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A TENTATIVE FLEXIBLE PAVEMENT DESIGN FORMULA 
AND ITS RESEARCH BACKGROUND 

l. Introduction 

This report, one of a series stemming from the Research Project, "Applica­
tion of the AASHO Road Test Results to Texas Conditions," was written to satis­
fy, at least in part, the following objectives quoted from the Project Proposal: 

l. In general, to correlate the average level of pavement performance 
determined from a two-year controlled traffic test (the AASHO Road Test) 
with performance of Texas pavements under normal mixed traffic, and to 
study the effect of weather and the so-called regional effect throughout 
the state. 

2. For flexible pavements in Texas , to detennine approximate values 
(or a range of values) of coefficients for representing Texas materials 
to replace the layer coefficients determined at the AASHO Road Test 
for the materials used there, and to develop relationships between 
these coefficients and materials tests. 

This is a progress report. A large portion of the flexible pavement data 
accumulated in the project is not treated in this report. Its principal purpose 
.is to el.icit a reaction from the engineers of the Texas Highway Department, 
not necessarily to the research itself, but rather to the proposed design 
method based on the research. 

The comments of Texas Highway Department engineers--particularly their reaction 
to the division of the state into regions of similar pavement performance--could 
benefit the project considerably. 

2. Data Selected for Analysis 

The data utilized in this report were gathered from a portion of the test sections 
comprising the project's Flexible Pavement Experiment. Every test section 
consisted of two sub-sections, each a traffic lane in width and 12 00 feet long. 
A transition reserved for sampling operations, usually l 00 feet long, separated the 
two sub-sections. All sections were located on existing highways, and none was 
constructed especially for this experiment. 



The sections were chosen (in 1962-63) to conform, as nearly as possible, to 
the following experiment design involving five variables: 

TABLE 1 

Variable No. 
No. Variable Levels Levels 

1 Region 3 Eastern, Central, Western 
2 Surfacing thickness 3 0-1 II I 1 1 -2.5 11

, 2.5 11 

3 Base strength 3 Low, Medium, High 
4 Subbase strength 3 Low I High 
5 Subgrade strength 3 Low I Medium, High 

Surfacings less than one inch thick were surface treatments; thicker 
surfacings were hot-mix asphaltic concrete. Materials classified as medium 
strength were tl)ose approximately equal in strength to the AASHO Road Test 
materials. 

+ 

According to Table 1, it can be seen that the minimum.number of sections 
required for a complete factional experiment would be 2 x 34 = 162. Actually, 
more than this number were selected, and after 44 had been eliminated because 
of excessive irregularities discovered when the sections were drilled, a total of 
323 remained in th~ experiment. Of this total, 188 were surfaced with asphaltic 
concrete ranging in thickness from 1 to 8 inches, and it is these sections that are 
discussed in the remainder of this report. 

From each of the 188 sections surfaced with asphaltic concrete, the following 
data were utilized directly or indirectly in the analyses: 

1. Section location (used in regional analysis). 

2. Serviceability index. 

3. Layer thicknesses. (Average of drill hole measurements. ) 

4. Triaxial class of the materials. (Furnished by District personnel.) 

5. Equivalent number of 18-kip single axle load applications made from the 
time of construction (or from the time of the last overlay with asphaltic 
concrete) to the time the first measurement of serviceability index was 
made. (Data furnished by the Texas Highway Department's Planning 
Survey.) 
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6. Dynamic deflections measured in 1964 by the Lane-Wells Dynaflect, 
converted to estimates of the static deflection that would be caused by 
a 9000 lb. dual wheel load. (The basis for this conversion is described in 
Research Report 32-4. ) 

3. General Relationship Sought from Analysis of Data 

As a first step in preparation for the analysis, a statement of the desired 
relationship between pavement performance, pavement design, and region was 
formulated, as follows: 

Pavement Performance = A function of layer thicknesses, layer strengths and 
regional effects (if any). 

4. Pavement Performance Defined 

As the second step, a definition of pavement performance was developed. It 
is given below: 

If a pavement is subjected to w 1 applications of a single axle load, L, in a 
time period during which the serviceability index drops from a value P 0 to a value P, 
then the performance 01 of the pavement is given by the equation 

QL .s log [ ___ w_L ___ ] 
log P0 - log P ( 1 ) 

where the symbol.;: means "is defined as" (as opposed to=, read as "equal to"). 

The expression for pavement performance was suggested by the work done by 
Painter* for the Asphalt Institute in his analysis of data from the AASHO Road Test. 
If the quantity, log P 

0 
- log P, is interpreted as the pavement damage accruing while 

W1 applications of the axle load L are made, then the term in the brackets 
represents axle applications per unit of damage. A relatively high value of 01 
corresponds to a relatively large number of axle applications required to produce a 
unit of damage, and thus represents a relatively high level of pavement performance. 
Conversely, a relatively low value of 01 corresponds to a relatively low level of pave­
ment performance. 

If the axle loads in the traffic on each of a group of highways are reduced to 
the equivalent number of axles of load L, then Equation 1 can be used to compare 
the performance of any highway in the group with that of any other. 

*Painter, L. J., "Analysis of AASHO Road Test Asphalt Pavement Data by the 
Asphalt Institute," Highway Research Record, Number 71, Highway Research Board, 
Washington, D. C., 1965. 
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A more concise form for Equation 1 is shown below: 

QL ;; log W1:... loglog (P0 / P) 

5. Estimating Pavement Performance from Deflections 

As the next st~p in preparation for the analysis, an alternate equation for 
performance was developed for the reasons given below. 

It will be noted that P0 occurs in Equation 1; hence, P0 must be known if 
Equation 1 is to be used to compute 01. But P0 is not known for the test sections 
used in this analysis, since all had been in service from a few months to several 
years when the first determination of serviceability index was made in 1962 and 
1963. Subsequent determinations made in 1964 and 1965 revealed that the changes 
occurring in the interval between the first and second measurements were generally 
too small to permit estimates of trends. Had well-defined trends been found in 
these data, the 1962-63 measurements could have been used for P 0 and the later 
measurements as P in Equation 1. 

Furthermore, a study of the serviceability index of a group of relatively new 
test sections revealed that the variation in P 0 for the new sections was nearly as 
great as the variation in P among relativ.ely old sections. It thus became apparent 
that an average value of P0 could not be used to compute 01 from Equation 1 for 
individual sections with any degree of reliability, although this scheme worked well 
at the AASHO Road Test. 

Some attempts were made to perform an analysis by averaging large groups of 
sections, for which an average value of P 0 could be assumed with some confidence. 
But such a procedure practically rules out the possibility of discovering regional 
effects, the existence of which can best be proved if the performance of individual 
sections scattered throughout the state can be compared. 

This state of affairs led to the formulation of an additional hypothesis as an 
alternate method for estimating 01~ The hypothesis was tested against data from 
the AASHO Road Test. The new hypothesis follows: 

If a series of equal deflections, u1 , of a pavement surface are produced by WL 
applications of the single axle load L, while the serviceability index drops from P0 

to P, then there is a functional relationship between UL, W 1 , P0 and P. 

The specific relationship assumed is the following~ 

log [ __ W----.:::1=----J = Ao + A1 log UL 
log P0 - log P 
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where A0 and A1 are constants to be determined from certain AASHO Road Test deflection 
data. 

With UL expressed in thousandths of an inch, the constants A0 and A1 were found 
to be 9 and -3/2 1 respectively 1 so that the above equation becomes 

log WL = 9 - 3. 2 log U1 
log P 0 - log P 

The term to the left of the equal sign is the definition of 01 (see Equation 1). 
Therefore, we now have the desired alternative method of estimating 01~ 

( 2 ) 

The reader I while perhaps accepting Equation 2 as representing AASHO Road 
Test data, may question its application to Texas highways. To this we can only 
reply that we have assumed that the deflection, U1, is a quantity which in itself 
is responsive to regional effects and can therefore be applied anywhere. This 
assumption is supported by the fact that U1 responded to seasonal variations in 
pavement strength at the AASHO Road Test. 

Details of the derivation of Equation 2 are given in Appendix A. 

6. Mathematical Statement of Relationship of Performance 
to Design and Region 

In the foregoing, alternate methods were given for computing the pavement per­
formance term in the basic equation to be derived from the data. We now turn to the 
remaining terms. For convenience the basic equation is restated below: 

Pavement performance = A function of layer thicknesses I layer strengths, and 
regional effects (if any). 

The next step taken toward the analysis was the adoption of the specific state­
ment that follows: 

Q = B x TDI + Cr ( 3 ) 

(In Equation 3 and throughout the report except in Appendix A, it will be under­
stood that then the subscript L is deleted from the symbols Q I W and U, then L = 
18, meaning an 18-kip single axle load, Q =0181 W = W18 and U = U18") 
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The term, Q, in Equation 3 is given by 

Q: log W- loglog (P0 / P), ( 1 ) 

or, alternatively, 

Q = 9 - 3/2 log U. ( 2 ) 

B is a constant to be determined from the Texas data, TDI is a special function of 
layer strengths and layer thicknesses to be discussed in the next section, and Cr is a 
quantity that is constant anywhere within a region but varies between regions. The 
term "region" means an area within which pavements of like design exhibit similar per­
formance. Regions are numbered, and the variable Cr has the value C 1 for any pavement 
in Region 1, C 2 for Region 2 , etc. 

