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Foreword

The information contained herein was developed on the Research Study 2-5-62-33
entitled “Piling Behavior” which is a cooperative research endeavor sponsored jointly
by the Texas Highway Department and the U. S. Department of Transportation,
Federal Highway Administration, Bureau of Public Roads, and also by the authors
as evidenced by the number of publications during the past seven years of intense
study and research. The broad objective of the project was to fully develop the
compuler solulion of the wave equation and its use for pile driving analysis, to
determine values for the significant parameters involved to enable engineers to
predict driving stresses in piling during driving, and to estimate the static soil resist-
ance to penetration on piling at the time of driving from driving resistance records.

The opinions, findings. and conclusions expressed in this report are those of the
authors and not necessarily those of the Bureau of Public Roads.
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Pile Driving Analysis-State of the Art

CHAPTER 1

Introduction

The tremendous increase in the use of piles in both
landbased and offshore foundation structures and the ap-
pearance of new pile driving methods have created great
engineering interest in finding more reliable methods
for the analysis and design of piles. Ever since
Isaac published his paper, “Reinforced Concrete Pile
Formula,” in 1931."1* it has been recognized that the
behavior of piling during driving does not follow the
simple Newtonian impact as assumed by many simplified
pile driving formulas, but rather is governed by. the one
dimensional wave equation. Unfortunately, an exact
mathematical solution to the wave equation was not
possible for most practical pile driving problems.

In 1950, E. A. L. Smith™? developed a tractable
solution to the wave equation which could be used to
solve extremely complex pile driving problems. The
solution was based on a discrele element idealizalion of
the actual hammer-pile-soil system coupled with the use
of a high speed digital computer. In a paper published
in 1960, 1 he dealt exclusively with the application of
wave theory to the investigation of the dynamic behavior
of piling during driving. From that time to the present
the authors have engaged in research dealing with wave
equation analysis. The major objectives of these studies
were as follows:

1. To develop a computer program based upon a
procedure developed by Smith to provide the engineer
with a mathematical tool with which to investigate the
behavior of a pile during driving.

2. To conduct field tests to obtain experimental
data with which to correlate the theoretical solution.

3. To make an orderly theoretical computer investi-

*Numerical superseripts refer to corresponding items in
the References.

gation of the influence of various parameters on the
behavior of piles during driving and to present the re-
sults in the form of charts, diagrams or tables for direct
application by office design engineers.

4. To present recommendations concerning good
driving practices which would prevent cracking and
spalling of prestressed concrete piles during driving.

5. To determine the dynamic load-deformation
properties of various pile cushion materials which had
tacitly been assumed linear.

6. To determine the dynamic load-deformation
properties of soils required by the wave equation
analysis.

7. To generalize Smith’s original method of analy-
sis and to develop the full polential of the solution by
using- the most recent and accurate parameler values
determined experimentally.

8. To illusirate the significance of the parameters
involved, such as the stiffness and coefficient of restitu-
tion of the cushion, ram velocity, material damping in
the pile, etc., and to determine the quantilative effect
of these parameters where possible,

9. To study and if possible evaluate the actual
energy output for various pile driving hammers, the
magnitudes of which were subject to much disagree-
ment.

10. To develop the computer solution for the wave
equation so that it may be used to estimate the resistance
to penetration of piling at the time of driving from the
driving records.

11. To develop a comprehensive users manual for
the final computer program to enable its use by others.

CHAPTER 11

Pile Driving Analysis

2.1 General

The rapidly increasing use of pile foundations and
the appearance of new pile driving techniques have
caused great interest among engineers in finding more
reliable methods of pile analvsis and design.  As noted
by Dunham,?* “A pile driving formula is an attempt to
evaluate the resistance of a pile to the dynamic forces
applied upon it during the driving and to estimate .from
this- the statical longitudinal load that the pile can sup-
port safely as a part of the permanent substructure.”

In 1851, Sanders (Army Corps of Engineers) pro-
posed the first dynamic pile driving formula by equating
the total energy of the ram at the instant of impacl to the
work done in forcing down the pile, that is, the product
of the weight of the ram and the stroke was assumed
equal to the product of the ultimate soil resistance by
the distance through which the pile moved. Sanders
applied a safely factor of 8 to this ultimate soil resist-
ance to determine an assumed safe load capacity for the
pile. Since that time. a multitude of formulas have been
proposed, some of which are semirational, others being
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strictly empirical. Many of the formulas proposed at-
tempt to account for various impact losses through the
cushion, capblock, pile, and soil.

When restricted to a particular soil. pile, and driv-
ing condition for which correlation factors were derived,
dynamic formulas are often able to predict ultimate
bearing capacities which agree with observed test loads.
However, since several hundred pile driving formulas
have - been proposed there is usually the problem of
choosing an appropriate or suitable one.>? Also dis-
tressing is the fact that in many cases no dynamic for-
mula yields acceptable results; for example, long heavy
piles generally show much greater ultimate loads than
predicted by pile driving equations.®® This has become
increasingly significant since prestressed concrete piles
172 ft long and 54 in. in diameter have been successfully
driven,>® and more and more large diameter steel piles
several hundred feet long are being used in offshore
platforms. Numerous field tests have shown that the
use of pile driving formulas may well lead to a foun-
dation design ranging from wasteful to dangerous.**

Driving stresses are also of major importance in
the design of piles, yet compressive siresses are com-
monly determined simply by dividing the ultimate driv-
ing resistance by the cross-sectional area of the pile.? 728
Furthermore, conventional pile driving analyses are un-
able to calculate tensile stresses, which are of. the utmost
importance in the driving of precast or prestressed con-
crete piles. This method of stress analysis completely
overlooks the true nature of the problem and computed
stresses almost never agree with experinteatal val-
ues.>T*"  Tensile failures of piles have been noted
on numerous occasions™*1" 211 and the ahsence of a
reliable method of stress analvsis has proven to be a
serious problem.

Although most engineers today realize that pile
driving formulas have serious limitations and cannot be
depended upon to give accurate results, they are still
used for lack of an adequate substitute. For further
discussion of pile formulas in general, the reader is
referred to the work of Chellis.>?

Isaacs®! is thought to have first pointed out the
occurrence of wave action in piling during driving, He
proposed a solution to the wave equation assuming that
the point of the pile was fixed and that side resistance
was absent. These assumptions were so restrictive that
the solution was probably never used in practice. Cum-
mings®' in an earlier writing noted that although the
pile driving formulas were based on numerous erroneous
assumptions and that only the wave equation could be
expected to vield accurate results for all driving con-
ditions, he also pointed oul that such solutions involved
“long and complicaled  mathematical expressions  so
that their use for practical problems wou'd involve
laborous, numerical caleulations.” In fact, with. the
advent of a multitude of different type driving hammers
and driving conditions. an exact solulion to the wave
equation was not known.

2.2 Smith’s Numerical Solution of the
Wave Equation

In 1950, Smith®? proposed a more realistic solution
to the problem of longitudinal impact. This solution is
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Figure 2.1. Method of representing pile for purpose of
analysis (after Smith).

based on dividing the distributed mass of the pile into
a number of concentrated weights W(1) through
W(p), which are connected by weightless springs K(1)
through K(p—11, with the addition of soil resistance
acting on the masses, as illustrated in Figure 2.1(b).
Time is also divided into small increments.

Smith’s proposed solution involved the idealization
of the actual continuous pile shown in Figure 2.1(a),
as a series of weights and springs as shown in Figure
2.1tb). Tor the idealized system he set up a series of
equations of motion in the form of finite difference equa-
tions which were easily solved using high-speed digital
computers. Smith extended his original method of analy-
sis to include various nonlineal parameters such as elasto-
plastic soil resistance including velocity damping and .
others.

Figure 2.1 illustrates the idealization of the pile
svslem suggested by Smith.  In general. the system is
considered to be composed of (see Figure 2.1(a}):

1. A ram. to which an initial velocity is imparted
by the pile driver;

2. A capblock (cushioning material) ;

w

A pile cap;
A cushion block (cushioning material) ;
A pile; and

The supporting medium, or soil.

AN




In Figure 2.1(h) are shown the idealizations for the
various components of the actual pile. The ram, cap-
block, pile cap, cushion block, and pile are pictured as

appropriale discrete weights and springs. The frictional .

soil resistance on the side of the pile is represented by
a series of side springs; the point resistance is accounted
for by a single spring at the point of the pile. The char.
acteristics of these various components will be discussed
in greater detail later in this report.

Actual situations may deviate from that illustrated
in Figure 2.1. For example, a cushion block may not
be used or an anvil mav be placed between the ram and
capblock. However, such cases are readily accommo-

dated.

Internal Springs. The ram. capblock. pile cap. and
cushion block may in general be considered to consist
of “internal” springs, although in the representation of
Figure 2.1(b) the ram and the pile cap are assumed
rigid {a reasonable assumption for many practical
cases).

Figures 2.2(a) and 2.2(b) suggest different possi-
bilities for representing the load-deformation character-
istics of the internal springs. In Figure 2.2(a), the
‘material is considered to experience no internal damping.
In Figure 2.2(b) the material is assumed to have inter-
nal damping according to the linear relationship shown.

External Springs. The resistance to dynamic load-
ing afforded by the soil in shear along the outer surface
of the pile and in bearing at the point of the pile is
extremely complex. Figure 2.3 shows the load-deforma-

LOAD

DEF ORMATION
—>

(o) NO INTERNAL DAMPING

LOAD
Ar J
A
L0 s | DEFORMATION
> “-~—»

(b) INTERNAL DAMPING PRESENT

Figure 2.2. Load-deformation relationships for internal
springs.

RCm)
LOAD
[’y
=-Q(m) |
A B___
Rulm)
G
f DEFORMATION
o 3 £ » D (m)
Ru(m)
E D —

Figure 2.3. Load-deformation characteristics assumed
for soil spring m.

tion characteristics assumed for the soil in Smith’s pro-
cedure, exclusive of damping effects. The path OABC-
DEFG represents loading and unloading in side friction.
For the point, only compressive loading may take place
and the loading and unloading path would be along

OABCF.

It is seen that the characteristics of Figure 2.3 are
defined essentially by the quantities “Q” and “Ru.”
“Q” is termed the soil quake and represents the maxi-
mum deformation which may occur elastically. “Ru” is
the ultimate ground resistance, or the load at which the
soil spring behaves purely plastically.

A load-deformation diagram of the tvpe in Figure
2.3 may be established separately for each spring. Thus,
K'(m) equals Ru(m) divided by Q{m), where K'(m)
is the spring constant (during elastic deformation) for
external spring m.

Basic Equations. Equations (2.3) through (2.7)
were developed by Smith.?2

D(mt) = D(m,t—1) + 12At V(m.t—1) (2.3)

Cimt) = D(mit) — D(m+1,) (2.4)
F(mt) = C(m.t) K(m) (2.5)
R(m,t) = [D(m.t} — D'(m.t)] K'(m) [1
+ Jim) V{im,t—1)] (2.6)
Vimt) = V(mt—1) + [F(m—1t) — F(m.yt)
— Rim,t) ] —‘ii/é(tm—)— (2,7) .
where
() = funclional designation;
m = element number;
.t = number of time interval:
At == size of time interval (sec);
C(m,t) = compression of internal spring m in

time interval t (in.);
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Dim.t) = displacement of element m in time
interval t (in.);

D'(m.t) = plastic displacement of external soil spring
m in time interval U (in.);
F(m,t) = force in internal spring m in time
interval (b} ;
g = acceleration due to gravity ({t/sec?);
J(m) = damping constant of soil at element m

(sec/ft);

K(m) = spring constant associaled with internal
spring m (lb/in.);

K'(m) = spring constant associated with external
soil spring m (lb,in.J;

R(m,t) = force exerted by external spring m on

element m in time interval t (Ib);

V(m,t) = velocity of element m in time interval t
(ft/sec); and

W(m) = weight of element m (ib).

This notation differs slightly from that used by
Smith.  Also, Smith restricts the soil damping constant
J to two values, one for the point of the pile in bearing
and one for the side of the pile in friction. While the
present knowledge of damping behavior of soils perhaps
does not juslify greater refinement, it is reasonable to
use this notation as a function of m for the sake of
generality.

The use of a spring constant K(m)} implies a load-
deformation behavior of the sort shown in Figure 2.2(a).
For this situation, Ktm) is the slope of the straight line.
Smith develops special relationships to account for in-
ternal damping in the caphlock and the cushion block.
He obtains instead of Equation 2.5 the following equa-
tion:

o Kim) 1
N = — C . —_ —
F(m,t) Te(m) |2 (m,t) BrE
— 1 K(n]) C(_m,t)m:lx (2'8)
where
e(m) = coefficient of restitution of internal spring
m; and
C(m.t) yax = tempurary maximum value of C(m.1).

With reference to Figure 2.1. Equation (2.8) would he
applicable in the calculation of the forces in internal
springg m = 1 and m = 2. The load-deformation
relationship characterized by Equation (2.8) is illustrated
by the path OABCDEO in Figure 2.2(h). For a pile
cap or a cushion block, no tensile forces can exist: con-
sequently, only this part of the diagram applies. Inter-
mittent unloading-loading is typified by the path ABC.
established by control of the quantity C{m,t) .. in
Equation (2.8). The slopes of lines AB, BC. and DE
depend upon the coefficient of restitution e(m).

PAGE FOUR

The computations proceed as follows: ’

1. The initial velocity of the ram is determined
from the properties of the pile driver. Other time-
dependent quantities are initialized at zero or to satisfy
static equilibrium conditions.

2. Displacements D(m,1) are calculated by Equa-
tion (2.3}). It is to be noted that V(1,0) is the initial
velocity of the ram. :

3. Compressions C(m,1) are calculated by Equa-
tion (2.4).

4. Internal spring forces F(m,l) are calculated by
Equation (2.5) or Equation (2.8) as appropriate.

5. External spring forces R(m,1) are calculated

by Equation (2.6).

6. Velocities V(m,1) are calculated by Equation
(2.7).

7. The cycle is repeated for successive time inter-
vals.

In Equation (2.6), the plastic deformation D’ (m,t)
for a given external spring follows Figure (2.3) and
may be determined by special routines. For example,
when D(m,t) is less than Q(m), D'(m.t) is zero; when
D(m,t) is greater than Q(m) along line AB (see Figure
2.3), D'(m,t) is equal to D(m,t) — Q(m).

Smith notes. that Equation (2.6) produces no damp-
ing when D(mt) — D’(m,t) becomes zero. He sug-
gests an alternate equation to be used after D{m,t) first
becomes equal to Q(m):

Rimt) = [D(mt) — D'imt)] K'(m) -+
Jim) K'(m) Q(m) V{m,t—1) {2.9)

Care must be used to satisfy conditions at the head
and point of the pile. Consider Equation (2.5). When
m — p, where p is number of the last element of the

‘pile, K(p) must be set equal to zero since there is no

F(p,t) force (see Figure 1.1). Beneath the point of the
pile, the soil spring must be prevented from exerting
tension on the pile point. In applying Equation (2.7)
to the ram (m = 1), one should set F(0,t) equal to zero.

For the idealization of Figure 2.1, it is apparent
that the spring associated with K(2) represents both the
cushion block and the top element of the pile. Its spring
rate may be obtained by the following equation:

1 _ 1 1

K2 = K2 | K@ 210

A more complete discussion of digital computer
programming details and recommended values for vari-
ous physical quantities are given in the Appendices.

From the point of view of hasic mechanics. the wave
equation solution is a method of analysis well founded
physically and mathematically.

2.3 Critical Time Interval

The accuracy of the discrete-element solution is also
related to the size of the time increment At. Heising,218
in his discussion of the equation of motion for free

longitudinal vibrations in a continuous elastic bar, points - .




out that the discrete-clement solution is an exact solution
of the partial differential equation when

AL
VEp
where AL is the segment length. Smith ** draws a simi-

lar conclusion and has expressed the critical time inter-
val as follows:

At =

1 W
At frond tm+1) ; p
10.618 \/f_(mj, (2.11a)
or
— 1 \‘](m\ ¢
19.618 - (2.11b)

If a time increment larger than that given by Equa-
tion 2.11 is used. the discrete-element solution will di-
verge and no valid results can be obtained. As pointed
out by Smith, in this case the numerical calculation of
the discrete-element stress wave does not progress as
rapidly as the actual siress wave. Consequently, the
value of At given by Equation (2.11) is called the “criti-
cal” value.

Heising®!? has also pointed out that when

AL
< —
Vi
p
is used in a discrete-element solution, a less accurate
solution is obtained for the continuous bar. As At be-
comes progressively smaller, the solution approaches the

actual behavior of the discrete-element system (segment
lengths equal to AL) used to simulate the pile.

At

This in general leads to a less accurate solution for
the longitudinal vibrations of a slender continuous bar.
If, however, the discrete-element system were divided
into a large number of segments. the behavior of this
simulated pile would be essentially the same as that of
the slender continuous bar irrespective of how small At
becomes, provided -

AL
\/TéAt>0
p

This means that if the pile is divided into only a few
segments, the accuracy of the solution will be more sensi-
tive to the choice of At than if it is divided into many
segments. For practical problems, a choice of At equal
to about one-half the “critical” value appears suitable
since inelastic springs and materials of different densi-
ties and elastic moduli are usually involved.

2.4 Effect of Gravity

The procedure as originally presented by Smith
did not account for the static weight of the pile. In
other words. at t = 0 all springs. both internal and
external, exert zero force. Slated symbolically,

F(m0) = Rim,0) = 0

If the effect of gravity is 1o be included. these forces
must be given initial values to produce equilibrium of

the system.  Strictly speaking, these initial values should *
be those in effect as a result of the previous blow. How-
ever, not only would il be awkward to “keep books” on
the pile throughout the driving so as to identify the
initial conditions for successive blows. but it is highly
questionable thal this refinement is justified in light of
other uncertainties which exist.

A relatively simple scheme has been developed as

a means of getiing the gravity effect into the compu-
tations.

Smith suggests that the external (soil) springs be
assumed to resist the static weight of the system accord-
ing to the relationship

R(m,0) = [Ru(m)/Ru(total)] [W(total)] (2.12)

where

Witotal) = total static weight resisted by soil
(ib); and
Ru(total) = total ultimate ground resistance (Ib).

The quantity W(total) is found by

m=p
Witotal) = W(b) + F(c) + I W(m (2.13)
m=2
where
Wi(b) = weight of body of hammer, excluding
ram (lb); and
"F(c) = force exerted by compressed gases, as

under the ram of a diesel hammer (Ib).

The internal forces which initially exist in the pile
may now be obtained:

F(1L.0) = W(b) + F(c)

and in general,

(2.14)

Fim,0) = Fim—1,00 + W(m) — R(m,0) (2.15)

In the absence of compressed gases and hammer weight
resting on the pile system, the right-hand side of Equa-
tion (2.14) is zero.

The amount that each internal spring m is com.
pressed may now be expressed

C(m,0) = F(m,0) /K (m) (2.16)
By working upward from the point, one finds displace-
ments from
D(p,0) = R(p,0)/K'(p) (2.17)
D(m,0) = D(m+1,0) + C(m.0) (ms£p) (2.18)
For the inclusion of gravity. Equation (2.7) should be
modified as follows:
Vim.t) = Vim.i—1) + [F(m—1t) — F(m,t)

_gAt
W(m)

In order that the initial conditions of the external
springs he compatible with the assumed initial forces
R(m.0) and initial displacements D(m.0), plastic dis-
placements D'(m,0) should be set equal to D(m,0) —
R(m,0) /K" (m).

— Rimgt) + W(m)]

(2.19)
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CHAPTER III .

Pile Driving Hammers

3.1 Energy Output of Impact Hammer

One of the most significant parameters involved in
pile driving is the energy output of the hammer. This
energy output must be known or assumed before the
wave equation or dynamic formula can be applied. Al
though most manufacturers of pile driving equipment
furnish maximum energy ratings for their hammers,
these are usually downgraded by foundation experts for
various reasons. A number of conditions such as poor
hammer condition, lack of lubrication. and wear are
known to seriously reduce energy output of a hammer.
In addition, the energy output of many hammers can
be controlled by regulating the steam pressure or quan-
tity of diesel fuel supplied to the hammer. Therefore,
a method was needed to delernine a simple and uniform
method which would accurately predict the energy output
of a varietv of hammers in general use. Towards this
purpose, the information generated by the Michigan
State Highway Commission in 1965 and presented in
their paper entitled “A Performance Investigation of
Pile Driving Hammers and Piles” by the Office of Test-
ing and Research, was used. These data were analyzed
by the wave equation to determine the pile driver energy
which would have been required to produce the reported
behavior.?3

3.2 Determination of Hammer Energy Output

Diesel Hammers. At present the manufacturers of
diesel hammers arrive at the energy delivered per blow
by two different methods. One manufacturer feels that
“Since the amount of (diesel) fuel injected per blow is
constant, the compression pressure is constant, and the
temperature constant, the energy delivered to the piling
is also constant.”®! The energy output per blow is thus
computed as the kinetic energy of the falling ram plus
the explosive energy found by thermodynamics. Other
manufacturers simply give the energy output per blow
as the product of the weight of the ram-piston Wy and
the length of the stroke h, or the equivalent stroke in the
case of closed-end diesel hammers.

The energy ratings given by these two methods
differ considerably since the ram stroke h varies greatly
thereby causing much controversy as to which, if either,
method is correct and what energy output should be used
in dynamic pile analysis. -

In conventional single acting steam hammers the
steam pressure or energy is used to raise the ram for
each blow. The magnitude of the steam force is too
small to force the pile downward and consequently it
works only on the ram to restore its potential energy,
Wr x h, for the next blow. In a diesel hammer, on the
other hand, the diesel explosive pressure used to raise
the ram is, for a short time at least, relatively large (see

Figure 3.1).

While this explosive force works on the ram to
restore its potential energy Wy x h, the initially large
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explosive pressure also does some useful work on the
pile given by:

Ec = f Fds (3.1
where ' = the explosive force, and
ds = the infinitesimal distance through which the

force acts.

" Since the total energy output is the sum of the
kinetic energy at impact plus the work done by the
explosive {orce.

Etotm = Ex + E. (3.2)
where Ey = the total energy output per blow,
Ex = the kinetic energy of the ram at the
instant of impact,
and E. = the diesel explosive energy which does

useful work on the pile.

It has been noted that after the ram passes the
exhaust ports, the energy required to compress the air-
fuel mixture is nearly identical to that gained by the
remaining fall (d) of the ram.*! Therefore, the velocity
of the ram at the exhaust poris is essentially the same
as at impact, and the kinetic energy at impact can be
closely approximated by:

Ek == “’R (h - d)

where W = the ram weight,
h = the total observed stroke of the ram, and
d = the distance the ram moves after closing
the exhaust ports and impacts with the
anvil.

MAXIMUM IMPACT FORCE ON THE ANVIL
CAUSED BY THE FALLING RAM

/IDEALIZED DIESEL EXPLOSIVE FORCE
/ ON THE ANVIL AND RAM

FCRCE BETWEEN RAM AND ANVIL

/

00 125 150 -

T

o 25 50 75

TIME (SEC X 107%)

Figure 3.1.

Typical force vs time curve for a diesel
hammer.




The total amount of explosive energy E, oan is
dependent upon the amount of diesel fuel injected, com-
pression pressure, and temperature; and therefore, ‘may
vary somewhat.

Unfortunately. the wave equation must be used in
each case to determine the exact magnitude of E, since
it not only depends on the hammer characteristics. but
also on the characteristics of the anvil. helmet, cushion,
pile. and soil resistance. However. values of E, deter-
mined by the wave equation for several typical pile prob-
lems indicates that it is usually small in proportion {o the
total explosive energy output per blow, and furthermore,
that it is on the sane order of magnitude as Wy X d,
Thus, Equation (3.1) can be simplified by assuming:

E(\ - WR X (] (3.4‘)

Substituting Equations (3.3) and (3.4) into Equation
{3.1) gives:

Emm] = Ek + E,. = “rn (h - (‘l’ + \VR d (3.5)

so that:
Etn(.-ll = ‘VR h (3-6)

The results given by this equation were compared with
experimental values and the average efficiency was found

to be 100%.

Steam Hammers. Using the same equation for com-
parison with experimental values indicated an efficiency
rating of 607+ for the single-acting steam hammers, and
877 for the double-acting hammer, based on an energy
output given by:

Emt:ll - \VR h (37)

In order to determine an equivalent ram stroke for
the double-acting hammers, the internal steam pressure
above the ram which is forcing it down must be taken
into consideration. The manufacturers of such hammers
state that the maximum steam pressure or force should
not exceed the weight of the housing or casing, or the
housing may be lifted off the pile. Thus the maximum
downward force on the ram is limited to the total weight
of the ram and housing.

Since these forces both act on the ram as it falls
through the actual ram stroke h, they add kinetic energy
to the ram, which is given by:

Etn(nl = “’R h + FR h (38)

where W, =

= the ram weight,
Fr = a steam force not exceeding the weight

of the hammer housing, and
h = the observed or actual ram stroke.

Since the actual steam pressure is not always applied at
the rated maximum. the actual steam force can be
expressed as:

)
Fr= (2 — ) w, (3.9)
l roted
where W;; = the hammer housing weight,
p = the operaling pressure, and
Pratea = the maximum rated steam pressure.

The total energy output is then given by

l rited

Eww = Wp h + ( - ) Wy h  (3.10)

This can be reduced in terms of Equation (3.7) by *
using an equivalent stroke h, which will give the same

-energy output as Equation (3.10).

Thus:
Emml = “’R h? (3‘11)

Setting Equations (3.10) and (3.11) equal yields

“Wp he = Wy b + (P Wi ) h
rated

=h |l we o+ 5

ruted

Wi
or solving for the equivalent stroke:

\¥J
h, = 1 1+ 2 X o
! ' Prntvd WR

(3.12)

Conclusions. The preceding discussion has shown
that it is possible to determine reasonable values of ham- -
mer energy output simply by taking the product of the
ram weight and its observed or equivalent stroke, and
applying an efficiency factor. This method of energy
rating can be applied to all types of impact pile drivers
with reasonable accuracy.

A brief summary of this simple procedure for ar-
riving at hammer energies and initial ram velocities is
as follows:

Open End Diesel Hammers
E = Wy h (e)
Ve = V 2z (h—d) (e)

where Wy, = ram weight
Vi = initial ram velocity
h = observed total stroke of ram
d = Distance from anvil to exhaust ports

f

efficiency of open end diesel hammers,
approximately 1007 when energy is
computed by this method.

Closed End Diesel Hammers

E* = Wpg h. (e)
Vi = V 2¢ (h.—d) (e)
where Wy = ram weight
Vi = initial ram velocity
h. = equivalent stroke derived from bounce
chamber pressure gage
d == distance from anvil 1o exhaust ports

efficiency of closed end diesel hammers,
approximately 1009  when energy is
computed by this method.

Double-Acting Steam Hammers

E = Wi h, (e)
V = v/ 2g h, (e)

*Note: FOI‘itile Link Belt Hammers, this energy can be
read directly from the manufacturer’s chart using bounce
chamber pressure gage.
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where Wy == ram weight

3.3 Significance of Driving Accessories

he = equivalent ram stroke In 1965 the Michigan State Highway Commission
. completed an exlensive research program designed to
= 1 1+ 2 % Wi obtain a better understanding of the complex problem -
= h P W £ vile drivi Th 2 .
rated R . of pile driving. Though a number of specific ohjectives
were given, one was of primary importance. As noted
h = actual or physical ram stroke by Housel,*2 “Hammer energy actually delivered to the

pile, as compared with the manufacturer’s rated energy,

p = operaling steam pressure was the focal point of a major portion of this investi-

Pmtrd fromany ]naxilnun] steam pressure recon‘lmended gation Of pile-driving hammers.” In'olher \\'Ol‘dS, they

by manufacturer. hoped to determine the energy delivered to the pile and

Wy, = weight of hammer housing to compare these values with the maanacturer’s ratings.
o = o .

e = efficiency of double-acting steam ham- The energy transmitted to the pile was termed

mers, 85% by this

method.

approximately

Single-Acting Steam Hammers

“ENTHRU” by the investigators and was determined
by the summation

ENTHRU = SFAS

E = W, h (e) Where F, the average force on the top of the pile during

AN L a short interval of time, was measured hy a specially

Vi = V 2g h (e) designed load cell, and AS, the incremental movement
where Wi = ram weight of the he.ad of' the pile during this time ixllterval, was
h = ram stroke found using displacement transducers and-or reduced

e efficiency of single-acting steam ham-
mers, normally recommended around
5% to 85% . In a study of the Michi-
gan data, a figure of 60% was found.
The writers feel the 607 figure is un-
usually low and would not recommend
it as a typical value.

A summary of the properties and operating character-
istics of various hammers is given in Table 3.1.

from accelerometer data. It should be pointed out that
ENTHRU is not the total energy output of the hammer
blow, but only a measure of that portion of the energy
delivered below the load-cell assembly.

Many variables influence the value of ENTHRU,
As was noted in the Michigan report: “Hammer type and
operating conditions; pile tvpe, mass, rigidity, and
length; and the type and condition of cap blocks were -
all factors that affect ENTHRU. but when, how, and
how much could not be ascertained with anv degree of

TABLE 3.1. SUMMARY OF HAMMER PROPERTIES AND OPERATING CHARACTERISTICS
Hammer Hammer Maximum Ram Hammer Anvil Maxi- d Rated Maximum Cap
Manu- Type Rated Weight  Housing Weight mum or (ft) Steam Explosive Block
facturer Energy (1b) Weight (1b) Equiva- Pres-  Pressure Normally
(ft 1b) (1b) lent sure (1b) Specified
Stroke (psi)
(ft)
Vulean #1 15,000 5,000 4,700 3.00
014 42,000 14,000 13,500 3.00
50C 15,100 5,000 6,800 3.02 120 .
80C 24,450 8,000 9,885 3.06 120 %
140C 36,000 14,000 13,984 2.58 140 L
Link Belt 312 18,000 3,857 1188 4.66 0.50 98,000 5 I\}Eicarta
disks
1" x 10%”
dia.
520 30,000 5,070 1179 5.93 0.83 98,000
MKT Corp DE20 16,000 2,000 640 8.00 0.92 46,300 g_vlongdisk
rr x "
' dia.
DE30 22,400 2,800 775 8.00 1.04 98,000 nylon disk
2" x 19!’
dia.
DE40 32,000 4,000 . 1350 R.00 1.17 138,000 nylon disk
: 2" x 24"
dia.
Delmag D-12 22,500 2,750 754 8.19 1.25 93,700 15" x 15"
X 5['
German
Oak
D-22 39,700 4,850 1147 8.19 1.48 158,700 15" x 15”
x 5’[
German
Oak
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certainty.” However, the wave equation can account
for each of these factors so that their effects can be
determined.

The maximum displacement of the head of the pile
was also reported and was designated LIMSET. Oscillo-
graphic records of force vs time measured in the load
cell were also reported. Since force was measured only
at the load cell, the single maximum observed values for

each case was called FMAX.

The wave equation can be used to determine (among
other quantities) the displacement D(m.t) of mass “m”
at time “t”, as well as the force F(m,#) acling on any
mass “m” at time “t.” Thus the equation for ENTHRU
at any point in the system can be determined by simply
letting the computer calculate the equation previously
mentioned:

ENTHRU = ZFAS

or in terms of the wave equation:

Fimt) + F(mt—1)
2.0

X [Dim+14t) — Dim+11—1]

ENTHRU(m) = X

where ENTHRU (m) = the work done on any mass
(m + 1),
m = the mass number, and
t = the time intlerval number.

ENTHRU is greatly influenced by several parame-
lers, especially the type, condition, and coefficient of
restitution of the cushion, and the weight of extra driv-
ing caps. )

-It has been shown,** that the coefficient of reslitu-
tion alone can change ENTHRU by 20%, simply by
changing e from 0.2 to 0.6. Nor is this variation in e
unlikely since cushion condition varied from new to

“badly burnt” and “chips added.”

The wave equation was therelore used to analyze
certain Michigan problems to determine the influence
of cushion stiffness, e, additional driving cap weights,
driving resistance encountered, etc.

