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INTRODUCTION 

Among the important problems arising from the population explosion is 
that of congestion. Although this overcrowding manifests itself in virtually 
every aspect of modern life, nowhere is it as dramatically exhibited in our 
society as on our streets and highways. The most vigorous attempt to elimi
nate traffic congestion was the development of the "freeway 1 " a concept 
based on (a) the reduction of vehicle-to-vehicle conflicts, (b) elimination of 
vehicle-to-pedestrian conflicts, and (c) elimination of delay producing traffic 
control devices. Still~ practically all major cities are troubled with severe 
peak hour congestion on newly completed freeways. 

Previous studies have shown that a relatively small increase in traffic 
demand on an already heavily loaded expressway can have a very detrimental 
effect on the operating conditions for all traffic on the facility. Speeds and 
volumes are reduced, densities and travel times are increased, and the high
way immediately loses much of its efficiency. Theoretically, it seems desir-
able to either ration or completely deny access to the freeway at certain locations. 

The automatic evaluation of freeway traffic flow will be a vital element of 
any future control system. Research must be directed toward the evaluation of 
the use of surveillance and sensing equipment, and the simultaneous investigation 
of those characteristics of traffic flow related to freeway congestion which can be 
determined and treated by such equipment. Inherent in the problem are the com
plexities and manifestations of freeway traffic congestion. Traffic inefficiency 
is reflected in such factors as changes in speed, the frequency of speed changes 1 

a low over-all speed, time loss, and driver discomfort. These factors are influ
enced by such additional variables as traffic demand, traffic composition, lane 
occupancy, highway geometries and the drivers' desired speeds. Before it can 
be decided just what level of efficiency is economically feasible, or stated a
nother way, how much congestion should be tolerated during peak periods r con
gestion must be defined quantitatively in terms of known and measurable para
meters of traffic flow theory. 

In recent years a number of descriptive theories of vehicular traffic have 
been put forward. These theories are based on mathematical models of two 
basic types: deterministic and stochastic. Included in the first category are 
the continuous flow models and individual vehicle models which describe the 
macroscopic and micr,oscopic properties of the traffic flow phenomena respectively. 
Included in the second group are the probability distribution hypotheses and queue
ing theory • 
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GENERALIZATION OF DETERMINISTIC MODELS OF TRAFFIC FLOW 

If vehicular traffic is assumed to behave as a one dimensional compressible 
fluid of concentration (density), k 1 and fluid velocity, u, then the conservation 
of vehicles is explained by 

...Qk_ + o (ku) = 0. (l) 

ot ox 

Taking the derivative of the product in the second term yields 

ok + u ok + k ou = o . (2) 

ot ox ox 

It is well established in the theory of traffic flow that vehicular velocity varies 
inversely with the concentration of vehicles 1 

u = f (k). 

As a consequence of (3) 1 

___Q_g_ = 0 u ~ = du = u'. 
ok ox ok dk 

Solving for ou/ox from (4) and substitUting in (2) 1 one obtains the following 
equation of continuity for single lane vehicular traffic flow, 

_Qk_ + [u + k u' ] ...Qk_ = 0 • 
ot ox 

(3) 

(4) 

(5) 

Now, if it is assumed that a driver adjusts his velocity at any instant in 
accordance with the traffic conditions about him as expressed by kn ok/Ox:, the 
acceleration of the traffic stream at a given place and time becomes, 

du = -c2 kn ...Qk_ 
dt ox 

Taking the total derivative of u = f (x, t) gives 

___Qg_ = ..QJd_ 
dt ox 

dx 
dt 

2 

+ ou 
ot 

dt 
dt 

(6) 

(7) 
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where dx/dt = u and dt/dt = 1. Substituting (7) in (6) yields 

~ u + o u + c 2 kn ..Qk_ = 0. (8) 
0 X 0 t oX 

From (4) 1 it is equally apparent that 

ou 
0 t 

= u'.Q...!s_ 
0 t (9) 

Solving for ou/ok from (4) and substituting in (8) 1 substituting for (9) in 
(8) 1 then dividing through by u' 1 equation (8) becomes 

ok 
ot 

+ [ u + c2 kn ~ = 0 r 

u' ox 
(10) 

which is the generalized equation of motion. The nontrivial solution of equations 
(5) and (10) is obtained by equating the quantities within the brackets/ 

