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ABSTRACT

The Rehabilitation And Maintenance System - State Optimal Fund
Allocation Program II (RAMS-SOFA-2) has been developed to aid the Texas
State Department of Highways and Public Transportation in determining the
optimal statewide strategy and fund allocation district by district. The
program is specially designed to make decisions on rehabilitation and
maintenance work on Interstate and spine networks on a statewide basis. The
program uses a dynamic programming technique. The complete documentation on
the program and an example problem are presented in this report. The model
developed and the program can be utilized to determine the fund alloca-

tion to the residencies of an individual district.



SUMMARY

This report describes the State Optimal Fund Allocation Program 2 of
the RAMS (Rehabilitation And Maintenance System) family of computer programs
developed by the Texas Transportation Institute to aid the Texas State
Department of Highways and Public Transportation to optimally allocate
rehabilitation and maintenance funds between the Districts. The report
contains a detailed description of the mathematical model, an algorithm
to solve the problem, a computer program based on the algorithm, and
a user's manual.

An overview of all of the RAMS programs and how they are used
sequentially in the fund allocation process is given in the first
report of this series, Research Report 239-1, "Rehabilitation and Main-
tenance Systems: The Optimization Models."

The problem that is solved with the program described in this
report is an integer nonlinear knapsack problem with multiple resource
constraints. The algorithm developed uses dynamic programming
methodology. A diverging branch dynamic programming mode] was developed
for the problem. Each branch of the dynamic programming model 1is
considered as a District, in which a set of maintenance strategies must
be selected. The objective is to maximize the summation of calculated
utilities subject to the Timited resources of materials, equipment
and manpower. The results obtained by solving each branch (District)
are then used for allocation of the state-wide highway maintenance
budget through maintenance Districts. That is, all the branches of the

nonserial dynamic programming model are related to a single state variable.

11



(amount of the budget), while each branch of a serial dynamic programming
problem with multi-dimensional state variables must be solved.

A computer program has been written based on the developed algorithm
and has been tested on an example problem which has three Districts with 10
highway segments considered for rehabilitation or maintenance in each

District. A user's guide and program listing is provided in the Appendix.



IMPLEMENTATION STATEMENT

The Texas Transportation Institute at Texas A&M University developed
the Rehabilitation And Maintenance System - State Optimal Fund Allocation -
Program II to help the Texas State Department of Highways and Public
Transporation to determine and distribute optimally the rehabilitation and
maintenance funds among the various districts in the State of Texas. The
RAMS-SOFA-II 1is to be used in conjunction with the other programs in the
RAMS family of programs. This report is intended as a working document
which can be used by implementation workshops to train Texas SDHPT

personnel in the use of RAMS-SOFA-II programs.

DISCLAIMER

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the Federal Highway Administration. This report does not constitute a

standard, specification or regulation.
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CHAPTER I

INTRODUCTION

The allocation of funds for the rehabilitation and maintenance of
the Texas State highway system required the use of a systematic approach
to maximize return of the taxpayers dollars and to use all available resources
most effectively. Until recently, the establishment of funding levels
allocated to different highway segments have been based upon historical
allocation formulas. Recently, a 0-1 integer linear programming model has
been proposed for allocating the rehabilitation and maintenance funds to
the highway segments in a network which is based upon needs and expected
benefits, considering a one-year period of time (9). However, there is
still a need for an appropriate model to project desirable funding Tevels
for both single and multiple year rehabilitation and maintenance programs (10).
A second major problem currently being approached is that of distributing the
rehabilitation and maintenance funds among the 25 Districts within the
State of Texas (8).

The strategic objective of the rehabilitation and maintenance of
the Texas highway system js the selection of the optimal policy for each
highway segment in a highway network in order to maximize the total
effectiveness of all maintenance activities scheduled for the entire
highway network in each year of a perpetual sequence of years. This is
an optimization process, requiring a sequence of interrelated decisions
within and between each funding period. Each single period can be con-
sidered individually as an optimization problem in which the objective
is to find the most effective maintenance policy, subject to the existing

manpower, equipment, materials, and cost limitations.



The single-period optimization is a "knapsack type" problem with mul-
tiple-resource constraints. An earlier attempt to find a solution to
this single-period optimization problem was made by Ahmed (1) who for-
mulated the problem as a 0-1 integer linear programming problem. As a
result of this formulation, a large scale 0-1 problem was solved heuristi-
cally and a near-optimal solution was obtained.

An alternative approach to the single-period optimization is to for-
mulate the problem as a "nonlinear knapsack problem" (NKP) which signi-
ficantly reduces the number of variables and eliminates all the constraints
except the resource constraints. (8). A promising solution approach to handle
NKP is discrete dynamic programming. Although this approach reduces the
dimensionality of the decision variables, it suffers from the fact that
the existence of more than three resource constraints renders this approach
computationally intractable. This is the well-known problem of dimension-
ality of state variables in the dynamic programming technique. One way
to reduce the M-state variable dynamic programming problem to a single-
state variable problem is through the use of Lagrangian multipliers (3, 5).
However, the problem of duality gaps, which is 1ikely in the case of
discrete variables, makes this approach somewhat dubious. An alternative
method to reduce the dimensionality of the state variables is by employ-
ing the "imbedded state" technique (6). Although the comparative efficiency
of both the Lagrangian and imbedded state approach is a questionable
matter, and probably depends on the structure of the problem, the Tatter

A fundamental advantage in using dynamic programming techniques for single

period optimization is that it provides a bookkeeping record of returns for



different maintenance funding levels which can be used for the overall
distribution of funds, in an optimal manner, throughout different years
in a given District. Development of a dynamic programming based model
also provides the capability of distributing funds over all Districts in
the State for a given budget cycle (8). Conversely, by using 0-1 integer
programming for single-period optimization, the overall distribution of
funding levels would be either impossible or a very difficult and time
consuming task.

This report presents a model which is capable of distributing
available rehabiliation and maintenance funds over a single period
throughout all Districts in the State, and allocating other available
resources within each District. The resulting model is also capable of
optimally distributing Timited funds through a finite time horizon for
a single District or to allocate funds available in a single time period
to different residencies within the District. When it is used for time-
staging of projects, it is called RAMS-DT0-2 (District Time Optimization
No. 2) and when it is used to optimally allocate funds between residencies
for a single time period it is called RAMS-DO-2 (District Optimization,
No. 2). A user's manual on RAMS-DTOQZ with changes in the program and
the input data and results of an example problem will be bresented in
a forthcoming report.

When the same program is used to allocate funds available in a
single time period between Districts, it is called RAMS-SOFA-2. (State
optimal Fund—ATtocationr ProgramNo. 2) An—overview—of—the RAMS (Rehabilitation
and Maintenance System) family of programs that have been developed by
the Texas Transportation Institute to aid the Texas State Department of

Highways and Public Transportation to optimally allocate rehabilitation



and maintenance funds between and within the Districts is given in the
first report of this series, Research Report 239-1, "Rehabilitation and
Maintenance Systems: The Optimization Models." A new dynamic programming
algorithm, capable of efficiently handling multiple constraints, will

also be discussed.



CHAPTER 2
ANALYSIS OF THE HIGHWAY MAINTENANCE PROBLEM

Allocation of funds for highway maintenance operations is one of the
basic components of the general rehabilitation and maintenance management
system. In general, the basic components of a maintenance management
system include maintenance standards, inventories of maintenance equipment,
maintenance work loads, management information systems, and capital budgeting.
The Tast component, capital budgeting, will Tikely become more stringently
controlled in the future, and hence there exists a need for systematic,
optimal allocation of these Timited resources. Moreover, the use of an
analytical technique for systematic allocation of available resources at
the District level can identify maintenance practices that can potentially
save money through more efficient utilization. Before describing the
mathematical development of the problem, some useful terms should be
defined:

a. Highway segment. A highway segment is a portion of a highway

section or a combination of highway sections under consideration.
This term is used to identify several highway sections which are
similar or identical in traffic condition and environmental
factors which affect the effectiveness of maintenance and reha-
bilitation activities.

b. Analysis period. The analysis period is a time duration greater

than the expected life of any maintenance or rehabilitation
method.

c. Types of distress. The usual categories of distress types for

flexible pavements are: (1) rutting, (2) raveling, (3) flushing,



(4) corrugation, (5) roughness, (6) alligator cracking, (7) Tongi-
tudingal cracking, (8) transverse cracking, and (9) patching.

Maintenance Strategy. A maintenance strategy is an activity

selected for a highway segment in order to increase the pavement
rating above a specified minimum requirement. Numerous strategies
can be applied to each pavement segment. Among the more generally
used strategies are the following: (1) strip seal, (2) fog seal,
(3) seal coat, (4) 1ight patching, (5) extensive patching and

seal coating, (6) seal coat and planned thin overlay, (7) plant-mix
seal or open-graded friction course, (8) thin overlay (less than
two inches of asphalt concrete), (9) moderate overlay (two to

three inches of asphalt concrete), (10) heavy overlay (three to

six inches of asphalt concrete), and (11) reconstruction.