Table 3.5 shows how ENTHRU and SETbin('.reases
when the load cell assembly is removed from Michigan
piles.

TABLE 3.2. EFFECT OF CUSHION STIFFNLSS ON
ENERGY TRANSMITTED TO THE PILE (ENTHRU)

TABLE 3.3. EFFECT OF CUSHION STIFFNESS ON' R
THE MAXIMUM FORCE MEASURED AT THE LOAD"
CELL (FMAX)

FMAX (kip)
Ram : - —
Velocity RUT Cushion Stiffness (kip/in.)
(ft/sec) (kip) 540 1080 2700 27,000

. 30 132 185 261 719

8 90 137 185 261 779
150 143 186 261 779

30 198 278 391 1,169

12 90 205 278 391 1,169
150 215 279 391 1,169

30 264 371 522 1,558

16 90 275 371 522 1,558
150 288 371 522 1,558

From Table 3.2, it can be seen that ENTHRU does
not always increase with increasing cushion stiffness,
and furthermore, the maximum increase in ENTHRU
noted here is relatively small—only about 10%.

When different cushions are used, the coefficient of
restitution will probably change. Since the coefficient
of restitution of the cushion may affect ENTHRU, a
number of cases were solved with “e” ranging from
0.2 10 0.6. As shown in Tables 3.6 and 3.7, an increase
in “e” from 0.2 to 0.6 normally increases ENTHRU from
18 to 20%, while increasing the permanent set from 6
to 11%+. Thus, for the case shown, the coefficient of
restitution of the cushion has a greater influence on rate
of penetration and ENTHRU than does its stiffness.
This same effect was noted in the other solutions, and
the cases shown in Tables 3.6 and 3.7 are tvpical of the
results found in other cases.

As can be seen from Table 3.3, any increase in
cushion stiffness also increases the driving stress. Thus,
according to the wave equation, increasing the cushion
stiffness to increase the rate of penetration (for example
by not replacing the cushion until it has been beaten to
a fraction of its original height or by omitting the cush-
ion entirely) is both inefficient and poor practice be-
cause of the high stresses induced in the pile. 1t would

" be better to use a cushion having a high coefficient of

restitution and a Jow cushion stiffness in order to In-
crease ENTHRU and to limit the driving stress.

Unfortunately. the tremendous variety of driving
accessories precludes general conclusions to be drawn

TABLE 34. EFFECT OF CUSHION STIFFNESS ON
THE MAXIMUM DISPLACEMENT OF THE HEAD OF
THE PILE (LIMSET)

ENTHRU (kip ft)

LIMSET (in.)

Ram Cushion Stiffness (kip/in.) Ram Cushion Stiffness (kip/in.)
Velocity RUT = — Velocity RUT ~ —
(ft/sec) (kip) = 040 1080 2700 27,000 (ft/sec) {kip) 540 1080 2700 27,000
30 3.0 3.0 3.0 2.9 30 1.09 1.08 1.08 1.13
8 a0 3.1 3.2 3.3 2.9 8 00 0.44 0.44 0.45 045
150 3.0 3.2 3.3 3.0 150 0.32 0.33 0.33 0.33
30 6.6 6.4 71 64 30 2.21 2.14 2.19 2.25
12 90 7.0 7.1 7.2 6.4 12 90 0.80 0.82 0.84 0.84
150 6.9 7.2 T4 6.7 150 0.55 0.57 0.58 0.58
30 11.8 11.9 1227 113 30 3.62 3.59 3.63 3.68
16 00 12.3 12.6 12.8 115 16 90 1.30 1.31 1.32 1.34
150 12.4 12.9 13.2 114 150 0.85 0.87 0.88 0.90
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TABLE 3.5 EFFLECT OF REMOVING LOAD CELL ON ENTHRU, LIMSET, AND PERMANENT SET OF PILE

ENTHRU LIMSET " PERMANENT SET
(kip ft) (in.) (in.)

Ram With Without With Without With Without

Veloeity Load Load Load Load Load Load

Case™? (ft/sec) Cell Cell Cell Cell Cell Cell
8 1.5 1.6 0.27 0.34 0.23 0.25

DTP-15, 12 33 3.6 0.53 067 0.57 0.57
805 16 5.8 6.5 1.02 1.03 094 0.97
20 9.1 10.1 1.54 1.54 1.43 147

8 3.1 3.8 0.62 0.71 0.51 0.62

DLTP-8, 12 7.1 8.5 1.15 1.32 1.06 1.29
- 80.2 16 12.5 156.1 1.91 2.10 1.82 2.15
20 19.5 23.6 2.70 3.08 2.65 3.13

from wave equation analyses in all but the most general
of terms.

Although the effect of driving accessories is quite
variable, it was generally noted that the inclusion of
additional elements between the driving hammer and the

pile and/or the inclusion of heavier driving accessories

consistently decreased both the energy transmitted to the
head of the pile and the permanent set per blow of the
hammer. Increasing cushion stiffness will increase com-
pressive and tensile stresses induced in a pile during
driving.

3.4 Explosive Pressure in Diesel Hammers

In order to account for the effect of explosive force
in diesel hammers. the force between the ram and the
anvil is assumed to reach some maximum due to the
impact between the ram and anvil, and then decrease.
However, should this impact force tend to decrease below
some specified minimum. it is assumed that the diesel
explosive pressure maintains this specified minimum
force between the ram and anvil for a given time, after

which the force tapers to zero. As shown in Figure 3.1,

the force between the ram and anvil reaches some maxi- °

mum due to the steel on steel impact, afterwards the
force decreases to the minimum diesel explosive force
on the anvil. This force is maintained for 10 millisec-
onds, thereafler decreasing to zero at 12.5 milliseconds.
The properties of this curve, including values of the
minimum explosive force and time over which this force
acts, were determined from the manufacturer’s published
literature for the diesel hammers.

The effect of explosive pressure was found to be
extremely variable, possibly more so than the effect of
the driving accessories, and few conclusions could be
drawn. The only consistent effect that could be ob-
served was that if the maximum impact force induced
by the falling ram was insufficient to produce perma-
nent set, the addition of explosive force had little or no
effect on the solution. In other words, unless the par-
ticular hammer, driving accessories, pile, and soil con-
ditions were such that it was possible to get the pile
moving, the explosive force, being so much smaller than
the maximum impact force, had no effect.

TABLE 3.6. EFFECT OF COEFFICIENT OF RESTITUTION ON MAXIMUM POINT DISPLACEMENT

Ram . s : : Maximum
Pile RUT Velocity Maximum Point Displacement (in.) Change
1.D. (kip) (ft/sec) e = 02 e = 04 e = 0.6 (%)
BLTP-6; 10.0 30 12 2.13 2.14 2.36 10
16 3.38 3.47 3.58 6
20 4.73 4.93 5.17 8
BLTP-6; 57.9 150 12 0.46 0.48 0.50 8
16 0.73 0.76 0.81 10
20 1.05 1.10 1.18 11
TABLE 3.7. EFFECT OF COEFFICIENT OF RESTITUTION ON ENTHRU
Ram ~NIT: o Maximum .
Pile RUT Velocity ENTHRU (kip ft) Change
1.D. (kip) (ft/sec) e = 0.2 e = 0.4 e = 0.6 ‘ (%)
BLTP-6; 10.0 30 12 6.0 6.5 7.3 18
16 10.5 11.8 12.8 18
20 16.5 174 20.0 17
BLTP-6; 579 150 12 6.7 7.2 8.2 18
16 11.6 12.7 14.5 20
20 18.2 19.7 22.4 19
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However, the addition of explosive pressure in-
creased the permanent sel of the pile in some cases
where the maximum impact force is sufficient to start
the pile moving; on the other hand, its addition was
found ineffective in an equal number of circumstances.

The explosive forces assumed to be acting within
various diesel hammers are listed in Table 3.1. These
forces were determined by experiment. personal corre.
spondence with the hammer manufacturers, and from
their published literature.

3.5 Effect of Ram Elasticity

In 1960. when Smith first proposed his numerical
solution to the wave equation for application to pile
driving problems. he suggested that since the ram is
usually short in length, it can in many cases be repre-
sented by a single weight having infinite stiffness. The
example illustrated in Figure 2.1 makes this assumption,
since K(1) represents the spring constant of only the
capblock, the elasticity of the ram having been neglected.
Smith also noted that if greater accuracy was desired,
the ram could also be divided into a series of weights
and springs, as is the pile.

As noted in Figures 3.2 and 3.3, there is a signifi-
cant difference between the steam or drop hammers and
diesel hammers, i.e., the steam hammer normally strikes
a relatively soft capblock, whereas the diesel hammer in-
volves steel on steel impact between the ram and anvil.
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e HAMMERBASE
i CAPBLOCK

. PILE CAP
N~ CUSHION
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Figure 3.2. Steam hammer.
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Figure 3.3. Diesel hammer.

To determine the influence of dividing the ram into
a number of segments, several ram lengths ranging from
2 to 10 ft were assumed, driving a 100-ft pile having
point resistance only. The total weight of the pile being
driven varied from 1500 to 10.000 1b, while the ultimate
soil resistance ranged from 0 to 10,000.lb. The cushion
was assumed to have a stiffness of 2,000 kips per in.

Table 3.8 lists the results found for a typical prob-
lem solved in this study, the problem consisling of a
104t long ram traveling at 20 fps striking a cushion
with a stiffness of 2000 kips per in. The pile used was
a 100-ft 12H53 steel pile, driven by a 5,000.1b ram.

TABLE 8.8, EFFECT OF BREAKING THE RAM INTO
SEGMENTS WHEN RAM STRIKES A CUSHION OR

CAPBLOCK -
Maxi-
mum Maxi- Maxi-
Compres- mum mum
Length sive Tensile Point
Number of Pile Force Force in Displace-
of Ram Segments in Pile Pile ment
Divisions (ft) (kip) (kip) (in.)
1 10.0 3054 273.9 3.019
1 5.0 273.8 245.9 3.042
1 2.5 265.6 224.8 3.053
1 1.25 263.1 219.0 3.057
2 1.25 262.6 218.8 3.058
10 1.25 262.9 218.5 3.059
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TABLE 3.9. EFFECT OF BREAKING RAM INTO SEGMENTS WHEN RAM STRIKES A STEEL ANVIL

Maximum Compressive

Length . Maximum
Number of Each Force on Pile Point
Anvil Ram of Ram Ram At At At Displace-
Weight Length Divisions Segment Head Center Tip ment
1b ft ft kip- - kip kip in.
2000 10 1 10.0 513 513 884 0.207
2 5.0 437 438 T 0.159 -
5 2.0 373 373 674 0.124
10 1 375 - 375 678 0.125
8 1 8.0 478 478 . 833 0.183
4 2.0 359 359 648 0.117
8 1.0 360 360 651. 0.118
6 1 6.0 430 430 763 0.155
3 2.0 344 344 621 0.110
6 1.0 . 342 342 616 0.109
1000 10 1 10.0 508 509 878 0.160
2 5.0 451 451 789 0.159
5 2.0 381 382 691 0.151
10 1.0 371 372 681 0.153
8 1 8.0 487 488 846 0.151
4 2.0 443 444 785 0.144
8 1.0 369 370 67H 0.134
10 0.8 337 338 665 0.133
6 1 6.0 457 457 798 0.137
3 2.0 361 362 666 0.128
6 1.0 316 316 562 0.109
10 0.6 320 320 611 0.113

No pile cap was included in the solution, the cushion
heing placed directly between the hammer and the head
of the pile. Since the ram was divided into very short
lengths, the pile was also divided into short segments.

As shown in Table 3.8, the solution is not changed
to any significant extent whether the ram is divided into
1, 2, or 10 segments. The time interval was held con-
stant in each case.

In the case of a diesel hammer. the ram strikes
directly on a steel anvil rather than on a cushion. This
makes the choice of a spring rate between the ram and
anvil difficult because the impact occurs between two
steel elements. The most obvious solution is to place a
spring having a rate dictated by the elasticity of the
ram and/or anvil. A second possible solution is to break
the ram into a series of weights and springs as is the pile.

To determine when the ram should be divided, a
parameter study was run in which the ram length varied
between 6 and 10 {t, and the anvil weight varied from
1,000 to 2,000 Ib. In each case the ram parameter was

held constant and the ram was divided equally into seg-
ment lengths as noted in Table 3.9. These variables were
picked because of their possible influence on the solution.

The pile used was again a 12H53 point bearing pile
having a cushion of 2,000 kip per in. spring rate placed
between the anvil and the head of the pile. The soil
parameters used were RU = 500 kips, Q = 0.1 in,,
and ] = 0.15 sec. per ft. These factors were held con-
stant for all problems listed in Tables 3.8 and 3.9.

The most obvious result shown in Table 3.9 is that
when the steel ram impacts directly on a steel anvil,
dividing the ram into segments has a marked effect on
the solution.

An unexpected result of the study was that even
when the ram was short, breaking it into segments still
effected the solution. As seen in Table 3.9, the solutions
for forces and displacements for both 6 through 10 ft
ram lengths continue to change until a ram segment
length of 2 ft was reached for the 2,000-1b anvil and a
segment length of 1 ft for the 1,000-Ib anvil was reached.

CHAPTER 1V
Capblock and Cushions

4.1 Methods Used to Determine Capblock and
Cushion Properties

As used here, the word “capblock™ refers 1o the
material placed between the pile driving hammer and
the steel helmet. The term “cushion” refers to the ma-
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terial placed between the steel helmet and pile (usually
used only when driving concrete piles).

Although a capblock and cushion serve several
purposes. their primary function is to limit impact

siresses in both the pile and hammer. In general, it has " -+

S5




been found that a wood capblock is quite effective in
reducing driving stresses. more so than a relatively stiff
capblock material such as Micarta. However, the stiffer
Micarta is usually more durable and transmits a greater
percentage of the hammer’s energy to the pile because
of its higher coefficient of restitution.

For example, when fourteen different cases of the
Michigan study were solved by the wave equation, the
Micarta assemblies averaged 147 more efficient than
capblock assemblies of wood. However, the increased
cushion stiffness in some of these cases increased the
impact stresses to a point where damage to the pile or
hammer might result during driving. The increase in
stress was particularly important when concrete or
prestressed concrete piles were driven. When driving
concrete piles, it is also frequently necessary to include
cushioning material between the helinet and the head of
the pile to distribute the impact load uniformly over the
surface of the pile head and prevent spalling.

To apply the wave equation to pile driving, Smith
assumed that the cushion’s stress-strain curve was a
series of straight lines as shown in Figure 4.1. Although
this curve was found to be sufficiently accurate to pre-
dict maximum compressive stresses in the pile, the shape
of the stress wave often disagreed with that of the actual
stress wave. To eliminate the effects of soil resistance
several test piles were suspended horizontally above the
ground. These test piles were instrumented with strain
gages at several points along the length of the pile, and
especially at the head of the pile. A cushion was placed
at the head of the pile which was then hit by a hori-
zontally swinging ram, and displacements, forces, and
accelerations of both the ram and head of the pile were
measured. Thus, by knowing the force at the head of
the pile and the relative displacement between the ram
and the head of the pile. the force exerted in the cushion
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SLOPE =/K/e2
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Figure 4.1. Stress-strain curve for a cushion block.
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Figure 4.2. Dynamic and static stress-strain curves for
a fir cushion.

and the compression in the cushion at all times could
be calculated. Thus the cushion’s stress-strain diagram
could be plotied to determine whether or not it was
actually a straight line.

Using this metkod, the dynamic stress-strain prop-
erties were measured for several types of cushions.

It was further determined that the stress-strain
curves were not linear as was assumed by Smith, but
rather appeared as shown in Figure 4.2. Because it was
extremely difficult to determine the dynamic stress-strain
curve by this method, a cushion test stand was con-
structed as shown in Figure 4.3 in an attempt to simplify
the procedure.

Since it was not known kow much the rigidity of
the pedestal affected the cushion’s behavior, several
cushions whose stress-strain curve had been previously
determined bv the first method were checked. These
studies indicated that the curves determined by either
method were similar and that the cushion test stand
could be used to accurately study the dynamic load-
deformation properties of cushioning material.
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Figure 4.3. Cushion test stand.

Throughout this investigation, a slatic stress-strain
curve was also determined for each of the cushions.
Surprisingly. the static and dvnamic stress-strain curves
for wood cushions agreed remarkably well. A typical
example of this agreement is shown in Figure 4.2." The
stress-sirain curves for a number of other materials
commonly used as pile cushions and capblocks, namely
oak, Micarta, and asbestos are shown by Figures 4.4-4.6,

4.2 Idealized Load-Deformation Properties

The major difficulty encountered in trying to use
the dynamic curves determined for the various cushion
materials was that it was extremely difficult to input the
information required by the wave equation. Although
the initial portion of the curve was nearly parabolic, the
top segment and unloading portion were extremely com-
plex. This prevented the curve from being input in
equation form, and required numerous points on the
curve to be specified.

Fortunately. it was found that the wave equation
accurately predicted both the shape and magnitude of
the stress wave induced in the pile even if a linear fnrce-
deformation curve was assumed for the cushion, so long
as the loading portion was hased on the secant modulus
of elasticity for the material (as opposed to the initial,
final, or average modulus of elasticity), and the unload-
ing portion of the curve was hased on the actual dynamic
coefficient of restitution. Typical secant moduli of
elasticity and coefficient of restitution values {or various
malerials are presented in Table 4.1.
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TABLE 4.1. TYPICAL SECANT MODULI OF ELAS-
TICITY (1) AND COEFFICIENTS OF RESTITUTION
(e) OF VARIOUS PILE CUSHIONING MATERIAL

E e

psi
Micarta Plastic 450,000 .80
Oak (Green) 45,000* .50
Asbestos Discs : 45,000 .50
Fir Plywood 35,000* 40
Pine Plywood 25,000 30
Gum 30,000* .25

*Properties of wood with load applied perpendicular to
wood grain.

4.3 Coefficient of Restitution

Although the cushion is needed to limit the driving
stresses in both hammer and pile, its internal damping
reduces the available driving energy transmitted to the
head of the pile. Figure 4.1 illustrates this energy loss,
with the input energy being given by the area ABC while
the energy output is given by area BCD. This energy
loss is commonly termed coefficient of restitution of the
cushion “e”, in which

Area BCD
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Figure 4.4. Dynamic stress-strain curve for an oak
cushion.
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Figure 4.5. Dynamic stress-strain curve for a micarta
cushion.

Once the coefficient of restitution for the material
is known, the slope of the unloading curve can be deter-
mined as noted in Figure 4.1.

For practical pile driving problems, secant moduli

STRESS IN PSI

1 1 ' -1
004 008 012 .16
STRAIN IN IN.PER IN.

Figure 4.6. Stress vs strain for garlock asbestos cushion.

of elasticity values for well consolidated cushions should
be used. Table 4.1 shows typical secant moduli of well
consolidated wood cushions. Table 4.1 also lists the
coefficient of restitution for the materials which should
be used when analyzing the problem by the wave equa-
tion,

CHAPTER V

Stress Waves in Piling

5.1 Comparison with Laboratory Experiments

As noted in the preceding section, several test piles
were instrumented and suspended horizontally above the
ground. This example pile was a steel pile, 85 ft in
length with a cross-sectional area of 21.46 sq. in. The
cushion was oak, 7 in. thick. The ram had a weight of
2128 Ib and a velocity of 13.93 fps. The cushion was
clamped to the head of the pile and then struck by a
horizontally swinging ram. The pile was instrumented
with strain gages at six points along the pile, and dis-
placements and accelerations of both the ram and head
of the pile were also measured.

In order to utilize Smith’s solution to the wave

equation,
required:

the following information is normally

1. The initial velocity and weight of the ram,

2. The actual dynamic stress-strain curve for the
cushion,

3. The area and length of the pile, and
4. The density and modulus of elasticity of the pile.

Since the stress-strain curve for the cushion was un-
known, the numerical solution was rewritten such that
it was not needed. This was possible since the pile was
instrumented with a strain gage approximately 1 ft from
the head of the pile which recorded the actual stress
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Figure 5.1. Theoretical vs experimental solution. Strain

25 ft from pile head.

induced in pile by the ram and cushion. The force
measured at the head of the pile was then placed directly
at the head of the pile and the wave equation was used
to compute stresses and displacements at all of the gage
points along the pile. Figures 5.1 and 5.2 present typi-
cal comparisons between the experimental results and
wave equalion solutions at two points on the pile, and
illustrate the degree of accuracy oblained by use of
the wave equation.

It must be emphasized that this excellent correlation
between experimental and theoretical results was in ef-
fect obtained by using the actual dynamic load-deforma-
tion curve for that particular case. However, as men-
tioned earlier, the stress-strain curve for the cushion is
normally assumed to be linear as shown in Figure 4.1.

To determine how much the use of the linear stress-
strain curve will affect the solution, the previous case
was rerun using the straight line stress-strain curves. As
noted in Figures 5.3 and 5.4, the solutions for the linear
and nonlinear cushion assumptions agreed favorably.
The use of the straight line assumption is reasonable
since it gives fairly accurate results for both maximum
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Figure 5.2. Theoretical vs experimental solution. Strain

52 ft from pile head.
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Figure 5.3. Theoretical vs experimental solution for.
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tensile and compressive stresses. Furthermore, it pre-
dicts the shape of the stress wave reasonably well.

5.2 Significance of Material Damping
in the Pile

Other parameters were often varied in an attempt to
obtain more accurate results, one of which was the
malerial damping capacity of the pile material. How-
ever, most suspended pile cases studied strongly indjcated
that damping would be negligible because of the extreme-
ly low rate of decay of the stress wave in the pile. The
only pile in which damping was thought to be signifi-
cant was a lightweight concrete pile with a static modulus
of elasticity of 3.96 x 10% and a “sonic” modulus of
elasticity of 4.63 x 10" psi. This problem was chosen
since E. was relatively larger than E. indicating the pos-
sibility of rather high damping. It can be seen in Figure
5.5 that the magnitude of the experimental results di-
minishes slightly after four cycles. The magnituds of
the theoretical solution with damping neglected would
not. Figure 5.5 compares the experimental and theo-
retical solutions for stresses when Smith’s proposed
method of damping is included. In this case, the ex-
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Figure 5.4. Theoretical vs experimental solution for
strains 52 [t from the pile head.




_—
1600 |-
°
800 - o
o
600 1 e
400}
5
= 200l
4 o o
n o
"
w
& 200}
@ °© °
400
600 [ N
o
200 |-
4
1000 |- |— txpemmental SoLuUTION ) M
lnul’n SMITH'S DAMPING MODEL WITH 8+ 00005 J
| S 1 1 1 1 1 1 1 i 1 1. L L ' 2 1.
Ot 2 3 4 s 6 7 8 s 0 W 2 u oM s s W e ®

TIME (SEC X10°3)

Figure 5.5. Comparison of experimental and theoretical
solutions for stresses 25 ft from the pile head.

perimental and theoretical solutions are in excellent’
agreement, both in wave shape and rate of decay.

Although it is extremely interesting to be able to
predict the dynamic behavior of piling with such accu-
racy, most practically the primary interest is in the
maximum stresses induced in the pile which occur
during the first or second pass of the stress wave along
the pile. During this time, the effects of damping are
extremely small even for the lightweight aggregate pile,
and are apparently of no practical importance. Whether
this conclusion will be accurate for timber or other piles
having much higher damping capacities than either steel
or concrete piles is unknown. A higher damping ca-
pacity could affect the results earlier in the solution and
thus be of significance.

It should be emphasized that the above conclusions
are valid only for normal pile driving conditions. If the
wave must be studied for an extended period of time,
damping in the pile may be significant and should be
accounted for.

CHAPTER VI

Soil Properties

6.1 Generul

A limited amount of work has been done on soil
properties and their effects on the wave equation solution
of the piling behavior problem. A total of three re-
search reports concerning soil properties have been pub-
lished by the Texas Transportation Institute during the
“Piling Behavior” study. Research Reports 33-7 and
33-TA1- 62 give the resulls of a series of laboratory
dynamic (impact) and static tests conducted on satu-
rated sands. Research Report 33-8%% gives the results
of a field test on a full scale instrumented pile in clay.
A brief summary of the results of these tests are given
in this chapter.

6.2 Equations to Describe Soil Behavior

Examination of Equation (6.1} shows that Smith’s
equation describes a type of Kelvin rheological model
as shown in Figure 6.1,

Rimt) = [D(mt) — D'(m,t)]K (m)
[1 + J(m) V(mt— 1) ] (6.1)

The soil spring behaves elastically until the deformation
D{mt) equals Q and then it yields plastically with a
load-deformation property as shown in Figure 6.2(a).
The dashpot J develops a resisting force proportional to
the velocity of loading V. Smith has modified the true
Kelvin model slightly as shown by Equation (6.2). This
equation will produce a dynamic load-deformation he-
havior shown by path OABCDEF in Figure 6.2(b). If
terms in Equation (6.11 are examined, it can be seen
that Smith’s dashpot force is given by

[Dim,t) — D'tmt)] K'tm) [Jim) Vimt—1)]

The dimensions of J are sec/ft and it is assumed to be
independent of the total soil resistance or size of the pile.

It is also assumed to be constant for a given soil under
given conditions as is the stalic shear strength of the
soil from which Ru on a pile segment is determined.
Ru is defined as the maximum soil resistance on a pile
segment.

Smith notes that Equation (6.1) produces no damp.
ing when Dim) — D'(m.t) becomes zero. He sug-
gests an alternate equation to be used after D(m,t) first
becomes equal to Q{m):

R(mt) = [D(mt) — D'(m,t)] K'(m)
+ J{m) Ru(m} V(mt—1) (6.2)

Care must be used to satisfy conditions at the point
of the pile. Consider Equation (6.1) when m = ps
where p is the number of the last element of the pile.
K(p) is used as the point soil spring and J(p) as the
point soil damping constant. Also at the point of the
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Figure 6.1. Model used by Smith to describe soil re-
sistance on pile.
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pile, the soil spring must be prevented from exerting
tension on the pile point. The point soil resistance will
follow the path OABCFG in Figure 6.2(1). It should be
kept in mind that at the pile point the soil is loaded in
compression or bearing. The damping constant J(p)
in bearing is believed to be larger than the damping
constant J(m) in friction along the side of the pile.

6.3 Soil Paramelers to Describe Dynamic
Soil Resistance During Pile Driving

The soil parameters used to describe the soil resist-
ance in the wave equation are Ru, Q, and ].

.

Ru(m)

DEFORMATION
-

Ru(m)

|

E ]
(a) STATIC
A
LOAD 1
ILO(m) Ru{m) JV(m,t)
B
/ /
/ /
/ G / Ru(m)

DEFORMATION

(b) DYNAMIC

Figure 6.2. Load-deformation characteristics of soil.
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Figure 6.3. Load-deformation properties of Ottawa sand
determined by triaxial tests (specimens nominally 3 in.
in diam. by 6.5 in. high).

Soil Resistance “Ru.” For the side or friction soil
resistance, Ru is determined by the maximum static soil
adkesion or friction against the side of a given pile
segment by:

Ru(m) = fs 3, AL (6.3)
where
fs = maximum soil adhesion or friction (Ib/ft2),
2, = perimeter of pile segment (ft), and

AL = length of pile segment (ft).

In cohesionless materials (sands and gravels)

fs = o tan ¢ (6.4)
where
o = effective normal stress against the side of the
pile (Ib per ft*), and
¢’ = angle of friction between soil and pile (de-
grees).

In cohesive soils (clays) fs during driving is the re-
molded adhesion strength between the soil and pile.

At the point of the pile Ru is determined by the - g
maximum static bearing strength of the soil and is .

found by
Ru = (Qu) (Ap) (6.5)
where
Qu = ultimate bearing strength of soil (Ib/1?),

and
Ap = area of pile point (f12).




In cohesive soils tclavs) it is believed that the undis-
turbed strength of the soil may be used conservatively
to determine Qu, since the material at the pile point is
inthe process of being compacted and may even have
a higher bearing value.

Quake “Q”. The value of Q, the elastic deformation
of the soil is difficult to determine for various types of
soils conditions. Various sources of data indicate that
values of Q in both friction and point bearing probably
range from 0.05 in. to 0.15 in.

Chellis®* indicates that the most typical value
for average pile driving conditions is Q = 0.10 in. If
the soil strata immediately underlying the pile tip is very
soft, it is possible for Q to go as high as 0.2 in. or more.
At the present state of the art of pile driving technology
it is recommended that a value of Q = 0.10 in. be used
for computer simulation of friction and point soil re-
sistance. However. in ‘particular situations where more
precise values of Q are known, they should be used.

Damping Constant “J”. The Texas Transportation
Institute has conducted stalic and dynamic tests
on cohesionless soil samples to determine if Smith’s
rheological model adequately describes the load-defor-
mation properties of these soils. Triaxial soil tests were
conducted on Ottawa sand at different loading velocities.
Figure 6.3 shows typical results from a series of such
tests.

Figure 6.4 shows additional data concerning the
increase in soil strength as the rate of loading is in-
creased.  Since these tests were confined compression
tests it is believed that they simulate to some extent the
soil behavior at the pile point. The ] value increases as
the sand density increases (void ratio e decreases) and
it increases as the effective confining stress Ty increases.

O3 — O3 — u
where
a3 = total confining pressure, and
u — pore water pressure.

For saturated Ottawa sand specimens, J(p) varied
from about 0.01 to 0.12. When the sand was dry J(p)
was nominally equal to zero. These values of J(p) for
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Figure 6.5. “J” versus “V” for Ottawa sand.

sand are in reasonable agreement with those recom-
mended by Smith®® and Forehand and Reese®* (0.1 to
0.4).

The value of J(p) for cohesive soils (clays) is not
presently known. The very limited data available indi-
cate it is at least equal to that for sand. Forehand and
Reese believe it ranges from 0.5 to 1.0.

There are no data now available to indicate the
value of J(m) in friction along the side. of the pile.
Smith believes it is smaller than J(p) and recommends
J(m) values in friction of about 1/3 those at the point,
Research is under way at Texas A&M University which
should indicate the value of J in friction. At the present
time J (m) in friction or adhesion is assumed to be 1/3 of

J(p).
6.4 Laboratory Tests on Sands

During the laboratory tests in saturated sands, at-
tention was given to the determination of the soil damp-
ing constant. The peak dynamic resistance of the soil
at the pile point can be represented in equation form
for Smith’s mathematical model as follows:

Pd,\'numic = Psm(it' [1 + (J)(V)J (6'6)

where:  Pygyamice = peak load developed in dynamically

loaded sample at a constant veloci-

ty, Vs
Pyae = peak load developed in statically
loaded sample;
J — a damping constant; and
A% == impact velocity of the dynamic
load.”
The laboratory tests on sands were conducted in
such a manner that Pynumie Patatie, and V were meas-

ured, and consequently it was possible to evaluate J for
a given set of test condilions.

The laboratory tests conducted on saturated sands
were conducted with the sand sample subjected to triaxial
confinement. Particular attention was given to the ef-
fects of variable loading velocities, initial sample densi-
ties, and effective initial confining pressures. The
machine used for testing was developed for this particu-
lar research and a complete description of the machine
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and the instrumentation used is given in Research Report
33-TA 82

The results of the study of Ottawa sand are sum-
marized in Figure 6.5. Application of Smith’s mathe-
matical model with the experimental data yields a damp-
ing factor, J, which varies from 0.01 to 0.07. For two
other sands tested, Arkansas sand and Victoria sand,
the value of J varied from 0.04 to 0.15. These values of
] are not constant, and therefore Smith’s equation. did
not accurately predict peak dynamic loads for the ranges
of loading velocities (3 to 12 fps) used in these tests.