(u ') 2 = c2 k (n-1). (11) 

Finally 1 because of the inverse relation between velocity and concentration, 

u' = -ck(n-1)/2. (12) 

Greenberg1 has solve.d (12) for n = -1 obtaining 

u = c ln (k j/k) . (13) 

The solution of (12) for n> -1 is as follows: 

- 2 k(n+ 1)/2 + C 1 U - -=--...£.._ 1r n> - 1 ( 14) 
(n+1) 

where the constant of integration is to be evaluated by the boundary conditions 
inherent in the vehicular velocity-concentration relationship. Thus, since no 
movement is possible at jam concentration, kj, 

and 

C = 2c k. (n+ 1)/2 , n>-1, 
1 -- J 

(n+ 1) 
(15) 

u = 2c .[ k/n+ 1)/2 - k(n+ 1)/2] 
1 

n> -1. (16) 
(n+1) 

3 
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Similarly, the implication exists that a driver is permitted his free speed, 
Uf, only when there are no other vehicles on the highway (k = 0). Therefore 1 

uf = 2c k. (n+1)/2 n> -1 
-- ) I • 

(n+1) 
(17) 

and the constant of proportionality takes on the following physical significance -

c = (n+ 1) Uf , n> -1. 
2k.(n+1)/2 

(18) 

J 

Substitution of (18) in (16) Y,ields the generalized equations of state, 

u = Uf [ 1 - (~ . ) (n+ 1) 12 J , n> -1 ( 19) 

J 

q = ku = kuf [ 1 -~) (n+ 1)/2J 1 n> -1. (20) 

J 
Differentiation of (20) with respect k equated to zero gives the optimum 

concentration, km, which is that concentration yielding the maximum flow of 
vehicles: 

...Qg_ = [ 1 - (n+3) k (n+ 1)/2 -~ Uf = 0
1 

dk 2k. (n+1)/2 J 
J 

km = [{n+3)/2]-2/(n+1) kj
1 

n> -1. 

Substituting (21) in (19) 1 one obtains the optimum velocity, 

Uffi = r n+ 1 J Uf 1 n> -1 o 

L n+3 

(21) 

(22) 

The maximum flow of vehicles of which the highway lane is capable (capacity) 
is obtained from the product of (21) and (22), 

1 (n + 1) -: 
q m = I I Uf k. I n> -1. 

L (1/2)2/ (n+1) (n+3)[2/(n+1)] + 1... J 
(23) 

Some special cases of (19) throug[r (23) have proven to be of significance. 
Greenshields •2 linear model is obtainable by setting n = 1, while Drew3 has 
discussed the case for n = 0. These cases, as well as Greenberg's model, 
are summarized in Figure 1 and Table 1. 

4 
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TABLE 1 

COMPARISON OF MACROSCOPIC MODELS OF TRAFFIC FLOW 

Element General (n> -1) 

Eq. of Motion du + c 2 kn ok = 0 
Tt ox 

Constant of 
Proportionality 

Eq. of State 

c = [(n+l)uf]/2k. (n+1)/2 
J 

q = kuf [ 1~)(n+1)/2 J 
kj 

Optimum Con- -2/(n+1) 
centration km = [(n-t3)/2] kj 

Optimum 
Speed 

Capacity 

Wave Vel. 

urn= [(n+ 1)/(n-t3)] uf 

qm = (n+1) uf ki 

c1; 2)2/(n+1) (n+3) [2/(n+1)] + 1 

QL = uf ( 1 - (n-+3) (£) (n+l)/2 J 
dk '- 2 . k. . . 

J 

Exponential (n=-1) 

du + c2 ok = 0 
dt k ox 

urn 

ku 1n(~) 
m \::k 

kj/e 

c 

1 u k. 
- m J 
e 

urn [lnE; )-1] 

Parabolic (n=O) 

du+ c2 ok = 0 
ox 

Uf/2k.1/2 
J 

kuf [1 ~k~ 1/2] 
,k) 

4kj/9 

uf/3 

_j_ Uf kj 
27 

J 

uf [ 1 -lGk~/2] 
2 kj 

• 

Linear (n = 1) 

du + c2k ok = 0 
dt ox 

uf/kj 

kuf [1 - .k_ ] 
kj 

kj/2 

uf/2 

1 uf k. - J 
4 

uf [1-~ J 
k. 