Pavement condition. The following criteria are used for deter-

mining current pavement condition: (1) the current pavement con-
dition rating of each segment for each type of distress, (2) the
potential gains of rating of each segment for each maintenance
strategy and type of distfess, (3) the pavement survival rate for
each type of distress through a given time period for each type
of pavement, (4) the minimum rating requirement of each segment
for each type of distress over a specified time period.

Current pavement condition rating. The present condition of the

pavement is determined by evaluation of the highway segment
with respect to various types of distress. The rating score is
obtained by subtracting the total "dedyct values" associated
with various types of distress from 100. Table 1 represents an
example of deduct values for six types of distress for flexible

pavement (2).



TABLE 1

Deduct Values of the Different

Distresses on Flexible Pavement

Type of Distress

Degree of Distress

Amount of Distress

(1 (2 @)

1.. Rutting STight o 2 5
Moderate 5 7 10

Severe 10 12 15

2. Ravelling Slight 5 8 10

Moderate 10 12 15

Severe -15 18 20

3. Flushing S1light - 5 8 10

Moderate 10 12 15

Severe 15 18 20

4. Corrugation Slight . 5 8 10

Moderate 10 12 15

Severe 15 18 20

5. Alligator - Stignt 5 10 15

Cracking Moderate 10 15 20

Severe 15 20 25

6. Patching Stight -0 2 5

Moderate 5 7 10

Severe 7 i5 20




Potential gain in rating. Potential gain in rating is defined

as the net expected increase in pavement rating for each segment
for each type of distress and maintenance strategy.

Pavement survival rate. When a maintenance strategy is applied

to a highway segment, the pavement condition must achieve a high
enough rating to survive for one year. Therefore, the survival
probability immediately following a maintenance activity is one.

As time passes, the pavement deteriorates and the survival probabil-
ity of that segment is reduced.

Maintenance activity. Maintenance activity is a general term

for the varous types of work that can be done to increase the
rating score of a given pavement section.

Minimum rating requirement. The minimum rating requirement is

used as an indication of when a maintenance activity must be
scheduled. There are two such indicators: the first indicator
results when the distress rating for any single type of distress
falls below a minimum acceptable rating; the second indicator
occurs when the total of all distress type ratings are less than
the minimum total rating requirement.

Resource information. The restrictions on the availability of

the resources usually appear as a set of constraints on the
mathematical model. For strategic planning of pavement main-
tenance and rehabilitation, the resources are categorized in the
following groups: (1) material and supply, (2) equipment,

(3) personnel, and (4) District budget.



Management decisions. Management decisions determine: (1) the

number of highway segments that will be considered for maintenance,
(2) the types and number of maintenance strategies, (3) types and
number of distress, (4) the planning horizon or analysis period,
and (5) the amount of capital necessary to perform the required

maintenance alternatives.



CHAPTER 3
FORMULATION OF THE MATHEMATICAL MODEL

The zero-one integer linear program formulation described by Phillips

and Lytton (9) for optimal allocation of resources within a district is the

basic model for pavement maintenance strategy planning. A detailed descrip-

tion of this model and a solution process is given in Ahmed (1) and Ahmed

et al. (2). For a realistic problem, the model will involve a large number

of zero-one decision variables and a very large number of constraints.

example, consider a District highway network with 200 highway segments, with

ten maintenance alternatives per segment. Assume that there are 15 resource

constraints and 5 different types of distress. With a planning horizon
of 10 years as the period of analysis, the model will have approximately
2000 decision variables, 200 multiple choice constraints, 16 resource
constraints including budget, 10,000 minimum rating constraints and
2,000 minimum overall rating constraints.

For the state-wide system optimization, a zero-one integer Tinear
programming model whould be approximately 20 times larger.

3.1 A Dynamic Programming Model for Maintenance Strategic Planning
for a Single District

An alternative approach, which will alleviate the diffi-
culties identified in the previous section, is the development of a
dynamic programming model for problem solution. Both the problem of
allocating resources within a District and the problem of allocation of
total budget between Districts can be handled by such a model. The
»decomposition of dynamic programming converts the larger problem into a

sequence of smaller problems through which the process of achieving an

10



optimal solution to the overall problem becomes easier. Further, the
capability of obtaining the optimal solution values as a function of
resource availability provides an inherent sensitivity analysis that
can take into account the different budget levels at each District. As
described in a subsequent section, the optimization process can be
performed only once in each District, and the required information for
distributing the budget to the different Districts can be achieved
by solving a single dynamic programming problem.

This dynamic programming model for allocation of resources at the
District level can be represented as a nonlinear knapsack problem. In

general, a nonlinear knapsack model can be presented in this form shown

below.
Problem A:
N
Max. f(X) = jz] rj(Xj)
Subject to:
M .
jz1 aij(xj) < bi i=1, 2, s M

Problem A is a general form of the resource allocation problem.
In the specific case of the highway maintenance allocation problem N
is the number of highway segments in a district; Kj is the number of dif-
ferent types of maintenance strategies that can be applied to highway

11



is a decision

segment j; bi is the available amount of resource type i; Xj

variable taking values 1, 2, ..., Kj which indicates what strategy is being

selected; a; is the amount of resource type i consumed by highway segment

J
Jj if strateqy Xj is being selected; rj (Xj) is the return benefit obtained
from using maintenance strategy Xj on highway segment j, and M is the total
number of Timited resources.

The form of the model presented as Problem A can be expanded by

defining its individual terms as follows:

Problem B
N N Np Ny
Max Doori(Xs) = o Ly Losl T DL (XM) Pa (XD (3.1)
=1 37 3=1 W 72321 27 dkTTI7T T IkET
Subject to:
N
j£1 ng(Xj) LU sz < TSg g=1, 2, . NG (3.2)
N
jE] Efj(xj) L]j L2J < TEf f=1, 2, s NF (3.3)
N
j£1 qu(Xj) L]j sz < THq g=1,2, ..., NQ (3.4)
N
j__z_1 C;(Xy) Lyj Ly < TC (3.5)

where the terms of the model are defined

Cj = the overhead cost function

12

as follows:

of strategy Xj at highway segment j.



E.. = consumption of equipment type f at highway segment J.
H . = consumption of work force type q as a function of strateqgy
Xj at highway segment j.
L1. = the length of highway segment j.
L,. = the width of highway segment j.
N = the member of highway segments.
ND = the number of distress types.
NF = the number of different types of equipment.
NG = the number of different types of material.
N. = the number of different types of workforce.

NT = the number of years in the analysis period.

ijt = pavement survival probability as a funtion of strategy Xj
for the type of distress k at period t, in highway segment j.
ng = consumption of type g material per unit surface area as a

function of strategy Xj at highway segment j.
TC = total budget available, in dollars.
TEf = total amount of type f equipment available (equipment-day) .
TH_ = total amount of q work force (human resource) available
(person-day).

TSg = total amount of type g'material available.

In order to compare the dimensionality of the 0-1 integer linear
program and dynamic programming, consider the example used earlier. It
was stated that the zero-one integer linear program formulated for the
problem involves approximately 2000 decision variables and 12,216 constraints.
The nonlinear knapsack model for the same problem involves only 200 decision

variables and only 16 inequality constraints. This illustrates a significant

13



reduction of 1800 decision variables and 12,200 inequality constraints.
It must be recognized that the decision variables in the later model take
on 10 different values. However, the use of a proper solution technique,
dynamic programming, will yield an efficient solution to the problem.

3.2 A Dynamic Programming Model for Maintenance Strategic Planning
Considering Multiple-Districts

The models discussed in Section 3.1 have been developed to allocate
funds within a specific District. In this section, the problem of state-
wide fund allocation will be discussed. In particular, a model will be
developed to allocate the state-wide budget to the Districts and at the
same time, to allocate resources within individual Districts. The task
of projecting the required budget levels for the annual maintenance program
is also considered in this model.

Consider the nonlinear knapsack model discussed as Problem A. This
formulation is a general representation of the allocation of resources
within a highway District. The availability of each resource, such as
equipment, materials, and manpower is determined by the District engineer
and usually has fixed values. However, the amount of funds available to
the Texas State Department of Highways and Public Transportation is
determined by the State legislature. Recently, a systematic method for
allocating the statewide budget to Districts has been proposed by Phillips
and Lytton (8). The proposed method provides a range of budget allocations
to each District. An optimal maintenance policy is determined for the
selected number of possible budget levels within each District. The
overall maintenance policy at this state Tevel is then determined through

an overall synthesis and optimization model based upon dynamic programming.