7. Texas Design Index - Basis of Derivation 

A further step that had to be taken before the analysis of the data could begin 
was the choice of a formula, referred to as a "design index," from which a number 
could be computed to represent the design of a pavement. For example, the formula 
chosen at the AASHO Road Test was the following: 

Road Test design index= S 1D1 + S2D2 + S3D3 + 1 

where D1, D2, D3 are thickness of surface, base and subbase, respectively, 
while S 1' S2, S3 are constants that were evaluated by analysis of the pavement per­
formance data. Some engineers have regarded these constants as measures of the 
relative strength of the materials used at the Road Test for surfacing, base, and sub­
base. Their values were found to be 0.44, 0.14, and 0.11. 

In the Road Test index we: may regard the term S 1D1 as the contribution of the 
surfacing layer to the index, S2D2 as the contribution of the base, S3D3 as the 
contribution of the subbase, and 1. 0 as the contribution of the foundation. 
And this index can be said to satisfy the condition, imposed by the Road Test Staff, 
that it should be the sum of the individual layer contributions. 

Four conditions were imposed on the Texas Design Index. The first was 
borrowed directly from the Road Test Index, and is stated below: 

1. Corresponding to each structural layer in the sys tern there will be 
a term in the index called the "contribution" of the layer, and the index 
will be the sum of the individual layer contributions. 

The second condition, suggested by the Road Test Index but only partially 
satisfied by it, follows: 
2. The contribution of a layer will increase if either of its strength or its 
thickness is increased. 
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The third condition,. also partially satisfied by the Road Test Index, was 
imposed to insure that the Texas version could be applied to any number of 
layers: 
3. (Corollary) The contribution of any layer will decrease if the thickness of 
the overlying material is increased (for otherwise the index would become 
infinite). 

The fourth and last condition follows from the reflection that if increasing 
the thickness of a pavement will decrease the contribution of underlying layers 
(as required by the corollary to Condition 3), then increasing the strength of 
the pavement should have a similar effect. This notion stems in part from 
certain effects predicted by the theory of elasticity. As the top layers become 
stiffer in layered elastic systems the stresses in the lower layers decrease. 
These considerations led to the formulation of the fourth condition, which is 
equivalent to a broadening of the corollary to Condition 3: 
4. The contribution of a layer will decrease if either the thickness or the 
strength of an overlying layer is increased. 

The Road Test Index does not fully satisfy conditions 2 and 3 because the 
contribution of the subgrade was---for the reasons given in the next paragraph--­
considered to be a constant, l. 0. It does not satisfy Condition 4 because changing 
either the thickness or the strength of any layer has no effect on the contribution of any 
other layer. 

The use of the constant, l. 0, to represent the contribution of a subgrade in 
the Road Test Index can probably be explained as follows. Since subgrade strength 
was not a variable in the experiment, no means were available for estimating the 
effect of subgrade strength on subgrade contribution. With this important effect 
unknown it V.J:J uld have been difficult--perhaps impossible--to estimate the effect 
of any of the subgrade strength on subgrade contribution. As a result, the contribution 
of the subgrade was treated as a constant. The value assigned to that constant was 
immaterial; the results of the analysis would have been essentially the same for any 
value. In the interest of simplicity, the value chosen was unity. 

8. Derivation of Texas Design Index 

It is realized that many functions satisfying the stated conditions could be 
constructed. The function selected was, at least in its differential form, the 
simplest that the authors could devise. 

To simplify the problem, the real system of structural layers composing a 
pavement is replaced by an idealized sys tern of structural layers each of uniform 
strength and thickness. The system extends downward to infinity. Horizontal 
dimensions are not considered in the problem. Such a system is illustrated in 
Figure l which represents a pavement structure of q layers. Structural layers are 
numbered consecutively from the top layer downward, with q being the number 
assigned to the foundation layer. 
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FIGURE 1: IDEALIZED PAVEMENT STRUCTURE OF q LAYERS. 



The symbols S for strength and D for thickness are subscripted by i, which is 
the number of the corresponding structural layer. The depth below the surface of 
any point in the structure is represented by the symbol Z. Thus ,the depth, Z, 
of an elemental layer in the ith structural layer is 

(A) 

where 0 < K ~ 1. 0. 

Transformation to "Effective" Depth: We begin the derivation of the index 
by transforming every depth, Z, to an effective depth, X, defined by the following 
equation: 

(B) 

where 0 < K < l. 0. 

Thus the effective depth of the upper boundary of the i th s tructurallayer, 
shown in Figure 2, is Hi-1 = S 1 D 1 + S2D2 + ... +Si_-1 Di-1, while the depth of 
the lower boundary is Hi= Hi-1 + SiDi, and the effective thickness of the layer 
is SiDi. 

The remaining steps of the derivation will be taken in the X coordinate system. 
The reason for making the transformation from true depths, Z, to effective depths, X, 
is explained as follows. The corollary to Condition 3 requires that a layer 
contribution shall decrease if the thickness of an overlying layer is increased. 
Condition 4 requires further that the layer contribution shall decrease if the strength of 
the overlying layer is increased. The most ready means for satisfying both these 
conditions appeared to be to make the transformation to effective depth, X, 
since effective depth increases if either the thickness or the strength of an 
overlying layer is increased. Thus, a layer contribution term that decreases as 
X increases will decrease if either the strength or the thickness of an overlying 
layer is increased. 

Application of First Condition: Let Y be the desired index, and 1::. Yi be the 
contribution of the ith structural layer. Then Condition 1 required that 

(C) 

Application of 8etond Condition: Condition 2 required that the form of the 
expression for f:.:.Yi will be the sa me for every i. To insure that this condition is 
satisfied we specify that I::.Yi is the sum of the contributions of all layers of in­
finitesimal effective thickness making up the ith structural layer, and that the form 
of the contribution function will be the same for all elemental layers. That is, 
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X= H. 
1 

(i= 1, 2, ... , q) (D) 

where Y is a function of X that is sectionally continuous and finite in the interval 
0 _:::x<co. 

Functional Form of dY: The functional form chosen for dY is given below~ 

dY = F (S) dX 
(a +X )b (E) 

where a and bare constants greater than zero, and F(S) is a function of strength, S. 

General Form of Layer Contribution Term: It has been pointed out that the use 
of Equations C and D insures that the index will satisfy Conditions 1 and 3. It 
remains to show that the expression for 6Yi resulting from the use of Equation E 
will satisfy Conditions 2 and 4. 

The expression for 6Yi in terms of effective depths is found by substituting 
Equation E in Equation D and integrating over the interval X = Hi-1 to X= Hi, with 
the following result: 

6Yi = F (Si) 
r [(a + ~i-1 )' 

where b has been replaced by r+1. 

Having noted from Equation B (and Figure 2) that Hi_ 1 = S 1 D 1 + s2D2 + 
+Si-1Di_ 1 and that Hi = S 1D 1 +S 2D2 + ... + Si-lDi-1 + SiDi, we sub­

stitute these expressions in the above equation for 6Yi, and obtain the follow­
ing expression for the layer contribution, 6Yi, in terms of real dimensions: 

F(Si) 
r 

where r > 0, S > 0, 

(a + S 1D 1 + SzDz / .•. + Si-1D1_ 1 + S1D1 )' ] 

F ( o) = o, and oF ( s ) /oS > o. 

11 
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The restrictions just stated are necessary for the following reasons~ 

r > 0 so that LlYq (for which Di ==)will be finite. 

S ~ 0 because it represents a strength and therefore cannot be negative. 

F ( 0) = 0 so that LlYi will approach zero as Si approaches zero I so that the 
contribution of a layer practically without strength will contribute practically 
nothing to the index o 

If, for some value of Si, , F (Si) were allowed to decrease with an increase in 
Si, then it would be possible that, for this value of Si I LlYi would also decrease 
with an increase in Si, a violation of Condition 2. To prevent this possibility it 
is necessary that F ( s) increase with an increase in S. This will occur if oF ( s) I oS > 0 
for all values of S. 

An additional consequence of the foregoing restrictions is the fact that Llyi is 
never negative. 

To show that an increase in either the thickness or the strength of the ith 
layer results in an increase in LlYi, as required by Condition 2, it is sufficient to 
show that oLlYi/ oDi > 0 and that oLlY/oSi > 0. By differentiating Equation F with 
respect to Di we find 

= Si F (Si) > 0 

By differentiating Equation F with respect to Si we obtain 

1 
t 

oF {S,) 
asi [ 

1 

(a+SlDl+ +Si~lDi~l)r 

(a + S l D l + " .. + s1 Di )' ] > O . 

The inequality signs in the last two equations, proving that Condition 2 is 
satisfied, may be verified by inspectiono For example, in the first equation all 
terms are positive; therefore the expression is positive. In the second equation 
the first term is clearly positive, while the sign of the second term is the same 
as the sign of the quantity within the brackets. The quantity within the brackets 
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is positive because the denominator of the first fraction is obviously less than 
that of the second fraction; thus the second term of the equation is positive and 
consequently the entire expression is positive. 

To show that L!!Yi will decrease if the strength of an overlying layer is 
increased, as required by Condition 4, it is sufficient to show that a6Yi/oSk < 0, 
where k < i. By differentiating Equation F we obtain 

The expression is negative because the negative term within the brackets has the 
smaller denominator, and therefore the greater absolute value. 

Similarily, to show that 6Yi will decrease if the thickness of an overlying 
layer is increased, as required by Condition 4, it is sufficient to show that 

0L!!Yi/oDk < 0, where again k < 0. Again differentiating Equation f, we obtain 

+ 1 
+ S·D· )r 1 1 

. S D )r + 1 
+ i-1 i-1 

< 0 • 

This 'expression is the .same :as the .expression for ol!!Yi/oSk, above, except 
for the multiplier on the brackets, and therefore is negative. 

Thus it has been shown that the index satisfies all four of the imposed 
conditions. 

Finally, by substituting Equation F in Equation C, and combining terms, we 
find Y, which is the general form of the Texas Design Index. 