J 



Typical of some of the car-following laws that have been proposed are 
those that express the performance of a vehicle in terms of its velocity and 
position with respect to the vehicle immediately preceding it 1 

~i (t +T) =a ~i-1 (t)- ~i (t)] CXt-1 (t)- xi (t)fm. (24) 

Equation (24) states that the acceleration of a car, xi, a~ a delayed time, T, 
is directly propqrtional to the relative speed of the car 1 xi 1 with respect to 
the one ahead, x:i-1' and inversely proportional to the headway of the car, 
:X:i_ 1 -x.i. Since the right ~ide of (1) is of the form dy/ym, integration of (24) 
yields 

. 
xi ( t + T) = a 1 n [xi_ 1 ( t) - xi ( t) ] + C 1 , m = 1, (2 5) 

and 

· -1 -m~ x1 (t+T) = (-m+1) a[xi_ 1 (t)-4_(t)] +C
2

, m>l. (26) 

The constants of integration are evaluated by observing that the velocity of 
a car approaches zero as its headway approaches the effective length of each 
car, L; 

c 1 = a 1n L, 

c2 =- (-m+1)- 1 a L-m+1 
I m>l. 

(2 7) 

(2 8} 

Substituting for c 1 and c 2 , equations (25) ctnd (26) become 

.~ (t +T) = a 1n L- 1 [Xi-1 (t)- xi (t)] , m = 1, (29) 

x1 (t +T) = (m- 1)- 1 a { L-(m- 1)-[ xi_ 1 (t)- xi (t)]-(m- 1) J, m > 1. (30) 

Equation (29) is due to Gazis, Herman and Potts4 who showed that the traffic 
equation of state could be derived from the microscopic car following law just 
as the gas equation of state can be derived from the microscopic law of mole
cular interaction. Since the space headway is the reciprocal of concentration, 
k, equations (29) and (30) become 

(31) 

and 

-1 m-1 m-1 
u = (m-1) a (kj - k ) , m > 1. (32) 

7 
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·The constant of proportionality is evaluated at u = uf and k = o giving 

a = [ (m - 1) J uf 1 m > 1 • 
m-1 

kj 

(33) 

Special cases of (32) 1 as well as the relationship of the macroscopic para
meteters "c" and "n" to the microscopic parameter$ "a" and "m" are shown 
in Table 2. 

8 
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TABLE 2 

COMPARISON OF MICROSCOPIC MODELS OF TRAFFIC FLOW 

Element General (m> 1) m=1 m = 3/2 m =2 

xi = a(~i~1- ~1} ~. = a(~. 1 - ~i) 
.. . . 

Eq. of Motion xi = a(xi-1- xi) x. = a (x. 1 - x.) 1 1-
1 1- 1 

(x. 1 - x.)m (x. 1 - x.) .. 3/2 2 1- 1 1- 1 (xi-1-xi.) (x. 1 - X·) 1- 1 

Constant of 
( - (m-1) Uf/2kj1/2 Proportionality a = m-1) Uf kj urn uf/kj 

<.o 
Eq. of State q = kuf [1 -\{1-1] ku 1n ( ki \ kuf [1 -Q<. )1/2 ] kuf [1 -({) r m \-~ 

J J j/ 

Macrosdopic 
Counter:rart 
(See Table 1) n = 2m-3 n = -1 n = o n = +1 



APPliCATION OF DETERMINISTIC MODELS 

The applicability of these deterministic models to freeway traffic was 
tested on the Gulf Freeway in Houston, Texas (Figure 2). Time-lapse aerial 
photography with a 60% overlap was utilized to ensure a given point on the 
freeway appearing on 3 consecutive photos (Figure 3). Six flight runs were 
made in the direction of the traffic being studied, inbound during the morning 
peak. Since a given vehicle appeared on at least 3 consecutive photos, in
dividual vehicular speeds, accelerations, and space headways were measured. 
The observations were compared (on a lane basis) to the 3 ma·~roscopic models 
in Table 1 and the 3 microscopic models in Table 2. 