14



In order to be certain that the Interstate and other spine networks are
maintained at acceptable Tevels of service in all Districts, a more desirable
approach to the problem of allocating the statewide spine network budget to
jndividual Districts is to develop a model capable of handling both the within
and between District allocation process at the same time. The mathematical
representation of such a model in the form of a nonlinear knapsack problem is

presented below.

Problem C
D N (
Max T or.(X))
¢=1 j=1 9
Subject to:
N
jz] a_ijd(xj) ib_id 1= -!5 2, . . . [y M"'.I
d=1, 2, s D
D N )
% Cy(X;) <TC
g=1 =1 4707 =
Xj is contained in de d=1,2,. .. ,D
J = 1’ 29 £y N
SJd - (]: 23 s KJd)
where
aijd = the amount of resource type i (excluding overhead cost)
consumed as. a function of strategy Xj, for highway segment j at
District d.
bid = total amount of type i available resource (excluding budget level)

at District d.

15



de = the amount of consumption costs which is a function of the
strategy Xj, for highway segment j in District d.
D = the number of Districts in the analysis.

Kjd = the number of maintenance strategies that can be applied to
highway segment j in District d.

M = the number of resource constraints excluding costs.

rjd = the return function of strategy Xj, for highway segment
j, in District d.
TC = total amount of available budget for entire state.

x. = the decision variable indicating the type of strategy to be

selected.

Problem C can be decomposed into two separate problems. The first is a
decomposition of the problem according to Districts. Each District can then
be considered as a single state in a statewide dynamic programming formulation.
The second problem is a decomposition of all District subproblems into indi-
vidual highway segments which yields a problem similar to Problem A. This

process can be illustrated by expanding Problem C.

Problem D

Max.

. Y‘J"](Xj) +
J

o~ =2
I g =2

16



Subject to:

N
) a-ij](xj) < b
j=1 — 791
)
i=1 aT'J'Z(XJ') -<—t31'2
)
assn(X:)
j=1  WDTIT < by
for i =1, 2, , M-1
N N
C.- (X, + .
jz] 57(%3) j; Cip(Xs) + J_Z] Cip(X;) < TC

Referring to Problem D, the limitations on all the resources are considered
independently for each District with the exception of the limitation on the budget
Tevel (TC) which interrelates the decisions in all Districts. However, the
allocation process within each District could be developed independently if
it were developed as a function of budget level in that District. That is, a
vector presenting the optimal return as a function of budget level in each
District could be obtained. These District benefits and associated cost levels

could be used for the allocation of the total budget to individual Districts.

17
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This two-level allocation process can be suitably performed using a non-
serial dynamic programming model. This model is illustrated schematically in
Figure 1. In this figure, each branch represents the allocation of resources
within a District, and the node S from which each branch diverges represents
the allocation of the total budget to each individual District.

In each branch there will be N stages representing the number of segments
in that branch (Districts), and D branches diverging from Node S. Each branch
may be solved as an initial-value problem in terms of th. This is accomplished
using forward recursion carrying th as an extra state variable. At the final
stage the return vector, which is a function of the state variables, will be
obtained for each branch. The state variables represent the consumption of the
resources such as types of equipment, materials, personnel, and the total budget
level. Among these state variables, only the consumption of the budget is the
subject of further optimization and all other state variable inputs are fixed.
As a result, the returns in each District, as a function of budget level, are
obtained. Considering each District as a single stage in the dynamic program-
ming model, a decision must be made with regard to the allocation of budget
levels to each District in order to obtain the maximum return.

Referring to Figure 1, it can be seen that each branch involves a multiple-
constraint dynamic programming problem. These constraints are divided into two
groups. The first group is represented by a state vector yjd' The second
group, rehabilitation cost, is represented by a single-state variable, Zjd'

This separation has just been justified; i.e., the cost constraint interrelates
the decision-making process between the different branches, which enables the
group of constraints represented by Yit to be considered independently within
each branch.

Consider District d; allocation of resources to this District using a
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dynamic programming technique results in the following recursive equations:

over
0< A]a(Xj),g Y14 for a fixed d
0 < Cpp(X5) < Zy4
Raj(Zyar Yya) = Maxe ryq(Zg) + Maxe Ry g q(Zyq 4s¥5.9,4)
for j =2, 3, ..., N
over

A(X.) <y i=2,3, ..., N
Of_Ajd(XJ) < V94 for j

The state recursion equations are:

Zy, = TC
glt = TR

Z5.1,8 = Lt - Cye(X5) J=2,3, oy N
PR Vit - Asg(X;) i=2,3 iy N

where the state variables are defined as

th = the amount of budget available for stages (segments) j,
J+ 1, ... N
~jt = the vector whose components represent the amount of each
type of resource available for stages (segments) j, j + 1, ...
and
TR = (byys boyps oo by1.¢)
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The recursive equations developed for District t can be applied
to all Districts, i.e., d=1, 2, ..., D. After a dynamic programming
solution procedure is applied to each District, the return RNd (ZNd, ?Nd)
will be obtained. Since the first group of constraints is not involved in
the allocation of budget to Districts, let Rd (Zd) = RNd (ZNd’ ?Nd). The
distribution of budget levels to each District is then obtained by solving

the following problem:

Problem E:
D
1,51
Max. = R(Z})
=1 ¢7d
Subject to:
D 4
2 Zd=TC
d=1
1
ZdESd
where
S; = the vector of the budget levels in the final stage of branch
d (District d).
RL = the return vector obtained in the final stage of branch d

(District d).

Problem E is a one-dimensional (single linking constraint) nonlinear
knapsack model which can also be solved with dynamic programming techniques.
The optimal solution resulting from solving Problem E will define the
optimal budget level, Zl*, and after obtaining this value, the optimal
set of maintenance policies for every segment of each District can be

recovered.
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CHAPTER 4
OPTIMIZATION OF THE MODEL

This chapter presents the development of the required algorithm
for solving separable nonlinear, multi-dimensional knapsack problems.
The algorithm is called a "hybrid a]gorithm”; and it is essentially a
dynamic programmming approach in the sense that the problem is divided
into smaller subproblems. However, the idea of fathoming the partial
solution by branch and bound is incorporated within the algorithm.

The main feature of the hybrid algorithm is its capability of reducing

the state-space which otherwise would present an obstacle in solving
multiple-constraint dynamic programming problems. Part of this reduction
is due to the use of the imbedded-state approach, which reduces an M-
dimensional dynamic program to a one-dimensional problem. Other reductions
are made through fathoming the state-space and subsequent elimination

of state-space regions, which tend to eliminate inferior solutions when
compared to the predetermined lTower bound or updated lower bound.

The use of a surrogate constraint methodology is implemented in the
algorithm to obtain initial Tower and upper bounds for the objective
function. At each stage, the lower and upper bounds are also updated
by use of a surrogated problem, and the updated upper bound is used -
for termination criteria. The procedure for updating lower and upper
bounds in the surrogated problem is very efficient. In addition, the
primary advantages of using the surrogate problem to estimate these
bounds, are (1) it provides a narrow range between the lower and upper
bound, and (2) it might provide the optimal solution to the problem at

the first step.
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A modification of the hybrid algorithm has been developed for appli-
cation to Targe scale NKP's. However, the modified algorithm, though
computationally much faster, may not provide an optimal solution to some
problems, but rather will obtain a near-optimal solution. The modified
algorithm follows roughly the same procedure as the hybrid algorithm.
However, instead of evaluating all promising solution spaces, it attempts
only to improve the lower bound calculated by the surrogated problem.

The details of the hybrid and the modified hybrid algorithm are
presented in Appendix A. The documentation and the user's guide to the
computer programs are given in Appendices B and C. The algorithms will

now be explained by use of a simple example.

4.1: The Imbedded State Approach

Consider a District highway network problem, with 4 highway segments.
There are 5 maintenance strategies available per segment. The two con-

straints deal with the budget and one type of resource. Therefore:

N=4
Ky =5
M=2

Considering the model presented in Problem A, Xj is contained in Sj i.e.

xjesj=(1,2, 3, 4, 5)

forj =1, 2, 3, 4.