Y = TDI = _1__ [F (S I) 
r ar 

F (Sl)- F (Sz) 

(a + S l Dl )r 

13 

F (Sz) - F (83) 

(a+ S 1D
1 

+ S 2D2 )f (G) 



(a+ SrDr + S2D2 + ... + Sq-lDq-1 )r 

where a>O I r>O! S,2:0 I F ( 0) = 0 I and oF (S )/oS>O. 

(G) 

The special form of Equation G used elsewhere in this report was obtained by 
letting r = l, F(S) = 1000 S, and a= 1000. When these substitutions are made, 
Equation G takes the following form: 

TDI = S l _ 1000 (S l - S2) 

rooo + s 1 D 1 

rooo (Sq-l -sq 

1000 (S2 - S3) 

IOOO + S 1D 1 + s 2 D2 

1000 +S 1D 1 +S 2D2 + ··· +Sq-lDq-l 

(H) 

The strength, S, of a material was appumed to be related to the Texas Triaxial 
Class of the material in accordance with the following equation: 

S = _§_Q_ (7-T) 
3 

(I) 

where T is the triaxial class obtained by plotting the rupture envelope of the 
material on the modified "Chart for Classification of Subgrade and Flexible Base 
Material" shown in Figure 6. 

Equation (I), as well as the modified classification chart, will be discussed 
more fully in the next section. The choice of the special form for F (S) mentioned 
above, as well as the assignment of the values of land 1000 to the constants 
a and r in Equation G, will be discussed in Section l 0. 

9. Assumed Relationship of Strength, S, and Triaxial 
Class, T 

Figure 3 is a partial reproduction of the chart used by the Texas Highway 
Department for Classifying flexible pavement materials, excluding asphaltic 
concrete. To illustrate, briefly, the method of classification,* we have plotted 
the Mohr's rupture envelopes of three hypothetical matherials, A, B, and C. The 
"critical point" of each rupture line, from which the material is classified, is 
circled in the figure. Materials A and C are as signed class numbers 3. 0 and 4. 0 
respectively, while material B has the class number 3. 7. 

From the above it is apparent that each class boundary can be labelled with 
a class number, 2. 0, 3. 0, etc., and the area labels, "Class l, " "Class 2," 

*11 Preparation of Soil and Flexible Base Materials for Testing" (Test Method 
Tex-101-E, Rev.:' June 1964 Manual of Testing Procedures, Vol. l, Texas High­
way Department, Materials and Test Division. 
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etc. I can be omitted without affecting the method of classifying the materials . 
These revisions are illustrated in Figure 4. 

Since the theoretical lower and upper limits of the strength, S, are zero and 
infinity I respectively, it is desirable that the Triaxial Class, T, be assigned 
values to correspond t6. the lower and upper limits of S. Accordingly I the vertical 
-- or shear -- axis of the classification chart was assigned the class number 0, 
and the horizontal -- or normal stress -- axis was given the Class number 7, as 
indicated in Figure 5. Thus, when T = 7 1 S = 0 (since a rupture envelope 
coinciding with the horizontal axis would represent a material without shear 
strength); and when T = 0, S = co (since a rupture envelope coinciding with the · 
vertical axis represents a material of infinite shear strength). These additional 
revisions are shown in Figure 5. 

The chart of Figure 5 has class lines labelled T = 0 1 2, 3, 4 1 5, 6 1 7 -- a 
series from which the integer 1 is missing. A class line for T = 1 was supplied 
by the extrapolation procedure described in Appendix B, and is plotted in Figure 6. 

The use of the revised chart shown in Figure 6 is recommended in lieu of the 
standard chart (Figure 1) for obtaining the Triaxial Class, T, to be used in Equation 
I. The revised chart yields the same results as the standard chart for materials 
of Class 2. 0 and weaker. The presence of the Class 1 and Class 0 lines on the 
revised chart makes it possible to distinguish between materials stronger than 
class 2. 0, a contingency not provided for in the standard chart. 

As mentioned at the beginning of this article, the Texas Highway Department 
does not include asphaltic concrete in the Triaxial classification system: hence, the 
range of values ofT for asphaltic concrete was not available. In an attempt to 
estimate an approximate value for asphaltic concrete, a standard Texas triaxial test 
was performed on a compacted specimen of the AASHO Road Test asphaltic concrete 
at a temperature of 1100 F. (The temperature of 110° F corresponded to the average 
in-place temperature of this material at a depth of 2 inches on the 60 warmest days of 
the two-year traffic period at the Road Test. ) Using the revised chart I this 
asphaltic concrete was found to have a class number of 1. 0. Therefore, and in the 
absence of other data I a value ofT = 1. 0 was chosen to represent high-quality asphaltic 
CQncr'ete. * 

Corresponding to T = 1. 0, a value of S = 100 was chosen arbitrariLy in order to 
set a scale for the variable, S. With this ch6ice,:then, we have the following corres­
pondence between T and S: 

T ---=s ___ _ 
0 Infinite 
1 100 
7 0 

*Obviously further research is required to establish a range of values of S 
for asphaltic concrete. 

16 



-en 
a.: 
en 
en 
LLI 
a:: 
1-
en 

a:: 
<( 
LLI 
:I: 
en 

40.-------.-------.--------.------------~~~----~ 

35 r-------+-------~-------r------~------~~----~ 

25 

1::4.0 
20 

15 

0 ~------~------~------~------~~----~~----~ 0 5 I 0 15 20 2 5 30 

NORMAL STRESS P.S.I. 

FIGURE 4: FLEXIBLE PAVEMENT MATERIALS CLASSIFICATION 
CHART WITH LINE LABELS REPLACING CLASS 
AREAS. THIS REVISION DOES NOT AFFECT THE 
CLASSIFICATION PROCEDURE. 



-i 
U) 

0: 

U) 
U) 
1.1.1 
0:: 
t-
U) 

0:: 
ct 
LLI 
:I: 
en 

40--------~-------r-------.-------.----~~r-----~ 

T=O 

35~------~-------+------~r-----~~-------r------~ 

25 

1~4P 
20 

15 

T=7.0 

0 0L-------~5--------,~o--------,~5-------2~o~--~~2~5~----~3o· 
NORMAL STRESS P.S.I. 

FIGURE 5: FLEXIBLE PAVEMENT MATERIALS CLASSIFICATION 
CHART WITH CLASS 0 AND CLASS 7 LINES 
DESIGNATED AS LIMITING VALUES OF STRENGTH. 



Since values ofT less than 1 rarely occur in untreated flexible pavement materials, 
it was decided to restrict the relationship of S and T to the interval/ 1< T~ 7 1 at ;least 
for the present. It was also decided to assume the simplest possible functional form 
of the relationship 1 and to test this function against pavement performance data. The 
relationship chosen was the linear equation, 

( 1~ T~ 7) 

where Ao and A1 are constants determined from the two conditions, ( 1) when Tc= 1, 
S = 100 and (2) when T = 7, S = 0, The resulting equation,. 

S=..§.Q (7-T) 
3 

was given in Section 8 as Equation L 

10. Choice ofF (S) and of Values for 
Constants in the TDI Equation 

(I) 

Equation H, the special form of the Texas Design Index used in this report, 
was obtained from the general equation (Equation G) by setting F (S) = aS, r = 1, 
and a = 1000. These choices were made after conducting a preHm.inary investigation 
of the properties of Equation G, and the effect on those properties of varying 
F (S), r and a, The choices were subj ect.ive; however, the equat.ion selected ~~ 
Equation H ~~ was tested aga.inst the Road Test design index, using 
AASHO Road Test data, in the manner descr.ibed in this section, 

Since Road Test data were to be used, it was necessary to compute values 
of TDI for Road Test sect.ions, This .in turn required that triax.ial test results be 
available for the Road Test mater.ials, The necessary testing was performed at 
the Texas Transportation Institute, with the following results~ 

Table 2 

Triaxial 
Material Class .z T Strength, s. 

HMAC LO 100 
Base 2.2 80 
Subbase 3,5 58 
Subgrade 5,6 23 

As mentia:med earlier, the asphaltic concrete was tested at 110° F, Base, 
subbase, and subgrade materials were tested at the "as constructed" moisture 
content and density, The correspond.ing values of S, computed from Equation I, 
are shown in the third column of the table. These values were used in Equation 
H to compute the TDI for Road Test sections, 
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Mathematical models, suitable for use in comparing the TDI with the Road 
Test index using data from any given traffic lane, were developed as follows~ 

The Road Test flexible pavement performance model reduces to the following 
special form when applied to sections located in a single looQ and lane~ 

log p = Ao + A 1 log ( D + 1 ) (4) 

where 

D = Oo44 D1 + Oo14 Dz +Doll D3 

p = the number of axle loads applied to a test section of design, D J while 
the serviceability index drops from 4 o 2 to 1 o 5, and 

Ao, A1 =constants associated with the lane, the values of which can be 
determined by analysis of P and D data for the test sections in the lane o 

A corresponding equation relating P and TDI can be obtained from Equatio!:l, 3 
as follows~ 

log p = Bo + B l TDI ( 5 ) 

where Bo and B1 = constants which can be evaluated by analysis of P and TDI 
data for the test sectiol:".s in a given Road Test Traffic laneo 

Equations 4 and 5 furnish a means for comparing the "goodness of fit" of the 
Road Test Design Index with that of the Texas Design Index, when the two equations 
are fitted to the same pavement performance datao The procedure followed was to 
compute D and TDI for each section in a Road Test traffic lane, and then perform 
two regression analyses" one using Equati.on 4 as the model and the other using 
Equation 5o The values of the root:~mean~square~residual and correlation 
coefficient for the one model could then be compared d.i:rectly with the correspondir~g 
values for the other 0 