Additional tests have been conducted on these sands
at loading velocities from 0 to 3 fps. Also, a series of
tests have been conducted on clays at loading velocities
of from 0 to 12 fps. This work has been accomplished
under a new research study entitled “Bearing Capacity
of Axially Loaded Piles.” The tests on clays have shown
that the use of Smith’s original equation (Equation 6.2)
vields a variable ] value as was the case in sands. How-
ever, if Smith’s equation is modified by raising the ve-
locity, V, to some power, n, less than 1.0, a reasonably
constant value of | can be obtained for the full range
of loading velocities of from 0 to 12 fps. The proposed
modified equation is as follows:

Pd_\'mlmi(' = Psmliv [1 + (J) (V)"] (67)

6.5 Static Soil Resistance After
Pile Driving (Time ILffect)

Immediately after driving, the total static soil re-
sistance or bearing capacity of the pile equals the sum
of the Ru values discussed previously. Thus, Ru(total)
is the bearing capacity immediately after driving.

m=p
Ru(total) = p) Ru{m)
m=1
where
Rulm) = soil adhesion or {riction on seg-
ments m = 1 tom = p — 1 (lb),

{note that this is the strength of the
disturbed or remolded soil along
the side of the pile), and

80 O~ o

LTPI-BELLEVILLE
FIRM COHESIVE SOIL

60}

40

20

PILE LOAD CAPACITY (TONS)

o 200 400 600 800 1000 1200

TIME AFTER DRIVING (HOURS)

Figure 6.6. “Setup” or recovery of strength after driv-
ing in cohesive soil (after reference 6.7).
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Figure 6.7. Pore pressure measurements in clay stratum

50" depth.

Ru(p) = bearing or compressive strength of
soil at the pile point m = p (Ib).
Note this is taken as the strength of
the soil in an undisturbed condition
which should be conservative,

As time elapses after driving, Ru(m) for m = 1 to p
— 1 may increase as the disturbed or remolded soil
along the side of the pile reconsolidates and the excess
pore water pressure dissipates back to an equilibrium
condition. In cohesive soils (clays) the increase in
strength upon reconsolidation {sometimes referred to as
“setup”) is often considerable.

The bearing capacity of the pile will increase as
the remolded or disturbed clay along the side of the pile
reconsolidates and gains strength, since the adhesion or
friction strength of clay is generally restored with the
passage of time. Loading tests at increasing intervals
of time show that ultimate adhesion is approximately
equal to the undisturbed cohesion. Therefore, the
amount of increase in bearing capacity with time is
related to the sensitivity and reconsolidation of the clay*,

Figure 6.6 illustrates the time effect or “setup” of
a pile driven in a cohesive soil. In cohesionless soils
(sands and gravels) the friction strength of the soil will
usually change very little. Normally, the value of Ru(p)
at the pile point changes very little.

6.6 Field Test in Clay

The purpose of the field test sludy®3 was to investi-
gate the failure mechanisms of clay soils subjected to
dynamic and static loading. A test pile instrumented
with pressure transducers, strain gages. and accelerome-
lers was driven into a saturaled clay at a site in Beau-
mont, Texas.t?

Measurements of strains and accelerations of the
pile were taken during driving. Pore pressure measure-
ments were made at the pile-soil interface for a continu-
ous period of 30 days after driving. Figure 6.7 shows
a typical plot of pore pressure versus elapsed time in the
clay stralum at a 50 ft depth. Strain measurements were

undisturbed strength
remolded strength

*Sensitivity of clay =




made during static load tests at 13 davs and 30 davs
after driving. Soil borings were made for the in-situ.
remolded, and reconsolidated conditions, and at specific
radial distances from the pile. Conventional tests were
conducted on the soil samples to measure the changes
in engineering properties for the different conditions.

A mode of failure was established in this study for
a cohesive soil involved in the load response of a pile-
soil system. The behavior of the soil in this study indi-
cates that soil disturbances which involve new soil parti-
cle arrangement and altered engineering properties are
limited to a distance from the center of the pile of ap-
proximately 4.5 radii.®® This relationship can be ex-
pressed as follows:
— < 45

Iy

(6.8)

where: r
r

radial distance from pile center; and
radius of pile,

Results of this study also suggest that the time after

driving required for piles of different radii to attain
comparable percentages of their ultimate bearing capaci-
ty can be expressed as follows:

= % (6.9)
where: r; = radius of pile 1;
r» = radius of pile 2;

T, = time for pile 1 to attain a stated percent-

age of ultimate bearing capacity; and

T, = time for pile 2 to attain the same per-
centage of ultimate bearing capacity.

CHAPTER VII

Use of the Wave Equaition to Predict Pile
~ Load Bearing Capacity At Time of Driving

7.1 Introduction

In general, engineers are interested in the static load
carrying capacity of the driven pile. In the past the
engineer has often had to rely on judgement based on
simplified dynamic pile equations such as the Hiley or
“ngineering News formulas. By the wave equation
method of analysis a much more realistic engineering
estimate can be made using information generated by
the program.

The previous chapters have shown how the hammer
pile-soil system can be simulated and analyzed by the
wave equation to determine the dynamic behavior of
piling during driving. With this simulation the driving
stresses and penetration of the pile can be computed.

7.2 Wave Lquation Method

In the field the pile penelration or permanent set
per blow ({in. per blow) is observed and this can be
translated into the static soil resistance through the use
of the wave equation.

Consider the following example:
PILE: 72 ft steel step taper pile
HAMMER: No. 00 Raymond

Efficiency = 807¢
Ram Weight = 10.000 b
Energy = 32.500 ft Ib
CAPBLOCK: Micarta
K = 6.600.000 1b/in.
e = 0.8
ASSUMED SOIL PARAMETERS:
J(p) point = 0.15 sec.'ft Qip) point = 0.10 in.

J{m) side = 0.05 sec/ft Q(m) side = 0.10 in.

Soil is a soft marine deposit of fine sand, silt, and muck,

with the pile point founded on a dense layer of sand and
gravel.

ASSUMED SOIL DISTRIBUTION:
Curve I: 25% side friction (triangular distri-
bution) 75% point bearing.
Curve Il: 10% side friction (triangular distri-
bution) 90% point bearing.

This information is used to simulate the system to
be analyzed by the wave equation. A total soil resist-
ance Ru(total) is assumed by the computer for analysis
in the work. It then computes the pile penetration or
“permanent set” when driven against this Ru (total).
The reciprocal of “permanent set” is usually computed
to convert this to blows per in.

The computer program then selects a larger
Ru(total) and computes the corresponding blows per
in. This is done several times until enough points are
generated to develop a curve relating blows per in. to
Ru(total) as shown in Figure 7.1 (two curves for the
two different assumed distributions of soil resistance
are shown).

In the field if driving had ceased when the resist.
ance lto penetration was 10 hlows per in. (a permanent
sel equal to 0.1 in. per blow). then the ultimate pile
load bearing capacily immediately after driving should
have been approximately 370 to 380 tons as shown on
Figure 7.1. It is again emphasized that this Ru(total)
is the tolal static soil resistance encountered during driv-
ing. since the increased dynamic resistance was consid-
ered in the analysis by use of J. If the soil resistance
is preduminantly due to cohesionless materials such as
sands and gravels. the time effect or soil “setup” which
tends to increase the pile bearing capacity will be small
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PILE: . 72 fr. Step Taper, 12 ft. steps, No. 1 to No. 6
HAMMER: No. 00 Raymond
SHELL: Step Tajer Corrugated

CAFPBLOCK: Micarta; Coeff, of Rest. = ,80; K = 6,600,000 ppi
DISTRIBUTION OF RESISTANCE:

Curve I: 25% Side (Triangular Distribution); 75X% Point

Curve 11: 10X Side (Triangular Distribution); 90X Foint
CONSTANTS @

J (Point) = 0.15; J (Side) = 0.05

Q (Foint) = 0.10; Q (Side) = 0.10

8
A
ib

400

300

200

100

Ry (TOTAL) ULTIMATE DRIVING RESISTANCE, TONS

o
3

15 20 25
BLOWS PER IN.

Figure 7.1. Ultimate driving resistance vs blows per
inch for an example problem.

or negligible. If the soil is a cohesive clay, the time
effect or soil “setup” might increase the bearing capacity
as discussed in Chapter VI. The magnitude of this
“setup” can be estimated if the “sensitivity” and recon-
solidation of the clay is known. It can also be con-
servatively disregarded since the “setup” bearing ca-
pacity is usually greater than that predicted by a curve
similar to Figure 7.1,
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Figure 7.2. Comparison of wave equation predicted soil
resistance to soil resistance determined by load tests for
piles driven in sands. (Data from table 7.1.)

In developing the curves of Figure 7.1, it was
necessary to assume the following soil parameters:

1. Distribution of soil resistance
2. Soil Quake “Q”
3. Soil damping constant “J”

As illustrated by Curves I and 11 on Figure 7.1,
small variations in the distribution of soil resistance
between side friction and point bearing will not affect
the wave equation results significantly. All that is re-

TABLE 7.1. ERRORS CAUSED BY ASSUMING J(point) — 0.1 AND J'(side) — _J(I'L;nt) FOR SAND (For Sand-
Supported Piles Only)

Ildr * I{‘VE
(Resistance (Indicated % Error
Load at Time of Soil in Ra
Test Driving) Resistance) (RWE - Rdr) (100)
Location Pile (kips) (kips) Rar
Arkansas 1 280 255 -9
2 380 495 430
3 430 530 +23
4 340 370 4+ 9
5 500 380 —24
6 280 170 —39
7 400 310 —23
16 280 380 + 36
Copano Bay 103 300 320 + 7
Muskegon 2 200 105 - 3
3 110 145 +32
4 85 110 +29
6 540 310 —43
9 470 270 —43
Total 13501
Mean or Average ¢% Error = %519} = 25%

*Rar for piles driven in sands was assumed equal to the actual load test measurements since no “setup”
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Figure 7.3. Comparison of wave equation predicted soil
resistance to soil resistance determined by load tests for
piles driven in clay. (Data from table 7.2.)

quired is a reasonable estimate of the situation. For
most conditions an assumption of soil quake Q = 0.1 in.
is satisfactory (see Chapter VII. The value of J(m) is
assumed to be 1/3 of J(p).

7.3 Comparison of Predictions with Field Tesls

Correlations of wave equation solutions with full-
scale load tests to failure have provided a degree of
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Figure 7.4. Comparison of wave equation predicted soil
resistance to soil resistance determined by load tests for
piles driven in both sand and clay. (Data from table
7.3.)

confidence in the previously described method of pre-
dicting static bearing capacity.

For the sand-supported piles (Table 7.1) damping
constants of J{point) = 0.1 and J'(side) = J(point) /3
were found to give the best correlation. Figure 7.2
shows the accuracy of the correlation to be approxi-
mately 25%. In Table 7.2, for clay-supported piles

~ J(point
TABLE 7.2. ERROR CAUSED BY ASSUMING J(point) = 0.3 AND J'(side) = A)‘%}—n—) FOR CLAY (For Clay-
Supported Piles Only)

R
(Load Rxlr*** Rwe
Test (Resistance (Indicated .
Load Resist- at time of soil %_Error in Rar
Test ance) driving) resistance) (R“'E - Rdf) (100)
Location Pile (kips) (kips) (kips) Ra:
Belleville 1%* 160 80 200 +150
4* 690 379 305 — 19
5* 692 381 260 - 32
Detroit 1*¥ 56 28 70 +156
2 330 165 155 — 6
7 318 159 205 + 29
8 360 180 240 + 33
10 450 225 250 + 11
Total = 436
436
Average % Error = 3 = 54.5%

*00%e clay-supported piles.
**The test values for these piles were questionable.

#**R,, for piles driven in clay were actual load test measurements corrected to account for soil “set-up.”
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DEPTH  TYPICAL PILE PILE PILE PILE PILE PILE PILE PILE PILE PILE PILE PILE
FT.

BORING B c £ I R2 R4 RS R6 R9 Ri2 R20 R23
0- — r - r_/z" =83 163" _(53% 1537 /53" ___/63" . _204" __ _2.2"
LOOSE SANDY
CLAYEY SILT w L — | - « ©
10- wr g & 1 B y g
= e < R
MEDIUM o - o 1 o |- « x N <
20—| DENSE w = o = w g - <1 ‘.;_'F s &k
%) ~ ~ 3 <| ] affs W <td. S S
FINE TO LY . 2 = » w ~le =N e =Me « &
g wll =k > Q ™ al¥ T ol Y 3 3
MEDIUM 2 S fa 2 (3 ol lo |y 8 i -e 8 g 3
30~ SAND w x ° 2]1° bR oMo GH w H é_ ol 8" U
g [ o s a o “ 8"
2 N - ~ " -
40- 88 s ¥ S : 1L i st n -
MEDIUM M w U 103" Li o3
. + | » - L "
50-| TODENSE | ‘e i I 0.3
FINE 8§ | U U 103"
. g0- TO | 85"
COARSE
70~ SAND
WITH Uss
80 — TRACE L
GRAVEL ) NOTE.= ALL PILES DRIVEN WITH A -5 HAMMER,
90— 6500 LB. RAM, 19,500 FT.- LBS.
100 ~
FINAL DRIVING
RESISTANCE 1Y 4 4/, a4
BLOWS PER INCH[ > : 2 3 8 3 : 3 ® t
TEST LOAD
FAILURE TONS} 120 60 104 80 170 185 125 140 140 140 140 240
WAVE EQUATION
"ILTIMATE RESISTANCE & 100 70 86 95 140 190 105 150 135 164 152 200
(RU)-TONS

Q = 0.1 in. and J(point) = 0.15, /(side) = 0.05. Soil resistance was assumed to be 50% at the point end 50%
friction distributed uniformly over the embedded length below a depth of 10 ft. Hammer effictency assumed to be
80%. .

’ Figure 7.5. Summary of piles tested to failure in sands.

TABLE 7.3. ERRORS CAUSED BY ASSUMING A COMBINED J(point) = 0.1 FOR SAND AND J(point) = 0.3 FOR
CLAY USING EQ. 7.1 (For Piles Sunported by Both Sand and Clay)

R\\'E
Rt Ra.** (Indi-
(Load (Resist- cated o
Test ance at Soil 7o Error
Load ) Resist- Time of Resist- in Ra:
Test AR.1ay AR  J(point)  ance) Driving)  ance) (sz = Rm) (100)
Location Pile x 0.3 x 0.1 (sec/ft) (kips) (kips) (kips) Ra-
Victoria 35 0.090 0.070 0.16 208 176 170 — 3%
40 0.087 0.071 0.16 160 136 148 + 9%
45 0.093 0.069 0.16 3562 300 380 + 279
Chocolate 40 0.126 0.058 0.18 210 166 150 —10%
Bayou 60 0.120 0.060 0.18 * * 740
Houston 30 0.153 0.049 0.20 340 255 290 +14¢;
Copano ~
Bay 58 0.252 0.016 0.27 * * 260
Belleville 3 0.102 0.066 0.17 342 284 265 — 7%
4 0.270 0.010 0.28 690 379 3056 —20%
5 0.270 0.010 0.28 692 381 260 —329%
6 0.192 0.036 0.23 412 280 305 -+ 9%
Muskegon 7 0.090 0.070 0.16 * * 320
8 0.090 0.070 0.16 * * 295
Total = 131
131
Average % Error = “g = 14.5%

*Indicates piles which exceeded the testing equipment’s capacity, and could not be load-tested to failure.
**Rar for these piles were actual load test measurements corrected to account for soil “setup.”
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load failure (after Ref. 7.2, data from Fig. 7.5) (sands).

.

the damping conslants J(point) = 0.3 and J'(side) =
J(point) /3 gave the best correlation. The accuracy of
the correlation is shown in Figure 7.3 to be approxi-
mately =+50%.

If more than one soil was involved the damping
constant used was a weighted average calculated from

J(point) = 3[R, X J(point);]  (7.1)

where R; = the ratio of the amount of resistance of
each type of soil “i”, to the total soil

resistance, both determined after setup

has ceased, and

; I (point)

J'(sidg) 3
Table 7.3 shows the damping constant that was
calculated from Equation 7.1 using J(point) = 0.3 for

clay and J(point) = 0.1 for sand. The accuracy of the
correlation, as shown in Figure 7.4 was approximately
+25%. :

Mosley™2 has found a similar correlation with 12
piles driven in sand. Figure 7.5 is a summary of the
piles tested. Figure 7.6 shows that all resistances on
these piles fall within *=20% of that predicted by the
wave equation.

CHAPTER VIII

Prediction of Driving Stresses

8.1 Introduction

In Appendix A the exact solution for the stress
wave introduced into a long slender elastic pile is de-
rived using the classical one-dimensional wave equation.
The solution of this equation depends upon certain
assumptions. It is assumed that the pile is prismatic
with lateral dimensions small in comparison to its length
(Poisson’s effects can be neglected), that the pile and
cushion material are linearly elastic, and the ram has
infinite rigidity (assumed to be a rigid body). The
equation which governs the stress amplitude in most
practical cases, shows that the magnitude of the stress
induced at the head of the pile, by the falling ram, is
directly proportional to the velocity of the ram at im-
pact. The equation further shows that the stiffnesses of
the cushion and pile also have a significant effect on the
magnitude of the stress generaled. The soil resistance
on the side and at the point of the pile will also affect
the magnitude of the stresses in the pile.

Chapter 1I discusses Smith’s numerical solution of
the one-dimensional wave equation. This particular
technique for solving the wave equation is much simpler
for application to problems which can have inelastic
cushions and material properties as well as soil on the
side and point of the pile. Chapter V discusses the
generation of stress waves in piling, the significance of
material damping in the pile and the effects of pile
dimensions on driveability,

This chapter demonstrates the validity of Smith’s

numerical solution by comparing its results with the
theoretical solution of Appendix A and with field data.

8.2 Comparison of Smith’s Numerical
Solution with the Classical Solution

For the purpose of correlation, consider a concrete
pile, square in cross-section, with an area of 489 in.2
and 90 ft long. The modulus of elasticity of the pile
material is assumed to be 5 x 10% psi. The pile is con-
sidered to be free at the top with the bottom end fixed
rigidly against movement. No side resistance is present.

&
_ o ~— EXACT
&) 500 O---At = 1/1410 SECOND : (Atler
0°-a1: 1/2500 SECOND
z B8 1/5000 SECOND
4000! IDENTICAL RESULTS WERE OBTAINED

17 - FOR THE FOLLOWING VALUES OF A4
wn 175000, } 10,000, AND 1/20,000
s SECOND
E AL = PILE LENGTHAQ
© i 8
w
4 0 & o o} °
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Z 2000
-
3 000
2
-1 HEAD OF PILE (FREE) POWNT OF PILE (FIXED) ny -
= 1 1 t 1 i 1 1 ] i
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Figure 8.1. Maximum tensile stress along the pile.

PAGE TWENTY-FIVE



——{ xact a

5009~ O -At: 1/1410 SECOND : (Atler /_O

-4t : 1 /2500 SECOND
IDENTICAL RESULTS WERE OBTAINED
4000 FOR THE FOLLOWNG VALUES OF Al
V2500, 1/5000, 1/10,000, AND
1/20,000 SECOND
AL : PILE LENGTH/IO

oo

o
2 Q 8 Q

B POINT OF PILE [FIXED)
_HEAD OF PILE (FREE) \

MAXIMUM COMPRESSIVE STRESS IN PSI
T

o 1 ] } 1 L L t ) !
o] 10 20 30 40 50 60 70 80 90
DISTANCE FROM HEAD OF PILE IN FEET

Figure 8.2. Maximum compressive stress along the pile.

The following information is also applicable to the cor-
relation:

Weight of the ram = 11,500 Ib,
Velocity of the ram = 14.45 {ps
Cushion block stiffness = 3,930,000 lb/in.,

Coefficient of restitution

of the cushion block = 1.00

Solutions have been obtained for the exact solution of
the one-dimensional wave equation and for Smith’s
numerical method using 10 segments. Previous studies®!
had shown that segment lengths of L/10 would yield
accurate results. Figures 8.1 and 8.2 show comparisons
of the maximum tensile stress and maximum compres-
sive stress, respectively. versus position along the length
of the pile. Note the time interval used (time differenc-
ing interval used in the numerical solution) for solutions
shown is varied from 1/1410 seconds (this is the critical
time differencing interval) to 1/20,000 seconds. Note
that when the differencing interval became very small,
i.e., 1/5000 seconds, the accuracy of the solution was
not improved. Note also that the numerical solution

is very close to the exact solution. Other comparisons

have been made for the stresses at other points in the
pile_and for other combinations of the end boundary
conditions.®!  Heising®? and Smith83 have shown that
the discrete-element numerical solution is an exact solu-
tion of the one-dimensional wave equation when

t= AL
VE/p
where,
At == critical time differencing interval,
AL = segment length,
E = modulus of elasticily, and
p = mass density of the pile material.

This time interval is the “critical” time interval.
For practical problems, a choice of At = one-hal{ the
“critical value,” appears suilable since inelastic springs,
materials of different densities, and elastic moduli are
usually involved.
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8.3 Correlations of Smith’s Solution
with Field Measurements

In previous reports®* &5 the writers have shown
several correlations of the wave equation with stresses
measured in piles during the time of driving in the field.
Typical examples of these correlations are shown in Fig.
ures 8.3 and 8.4. The significant conclusions drawn
from these tests are as follows: o

1. The maximum compressive stresses occurred
at the head of the pile.

2. Maximum tensile stresses were found to occur
near the midpoint of the piles.

3. The computed compressive stresses and dis-
placements agree very well with the measured data.

4. The computed tensile stresses appeared high
but in view of the unknown dynamic properties of the
soil, concrete, and cushioning materials involved in the
problem, the quantitative comparisons shown were con-
sidered good. :

8.4 Effect of Hammer Type and
Simulation Method

It has been shown®7 (see Chapter 111} that the ram
of a pile hammer can be idealized as a rigid hody pro-
vided it strikes on a capblock or cushion. If the ram
strikes directly on steel, as in the case of the diesel ham-
mers, the accuracy of the solution for stresses is im-
proved by breaking the ram inlo segments.
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Figure 8.3. Stress in pile head vs time for test pile.
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For diesel hammers, the explosive force used to
raise the hammer for the next blow does work on the
pile and should be included.

In all hammer simulations. all parts which are in
the force transmission chain should be included. The
housing and other parts which do not serve to transmit
the driving energy may be neglected.

Refer to Appendix B, Tables B.1 and B.2, for

recommended values for use in the simulation.

8.5 Effect of Soil Resistance

If soil borings are available, the distribution of the
soil resistance on the pile should be estimated from soil
shear strength data. In general, piles in uniform co-
hesive soils will have the soil resistance distributed
uniformly in side friction with about 10 to 20% point
resistance.  Cohesionless soils can generally be simu-
lated with a triangular friction distribution with about
40% in side friction and 607/ of the total resistance
at the point. The actual distributions used will. of
course, depend on the properties of the soils, pile length,
type, etc., and should be studied for each case. It is
important to note. however, that the soil distribution
will affect the magnitude of the driving stresses. This
is particularly true for the reflected tensile stresses. In
most investigations for driving stresses, it is best to vary
the distribution over the expected range and choose the
most conservative result. Reflected tensile stresses are
highest when the soil resistance acting at the pile point
is small.

8.6 Effects of Cushion Stiffness, Coefficient y
of Restitution, and Pile Material Damping

It has been shown®™® (see Chapter 1V) that the
actual load deformation curve for a cushion is not a
straight line, but is parabolic. However, a straight line
which has a slope given by the secant modulus will give
reasonably accurate results. The cushion’s dynamic
coefficient of restitution was found to agree with com-
monly recommended values. It has also been shown
that the effect of internal damping in the concrete and
steel piles will usually have a negligible effect on the
driving stresses.

8.7 Fundamental Driving Stress Considerations

The purpose of this discussion is to briefly describe
and discuss the phenomena of impact stresses during
driving.

Compressive Stresses. High compressive stress at
the head of the pile can be caused by the following:

L. Insufficient cushioning material between the pile
driving ram and the pile will result in a very high com-
pressive stress on impact. :

2. When a pile is struck by a ram at a very high
velocity, or from a very high drop. a stress wave of high
magnitude is produced. This stress is directly propor-
tional to the ram velocity.

If the pile is idealized as a long elastic rod, with
an elastic cushion on top an equation for the compres-
sive stress can be developed (see Appendix A). The
approximate equations for the maximum compressive
stress at the pile head are as follows:

Notations used are:

0, max = maximum compressive siress at pile
Lead (psi),
W = ram weight (lb),
\% = ram impact velocity (in./sec),
= v
h = ram free fall (in.),
g = acceleration due to gravity,
386 in./sec?,
K == cushion stiffness (Ib/in.),
__ Ac Ec
tc
A = cross-sectional arvea of cushion (in.?),
E. = modulus of elasticity of cushion (psi),
te = initial  uncompressed thickness of

cushion (in.}),

t = time (sec),

A = cross-sectional area of pile (in.?),
E = modulus of elasticity of pile (psi),
L, = length of pile (in.),

4% = unit weight of pile (Ib/in.*),
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Case 1. n<p

—KV e nt ; ([\/—."—_—T’)
ax = ———— sin 2 — n?
o, max A ViE = p
(8-1)
where t is found from the expression
—_— /2 — o2
tan (tVpF—n) = b
Case 11. n=p
— | Kv W e
o, max — A A e (8.2)
Case I11. n>p
0, max — A Vm sinh (t V' n p?)
(8.3)
where t is found from the expression
A T e

Equations (8.1}, (8.2), or (8.3) can be used to
determine the maximum compressive stress at the pile
head. For most practical pile problems n will be less
than p and Equation (8.1) will be used. However, this
is not always the case. For a given pile these equations
can be used to determine a desirable combination of ram
weight W, ram velocity V, and cushion stiffness K so
as not to exceed a given allowable compressive stress
at the pile head.

To illustrate the use of the equations consider the
following situation.

Given:
Concrete Pile

L, = 65 ft

A = 200 in.?

vy = 0.0868 lh/in® (150 Ib/{t*)
E = 5.00 x 10% psi

Green oak cushion, grain horizontal

A, = 200 in.?
E. = 45,000 psi (for properlies of wood see Chap-
ter 1V)
te = 3.0 in.
K = I—\I‘E‘" = 3.0 x 10% Ib/in.
Steel ram
W = 5000 Ib

h = 36 in.
V = V2gh = 167 in./sec
g

= 386 in./sec”
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Calculations:

- K g — -1
T \/E = 224 sec

— Kg

P =V

Since n<p Equation 8.1 of Case I applies.

= 481 sec!

tan (t Vp2—n?) = ___._.__._\/p-n_ n-

495
= 5y = 1.89%

so tVp?—n? = 622° or 1.085 radians
t = .00255 sec

Using Equation 8.1
—KV et
A Vpr—a?
3 X 10% X 167 e2+ x 00235
200 X 425
o, max — 2920 psi

o, max =

sin (t Vp? — n?)

(sin 62.2°)

Using these equations, Tables 8.1 and 8.2 were
developed to illustrate the effect of ram weight and
velocity on driving stresses. Table 8.1 shows the varia-
tion of the driving stress (compressive) with the ram

weight and ram velocity. It can be seen that the stress

magnitude also increases with ram weight, however,
this is usually not of serious consequence. Table 8.2
shows the variation of driving stress (compression)
with ram weight and ram driving energy. At a constant
driving energy the driving stress decreases as the ram
weight increases. Therefore, it is better to obtain driving
energy with a heavy ram and short stroke than use a
light ram and large stroke.

3. When the top of the pile is not perpendicular
to the longitudinal axis of the pile, the ram impacting
force will be eccentric and may cause very high stress
concentrations. :

4. If the reinforcing steel in a concrete pile is not
cut flush with the end of the pile. high stress concen-
trations may result in the concrete adjacent to the rein-
forcing. The ram impact force may be transmitted to
the concrete through the projecting reinforcing steel.

5. Lack of adequate spiral reinforcing at the head
of a concrete pile and also at the pile point may lead

TABLE 8.1. VARIATION OF DRIVING STRESS WITH
RAM WEIGHT AND VELOCITY
Result from Equation 8.1 for 65 ft long concrete
pile, 200 in?® area, and % in. wood cushion. Stress-

es shown are maximum compression at pile head.
E. = 45,000 psi.

Ram Weight Ram Velocity, ft/sec—Stroke, ft

b 114-2 13.9-3 16.1-4 18.0-5
2,000 1,790 psi 2,200 psi 2,640 psi 2,840 psi
5,000 2,380 psi 2,920 psi 3,380 psi 3,780 psi

10,000 2,830 psi 3,470 psi 4,000 psi 4,480 psi
20,000 3,250 psi 3,980 psi 4,600 psi 5,150 psi




TABLE 8.2, VARIATION OF DRIVING STRESS WITH
RAM WEIGHT AND RAM ENERGY
Results from Equation 8.1 for 65 ft long concrete
pile, 200 in.* area, and 3 in. wood cushion. Stress-
es shown are maximum compression at pile head.
E, = 45,000 psi.

Ram ]\l’)&’eight Driving Energy

ft-1b
20,000 40,000
2,000 4,010 psi 5,680 psi
5,000 3,380 psi 4,780 psi
10,000 2,830 psi 4,000 psi
20,000 2,290 psi 3,250 psi

to spalling or splitting. In prestressed concrete piles
anchorage of the strands is being developed in these
areas, and transverse tensile stresses are present. If no
spiral reinforcing is used, the pile head may spall or
split on impact of the ram.

6. Fatigue of the pile material can be caused by a
large number of blows at a very high stress level.

7. If the top edges and corners of a concrete pile
are not chamfered the edges or corners are likely to spall
on impact of the ram.

Yielding of steel or spalling of concrete at the poini
of the pile can be caused by extremely hard driving
resistance at the point. This type resistance may be
encountered when founding the pile point on bed rock.
Compressive stress under such driving conditions can
be twice the magnitude of that produced at the head of
the pile by the hammer impact (see Figure 8.2).

Tension. Transverse cracking of a concrete pile
due to a reflected tensile stress wave is a complex phe-
nomenon usually occurring in long piles (50 ft or over).
It may occur in the upper end, midlength, or lower end
of the pile. It can occur when driving in a very soft
soil or when the driving resistance is extremely hard or
rigid at the point such as in bearing on solid rock.

When a pile driver ram strikes the head of a pile
or the cushion on top, a compressive stress is produced
at the head of the pile. This compressive stress travels
down the pile at a velocity

c = VE/
where

¢ = velocily of the siress wave through the pile
material in in./sec,

E = modulus of elasticity of the pile material in
psi, and

p = mass density of the pile material in Ib-
sec?/in.*

The intensity of the stress wave (o, max.) can be deler-
mined by Equations 8.1, 8.2, or 8.3 and depends on the
weight of the ram, velocity of the ram, stiffness of (he
cushion, and stiffness of the pile. Since in a given
concrete pile the stress wave travels at a constant velocity
(about 13,000 to 15.000 ft/sec) the length of the stress
wave (L.) will depend on the lenglh of time (1) the
ram is in contact with the cushion or pile head. A
heavy ram will stay in contact with the cushion or pile
head for a longer time than a light ram, thus producing
a longer stress wave. 1f a ram strikes a thick soft cush-

ion, it will also stay in contact for a longer period of -
time than when it strikes a thin hard cushion. For Case

I (when n<p which is typical for most practical con-
crete pile conditions) the length of the stress wave can
be calculated by the equation which follows.

L, =. ct,
or
Lo = S ? (8.4)
V=)
where L, = length of stress wave (in.) and
t. = time of contact of ram (sec).

Figure 8.5(b) shows the compressive stress wave
building up while the ram is in contact with the cushion.
After the ram rebounds clear of the cushion, the com-
pressive stress wave is completely formed and travels
down the length of the pile as shown by Figure 8.5(c).
When the compressive stress wave reaches the point of
the pile, it will be reflected back up the pile in some
manner depending on the soil resistance. If the point of
the pile is experiencing litile or no resistance from the
soil, it will be reflected back up the pile as a tensile
stress wave as shown in Figure 8.6(a). If the point of
the pile is completely free, the reflected tensile wave will
be of the same magnitude and length as the initial com-
pressive wave. As shown in Figure 8.6(a) these two
waves may overlap each other. The net stress at a par-
ticular point on the pile at a particular time will be the
algebraic sum of the initial compressive (—) stress
wave and reflected tensile () stress wave. Whether

v
w
v w
_L w
E pi """ s=—== CUSHION
(2]
c Ls
Lp
—65¢ MAX
L1
<
-1t
(a) (B) [{s]
COMPRESSION COMPRESSION

Figure 8.5. Idealized stress wave produced when ram
strikes cushion at head of concrete pile.
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Figure 8.6. Reflection of siress wave on a long pile.

or not the pile will ever experience critical tensile stresses
will depend on the pile length (L,) relative to the length
of the stress wave (L,) and on material damping. I
the pile is long compared to the length of the stress wave,
critical tensile stresses may occur at certain points.
When a heavy ram strikes a thick soft cushion, the stress
wave may be around 150 ft in length. When a light
ram strikes a thin hard cushion it may be only 50 or
60 ft in length.