Regression analyses based on the macroscopic hypotheses of equations 13 
and 19 (n = 0 and n = +1) are summarized in Table 3. Statistical tests were, in 
general, highly significant on each of the 3 freeway lanes, as well as on the 
total traffic on all 3 lanes. The microscopic ana lyses, however, were incon
clusive. A constant of proportionality "a" was calculated for every freeway 
vehicle based on its performance and position with respect to the vehicle in 
front of it. The physical significance of "a" is indicated in Table 2 for the 3 
microscopic models tested. The values obtained were extremely variable; 
approximately one-eighth of the values were negative indicating that, even 
under conditions of heavy traffic, the opportunity for changing lanes reduces 
a driver's necessity to respond to the performance of the car in front of him. 

Essential to the development of freeway control techniques is the deter
mination of suitable control parameters. Among the many techniques for 
controlling.freeway traffic, ramp metering at entrance ramps and changeable
advisory speed limit signs located on the freeway itself offer the most promise. 
"Capacity", qm, and "optimum speed," tim, represent two ideal control para
meters. Figures 4 and 5 illustrate continuous speed and capacity profiles for 
the outside lane of the 6-mile stretch of the Gulf Freeway. "Free speeds", 
Uf· are also shown on Figure 4 for the linear and parabolic models (uf = co 

for the exponential model). 

Because the control of vehicles entering the freeway, as against the con
trol of vehicles already on the freeway, offers a mor·e positive means of prevent
ing congestioh, considerable emphasis is being placed on the technique of ramp 
metering, Entrance ramp metering may be oriented to either the freeway capacity 
or freeway demand. A capacity-oriented ramp control system restricts the 
volume rate on the entrance ramps in order to prevent the flow rates at downstream 
bottlenecks from exceeding the capacities of the bottlenecks. Figure 5 illustrates 
a capacity profile for traffic on all 3 inbound lanes of the Gulf Freeway. Bottle
neck sections along with their respective control capacities are evident. 

10 



TABLE 3 
,. 

Regression Analyses of Equations of State (3 Lane Total) 

Station 
- 1/2 u = a - bk u- a - bk , ~k =a- bu 

b a t b a b a 

306 - 288 .129 52.8 7.52** 3.32 71. 0 .044 6.20 
299 - 281 .115 50.9 32.16** 3.14 69.2 .050 6.35 
292 - 274 .112 52.0 18.37** 3.20 72.0 .047 6. 41 
286 - 268 .132 54.3 40.60** 3.47 74.6 .046 6.35 
280 - 262 .131 53.3 30.60** 3.34 72.2 . 048 6.38 
273 - 255 .142 55.3 13 .49** 3.74 78. 1 . 041 6. 2 6 
267 - 249 .141 56.0 11.87** 3.89 81. 3 . 038 6.25 
261- 243 .102 46.7 4.98** 2.09 54.4 .069 6.77 
254 - 236 .143 58.0 7.79** 4.03 84.8 . 035 6. 2 0 
248 - 230 .173 66.1 20.77** 4.66 95.5 .032 6. 18 
241 - 223 .17 5 64~6 11. 53** 4.56 92.6 . 032 6. 15 
235 - 217 .181 63.0 10.93** 4.67 91.9 . 032 6.09 
229 - 211 .167 59.7 4.85** 4.32 86.6 • 032 6.06 
223 - 205 .182 64.5 15.84** 4.91 96.5 • 030 6.08 
216 - 198 .205 67.8 10. 00** 5.33 101. 5 . 02 8 6.00 
210 - 192 .17 6 62.3 8.82** 4.45 89.2 . 035 6. 17 
204 - 186 .190 65.5 19. 03** 4.86 95.4 . 032 6. 12 
197 - 179 .17 6 64.3 14. 32 ** 4.55 92.6 .033 6.20 
190 - 172 .197 66.4 7.99** 5.11 99.0 . 02 8 6.04 
183 - 166 .200 65.9 4.97** 5. 01 97.0 . 02 7 5.97 
176 - 158 • 181 63.2 7. 12 ** 4.57 91. 8 . 032 6. 16 
169 - 151 .179 63~0 11.14** 4.31 88.5 . 03 6 6.28 
162 - 144 .154 60.0 8.78** 3.59 79.7 .043 6. 51 
155 - 137 .157 60.1 4.18* 3.78 82. 3 . 034 6.23 
148 - 130 .167 61.3 6.06** 4.03 85.1 .035 6.25 
141-- 123 .158 61. 2 5.03** 3.68 82.2 • 03 8 6. 41 
134 - 118 .140 58.3 4. OO*· 3.18 76.0 . 042 6.50 
12 8 - 110 .145 58.1 3.60* 3.19 75.4 • 041 6.44 " 121 - 103 • 051 45.6 .90 1. 08 51.2 . 029 5. 91 
115 - 97 .153 57.8 3.93* 3.14 73.7 .049 6.71 
108 - 90 .222 66.4 4.85** 4.75 91. 7 . 034 6. 12 
101 - 83 .194 64.8 2.67 4.14 86.8 . 02 8 5.94 
95 - 77 .165 61.9 1. 65 3.35 78.7 . 023 5.67 
89 - 71 .17 6 64.0 1. 47 3.79 84.2 . 021 5. 62 
82 - 64 .12 6 58.0 2.87* 2.75 72.7 .048 6. 81 
76 - 58 .121 58.0 3. 16* 2.67 71. 7 .053 6.99 
69 - 51 .12 7 57.7 2.73* 2.98 74.8 . 043 6.62 
63 - 45 .114 55.7 2.80* 2.67 71. 1 . 049 6.86 
56 - 38 .110 55,5 1. 95 2.48 69.1 . 039 6. 51 
50 - 32 . 131 57.6 3.79* 2.88 73.1 .051 6.91 
44- 26 .122 54.2 3.37* 2.62 67.9 .053 6.88 
37 - 19 .13 7 54.2 4.60** 2.96 69. 8 .053 6.75 
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Entrance ramp metering may also be oriented to the distribution of freeway 
demand on the outside (merging) lane of the freeway. In the following section 
a queueing model is described which can be utilized in this type of metering. 
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FORMULATION OF MOVING QUEUES MODEL 