Ten comparisons of the type just described were made, one for each of the te~1 
lanes at the Road Testa The results indicated a somewhat: better fit was achieved 
with the Road Test: index, as can be seen from Table 3 0 However, until Ume is 

available for trying other variations on the TDI equation ~~ that is, other forms for 
F(S) and other values of a and r ~- it was decided that Equation H was sufficiently 
promising to warrant its use in this progress reporto 
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...... · 

Data From 
Loop Lane 

2 1 

2 2 

3 1 

3 2 

4 1 

4 2 

5 1 

5 2 

6 1 

6 2 

Average 

Table 3 

Comparative Statistics 
AASHO Road Test Design Index 

and Texas Design Index 
Using Road Test Performance Data 

Root Mean 
Square Residual 
for Regression 

1 2 

0. 52 0. 52 

.38 .35 

.27 .29 

.24 .26 

.26 .36 

0 1 7 .28 

.19 .25 

. 18 .26 

.24 .29 

~ ~ 

.27 0 31 

Model, Regression 1: 

Corre l•tion 
Coefficient 

for Regression 
1 2 

0.84 0.85 

.88 0 9 0 

.84 .80 

.87 .84 

.90 .79 

. 94 .83 

. 91 .84 

.94 .87 

.80 .70 

~ ~ 

.86 .80 

log p = A
0 

+ A1 log (Road Test Design Index) 

Model, Regression 2: 

log p = 80 + B1 (Texas Design Index) 

p ::; No. axle applications required to reduce serv. index to 1. 5. 

A0 , A1, B0 , ~ =constants 
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11. Regional Effects 

The model selected for relating pavement performance, Q, and TDI was given 
as Equation 3 (Section 6) and is repeated below: 

Q = B x TDI + Cr ( 3) 

where Q is to be estimated from deflection by means of Equation 2 (Section 5). 

This section is concerned with the evaluation of the cc:mstant, B·, and the 
variable, Cr, in Equation 3. 

Indication of Regional Effect: Figure 7 is a plot of Q and TDI data from the 
188 test sections selected for analysis. The circled points in the figure represent 
data from District 8, while the other points represent data from sections in the 
remaining 24 Districts. The very wide scattering of the points, as well as the 
tendency of the data from one District -- occupying a relatively small area of the 
state -- to plot in the upper portion of the scatter diagram, suggested the possible 
existence of a regional effect. It was therefore hypothesized that an effect asso­
ciated with location did in fact exist, and steps were taken to test the hypothesis, 
as described below. 

Estimate of the Slope, B~ The first step toward testing the hypothesis required 
that an estimate by made of the slope, B, in Equation 3 • It was reasoned that the 
regional effect-- if any-- would be less pronounced in a single District; therefore, 
an attempt was made to estimate B from data furnished by those Districts with a 
sufficient volume and range of data to support an estimate. Districts 8, 9 and 15 
were selected for this purpose. Plots of Q and TDI data from those Districts are 
showninFigures 8, 9, and 10. 

Unfortunately o the "least-squares" regression technique normally used for 
estimating slopes was not strictly applicable to the problem because both variables 
(Q and TDI) were known to involve sizable errors, while use of the standard method 
requires that one variable be without appreciable error. As an aid to surmounting this 
difficulty, the authors used a technique that takes account of measurement error:s in 
all variables entering into the analysis. The method is described in detail in 
Appendix C. (In what follows, the method of Appendix C will be referred to as the 
"multiple error'~ method to distinguish it from the standard "least-squares" method 0 ) 

In each of Figures 8, 9, and 10, regression lines for both the standard and the 
multiple error methods are shown. From a study of these figures, as well as 
Figure 7 o it was felt that the slope of a regression line for "error free" data (had 
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they been available) would lie somewhere between the limiting values indicaterl. 
in the figures, The slope assigned to B was 0, 05, as inriicated by the rl.ashert 
lines in Figures 7 through 10. 

Estimates of Regional Constants from Individual Sections~ By substituting 
, 05 for B in Equation 3 8 and rearranging terms, that equation was rewritten as 
follows~ 

fl 
Cr = Q - , 0 5 x TDI (6) 

where d'r = an estimate of Cr based on data from a single test section in the rth 
region, 

Equation 6 provided a means for estimating a regional constant from the data 
provided by each of the 188 sections, The values so computed could then be 
examined for any correlation with location, 

fl 

Contours of Cr: As a means for extimating, visually at least, the degree of 
correlation (if any) existing between Cr and section location, each value computed 
from Equation 6 was written on a map of Texas&<. the location of the corresponding 
section, Contours of d'r were then traced on the map, as indicated in Figure 11, 

The fact that it was possible to. draw the contours was taken as evidence that 
a location effect existed; for if the values of d'r had been distributed at random (an 
indication of no regional effect), or if d'r had been practically constant throughout 
(another indication of no regional effect) 8 it would not have been possible to con­
struct contours, 

Designation of Regions~ Within any area bounded by consecutive contour lines 
in Figure 11, the variation of C'r is small compared to its variation across the state 0 

Thus a if one neglects these relatively small v~riations II and assigns a constant 
value to Cr equal a say, to the mean value of Cr within an area bounded by conse­
cutive contours, that area may be regarded as a region -- for a region, according 
to previous definitions 8 is an area within which Cr has a fixed value o 

However, an inspection of Figure 11 will reveal that withl.n some of the areas 
bounded by consecutive contours II the volume of data is relatively meager, It was 
decided 8 therefore, to combine some of these areas into a single region in order 
to increase the number of sections 8 and hence the reliability of the average dr used 
as the regional constant, Cr 0 

Combining areas also reduced the number of regions 8 an aid to practical appli­
cation of the regional concept in design, It should be noted, however, that com­
bining areas in no way improved the reliability of the position of the regional bound­
aries in areas of the state where the volume of data was smalL 
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The regional boundaries selected for use in connection with the analysis 
are shown in Figure 12 o Region 2 is the area lying between the 3. 6 and the 
4 o 0 contours, Region 3, made up of two disconnected areas, is bounded by 
the 4 o 0 contours, and includes sections for which C~ is usually greater than 
4 o 0 o Region 1, also made up of two noncontiguous areas, is bounded by the 
3 o 6 contour, and includes sections for which C~ is usually less than 3 0 6 0 

In transferring the 3 0 6 and 4 0 0 contours from Figure 11 to Figure 12 o 

some irregularities were smoothed 0 Regional averages and other data used 
below and thereafter are based on the smoothed contours of Figure 12 0 

Regional Constants~ The number of test sections in each regi.on, the aver­
age value of c'r within the region, and the standard deviation of c"r about its 
mean within the region, are given in Table 4, 

Table 4 

Noo Cr Standard 
A 

Region Sections (Mean c.r) Deviation 

1 62 3o36 ,26 
2 80 3o80 .24 
3 46 4.36 ,37 

All 188 3,80 ,47 

il 

11 
Distribution of C r: Within Regions; Histograms showing the distribution of 

C r in each of the three regions are shown in Figure 13, Also shown in the figure 
is a similar diagram for the state as a whole, Approximate distribution curves, 
fitted to the regional block diagrams in this figure o have been redrawn on a single 
graph in Figure 14, 

Figure 14 tends to confirm the regional effect, for if Cr had been randomly 
distributed across the state o the three curves would have tended to peak at the 
same poinL Instead their peaks are well separated, a cl!-r~.Hnstance that could 
hardly be attributed to chance considering the large number of sections in each 
region, 

While it appears difficult to deny the regional effect, the reasons for the 
effect are not clear and warrant further investigation, No correlation between the 
three regions and geological o soil or rainfall maps could be found 0 Other factors 
that could cause the observed regional effect include differences in construction 
procedures o differences in testing procedures, differences in triaxial class 
estimating procedures, and interactions between these factors, 
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12. Analysis of Texas Data 

In the preceding sections we have described many subjective decisions that 
were made in the steps that have brought us to this point in the report 0 Among 
these steps are the following: 

1 o Selection of a function to represent pavement performance (Equation 1, 
Section 4) 0 

2 o The substitution of a function of deflection for the pavement performance 
function (Equation 2 o Section 5). 

3 o Formulation of an assumed relationship between performance, designo 
and region (Equation 3 o Section 6) 0 

4 0 Creation of an index (the TDI) to represent pavement design (Equation Go 
Section 8) o 

5o The mod1ficatiqn of the Texas Highway Department" s classification chart 
(Figure 6 o Secu'on 9) o 

6 o The introduction of an arbitrary relationship between Triaxial Class o To 
and strength, S (Equation L Sections 8 and 9) o 

7 o The choice of a form for F(S) o and of values for the constants o a and r o 

in the general TDI equation (Section 10) 0 

8 0 The estimate of the slope o B o in the performance EquaUon (Section 11) 0 

9 0 The division of the state into regions of similar pavement performance 
(Section 11) o 

In this section we shall attempt to show ~- this time with objectivity -- that 
the design equation resulting from the steps listed above is supported by the data o 

We begin by writing Equation 3 ,(the design equation) in the following form as 
an hypothesis to be tested by the data from the 188 sections selected for analysis: 

Q- Cr = B x TDI (7) 

where Q is to be estimated from deflection data by means of Equation 2; 

Cr = 3 0 36 for sections in Region 1 o 3 0 80 for sections in Regl.on 2, and 4 o 3 6 
for Sections in Region 3; 
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Regions 1, 2 and 3 are the areas designated on the map reproduced in 
Figure 13; 

TDI iS to be computed from layer strength and thickness data by means of 
Equations H and I , and 

B = a constant= . 05. 

To test the hypothesis of Equation 7, a regression analysis was performed 
using the following model: 

(8) 

where Y = Q- Cr, and 

X = TDI. 