The results of a theoretical study on ideal piles
with the point free of soil resistance has shown that the
maximum reflected tensile stress (o, max.) can he com-
puted approximately by Equations 8.5 and 8.6 given
below.

Oy max. — o, max. (8.5)
when L/L, < 2
_ 8 o, max. o
and Oy max. — W (&)6)
when L.,/L, = 2

Figure 8.3 shows in dimensionless parameters how
o max. is affected by o, max.. the length of the stress
wave Ls, and the length of the pile L,. The data points
shown were computed using stress wave theory (Ap-
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pendix A) and piles with a free point. These values are . -
conservalive since material damping of the pile and soil
resistance will tend to reduce them.

If the point soil resistance is hard or very firm, the
initial compressive stress wave traveling down the pile
will be reflected back up the pile also as a compressive
stress wave, as shown in Figure 8.6(b). If the point of -
the pile is fixed from movement, the reflected compres-
sive stress wave will be on the same magnitude and
length as the initial compressive stress wave. As shown
in Figure 8.6(b) these two stress waves may overlap
each other at certain points. The net compressive stress
at a particular point at a particular time will be the
algebraic sum of the initial compressive (—) stress wave
and the reflected compressive (—) stress wave. (Note
that under these conditions the maximum compressive
stress at the pile point can be twice that produced at
the pile head by ram impact.) Tensile stress will not
occur here until the compressive siress wave is reflected
from the free head of the pile back down the pile as a
tensile stress wave (similar to the reflection shown at -
the free point in Figure 8.6(a)). Tt is possible for
critical tensile stress to occur near the pile head in this
case; however, damping characteristics of the surround-
ing soil may reduce the magnitude of this reflected
tensile stress wave by this time. Such failures have
occurred, however.

Figure 8.7 shows the reflection of the initial com-
pressive (—) stress wave from the point of a relatively
short pile. If the pile is short compared to the length
of the stress wave (L.) critical tensile stresses are not
likely to occur. In Figure 8.7(a) the reflected tensile
(+) stress wave overlaps the initial compressive (—)
stress wave coming down the pile. Since the net stress
at any point is the algebraic sum of the two, they tend
to cancel each other and critical tension is not likely
to occur. A similar phenomenon will occur when the
reflected compressive (—) stress wave from the point
is likely to find the ram still in contact with the pile head
when it arrives there. In such a case, little or no re-
flected tensile stress wave will occur. In Figure 8.7(b)
the initial compressive (—) stress wave is being reflected

<
—_—
=z
<
—————
b3

c
pd

a
A E \

L ¢ )y c

>

+ O -0 - -0
TENSION COMPRESSION COMPRESSION
POINT FREE POINT FIXED
{A) (8)

Figure 8.7. Reflection of stress wave along a short pile.




from the fixed point also as a compressive (—) slress
wave, In this case also, little or no reflected tensile
stress will occur.

The cases illustrated by Figures 8.6 and 8.7 are high-
ly idealized and simplified, but they skould indicate some
of the basic factors which can cause tensile stress failures
in concrete piles.. In summary, tensile cracking of con-
crete piles can be caused by the following:

1. When insufficient cushioning material is used
between the pile driver’s steel helmet or cap and the
concrete pile, a stress wave of high magnitude and of
short length is produced, both characteristics being
undesirable.

2. When a pile is struck by a ram at a very high
velocity, or from a very high drop, a stress wave of
high magnitude is produced. The stress is- proportional
to the ram velocity.

3. When the tensile strength of the concrete pile
is too low to resist a reflected tensile siress, severe crack-

Ing can occur.

4. When little or no soil resistance at the point of
long piles is present during driving, critical tensile stress-
es may occur in the lower half or near mid-length of
the pile.

5. When hard driving resistance is encountered at
the point of long piles, critical tensile stresses may occur
in the upper half of the pile when the tensile stress is
reflected from the pile head.

Torsion. Spiral or transverse cracking of concrete
piles can be caused by a combination of torsion and
reflected tensile stress. Diagonal tensile stress resulting
from a twisting moment applied to the pile can by itself
cause pile failure. However, if reflected tensile stresses
occur during driving and they combine with diagonal
tensile stress due lo torsion the situation can become

even more critical. Torsion on the pile may be caused

by the following:

1. The helmet or pile cap fitting too tightly on the
pile, preventing it from rotating slightly due to soil ac-
tion on the embedded portion of the pile.

2. Excessive restraint of the pile in the leads and
rotation of the leads.

8.8 Summary of Fundamental Driving
Stress Considerations

From the preceding discussion some very basic
and fundamental considerations have been revealed.

These fundamentals for good design and driving
practices for piles and particularly for concrete piles
can be summarized as follows:

1. Use adequate cushioning material between the
pile driver’s ram and the pile head. For concrete piles
three or four inches of wood cushioning material
(green oak, gum, pine or fir plywood, e‘c.) may be
adequate for short (50 ft or less) piles with reasonably
good point soil resistances. Six to eight inches or more
of wood cushioning material may be required when
driving longer concrete piles in very soft soil. The
wood cushioning material should be placed on top of
the pile with the grain horizontal and inspected to see
that it is in good condition. When it begins 1o become
highly compressed. charred or burned. it should be re-
placed. Some specifications require a new cushion on
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Figure 8.8. Effect of ratio of stress wave length on
maximum tensile stress for pile with point free.

every pile. If driving is extremely hard, the cushion
may have to be replaced several times during driving of
a single pile. Use of an adequate cushion is usually a
very economical means of controlling driving stresses.

2. Driving stresses can be reduced by using a
heavy ram with a low impact velocity (short stroke) to
obtain the desired driving energy rather than a light
ram with a high impact velocity (large stroke). Driving
stresses are proportional to the ram impact velocity.
The maximum compressive stress can be determined
approximately by Equations (8.1), (8.2), ar (8.3).

3. Reduce the ram velocity or stroke during early
driving when light soil resistance is encountered. Antici-
pate soft driving or at the first sign of easy driving
reduce the ram velocity or stroke to avoid critical tensile
stresses. This is very effective when driving long con-
crete piles through very soft soil layers. When the point
of the pile is free of resistance, the maximum tensile
stress can be determined approximately by using Equa-

tions (8.5) or (8.6).

4. If pre-drilling or jetting is permitted in placing
concrete piles, ensure that the pile point is well seated
with reasonable soil resistance at the point before full
driving energy is used. Driving and jetting of concrete
piles should not be done simultaneously.

5. Ensure that the pile driving helmet or cap fits
loosely around pile top so that the pile may rotate slightly
without binding within the driving head to prevent
torsional stress.

6. Ensure that the pile is straight and not cambered.
High flexural stresses may result during driving of a -
crooked pile.

7. Ensure that the top of the pile is square or
perpendicular to the longitudinal axis of the pile.

8. Cut ends of prestressing or reinforcing steel in
concrete piles flush with the end of the pile head to
prevent their direct loading by the ram stroke.

9. Use adequate spiral reinforcing at the head and
tip of concrete piles to reduce tendency of pile to split
or spall. ’

10. Use adequate amount of prestress in prestressed
concrete piles or reinforcement in ordinary precast con-
crete piles to resist reflected tensile stresses.

11. Chamfer top and bottom edges and corners of
concrete piles to reduce tendency of concrete to spall.

PAGE THIRTY-ONE



CHAPTER IX

Use of the Wave Equation for Parameter Studies

9,1 Introduction

The wave equation can be used effectively to evalu-
ate the effects of the numerous parameters which affect
the behavior of a pile during driving. For exam-
ple: the determination of the optimum pile driver to
drive a given pile to a specified soil resistance, the
determination of the pile stiffness which will yield the
most efficient use of a specified pile hammer and cushion
assembly, the determination of the optimum cushion
stiffness to make the most efficient utilization of a speci-
fied pile hammer and driving assembly to drive a spe-
cific pile, and to determine the effects of various distri-
butions of soil side and point resistance on the pile bear-
ing capacity, driving stresses, and penetration per blow.

9.2 Significant Paramelers

The parameters which are known to significantly
affect the behavior of a pile during driving are as
follows:

(1) The pile driving hammer

a. stiffness and weight of the pile driver’s
ram.

b. the energy of the falling ram which is
dependent upon the ram weight, the effec-
tive drop and the mechanical efficiency of
the hammer.

c. in the case of a diesel hammer, the weight
of the anvil and the impulse of the explo-
sive force.

d. the stiffness of the capblock, which is de-
pendent upon its mechanical properties,
thickness, cross seclional area, and me-
chanical conditioning eflects caused by
repeated blows of the hammer.

e. the weight of the pile helmet and the stiff-
ness of the cushion between the helmet and
the pile. In the case of steel piles the
cushion is usually omitted.

f. the coefficient of restitution of the cap-
block and cushion influence the shape of
the wave induced in the pile and hence
affects the magnitude of the stresses which
are generated.

(2) The pile
a. the length of the pile.

b. the stiffness of the pile which is a function
of its cross sectional area and the modulus
of elasticity of the pile material.

c. the weight of the pile, specifically the dis-
tribution of the weight.

d. the existence of physical joints in the pile
which cannot transmit tension.
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(3) The soil
a. soil quake at the point.
b. soil quake in side friction.
~c. damping constant of the soil at the point.
d. damping constant of the soil in friction.

e. distribution of point and side frictional
resistance.

9.3 Examples of Parameter Studies

The most notable parameter study which has been .
reported to date is that presented by Hirsch.? In that
report, the resulls of 2,106 problems are presented
graphically. This study was oriented toward provid-
ing information on the effects of ram weight and energy,
stiffness of cushion blocks, length of pile, soil resistance,
and distribution of soil resistance on the driving be-
havior of representative square concrete piles. Figures
9.1 and 9.2 show representative curves from this study.
The results of this study have played a very significant
part in formulating recommended driving practices for
prestressed concrete piles.”-2

Parameter studies of this type have heen used by
others. McClelland, Focht, and Emrich®? have used
the wave equation to investigate the characleristics of
available pile hammers for obtaining pile penetrations
sufficient to support the heavy loads required in off-
shore construction. The parameters varied in this study
were the pile length above the mud line, pile penetration,
and the ratio of the soil resistance at the pile point to the
total soil resistance, {see Figure 9.3 (a}). The results of
this study enabled the authors to determine the pile
driving limit versus the desien load capacity as shown in
Figure 9.4 (a) and (b). Figure 9.3 (b) shows the re-
sults of one study to determine the effects of varying
the unembedded portion of a pile whose total length was
held constant. Ficure 9.3 (c) is for the same pile, but
with the unembedded length held constant and the em-
bedded length varied. Figure 9.3 (d) gives the results
when the ratio of point soil resistance to total resistance
is varied.

In Research Report 33-10°* the writers used the
wave equation to determine the soil damping values for
various soils encountered in field tests. In this particu-
lar parameter study the pile. hammer-soil system was
held constant and the soil damping values were varied.
By generating an ultimale soil resistance, Ru (total)
versus blows 'in. curve the appropriate soil damping
properties could be delermined by comparing the com-
puler generated solution with the measured data taken
from a full-sca’e field test pile (see Figure 9.5). This
study yielded representative values of the soil damping
constants for the soil al the point of the pile and the
soil in side friction.

It is not necessary that all parameters for a particu-
lar pile installation be known. For example, several
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Effect of cushion stiffness, ram weight and driving energy on permanent set. Square pile with uniform-
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Figure 9.3. Computer analysis of pile hammer effective-
ness in overcoming soil resistance, R,, when driving pile
under varying conditions: (A) computer input repre-
senting conditions of problem; (B) variations in pile
length above ground; (C) wvariations in pile peneira-
tion; (D) variations in distribution of soil resistance,

R, (from Ref. 9.3).

problems can be solved in which the unknown parameter
is varied between the uppzr and lower limits. These
limits can wusually be established with a reasonable
amount of engineering judgement. Parameter studies
of this type were conducted by the authors™? in studies
of the effect of ram elasticitly and in the correlation and
analysis of the Michigan pile data.
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CHAPTER X

Summary and Conclusions

The numerical computer solulion of the one dimen-
sional wave equation can be used with reasonable confi-
dence for the analysis of pile driving problems. The
wave equation can be used to predict impact stresses in
a pile during driving and can also be used to estimate
the static soil resistance on a pile at the time of driving
from driving records.

By using this method of analysis. the effects of sig-
nificant parameters such as type and size of pile driving
hammer, driving assemblies (capblock, helmet. cushion
block, etc.). type and size of pile, and soil condition can
be evaluated during the foundation design stage. From
such an analysis appropriate piles and driving equipment
can be selected to correct or avoid expensive and time
consuming construction problems such as excessive driv-
ing stresses or pile breakage and inadequate equipment
to achieve desired penetration or bearing capacity.

A thorough discussion of the significant parameters
involved in pile driving has been presented in this report.
Some of the significant conclusions are as follows:

1. The elasticity of the ram was found to have a
negligible effect on the solution in the case of steam,
drop, and other hammers in which steel on steel impact
between the ram and anvil is not present. However, in
the case of diesel hammers, steel on steel impact does
occur, and in this case, if the elasticity of the ram is
disregarded, a conservative solution for driving stresses
and permanent set results. When the elasticity of the
ram is accounted for, maximum driving stresses and
point displacements may be reduced as much as 20%.

2. Comparisons with the Michigan pile study indi-
cated that a relatively simple yet accurate method of
determining the energy output for pile driving hammers
can be used. It was determined that for the cases in-
vestigated. a simple equalion relating energy output for
both diesel and steam hammers gave accurate results.
This equation is

E = (Wg) (h) (e)

where

Wr = ram weight,

h = actual observed total ram siroke (or the
equivalent stroke for double acting steam
hammers and closed end diesel hammers},
and

e = efficiency of the hammer in question.

The efficiencies determined during the course of this
investization were 100‘¢ for diesel hammers. 87°¢ for
double acting steam hammers, and 607 for single acting
steam hammers. The writers feel that 60% was un-
usually low for the single acting hammer and would
not recommend it as a lypical value. An efficiency of
8077 is believed to be more typical for the single acting
steam hammer.

3. Comparisons belween field tesl results and the
numerical solution of the wave equation proposed by
Smith were indeed encouraging. To date, the wave
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equation has been compared with the results of thousands
of actual field tests performed throughout the country.
Among the more significant were the comparisons with
the .Michigan pile study which dealt almost exclusively
with extremely long, slender steel piles, a wide variety
of prestressed concrete piles driven in the Gulf Coast
area for the Texas Highway Depariment. Extensive
correlation and research has and is being conducted by
many contractors, petroleum companies, and others in-
terested in the economical design of pile foundations.

4. The driving accessories significantly affect the
piling behavior. For this reason, their selection should
be carefully considered and analyzed whenever possible.

5. The effect of explosive pressure in diesel ham-
mers varies greatly depending on the condition and
characteristics of the hammer, anvil, helmet, cushion,
pile, and soil resistance, especially regarding the in-
creased permanent set per blow claimed by the manu-
facturer. In general, when the driving resistance is large
(which is usually the case near the end of driving) the

"explosive pressure does not have a large effect on the

pile penetration per blow.

6. Three methods were used to determine cushion
properties in this report. These included actual full-
scale cushion tests dynamically loaded between a ram
and pile, tests performed using a cushion test stand in
which a ram was dropped on the cushion specimen which
had been placed on a concrete pedestal atop a large
concrete base embedded in the f{loor, and finally static
tests. It was found that the two dynamic testing methods
used yielded almost identical results. It was also found
that for a given material, the dynamic curves during the
loading of the specimens were almost identical to the
corresponding static curves. Static tests can be used to
determine cushion stiffness, but not for the coefficient

of restitution. Typical properties are presented in
Chapter 1V.

7. It was shown in Chapter 1V that the stress-strain
diagrams for the material used as cushions are not
linearly related to compression. Instead, the curve is
closely parabolic during the loading phase. However,
use of the exact load-deformation curve for the cushion
is both time consuming and cumbersome, and its use
is relatively impractical.

8. It was found that the load-deformation diagram
of the cushion could be idealized bv a straight line hav-
ing a slope based on the secant modulus of elasticity of
the material.

9. The dynamic coefficient of restitution for the
cushion malcrials studied herein were found to agree
generally with commonly recommended values.

10. When the wave equation was compared with
the results of laboratory experiments, the numerical solu-
tion to the wave equation proposed by Smith was found
to be extremely accurate.

11. The effect of internal damping in concrete and




steel piles was found 1o be negligible for the cases stud-
ied, although, if necessary, it can be accuralely ac-
counted for by the wave equation. '

12. The effect of pile dimensions on abilily to
drive the pile varied greatly. In general, it was found
that the stiffer the pile, the greater soil resistance to
penetration it can overcome.

o e -

13. The wave equation can be used to estimate soil -
resistance on a pile at the time of driving. Before long-
term bearing capacily can be exirapolated from this
soil resistance at the time of driving, however, engineers
must consider the effect of soil “setup” or possible soil
“relaxation” which is a function of time, soil type and
condition, and size or type of pile, and other time ef-
fects which might be of importance.
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APPENDIX A

Development of LEquations for Impact Stresses
in a Long, Slender, Elastic Pile

Al Introduction

The study of the behavior of piling has received
considerable attention in the past, but only since 1960
when Smith'# adapted the general theory of stress wave
propagation to pile driving problems, was it possible to
accurately determine the magnitudes of stress induced
in the pile during driving. Smith’s method utilized a
high-speed electronic digital computer to generate the
solution, and while the calculations involved are sim-
ple. it can often prove to be an expensive method of
solution. Therefore, it is the purpose of this Appendix
to develop a series of equations from which a solution

. to a limited number of piles can be obtained without

the use or expense of a computer.

A2 One Dimensional Wave Equation

Unlike a number of other approaches to the prob-
lem, wave theory does not involve a formula in the
usual sense, but rather is based on the classical, one-
dimensional wave equation.

%u __ , ¢*u
= o (A1)
where
¢ = the stress wave velocity = / E/p,
E = the modulus of elasticily of the pile material,
p = the mass densily of the pile,
G
u ct
Y

Long slender
elastic pile

Figure A.l.
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u = the longitudinal displacement of a point on
: the pile in the X.direction, and
t = time.

Figure Al demonstrates the variables mentioned above.

It has been shown that any function f(x + «ct),
or f(x — ct) is a solution to the above differential
equation. Further, the general solution is given by

u = f{x + ct) + fi(x — ct)

From this solution, it can be shown that

= E du
o= . a (A.1b)
where
o = the stress in the pile.

The negative sign is used to denote compressive stress.
Usually an elastic cushion is placed between the pile
driving ram and the head of the pile in order to reduce
the impact stresses in the pile (Figure A2). The falling
ram first strikes the cushion which in turn applies a
force to the head of the pile. The sum of the forces on
the hammer are given by :

F,=W—P=MSz
di?
where
M = the ram mass,
W = the ram weight,
P = force exerted between the head of the pile
and the cushion,
t = time, and
z = displacement of the ram.

This equation can now be written in the form

d’z
P=M (g—d—t__,—) (A2)
where
g — acceleration due to gravity, and
W = Mg

Considering the ram as being infinitely stiff, the
displacement of the ram, z, and the displacement of the
head of the pile u, defines the total compression in the
cushion at any time. Therefore,

Cushion compression = z — u,

Assuming the cushion to be linearly elastic, with a spring
constant of K Ib per in., then the cushion compression
is given by:

Cushion compression = P/K.
Therefore,
2z — u, + —P—- (A.3)
° K



V= velocity of Rom at impact

l.——Ram {mass M, weight W)

Cushion (stiffness K )

Uo . — Pile (area A, elasticity E,

mass density p)

».—/V"\,\J

Figure A4.2.

Differentiating Equation A.3 with respect to time
we find

d%2z __ d%u, 1\ d2P

_—_ = = -+ — ) = Ad
de? de? K/ di2 (A4)
Combining Equation A.2 and A.4 gives
_ _ d*, 1 d°P
P=Mle~ @ — X (A-5)
Noting Equation A.1(b) it follows that
— _ E du,
g, — C— dt. (A.6)
where
o, = the stress at the pile head, and
u, = the displacement of the pile head.
Since o, equals — XP , where A is the cross-sectional
area of the pile, it is seen that
__AE  duy,
P== & (A7)

Differentiating Equation A.7 twice with respect to time
gives
d?P _. AE  d%,
dt? c dt?

(A.8)

Substituting Equations A.7 and A.8 inte Equation
A5 yields
AE du, __ _ d%u, AE  d*u,

T e M ET W T X @

.. . du, : . . ‘
Since V, is equal to —=, where V, is the velocity of

dt
the head of the pile, it is found that

V. _ AE @V,
c ° T dt cK di?

Equation A.9 may be rewritten in the following form:
Md*V, McK  dV, cKMg
dt? AE dt AE

which is the basic differential equation to be solved.

(A9)

+

+ KV, = (A.10)

A3 Boundary Conditions

In order to satisfy the boundary conditions, it is
necessary to set V, = 0 at time t = 0. Further, at
t = 0 we find that

z =YV
and
u, = 0
where V is the initial ram velocity and the dotted quanti-

ties denote differentiation with respect to time. From
Equation A.3, we see that at t = 0,

P=K(z— u)
Differentiating. this equation with respect to time, we find

P=K (z — u)

and

i)ZKVatt:O

From Equation A.7, we note that P = AE Vo, so that
by,
c
Therefore, at time t = 0,
 _ KVec
Vo = AE

In summary, the boundary conditions at time t = 0
are given by Equations A.1l and A.12.

Vo =0 (A.11)
* _ KV¢
Vo‘ = AF (A.12)

A4 Solving the Basic Differential Equation

The general solution of the differential Equation
A.10 is obtained by combining the homogeneous solution
V), and the particular solution Vp.

The particular solution to Equation A.10 is given by
Ty — 82
Vp NG (A.13)

The homogeneous solution to Equation A.10 is de-
termined as follows:

V. + 20V, + pfV, = 0 (A.14)
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\\"lt’l'e

n = _E!\—___ pamng !\’_ g__
2AE 2A Ep

2 o= __Ii = Kg

P M W

. —_— dgvh

Vo = dt?

s dVy

Vh_ dt

We shall now investigate solutions for this case
having the form

Vi = Ae™ (A.15)

By substituting Equation A.15 into Equation A.10, we
obtain

m?> + 2mm + p2 =0
and therefore
m = —n =+ Vn?— p?

(A.16)

Three possible variations to this solution will now be
considered.

CASE I (n < p)

The first case is where n is less than p. When n is
less than p, the roots of Equation A.17 are given by

m = —n %+ iVp’—n*

The homogeneous solution to Equation A.11 then
becomes

Vi = e™ (A; sint Vp® — n* + A, cos i Vp?— n?)
And the general solution is given by
My

AE
Applying the boundary conditions noted by Equations
Al4 to A17 we find

Vo =V, + (A.17)

— cMg
0 = A; + AR
__ —cMg

A = AE

Applying the boundary conditions of Equation A.12 to
Equation A.17 results in

Vo = —ne™(A; sintVp? — n* + A, cos tVp?2 — n?)
+ e™ (A; Vp? — n? cos tVp? — n?
— AsVp®— n?sin tVp? — n?)

I;\I{:c = —nA; + A, Vp?—n?
A, = KVe  neMg|__ 1
v AE AE | vpF=at
or —
A = c - [KV — nMg]

AEVp? —n?
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Rewriting Equation A.17 using the values of A,
as noted above, yields :

V. = cKV et sin l\/p_:':—nr
AE Vp® — n?
cMg

+ AE | 1— e [cos t Vp? — n? -

n

+
Vp? — n?

sin t Vp? — n?]

(A.18)

Substituting Equation A.18 into Equation A.6 gives the
final solution for the stress at the head of the pile when
the value of n is less than p.

o = —KVent ) —
o — o ~o—— sint Vp°—nn
AVp?—n?
+ w —_—
N 1 — e™ (cos t Vp®— n?
n . —_——
T Ve v (A19)
where E
. cK _ K \/ g
n — — — et
2AE 22 V Ey

:\/K_g
P W

Equation A.19 gives the solution for the stress at
the head of the pile at all times after impact.

CASE Il (n = p)

The second case is when n is equal to p in which
case the solution of the homogeneous differential equa-
tion (Equation A.14) assumes the form

Vh == A1 et + Azte‘"‘

Vh = et (Al + A2 t) (A.20)

The complete solution for this case is given by
Vo - Vh + Vp

V, = e (A, + Ay 1) + Mg

AE

Substituting the required boundary conditions given by
Equation A.11 and A.12, we find that

(A.21)

_ cMg
0= A, + =F
— Mg

A, = AR

Using the boundary condition given by Equation A.12,
we determine ‘

Vo, = —ne® A; — ne™ A, t + A, et




When t is equal to 0, we find that

ncMg _ KVe

toRE T AT R
An = KVe  ncMg
* 7 AE AE

A: = = (KV—nMy)

Rewriting Equation A.21, using the values of A, and
A, as given above, yields

—cMg ct _

Vo — e—nt

cMg
+ NG (A.22)
Substituting Equation A.22 into Equation A.6 gives
o, = ;1; (KV — nMg) e™ — MA*'* (1 —em)
or:
T, = :Xt— (KV — nW) et
— W — ant
A (1 —ent) (A.23)
where
. ¢cK _ K g
"= o = w Vi
p = \/I;Vg_ , and
v = unit weight of pile material

Equation (A.23) gives the compressive stress at the
head of the pile, as a function of time for the case when
n is equal to p.

CASE NIl (n > p)
The third and final case is where n is greater than
p- For this condition, the solution of the homogeneous
differential equation, given by Equation (A.14), assumes
the form
Vi = e [A; et VTP g, et VR T Y]
or
Vi = e™ [A; sinh t Vn?— p2
+ A; cosh t Vn® — p?)]
The general solution then becomes
Vo =V, + V,
Vo = e (A; sinh { Vn? — p?

T 4+ Mg
+ A cosht Vn p)+AE

Applying the boundary conditions required by Equation
A1l yields

(A.24)

— cMg
0= A, + AR
_ —cMg

Ay = AE

Substituting the required boundary condition given by |
Equation A.12 then gives '

\./o = —ne™ (A, sinh t Vn2 - p2 + A, cosh
tVn® — p?) + e® (A; Vn2 — p? cosh
tVo* —p? + Ay Vn2 — p®sinht \Vn? — p?)

then:
KV —_—
. —ﬁ = _l’lAz + Al}/nz - p2
and:
Ay

Rewriting Equation A.24 gives

KVc et R
V, = XW(;;_——:})? sinh t Vn? — p?
cMg

+ AE | 1 — ™ (cosht Vn® — p?

+ n sinh t Vn? — p¥)

p—— (A.25)
Vn? — p?
Substituting Equation A.25 inte Equation A.6 gives
—KV
o = T e-nt gj /nZ — p2 (A.26)
o Avel—p © sinh t Vn? —p
—W -
A |1 — ™ (cosh t Vn?— p?
inh t V/n? — p?
+ n sinh t Vn p?) (A.26)
Vn? — pt
where

— K g
n—ﬁ\/g,and

=\/L
P 7

Equation A.26 gives the stress at the head of the
pile as a function of time in the case where n is greater
than p.

A5 Maximum Compressive Stress al the
Head of the Pile

To compute the maximum compressive stress at the
pile head, Equations A.19, A.23, and A.26 are required.

Numerical studies of these equations have shown
that if the last term in each equation is omitted, little
accuracy is lost, and the expression becomes relatively
simple. Since it is necessary to know the time, t, at
which the maximum stress occurs, Equations A.19, A.23,
and A.26 will be differentiated with respect to time and
sel equal to 0. This in turn will allow the maximum
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stress o be found.  The following nolations are again

used:

W = the ram weight (Ih)

V= the ram impact velocily (in./sec) = /2gh,

K = cushion stiffness (Ib per in.) = Ct :

t "= time (seconds) ’

A = the cross-sectional area of the pile (in.?)

E = modulus of elasticity of the pile (psi)

Y = unit weight of the pile (Ib per in.?)

g = acceleration due to gravity (386 in. per
sec?) ,

h = the free fall of the ram (in.)

" A. = the cross-sectional area of the cushion (in.2)

E. = the modulus of elasticity of the cushion
(psi)

t. = cushion thickness (in.)

n:.Ii_ \/g_
2A Ey

— Kg
P \/W

In order to further simplify the solutions, the fol-
lowing approximate equations for the maximum com-
pressive stress are presented:

Case I (where n is less than p)

—KV -nt o3 2 2
oy (max) = ‘ e™ sin (tV p n?)
A V/p*—n® (A.27)
where t is given by the equation
- Y —
tan (t V/p? — n? = lﬁnﬁ”
Case 2 (where n is equal to p)
o, (max) = — KV _Wie (A.28)
¢ nA A
where the value of t was given by
1
t == —_
n
Case 3 (where n is greater than p)
—KV -nt o3 Y
o, (max) = : e ™ sinh (t Vn p*)
A Vn?—p? (A.29)

where t is found from the expression

e

" tanh t V' n® — p? -
1

Equations A.27. A.28. and A.29 can be used to
determine the maximum compressive stress at the head
of the pile. In most practical pile problems, n will be
less than p, and Equation A.27 will most often he used,
although this is not always the case.

For a given pile these equations can be used to
determine the proper combination of ram weight, W.
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ram velocity, V, and the required cushion stiffuess, K,
in order to prevent excessive siresses at the head of the
pile. In most cases, there is some minimum amount of
driving energy which must be available to drive the
pile. For example, the maximum energy output avail-
able to a drop hammer is given by its kinetic energy
at the instant of impact. Therefore,

V.‘l
2g

should be equal to or greater than the energy required.
It would appear that the most efficient way to increase
hammer energy would be by increasing the ram velocity
V. However, Equations A.27, A.28, and A.29 show that
the maximum compressive stress at the head of the pile
will increase proportionally with velocity. On the other
hand, to increase driving energy the maximum compres-
sive_stress at the head of the pile increases slightly
as W increases. It is therefore desirable (considering
driving stresses) to increase the ram weight, W, if the
pile driving situation requires that the driving energy be
increased. Once the ram weight and its velocity at im-
pact have been selected, the spring rate of the cushion
(K) can be varied to hold the maximum compressive
stress within allowable limits.

KE = W

A6 Length of the Stress Ware

It is known thal the magnitude of the reflected
stresses in a pile will be a function of the length of the
stress wave and the length of the pile. The length of
this stress wave is easily found from Equations A.19,

A.23, and A.26.

If the last term is again omitted in each of these
equations, little accuracy is lost and relatively simple
expressions are obtained-for the stress at the head of the
pile.  Omitting the last term in Equation A.19 yields

___ —KV e sin t \/p? — n?
o e —

A Vp®—n? (A.30)
Equation A.30 is seen to equaTO at time t equals 0 and
again at
T
\/_WxT

Thus, the second of these equations gives the duration
of the impulse stress.

Noting Equation A.l a, the stress wave velocity, e,
is found to be

c = '\/_E_
P

The length of the siress wave. L., is then obtained from

L= ¢t = \/Fi_
=V p

L. =7 i___
\/ y (pf —nf) forn < p (A31)

Similarly use Equations A.23 and A.26 to establish that
when n = p and n > p the stress wave is infinitely long

Lg:ao




APPENDIX B

Wave Equation Computer Program Utilization Manual

BI Introduction

This appendix describes the utilization of the com-
puter program for the application of the one-dimensional
wave equation to the investigation of a pile during
driving.

The program can be used to obtain the following
information for one blow of the pile driver’s ram for
any specified soil resistance:

1. Stresses in the pile.

2. Displacement of the pile (penetration per
blow).

3. Static load capacity of the pile for specified
soil resistance and distribution. This ca-
pacity is the static resistance at the time of
driving and does not reflect soil set-up due
to consolidation.