Congestion is an expression first used in queueing theory to describe 
inefficiency in the operation of a system. Congestion in a system is usually 
produced by the combination of three circumstances: (1) a demand or flow 
of arrivals requiring service I (b) some restriction on the availability of service, 
and (c) irregularity in either the demand or in the servicing operation or in both. 
A system operating under these circumstances is called a queueing system. 

As traffic volumes increase I vehicles tend to form platoons 1 or moving 
queues. The criterion in determining when two moving vehicles are queued is 
arbitrary. And 1 for that matter I the criterion. in determining when two stationary 
units are queued in classical queueing systems is equally arbitrary since the 
concept of distance does not appear, the usual assumption being limited to 
independence of arrivals. Borrowing from car-following theory I a line of moving 
vehicles could be considered to be in a single queue if each must react instantly 
to the speed reductions of its predecessor. For the purposes of this discussion, 
it will be assumed that a vehicle is queued to the vehicle ahead if its headway 
is less than S I if space is the parameter I and T, if time is the parameter. 

There are several traffic characteristics that can indicate congestion on a 
highway facility: low speeds I high flow to capacity ratios I high space densities I 

and high time densities (lane occupancy). It seems 1 however 1 that these various 
parameters ignore the distribution of traffic and therefore give incomplete descrip
tions of congestion and the state of a system. It is suggested that E(n) (which I 
in the case of moving queues I shall be called the queue length or number queued) 
is a logical measure of congestion on a highway facility, just as it is in conven
tional queueing systems. Figure 6 illustrates how the moving queue length might 
be a more sensitive indicator of congestion than density. 

The formulation of the moving queues model is based on performing a Bernoulli 
test 1 with probabilities p and ( l - p) I on each headway (either time headway or space 
headway). If headways between successive vehicles are assumed to be independent, 
then the probability of having a queue of exactly one vehicle is 

(34) 

where 1-p is the probability that the headway of vehicle number 2 (Figure 7 a) 
is greater than the arbitrary queueing headway 1 S. Similarly the probability 
of a queue of exactly two vehicles is obtained by a combination of one 11 success" 
followed by a "failure 1 

11 or 

P
2 

= P (1 - p) (3 5) 
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where p is the probability that the headway of vehicle number 2 (Figure 7b) 
is greater than the arbitrary queueing headway, S. By induction, the individual 
queue lengths form a geometric distribution (Figure 7 c) 

P = pn- 1 (1-p) 1 n =1
1 

2
1 

••• n 

The expected queue length E(n) is given by 

which yields 

co 

E(n) = L n Pn 

n=1 

E (n) = 1 P 1 + 2 P 2 + 3 P 3 + ••• 

= (1-p)(1+2p+3p2+ ..• ). 