Since it was known that measurement errors are associated with both X andy, 
use was made of the "perpendicular error" regression technique described in 
Appendix C. 

The results of the analysis are given below~ 

Table 5 

Ao= ooooo85 

rmsr = 0. 2 831 

R = 0. 723 

From the data in Table 5 it was concluded that Ao was not significantly different 
from zero and A1 was not significantly different from . 05, Though the root-mean~ 
square-residual (or the standard deviation of the errors in Y estimated from X) was 
high, and the correlation coefficient, R, was low, it was felt that the analysis was 
sufficiently promising to warrant a progress report. 

Substituting the values of zero and . 05 for A0 and A1 in the regression model 
(Equation 8), we obtain 

Hence, 

Y = o 05X 

Q - Cr = o 05 x TDI, 
33 
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or 

Q = , 05 x TDI +Cr. (3) 

Thus the hypothesis has been substantiated, 

Figure 15 is a plot of the data used in the analysis, and includes the regression 
line defined by Equation 7 o The dashed lines are plotted above and below the regres­
sion line at a distance of one standard deviation, Approximately two-thirds of the 
data points are Included in the band formed by the dashed lines 0 

Whi.le considerable scattering of the data is still present in Figure 15, the 
improvement In the scatter resulting from recognition of the/egional effect can 
be seen by comparing this figure with Figure 7, 

Figures 16 o 17 and 18 are plots of the data from the individual regions 0 A 
separate regression could have been performed within each region, However, since 
the volume of data available within a single region would have been less than half 
that available throughout the state, it was felt that the combined analysis would 
yield more dependable results o The lines shown in the regional plots (Figures 16, 
17 and 18) were predicted by Equation 7, 

In Figure 19, the three regional lines predicted by Equation 7 have been plotted 
on a single graph for comparison, The hatched areas are two standard deviations 
in width (measured vertically), This figure o like the standard deviation of C r data 
presented in Table 4, indicates some overlap between regions o 

13 0 Summary of Use of Equations, 

In solving a particular design problem various equations developed in the 
report would be used in the following order~ 

1 0 Given (a) the expected traffic to be provided for in terms of the total 
equivalent number of 18-kip single axle loads, W, and (b) the initial and terminal 
serviceability index, P 0 and P, find Q from 

Q = log W- loglog (Po/P) 

2 0 From the map of Figure 12 find the Region number o From the Region number 
and the table below find Cr. 

Region 

1 
2 
3 

Table 6 

35 

Cr 

3,36 
3,80 
4036 



N 

z 
0 
(.!) 

"" 0: 

35 

30 

(I) 

Z25 
0 
.... 
0 

~20 Jt') 

lL z 
0 0 

0: 15 (.!) 

"" "" 0: m 
:E 
::::) 

10 z 

5 

0 
3.0 3.4 3.8 4.2 4.6 5:0 5.4 .,... 

Cr 

FIGURE 14: THE FREQUENCY CURVES OF FIGURE 13 REPLOTTED 
ON A SINGLE GRAPH. SEPARATION OF THE PEAKS 
IS EVIDENCE OF REGIONAL EFFECT. 



'-
0 
I 

0 

4.5 

4.0 

3.5 

3.0 
• • 

• 

2.5 

• 

./ 
• • . / / ·./..·. / 

. :/\:: ·:·/. . 
\ 1.. ..... • 
• • 

. . ......... :· .. /. :· .. . 

h .... · ··. ;;.:=~··:. .. . . . -~·. .. . . . 
• • • 

/ :· :·· -;;··.... . . 
. . /·. • 

2.0~--~--~------~--------~------~------~ 
40 50 60 70 80 90 

T D I 

FIGURE 15: PLOT OF DATA AFTER CORRECTION FOR REGIONAL 
EFFECT. (COMPARE WITH FIGURE 7.) 



8.5 

8.0 REGION I 

7.5 

0 

0 

0 7.0 
Oo 0 

0§:,0 
0 

0 0 0 0 

oo
0 o<s co 0 0 

0 
0 

0 

6.5 
0 
~ 0 
0 0 

6.0~--------...l-___ _J_ ___ ____Jl__ ___ ...L_ ___ _.l 

40 50 60 
TOI 

70 80 

FIGURE 16: DATA FROM REGION 1, .AND REGRESSION LINE 
PREDICTED BY EQUATION 7. 

90 



as 

a.o REGION 2 
0 

7.5 
0 8 0 

C1 7.0 0 

0 0 

0 

6.5 

6.0~--------~--------~--------L---------h-------~ 

40 50 60 
TOI 

10 80 

FIGURE 17: DATA FROM REGION 2 AND REGRESSION LINE 
PREDICTED BY EQUATION 7. 

90 



8.5 
0 

0 

8.0 REGION 3 

7.5 

0 0 

0 

0 7.0 
0 

0 

0 

6.5 

0 
0 

0 

0 0 

0 
0 

0 

oo 80 

0 
0 

0 
0 

0 

0 
0 

0 

6.0 ~--------~--------~--------~--------~------~ 
40 50 GO 

TOJ 
70 80 90 

FIGURE 18: DATA FROM REGION 3 AND REGRESSION LINE 
PREDICTED BY EQUATION 7. 



8.5 

8.0 

7.5 

0 

7.0 

50 60 70 80 90 

TDI 

FIGURE 19: THREE REGIONAL LINES PREDICTED BY EQUATION 7 
0 N A SINGLE GRAPH. (HATCHED AREAS FOR EACH 
REGION ARE 2 STANDARD DEVIATIONS IN WIDTH. 
SOME OVERLAP OF REGIONS IS INDICATED.) 



3 0 Given Q from Step 1 and Cr from Step 2 9 find the required TDI from 

Required TDI = 2 0 ( Q-Cr) 

4 0 Given ,the Triaxial Class for each material used in a pavement consisting 
of q layers (including the foundation layer), find the corresponding values of S 
from 

s = _§Q 
3 

( 7-T) 

where Tis Triaxial Classo (Use T= 1 for asphaltic concretes.) 

5 o Assume values for the thicknesses, D 1, Dz 9 o o o , Dq~ 1 of the layers 
above the foundation, and calculate a trial value of TDI from 

TDI = 81 ~ 1000 (Sl- Sz) 
1000 + S1D1 

1000 (S2-S3) 

lOOO(Sg-1-Sq) 
.1000+S 1 D1 +SzDz+. o +Sq_ 1 Dq_ 1 

6 0 If the computed TDI (Step 5) is not equal to the required TDI (Step 3) 
change thicknesses or strengths and recompute TDI from the formula given in 
Step.S. The following rules may assist in making changes~ 

(a) To increase (decrease) TDI, increase (decrease) ei.ther 
a thickness D or a strength, So 

(b) Making a change in a layer in the upper portion of the 
structure (say the surfacing or base) generally has a. greater effect 
on TDI than changing a layer deeper in the structure (say the subbase) 0 

Nomograms have been prepared for use .in lieu of the above equations, and 
streamli.ned procedures have been developed to make the design process easiero 
These have been supplied to the Texas Highway Department o 

14o Conclusions and Recommendations 

L It was concluded from the study of regional effects descr.ibed in Section 11 J 

and from the analysis and the plots presented in Sect.ion 12, that the basic design 
equat.ion developed herein (Equation 3) is sufficiently reliable to warrant its 
investigation by the Texas Highway Department o 
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2. The reasons for the shapes taken by the contours of Figure 11, and of 
the three regions shown in Figure 12, are not clear. It therefore appears desirable 
to conduct additional investigations directed toward finding the cause or causes of 
the regional effects so clearly indicated by the data. 

3" This report should be considered preliminary, and the design procedures 
suggested herein should be regarded as tentativ~, pending the termination of this 
project and the production of a final report. 
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Appendix A 

Serviceability Loss as a Function 
of Deflection 

The equation which expresses pavement performance as a function 
of deflection (Equation 2, Page 5), was derived in the manner described in 
this section. 

First, the hypothesis was made that if a pavement is subjected to 
a series of deflections all of the same magnitude, then the accompanying 
loss in serviceability of the pavement depends only on the magnitude of 
the deflection and the number of times it occurs. 

The mathematical form chosen to represent the hypothesis was a 
modified form of L. J. Painter's* equation for serviceability loss. 
Painter's equation follows~ ' 

log ( P0 /P) = bW (lA) 

where P = the serviceability index of a pavement after W applications of 
an axle load of a given type (single or t~ndem) and weight have been 
applied, 

P0 = the serviceability index just prior to the first load application, and 
b = the deterioration rate parameter. 
The deterioration rate parameter, b, Painter took to be a function of 

the design of the pavement, the kind (single or tandem) and magnitude of the 
axle load, and the climatic variables. Alternatively, we assume that the 
deterioration rate parameter is a function of deflection only, and is of 
the following form: 

where U is the magnitude of a deflection repeated W times as the 
serviceability index decreases from P0 to P. 

(2 A) 

To test the hypothesis, and to evaluate the constants A0 and A 1' 
advantage was taken of certain data available from the AASHO Road Test. 

At the Road Test the serviceability index and the accumulated axle 
load applications were reported bi-weekly for each surviving test section. 

*Painter, L. J,, "Analysis of AASHO Road Test Asphalt Pavement Data 
by the Asphalt Institute," Highway Research Record, Number 71, Highway 
Research Board, Washington, D. C., 1965. 