The program is valuable in that system parameters ig-
nored before (in pile driving formulas) can be included,
and their effects investigated. It makes possible an engi-
neering evaluation of driving equipment and pile type,
rather than relying only upon experience and judgement,

In order to simulate a given system, the following
information is essential:

1. Pile driver,
a) energy and efficiency of hammer,
b) weight and dimensions of ram,

¢} weight and dimensions of anvil (if

included},

d) dimensions and mechanical properties
of capblocks,

e) weight and dimensions of pile cap
helmet,

f) and dimensions and mechanical prop-
erties of cushion.

2. Dimensions, weight, and mechanical prop-
erties of the pile.

3. Soil medium.
a) embedment of pile,

b) distribution of frictional soil resistance
over the embedded length of the pile
expressed as a percenlage of the total
static soil resistance,

c) Point soil resistance expressed as a per.
centage of the total static soil resistance,

d) ultimate elastic displacenient for the soil
on the side and point of pile,

e) and the damping constant for the soil
on the side and point of the pile.

It should be recognized that the solution obtained
with the program represents the results for one blow of

the hammer at the specified soil embedment and soil
resistance. ’

‘The techniques for idealization can be categorized
in three groups:

1. the hammer and driving accessories,
2. the pile, and
3. the soil.

B2 Idealization of Hammers

The program is formulated to handle drop ham-
mers, single, double, and differential acting steam ham-
mers and diesel hammers that operate on the head of
the pile. The techniques presented in this section are
general in scope and are presented for illustration.
Appendix B gives the idealizations and pertinent infor-
mation for the most common hammers. .

Figures Bl through B3 describe the idealization for
the following cases:

1. Case 1 —Ram, capblock, pile cap, and pile
(Figure Bl).

2. Case IT —Ram, capblock, pile cap, cushion, and
pile (Figure B2).

3. Case Ill—Ram, anvil. capblock, pile cap, and
pile (Figure B3).

- RAM, W(1)

E ~———————————— CAPBLOCK, K(1)

=1

~%—————————————PILE SPRING, K(2)

PILE CAP, W(2)

~#————————PILE SEGMENT, W(3)

>

Calculations for idealization
W(1) = welght of ram, (1b)

K(1) = A—“—;Tf)(l—L , stiffness of the capblock, (ib/in)

Where
A(1) = cross sectional area of the capblock, (inz)
E(1) = modulus of elasticity of the capblock, (psi)

L(1) = thickness of the capblock, (in)

Note: See Table 4.1 for capblock properties.
Figure B.1. Case I—ram, capblock, and pile cap.
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RAM, (1)

T

CAMBLOCK, K(1)

FILE CAF, W(2)

I

== CUSHION, K(Z)c

K(2)

V\A.

PILE SPRING, K(Z)p

!

1ST PILE SEGMENT, W(3)

Calculations for idealization
W{l) = Weight of ram, (1b)
K(1}) = stiffness of the Capblock, (ibfin.}
K(Z)C = Stiffness of cushion, (1b/in.)

K(2)p = Stiffness of pile spring, (I1b/in.)

R(2), K(2)
K(2) = s combined stiffness of K(2)
R(2) + HON c

and l((2)lJ in series.
Note: See Table 4.1 for capblock and cushion properties.
AE

ke "1

wvhere
A = cross-section area of cushion, 1n.2

E = secant modulus of elasticity of cushion material, psi

L = thickness of cushion, in.

Figure B.2. Case Il — ram, capblock, pile cap, and
cushion. :

B3 Ram Kinetic Energies

The kinetic energy of the ram for specific hammer
types can be calculated as follows:

1. Drop hammers and single acting steam hammers:

Ex = W(1) (h) (er) (B.1)
where
Ex = ram kinetic energy, (ft-Ib)
W(l) = ram weight, (lb)
h = ram stroke, (ft) .
er = hammer mechanical efficiency (usually

between 0.75 and 0.85 for most single
acting hammers).

2. Differential and double-acting steam hammers:

En=h |1+ Dum . %% W(1) e (B.2)
where

h = actual ram stroke. (ft)
Pactusl — actual steam pressure. (psi’l
Pratea — manufaclurers raled steam pressure, (psi)
W(h) = hammer housing weight, (Ib)
W(l) = ram weight, (Ib)

e; = efficiency is approximately 85% for these

hammers.
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3. Diesel hammers:

Ex = W() (he —C) - (er) (B.3)

where

h, = actual ram stroke for open-end hammers,
and the effective stroke (includes effect of
bounce chamber pressure) for closed-end
hammers, - (ft). The energy Ey for the
closed-end Link Belt hammers can be read
directly from the manufacturer’s chart using
bounce chamber pressure),

e, = efficiency of diesel hammers is approximate-
ly 100%

C = distance from bottom-dead-center of anvil to
exhaust ports, (ft).

Work done on the pile by the diesel explosive force is
automatically accounted for by using an explosive pres-
sure (see Sample Problem and Table 2).

Calculations for idealization
W(1l) = weight of ram, (Ib)
_ A1) EQ1)

K(1) Lo stiffness of the capblock,
(Ib/in.)
Where ,
A(1) = cross sectional area of the capblock, (in?)

E(1) = modulus of elasticity of the capblock (psi)
L(1) = thickness of the capblock. (in)
Note: See Table 4.1 for capblock properties.
Calculations for idealization

W(l) = Weight of ram, 1b)

,————————=——  RAM, W(1)

=

D - —————————  ANVIL, W(2)
———— e

RAM STIFFNESS, K(1)

CAPBLOCK, K(2)

||§ ”*———-—— PILE CAP, W(3)

PILE SPRING, K(3)

g #$—————————— FIRST PILE SEGMENT, W(4)

Calculations for idealization

W(1) = Weight of ram, (1b.)

K(1) = A [1‘(15 1 , the stiffness of the ram, (1b./in.)
where A(1) = ram cross sectional area, (in.)

E(1) = mcdulus of elasticity of ram material, (psi)»

L(1) = length of ram, (in.)
This calculation assumes that the pile cap and anvil are rigid.

Figure B.3.
cap.

Case IlI—ram, anvil, capblock, and pile




K(1) = Stiffness of the Capblock, (lb/in.)

K(2)¢c = Stiffness of cushion, (lb/in.)
K(2), = Stiffness of pile spring, (lb/in.)
K@2) = K(2)¢ K2,

= m—ﬂ, combined stiffpess of

K(2)¢ and K(2), in series.
Note: See Table 4.1 for capblock and cushion properties.

AE
Ke = —
¢ L
where
A = cross-sectional area of cushion, in.2
E = secant modulus of elasticity of cushion ma-
terial, psi

L = thickness of cushion, in.

Calculations for idealization

W{(1) = Weight of ram, (lb)
—_ A(lY E(D) .
K(1) —Ton the stiffness of the ram,
(Ib/in.)
where
A(l) = ram cross sectional area, (in.)

RAM W (1) —

CAPBLOCK K(l)\

PILE CAP 2
w(2)
CUSHION

K(2)g — ™

-~ HAMMER

il

PILE K (Z)D—-"

PILE J

PILE W(3)—

DROP HAMMERS
SINGLE ACTING STEAM HAMMERS

E(l) = modulus of elasticity of ram material,
(psi)
L(1) = length of ram, (in.)

This calculation assumes that the pile cap is rigid.

In the hammer idealization, note that the parts com-
posing the pile driver are physically separated, i.e., the
ram is capable of transmitting compressive force
to the anvil but not tension. The same is true of the
interface between the anvil and pile cap, and the pile
cap and the head of the pile. The program contains
provisions for eliminating the capability of transmitting
tensile forces between adjacent segments. The me-
chanics of this provision are more fully explained in
the following section.

Tables Bl and B2 list the information needed for
the simulation of the most common types of pile driving
hammers.

B4 Methods of Including Coefficient of

Restitution in Capblock and Cushion Springs
In the case where K(1) is a capblock (Cases I, II,

and 111), and K(2) is a cushion (Case 1I), it is desirable

to include the energy loss due the coefficient of restitu-
tion of the particular material.

re—— HOUSING W,

RAM W(i)
| ———— CAPBLOCK K (I}
[ !

=
PILE CaP W(2)

CUSHION K(Z)c

INARNANNN

~———PILE K(2)p

PILE -+—1t— HAMMER

PILE W(3)

DOUBLE AND DIFFERENTIAL ACTING

STEAM HAMMERS

(A) (8)
TABLE Bl DROP HAMMERS AND STEAM HAMMERS
*
HAMMER | Type| W ) [ W (2) W(h) | K (1) | K(2)e | K(2)p | STROKE | Prated| EFF.
(LB.) (LB.) (LB.) (LB./IN.) | (LB./IN) | (LB./ZIN) h,(FT.) (PsSi) ef
MKT §3 A 3000 — - @ 2 3.00 - 0.80
-t o) - e -—
MKT §5 A 5000 - - z @ = @ R 3.25 - 0.80
w 5 w 5 7] ;
VULCAN 1 A 5000 1000 - g = b= ~|< 3.00 - 0.80
= B = 0© N
VULCAN 2 A 3000 1000 — ot 2.42 - 0.80
g o g o
VULCAN 30C 8 3000 1000 4036 " 1.04 120 0.85
g8 9 g 2 i
VULCAN 50C 8 5000 1000 6800 zZ E 2 F ~ 1.29 120 0.85
VULCAN 80C B 8000 2000 9885 g: § EJ EJ x 1.38 120 0.85
o (e}
VULCAN 140C 8 14000 - 13984 T x 1.29 140 0.85
# REPRESENTATIVE VALUES FOR PILE NORMALLY USED IN HIGHWAY CONSTRUCTION
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In Figure B4 the coefficient of restitution is defined

Arca | BC‘E
Area ABC

~T‘:l—lergy output
Energy input

(B.3)

In Case II it is necessary to combine springs K(2)¢
and K(2), to determine the equivalent spring K(2). In
this instance it is also necessary to determine the coeffi-
cient of restitution of the combined springs. The stiff-
ness of the spring in the restitution phase is the slope of

the line DB in Figure B4

Fu

K _ -t
e Ac — An

(B.6)

Since,
Energy output = Area BCD = Fy, (A¢ — Ap)/2
= Area ABC = F;; (A)/2

Energy input

Fa .8
t
|
|
}
71}
(8]
o«
(e}
w
]
L
|
{
A 8] I.C

A - DEFORMATION

Figure B.4. Definition of coefficient of restitution.

Fg
62 FI’-(A(‘ - AI)) A(‘ KAB
Fu (Ac) Fn Kus ) o . .
e = 8 The combined restitution stiffness of K(2)¢ and
¢ “‘ K(2), can be determined from,
or
. 1 1 (for restitution
Ko = -4 (B.7) K@ = R@e T K@, P DB
B 2 ) (2) (2)¢ (2)p Figure B4)
je———— RAM W (1) NOTES FOR TABLE B2
% for actuol stroke use field observotions
Al EWD {may vory from 4.0 to 80 ft.)
=- K ==m
* w determine from bounce chamber
m, ANVIL W (2) pressure (hy = E/W(l}) where E=Iindicated
Energy)
o
‘%‘ ~«———————— CAPBLOCK K (2} ¥ average values
3 W PILE CAP W (3)
f ~—————— CUSHION K(3)c
‘ %4—— PILE K (3)p
o - PILE W(4)
e ’
! TABLE B.2 - DIESEL HAMMERS
gy K1) K(2) EXPLOSIVE|
Tvee wammer | MUY | WL WOV 08 | 610 | kil | Ky [MAXTe | ) En roree | e
(LB) (LB.) (LB) KLB/INIKLB/IN)D (FT) (FT) [(FT-LB)| (Lg)
MKT DE-20 2000 640 | 500 14.2 800*| 0.92 2| asz00 | too0
o
MKT DE-30 2800 775 |9 280] 387 638 800*| 104 W 98000 | 1.00
MKT DE-40 4000 | 1350 | = T 101.0 8.00*| 116 S 9 | 38000 | 100
DELMAG D 5 oo | 330 |1 11I{ es] wse m 8oo*| 083 | , % | as3c0o| 100
ol
DELMAG D2 2750 816 | o 31.5 18.6 o =I5 B.00%| 108 s s 93700 | 1.00
DELMAG D 22 4850 1576 | = ¥ 497 238 2 3 soo*|{ 108 | = ¢ | 1ssto0 | 100
o ': —r
DELMAG D 44 9500 | 408! | § & 106.2 56.5 E - 800%| 119 ® _ | 200000} 100
LINK-BELT 180 | 1724 377 §f§ 445 15.5 ;"'2 4.63™ 064 :f © 81000 | 1.00
LINK-BELT 312 3857 1188 | » *T o 1425 18.6 387 050 § 98000 | 100
LINK-BELT 440 | 4000 705 [ 3333| 1380 18.6 455™* 1.25 w 98000 | 10O
LINK-BELT 520 | 5070 1179 1085 186 5.20"" 083 = 98000 1.00
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from Equation tA-7),

el el2) ¢ el2),?
K(2] Ki2)e Ki2),
e(2)2 = K(2) [e(2) 2 K(2),

I\'(Z)(‘ KW
+ e(2),*K(2)¢]

K(2). K(2),

K(2j: + K(2),

since

K(2) =

e(2) (B.8)

# + . 2
\/m)c TRy, E K@)+ K2)ce),]

B5 Idealization of Piles

The idealization of the pile is handled by breaking
the continuous pile into discrele segments. Each seg-
ment is represented by ils weight and spring repre-
senting the total segment stiffness. In Figure B5, the
weight representing the segment is assumed to be con-
centrated at the end of the segment away from the point
of impact. This places the spring on top of the weight
whose stiffness il represents, ie., K(2) is associaled
with W(3).

Piles should he broken into segments not to exceed
approximately 10 feet in lengths, but into not less than
five segments. The stiffness of each pile segment spring
is calculated from

. Aim) E(m) .
Kim—1) = — (7.2 _ (B.9)
L(m)
—— RAM
—— CAP BLOCK k(1) ~SLACK (1)= 1000.
“-PILE ChAP
cusHicn = +—SLACK (2)= 1000
K{2)-<"1
@ ~NZ
[©)
1 SLACK (3)= 0 ——=
K(3)
@
SLACK (4)= 0 —
K{4)
HOl 125 Looseness
i |} WNJOINT
A SLACK (5)= [25—
K {5}

SLACK {6)= O~

K{6)

' (7
SLACK (7)= 0— KTt

K(7)

K'(8}&J'(8)
SLACK (8)}: 0 " 8

K(8)
REAL IDEALIZED

Figure B.5. Pile idealization.

where
K{m—1) = spring slilfness for segiment  m,

(Ib/in.)

A(m) = cross sectional area of segment m,
(in.?)

E(m) = modulus of elasticity of the material
of segment m, (psi)

L(m) = length of segment m, (in.)

The weight of each pile segment is calculated by

W(m) = A(m) L(m) «
where :
a = unit weight of pile material, (Ib/in.)

If the pile is tapered, the average value of A(m)
should be used.

The program has provisions for handling cases
where the physical construction of the pile prohibits the
transmission of tensile stresses or is capable of trans.
mitting tensile stresses only afler a specified movement
of a mechanical joint (joint slack or looseness). These
conditions occur with certain types of pile splices. The
program provides for this eventuality by entering the
following:

1) If a joint (a joint is defined as the interface
between two segments) can transmit tension,
the slack or looseness is entered as SLACK (m)

= 0. (Refer to Figure B5)

2) 1If a joint is completely loose, no tension can be
transmitted and SLACK (m) should be made
a very large number, ie., SLACK (m) =

1000.0.
3) If a joint is capable of moving 1.25 in. before
transmitting tension, SLACK (m) = 1.25, i.e,

the physical value of the slack or looseness in
a joint is entered in inches.

The SLACK (m) values are always assuciated with
spring K(m). In Tigure B5, i tension can be trans-
mitted across the interface between segments 3 and 4,
the slack value would be associated with spring K(3),

i, SLACK (3) = 0.

The interfaces hetween the various parts composing
the pile driver (ram, capblock, pile cap, its.) which can-
not transmit tension are also handled Dy setting the

SLACK values equal to 1000.

B6 Explanation of Data Input Sheets

Data for the Pile Driving Analysis program is en-
tered on two sheets. Page 1 contains data pertaining
to the physical parameters of a particular pile. Page 2
is used to vary the soil, pile driver. or cushion charac-
teristics for the pile described on page 1. Examples of
the data sheets follow the explanation.

Page 1

Case No. =~ = Any combination of up to six alpha-
betic or numerical characters used for
identifying information. These char-
acters will identify all problems as-
sociated with the pile data entered on
sheets 1 and 2.

Total number of problems listed on

page 2,

No. of Probs. =
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1/DELTA T

P =

SLACK (1) =

SLACK (2),
SLACK (3) =
Option 1 =

Option 2 =

= This space may be left blank in most

cases as the program calculates the
critical time interval from the param-
eters of the system. The value cal-
culated is

1/DELTA T = 2(19.698 VK/W)
If, however, one desires to use a spe-
cific 1/DELTA T, it may be entered.
The problem will then compare the
entered value with the critical value
calculated by the above formula and
use the larger of the two. This is
done so that the user cannot inadver-
tently enter a value too small and
hence introduce instability into the
numerical process.
Total number of weights including
ram of hammer, follower, and helmet,
ete.

This indicates a specified looseness
between W(1) and W(2) in inches.
This is the amount of movement re-
quired before K (1) will take tension.
If there is complete tensile freedom
of K(1), then enter SLACK (1) =
1000. Leave blank if option 3 is “2”.

see notes on Slack (1).

This is an option for the manual en-
try of the cross sectional area of each
segment.

(a) Enter “1” and all AREAS will
automatically be set equal to 1.00.
In this case, draw a horizontal line
through all AREA rows on the mid-
dle portion of page 1. If “1” is used,
do not enter areas in AREA rows.
(b) Enter “2” if the cross sectional
area of each segment is to be entered
manually in the AREA rows. In this
case enter AREAS (1) to (P) inclu-
sive.

This is an option for the manual
entry of soil resistances.

(a) Linter “2” if the soil resistances
(expressed as a percentage of the
total soil resistance) are to be entered
manually in the RU rows. The RU

" values are entered from (1) to (P +

Option 3 =

Option 4 =
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1) inclusive. Note that (P + 1) is
the point resistance and all others are
side resistances. The total of all RU
percentages entered must total 1009,.
(b) Enter “17” if the soil resistances
are not listed in the RU rows but are
indicated under Option 12 on page 2.

This is an option for manual entry of
the SLACK values.

(a) Enter “1” if SLACK values from
SLACK (4) to SLACK (P — 1) are

~all 0.00 (indicating K(4) to K(P — 1)

can take tension). In this case only
SLACK (1) to SLACK (3) are en-
tered in row 1. Draw a horizontal
line through all SLACK rows in the
lower portion of page 1. In this case
do not enter any values in the Slack
rows.

(b) IEnter “2” if SLACK values arc
to be entered manually, In this cuase,
SLACK (1) to SLACK (3) in row 1
may be left blank.

This is an option on the routine used
to simulate the material behavior of
springs K(1), K(2), and K(3).

(a) Enter “1” for use of Smitlh's
routine 3 and 4.

(b) Enter “2” for use of Texas
A&M’s routine.t It is suggested that

Option 4 = 2. Option 4 may be left .
blank in which case it is automatically
set equal to 2.

IPRINT = This is an option on the amount of
data printed out when the long form
output is used (Option 15 = 2). If
Option 15 = 2, IPRINT is the print
interval expressed as the number of
time intervals. As an example, if a
print out is required every 10th time
interval, 10 would be entered for
IPRINT. If Option 15 is “1” or “3”,
leave IPRINT blank.

NSEG 1 = NSEG 1 is the mass number of the
first pile segment. If NSEG 1 is left
blank, NSEG 1 = 2 will be used by
the program.

The total weight of each segment, in pounds, is
entered in the rows marked W(2), W(3),.... W(24).
The weights, W’s, are entered for 2 to P inclusive. Note
that W(1) is not entered as it will be included on page 2.

The spring stiffness of each segment, in 1b/in., is
entered in the rows marked K(1), K(2), . ... K(24).
The stiffnesses, K’s, are entered from 1 to P — 1 inclu-
sive. Spring K(P) is the soil spring at the pile tip and
is calculated by the program from the soil data entered
on Page 2.

If Option 1 = 2, the average area of each segment
must be entered in the rows marked A(1). A(2), . ...
A(24). The units of A should be consistent with the

stress units desired in the output. The basic force unit
of the output is the pound. The areas, A’s, are entered
from 1 to P inclusive. A(P — 1) and A(P) in most
instances will be the same. Areas of segments of the
hammer are usually entered as A(l) = 1.00. etc., since
stress values obtained for these segments are not usually
of concern. If Option 1 = 1, the area row should be
marked through with a solid horizontal line indicating
no data cards ave to be included.

If Option 2 = 2, the side soil resistance on each
segment, expressed as a percentage of the total soil resist-
ance, is entered in the rows marked RUt1), RU (2},
. . . RUt24). The soil resistances. RU’s, are entered
from 1 to P + 1 inclusive. The value of RU (P + 1)
is the pile tip resistance. Mark out all rows when Option
2 = 1.

If Option 3 = 2, the physical slack or looseness,
expressed in inches. is entered in each row marked
SLACK (1), SLACK (2), SLACK (24).
SLACK’s are entered from 1 to P — 1 inclusive. If
there is no slack, enter 0.0; if there is complete loose-
ness. enter 1000.0. SLACK (P) is automatically set
equal to 1000.0 since the point soil spring cannot take
tension. If Option 3 = 1, mark out all rows.

Note that the forms have 24 spaces for W's, K’s,
A’s, RU’s, and SLACK's. The program is capable of
handling a pile with a maximum of 149 scgments.  Ad-
ditional cards may he added to each parameler as needed.

Page 2
W(1) = The weight of the pile driver's ram
in pounds.
NC = The number of the spring for which
K(NC) is being varied.
K(NC) == The spring constant of the spring be-

ing varied in lbs/in. Only one spring
can take on variable values per case.




w's AND AREAS | TO P INCL.;

EFR = The efficiency of the pile hammer. J SIDE = Damping constant for the soil on the '
ENERGY = Kinetic energy of the falling ram side of the pile.
calculated by Equation B-1, B-2, or FEXP = The diesel explosive force (in pounds)
B-3. : wh&ch elxc')cls on the Iralt];]h and anvi}l1 of
* ERES (1) = Th fficient of tituti £ a diesel hammer. In the case where
M) = The eosfficnt of resitation o pe explosive force exiga us with drop
ERES (2) = The coefficient of restitution of FEXP blank.
spring K(2) Option 11 = This_option provides for single or
ERES (3) = The coefficient of restitution of . multiple calculations.
spring K(3) (a) Enter “1” if multiple caleula-
RU (TOTAL) = This space should be used only when ﬂgnsdig; RU(dTeO-T%L)T}YS BLO\,EV/
OT(t)l’(I)‘Y.)XLl)l Th 2d In dthlli case R}J will assig?lresuitilglee.valueescog]fpuR%‘
( is the desired ultimate pile TOTAL). Leave RU(TOTAL
pesistance In potnde, Wien Option on page’s itk 0D
. RU (TOTAL (2), Brter 2 It singls saloation o
ATVOINT = T Jesen s oL e eniared an' page 2.
t t . alue is en- ; _ : . . . .
fered as & percentage. oo 1 e Rimibationof shie Foiiion on
MO = If Option 12 is “1” or “2”, enter the the pile.
number of the first pile segment act- (a) Enter “1” for a uniform distri-
ed upon by soil resistance. This space bution of side friction from segment
may be ’left blank if Option 12 = 3, MO to P.
ie, RU’s are read in on page 1. (b) Enter *“2” for a triangular dis-
Q POINT = Quake of the soil at the point. Nor- tribution of side friction from seg-
mally “0.10” is used. ment MO to P
_ 3 (¢) Enter “3” if Option 2 = 2, 1.3,,
Q SIDE - gﬁ:}(eN%ﬁ.];};%;O‘]‘l(ﬁgnt}ilse :;23‘01‘ the RU values are entered on page 1.
J POINT — Damping constant for the soil at the Option 13 = This option provides for computer
point. plotted curves using the data gen-
PILE DRIVING ANALYSIS oPTIONS] 3% I PaGE # 1
TEXAS A8B8M UNIVERSITY - 2m§ 2:5 s BY:_ DATE: Of 2
T e e T T T R T T T R LTI RT3 | (538 2 (T T T (TR T TRITIIIITIT
CASE NO_|pross| _ I/DELTA T P | SLACK (1) | SLACK (2) | SLACK(3) |(|2|3]a
[T11] [T INRERNNRRRNDRRRENY NI RNERENNNRRRNAERNRARRERREEE
Los WD) W (2) W (3) W (4) W (5) W (6) W (7) W (8)
i‘z,LLUﬁiJJJJUlLL_,JHJIHU [LITTLI JIHUHI HEIRENUERRNAREENUNRRERRREDEE
w(9) W (10} | w (D) “w2) w3 W (13) W {i5) W (16)
T I L e T HHHH EEERANAARRRENERR NN ERNEN
w(T) w(8) W (19) W (20) W (2) W (22) W(23) w(24)
[TTTTTIT IHHIHTJIHHIU HEENENERREEREERNNRERRANRNNERENRARERNRERRNRENDANE
LBS N, K{l) K {4} K (5) K {6) K {7) K (8}
THIIILLIHIHLJ,U UJMHIIHIHHH L T L LT T L T T
K (9) K (10) Kl K (12) K (13) K (13) K(15) K (16)
ERNRRRRRRPRRRERARERN! ARRRFARRARERRRPARNRRRRRERRRERRRERRRENNRERNEVRRRRENREN
KT K{8) . 7x7(|_9)" o K {20} K (21) K (22) K (23) K{24)
T T T T T I T L T T T T O L O LTI
sa m AREA (1) AREA  (2) AREA  (3) AREA (4) AREA  (5) AREA (6) AREA (7) AREA  (8)
RERRERNANENARENRR NN RRRRRN DY T I T P L T L T
AREA  (9) AREA (I10) AREA  (11) AREA (12) AREA (13) AREA (14) AREA (15) AREA  (16)
T T T L O T T LT R L LT L LT T LT T LT T LT
AREA  (I7) AREA (1) AREA  (19) AREA (20) AREA  (21) AREA (22) AREA (23) AREA  (24)
IRNERRNNERARRRRENN T T T T T T T O T T T T T AT
- RU (1) % | RU )% | RU (31 % RU (4) % RU (5) % RU (6] % RU_(T) % ~RU(8) %
T IO TE VT IO T T T L HU_LM ST T T L e Tl LT T
RU (9) % | RuU (00 % CRU % RU (1) % RU 03 % RU. (14) % RU_ (5} % RU 06 %
T T T O L L LT T DO T P LT T O LT T T T LT L T LTI
RUM% | RU (8% | RU (9% | RU@OV% | RU @I% | RU @22)%_ | RU 23 % RU (24) %
O e e e e s L A e A L T T T I
incHes SLACK (1) SLACK (g)A T _sLACK (3) SLACK @ SLACK (5) SLACK _(6) |  SLACK (1) SLACK (8)
A U T D T DR T T L TS T T T I T TP T T T T T
SLACK (9) SLACK u0) SLACK (1) su\cx (r2) SLACK (13) SLACK (14) SLACK (1) SLACK _(16)
T L HH DL TH T L T U D T A LTI T THAH TTT]
SLACK (7) SLACK (8) SLACK (9) | SLACK (200 |  SLACK (21) SLACK (22) |  SLACK (23) SLACK (24}
AT T T A T T T O T T T T R T T T T T T
NOTES: ONE OR MORE PROBLEMS MUST BE LISTED ON PAGE 2

K's AND SLACK's 1| TO P-1 INCL; RU's | TO P+! INCL. {P+| IS % RU UNDER POINT OF PILE.)
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erated for RU(TOTAL) VS BLOW/
IN. (Option 11 = 1.
(a) Lnter “1” for computer plot of

data, If no plot is desired, leave
blank.
Option 14 = This is used to include or exclude

gravity in the calculations.
(a) Enter “1” if the forces of gravity
are to be included in the calculations.
(b) Enter “2” if the forces of gravity
are to be excluded from the calcula-
tion. This alternate in effect excludes
the weight of the pile from the calcu-
lations. It is used when the pile driv-
er is in a horizontal position or for
an extreme batter.

Option 15 = This option provides for versatility
in the output format.
(a) Enter “1” for a normal data
printout.

(b) Enter “2” for extra detail in.

printout. This alternate gives perti-
nent stresses, deformations, velocities,
ete.,, at the print interval, specified
as IPRINT on page 1.

(¢c) Enter “3” for short output. This
alternate gives only a tabular sum-
mary of BLOW/IN. VS RU(TOTAL).
Option 15 = 3 should ke used only
when Option 11 = 2.

SPECIAL NOTE Where anything listed for Prob-
lem 1 is to be repeated for Problem 2. 3. etc.. draw an
arrow down through the last problem to indicate repeti-
tion.

B7 Comments on Data Input

On page 2 of the input forms, provisions are made
for varying the stiffness of any spring, K(1) through
K(P — 1), in the hammer or pile idealization. This is
accomplished by entering the number of the spring to
be changed in the NC column and then the stiffness of
spring KINC) in the K(NC) column. As soon as this
problem is completed, the spring stiffnesses, K(NC) will
be -reset automatically to the value on page 1 of the
input forms.

The program is capable of handling pile idealiza-
tions with a maximum of 149 segments. There is no
limit on the number of problems that can be run for
each case.

Sample Problem
Consider the pile shown in Figure B-6.

Pile: 16 in. square prestressed concrete pile, 26 ft
in length. The modulus of the concrete is 7.82 X 108
psi and its unit weight is 154 Ib/ft*. The pile is as-
sumed to be embedded for its full length.

Pile hammer: Hypothetical diesel hammer with
4850 1b ram with an input ram kinetic energy of 39,800
ft 1b. The explosive force produced by the diesel fuel
is 158.700 th. The stiffness of the ram is given as 42.25
X 10% 1b/in. The anvil is assumed rigid and weighs

1150 lb. The capblock stiffness is 24.5 X 10° lb/in.

PILE DRIVING ANALYSIS BY : DATE : PAGE #2
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LT T e P P PRI T T e P T TIPS TP T PR TP T IRITTIITTI0E
3
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Figure B.6. Sample problem.

In order to illustrate the utilization of the input
data sheets and explain the output data sheets, four prob-
lems are considered.

Problem 1 and Problem 2 are concerned with the
driving effects produced by two different cushions. The
object of these two cases is to determine the dynamic-
static resistance curves (RU(TOTAL) VS BLOWS/IN.)
for one blow of the hammer. In Problem 1, the cushion
is assumed to have a cross sectional area equal to that
of the pile, is 614 in. thick and has a modulus of elas-
ticity of 1.0 X 10° psi. In Problem 2 the cushion area
and properties are the same as in Problem 1, but the
thickness is 3% in. In Problem 1 and 2 the soil side
friction is assumed to have a triangular distribution with
10% point resistance. The soil constants are:

(a) Q = Q = 0.10 in.
(b)Y J = 0.15 sec./ft.
(e) J = 0.05 sec./ft.

Problems 3 and 4 illustrate the use of program 1o
investigate the penelration of a pile to 200 tons of static
soil resistance produced by one blow of the hammer. In
Problem 3 the soil resistance is distributed uniformly
along the side with 10%¢ at the point. The cushion is
the same as in Case 1. In Problem 4 the soil has a tri-
angular distribution along the side with 105+ soil resist-
ance (same as Problem 2). The cushion is the same
as in Problem 2. Problem 4 will also illustrate the use

of the output option (OPTION 15).

The following calculations illustrate the computa-
tions for the hammer and pile idealization.

(a) Pile: The pile is hroken into eight equal
length segments of 39 in. The spring
stiffness for each segment is,

. A(3),E(3),
K(3), = 2 Eir
30,

where
A(3), = 251 in?
E(3), = 7.32 X 10° psi
L{3), = 39 in.

therefore

z, - 6
K(3), = (254) (7.32 X 109

2 — 6 .
30 51.0 X 10° 1b/in.