The objective function coefficients and the constraints are given in
Table II and Table III respectively. The right hand sides (availability

of resources) are 28 in each constraint.
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TABLE TII

Rj(xj) ~ OBJECTIVE FUNCTION COEFFICIENTS

J 1 -2 XJ E SJB 4 5
1 0 2 3 5 8
2 0 3 4 5 6
3 0 6 9 11 13
4 0 4 7 10 11
*j is the index on the highway segments.
TABLE III
Aij (Xj) - CONSTRAINT COEFFICIENT
Xj € Sj
J 1 2 3 4 5
1 0 6 8 9 11
1 0 3 4 5 7
2 0 7 10 12 14
2 0 4 6 8 10
3 0 8 10 12 15
13 0 6 8 9 12
4 0 5 6 9 10
4 -0 A 3 12 5

[ S PR N
i} 1]

the index on the constraints.

the index on the highway segments.
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Solution:

Stage 1 Calculations

The imbedded-state space for stage 1 is

17 {(o,o), (6,3), (8,4), (9,5), (11,7)}

Fl=6
r'l = (Os 2’ 33 59 8)

The T1 and TS],matrices are created using elements of F1 and ry-

T] TS]
Row X Pointer g r
- 1 to 1 1
Stage 0
1 1 -- 0 0 0
2 2 -- 6 3 2
3 3 -- 8 4 3
4 4 -- 9 5 5
5 5 -- 11 7 8

Since each element of F, satifies the feasibility conditions,

—

(0,0) < (28, 28),

(6,3) < (28, 28),
(8,4) < (28, 28),
(9,5) < (28, 28),

(11,7) < (28, 28),
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none of these solutions are eliminated and hence

and

The updated version of TS,, and T, will be the same as the ones before

since no points are eliminated.

Stage 2 Calculations

j<p]
1]

) {(0,0) (7.4), (10,6), (12,8), (14,10)}

_ e
F2 = 62 0 F]

The number of elements in F2 is the productosz and the elements

. e
in F] .

Fo = { (0,0), (6,3), (8,4), (9,5), (11,7), (7,4), (13,7) (15,8),
(16,9), 18,11), (10,6), (16,9), (18,11), (10,6), (16,9),,
(18,11), (10,6), (16,9) (18,10), (19,11), (21,13), (12,8),
(18,11), (20,12), (21,13), 23,15), (14,10), (20,13), (22,12),
(23,15), (25,17)} .

The T2 and TS, matrices are generated as follows.
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TS2

11

12

10
13

11

14

11

13
15
16
18
10
16

11

10

11

18
19
21

13

12
18
20
21

11

12

13
15
10
13

23
14
20

22

12
15
17

23
25

Pointer
to
Stage 1

Row

10

11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
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None of the elements of F2 violates the feasibility conditions, and hence

However, some of the solutions can be eliminated by the dominancy test.
Consider the solutions presented in rows 3 and 6. Both solutions result
in the same return (3 units). The solution in row 3 requires 8 units

of resource 1 and 4 units of resource 2. Solution in row 6 requires

7 units of resource 1 and 4 units of resource 2. Solution (7,4) dominates
solution (8,4). Therefore, solution (8,4) is eliminated from the set.
Consider solutions which generate a return of 5 units. They are: (9,5),
(13,7), and (12,8). Obviously, (9,5) dominates (13,7) and (12,8), and
hence (13,7) and (12,8) are eliminated from the solution set. Compare
solutions (9,5) and (10,6) resulting in returns of 5 and 4 units respec-
tively. Solution (10,6) consumes a higher amount of both the resources, -
but generates a Tower return only. Solution (10,6) is eliminated from
the set. Conducting the dominancy test on all the elements of sz, a
total of 16 solutions are eliminated and a nine element vector Fg is

generated.

F,¢ = {(0,0), (6,3), (7,4), (9,5), (11,7), (18,11), (21,13),
(23,15), (25,17)}.

Thus the updated'\TS2 and T2 matrices are as follows
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2 2
Row X2 Poznter 9o ro
0
Stage 1
1 1 1 0 0 0
2 1 2 6 3 2
3 2 1 7 4 3
4 1 4 9 5 5
5 1 5 11 7 8
6 2 5 18 11 11
7 3 5 21 13 12
8 4 5 23 15 13
9 5 5 25 17 14

Stage 3 Calculations

J=3, K=K;=5
G3 - {(O:O)a (836)9 (1098)3 (]299)’ (]5912)}

and

- e
G3 0 F2

Since 63 and er have 5 and 9 elements respectively, F3 will have 45

elements. The elements of F3 with the associated returns are listed in

the TS3 matrix.
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TS4

Row X Poigter 93 ra
Stage 2
1 1 1 0 0 0
2 1 2 6 3 2
3 1 3 7 4 3
4 1 4 9 5 5
5 1 5 11 7 8
6 1 6 18 1 1
7 1 7 21 13 12
8 1 8 23 15 13
9 1 9 25 17 14
10 2 1 8 6 6
1 2 2 14 9 8
12 2 3 15 10 9
13 2 4 17 1 1
33 4 6 30 20 22
34 4 7 33 22 23
35 4 8 35 24 24
36 4 9 37 26 25
37 5 1 15 12 13
38 5 2 21 15 15
39 5 3 22 16 16
40 5 4 24 17 18
a1 5 5 26 19 21
42 5 6 33 23 24
43 5 7 36 25 25
a4 5 8 38 27 26
45 5 9 40 29 27
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In Fi, all the solutions with resource requirements higher than (28,28) are
eliminated. For example, solution (30,20) in row 33 will be eliminated
since the resource 1 requirement, 30, exceeds the availibility, 28. For
solution (40,29) in row 45, the requirements exceed the availabilities

for both the resources. Hence, it will be eliminated. A total of 14
infeasible solutions are eliminated. Further, the dominancy test

will eliminate 17 more solutions. The resulting F3e with 14 elements

and ry are shown in the updated T3 and TS3 matrices.

T3 TS 5
ng X3 Po%gter 93 ra
Stage 2
1 1 1 0 0 0
2 1 2 6 3 2
3 1 3 7 4 3
4 1 4 9 5 5
5 2 1 8 6 6
6 1 5 11 7 8
7 3 1 10 8 9
8 4 1 12 9 11
9 5 1 15 12 13
10 3 4 19 13 14
11 4 4 21 14 16
12 3 5 21 15 17
13 4 5 23 16 19
14 5 5 26 19 21
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Stage 4 Calculations

J =4, K= K4 =5

{“p]
I

a {(0,0), (5,4), (6,8), (9,12), (10,15)} ~
and

F, = G4o F32 contains 70 elements of which 37 elements are eli-

4
minated by feasibility and dominancy tests. The resulting F4e will have

33 solutions and are shown in the following T4 and TSy matrices.
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T4 TS4
R?w X4 Po%gts 9 T3
Stage 3
1 1 1 0 0 0
2 1 2 6 3 2
3 2 1 5 4 4
4 1 4 9 5 5
5 1 5 8 6 6
6 3 1 6 8 7
7 2 3 12 6 7
8 1 6 11 7 8
9 1 7 10 8 9
10 4 1 9 12 10
11 5 1 10 15 11
12 1 8 12 9 11
13 2 6 10 11 12
14 1 9 15 12 13
15 3 5 14 14 13
16 1 10 19 13 14
17 2 8 17 13 15
18 1 11 21 14 16
19 2 7 16 16 16
20 1 12 21 15 17
21 2 9 20 16 17
22 3 8 18 17 18
23 1 13 23 16 19
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4

R?w X4 Poggter 94 ra
Step 3

24 4 7 19 20 19
25 3 9 21 18 20
26 5 7 20 23 20
27 1 14 26 19 21
28 4 8 21 21 21
29 5 8 22 24 22
30 2 13 28 20 23
31 3 11 27 22 23
32 4 9 24 24 23
33 3 12 27 23 24

At the end of stage 4 calculations, from column 3 of TS4 matrix,

it is found that the maximum (optimum) return is 24.

*

R4 = 24

The optimal decision values at the various stages are determined by back-
tracking through the T-matrices. The optimum value 24 is generated by
the solution (27,23), in row 33. The optimal value of X4 is 3 and the
pointer to stage 3 indicates that optimal value of X3* is in the 12th

row of T3 matrix. X3* = 3 and the pointer to stage 2 indicates that
optimal value of X2 is in the 5 th row of T2 matrix . X2* = 1 and the
pointer to stage 1 indicates that optimal value of X1 is in row 5 of T1

*
matrix X] = 5. The backtracking operation is summarized in the following

table.
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Stage Pointed to A, (X)) AL (X)) r.(X,)
J Stage j-1 134737 72577 NN

4 12 6 8 7

3 5 10 8 9

2 5 0 0 0

1 - 1 7 8

. : *
g, = (27,23) Ry = 24

4.2 The Hybrid Algorithm

The solution of the same example problem will now be obtained using

the hybrid algorithm.

The algorithm requires an initial lower and upper

bounds to the objective which is obtained by the surrogate constraint

methodology.