(36) 

(37) 

The second factor of (37) is a telescoping geometric series whose sum is 1/(1-p) 2; 
therefore 

) -1 E (n · = ( 1 - p) • (38) 

The probability (1 - p} of any vehicle headway 1 x, being greater than the 
arbitrary queueing headway, S, is of course dependent on the distribution of ve
hicles in space on the highway lane 

1 

co 

1 - p = P (x > S) = J S f (x; k , c.) dx (39) 

The two parameter probability distribution implied in (39} is the Erlang distribu
tion. Substituting in (39), 

co c 
p (x > s) = r (kc) xC-1 e-CkX dx 

Js (c-1}1 
(40) 

where k is the average concentration of vehicles, x is distance, and c - 1, 2, 3, ••• 
Substituting (40) in (3 9) and then in (38) yields 

co 

E(n) = [ r {Lq)c xc-1 e-ckx ctxf1 (41) 
Js (c-1)( 

which is the fundamental relation between the moving queue length E(n) 
1 

concen
tration (k) I the arbitrary queueing headway S, and the distribution of concentration, 
c. 

20 



.. 
In the interest of brevity, the theory was developed for space headways 

only. However, it is apparent from the arbitrary nature of the queueing criteria 
that the results can be extended to time headways by replacing x, S and k in 
(41) by t, T and q. 

Inherent in the development of the model is the hypothesis, stated in equa
tion 40, that the distribution of traffic on a freeway conforms to an Erlang dis
tribution. This is, in fact, a logical choice because the exponential distribution, 
well established in the description of traffic headways, may be considered as a 
special case of the Erlang distribution for which c = 1. However, the exponential 
distribution appears to be unduly restrictive for application to freeway traffic, 
partly because the exponential distribution implies that the smaller the headway 
the more likely it is to occur. On the other hand, use of the Erlang distribution 
for all values of c represents the distribution of vehicles for all cases between ran
domness (c = 1) to complete uniformity (c =co), 

Using the same aerial surveys of traffic flow on the six-mile section of the 
Gulf Freeway in Houston, Figure 2, the distribution of space headways was ex
amined. The individual areas studied covered approximately one-third of a mile. 
Figure 8 illustrates the observed distribution of space headways of inbound traffic 
during the A.M. peak period at location nine compared to the expected distribution 
of space headways according to the Erlang distribution. Employing the Chi Square 
test, it was found that significant relationships existed for varying values of c for 
the entire freeway as typified by the location reported in Figure 8. 

The distribution of headways having been established, the moving queues 
model states in equation 41 that the queue length (congestion) varies inversely 
with the percentage of large headways, or directly with the percentage of small 
headways for a given concentration k. Integration of (41) for c = 1, 2, 3, and 4 
yields 

E(n) c=1 = ekS (42) I 

E(n)c=2 
2kS (43) = e 

2kS + 1 

E(n)c=3 = e3kS (44) 
4. 5 (kS) 2 + 3 kS + 1 

E(n)c=4 = e4kS (45) 
10.67 (kS) 3 + 8(kS)2 + 4kS + 1 
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The curves of equations 42 thru 45 are shown in Figure 9. The numbered 
points plotted on the graphrefer to the observed relationship of queue length 
to concentration for the one-third mile increments of the entire 6 miles of the 
outside lane of the Gulf Freeway obtained from the aerial photos. It is seen that 
the use of the first four curves of the Erlang family is sufficient to provide a 
very satisfactory fit to the varied conditions of congestion experienced on a 
long busy freeway. 

APPLICATION OF MODEL TO FREEWAY CONTROL 

The significance of some means of predicting congestion on a freeway sub
system lies in the utilization of this warning time to minimize its undesirable 
effects. The prediction of congestion ranges in sophistication from (1) the pro
jection of peak perlod time patterns from one day to the next, (2) the extrapolation 
of one or more parameters of congestion from one small time period for use as a 
basis for controlling the next period, to (3) the evaluation and control of congestion 
all within the same period. Alternative (1) suggests some pre-timed control system 
in which, for example, ramp metering rates and the time of ramp closures would be 
fixed. Alternatives (2) and (3) are forms of automatic control, and while (3) is 
obviously more desirable, it is not always possible. 