(b) Cushion: Spring K(3) in Figure B6 (b)
represents the combined stiffness of
the cushion and first pile segment.

In Problem 1 and 3

- A(3)e E(3)¢
K(3)¢ = ——)Ifw)‘(‘)"

where
A(3)¢; = 254 in.2
E(3)c = 1.00 X 10°% psi
L{3)¢c = 6.25 in.

then
. (254) (1 X 10% __ 6 .
K@3)e = 695 = 40.5 X 10° Ib/in.
The combined stiffness of K(3)¢ and K(3), is
{(3)e X K 50 151 6
K(3) _ Ki3)e Ki3), — (40.5)  151.0) (10%)

T K(3) + Ki3J, (40.5 + 51.0) (109
K(3) = 22.6 X 10% Ib/in.

The coefficient of restitution for the combined
springs is assumed to be 0.50.

For Problem 2 and 4 similar calculation yields
K(3) = 31.3 X 10% 1b/in.
The output data sheels are completed as follows:
Page 1 (Same for all 4 problems)

No. of Problems = 4, there are 4 problems to be solved
on page 2.

1/DELTA T = 0.0, since the program will calculate the
correct value.

P = 11, there are 11 weights (3 for the
hammer and 8 for the pile),
SLACK'S = all set equal to 1000 since there is com-

plete looseness between the ram, anvil,
capblock, pile cap, cushion, and pile

head.

OPTION 1 = 2, all areas are entered manually in
AREA rows.

OPTION 2 = 1, since OPTION 12 is used to describe
the soil distribution.

OPTION 8 = 1, all pile segments are connected,

heonce SLACK (4) te SLACK (10) =
0.0.

OPTION 4 = left blank since it is desired to use the
A&M routine.

IPRINT = 10, in Problem 4, OPTION 15 = 2, it is
desired to print output every 10 itera-
tions.

NSEG1 = 4, the first pile segment, see Figure
B6 (b).

wW’'S = enter the weight of each element in 1b.

Note that W(1) is blank since it will
be entered on page 2.
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K'S © = enter all spring stiffnesses for the pile FEXP 158,700, lb. the diesel explosive force.

system considered to be basic, ie., the OPTION 11 = 1, for program generated RU(TOTAL)
program will automatlfa]ly reset thﬁ VS BLOWS/IN. curve,
stiffnesses to these values after eac - — . el ; : :
problem on page 2. OPTION 12 = éstf;)izbug;i?gular side soil resistance
A’S = enter all cross sectional areas of pile OPTION 13 = leave blank since computer plotted
segments only. curve is not desired.
Page 2—Problem 1 ) OPTION 14 = 1, to indicate gravity.
W(1) = 4850 lb., the ram weight. OPTION 15 = 1, for normal data output.
NC = 3, the cushion spring number, see Fig- Page 2, Problem 2
K(NC) = ure B6 (b). Only the value of K(3), is changed.
- _ : NC =
K (3) = 22,500,00(‘)‘, the stiffness of the com- K(NC) = 31 300,000.
bined springs. K(3) -3
EFF = {).(E)Oio%lg(selef}}ziiggzﬁrs are considered to Page 2, Problem 3
ENERGY — 39,800, the input energy for this par- The value of K(3) and the OPTIONS are changed.
ticular hammer blow. ?{I((:NC) = 3.
ERES(1) = 0.60, coefficient of restitution of steel = _
on steel impact. K(Y3) = 22,500,000.
ERES(2) = 0.80, coefficient of restitution of ecap- RU(TOTAL) = 400, Oé)O 1b for a 200 ton total static soil
block material. resistance. . .
ERES(3) = 0.50, coefficient of restitution of com- OPTION 11 = Z;FOi%)RLsmEle‘mcoa})colgatlon using RU
bined cushion and first pile spring. I 12 g p )'f_ é ‘.1 . di
RU(TOTAL) = leave blank, since OPTION 11 = 1, OPTION 12 = 1, for uniform side soil resistance dis-
i.e., the program will generate suitable P 9 Probl 4 :
values for curve generation. age &, rroblem . .
¢, AT In this problem the cushion and the options are changed.
POINT = 107 NC =3
MO = 4, the first pile segment with side soil K(NC) =
resistance. K(3) = 31,300,000
QPOINT = 0.10, Q. OPTION 12 = 2, for triangular side soil reSIStance
QSIDE = 0.10, Q. distribution.
JPOINT = 0.15, J. OPTION 15 = 2, for output at interval expressed by
JSIDE = 0.05, J'. IPRINT on page 1
T PILE DRIVING ANALYSIS — Joerong g9 |, . PaGE # 1
TEXAS A8M UNIVERSITY 2;{"5 (28 o [enddmic joute 8/67 xe
. r gl bl W — : — T
T s L T L TR T I TR LTI T LT Eey | =ss) 2 TTT TR I TIIT T I T [ TT TTT e
CASE NO. |pross|  1/DELTA T P | SLACK (1) | SLACK (2) | SLACK(3) [1|2|3[4 _
o y ¢ , —
dpis] ol il {111 leed T 11 )z lo'0lol 1T 1/]elolo} 11 lolelel 11 lzls]o] [ 1 Trjol W TTTITTT S II LTI T T I I1]
ces W (1) W(Z) W) W@ - wl(s)I W (6) wir)_ e
A [T sl [ 1T el [T 11T lelglai TT1 1 [ 118zl 11)[1118sii[]1[[1g&sl i[]]: 8g3]]]
w(9) w (IO) Wi wi2) W (13) w0 W (5) i W (16)
[Iegll [ [ 11 T lglst TTUTT [lesglal T T LI T P T T TR T P T T T T
w(I7) W (18) w(9) W 20) w(2) W (22) W (23) w(24)
A N O N S 113 OO N T S O O S O O S S O A O O O O A A 0
1 T W 0 O S 0 A WA I A 0 T A O 1 1 T A A
wes/m K (1) K (2) K'(3) K (4) K(5) K (6) K (7) K (8)
izizio|olololo] | lewl5ioviocley | Tzlziclolelolole] [ T8l lolololololol T I8l lololeoloe] | Bl/leloiololote] [ Islilojoloioolo] T 57 leolololol
K ($) K% 110) Kun K (i2) K (13} K (14) K (i5) K U6)
fololololoi) T 1sit lolololelolo) TT 11T T L LTI LTI T LI L T T T I T T IO
K (7) K (18) K (9) K (20) K (21) K 22) K{23) K (24)
0 0 A O o A LLJ"IITT e 0 ) A R 1 0 1
I S 0 T T 0 0 A W S A T O S 0 O O A A
so W AREA (1) AREA  (2) LREA (3) | aREA (@ AREA  (5) AREA  (6) AREA  (7) AREA (8)
- TLAITT ST T =17 [ty T
TV T T T Ul [T T Telsiel TT LT 25l TT{ TTT llslel TT | TTT sl TT{TTT 25 T1] 11T ziste] 11
AREA  (9) L;RE_A] #0) AREA (1) AREA  (12) AREA (13) AREA  (14) AREA  (15) AREA  (16)
[T 1284 | 254 sl T LTI P T LT T T DL L LT LT T T
AREA  (7) AREA  (18) AREA (19 AREA (20) AREA {21) AREA (22) AREA (23) AREA _ (24)
e e 5 e 5 e
I P 0 O Y A P O 0 O 0 O 0 A Y A AP 0 ot 0 0 1t SV AP
% RU (1) % RU (2) ‘/. RU (3) % RU (4] % RU (5) % RU (6) % RU (7) % RU (8) %
N o 0 B 5 o o S o
0 W L O O N O O O B N V0 0 O O A 0 O O 0 I 1 O T WY
RU (9) % | Ru (0 % RU )% | " RU 121 % RU (3 % RU (14) % RU(15) % RU 06 %
e e 5 i o e B T 1
A 5 0 0 I O A e 1 Y e N O G S AT L 0 W S ¥
RU (7) % RU_ (18) % RU 09 % RU (20) % RU (21 RU (22) % RU {23) % RU (24) %
A e O 5 0 e O 0 A 0 i 0 0 .
) I 0P U I O L A SR Y S LN O O O A O T S DR S A T SO S T T T D A A O O I O O O A AP S B O A A
oves SLACK (1) SLACK _(2) SLACK  (3) SLACK  (4) SIACK (5) SLACK (6) SUACK (7) SLACK (8)
S 0 1 A 1 s 1 S 0 0 0 T 0 0O 0 O 0 4 0 0 T
N O A T O O 5 P O 0 0 O P S A 0 P 5 0 0 AP
SLACK _(9) SLACK (2 SLACK _(1]) SLACK (12) SLACK (13 SLACK  (14) SLACK _(15) SUACK (16)
JLITIIHIT—FIITLET'T‘T'LT']T'I]J]LI‘IJJJILIJ_[FIL[ 1 O O O B
0 S 5 O 0 S5 0 0 0 0 5 Y O O 0 0 5 W A 0 Y A
SLACK (17) SLACK (8) SLACK (19} SLACK (20) SLACK (21) SUACK (22) SLACK (23) SLACK (24)
0 S A 0 T T S O SO O e £ ) A LA N T T S O O S S A OO A | | OO | ANIRENRENNENNE | 200
N A W H it a1 ]'IAT_TAI' l-ll]AllJl]l|]L_L] O P o L1 10 ) I A R D A N I Y

NOTES: oONE OR MORE PROBLEMS MUST BE LISTED ON PAGE 2
w's AND AREAS | TO P INCL.; K's AND SLACK's | TO P-1 INCL; RU's I TO P+i INCL. (P+l IS % RU UNDER POINT OF PILE.)

PAGE FIFTY.-TWO




S e e B
ERRANERREREN NSRRI RN RN R RN NN NN RN R C AN AN E AN
5

T oem Jore [ cvenor PRPETE] " (om0 bolsbepielste] _re |70
| [ llolslol | 3| Jzlzislololololo)s]ole] 13laislolelole blolslo|olslol Jol | T lelol lold el slolols| [ [ /i 70l Je] 1]/}
R (| 131113plojolelo ( (11 LT IO (k| s
s <J 22500000 ) 4 gioloioplo r4AN Al
o114 0! [213lolelooe] 1Bl 11181111 $ | | llolojojo]o) t]] 111 Jzle /]2
5
6
7
&8
9

110

it

12

1:3

14 J !

ils . B

s 1

17

1[8

1[8

20

NOTE : IF OPTION *#i1« 1, RU(TOTAL) NOT REQUIRED "

The output for the four sample problems are shown data. The RU(TOTAL) value of 1.040,962.1 is the

in Figures B7 through B-11. Figure B7 is the output
for one point on the RU(TOTAL) VS BLOWS/IN.
curve generated for Problem 1. The block of data on
the upper part of the figure is a printout of the input

total static soil resistance for which this problem was
run. This value was generated by the program and is
only one point of 10 used to develop the data for the

total RU(TOTAL) VS BLOWS/INCH curve shown in

1 OF

TEXPS & ® M UNIVERSITY PILE DRIVING ANALYSIS CASE NOD.HSP 10 PROBLEM NO. 4
1/DELTA T 4 OPTIONS 1 2 4 11 12 13 14 15 EXP, FORCE
9443,9 11 2 1 1 2 1 0 1 1 158700,

ENERGY HAMMER EFFIENCY RUITOTAL) PERCENT UNDER POINT MU QUPOINT)  Q(SIDE} J(POINT) JISIDE) N2
39800.00 1.00 1040962.1 10.0 4 0.10 0.10 0.15 0.05 125

M wWiM) K(M) AREA(M) RU{M) SLACK{M) ERESIM)  VSTART{M} KPRIME(M)

1 4850,000 0.42200CCE 08 1.000 0.0 1000.000 0.60 22.99 0.0

2 1156.000 0.2450000% 08 1.000 0.0 1000.000 0.R0 0.0 0.0

3 1200.000 0.2250000¢ 08 254.000 0.0 1000.000 0.50 0.0 0.0

4 983,000 0.510000CC 08 254.000 164638,.531 0.0 1.00 C.0 0.1463853E Q6
5 883.0C0 0.5100000F ©O8 254.C00 43915.594 0.0 1.00 0.0 0.4391561E 06
6 8R3,000 0.510C009E on 254.000 73192.625 0.0 1.00 0.0 0.7319265E 06
7 883,000 0.5100000F OR 254.000 102469.687 0.0 1.00 0.0 0.1024697 07
8 AB83.000 0.5100000t 08 254.000 131746.750 0.0 1.00 0.0 N.1317467¢ 07
9 8#3.000 0.5100006€ 08 254,000 161023,.812 0.0 1.00 0.0 0.1610238E 07
10 RR3.,060 0.5100000F 08 254.000 190300.87% 0.0 1.00 0.0 0.1903007€ 07
11 8R3.000 0.1040962E 07 254.000 219577.937 1000.000 1.00 .0 0.2195780E 07
12 -0.0 -0.0 -0.0 104096.125 -0.0 -0.0 ~0.0 0.0

SEGMENT AREA TIME N MAX C STRESS TIME N MAY T STRESS DMAX (M) Dir) ViM)

1 1.000 4 28R3699. 0 -0.0 0.437338 0.476179 -0.50
2 1.000 7 2265092, 0 ~0.0 0.430214 0.430214 4,07
3 254,000 | 3% T432. 42 -0.0 0.359616 0.359616 “l.17
4 254,000 13 1324, 0 -0.0 0.23%627 0.223646 -3.80
5 2564.000 15 7107, 0 -0.C 0.231331 0,211913 ~1.14
[} 254.000 17 68R3, 0 -0.0 0.215890 0.2C4061 0.57
7 254.000 19 6633, 34 1. 0.203751 0.198904 -2.68
H 254,000 21 6346, 34 172, 0.190195 0.178150 ~2.55
9 2564.000 23 5R34. 29 1973. 0.182027 0.174308 .39
10 254.000 35 4195, 30 2691, 0.172878 0.168807 -0.03
11 254.000 27 1320. [of -0.0 0.167608 0.166761 -1.43
PERMANENTY SET OF PILE = 0.06760906 INCHES NUMBER OF RLNWS PR INCH = 14.79113579 TOTAL INTERVALS = 49

Figure B.7.

Normal output (option 15=1) for Prob, 1.
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Figure B.8. Effect of varying cushion stiffness.

Figure B8. The second block of data shows the maxi-
mum compressive and tensile slresses and the maximum
displacement of each segment. The column labeled
TIMEN is the time interval at which the maximum
compressive stress (MAX C STRESS) occurred, i.e., the
maximum compressive stress of 7432 psi occurred in
segment 5 at time interval 11 (11/9443.9 sec.). Similar

PILE DRIVING ANALYSES

CASE NUMBER HSP 10

data is printed for each point on the RU(TOTAL) VS
BLOWS/IN. shown in Figure B8.

Figure B9 shows the summary of the data for the
RU(TOTAL) VS BLOWS/IN. for Problems 1 and 2.
Data of this type can be used to construct curves like
that shown in Figure B8. These curves can be used to
compare the effects of cushion stiffness (the cushion
stiffness, K(3) ¢, in Problem 2 was twice that in Problem
1). 'Note the stiffer cushion (Problem 2) produces the
most efficient driving since for a specified resistance the
penetration per blow is larger (BLOWS/IN. is smaller).

Figure B-10 is a typical output when RU{TOTAL)
is specified. The maximum penetration of the point of
the pile under one blow of the hammer is 0.473011 in.,
listed under DMAX(M), and the permanent set is
0.473011-0.100000 (the ground quake Q) or 0.373011
in. Note that the input data is listed as well as the
maximum stresses and the displacement of each segment.

Figure B-11 is a sampling of the output when data
is desired at some specified interval (OPTION 15 = 2,
IPRINT = 1). The input information is listed in the
first block of data. The next two hlocks show the stress-
es at time interval N = 0 and N = 1. -The data is
defined as follows:

D(M) = ((i_isp)lacement of each mass point,
in.),

C(M) — the compression in each spring, (in.),

STRESS(M) = stress in each segment, (psi),

F(M) = force in each spring, (lb),

R(M) = force in each soil spring, (Ib),

W (M) = weight of each segment, (lb),

V(M) velocity of each segment, (fps),
DPRIME(M) = elastic displacement of soil, (in.),

i

PROBLEM NUMBER 1

UPOINT = 0,10 JPOINT = 0,15

BLCWS PER [N. RUTQTAL

1.0733 213593.- 107.7 92981.
3.3072 462346.~ 231.7 185557,
4,9401 601539.~ 301.7 232173,
6.6525 708095,- 354.7 266561,
8.1351 785875,- 393,7T 285066,
10. 7809 917031.~ 459.7T 312727,
14.7911 1040962.- 520,7 335193,
18.8100 1118220.~ $59.°¥ 350215.
21.5075 1166279.~ 583,1 359397,
78,2760 1255360.- 628.T 3715508,
36,2405 1321145.- 661.7 386685,
44,9512 1371145.~ 686,11 334790,
FBL1TT2  1421145.- T11.T1 402573,
£7.8860 1471165.~ 736,77 410044,

PILE ORIVING ANALYSIS

POINT FORCE MAX C STRESS SEG MAX T STRESS SEG

7321. 4 4411, 10
1322, 4 3706. 10
7322, 4 3358. 10
7323, 4 3112, 10
7323, 4 2955, 10
7324, 4 2708, 10
1324, 4 2491. 10
7324, 4 2362. 10
7324, 4 2285, 10
7325. 4 2148, 10
7325. 4 2051. i0
7325. 4 1981. 10
1325. L3 1908. 10
7325, 4 1836, 10
CASE NUMBER HSP 10 PROBLEM NUMBER 2

QPOINT = 0.10 JPOINT = 0,15

BLFWS PER IN, RUTUTAL

1.0377 213593.- 107.7 96645,
3.1615 4TORRA.~ 235.1 196306,
4.8150 622323.- 311.0 2475564
t.5367 T36R04 .- 36R,1 28304R,
T.5466 R19918.- 410.1 30719¢C.
11.4121 1025674.- 513.7 361561,
15,8643 1158745.- 579,71 392988,
1R, T7TSR 12334664~ 617.1 403456,
22,0974 12976264~ 648.7 420576,
23.3317 1376207.- 697.7 430297,
316.R446 146095%.- T730.7 4356023,
45,1832 1510959.- 755.T 439816,
$7.8852 1540959.- 780.17 4643210,
77.6870 1610959.- 805.7 446224,

PUOINT FORCE MAX C STRESS SEG MAX T STRESS SEG

1664, & 4171. 10
T663. 4 3412, 10
1662, & 3083, 10
Te62. 4 2857, 10
7661, 4 2703, 10
T661. 4 2352. 10
166G, 4 2145, 10
7660, 4 2035, 10
1659. 4 1950, 10
7659. 4 1840. 10
7659. 4 1766, 10
7659, 4 1713, 19
1658, L 1663, 10
7658, 4 1613, 10

Figure B.9. Summary ouwtput for RU (total) vs blows/in. (option 11=1) for Prob. 1 and 2.
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TEXAS A o M UNIVERSITY PILE ORIVING ANALYSIS CASE NO,HSP 10 PROBLEM NGO, 3 oF 4

1/DELTA T P OPTIONS L 2 3 4 1112 13 14 15 EXP. FORCE
944309 11 2 11 2 2 1 o0 11 158700,
ENERGY  HAMMER EFFIENCY RUFTOTAL)  PERCENT UNDER POINT MO OfPOINT) QISIDE] J(POINT) JISIDE] N2
39600.00 1.00 400000.0 10.0 4 0.10  0.10 0,15 0.05 142
" WM} K{M) AREA(M) RUIM) SLACK{M) ERES{M) VSTART{M) KPRIME(M)
1 4850,000 0.4220000F 08 1.000 0.0 1000.000  0.60 22.99 0.0
2 1150.000 0.2450000F 08 1.000 0.0 1000.000  0.80 0.0 0.0
3 1200.000 0.2250000E 08  254.000 0.0 1000.000  0.50 0.0 0.0
o 883,000 0,5100000F 0B  254.000  45000.000 0.0 1.00 0.0  0.4500001€ 06
5 883.000 0.5100000E 08  254.000 45000, 000 . 0.0 1.00 0.0  0.4500001E 06
6 883,000 0,5100000E 08  254.000  45000.000 0.0 1.00 0.0  0.4500001F 06
7 883,000 0.5100000E 0B  254.000 . 45000.000 0.0 1.00 0.0  0.4500001F 06
. 8 883.000 0.5100000E 08 254,000 45000000 0.0 1.00 0.0 0.4500001F 06
9 883.000 0.5100000E 0B  254.000  45000.000 0.0 1.00 0.0  0.450000LE 05
10 883,000 0.5100000E O  254.000  45000.000 0.0 1.00 0.0  0.4500001F 05
1 883.000 0,3999999F 06  254.000  45000.000 1000. 000 1.00 0.0 0.4500001E 06
12 -0.0  -0.0 -0.0 39999, 984 ~0.0 -0.0 0.0 0.0
SEGMENT  AREA  TIME N MAX C STRESS TIME N MAX T STRESS OMAX (M) DtM) Vi)
1 1.000 4 2883701, 0 0.0 0.502668 0,375493 4,67
. 2 1.000 T 2245095, 93 -0.0 0.688212 0.688212 1.00
3 254.000 11 7445, 97 -0.0 0.608394 0.606307 1.22
4 256.000 13 7258. 41 2531, 0.497042 0.495229 -2i50
5 254.000 15 7017, 39 3001. 0.489747 ©.489520 -0.17
6 254.000 17 6826, 38 2655. 0.484540 0.484376 1.46
. 7 254.000 19 6656 35 26471, 0.481653 0.481653 0.52
8 254.000 21 6493, 34 3081. 0.479475 0.479301 -0.90
9 254.000 23 6133, 29 3078, 0.474198 0.473951 0.21
10 254,000 24 “278. 30 4194, 0.475263  0.470868 1.83
1 254.000 27 641, 0 =040 0.473911 0,473011 -1.43
PERMANENT SET OF PILE =  0.37391138 INCHES  NUMBER OF BLOWS PER INCH = 2.67442989  TOTAL INTERVALS = 98
Figure B.10. Normal output for single RU (total) (option 11 = 2) for Prob. 3.
gPRI}Ing%}\I) = soil spring stiffness, (lb/in.), Time interval N = 0 is for the pile under the
MAXC(M) = mz.;énnzilg)coglgresswe force in seg influence of gravity alone. The particular output listed
- 4] ) ¢ . . S ) . F, A ]
FMAXT(M) = maximum tensile force in segment, in Figure B-11 shows that the point of the pile of Prob
(Ib). lem 4 would penetrate 0.002353 in, under gravity alone.
TEXAS A o M UNIVERSITY PILE DRIVING ANALYSIS CASE NOWGHSP 10 PROBLEM NO. 4 OF &4
I/DELTA T P OPTIONS L 2 3 4 112 13 14 1s EXP. FORCE
9443.9 11 2 11 2 2 2 0 1 2 154700, ,
- ENERGY HAMMER EFFIENCY RULTOTAL) PERCENT UNDER POINT MO QUPOINT) QUSIDE} J(POINT] JISIDE} NZ
39900.00 1.00 400000.0 10.0 o 0,10 0.10 0.15 0.05 140
M WiM) K (M) AREA (M) RU(M) SLACK(M) ERESIM) VSTARTIM) KPRIME(M)
1 4850,000 0,4220000F 08 1.000 0.0 1000.000 0,60 22.99 0.0
2 1150,000 0.2450000F 08 1.000 0.0 1000.000  0.80 0.0 0.0
3 1200.000 0.3130000 08 254,000 0.0 1000.000  0.50 0.0 0.0
4 883.000 0.5100000€ 08  254.000 5625.000 "~ 0.0 1.00 0.0  0.5625002E 05
5 863.000 0.5100000E 08  254.000 16875.000 0.9 1.00 0.0  0.16B7500E 06
6 883,000 0,51000C0E 08  254.000  28125.000 0.0 1.00 0.0  ©0.2B12501E 06
7 883,000 0.51000C0F 08 254.000 39375.000 0.0 1.00 0.0 0.3937501€ 06
8 883,000 0.5100000¢ 08 254.000 50625.000 0.0 1.00 0.0 0.5062501E 06
9 883,000 0,5100000E 08  254.000  61675.000 0.0 1.00 0.0  0.6187502 06
10 883,000 0.5100000E 08  254.000  73125.000 0.0 1.00 0.0 0.7312502€ 06
1 883.000 0.3999999E 06  254.C00  A4375.000 1000.000 1.00 0.0  0.8437502E 06
12 -0.0  -0.0 00 19999, 984 -0.0 -0.0 -0.0 0.0
TIME INTERVAL N s 0 NET PENETRATION = 0.0 N1 = 140 N2 =
SEGMENT M DM CiM) STRESSIM) FMm) R{M) - WiM) VIM} DPRIME(M) KPRIME{M) FMAXC{M) FMAKT(M}
"1 0.002919 0.0 0.0 0.0 0.0  4R50.00 22.988647 0,GC0566 0.0 0.0 0.0
2 0.002919 0.000047 1150, 1150, 0.0 1150.00 0,0 0.CC0566 0.0 0.0 0.0
3 0.002873 0.000075 9. 2350, 0.0 1200.00 0.0 0.0C0519 0.0 0.0 0.0
4 0.002797 0.000061 12. 3101. 132, 883.00 0.0 0.0C0444 56250, 0.0 0.0
5 0.002737 0.000070 14: 3586. 397, "883.00 0.0 0.000383  16R750. 00 0.0
6  0.002666 0.000075 15. 3808. 662,  883.00 0.0 0.CCO313 281250, 0.0 0.0
7 0.002592 0.000074 15. 37642 927,  £83.00 0.0 0.0C0238 393750, 0.0 0.0
8 0.002518 0.060068 I 3455, 1191, 883,00 0.0 0.CCO164 506250, 0.0 0.0
9 0.002450 0.000057 1. 2882. 1456,  B81.00 0.0 0.0C0087 618750, 0.0 0.0
10 0.092394  0.000040 5 2044, 1721, 883.00 0.0 0.0C0040 731250, 0.0 0.0
11 0.002353 0.0 4o G41. 1986, 883.00 0.0 0.0 843750, 0.0 0.0
.
TIME INTERVAL N = 1 NET PENETRATION = 0.0 N}l = 140 N2 =
SEGMENT M DMy CiM)  STRFSSIM) F(M) R(¥] WiM) VIid] CPRIMEIM) KORIMEIM) FMAXCIM) FMAXTIM)
1 0.032130 0.029211 1232689, 12326R9. 0.0 4R50.,0C 22.126265 0,CC0566 0.0 1232689, 0.0
. 2 0.002919 0.000047 1156, 1150. 0.0 1150.00 3.651348 0.000566 0.0 1150. 0.0
3 0.002873 0.000075 9. 2350, 0.0  1200.00 0.C00000 _0.C00519 0.0 2350, 0.0
4 0.002797 0.00006) 12. 31ct. 132, 883.00 -0,000000 0.CC0444 56250, 3101, 0.0
S 0.002737 0.000C70 14, 3586, 397, 883,00 ~0.C0000C C.0CC1a3 168750, 35686, 0.0
& 0.002666 0.090075 15. 38CR. 662. 883.00 0.C00000 0.CC0313 281250, 3808. 0.0
7 0,002592 0.000C74 15, 3764, 921. 883.00 0.000000 0.000238 3937SC. 3764, 0.0
8 0.002518 0.000068% la. 3455, 1191. 883.00 0.00000C 0.0C0l64 506250, 3455, 0.0
9 0.0026450 0.000057 1. 2882, 1456, 883.00 -0.00000C 0.0COC97 6187150, 2982, 0.0
. 10 0.002394 0.000C40 . 2064, 1721, 863,00 0.002000 C.0C0040 731250, 2044, 0.0
11 0.002353 0.0 ar . oan, 1986, 83,00 -0.000000 0.0 843750, 961, 0.0

Figure B.11. Detailed output for single RU (total) (option 15 = 2) for Prob. 4.
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APPENDIX C :
0S8-360 Fortran IV Program Statements

The listing that follows is known as an XREF list- variable in the program and makes the logic much easier
ing. Each statement is numbered, for reference, consecu- to follow.
tively from the first to the last statement. The variables
and program statement numbers are indexed by their A flow diagram of the program logic is included .
reference number. This listing facilitates finding each for reference.
[+ TEXAS A * M UNIVERSITY
[ PILE DHIVING ANALYSIS BY THE WAVE EQUATIDN -
C TEXAS A AND M PROGRAM REVISED 12/1/65 BY EAS
C PERMANENTY SET,BLUWS PER INCH
C LCCSE,TIGHT,OK LIMITED MOTION AT JOINTS
C PAXIMUM STRESSES DR FURCES
C 1CPT USCU FOR OPTION.
[ F9JToJTM,LAMP,LAY,LT,LACK, AREF USCD FOR CONTROL
. C X AT END OF NAME = LAST PRECEDING VALUE EXCEPT IN MAX = MAXIMUM
C N BLWAYS MEANS NUMBER OF TIME INTERVAL.
4 NCTATION FOLLOWS SHMITHS ASCE PAPER CLOSELY. TO DECOCE NOTE THAT
C NFMAXT = NO. GF TIME INTERVAL WHERE FORCE = MAXIMUM IN TENSION
1SN 0002 5000 REAL JPOINT 4 JSIDE 4K KPRIME 4 NPASS yNP1,KHOLD,CASE*S
¢ 1SN 0003 5001 IANTEGER PoPPLUS1,PLESS1,PRUE,PROBS
1SN 00Ga 5002 UINMINSION AREA(150),C(150),CX{ 1501 ,CMAX{150},D(150},DX{15C)
i 'EMAX(liO).DPRlM[(l50)vERES(l50)vr(l50)qFX(lSO)pFMAXC(l50)I
? FVAXTIE50)4K{150) 4 KPRIME{150) 4L AM{150) ,NDMAX[150),
3 NFMAXCU150) ¢NFMAXT (1501 4R{150),RUL150),SLACKIL50),
4 LBLUWS(15C)UFMAXC(150) ,URUTTL{150},V{150]),
5 W{L50) RULIST(150),RUHIL(301 +KWENR{30),KWMICH{30),