The surrogate problem of Problem A is as follows:

Probiem E

subject to

Y'J- (XJ)




Let
S
i M
M
AJ(Xj) = 151 o Aij (XJ)
M
and B = 151 o bi
where

[I] defines the Targest integer value less than or equal to I.
Then, the surrogate problem is:
N

max j§1 Aj(Xj) <B

For the example problem Aj and rj are as follows:

J AJ(XJ) Y‘J(XJ)

1 (0, 4, 6, 7, 9) (0, 2, 3, 5, 8)

2 (0, 5, 8, 10, 12) (0, 2, 4, 5, 6)

3 (0, 7, 9, 10, 13) (0, 6, 9, 11, 13)
4 (0, 4, 7, 10, 12) (0, 4, 7, 10, 11)
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The solution to the surrogate problem is obtained using the dynamic pro-

gramming techniques in tabular form (7).

Stage 1 Calculations

Table of Returns for Stage 1

X
A * X
1 Ry 1
B r] 2
0-3 0 - - - - 0 1
4-5 0 2 - - _ 2 2
6 0 2 3 - - 3 3
7-8 0 2 3 5 - 5 4
9-28 0 2 3 5 8 8 5
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Stage 2 Calculations

Table of Cumulative Returns for
Stages 2 and 1

Xo 1 4 5
B A2 0 10 12 Rz* XZ*
ro 0 5 6
0-3 0 - - - - 0 1
- - - - 2 1
- 5 2 3 - - - 3 2
6 3 3 - - - 3 1,2
7 5 3 - - - 5 1
8 5 3 4 - - 5 1
9 8 5 4 - - 8 1
10 8 5 4 5 - 8 1
11 6 6 4 5 - 8 1
12 - 13 8 8 6 5 6 8 1,2
14 8 11 7 7 6 11 2
15 8 11 9 7 6 11 2
16 8 11 9 8 8 11 2
17 '8 11 12 10 8 12 3
18 8 11 12 10 9 12 3
19 - 20 18 11 12 13 11 13 4
21 - 28 8 11 12 13 m 13 4
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Stage 3 Calculations

Table of Cumulative Returns for Stages 3, 2, 1

1 4 5
8 0 10 13 Ry* X

0 11 13
0 0 - - - - 0 1
4 2 - - - - 2 1
5 3 - - - - 3 1
6 3 - - - - 3 1
7 5 6 - - - 6 2
8 5 6 - - - 6 2
9 8 6 9 - - 9 3
10 8 6 9 11 - 11 4
11 8 8 9 11 - 11 4
12 8 9 9 11 - 11 4
13 8 9 1 11 13 13 5
14 11 11 12 13 13 13 4,5
15 11 N 12 14 13 14 4
16 11 14 14 14 13 14 2,3,4
17 12 14 14 16 15 16 4
18 12 14 17 16 16 17 3
19 13 14 17 19 16 19 4
20 13 14 17 19 18 19 4
21 13 17 17 19 18 19 4
22 13 17 17 19 21 21 5
23 13 17 20 19 21 21 5
24 13 18 20 22 21 22 4
25 13 18 20 22 21 22 4
26 13 19 21 22 21 22 4
27 13 19 21 23 24 24 5
28 13 19 21 23 24 24 5
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Stage 4 Calculations

Table of Cumulative Returns for Stages 4, 3, 2, and 1

X4 4 5
5 A4 0 4 7 10 12 R4* X4*
ra 4 10 11

0-3 0 - - - - 0 1
4 2 4 - - - 4 2
5 3 4 ~ - - 4 2
6 3 4 - - - 4 2
7 6 4 7 - - 7 3
8 6 4 7 - - 7 3
9 9 7 7 - - 9 1
10 11 7 7 10 - 11 1
11 11 10 9 10 - 11 1
12 11 10 10 10 11 11 1,5
13 13 13 10 10 11 13 1,2
14 13 15 13 12 11 15 2
15 14 15 13 13 11 15 2
16 14 15 16 13 13 16 3
17 16 17 18 16 14 18 3
18 17 17 18 16 14 18 3
19 19 18 18 19 17 19 1,4
20 19 18 20 21 17 21 4
21 19 20 20 21 20 21
22 21 21 21 21 22 22 5
23 21 23 21 23 22 23 2,4
24 22 23 23 23 22 23 2,3,4
25 22 23 24 24 24 24 3.4,5
26 22 25 26 24 24 26 3
27 24 25 26 26 25 26 3,4
28 24 26 26 27 25 27 4
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The maximum value of the returns is 27 when B equals 28. The corresponding
optimal decisions for the various stages are obtained by tracing back

through the stage calculations and are illustrated below:

Stage B X.* A. r.*

j J J J
4 28 4 10 10
3 18 3 9 9
2 9 1 0 0
1 9 5 9 8
X, -
Therefore X* = (XT*’ XZ*’ XS*’ X4*)
= (5, 1, 3, 4)

Similarly, the optimal decisions for various values of B can be determined
by tracing back through the stage calculations. The solution of the surro-

gate problem for various values of B are shown in Table IV. 1In Table IV,

27

the solution for B equal to 27 is eliminated since B = 26 and B

26.

Rsp (26)

In addition, it should be noted that certain values of B generate

generate the same objective function value, RSp (27)

alternate optimum solutions; e.g. when B = 25, there are three alternate
optimal decisions.
The initial Tower and upper bounds to be used in the hybrid

algorithm are determined as follows:

us 28) = 27.

o Rsp (
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TABLE IV. SOLUTION OF THE SURROGATE PROBLEM
AS A FUNCTION OF RIGHT HAND SIDE

State (B) Return R(B) .Optimal decisions X
0 0 T 1 1 1
4 4 T 1 1 2
7 7 T 1 1 3
9 9 T 1 3 1
10 11 T 1 4 1
13 13 T 1 5 1
13 13 T 1 3 2
14 15 T 1 4 2
16 16 1 1 3 3
17 18 1 1 4 3
19 19 5 1 4 1
19 19 1 1 3 4
20 | 21 11 4 4
22 22 1T 1 4 5
23 23 5 1 4 2
25 : 24 5 1 3 3
25 24 1 1 5 5§
25 24 1T 2 4 4
26 26 5 1 4 3
28 27 5 3 4
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The Tower bound LB0 is the Targest optimal return value of the surrogate

problem with the corresponding optimal decisions being feasible to the

original problem.
*

Consider B = 28; X" = (5,1,3,4)
Since

Ap1(8) + App(1) + Aj5(3) + Ayg(4)

=11 +0+10+9 =230 >28 = by,

the first constraint is violated and X* = (5,1,3,4) is an infeasible

solution.

Let B = 26; X* = (5,1,4,3)
A1(8) *A12(1) + Ap3(4) + A14(3)

=11+0+12+6 =29 > 28 = by

(]

implies that xX*
25, X* = (1,2,4,4)

It

Consider B
Since Ap1(1) + Aj,(2) + Ap3(4) + Apa(4)
=0+7+12+9=28=bq,

X* satisfies first constraint.
Ap1(1) + App(2) + Ayg(4) + Apa(4)

=0+4+9+12=25< 28 =Dy

implies second constraint also is satisfied.

solution to the original problem.

Therefore

(5,1,4,3) is also infeasible.

*
X =1(1,2,4,4) is a feasible



Solution of the Example Problem:

Stage 1 Calculations

Gl = (09 0)3 (6:3)3 (834)9 (935)a (11,7)
Fi€ = Flf = G
Rl = (09 2, 35 5a 8)

No points are eliminated by the feasibility and dominancy tests.
The T; and TS; matrices are as follows.

Tl TS1
Row Xq Pointer 911 R1(giq)
~ to
Stage 0
1 1 - 0 0 0
2 2 - 6 3 2
3 3 - 8 4 3
4 4 - 9 5 5
5 5 - 11 7 8
Let i =1 g'1 = (0,0)
1 4
UBlll = Ry (91 ) + 22 s (kt)
t:

=0+ (6 + 13+ 11) = 30
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UB2;1 = Ry (gq1) + Rsp (B - B(g;1) )
=0 + Rsp (28 - 0 ; 0 )
=0+ RSp (28)
=0+ 27 =27

usi;! = 30 > 24 = 18,

uB2,! = 27 > 24 = 18,

911 = (0,0) is not discarded.
Let i = 2 9,2 = (6,3)

4
UB1;2 = Ry (g;2) + {52 re (ki)

I

2+ (6 + 13 + 11)

= 32
2 - _ 613
UB21% = 2 + Ry, (28 - 25 )
= 2+ Ry, (24)
=2+23=25
UB1,2 = 32 > 24 = LB

UB2;2 = 25 > 24 = LB,

912 = (6,3) is not eliminated.
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Let 1 = 3 9;° = (8,4)

UB1]3 = 3+30=30>LB.
3 _ 8 + 4
UB2;” = 3 + Ry, (28 - =)
=3+ Ry, (22) =3+ 22
=25 > LBO.
913 = (8,4) is not discarded.
. 4
Let 1 =4 g7 = (9,5)
UB1,* = 5+ 30 = 35 > LB
1 o'
4 9 + 5, _
UBZ] =5 + RSp (28 -~ 5 ) = 5 + RSp (21)

5+ 21 =26 > LBO.