(lA) 



The surface deflection of each section, induced by one of the test 
vehicles travelling at reduced speed, was also measured by Benkelman 
Beam at intervals of about two weeks o Thus, for each section, a series of 
nearly simultaneous values of serviceability index, deflection and 
accumulated axle applications were available for testi.ng the hypothesis, 

For this preliminary report the data chosen were taken from all 
sections in the single-axle lanes of loops 3, 4, 5, and 6 that survived 
the two years of traffic testing. Twenty-one such sections were 
available, The design of these sections, and the magnitude of the 
axle loads acting on them, are given in Table lA. 

For the analysis of the Road Test data the model (Equations lA and 
2 A) was written in the following form~ 

pi + 1 = pi X lQ -bb. Wi 

where b = 10AO UiAl, 

Pi= the serviceability index of a section at the ti.me of the ith 
deflection determination, 

( 3 A) 

b. Wi = the number of axle applications (deflections) occurring in 
the time interval between the ith and the next deflection determination, 
and 

Ui = (Ui + Ui + 1) /2, where Ui is the ith deflection measured. The 
unit of U is a thousandth of an inch. 

We have assumed that the average deflection, Ui , can be used in 
Equation 3 A to represent a constant deflection acting during the interval 
between the measurement of Ui and Ui + 1' since this interval is relatively 
short (about two weeks as a rule). 

It can be seen that Equation 3 A is a recurrence formula from which 
P can be computed after each of a number of time intervals, if a starting 
value of P is given, if U and W are known for each interval, and if A0 
and A 1 are assigned numerical values. The vartables involved in one 
such computation are plotted in Figure lA. 

The step-by-step procedure followed in estimating the most probable 
values of A0 and A 1 is given below o All the numbered steps -- except 
the first -- were performed in a computer 0 

(1) A starting value of P for each section was selected from the 
data to correspond, approximately, to the start of the first ( 1959) 
spring thaw. 

(2A) 



Figure Loop 

3A 3 
4A 3 
SA 3 
6A 4 
7A 4 
8A 4 
9A 4 

lOA 4 
11A 5 
1 aA 5 
1 3A 5 
1 4A 5 
1 SA 5 

'. 
1 6A 6 
1 7A 6 
1 8A 6 
1 9A 6 
2 OA 6 
21A 6 
22A 6 

: 2114. 6 

TABLE lA 

Design and Load Data 
for the AASHO Road Test Sections 

Furnishing Data Used in the 
Defle·ction Analysis 

Single 
Axle Load 

Lane (Kips) D1 D2 

1 12 4 6 
1 12 4 6 
1 12 3 6 
1 18 4 6 
1 18 5 •6 
1 18 5 6 
1 18 3 6 
1 18 4 6 
1 22.4 5 9 
1 22.4 3 9 
1 22.4 5 6 
1 22.4 5 9 
1 22.4 4 9 
1 30 6 6 
1 30 5 9 
1 30 6 9 
1 30 6 6 
1 30 4 9 
1 30 6 9 
1 30 5 6 
1 30 6 9 

(3A) 

Section 
D3 Number 

4 123 
8 139 
8 155 
8 577 
12 581 
8 591 
12 601 
12 625 
12 427 
12 441 
12 445 
8 447 
12 . 477 
12 257 
16 265 
8 271 
16 301 
16 3•09 
12 311 
16 327 
16 333 
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( 2) From a pre-selected set of values, a value was assigned to A0 . 

(3) From a pre-selected range of values, a value was assigned to 

(4) Using the values assigned above to A0 and A1, P was computed 
from Equation 3 A for the first section, for each day on which the deflection, 
U, .of the section was measured, excepting the starting day, for which 
P had already been assigned {Step 1, above). The difference between the 
computed value and the corresponding observed value of P was computed. 

(Since neither W nor P was reported on exactly the same day that 
the deflection was measured the 110bserved 11 values of P and W were found 
by interpolation). 

( 5) Step 4 was repeated for all sections, and the differences 
or residuals --were summed over all sections. 

( 6) Steps 3 through 5 were repeated -- each time with a new value 
assigned to A 1 in accordance with a converging process -- until a value 
of A 1 was found for which the sum of the residuals differed from zero 
by less than 0. 0001. 

(7) The average absolute residual was computed and printed, to­
gether with the corresponding values of A0 and A 1· 

fB') Steps 2 through 7 were repeated until all the pre-selected 
values of A0 had been used. 

Table 2A lists·pairs of values of A0 and A 1 determineei as described 
above, together with the corresponding values of the average absolute 
residual. Figure 2 A is a plot of Average Absolute Residual versus A0 . 
Opposite each plotted point is given the value of A 1 corresponding to 
the plotted values of A0 and Average Absolute Residual. 

From Figure 2A it was estimated that the least average absolute 
residual (about 0. 3) was obtained when A0 = -9 and A 1 = 3/2. Substi­
tuting these values in Equation 3 A, we obtain 

-[10 - 9 (U ·) 1. 5 b.W· jl 
pi+l=PixlO 1 1 (4A) 

In Figures 3 A through 23 A predictions made from Equation 4A are 
compared graphically with the observed data for the 21 test sections 
selected for this analysis. 

(SA) 



Table 2A 

Results of Parameter Variation Study 

Average 
Iteration Sum of Absolute 

No. Ao Al Residuals Residual 

1 -7 0.262 0 0.3418 
2 -8 0.882 0 0.3141 
3 -9 1.494 0 0. 3 029 
4 -10 2.099 0 0. 3 080 
5 -11 2.699 0 0.3246 
6 -12 3.293 0 0.3471 
7 -13 3. 883 0 0.3740 
8 -14 4.470 0 0.4024 
9 -15 5.053 0 0.4310 

( 6A) 
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By taking logarithms twice, and rearranging terms 1 Equation 4A can 
be written as follows: 

For application to Texas test sections 1 we have used different symbols 
in Equation 5 A. With the changed symbols the equation is 

log W- log log (P0 /P) = 9- 3/2 log U 

where W = the equivalent number of 18-kip single axle loads applied 
to a section as its serviceability index drops from Po to P, and 

U = the deflection produced by a 9000-pound dual wheel load (in 
thousandths of an inch), assumed constant throughout the life of the 
section. 

Equation 6A was first given, in a slightly different form, as 
Equation 2 on page 5. 

The assumption that U is constant throughout the life of a Texas 
section may be questionable. However 1 the severe freeze-thaw cycles 
that Occurred at the Road Test obviously were largely responsible for 
the wide fluctuations in deflection trends observed there. Since such 
cycles are rare indeed in Texas, we feel that seasonal variations in 
dE:lflections are relatively minor in this state.* 

( 6A) 

In defining U in Equation 6 A as the deflection resulting from a 18-kip 
single axle load ( 9000-pound dual wheel load), we have assumed that the 
real traffic stream can be replaced by "an equivalent number" of 18-kip 
single axles, and that the deterioration stemming from the deflections 
produced by the real traffic is equivalent to the deterioration resulting 
from the deflections produced by the "equivalent number" of 18~kip axles, 

Thus 1 in passing from Equation 5 A (applicable to the AASHO Road Test) 
to Equation 6A (for use with Texas data) we have introduced two assump­
tions neither of which can be directly tested with data presently 
available. Nevertheless, we feel that the assumptions are reasonable, 
and that Equation 6 A is a valuable as set to this project, Only through 
the use of Equation 6A was it possible to make any estimate (however 
imperfect) of the performance of an individual Texas Sectiono And only by 
studying the performance of individual sections is it possible to estimate 
regional effects . 

As an indirect means for testing the validity of Equation 6 A 
(or Equation 2), the equation was used in the following form for com-

*It is planned to check this assumption in future research. 

(29A) 



puting P for the 188 Texas test sections considered in this report: 

Po= p x 10 bw 

where b = w- 9ul. 5 . 

( 7 A) 

Since values of PI W and U were known for each section/ P 0 could 
be computed. The average of the 188 computed values was 4. 2 I a value 
already found to be the average serviceability index of a number of newly 
constructed highways in Texas 1 and reported as the average initial 
value of P at the AASHO Road Test. 

(30A) 



Appendix B 

Procedure Used in Revision of the 
Classification Chart 

A series of coordinates {shear and normal stress) of the class lines, 
taken from Figure 5, are tabulated in Table 18. These Data are plotted 
on a graph of shear stress versus triaxial class in Figure 1 B. 

An inspection of Figure 18 shows that 1 in the interval 2 ::T:: 51 a 
straight line can be fitted with acceptable accuracy to the four data 
points corresponding to a fixed value of normal stress. This circumstance 
was used in the extrapolation across the interval T = 2 to T = 1 indicated 
by the dashed lines in the figure. The extrapolation procedure 1 designed 
to preserve the continuity of the chart insofar as possible 1 is described 
below. 

Normal 
Stress QSi 

3 

5 

Table 18 

Data from Figure 5 Used in Computing Coordinates 
of Class 1. 0 Line of Figure 6 

Constants 
Class Shear Straiqht Lines Curved Lines 
Line Stress psi a b c d 

2 11.3 17.90 -3.300 16.94 .5841 
3 8.0 
4 4.0 
5 1.4 

2 14.9 23.00 -4.000 21.71 .5333 
3 11.4 
4 6.1 
5 3.2 

(lB) 



Table 1 B (Continued) 

constants 
Normal Class· Shear Straiaht Lines Curved Lines 
Stress, psi Line Stress, psi a b c d 

10 2 23. 1 34.13 -5.567 32 .17 . 4841 
3 17.8 '·' 

4 11..2 
5 £.4 

...... 

15 2 29.8 44.50 -7.300' 41.95 . 4883 
3 22.2 ;•'"jl 

' 
4 15 0 4 
5 7.9 

.-~··· 

20. 2 35.3 52.33 -8.667 49.34 .4953 
3 26.0 ' 

' 
4 18.2 ' 

5 9.0 

25 2 41.0 60.83 -10.167 57.36 . ". 5 02 1 

3 29.4 
4 20.2 
5 1 o. 0 

The intercept, a, and the slo:pe, b, of each straight line in 
Figure 1 Bare recorded in Table LB. Thus, if 1' represents the 
shear stress in the interval 2~ Ts5, the equation for f (with normal 
stress fixed) is 

T= a+ bT (2sTs 5) 

where a and b are given in Table 1 B. 