6 XPLUTAS0)YPLOTIS501sSTRESSI150) 4KHDLDI150}),

7 FCMAXIS0) ¢NCMAXIS0 ), FTMAX(50) (NTMAX(50])
C 24 UF EACH CF ABOVE SUFFICIENT FOR USUAL PRUBLEMS
C---- INPUT -— GENERAL
1SN 00Uy 5010 REALLS,5113) CASL.vuoBs.rroELv.P.SLACK(1).5LACK(2).SLACK()).xuvrl.
1 ICPT241UPT3,10PT4, IPRINT,NSEG]
1SN 00G6 WHRITE(6,5003)
1S 0007 S003 FCRMATLINT)
ISN 00Uy LFITTOELT.LE.O.) TTCELT=1.0
1SN 0010 TFLIUPT4,LELO) [UPT4=2
1SN DOIL2 TF{1PRINT.LE.O) IPRiNT=]
L5 0014 ITANSEGL.LE.O) NSEG1=2
1SN 0016 TCELTA=TTDELT
1Sk 0017 5920 UELTAT =1./TOELTA
15N 0014 5021 PPLUSI = P+l
LSN 001v 5022 PLESSL = p-)
1SN 0020 90330 KEAD  [5,5114) (WiK),M=1,P) :
15t 0021 5031 WI{PPLUSL) = -0.0 N
. C===--CALCULATL PILE WEIGHT
1SN 0022 WPILL=0.
IS4 0023 DE G JT=NSEGL,P
IsH no24 6 WPILL=WPILE+W(JT)
ISN 0025 5040 REAL (95,5115} IK(M} M=l ,PLESST) : -
c KIPY IS DETERMINGD AT 5184
[SN 0026 5061 K(PPLUSL) = ~0,0
1SN 0027 5083 DO HUB4 M=1,p
1SN 0028 KHCLUIM) =K [#)
154 0029 5084 ARCA(M) = |.0
ISN 0030 50H6 AREA(PPLUSL) = -0.0
ISN 0031 5087 IF(IOPT1-2)5090,5068,5088
1SN 0032 SOHB KEAD  (5,5114} [AREA(M),M=]1,P}
ISN 00133 IFCAREATL).LELO.) AREA(L)=1.0
ISN 0035 LFCAREAIP) (LE,O.) AREALP)I=] .0
1SN 0037 5090 [F{{UPT2-215100,5092,5092
ISN 0038 5092 READ {5,95116) (RULISTIM) ,M=],PPLUSL)
[SN 0039 S100 IFUI0OPT3-235101,5104,5104
1SN 0040 5101 DO 5102 M=4,PLESS]
ISN 0041 5102 SLACK(M) = 0,0
1SN 0042 5103 GO TU 5105
ISN 0043 5104 READ (5,5114) {SLACK(M),¥=]1,PLESS])
1SN 0044 5105 SLACK(P} = 1000.0
ISN 0045 9106 SLACKIPPLUSE) = -0.0
1SN 0046 5110 DC 5111 M=4,P
ISN 0047 S111 ERESIM) = 1,0
1SN 0048 5112 LRES(PPLUSE) = -0.0
ISN 0049 5113 FORMATIAG, I3,F10.6,13,3F7.3,411,1%13,12)
1SN 0050 5114 FORMAT(AF10.3)
ISN 0041 5115 FCRMAT(8F10.0)
1SN 0042 5116 FORMATIAFL0,7)
1SN 0043 S117 FORMAT {12,F8424110F9.04F3.2,F6.0,3F3,2,F9.1+F4.1,1344F3.2,F9.0
1,511}
ISN 0054 S118 FURMATLIHO5H CASEAT.4Xs5H PROB A6, T4H RU PERCENTACES UN DATA SHE
IET PAGE 1 SHOULD TOTAL 100.0 BUT ACTUALLY TUTAL,FL15.7)
C-=~- DO 5570 SOLVES PROALEMS UNE AFTER ANOTHER
ISN 0055 NC=1
1SN 0046 5120 LC 5570 1=1,PRUKS
15N 0057 K{NC}=KHOLDINC)
1SN 0058 5121 KEADIS9511T) PROUSWIL) yNCyKINCYy EFF o ENERBY o LRESEL) b EREUSE2 D000 S13)
o oRUSUM, PERUNT MU, QPUINT QS TDF ¢ JPNTNT o JSTDE o F CXP 4 1OPTL L,
2 ICPTI2,1aPTL3,1UPT 14, 10PT15 .
ISN 0059 LFCIOPTI2.LE.0) 10PTE22)3
ISN 0061 VSTAKI= SORTU64.4vEFFS{ENERGY/WI1) 1)
ISN 0062 L0 2009 M=1,50
ISN 0003 FINAXIM)=O,
1SN 0064 9009 FCMAX(M)=0 N
1SN 0005 NKCNT=0 )
ISN 0066 5140 RUITLX = 0.0
1SN 0067 5141 BLCWSX = 0.0
1SN 0068 5150 VI1) = VSTART
ISN 0009 5152 LT = 0
C-=-— FIRST DETERMINE VALUE OF RUTOTL
ISN 0070 5156 IFLIUPTIL=215151,5160,5151
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[ FUR CURVE PLOTTING

IsN 0071 5151 RUTUTL = Will® Vil)se2/12,0
sy 0072 5153 GC Tu 51710
[ FOR SINGLE PROBLEM
ISN 0073 5160 RUTOTL=RUSUM
ISN 00174 GC 10 5170
C CGMPUTER CYCLES FROF 707 NEAK END OF PKOGRAM
ISN COIY 701 SLCPE = (RUTOTL-KUTTLX)/{BLOWS-BLOWSX)
1SN 0076 SLCPE=AMAX]1{10000.,SLOPE}
ISN 0077 IFIBLOWS=-T.0)5164,702,702
ISN 0078 5164 1F({10OP16-2)5165,703,703
ISN 0079 702 IF(BRLOWS-20.0)704,704,705
ISN 0060 5165 LB = 1.00
1SN 0081 GC TU 706
ISN 00b2 703 UB = 1.25
1SN 0083 6C TO 706
1SN 0084 704 LB = 2.5
ISN 0085 GC Ta 706
ISN 0086 705 ©B = 5.0
ISN 0087 GG TO 706
ISN 0068 706 RUTTLX = RUTOTL
1SN 0059 RUTOTL = RUTTLX+{DB*SLOPE)
15N 0090 BLCWSX = BLOWS
C---- SECOND DEVERMINE ALL VALUES DF RU{M)
15N 0091 5170 DO 13 M=1,M0
ISN 0092 13 RUIM} = 0.0
ISN 0093 5171 RUPINT = (PERCNT/100.01%RUTOTL
1SN 0094 SLT2 IFLI0OPTI2-2)143,146,5176
[ FOR UNIFORM UISTRIBUTION
1SN 0095 143 DC 144 M=MO,P
1SN 0096 44 RULP) = (RUTUTL-RUPINT)/FLOAT(P-MO+1} -
1SN 0097 5173 RUIPPLUSL} = RUPINT
1SN 0098 GC 1o 113
[ FCR TRIANGULAR DISTRIBUTIUN
1SN 0099 146 UC 145 M=MO,P
1SN 0190 145 RU(M) = (2,0% (RUTOTL=RUPINT ) #{FLOAT{M-MO1+0.5) )}/ (FLOAT(P-MO+]))%e2
SN 0101 5175 RUIPPLUSL) = RUPINT
1SN 0102 GC TU 713
c FCR DISTRIBUTION PER RU LEST UN DATA SHEET
TSN 0103 5L76 TGIAL = 0.0
1SN 0104 0e 5177 M=1,PPLUS])
I5H- 0105 5177 JCTAL = TOTALSRULIST(M)
1SN 0106 S178 IFULABSITOTAL-100.01)-2.015180,5180,5179
ISN D107 5179 wWRITF  (6,5118)1CASF,PRORB, TOTAL
ISn Olus - 60 T0 5570
ISN 0109 5180 LC 5181 M=1,PPLUSL
ISN 0110 SIBL RL{M} = (RULISTIM)/100.0)*RUTOTL
tsH o1l 60 10 N3
C-—== THIRD DETERMINE STARTING VALUES OF V(M)
ISN 0112 713 VI1)=VSTART
ISN 0113 DO 180 M=2,p
ISN 0114 180 viv) = 0.0
ISN 0115 5183 V{PPLUSI) = ~0.0
C---- FOLRTH PETERMINE VALUE FOR K(P)
ISN Olle 5184 K(P) = RU(PPLUSL}/QPOINT
o FIFTH CHANGE CYCLE COUNT
ISN 0117 5186 LT = LV + |
C~---~CHECK ON DFLTAT
1SN 0118 CALL DELTCKINPASS, TTDELT,PoWsK,TOELTALDELTAT,N2)

C-=~-END DELTAT CHECK
C-—=- ASSIGN OTHEK VALUES REQUIRED (TEXAS A AND M REP1}

ISN 0119 DO 5218 M=1,pP

1SN 0120 32 KPRIME(M) =RU{M}/CSIDE

ISN 0121 _CtM) =.0.0

1SN 0122 Fi¥} = 0.0

1SN 0123 CMAX(M) = 0.0

ISN 0124 LaM{M)=]

ISN 0125 Div) = 0.0

ISN 0126 NFMAXCIM) = 0

ISN O127 NFMAXT{M) = O

1SN 0128 LMAX{M} = 0.0

ISN 0129 NOMAX({M) = 0

ISN 0130 FMAXC({M) = 0.0

1SN 0131 FMAXT(M) = 0,0

ISN 0132 R(¥) = 0.0

ISN 0133 5218 DPRIME(M} = 0.0

ISN 0134 KPRIME(PPLUSLI=0.

ISN 0135 OPRIMP = 0.0

ISN 0136 LAMP =1

Co=-= SIXTH PRINT INPUT FGR ONE PRUBLEM

ISN 0137 5190 WRITE (6,5200)CASE,PROB,PRCBS

ISN 0138 5191 WRITE (6.,5201)

ISN 0139 5192 WRITE(645202) TOELTAWP,IUPTI,INPT2,10PT3,10PT4, foPT1l,
1 10PTL2,10PTI3,10PT14,10PTISFEXP

ISN 0140 5193 WRITE (6452031

ISN Ol4} 5194 WRITE(6,5204) ENERGY,EFF RUTOTL s PERCNT 4 MO, QPOINT 4QSIDF, JPOINT,JS1
1VE N2

ISN 0142 5195 mRITE (6,5205)

ISN 0143 5196 wWRITE (6.5206)(M.H(Fl.K(H).AKEA(Hl.RU(H).SLALK(H),ERES(H).
1 VIM) yKPRIME (M) ,M=1,PPLUST)

ISN Ol44 5200 FORMAT(///27TH TEXAS A % M UNIVERSITY +3Xy 220 PILF DRIVING ANALY
ISIS,4X,9H CASE NU.,ATy3X¢ 12 PROBLEM NO.o 14,34 DF, 14

ISN 0145 5201 FORMAT{2XI0H 1/DELTA T3X[HP4X62HOPTIONS i 2 3 4
1 i 12 13 14 1510X10HEXP, FORCE)

ISN Ol46 5202 FORMAT(F11.14015,11X415,10X515,F18.0)

ISN 0la7 5203 FORMAT{113H ENERGY HAMMER EFF LENCY RULTOTAL) PERCENT UN
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1DER PUINT MD  CIPCINT} Q(SIDE) J(POINT) J{SIDE) N2} i *

ISN Olag 5204 FCRNAI(ZFIO.Z-IOXFIZ.I'Flé.l-lll-FIU-Z.FQ.ZuFl0o2.F9.?nl7|
TSN D14y 5206 FURMATLE 3, Fl6.3,015.7,Fl003,2F1443,F9.2,F11.2,E15.7)
15N 0150 5205 PERMATIZH  MyTX,5H W(M)y7X,5H K{M},7X,8K ARLAIM)46X,6H RUIM) ,TX,41
IH SLACK(M) ERES{M) VSTART(M) KPRIME(M))
C-~~- CFFECT OF GRAVITY BEFORE RAM STRIKES-~TEXAS A AND M SMITHS GRAVITY
ISN 0151 5298 IFL10UPTL14~2)5220,5221,5221
1SN 0152 5220 wWICTAL = 0.0
ISN 0153 RTQTAL = 0.0
ISN 01%4 DG 5 JT1=2,PPLUSI
1SN 0155 WTICTAL = WTOTAL ¢ W(JT)
ISN 0196 5 RTCTAL = RTYOTAL + RU(JT)
ISN 01517 DO 8 ST = 2,PLESS]
1SN 0198 RUJT} = (RULJT)*WTOTALI/RTOTAL *
IS 0159 8 FIITY = FLIT-1I+WIJTI-R(IT) °
ISN 016G IFIK(P)16T,66,67
ISN 0161 66 IF(KPRIME(P)}I6T 163,67
ISN 01¢2 67 3{P) = (F(PLESS1I4WIP))/(KPRIME(P)+K(P]))
ISN 0163 LF(QSIDE-DI{P) }164465,65 . =
ISN 0lo4 64 R{P) = RU(P}
tSN 01¢5 FiP} = FIPLESSL) + W{P) - R(P)
ISN 0l66 UIP) = F(P)/KIP)
ISN Olo7 6L Tu 63
. 1SN 0168 65 R(P) = UIP)SKPRIME(P)
ISN 0l69 F{P) = D(P)* K{P}
1SN 0170 63 CONTINUE
ISN 017 DC 111 JT = 1,PLESSI
{SN 0172 JIV = p=yT¥
‘ ISN 0173 CULITHMY = FUJTM)/KIJTM)
ISN 0174 S DIJTM) = CLJITMe1)+CIITH)
1SN 017% DPRIMEIJTM) = D{JTMI-WTOTAL*QSIDE/RTOTAL
ISN OL76 111 CONTINUE
ISN 0177 D0 8000 M=1,P
ISN 0178 8000 STRESS(M)=F(M)/AREAINM)
ISH 0179 5221 N=0
ISN 0Ls0 LAY =1
ISN 0161 5230 1FIIOPT15-2)5240,5231,5240
ISN 0182 5231 WRITL(6,5234)N,DPRIMP,N2
ISN 01s3 5232 WRITL (6,5235)
ISN 0184 5233 HRIYE(boS?}bl(H.D(MI.C(M).STRESS(M),F(M).R(MD.H(H).V(M),OPR!ME(M).
TKPRIME(M) s FMAXC (M), FMAXT (M} yM=1,P)
ISN 0145 NKCNT=0
ISN Olso 5234 FURMATU{//18H TIME INTERVAL N =16,7X18HNET PENETRATION = F10,6,
LTXSHNL = 19,9X5HN2 = 15}
ISN 0187 5235 FORMATU{120H SEGMENT M DiM) C{M} STRESSI(M) FiM)
1 RIM} WM VIM) OPKRIML(M) KPRIME(M) FMAXCIM) FMAXTIM})
ISM olas 9236 FCRMATllB.Fll.b.FlO.b.Fll.Oy?Fl0.0yFl0.2,2F10.6.3F1C.0)
C--=~~ DYNAMIC CUMPUTATION BASED ON SMITHS PAPER MODIFIED (TEXAS REPN}
SN 0169 %240 LACK = 1
15N 0190 5241 L0 6y M=1,P
C 68 IS5 BEIWELN 5439 AND 5440
1SN 019l BN} = DIM)sv(M)*#12, 0%DELTAT
ISnw 0192 TFIUMAXIM)=13{M})120,21,21
5% 0143 20 UMAX(M) = D{M) .
ISN Olwa NOMAXIM) = N ¢ 1
ISy 0195 21 Cx(M) = C(M)
1SN 0196 1F{“-P) 34,5400, 34
1SN 0197 34 C(M) = DIMI~D(M$LI-V(ME1I12,0%DELTAT
C STATEMENT 34 MUST USE A COMPUTED VALUE FQR THE ACTUAL O(mMe L) -
ISN 0198 5242 1F(C{M}115243,30,30 -
186 D199 952643 1T (ABS{CIM))I-SLALKI(P)15264,5244,5246
1SN 0200 5244 C(V) = 0,0
1SN 0201 5245 L Ty 30
ISN 02062 5246 CUV) = C(M)+SLACK (M)
C NCTL THAT UNLY A NEGATIVE VALUE GF CI(M) RESULTS FROM S246
1SN 0203 30 FXL#) = (M)
C A TLXAS ROUTINF FOR B{M} IS OMITTED HERE
ISN 0204 5250 1F(1UPT4~2)5300,364+5300
C===- 36 TLG 35 [$S A TEXAS ROUTINE REPLACING SMITH ROUTINE 3 OR 4
Isn 02¢5 36 IF{ABSIERES(MI-1,0}-,00001)38,38,14
1SN 0206 33 H{¥) = C(M)*KIM)
1SN 0267 GG TD 5400
ISN 0208 14 TF{C(MI~LXIMIN12,35,15
ISN 0209 15 FUM) = FX{MI+{ICIM)-CX{M})*K(M))
15n 0210 GC 10 34
ISN Q0211 12 FUM) = FXIMIFCICIMI-CXIM) ) 2K {M)/ERES(M)*%2)
1SN 0212 35 F (M) = AMAXL(Q.0,F(V))
Isn 0213 LG 16 5400
C A TEXAS ROUTINE FOR GAMMA 1S OMITTED HEKRE
C---- SMITH KOUTINE 3 OR &
ISN 0214 5300 IFILRES(M)I-1.00)5302,5301,5301
ISH 0215 5301 F{F) = CUMISK(M)
ISN 02106 G0 T0 5600
1SN 0217 5302 1FICIM))530%,5303,5304
ISN 0218 5303 F(VM) = 0.0
ISN 021y GO Tu 5400
Isn 02720 5304 IF(CIM)-CMAX{M}]19306,5305,530%
Isv 0221 5305 CMAXKIM) = (M)
1SN 0222 TAMY = C{PI*KIM)
. 1SN 0223 LC Tu 5400
1SN 0224 5306 F(V)=|K(V)/LKES(M)"?)*C(H)-(l./ER[S(M)“Z-l.)‘K(M)'CMAX(F)
ISN 0225 FAM) = AMAX1(F{M)},0.0)
1SN 02726 . GC TU Sa0n
1sy 0227 5400 IF(#4.6T.0) GU TO 48
ISN 0229 IEIFLXPLLFLOL) GD TG 48
ISN 0231 NPY1=N+]
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isN
1SN
1SN
1SN
ISN
1SN
ISN
1SN
1SN
15N
ISN
1SN
ISN
1SN
Isn
ISN
1SN
1SN
1SN
1SN
1SN
1SN
ISN
18K
1SN
1SN
1SN
1SN
ISN
1SN
ISN
1SN
ISN
ISN

ISN
1SN
ISN
ISN
ISN
1SN
1SN
ISN
ISN
1SN
ISN
1SN
1SN
15N
TSI
[SN
I SN
1SN
1SN
1Sy
SN
1SN
155

1SN
ISH
I SN
1SN
1SN
I5SN
15n

Isi
158
ISN
I SN
ISN
1sn
15%4
1SN
IsN
1SN
1S4
1SN
ISy

ISN
1SN
15K

1SN
Isn
15N
1Sh
1SN

IS
SN
15

[eFa)

0234
0235
0236
0237
0238
0239
0240
0261
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266

0267
0268
0269
0270
0271
0272
0273
0274
0275
02176
0211
0278
0279

0289
0282
0284
02¢e%
02806
Q2u7
02ty
0261
n29n
g29t

0292
0293
0214
0295
0296
02417
0294

0299
Q30u
0301
03063
0304
030%
N3u6
030y
0309
0310
0311
0312
0313

D314
0315
0Nea

o3¢
03106
031ty
0320
0321

0322
0323
0325

46
a7

90
44
50
51
52

54
53
5410

10
56

57

55
73
T4

76

17
79

T8

1m
1t

5420
5421
58

72
5422
5423
5424
5425

5427
5429

5430
54139
167
166
69
68

5440
344]
7000

7001

7903
9444
56443

193

190

194

192
60
105

(3]
.4
106
¢ ---
163

C----

TEANPLLGTo(0.0125/DELTATY) GO TU 4B
1TF{NPL-0,01/DELTATIGb446,90
IFLFLL)I-FXI1)147,48,48
FLLI=AMAXILF{1)}4FEXP,0,)

GO Ty 48
FUL)=AMAX1{O0.0+FEXP*{1,0-(DELTAT*#(NPI-0.01/0LLTATI/Z0.002%)})
TFIKPRIML{M}IS50,55,50
LELOPRIME(MI-U{M)I+CSIDEISL 52,52
DPRIMEIM) = DIM)-QSIDE

CONTINUE
TF{UPRIMEIM)-D(MI-QSTDE)S3,53,54
OPRIMEIM) = D(MI«CSIDE

CONTINUF

LAP = LAM{M)

GC TUL10457),LAP
TFIUIMI-DPRIME{MI=QSTDE]S6,57,57

R(¥) = [DIMI-DPRIME(M))I#KPRIME(M)#(1.,0+4JSIDESV(M])
GC TO 55
RI¥) = (D{M)-DPRIME (M) +JSIDC*QSIDESVIM) V¥ KPRIMEIM)

LAN(#) = 2

CONTINUC

IFIM=P)ITL 74,71
TF{UPRIMP-D(P)I+CPOINT)I?75,76,76

UPRIMP = D(P)=~QPOINT

CONTINUE

LAMP = LAMP

GC TO (77,78)LAMP
IF(O(P)-DPRIMP~QPOINT}T9,78,78

FIPY = (D(P}-DPRIMP)*K{P}*({]1,0¢JPOINT*V(P))

GC To 1M

FIP} = {LIP}-DPRIMP+JPOINT*CPUINTAV(PI)*K(P)
LAMP = ?

FIP) = AMAXLI{0.0,F(P))

CCNTINUE

GRAVITY UPTIUN

TFLIOPTI4-2)5421,5423,5423

IFILACK~2)58,72,72

VILY = VIL)=(FOE)#R(L)I=WIL})*32. ITHOELTAT/W()

LACK = 2

GO TO 5429

VIM) = VIM)&(FIM=-1)=FIM)I=R{M)I+W(M} ) %32, 1 7¢DELTAT/WIM)
GG 10 5429

TFLLACK=-215424,542T7,5427

VIL) = VILI=(F(LI4R{1))*32,17T#DELTAT/W( L)

LACK = 2

G0 T0 5429

VIV) = VIMIS{F{M-1)-FIM)-R(M})*32. 1 T*DELTAT/WIM)
CONT INUE

FF{ELSTLL) GO TN 5430

ITCF {1 o LE 0. ANDL VL . LEL~0.1} VIL1)=-VSTART
FMAXCIMY = AMAXLIIFMAXC{M),F{M))

FMAXT(M) = AMINLIFMAXT(M),F{M))
TFITMAXCIMI-F{MI}]166,167,166

NEMAXC UM} = N4

TF(FMAXT{M)=-F{M})068,69,068

NEMAXT{M) = N+
STRESS(M)=# (M) /AREA (M)
n=N+ ]

THIS 1S END OF DO 68 STARTINL AT 5241

IFLIOPT15=-215444,544] 45444

[H{N-))T0LC0,7001,7000

AKCNT=NKONT 4] .

If {NKONT-IPRINT)5444,T7001,56444

WRITE  {645234)N, UPRIMP,N2

WRITE  (645235)
WATTE(6052361{MeUIM) CUM)ySTRESS (M) g FIM)yRIM)yWIM),V{M} ,UPRIME(M],

LRPRIME (M) (FMAXC (M) FMAXT (M) yM=1,P)

NKCHT=0

GO TU (5643,192), LAY

IFLIVIPI*0,1).GT.0,) GO TO 192

WVz0.9

GO 193 JA=NSEG],P

WVERVEW{JAY BV JA)

PRIV oL 1400 e AND. WYL LT UL ANLLLMAXIP )L, GTLDIP) ) GU TO 190
GC TO 192

LAY=2

SLOTU (192,194,192),10PT15

Wl TLI6,5234) NyUPRIMPyN2

WRITE{E,5235)

WRITE (6952361 IM LIM) eCIM) pSTRESSIMIZFIM) )RIM) 4 WIM), V(M) ,UPRIME (M),

FEPRISL (%) g FPAXCIM) JFMAXTIN) yM=1,P)

THIVI2)/VSTART=3.1161460,60
WRITE Loy 1J9)

FPORMATET4H  THE RAT[) OF THE VELOCITY OF wWi2) T THE VELOCITY OF T
It PAM LXCELUS 3.1)

GC 10 5570
FFIVIPI/VSTART=3.11163,62,062
WRITE (6, 106}

U T 5570

PCRMAY (74K THE KLTIG OF THE VELUCITY OF W(P) TU THE VELHCITY OF T
tHO ®am FXCEEDS 3,1)

CAL OF TEXAS REPN

CUNTENUL

LF{LAYLEL.2) GO TO 5447
FFIN=N21524640,5447,5441

5260 CYLLES FOR NEXT TIME INTERVAL
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1SN 02320 S44T UG H449 M=1,P

1SN 0327 5448 FMAXCIM) = FMAXCIMP/AREA(M)
1SN 0378 5449 FMAXT(M)=FMAXT(M)/{-AREA(M))
ISN 0329 GC TUL5462,5442,5553),10PT15
1SN 0330 5442 WRITE  (6,2105)
1SN 0331 5550 WRITEL6¢2106) [MyAREA{M) NFMAXC M)y FMAXC (M) NEMAXT (M), FHAXT (M) UMAX
' LIV UMY, ViM) M1, P)
1SN 0332 BLCWS5=0.0
1SN 0333 5553 IFIDPRIMP,GT.0.0) BLOWS=1,0/DPRIMP
[SN 0335 5951 UBLUWSILT! = BLOWS
ISN 033¢ UKLTTLILT) = RUTOTL -
ISN 0337 UFFAXC (LT} = FMAXCIP)®AREALP)
[ INITIAL U ABOVF IDENTIFIES FIGURES USED IN SUMMARY
1SN 0338 GO TU(5552,5%52, 1501,10PTLS
1SN 0339 5552 WRITL {6,2107)DPRIMP,BLOWS,N
1S 0340 2105 FCRMAT(//103H SCGMENT AREA TIME N MAX C STRESS TIME N -
1 MAX T STRESS CHMAX (M) DiM) ViMY)
TSN 0341 2106 FCRMATUIB,F19.3408,F12.041164F12.00F106,64F10,64+F13.2)
1SN 0342 2107 FORMAT{24H PERMANENT SET CF PILE =F15.8, 38H INCHES NUMBER OF B
1LCWS PER INCH = F16,8,27H TOTAL INTERVALS = |8}
ISN 0343 150 CUNTINUL
. 1SN 0344 5558 DO 5563 M=NSEG],P
1S 0345 FIMAX(LT)=AMAXE{FTMAX(LT ), FHAXTIM})
1SN D346 FOMAXILT)=AMAXT (FCMAXILT) FMAXC( M)}
ISH 0347 TEIFCMAXILT)-FMAXCIM]} )5560,5561, 5560
1SN 0348 5561 NCMAX(LY)=M
. 1SN 0349 5560 [FIFTMAX(LT)-FMAXT{P})5563,5562,5563
1SN 0350 5562 NIMAX{LT)=M
158 0351 5563 CONTINUL
1SN 0352 5555 IFCI0PT11~215556,5570,5570
1Sh 0353 5556 IF (UPRIMP-0,001)53,707,707
1SN 0354 707 IF (BLUWS=60.0)701,701,59
1SN 0355 59 CONTINUF
1SN 0356 WAITL (6,H03) CASE,PROB
1S 0357 WRITE (64804) QPGINT,JPOINT
tSN 0358 WRITE {6,805}
1SN 034y 60 801 J=1,LT
ISN 0360 - URLTON=URYTTLLJ)/2000.
1S4 0301 BO1 WRITEL6,802) UBLUWS(J) o URUTTL (I} JURDTON, UEMAXC(J ), FCMAXLJ] yNCMAX (J
21 FTMAX(S) (NTMAX(J)
ISN 0362 BC2 FORMATIAXFT.44F10. 01 H-F5.0, IHTF13,0,F13.0,4X12,F13.0,4X]2)
ISN 0363 803 FCIMAT (LMULL0X422M PILE DRIVING ANALYSIS,
L 10Xy 12H CASE NUMBER . 3IXyAby10Xe 15K PROBLEM NUMBER,3X,13)
ISN 0364 BO& FORMAT (19X, 9HCPOINT = FS,2,11X9HJPNINT = F5.2)
1SN 0385 805 FORMAT(2X13HDLOWS PER IN.2XTHRUTOTAL7X11HPOINT FORCE2X12HMAX € STR
TESS2XIHSLG2XL2HMAX T STRESS2X3HSEG//)
[ PLETTING RCUTINF
LSN 0366 IFLIOPTE3-1)5570,5514,5574
ISN 0357 5574 CALL LRARGHTUT feyune, oo s UBLGWS ¢ LTy CASEy PRUD )
[ XL SLOTTING ROUTINE
[SN 030# 5570 WRITL 16,5572 .
4 5070 STARTS AT 5120
1% 0309 5972 FOLMATLIML}
154 0370 5571 LU TG 5910
15 2371 LRE
$%485F QR T R AN CRUES S REFERENCLTLE L1 S T 1 NGeesss

SYMBUL  INTLRNAL STATUNMINT NUMETRS
[

0004  UI21 6173 OLT4 0184 0195 0197 0198 0199 0200 0202 0202 0206 0208 0209 0211 0215 0217 0220
022t €222 0224 9298 0313

3} 0034 0125 0162 0163 0166 0168 0169 0174 0174 0175 0184 0171 0191 0192 0193 0197 0197 0240 0241
0243 €244 0248 0249 0251 0255 0256 0260 0261 0263 0298 0306 0313 0331
F 0cu4 0122 159 0157 0162 0165 0165 0166 0169 0173 0178 0184 0203 0206 0209 0211 0212 0212 0215

‘ 0211 G222 0224 0225 €225 0235 0236 0236 0238 0261 0263 0265 0265 0269 0272 0272 0275 0278 0278

| 0282 €284 02?55 0786 0288 029C 0298 0313

: ounho

| 0359 0363 03¢l 0361 0361 0361 0361 0361 03061

0tLZ2 0004  ©1525 U026 0028 0057 0058 ULl6 OL18 0l4s 0160 0162 0166 0169 0173 0206 0209 0211 0215

0222 C224 0224 0261 0263

I M Ou20 0022wl 002% 0025 0025 0027 0028 0N28 0029 (0032 0032 0G32 0038 0038 0038 0040 0041 0043

\ OLa3 0643 9046 004T  OULZ 0063 0064 0091 0092 0095 0096 0099 0100 0LOO 0104 0105 O0LO9 0110 0110

‘ TOELY O Cl14 OlES Al 9120 0121 0122 0123 0124 0125 0126 0127 0128 0129 O0L30 0131 0132 0133 0143
AL643  0143 0143 0143 0143 0143 0143 0143 0143 0143 0177 0178 0178 0178 0184 O0l64 0134 0184 0184

‘ Olo4  Gl84 0184 U184 0184 0184 OlB4 0184 OLl84 0190 0191 0191 0191 0192 0192 0193 0193 0194 0195

\

\

|

|

\

|

\

\

|

|

Xt =

019%  Cl494 0197 0197 OL47 0197 0198 0OlY97 0199 0200 0202 0202 0202 0203 0203 0205 0206 0206 0206
029t C20% 4209 D204 0209 0209 0209 07211 0211 0211 0211 0211 021l 0212 0212 0214 0215 0215 0215
0217 C218 7228 0220 0221 0221 0222 0272 0227 0224 0224 0224 0224 0224 0224 0224 0225 0225 0227
0239 €240 024C 0241 0741 0243 0243 0244 0244 0246 0248 0248 0249 0249 0249 0249 0249 0251 0251
O0s51 €251 w2yl 0252 025 0272 02712 0217 07712 0272 0272 0272 0278 0278 0218 0278 0278 0278 0280
0284 €284 02n4 0285 0285 0285 0286 0286 0287 0288 0288 0289 0290 0290 0290 0293 0298 0298 0298
0298 €293 0294 0294 0298 0298 0298 0298 0298 0298 0313 0313 0313 0313 0313 0313 0313 0313 0313
0313 313 D313 0313 0313 0326 0327 0327 0327 0328 0328 0328 0331 0331 0331 033} 0331 0331 0331

0331 ¢33t URRR 033y 0344 0345 0346 0347 0348 0349 0350
N 0179 DIR2  Dl4a 0231 0287 0283 0291 0291 0293 0296 0311 0325 0339
P Ouirs  BO0S 0Nt 901 0u20 0023 0027 0032 0N3% 0035 0044 0046 0U95 0096 0099 0]00 0113 o©tls o118

OlEY 013y 01eC 0161 0162 0162 0162 0162 0163 0164 0164 0165 0165 0165 0l66 Olbe 0166 0168 Otes
0le®  Clev 0169 uted ull2 0177 0184 0190 0196 0254  025% 0256 0260 0261 0261 0261 0261 0263 0263
0263 6268 2205 9265 0248 0301 0304 0306 0Ine 0313 0318 0326 0331 0337 0337 0344

R Ouia 0132 015y 015> 166 0165 0168 0184 0249 0251 0269 0272 0215 0278 0298 0313
v Qué GOOR 0071 112 (114 0115 0143 0184 OL91 0137 0249 0251 0261 0263 0269 0269 0212 0272 0275
075 02717 027y 0282 0282 0298 030L 0305 0306 0313 0114 0318 0331
w 0.04 0020 L2 0024 0058 0061 0071 OL1B 0L43 0155 0159 0162 0165 0184 0269 0269 0272 0272 0275
| 0775 €293 0315 0413 .
Cx OL0s  Cl9S 0208 9209 0211
Dk OLBO  0CB2  0IBe  0D8L  008Y
bx 004 .
‘ Fx 0604 €203 0209 9211 0235 .
JA 0304 0305 0340y . B
J1 0u23 0026 Clb4  015% 0156 0157 0158 OI58 0159 0159 0159 0159 c171 0172
LT 066 G117 0117 543% 0436 0337 045 0345 0346 0346 0347 0348 0349 0350 0359 0367
ML 0Chd  GC9l 0v9>  009A  GOW9 U100 0lu0  Ol4)
NL 0Gh% 0057 UOST  J0SAR DOS8
N? 0118 Cl4l 0182 079n  03L1 0325
RU 0004 6092 0096 0097 0100 0101 OLLO O01l6 0120 0143 0156 0158 0164
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dYMBNL
Wy
LY
EFF
FAL
LAM
LAP
LAY
NP1
AREA
CASE
cmax
UmAx
ORawn
ERES
FTxP
Lack
LAMP
PrRUB
SCKT
AMAX]
AMEIN]
BLOWS
FlMaAX
FLuafv
FMAXC
FMAXT
FIMAX
1upPtl
lupi2
10PTY
10PT4
JSIDE
KHULU
NCMaX
NDMA X
NKUONT
NPASS
NSEGI
NTMAX
PROBS
CS1DE
RUKIL
RUSUM
RWENR
SLACK
SLOPE