914 = (9,5) is not eliminated.
. 5 _
Let i =5 9" = (11,7)
UB]]5 =8+30=238>LB.
)
5 _ . 11 + 7
UB2;” = 8 + R, (28 - =)
= 8+ Ry, (19)

8+ 19 =27 > LB .
¢,° = (11,7) is not eliminated.

T] and TS] matrices are as shown before.
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The upper and lower bounds are updated as follows:

. Min i
UB] _M1n { i { UBZ] }, UBO }

= win J Min { 27,25,25,26,27} , 27}

= Min { 25,27 } = 25.

= Max
= 24,
UB., = 25 # 24 = |B

1

Stage 2 Calculations

First, T2 and TS2 matrices are generated similar to the imbedded-

state approach. T2 and TS2 are given below:

T

2 2

Row | X, | Points to g, Rz(gzi)
i stage 1

1 1 1 0 0 0
2 1 2 6 3 2
3 2 1 / 4 3
4 1 4 9 5 5
5 1 5 11 7 8
6 2 5 18 11 11
7 3 5 21 13 12
8 4 5 23 15 13
9 5 5 25 17 14
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The following can be easily observed.

UB1

927 =

Similarly 928 = (23,15) and 9o

updated T2

0+ 24 =244 LB,

I

0 + R (28) = 27 % LB,

p

(0,0) is not eliminated.

=

(6,3), 95° = (7,4), g," = (9,5),

(11,7), and 926 = (18,11) are not to be eliminated.

g,/ = (21,13)

12 + 24 LB,

+
12 + R, (28-%1—3)

P

12 + RSp (11).

12 +11 = 23< LBy.

(21,13) is eliminated.
9

and TS2 matrices are as follows.
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T2 T52

R?w X2 Eg;g§e¥ to 921 R2(921)
1 1 1 0 0 0
2 1 2 6 3 2
3 2 1 7 4 3
4 1 4 9 5 5
5 1 5 11 7 8
6 2 5 18 M ‘ 11

The bounds are updated as follows:

UB, = Min ] Min {27,25,26,26,27,25 }, 25}

Mﬂ1{ 25,25}'= 25.

I

LB, = Max { Max {0,2,3,5,8,11}, 24}
= Max {11,24} - 24.
LB, # UB,.

Stage 3 Calculations

After eliminating the solutions which are infeasible and are

dominated, T3 and TS3 matrices are obtained as follows:
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T3 T53

s 52;2§e§ 1 g5 | Ryleg)
1| 1 0 0 0
2 | 1 2 6 3 2
3| 3 7 4 3
4| 1 4 9 5 5
5 | 2 1 8 6 6
6 | 1 5 117 8
7| 3 1 10 8 9
8 | 4 1 12 9| N
9 | 5 1 15 12| 13

10| 3 4 19 13| 14

11| a 4 21 14| 16

12 | 3 5 21 15| 17

13| 4 5 23 16| 19

| s 5 26 19| 21

0+11 =11< 1B Eliminate 931. Similarly g32, 933,

[l

o]

s
It

1°

4 5 6 7 8

935 9375 93 » 93'» and g3” are eliminated.

For i = 9-14 the computations are as follows:

i g3 | usl,'| uBzy
9115 12| 28 78
1019 13| 25 25
1|21 e 27 27
12| 21 15| 28 28
13| 23 16 | 29 28
14| 2 19| 32 25
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UB]31 and UBZ31, for i = 9,14, are not Tless than LBZ' Therefore

931 (i = 9,14) are not eliminated. The updated T3 and TS5 matrices are

as follows:
T3 TS3

Row| X Pointer to i i
i | 3| stage 2 93 Ry(g3°)
1 5 1 15 12 13
2 3 4 19 13 14

3 4 4 21 14 16
4 3 5 21 15 17
5 4 5 23 16 19

6 5 5 26 19 21

The bounds are updated as follows:

UB4 = Min {Min {28,25,27,28,28,25}, 25}

Mﬂl{25,25}= 25.

Max d Max {13,14,16,17,19,21}, 24}

Max { 21,24} = 24.

Stage 4 Calculations

After eliminating the solutions which are infeasible and dominated,

the T4 and TS, matrices are generated as follows:
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T4 TS4

R?w X4 Eg;g:eg to 941 R4(g41)
1 1 1 15 12 13
2 1 2 19 13 14
3 1 3 21 14 16
4 1 4 21 15 17
5 2 1 20 16 17
6 1 5 23 16 19
7 3 1 21 18 20
8 1 14 26 19 21
9 2 5 28 20 23
10 3 3 27 22 23
11 4 1 24 24 23
12 3 4 27 23 24

Since BT, (i = 1,11) are less than 24 = LBy, g,' (i = 1,11) are

eliminated from the set. The updated T4 and TS4 matrices are as

follows:
T4 TS4

Row| X Pointer to i i
i 1 stage 3 9 Ra(94°)
1 3 4 27 23 24

g1, = 24 uB2,! = 24

4 4

UB4 = Min {24,25 } = 24

LB4 = Max {24,24} = 24,

LB4 = UB4.

The optimal solution is found with R* = 24, The optimal decision variable
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are determined by tracing back through the T-matrices.
X" = (5,1,3,3).

4.3: A Modified Hydrid Algorithm

The exampie problem will again be solved using the modified hybrid
algorithm. After calculation of Tower and upper bounds, three points with
the objective function value of 24 are obtained, as shown in Table III.

]
Any of these points can be considered as X , ie.

Case 1: (5, 1, 3, 3) or

<
It

Case 2: X' = (1,1, 5, 5) or
(-ID 29 45 4)

Case 3: X'

In this example we consider the first two cases individually to

demonstrate the performance of the modified algorithm:

Case 1:
X' = (5,1, 3, 3); Rgp (X)) = 24
}? = (5, ], 3, 4)9 Rsp (5?) = 27
Stage 1
1 1_. _ n .
Xp = Xy =Sy = {X1 } = {5}
Row | X Pointer to i i
i |1 | stage 0 9 Ri(g;7)
1 5 - 11 7 8
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2 2 . ~ 21 -
T2 T52
Row | X Pointer to i i
i 2 stage 1 92 R2(92 )
1 1 1 11 7 8
Stage 3
3 3_ - 31_4 -~
X 3= x, ->s3-{x] }—{s}
T3 TS3
Row | X Pointer to i i
i 3 stage 2 93 R3(93 )
1 3 1 21 15 17
Stage 4
4 4 - 4 4 4
x]<x_>s4-{x],x]+1, ,xz}
- {3
T4 TS4
Row | X Pointer to i
i 4 stage 3 94 Ry(gq)
1 3 1 27 23 24
2 4 1 30 27 27
2

Feasibility test will eliminate 9,

Thus optimal objective function value,

*

X

R(}f) =24 and
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X' = (1,1, 5, 5), sp (X') = 24
2 2y _
X - (59 ]3 33 4)3 Sp (—)S) - 27
Stage 1
1 2 ~
X' < x2=s, -{1, 2, 3, 4, 5}
: T] TS1
Row | X Pointer to i i
i | 1| stage 0 99 Rylgy )
1 1 - 0 0 0
2 2 - 6 3 2
3 3 - 8 4 3
4 4 - 9 5 5
5 5 - 11 7 8
None of g]i is eliminated by the tests.
UB1 =25 # 24 = LB].
Stage 2
1 2 - 1 _ { }
Xyl = XPensy = %1 = 4
Row | Xo |Pointer to| gpl R2(g21)
i stage 1
1 1 1 0 0 0
2 1 2 6 3 2
3 1 3 8 4 3
4 1 4 9 5 5
5 1 5 11 17 8

UB2 = 25 # 24 = LBy
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Stage 3

X3l > X32 => S3={X31} ={5}

T3 TSo

Row | Xz |Pointer to| gai R3(g41)
- 4 3

i stage 2

1 5 1 {15 12 13
2 5 2 21 15 15

3 5 3 23 16 16
4 5 4 24 17 18
5 5 5 26 29 21

g35 is eliminated (infeasibility).
UB3 = 25 # 24 = LB3.
Stage 4

Ky > Xy'=>54 = {X4]} = {5}

T4 TS4
Row | X Pointer to i i
i 4 stage 3 9 R4(g4 )
1 5 1 25 27 24
2 5 2 31 30 26
3 5 3 33 31 27
4 5 4 34 32 29

Infeasibility eliminates 942, 943 and 944. Therefore the

optimal solution is

* *

X =(1,1,5,5), with R(X) = 24.