Figure 10 illustrates one application of the moving queues model to the con
trol of a merging situation at an entrance ramp. It must be re-emphasized that 
although moving queues were defined in terms of space headways, it was noted 
that time headways are equally applicable. Thus, a vehicle with a time headway 
less than the arbitrary queueing headway TQ is considered to be queued to the 
preceding vehicle. The control system illustrated consists of the flow of infor
mation from a detector located on the outside freeway lane to a computer and then 
to the metering signal on the ramp. For the "closed loop" system pictured, either 
a digital or analog computing device could be utilized. However, use of the former 
would necessitate a reduction in the "time constant" (time over which traffic con
ditions are averaged) by an interval equal to the time necessary for computation. 

In considering an example, suppose the travel time during the peak period 
from detector to merging area is Tp = 35 sec. and from the metering station to the 
merging area is TR = 5 sec. The critical gap (that headway in the outside freeway 
lane for which an equal percentage of ramp traffic will accept a smaller headway as 
will reject a larger one) is assumed to be 2.5 seconds. It is apparent that if control 
adjustment is to be made during the same period as detection, the time constant 
Tc cannot be greater than TF - TR. Moreover, if the arbitrary queueing headway 
TQ is equated to the critical gap, the number of moving queues Q will equal the 
number of critical gaps. The latter determines q, the number of ramp vehicles that 
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can merge during T . Thus, in the example the dials on the controller would be c . 
set to Tc = 3 0 sec. and TQ = 2. 5 sec. If during Tc, N = 10 vehicles were de-
tected and Q = 5 .of the headways were greater than the queueing headway on 
the dial (t > TQ), the metering rate during Tc would be: 

qR = _Q_ = 5 veh. = 1 veh. every 6 sec. 
Tc 30 sec. 

The rate of flow and congestion index at the detection station during Tc would 
be: 

q = N = lQ veh. = 1 veh. every 3 sec., 
Tc 30 sec. 

E(n) = Ji = 10_ vehicles = 2 vehs ./queue. 
Q 5 queues 

It is apparent that· controller settings would vary from entrance ramp to 
entrance ramp. For example the size of the critical gap for merging would de
pend on the angle of entry, availability of an acceleration lane, sight distance 
for evaluating oncoming gaps and the effect of the grade on acceleration capa
bilities. The geometries of the freeway would also affect the detector location 
and hence influence the time constant. 

CONCLUSIONS 

Freeway traffic control both in the form of controls on the freeway and the 
·metering of inputs on the freeway offers great possibilities for reducing freeway 
congestion. Such macroscopic parameters as capacity and the optimum speed 
provide good indices of conjestion and bases for control. Since capacity is 
difficult to obtain through direct field measurements, a theoretical capacity may 
be substituted. A capacity profile such as shown in Figure 5 can be outlined to 
establish metering rates on entrance ramps. 

The expected number of vehicles per moving queue,, E(n), provides a quanti
tative index of congestion. This parameter may be oriented either to space head-· 
ways or time headways. It affords an index of congestion superior to volume if 
time headways are considered, or to density if space headways are considered, 
because E(n) takes into account the distribution of volume and density. 

The congestion index E(n) developed offers more than a subjective means of 
evaluatlng freeway performance. An automatic control system, based on moving 
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queues, would have many advantages. The control system pictured in Figure 10 
is simpler than a typical semi-actuated signal system at an intersection. The 
parameter E(n) is sensitive and therefore ramp traffic need not be unduly penalized 
when gaps in the outside freeway lane are .available. The system pictured could 
easily be expanded if more sophistication is desired. That is, a speed detector 
could be incorporated with the vehicle detector thereby adjusting TF when speeds 
were reduced during the peak period. Moreover, several local controllers could 
be operated from a large computer, reducing the possibility of undetected con
gestion due to shock waves. 

The field of freeway traffic control offers both an opportunity and a challenge 
to a multitude of manufacturers already engaged in traffic control, or with capabil
ities in this area. It is hoped that this model system wilLencourage more activity 
in the development of simple, rational, theoretically oriented hardware to control 
our freeways. 
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