SYMBUL
TUTAL

wPILE

XPLOT

YPLOT

BLOWSX
DELTAT
DELTCK
UPRIME
pPrimp
ENLKGY
IopilLl
P12
P13
tptlae
1opr1s
IPRINTY
JPINT
KPR [ ME
NFMAXC
NFMAXT
PLRUNT

PLESSL

PPLLSE
OPGINT
RIOTAL
RULIST
RUPINT
RUTIITL
RUTTLK
Hnt ICH
STwess
ToeLra
TIDELT
URLIWD
Vb -8 xL
UKL TO"
CrUTTL
V571ART
wiLTAL

#88%9F U K T R AN

INTERAAL STATEMENT NUMBFRS

0303
0106
ocsy
0172
0uua
0246
0180
0002
0004
ovo2
OLu4
0.0¢
0367
0c0o4
0048
0189
0136
0203
0usl
0076
0285
0075
0004
0096
0u04
0604
0004
0005
0caos
0995
0905
0002
0002
004
0s04
0065
0002
000s
0co4
0003
ous8
0904
ouss
00v4
0u04
02715

0305
0199
CO61
0173
0124
0241
0300
G231
0029
0005
0123
(P2

Coar
al39
C268
0258
0GCss8

c212

0077
0064
G100
0130
c131
0063
0031
€037
0039
0010
0058
0004
0348
0129
6185
o118
0014
0350
0005
0129

00173

0005
0Cle

0305
0205
Ol41
0173
(¥ LYY

0309
0232
0030
o107
0220
e192

00&y
0229
0270
0258
0107

0225

0079
0346
0100
0164
Ols4
G345
0139
0139
0139
0u10
Olal
0028
0361
0194
0294

0014
0361
0056
0l41

0005
0076

0306

0173
0252

0323
3234
0032
0137
02zl
9193

005k
0236
0274
0254
2137

0236

0090
LETYY

0284

0285
0345

0073
0249
0057
0294
0023

0137
0163

0905
0089

Cl74

0238
0033
0356
0224
03ve

0058
0238
0276
0264
U3se
0238

0332
03e7

0284
0285
0349

al39
0251

0295

0304

0175

0061l

Otre

6033
0367

0331

0058

0367
0265

0333
0361

0286
0288
0361

G204

0299

0344

0240

0043

#¥s22f UR TR AN

INTERNAL STATEMEAT NUMBLRS

0103
022
0uoa
Quos
067
0017
0118
QLls
0135
00586
0058
0usy
0658
0358
0058
0Ju5
0002
0202
0004
0uds
ouss
020
RANRY
03054
0151
Ouua
00313
0.71
Uonb
0.04
0)va
oula
0905
06,64
Ocus
0360
[$I9e
0001
0152

G105
0024

0075
ol18

0133
o182
0061
0079
0059
Cc139
0139
0139
0017
0058
0004
0126
o127
C043
CoE9
£o1s
Clle
Cl56
0038
Co906
0073
Gars

G178
co17
cQos
0335
0337
0361
2336
CO0&6n
0153

0105
0024

0590
3191

0175
0255
0141
01133
0059
0366
0151
011
on12
Olal
01290
0287
07251
014}
00225
ool
014l
Olve
2105
onay
onrs
2068

Dby
utlH
00ub
ulesl
0361

3360
(U B3
015%

V106

0197

0184
02%¢

0152
0094

02a7
0292
0295
0261
0134
03131
0331

Q040
QU2
0255
ulsa
orn

0100
00hH

cugy

290
Rl
no1s
ud6r

uisl
Q207
J15H

otor

0232
0240
0260

0139

0310

0263
0143

Q043
0030
0256
0175

0131
vod9
0238

olta

U3o?
0314
011y

0234

0241
0261

0329

0357
0161l

D57
acie
0260

00yv3

UREE]

0318
0367

CRTCSS

0174

0035

0143

0284

0335

0298
0298

0241

0044

0175

0335

0205

0345

0339

0313
0313

0243

0045

CRGSS

0238

0243
0263

0338

0162

0162
0045
0263

009¢

0238

0244
0296

0168

o164
Q043
0357

o100

REFERENCE

0175

0lal

0211

0340

0377
0328

0244

0143

017

V214

a3z
032b

0248

0t9y

0290

0224

01313]
0331

0251

0202

0327

0224

0337
0345

REFERENCE

0269

0248
0311

0184

217
o097

T

0272

0249

0333

0239

RN

014

02175

0251

0333

0249

0104

0336

02178

0298
0339

0251

0109

C 1 ST i N Geseee

0328

03406
0349

L1

0313
0353

0298

0115

0331

0337

DETNS

S T I N Gessss

0313

Olle 0134 Ol4s Q)5
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eesvef 1 K T R AN CR 0SS WEFERENECE L1 ST L N Gesees .

LAREL CEFINED REFERENCES
5

oLs56 0154
& Q024 00?3
3] 0159 0157
10 V248 0247
12 0211 0208
i3 0092 0091
14 0208 0205
15 0209 0208
20 0193 0192
21 0195 Cl92 0192 -
30 0203 0198 0198 G201
32 U120
34 o197 Clye  019¢
35 G212 0208 0210 : ' .
36 0205 0204 .
38 0206 0205 0205
“6 0235 0234 0234
a7 0236 0235
48 G239 0221 0229 0232 0235 0235 0237
50 G240 0239 0239
. 51 0241 0240
52 0242 0240 0240
53 0245 0243 0243
54 V244 0243
5% 0253 0239 0250
¢ 56 0249 0248
57 0251 0247 0248 D248
58 G269 0268
59 0355 03153 03%4
60 DERRT 0314 U3ll4
-3} G3la 0314
62 0319 03l 0318
63 ulL70 Olel  0le67
b4 ulea 0le3
65 Uled 0163 0Ole3l
66 Olel 01460
67 Ot62 0160 0160 01&1 0101
68 U290 0190 0288 0288
69 0289 0288
71 0266 N254 Q254
12 0272 D268 0768
13 0254
14 0255 0254
15 0256 025%
76 4257 0255 92%5
77 U260 0299

*odesF U R T R AN CROSS R EFERENCE Ll ST LN Gresxs -
LABEL  DEFINED  REFERENCES
78 0263 0259 0260 0260
79 0261 0260
90 0238 02134
105 0316 0315
106 0321 0319
111 0176 oLzl
143 0095 0094
144 0096 0095
145 0100 009y
146 0099 0094
150 0343 0338
163 0322 0318
166 0288 0286 0286
167 0287 0286
171 0265 0262
180 oll4 oLl3
190 0309 0306
192 0314 0300 0301 0308 0310 0310
193 0305 0304
194 0311 0310
701 0075 0354 0354
102 0079 0077 0077
703 00682 0078 0078
704 0084 0079 0079
105 0086 0079
106 0088 0081 0083 0045 0087
707 0354 0353 0353
713 otz 0098 0102 o011l
6l 0361 0384
602 Va2 RN
AR} NRERY AR
FARY Vire AR
€83 T3 348
2105 0340 0330
2106 0341 0331
2107 0342 0339 . -
5003 0007 0006
5010 0005 0370
5020 0017
5021 0018 - :
5022 0019 .
5030 0czo0 ’
5031 0071
5040 0625
5041 0026

5083 6027
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© LABEL
5084
5086
5087
5088
5090
5092
5100
5101
5102
5103
5104
5105
5106
5110
5111
5112
5113
5114
5115
5116
5117
5118
5120
5121
5140
S141
5150
5151
5152
5153
5154
5160
5164
5165
5170
5171
5172
5173
5175
5176
51717
5178
5179
5180
5181
5183

LABEL
5184
5186
5190
5191
5192
5193
5194
5195
5196
5200
5201
5202
5203
5204
5205
5206
5218
5220
5221
5230
5231
5232
5233
5234
5235
5236
5240
5241
5242
5243
5244
5245
5246
5250
5258
5300
5301
5302
5303
5304
5305
5306
5400
5410
5420
5421

DEFINED
0029
0030
0031
0032
0037
vo3s
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
G050
[¢1s3-21
0052
0053
Q054
0056
0058
[(]e].7 3
0067
0068
0071
0069
0072
G070
0073
0078
0080
0091
0093
0094
0097
0101
0103
0105
0106
c107
0109
o110
0il5

UEFINED
clle
0117
0137
0138
0139
0140
¢lal
0142
0i43
0laa
0145
0l4a6
0147
0148
0150
G149
0133
0152
0179
o181
o182
0183
0184
gree
o187
oies
vi89
0190
0198
0199
6200
0201
0202
0204
0151
0214
0215
0217
0218
0220
0221
0224
0227
0246
0267
0268

#ss08F IR TR AN

REFERENCES

0027

0031
0031
0037
0037
0039
0040

0039
0042

0046

0205
0020
0025
00138
0058
0107

0070

0070
0077
0078
0072

0094
0104

0106
0106
0109

0031

0037

0039

0032

0070

0074

0106

0043

*+333F O R TR AN

REFERENCES

0137
G138
0139
0140
0141
0142
0143
oy
0151
0151

o181

ole2
o183
0184
ols1

0198
0199

€199

0204
0214
0214
0217
0217
06220
0220
0196

0267

0151

0296
0297
0298
oLsl

0199

0204
0214

0217
0220

0207

0311
0312
0313
0325

0213

0216

CROSS

CROSS

0219

0223

REFERENCE

REFERENCE

0226

L1ST 1 N Geenné

LI ST 1 NGsssss
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ssseeF 0 R T R AN CkROSS REFERENCE LI ST I NGesees : 4

LADEL VEFINED REFERENUES
5422 €213

5423 €274 0267 0207

5424 0275 0214

5425 €276

5427 0278 0274 0274

5429 €279 0271 02713 0277
5430 L2284 0z80

5439 0286
5440 G292

5441 0293 0292 R
5442 0330 0329 0329 . )
54413 0301 0300
S64k G300 0292 0292 0295 0295
54417 €326 63123 032% 0325
5448 0327 .
5449 u328 0326 .
5550 0331
5551 €335
5552 G339 0338 0338
. 5553 0333 0329
5555 0352
5556 0353 0352
5558 G344
5560 C349 0347 0347
. 5561 C348 0347
5562 350 0349
5563 u3s) 0344 0349 0349
5570 0368 0056 0108 0317 0320 0352 0352 0366
5571 0370
5572 0369 0368
5574 c367 0366 0366
7000 2294 0293 v293
7001 0296 0293 0295
7003 V299
8000 6178 0177
9009 U064 0062

058/360 FIATIAN H

COVMPILOR OPTICNS -~ NAME=  MAIN,UPT=00yLINECNT=50,SCURCE,EBCCIC 4NULIST ¢NCUECK, LOUAD, NO%AP,NDEDT T, 10, XREF

15+ @nu2 SUBROUTINE URAW(WTUTALURUTTL,UBLOWS,LT,CASE,PROB)
15~ 00C3 DIVEXNSEIN URUTTL{150) ,URLOWS{150),YPLOT{51),XPLOT(51) '
15V 00ua 5574 YPLUT{1)=wTGTAL
158 G0O5 XPLOTI1}=0.
155 00Ce LIPI=LT+]
ISt 00u7 0C 5573 IP=1,LT
15N COub YPLUTLIP+1)=URUTTLLIP) /2000, -
15N 2049 55973 XPLCT(IP+1)=UBLGWSLIP)
15w €010 YMAX=YPLUT{LTPL)
1sn 0011 N2=N2
15N 0012 LF{YMAX.LE.400.) GO T0 3
1SN 0014 TF{YMAX,LE.8D0.) GO TO 4
1SN 0016 IFIYFAX.LE.1600.) GG TO 5
IS 00ls IFiY®AX,LEL3200.) GC 10 &
155 0020 3 uy=s2,
1SN 0021 6C Tu 10
1S, 0022 4 LY=100.
ISN 0023 6C 10 10
1Sy 0024 5 LY=200.
15N 0025 GG TO 10
1355 0070 6 VY=400.
T 1SN 0027 10 bx=10.
158 0028 PPRUB=PROK
158 00249 RETURN
158 0030 ENC
tekkef I R T R AN CROSS REFERENCE L1 ST I NGeedew
SYMBOL  T~TFRNAL STATi MENT NUMBERS
734 0027
vy 0L20  CO22 0024 0026
1p ou07T 0008 0NJE  0ON0Y 0009
LT 0ubz €006 0307
N2 ovll 0ol
CASE 0402 .
DRAW ouL?2
Lty 0006  GO1D
PROD 0G0? o2y
YFAK 0C10 0012 0J14 0OY&6 QOB

PPRUB 0628

XPLOT  QUU3  000% 0UDY .
YOLOT  0Lud 0004 0008 0019 :
URLUWS 0002 0CO3 0019

YRUTTL  0u02 0003 0008

WIUTAL 0202 G004
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desenf R T R AN

C R

€SS Akt ERLENCE

LAREL LEEINDD RLFERINCES
3 U220 00172
4 Q022 DIVIESD
5 0026 0016
6 0026 oo
10 o027 0021 0921 0025
5571 0009 0007
55174 1004
*heskx [NU GF COMPILATIGN #%3es¥
0S71360 FOKTRAN H
COUFPILFR OPTICNS - NAME=
ISN 0062 SUBROUTINE CELTCK (NPASS ) TTDELT P yWoK,TUELTA,DELVAT (N2}
1SN 0001 HEAL KyNPASS
ISN 00ua INTEGER P, PLESSI
1SN 0005 DIFMERNSTON WI150),K{15C),LELTL{300)
TSN CJL6 PLESS1=P-|
SN 2017 N=2#pP-]
ISN 00CE SUM=D.
1SN 0099 THIn=1.
Isn 6OLO0 TUELTA=TIDLLY
ISH 00tLt BELTAT=1./TUELTA
15N 0012 LO U M=1,PLE5S]
ISk GOL 3 DFLTIIMY=SGRTIW{MILL/KIMI)/ 19,0648
ISN NOL4G NNZPLESS LM
1SN 0015% 1 DELTI{NN)I=SORTIW{FMI/KIMII/19.648
15N 0OLlG TFIK(PI.GTL0.) GO TR 2
ISt 0018 GELTLIN)=1.0
1S G019 LC T 3
1SN 0370 2 UELTLIN)=SCRT{WI(P)/X(P}}/19.648
15N 0021 3 DC 4 P=1,N
156 0022 4 TMIN=AMINL {TMIN,DFLTLIIMY)
1SN 0073 TFLTMIN/2.-UELTAT 154646
1SN N024 5 VDELTAT=THIN/Z.
1SN 00235 TEELTA=1.0/DELTAT
1S5 2026 & Ll T M=1,H
S 0027 T SLF=SUMSLELTL(M)
1SN 1078 M?2=4,0%SUM/12.0%LELTAT)
SN 0029 RETUARN
ISN 0030 ENC
tt3eef 0 R T R AN CROSS REF ERENCE
SYMEOL T TCRNAL STATFMERT NUMIERS
K orng €603 0 s D01l 0015 0016 0020
M 0,12 ¢Cl3 6213 Qul3d 014 0015 0015 0021 0022 0026 0027
N 027 Colg 0720 Ju2i 0026
[ [ 0CDa UDDs JUNT 00ie 0020 0020
w 0532 5065 0613 0301y 0020
N OCla ocls
N2 0,02 Qu2w
SuM Qeva 02T 0n27 V028
SLKT 0u13  GCIS 0020
T™MIN O.u9 (022 0Nz 0923 00724
AMINL Quel/
LELTY 0oty GAI3 0015 0018 0020 0022 0027
NPASS N997  Cu03
VELTAT 0.2 0ol 023 0024 0025 0028
ULLICK 0Ot
PLLSSL  wfis €004 D712 0914
TLUILTA Ovu2 CCID 0911 0625
TILELY  Ouw0Z2  GOLO
*#£%3F 3 R T R A N CROSS REFERENCE
LABEL DEF INED REFLRENCES
i 0015 0012
2 0020 a016
3 0021 0019
4 vo22 0021
5 0024 N023
& V026 0023 0023
7 0027 0026
*exres ENU OF CUMPILATICN #s#sss
1eFzenl SYSEB134,T1454C5,RPOOL, A49394,RI000444 DELETCD
1FF285%1 VL SER ONBS= 5555%4.
1LF28n1 SYSEBI34.T145405.4P201.A49394,R0000445 DELFTED
ITF2u41 VOL SER NOS= S5TuBAD.
1tF2851 sYSCLUT SYsSNuUt
TLF28syl viL SER 0S= .
JEF 24,1 SYSEEII4.TI454C5.P001.A49394,LCADSET PASSED
Tee2asl VCL SFR Hlis= 666660,
ILF235¢ SYSERI34,.T145405,RPI01,A49394 , LCADSFT DELETED
1HF2851 VHIL SER NOY= 666666,

LI ST LN Gevese

LI ST I NGsress

LI ST I N Geesse

MAIN,OPT=00, L INECNT=5045GURCE yEBCUTC «NOLIST o NODECK, LUAD 4 NOMAP ¢ NOEDI T, 10, XREF
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CHANGE TO FLOATING

K, KPRIME , NPASS, NP|

POINT  JPOINT, JSIDE,

I

PROBS.

CHANGE TO FIXED POINT

NO

YES

P,PPLUSI, PLESSI, PROB,

1

K{M}
ALL VALUES FOR

DIMENSION
PROGRAM
VARIABLE S

READ
PROGRAM
VARIABLES

READ

Mel TO PLESS

K(PPLUS)= O,

IOPT4 <O

KHOLD{M) + KM‘

AREA (M)« LO]

NO

NO

™
TDELTA=
TTDELT
1
DELTAT =

I.O
TDlEL'YA

PPLUSI=
P+l

PLESSI=
P-1

READ
WM} ALL VALUES
M=1TOP

AREA(s 1.0
J
YES
AREA(P)*i.0
o ]
O

ALL VALUES FOR
Mot

READ
RULIST (M)

T0 PPLUSI

w({PPLUSI)= 0.0
WPILE = 0.0

IT =NSEGI

T

|

WPILE « WPILE +W(JT)

®
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SLACK(MI®
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»]Es
SLACK (P = 1000.
SLACK(rRLUS=D.0

ERES(M)+1.0

) YES
.

ERES(PPLUSI}) = 0.0
NC=!

K(NC) = K HOL D(NC)

READ
PRODRAM
VARIABLES

I0PTI2 € O.

NO I0PTi2e3

. |
M=

- > ’

e |

FYMAX(M)= D.O
FOMAX(M) »0.0

NO

YES

KONT = O

|
RUTTLX=0.0
BLOWSX= 0.0
Vi=VSTARY
LT=O

TF
+ 10PTH-2 °

RUTOTL = RUSUM

RUTOTL» W(D# V(I)9¥2

/12,
T

@ i
Mal

T

©
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® .

Ru{M)= 0.0

YES . -

ERCENT
— |
RupT o ([ERCENT )

RUTOTL

.
TOTAL=0.0 M =MO
I . [
M=MO
. RulM]=(2.0¢{RUTOTL —

RUPINT }# FLOAT(M~Mdf
AU(M)= (RUTOT L~ RUPINT) 3.5y (Foar(e-Mos)

ZFLOAT{P-MO+I)

M

TOTAL= TOTAL +
RULIST (M)

NO

YES

RU(PPLUS) = RUPINT

RU(PPLUS )=
RUPINT
WRITE
CASE, ProS,
TOTAL
M=t
—————{ .
RU(M) =(RUL1ST(M) /100.)
mRUTOTL
NO YES
VI «VSTART
|
M=2
T
>
v(Mi=0.0
NO
YES

v(PPLUSI) = 0.0
1

k{P)=Rru(PPLUS) QPOINT

|

LT = LY 4
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ALL SUBROUTIN

X
MAKE REAL
K, NPASS
1
MAKE INTERGER
M=l P, PLESSI
. 1
DIMENSION
VARIABLES
KPRIME (M) = RU(M)/QSI0E I
PLESSI*P-1
i
ClM)= 0.0 NFMAXC{MIO) N=28p-i
F(M)= 0.0 NFMAXTM)*0 T
CMAX(M}=0.0 DMAX(M=0. SUM = 0.

ALAm(MI =i NOMAXIM)e 0 TN
DNM}=0.0  FMAXC(M):0 DELTA=TTOELT
RM)=0.0  FMAXT(M}-0: VELTAT = L/TOEL
OPRIME(M)20.0 T

Mt
—
| OELTIIM) s SRR T {WIMG)/
NN PLE KiM)719. 648
= PL -
KPRIME(PPLUS) = 0.0 Dlqu(NbR-seRl(w(Mme))
DPRIME(P}=0.0 e
LAMP = |
NO
WRITE
CASE, PROS, PROBS
YES
WRITE TDELTA,P
10PT1,10PT 2 ,1OPT3, NO YES
10PT4,I0PTIL, TOPTI2,JOPTIY [
10PTI4, 10PT15 , FEXP
WRITE RUTOTAL ,M0, . OELTI(N)‘ SQRT{W{)/ K(ﬁ}
PERCENT, GPOINT, RSIOE, PELTIN} = 1O /719.6 48
TPOINT, TSDE, NPASS, N2
L - |
WRITE M, WM, K(M), V(M |
AREA{M), RU(M), SLACK (M,
ERES (M}, KPRIME , FROM ;
Msai_To PPLUSI M=
S — |

TMIN = AMIN  PICK A
MIHIMUM  VALUE FROM
TMIN OR DELTI{M)

WTOTAL-O
RTOTAL O

—

JT=2

WTOTAL: WTODTAL
AR

RTOTAL mRTOTAL+RU[TT DELTATaTMIN/ 2.

DELTA = LO/DELTAT +|o
NO. L r
YES M=
IJT=2  —r—x
SUM = SUM + DELTI(M)

RETT) =(RU(TT) s WTOTAL)
/RTOTAL
FATIm FIT-}ew(TT) -
R{IT)

NO NES

[]

o(PY ={F(PLESSI} rW(P))
7{kPRIME{P) +K(P))

& ® ©

NO YES
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® C ‘

DPRIME (ITM)= D(F TM)-W TOTAL|
¥ QSIDE /RTOTAL

N2= 409 SUM/(2.0¢
DELTAT)
]
R(F)=RU(A

‘ I ! ’ RETURN
‘ F(PY=F (P:ss:) +wip R(P) = 0{P)¢ KPRIME (P)
. =R(
i o{A= F{r) /K(A F(A = D6} sx(e) : |
| ; — Cew D) |
; I
CONTINUE "
: I
: .

- ITs|
r =
i ITMa P-IT
I CITM =FITM/ KTV
! . D{ITM) = D(ITM+1)+C(TTM)
)

I NO

YES

; CONTINUE

{
M=
>
STRESS(M =F(M)/
AREA (M}

i
]; NO -
S
2 : @ »{ vES

i
L N=0 .
o LAY =1
il ‘ 1F
i + 1oPTis -2 ]
: ; WRITE
H > N, DPRIMP,
} ! N2
i WRITE M, 0(M), CIMJ,

' : STRESS(M), F (M}, RIM), Wim),
! : . VW), DPAIME (M), KPRIME (M},
’ FMAXC (M}, FMAXT(M),

FROM M=i TO P
. |
; <
¢ NKONT=0
i
; 2 ®
LACK=1
: I
i
}
i . Ms |

D(M) = DiM + VM s 2.0
W DELTAT

@ .
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IF
oMAx (M)

I

OMAX (M) = D(M)
NOMAX (M) » N +)

ARS(C{MY} ~ SLACK(]

L

-oiM

[+

CX(M)=CM

]

@~

r
M-p b

{mi v D(M)- DMei}-vime1)
$12.0 ¥ DELTAT

Ag s{ERES(M] - LOY

1
cMlscim)+SLACKIM
cim}- 0.0
L
e
Ex(MeF (M)

/\
Q IOPT4-2 t

\/

TF
d C{m}=-Cxim)
F(M)= C(M)# \l"’/
k()
M F{M) & P (M) (( € (M)~
CX(M) ¥ K(IMY

FiMjvF x(M +{(c(M)=
cx{M¥ k(M 7
ERES(M) ¥ #2)

|

i
F(M= AMAX  PICK Twe
- MAKIMUM PO3ITIVE VAL UE
FROM 0.0 DR PIM)

|

FiM=0.0

FiM)a(x(M/srES(M)NY 2

I*CMI= (L
ERES(MY v g 2-1)
# KOy CMAX(M)

M
VA

F(M) = AMAR PICK THE

AXIMUM  POSITIVE
LUE FROM GO OR FiMY

IF
ERES(M) - 1.0

o

CMAX(M) = C (M

FiM)= c(M)w k(M

¥,

FiM}aCIM)S
K(M)
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FEXP SO

NPI =N+

0125
DELTAT

NPl >

.
Il
F(y= AMAXI PICk A MAX
POSITIVE VALUE BETWEEN
0.0 AND FEXP #(10-(DELTAT]
¥(NPI- ODI/DELTAT).Z0025)))

Fll}= AMAXI PICK A

MAXIMUM POSITIVE VALUE

BETWEEN F(1),FEXF
AND 0.0

DPRIME(M) = D(M)
+QSIDE

DPRIME (M) = D{M)
~ QSIDE

e

CONTINUVE

oPRIME(M) = p(M}+ @ SIDE

| S ——————

CONTINVE

I

L AP » LAM(M)

LAP=2

IF

D(M ~DPRIME (M)
— QSIDE

R(M}= D(M)-DPRIME (M} +
JISIDE % QSIDE#
¥ KPRIME(M)
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LAMiM)= 2

[

RiM) = (D(M) - DPRIME (Ml)#
KPRIME(M)® (1.0 +

T SI0E % v{m)

)

.

CONTINUE

DPRIMP~ D(P) +
QPOINT

OPRIMP = OIF) ~ QPOINT

L

CONTINVE

I

LAMP = L AMP

IF

F(P) = (0(P-DPRiMP —
IPOINT MQPOINT &
viplvkip)

I

LAMP3 2

|

O(P)- DPRIMP —~
QPOINT

o+

F(P} = {0lP} - bPRIMP) ¥ K (P} 2
(L0 + JPOINT o ViF))

1

FROM 0.0 OR F(F}

FlPY= AMAX  PICK THE
MAXIMUM POSITIVE VALLE]

+|

CONRTINUE

IoPTia -2

VY= VIN-F () +R1N-W (D)
¥ 32.17 ¥ NELTAT/W(l)

VIM=VIM +H{F(M=1) = F(M)
+wiM)e 3217 »
PELTAT/W(M)

5
o

VM= VIM)+ F (M) - £ (M)
~R(M)¥ 32,17 ¢
DELTAT/WIM

VIV - (F) + R ()
¥32 |TEDELTAT
/W)

I

LACK=2
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@ .

CONTINUE

/Fl\
= \ml/ =

IF

Flil <o
V(Y -t

NO

vy =-vSTART

- |

. 1

) FNAX(M=AMAXI  PICK

THE MAXIM POSITIVE

VALVE FMAXC(M) OR
FiM}

f
]
FMAXT (M}=AMARI PiCK
THE MAXIMUM POSITIVE
VALUE FROM FMAXTIM
OR F(M)

IF
FMARC (M)
~F ()

NFMAXC{M) = N +1

NEMAXT(M) = N+1

Ts
e

STRE S S(M)= F (M)/AREAM)

2
(16— Xo MeP

N=N¢+i

IOPTIS ~2

KOUNT=KOUNT +1i
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NKOUNT -

WRITE
N, DPRIMP, N2

WRITE M, O}, Cim),
STRESS{M}, F(M), R, wi
V(M) DPRIME (M, K v%n'n:
FMAXCIMY, FMAXTINY

FROM M=l YO P

NKONYT =0

Wvs=0.0

I

JA«NSEGL

—]

WV WY r w(IA)eviia)

Lay=2

IF
TOPTIS

WRITE
N, DPRIMP, N2

WRITE M, D), C{M)y
ATRESS(M), F (M), RIM),
WM}, VW), OPRIME (M)
KPRIME(M], EMARC{M},
FMAXT{M) FROM Mol 10 P

vip)

CONTINVE

VETART 3

WRITE THE RATIO OF
THE VELOLITY Wip) TO
THE VELOCITY OF THE
RAM EXCEEDS 3.

WRITE THE RATIO OF
THE vELOLITY w(2] Yo
THE VELOCLITY OF THE
RAM EXCEEDS 3.1

1

Mret

T

1
FMA!HM)'I'MAKC(N\A)/
MM

R
FMAXT (M} FMAXT (M)
#{-AREAIMI}
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W
3

ot

WRITE M, ARE A[M],
NFMAX C{M),F MARC (M)
NFMAY TO £ W AXT (0], Draax]

V) Ol VM, FROM Met
T P

NO

OPRIME.&T7.0.0

BLows = "berime

3

UBLOWS{LT)= BLOWS

YRUTTL{LY) = RUTOTL
I

UF MARCILT) = FMAXCIP)
* AREA(P

1F
2 10PTIS 3

WRITE
DPRIMP, BLOWS,
N

I

CONTINUE

I

MaNSEGt

o

b |

FTMAX(LT) = AMAXL

PICK & POSITIVE MAX

VALUE FROM FTMAX(LT)
OR_EMAXT{M}

FCMARLT) = AMAXI PICK

A POSITIVE MAXIMUM

VALUE FROM FCMAX(LT)
OR__FMARC(M)

]

NCMAX(LTY =M

|

CONTINUE

NO




SLOPE ={(RUTOTL -~RUTTL
Z{BLOWS -gLoWSY)

CONTINVE

SLOPE « AMAR LK A&
POCITIVE MATIMUM VALVE
FAOM 10000, OR SLOPE

WRITE

CASE, PROB

WRITE

QPOWT, TPOINT

os-3s0 vBeL2s
[T
: ! . L I
URUTON = URUT TL{T)./
2000.
WRITE UBLOWS(T),

URUT TL(7}, URUTON, UFmAX
CUl, FEMAXD, N:MAX(I).
FTMAX(I), NTMAX(T}

RUTTLX = RUTOTL
AUTOTL=RUTTL X+ (0B &

SLoPE
BLOWSX = BLOWS

CALL SUBROUTINE
ORAW(WTOTAL, URUTTL,
UBLOWSkLT Case,

-~ IF
I=ProBS

DIMENSION
VARIABLE S
|

YPLOT () » WTYOTAL

XPLOT()=0.
LTPIwlT +}
1

I

IP=i

—

J——

YrLoT(rpe )= RUTTL(I#)

YMAX = YPLOT(LTPI)

/2000,
XPLOT(LP+1) ~ UBLOWS(L P}

pY =50,

DY=100 YMAX < 800.

9

LALL
PLOT(0.0,0
AXIQI(O o X o,:au.Lowt/ch. 10, $.0,0.0,

0Y= 200.

YMAX < 1600.

Axnsr(ao,ao,nzmn"u»vout,u (X o,soo,ao 97,100.8}

SYMBOL éa .5,8.5,0.2 ,AHCASE, 0.0

SYMBOL(1.3¢,8.5,0.2,CASE, 0.0, é)
YMBOL (0.5,8.0,0.2, 4HPRoS, 0.0,4)

DY= 400.

LINE (xn.oT YPLOT,LT, 2,0,()
LINE3[12.0
PLOT(0.0,00,-99.}
RETURN
OX-J0.
I
PPROB=PROB

®
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