4.4: A Multiple District Optimization Example

The State of Texas is divided into 25 highway Districts. In each
District there are more than 200 highway segments which are considered
annually for rehabilitation and maintenance activities. In each budget
cycle it is necessary to observe or estimate each highway's pavement condi-
tion and also to estimate the condition-of the segment in succeeding years.
If any segment does not satisfy the minimum serviceability or maximum
distress requirements, a maintenance strategy should only be considered if its
use results in this segment exceeding the minimum requirements. The
model requires the following data information.

1. A description of the highway segments used in each district.

2. Pavement condition ratings for each segment.

3. The gain-of-rating matrices.

4. The pavement survivor matrices.

5. Resource information in each district.

6. Available state budget.

Since most of the data needed are not readily available at present
for most of the Districts in the state of Texas, a hypothetical example
problem was generated.

The example problem has 3 highway Districts, each with 10 highway
segments to be considered for maintenance in each district. A total
of six maintenance strategies are adopted. They are: (1) seal coat,

(2) 1.0" overlay, (3) 2.0" overlay, (4) 3.0" overlay, (5) 5.0" overlay,

and (6) 7.0" overlay. Six types of pavement distress are used to

measure the segment deterioration. They are: (1) rutting, (2) ailigator
cracking, (3) longitudinal cracking, (4) transverse cracking, (5) failures

per mile, and (6) the serviceability index. The manpower resources are:
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(1) asphalt cement, (2) grader, (3) loader, (4) truck, (5) grader
operator, (6) loader operator and (7) truck operator. The budget is the
last resource to be considered here.

In each District, highway segments are divided into 2 classes. The
first class consists of 'U.S.' and 'State highways' and the second type

consists of 'Farm-to-Market' highways.

Highway Segment Information. The following information is needed for

each highway segment within all Districts; (a) Highway type, (b) Tength
(miles) and (c) width (feet) of each highway segment. The traffic index
and environmental factors are assumed to be unity for this example.

The data required is as shown in Table V.

The current rating of highway segments by distress types are shown
in Table VI. This information is needed for each District.

The enhancement in pavement quality Tevel attained through the
application of a maintenance strategy for various distress types are
shown in Table VII. The quality level cannot be greater than the maximum
possible rating. If an application of any one strategy causes this to
occur, the highway rating is fixed at this maximum level.

Pavement survivor matrices are developed for each distress type
and maintenance strategy combination. A1l highway segments within each
District are assumed to have identical pavement deterioration curves.
Road deterioration curve fractions for each type of maintenance strategy
are listed in Tables IX, X, XI, XII, and XIII by distress type. The
road deterioration curves are determined by multiplying the road deterior-
ation fractions by the maximum quality levels.

The resources constraints need two major inputs: requirements and

availability. The first indicates how much of a given resource will be
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used by maintenance strategy (per mile-ft. of the pavement) and the second
indicates how much of the resources are available. These are shown in -
Table XIV.

The optimum solution to the three District example is given in
Tables XV, and XVI.

Table XV shows the resulting optimal maintenance strategy schedule
for each highway segment in the three Districts. The optimal budget
utilization is shown in Table XVI. As a result of solving each branch
‘(District) of the dynamic programming model, the minimum required and
the maximum needed funds for a District to maintain the pavement quality
are obtained. Columns 2 and 3 of the Table XVI, indicate the maximum
and minimum budget levels. The sum of maximum budget levels for the
three Districts is 256,000 dollars; but the available budget for the three
Districts is only 250,000 dollars. (If the sum of minimum required
budgets exceeds the available budget, an infeasible solution will result).
The optimum budget levels for the three Districts are shown in Column 4

and the corresponding utilities are shown in Column 5.

59



TABLE V
HIGHWAY SEGMENT DATA

Highway Length Width Traffic Environmental
No. Type (Mile) (Feet) Index Index
1 1 3.309 36.000 1.000 1.000
2 1 2.266 12.000 1.000 1.000
3 2 3.818 12.000 1.000 1.000
4 1 2.512 12.000 1.000 1.000
5 1 4.712 36.000 1.000 1.000
6 2 1.663 12.000 1.000 1.000
7 1 3.572 24.000 1.000 1.000
8 1 2.462 12.000 1.000 1.000
9 2 2.625 12.000 1.000 1.000
0 1 1.590 12.000 1.000 1.000
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TABLE VI

CURRENT RATING OF SEGMENTS

Segment DISTRESS TYPE

No. 1 2 3

1 15.000 25.000 20.000 25.000 30.000 40.000
2 5.000 20.000 20.000 25.000 30.000 0.000
3 15.000 10.000 5.000 25.000 30.000 10.000
4 5.000 25.000 25.000 25.000 30.000 40.000
5 5.000 10.000 15.000 5.000 30.000 0.000
6 15.000 25.000 15.000 25.000 30.000 40.000
7 15.000 25.000 25.000 25.000 30.000 40.000
8 15.000  20.000 20.000 25.000 30.000 40.000
9 5.000 25.000 20.000 5.000 30.000 10.00
10 5.000 5.000 5.000 5.000 30.000 _10.000
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TABLE VII

GAIN-OF-RATING MATRIX

Strategy DISTRESS TYPE

No. 2 3 4 5 6

1 0.000 15.000 15.000 15.000 10.000 2.000
2 13.000 19.000 19.000 19.000 24.000 45.000
3 13.000 20.000 20.000 20.000 25.000 45.000
4 15.000 25.000 25.000 20.000 30.000 50.000
5 15.000 25.000 25.000 20.000 35.000 50.000
6 15.000 25.000 25.000 20.000 40.000 50.000
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TABLE VIII

-PAVEMENT -DETERIOPRATION-FACTORS—FORR&M-STRATEGY- 1

Year DISTRESS TYPE
1 2 3 4 5 6
1 1.000 1.000 1.000 1.000 1.000 1.000
2 0.930 0.940 0.930 0.920 1.000 0.900
3 0.910 0.890 0.880 0.860 0.910 0.700
4 0.880 0.890 0.870 0.850 0.780 0.500
5 0.780 0.650 0.670 0.670 0.470 0.400
6 0.310 0.280 0.370 0.380 0.220 0.300
7 0.220 0.240 0.320 0.330 0.200 0.200
8 0.150 0.150 0.180 0.180 0.100 0.100
9 0.070 0.090 0.090 0.090 0.040 0.100
10 0.050 0.070 0.070 0.060 0.010 0.000
11 0.020 0.020 0.020 0.010 0.000 0.000
12 0.020 0.010 0.010 0.010 0.000 0.000
13 0.020 0.010 0.010 0.010 0.000 0.000
14 0.020 0.010 0.010 0.000 0.000 0.000
15 0.010 0.000 0.000 0.000 0.000 0.000
16 0.010 0.000 0.000 0.000 0.000 0.000
17 0.010 0.000 0.000 0.000 0.000 0.000
18 0.010 0.000 0.000 0.000 0.000 0.000
19 0.010 0.000 0.000 0.000 0.000 0.000
20 0.010 0.000 0.000 0.000 0.000 0.000
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TABLE IX
PAVEMENT DETERIORATION FACTORS FOR R&M STRATEGY 2

Year DISTRESS TYPE
1 2 3 4 5 6
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 0.890 1.000 1.000 1.000 1.000
4 1.000 0.820 1.000 1.000 1.000.  0.900
5 0.880 0.730 1.000 1.000 1.000 0.800
6 0.780 0.670 0.750 0.830 1.000 0.700
7 0.460 0.670 0.500 0.670 1.000 0.600
8 0.250 0.670 0.500 0.670 0.330 0.500
9 0.250 0.670 0.250 0.330 0.330 0.400
10 0.250 0.360 0.000 0.000 0.330 0.300
11 0.000 0.110 0.000 0.000 0.000 0.000
12 0.000 0.090 0.000 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000
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TABLE X
PAVEMENT DETERIORATION FACTORS FOR R&M STRATEGY 3

Year DISTRESS TYPE
1 2 3 4 5 6
1 1.000 1.000 1.000 1.000 1.000 1..000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 0.950 0.930 0.940 1.000 1.000
4 1.000 0.910 0.930 0.940 0.890 0.900
5 0.790 0.900 0.400 0.430 0.530 0.800
6 0.750 0.610 0.140 0.180 0.230 0.700
7 0.750 0.560 0.140 0.180 0.160 0.600
8 0.750 0.550 0.120 0.140 0.150 0.500
9 0.750 0.510 0.070 0.060 0.130 0.400
10 0.750 0.280 0.020 0.010 0.080 0.300
11 0.330 0.170 0.000 0.000 0.020 0.000
12 0.250 0.140 0.000 0.000 0.000 0.000
13 0.250 0.140 0.000 0.000 0.000 0.000
14 0.170 0.140 0.000 0.000 0.000 0.000
15 0.080 0.080 0.000 0.000 0.000 0.000
16 0.000 0.010 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 0.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000
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TABLE XI
PAVEMENT DETERIORATION- FACTORS- FOR-R&M-STRATEGY 4