(lB) 

Coordinates for each dashed line i;n Figure 1 B were then computed 
from the formula 

(OsT~2) (2 B) 

where r is the shear stress in the interval O~T,$2, and the constants 

(2B) 
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TRIAXIAL CLASS, T 

FIGURE 1 B: THE DATA FOR PLOTTING THE CIRCLED POINTS 
WERE TAKEN FROM THE STANDARD CLASSIFICATION 
CHART (FIGURE 3). THE SOLID LINES WERE FITTED 
TO THESE POINTS·. DASHED LINES WERE COMPUTED 
FROM EQUATION 2 B. 



c and d are determined from the conditions that when T = 2, 

and 

T'= T 
dT' = dT 
dT dT 

(T = 2) 

It will be noted from the formula for T~· that the shear 
stress approaches infinity as T approaches zero, as required by 
the stipulation made in Section 9 that the Class 0 would 
be assigned to a material of infinite strength. 

From the formula it is also evident that when T = 1, T •· = c. 
Thus, the coordinates of the Class 1 line shown in Figure 6 are 
given in Table 1 Bin the columns headed "Normal Stress" and "c", 
the latter being the shear stress when T = 1. These coordinates are 
also given in Figure 1 B. 

(4B) 



APPENDIX C 

MULTIPLE ERROR REGRESSION TECHNIQUE 

'lC INTRODUCTION 

In the classical least-squares method of fitting a linear model to data 
collected in an experiment involving several variables, it is assumed that the 
values of all but one - the dependent or response variable - are known precisely. 
Frequently, however, there are errors of measurement in all the variables, and 
when this is the case the classical method yields a biased estimate of the regres­
sion coefficients. Since the objective of most experiments is to obtain unbiased 
estimates of these coefficients, it is apparent that measurement errors in the 
independent variables should not be ignored. 

The regression technique described herein accounts for errors in all 
9 variables. It is essentially the same as a method described by J. Johnston, 

but includes a new concept - that of the "quality" of a variable. Because of 
the introduction of this concept, and because it was desired to confirm John­
ston's results by independent means, it was necessary to perform the mathe­
matical operations described in the following sections. 

The reader who does not desire to follow the derivations will find the 
gist of the method in Sections 5, 6, 7 and 8. 

lC 



2C ASSUMPTIONS 

Let it be supposed that an experiment involves a set of p variables, the 
true values of which are known to be linearily dependent. We name the variables 
x1, x2, •••• , xj, .•.• , xP. 

In the course of the experiment we measure the whole set of variables 
from time to time (or from place to place, depending on the nature of the 
experiment). At one of these times (or places) we obtain the ith set of mea­
surements, XU, Xi2, •••• , Xij , • ·• · • , Xip • 

C~rresionding to ~he ith set of measurements, there is a set of true 
values, iil' ii2, •••• , tij' •••• , ~ip' and a set of measurement errors, eil, 

ei2' • • • • ' eij ' • • • • ' eip • 

We assume that the measurement errors are random, independent, and nor­
mally distributed, with a mean value of zero. The measurement error, eij' is 
defined by 

(1) 

The true values of the variables, according to our assumption of linear 
dependence, satisfy the equation 

A + 
0 

where A
0

, A1, •••• , Ap are constants. 

(2) 
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3C DERIVATION OF EXPRESSION TO BE MINIMIZED 

Equations 1 and 2 lead directly to a relationship involving the measured 
values and measurement errors, as follows: 

By squaring 

n 
E 

i=l 

A + 
0 

p 
E 

j=l 
A. X .. 

J ~J 

p 
E 

j=l 
A. e .. 

J ~J 

Equation 3 and then summing over the 

p 
2 

n p 
(A + E A. X .. ) = E ( E A. e .. ) 

0 j=l J ~J i=l j=l J ~J 

(3) 

index i, we obtain, 

2 (4) 

where n is the total number of times the set of variables has been measured. 

We may simplify Equation 4 somewhat by eliminating A , as indicated 
below. 0 

Noting that the error term is independent of A , we differentiate Equation 
4 with respect to A , and solve the resulting equat~on for A , obtaining 

0 0 

1 
n p 

A = - E E A. X .. 
0 n i=l j=l J ~J 

or, more briefly, 
p 

A = - E A. X. (5) 
0 j=l J J 

where X. is the mean of the n measured values of the variable X .. 
J J 

By substituting the right side of Equation 5 for A in Equation 4, we 
obtain an equation in terms of the deviations of the me~sured variables from 
their means: 

n 
E 

i=l 

where V,. = X .. 
~J ~J 

of X .. 
J 

p 
( E 
j=l 

2 
A. V .. ) = 

J ~J 

n 
E 

i=l 

p 
( E 
j=l 

2 
A. e .. ) 

J ~J 
(6) 

X. = the deviation of X .. from the mean of the n measured values 
J ~J 
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The right side of Equation 6 can be expanded into the sum of a series 
of terms of the type 

But, for large n, every term for which j ~ k has an expected value of zero as 
a consequence of our previously stated assumption regarding t1fe·measurement 
errors, e • If we neglect terms for which j ~ k, there will remain in the 
series oni~ terms of the type, 

A 2 
j 

n 2 
I: eij 

i=l 
(j = 1' .... ' p) • 

Thus, Equation 6 may be written in the following form: 

n p 2 
I: ( I: Aj V ij) 

i=l j=l 
= A 2 

1 

n 2 
I: eil + .... 

i=l 

2 n 2 
+ A t' 

'"' eip p i=l 

Without loss of generality, we separate each constant, A , into two 
arbitrary factors, C. and Mj, and define one of the factors aj indicated 
below: J 

where M. is defined by 
J 

M. -
J 

A. - C. M. 
J J J 

n 2 n 2 
I: e. I: e . ~-1 1p~=l iJ ] 

1/2 

We also introduce a new variable, Zij' defined by 

Z •. :: M. V •• 
1J J 1J 

From Equations 8 and 10 it can be seen that 

4C 
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(8) 

(9) 

(10) 
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From Equations 8 and 9 it is clear that 

A 2 
n 2 C. 2M. 2 

n 2 c.2 
n 2 E eij = E e .. = E eip J i=l J J i=l 1J J i=l 

(12) 

In Equation 7 we now make the following substitutions 

For Substitute Basis 

A. v ij cj z .. Eq. 11 
J 1J 

A.2 
n 2 n 2 
E e C 

2 
E e. Eq. 12 

J i=l ij J i=l 1p 

with the following result: 

n p 
2 p 

c. 2) 
n 2 E ( E c. Z .. ) = ( E (i~l e. ) 

i=l j=l J 1J j=l J 1p (13) 

We rewrite Equation 13 in the following form: 

31[ cl zil + .... + 
c z~2 n 2 

c/> t/2 = E e. 
(C 2 + .... + i=l 1p 

1 

(14) 

(It is of interest to note that if we let p = 3, and regard the quanti­
ties Zil, Zi2 and Zi3 as the rectangular coordinates of a point in three 
dimensional space, then the expression enclosed in brackets represents the 
perpendicular distance from the point (Zil' Zi2' Zi3) to the plane, 
c1 z1 + c2 z2 + c 3 z3 = O). 

by 
In the interest of further simplification, we define the constant Bj 

Bj - (C 2 + 
1 

c. 

+ c 2) 1/2 
p 

and write Equation 14 in terms of the new set of constants, as follows: 

2 
e. 1p 

sc 

(15) 

(16) 



From the definition (Equation 15) of Bj it is clear that 

B 2 + B 2 + 
1 2 .•.. + B 

2 
- 1 = 0 

p (17) 

Values of the coefficients B1 , •••• , Bp can be estimated by minimizing 
the left side of Equation 16, subject to the constraint expressed by Equation 
17. From them, estimates of the coefficients Ao, A1, •••• , ~ can~be computed 
as shown in the next section. 
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4C PROCEDURE FOR ESTIMATING THE COEFFICIENTS Bj and Aj 

To minimize Equation 16, subject to Equation 17, we employ "Lagrange's 
method of multipliers"lO, as indicated below. 

n 
z. )2 Let a. = I: (Bl zil + .... + B 

i=l p 1p 

8 Bl 
2 + + B 2 1 = 0, and = .... -p 

-A. = the Lagrange multiplier. 

