HOLDEM(MP) = DEM(MP)

DO 11 JT = 14N

JTM = MP-JUT

CEEMIJTM) = FOMIJTM)/XKAM(JITM)
DEM(JTM) = DEMUJTM+1) + CEEM{JTM)
HOLDEM(JTM) = DEM(JTM)
DIM(JTM)=DEM{JTM)-WAMTL#Q(JTM) /RAMTL
CONTINUE

RETURN

END