According to the Lagrange technique, a. will have an extreme value when 
the p + 1 parameters (A., B1 , B2 , .••• , Bp) have values determined by the 
following p + 1 equations: 

a a. A. a 8 0 = aB1 a Bl 

a a. - A a 8 0 = 
aB2 a B2 

aa. ->.. _J...L 
aB a B = 0 

p p 

By performing the indicated op~rations on Equations 18 and 19 we form 

(18) 

(19) 

(20) 

a set of p linear equations corresponding to the p differential equations of 
Equations 20, and write the result in matrix form as follows: 

0 

0 

X = (21) 

wpl wp2 . . . w - A B 0 
PP p 

n 
where wjk = l: zij zik = wk. (22) 

i=l J. 
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Equation 21 has a nontrivial solution if (and only inthe determinant of 
the p x p matrix in Equation 21 is zero. This determinant can be made zero by 
choosing an appropriate value of A. But since there are p values of A that will 
make the determinantzero, it is necessary to choose the particular value that 

n 2 
will result in minimizing L ei • We submit, without proof, that the smallest 

i=l p 
positive value of A is the root desired.* 

We also assume that the reader is familiar with methods for finding the roots 
of the determinant of the srmmetrical, p X p matrix in Equation 21.11 

Let A be the smallest positive value of A that will make the determinant zero. 
We substitute ~ for A in Equations 21, divide each equation (except the last) by 
B , and form p - 1 linear equations which we express in matrix form below: 

p 

w12 • · wl ,p-1 B1/Bp -w lp 

w22 - A · • · w2,p-l B/Bp -w 2p 

X = (23) 

w w p-1, 1 p-1,2 W - A p-l,p-1 B 1/B -W p- p p-l,p 

These p-1 equations can be solved for the p- 1 ratios, Bj/B (j = 1, •••• , 
p- 1). p 

Now according to Equation 15, 

B. C. 
---1.._ = __L_ 

B C 
p p 

and, according to Equation 8, 

C. A./M. 
---1.._ = _J___L 

C A /M p p p 

from which we conclude that 

(24) 

10 * Johnston presents a proof of this statement. 
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We note from Equation 9 that~ = 1, and (without loss of generality) we 
also let Ap = 1. By substituting 1 forM and A in Equation 24, we obtain 

p p 

B. ~ 
--L.. = 

B M. 
p J 

Thus, we have the following for finding the estimate, A., of A.: 
J J 

(25) 

Equation 25 is the last step in the solution of the problem. Application 
of this regression technique presupposes some knowledge of measurement errors 
for each variable (see, for example, Equation 9). To make the technique some­
what easier to apply, we shall discuss in the next section the concept of the 
nquality" of a variable, and will present an alternate to Equation 9 for com­
puting the Mj. 
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6C QUALITY OF A VARIABLE 

We define the quality, Qj of the variable, Xj, as the ratio of the variance 
of Xj to the variance of the errors made in measuring X .. The equivalent math­
ematical definition is the dimensionless ratio given befow: 

n - x >2 I: (Xij 
i•l j 

Qj - (26) n 2 
I: eij 

i•l 

It may be seen from Equation 26 that if the experiment is so designed that 
Xj varies widely about its mean, and if 'the errors made in measuring x1 are small, 
tfienthe quality of the variable is high. On the other hand, if Xj vartes only 
slightly from its mean and the measurement errors are large, then the quality is 
low. 

From the foregoing it is clear that the quality of a variable depends not 
only on the precision with which it can be measured, but also upon the design of 
the experiment. 
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6C Use of the Quality Ratios 

From Equations 26 and 9 it can be shown that the constant, Mj, can be 
defined in terms of the quality ratio, Q./Q , as follows: 

J p 

n - x )2 
1/2 

~ 
E (Xip 

i=l p 
M. -

Qp J n x )2 E (Xij -
i=l 

j 

(27) 

The unknown in Equation 27 is the quality ratio, Qj/Qp· To compute Mj 
(a necessary step if the multiple error regression technique is to be used), 
the investigator must estimate this ratio. This may be difficult, but pro­
bably less so than estimating the ratio of the sums of the squared errors as 
required by Equation 9. Therefore Equation 27, rather than Equation 9, was used 
for computing M. in the analysis of Dynaflect data described in this report. 

J 
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7C APPLICATION 

This section describes how the equations derived in the preceding sections 
J;Ilay be used in estimating the constants .in the regression model. 

The model is given below: 

+A 1x l +X • 0 p- p- p 

Steps to be followed in estimating the regression coefficients, Aj, are 
given below in sequence. 

1. To each variable, xj' assign a quality ratio, Qj/Qp' where Qj is 
defined as follows: 

n - x )2 I: (Xij 
i•l J 

Qj - n 2 
I: eij 

i•l 

n 2 2. Compute p values of I: vij (j • 1' •••• , p) from 
i•l 

3. Compute p values of Mj (j • 1, •••• ' p) from 

n 
(Xip - Xp)2 

1/2 

~ 
I: 

i•l 
Mj - Qp n 

1: (Xij - x )2 
1•1 j 

4. Compute the p2 alements.of the symmetrical determinant, 

• • • 

• • • 

. . . 
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from the equation 

n 

wjk = MJ. ~ E vij vik = wkj 
i=l 

5. Find the least positive value, A , of A that satisfies the determinantal 
equation, 

w11 - A wl2 wlp 

w21 w22 - A w2p 

= o. 

w pp - A 

(Note that this determinant is formed by subtracting A from the diagonal 
elements of the determinant formed in step 4). 

6. Solve the following matrix equation for the p - 1 ratios, B./B (j 
•••• ' p - 1): J p 

wll - A w12 w l,p-1 B1/Bp -w lp 

w21 w22 - A w 
2,p-l B2/Bp -w 2p 

X "' 
w p-1,1 w 

p-1,2 
W -A p-l,p-1 B · /B p-1 p -w p-l,p 

7. Find the estimates, Aj, :: :h(:~elf::ients, Aj, (j•l, ••• , p) from 

8. Find the estimate, A , of the intercept, A , from 
0 0 

p " 
A

0 
= -E AJ. Xj 

j=l 
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If it is desired to force the regression plane through the origin (A 
arbitrarily made zero), the procedure is the same as that given above witR the 
following two exceptions: 

(a) Change step 2 to read as follows: 

,-

2. Compute p values of (j•l, •••• , p) from 

(b) Eliminate step 8. 

(Note that the value of M , computed in step 3, is n21 affected by the 
cbSnge in the definition of vi1' while the matrix element, Wjk' compute4 in 
step 4, ~affected.) 
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8C A NUMERICAL EXAMPLE 

To illustrate the effect of variations in the quality ratios, Qj/Qp, on 
the regression coefficients, consider the following numerical example involving 
only two variables (p = 2), and hence only one quality ratio, Q1/Q2• The 
"data" (artifically contrived to emphasize certain features of the multiple 
error technique), are given in Table B-1. 

TABLE 

Data for Example 

Measured 
Values 

X X 
i _1_ _2_ 

1 1 5 

2 4 2 

3 6 7 

4 8 12 

5 11 9 

Using the multiple error method, five analyses of the data were performed, 
each for a different quality ratio, Q1/Q2 . The results are given in Table 2C 
and are plotted, together with the data, in Figure lC. 

Comparisons with results given by the classical method can be made at 
extreme values of Q

1
/Q2 • For example, if Q1/Q2 is made very small, as in 

Analysis 1 of Table 2~, the coefficients given by the multiple error method 
approach those computed by the classical procedure when x

1 
is regressed on 

x2 . If Q1/Q2 is made very large, as in Analysis 5, the coefficients approach 
tliose given oy the classical method when x2 is regressed on xl. 

The result, clearly illustrated in Figure lC, of making the quality of 
both variables the same (Q1/Q2 = 1), is a regression line that follows the 
visible trend of the data, ana bisects the angle between the two lines obtained 
by the classical method. Also apparent from the figure is the fact that all 
possible regression lines lie between the extremes given by the classical 
method. 
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This two-variable example hopefully will confirm for the reader certain 
conclusions reached by the writers regarding the multiple_error regression 
technique. These are the following: 

(1) The multiple error technique is general in the sense that it 
includes the classical method as a special case. 

(2) If measurement errors exist in more than one of the variables 
entering into·an experiment, estimates of the regression coefficients made 
by the classical method will be biased. Resort to the multiple error method 
(if estimates of the quality ratios can be made) may lead to better estimates 
of the coefficients. 

(3) Though the multiple error method (not necessarily under that 
name) has been discussed in the literature; it has not, to our knowledge, come 
into general use. It should. 
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TABLE 2C 

Effect of Quality Ratio on Analysis 

Model; Ao + AlXl + X2 = 0. 

Multiple Error Method Classical Method 

Analysis 
Q/Q2 Ao Al Q/Q2 A Al 

Dependent 
No. 0 Variable 

-6 
1 10 1.70000 -1.44500 0 1. 70000 -1.44500 xl 

2 0.20 0.87435 -1.31239 

3 1.00 -1.00000 -1.00000 
1-' 

""" (") 4 5.00 -l.42820 -0.76197 

5 106 -2.86207 -0.68966 00 -2.86207 -0.68966 x2 



12 

10 

8 

4 

2 

0 

0 

0 

0 

NOTE: Numbers on lines 
represent a, /Q2 

o~~----~------~------._------~-----------
0 2 4 6 8 10 

x, 
Figure lC: Effect on the regression line of varying the quality 

ratio, Q1/Q2 , in a two-variable analysis. The five 
circled points represent the data to which the model 
A

0 
+ A1x1 + x2 = 0, was fitted. 
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9C APPLICATION TO THE ANALYSIS OF PAVEMENT PERFORMANCE 

When the multiple error method was used in the analysis described in 
article 11 and 12, it was assumed that the two variables involved (pavement 
performance and design index ) were of equal quality. For this case the model 
was 

where = 

= 

Texas Design Index , and 

Performance (estimated from deflections) 
Estimates of the constants are given by 

(28) 

± [i:1 
"'l 1/2 
' 

Al 2 ' 
n 

v2 J = L vi2 ·' i=l 
i il 

/ 

·' 
Ao = -Al xl - x2 

where the sign of A1 is opposite to the sign of n 
vu i=l 

The correlation coefficient, R, is given by 

R 
n 

i=l 

and the root-mean-square-residual, rmsr, by 

r 2 

., n 
(Al l: 

rmsr = i=l 

l 
vn 

n-2 

v2 n 
i1 i=l 

Viz+ 

' and 

(29) 

(30) 

vi2. 

1/2 

v2 J i2 

(31) 

n 
' v2 ) 
t:.. i2 i=l 

The symbols Vil and Vi2 were defined at the bottom of page 6C. 
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