Year DISTRESS TYPE
1 2 3 4 5

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 0.770 1.000 1.000 0.770 0.900
6 0.830 0.640 0.330 0.630 0.510 0.800
7 0.710 0.580 0.110 0.260 0.480 0.700
8 0.660 0.530 0.000 0.220 0. 360 0.600
9 0.620 0.510 0.000 0.110 0.330 0.500
10 0.380 0.380 0.000 0.040 0.240 0.500
11 0.300 0.210 0.000 0.000 0.170 0.000
12 0.300 0.190 0.000 0.000 0.170 0.000
13 0.300 0.190 0.000 0.000 0.170 0.000
14 0.280 0.170 0.000 0.000 0.170 0.000
15 0.220 0.150 0.000 0.000 0.170 0.000
16 0.170 0.100 0.000 0.000 0.170 0.000
17 0.120 0.070 0.000 0.000 0.070 0.000
18 0.040 0.060 0.000 0.000 0.000 0.000
19 0.040 0.060 0.000 0.000 0.000 0.000
20 0.040 0.030 0.000 0.000 0.000 0.000
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TABLE XII
"PAVEMENT DETERIORATION FACTORS FOR R&M STRATEGY 5

Year . DISTRESS TYPE
1 2 3 4 5 6
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000
6 1.000 0.710 0.330 0.330 0.750 0.900
7 1.000 0.620 0.330 0.330 0.590 0.900
8 1.000 0.440 0.280 0.280 0.500 0.800
9 1.000 0.290 0.170 0.170 0.480 0.700
10 1.000 0.290 0.170 0.170 0.250 0.600
11 0.670 0.290 0.170 0.170 0.250 0.000
12 0.670 0.170 0.170 0.170 0.250 0.000
13 0.670 0.140 0.170 0.170 0.250 0.000
14 0.670 0.140 0.170 0.170 0.250 0.000
15 0.220 0.120 0.170 0.170 0.200 0.000
16 0.000 0.000 0.170 0.170 0.000 0.000
17 0.000 0.000 0.170 0.170 0.000 0.000
18 0.000 0.000 0.170 0.170 0.000 0.000
19 0.000 0.000 0.170 0.170 0.000 0.000
20 0.000 0.000 0.170 0.170 0.000 0.000
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TABLE XIII

PAVEMENT DETERIORATION FACTORS FOR R&M STRATEGY 6

DISTRESS TVYPE

Year
1 2 3 4 5

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 0.900
5 1.000 1.000 1.000 1.000 1.000 0.800
6 0.720 0.490 1.000 1.000 0.470 0.700
7 0.670 0.360 1.000 1.000 0.360 0.600
8 0.580 0.360 1.000 1.000 0.320 0.500
9 0.500 0.360 0.650 0.650 0.270 0.400
10 0.500 0.290 0.600 0.600 0.270 0.300
11 0.360 0.270 0.600 0.600 0.270 0.000
12 0.330 0.270 0.600 0.600 0.200 0.000
13 0.330 0.270 0.530 0.510 0.180 0.000
14 0.280 0.270 0.400 0.400 0.180 0.000
15 0.170 0.210 0.380 0.380 0.150 0.000
16 0.170 0.190 0.210 0.200 0.090 0.000
17 0.170 0.190 0.200 0.000 0.090 0.000
18 0.170 0.180 0.200 0.000 0.090 0.000
19 0.170 0.110 0.200 0.000 0.090 0.000
20 0.170 0.090 0.200 0.000 0.090 0.000
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TABLE XIV
RESOURCE REQUIREMENTS™*

Strategy RESOURCES
1 2 3 4 5 6 7
1 0.800 0.000 0.012 0.060 0.000 0.012 0.060
2 3.000 0.000 0.000 0.278 0.000 0.000 0.278
3 1.500 0.000 0.000 0.278 0.000 0.000 0.278

4,700 0.000 0.000 0.556 0.000 0.000 0.556
8.100 0.000 0.000 0.83% 0.000 0.000 0.834

o G

1.500 01.000 0.333 3.611 1.000 0.333 3.611

*Resources 1 and 2 are materials. UNIT is TON/MILE-FT
Resources 3 and 4 are equipment. UNIT is EQUIPMENT-DAYS/MILE-FT
Resources 5, 6 and 7 are manpower. UNIT is MANPOWER-DAYS/MILE-FT
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TABLE XV
OPTIMAL MAINTENANCE DECISIONS

SEGMENTS
DISTRICT 1 2 3 4 5
1 5 4 2 2 6
2 5 5 2 2 2
3 5 4 2 3 2
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TABLE XVI
OPTIMAL BUDGET UTILIZATION

District Budget Utility
Maximum Mininum Optimum
1 71,000 66,000 71,000 2171
2 84,000 68,000 78,000 1772
3 101,000 92,000 101,000 1742
TOTAL 250,000 5685
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CHAPTER 5
SUMMARY

The major purpose of this report was to describe a technique which can be
used in determining the optimal allocation of resources and budget for rehabi-
Titation and maintenance of the highway network system in the State of Texas.
In TTI Research Report No. 207-3, the highway maintenance problem at the
district level was represented as a 0-1 integer linear programming problem,
and an efficient optimization technique presented. In this report, solution
of the statewide maintenance problem is presented.

The allocation problem at the state level is modeled as a dynamic program-
ming problem. As shown in Chapter 3, the problem cannot be efficiently
modeled as a 0-1 problem, since it will be too Targe to solve. A solution
technique, based on dynamic programming was developed to solve this large,
discrete, nonlinear knapsack problem.

A FORTRAN based computer program was written using the algorithm.

A hypothetical example was formulated and solved by this program. The
compilation time on the FORTRAN H - Extended compiler was 2.43 seconds and

the example problem presented took 8.4 seconds of execution time.
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APPENDIX A
DEVELOPMENT OF ALGORITHMS

TO SOLVE
THE STATE OPTIMIZATION PROBLEM
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APPENDIX A

A.1 Scope of the Hybrid Algorithm

The hybrid algorithm was developed to solve problems in the general

form of a separable nonlinear knapsack problem with non-negativity as-
sumptions on all the problem coefficients and decision variables. The

mathematical representation of such a problem is as follows:

N
R=Max. £ r.(X.) (A. 1)
R BN A
J
Subject to
N ’ 3
.E aij(xj) 5-bi i=1,2, .., M
j=1
X: is contained s
J in S. J—], 2, ...,N
J
Sj={]’ 29 e e ey KJ'} VKJ-,J=], 2, cee s N.

K. is a finite positive integer, while rj(Xj) and aij(xj) are non-
decreasing positive valued functions, and bi > 0 foralli=1,2, ..., M
It is assumed that rj(O) =0 forall j=1,2, ..., N and aij(O) = 0 for
all values of i =1, 2, ..., Mand j =1, 2, ..., N.

This mathematical model is the general form of knapsack-type resource
ai]ocation problems in which there are N different sections, each section
involving Kj different projects, and the selection of project Xj in
section j consumes aij(xj) of resource type i, and provides the return
of rj(Xj). Each section is assumed to have a "do nothing" alternative
action which consumes zero amount of resources with an associated return

value of zero. The objective is to maximize the summation of the returns
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obtained in each section. The amount of resource i available is bi’ for i
i=1,2, ..., M. A special case of the model is where the return and
resource consumption functions are presented in a linear form. In that
case, the proposed algorithm is a dynamic programming solution procedure
for the general Tinear integer programming problem. For the case of Kj =2
for all j's, the model is a 0-1 integer linear program and can be solved
by the hybrid algorithm.

The algorithmic procedure is based upon a combinatorial enumeration
scheme. This concept provides the capability of solving problems with
non-integral state spaces, i.e., the aij<xj) can be a real-valued step
function, and in the case of linear integer programs, aij can be a real-
valued coefficient. Note that the integrality assumption on aij in the

tabular dynamic programming problem has 1imited the application of this

method.

A.2 The Imbedded-State Approach

The imbedded-state approach for state reduction in dynamic program-
ming problems is a methodology which converts an M-dimensional state
variable (vector) to a single-state variable. This is accomplished utilizing
the points of discontinuity of the return function as a nossible solution
space. It is assumed that the return function remains constant in the
consecutive points of discontinuity. This is a realistic assumption since
in the case of integer programming, the function's value between two in-
teger points is of no concern to decision makers. To illustrate the con-
cept of imbedded-state, consider the model presented in Section A.1.

h

Let Gj be the state space at the jt stage of the model, defined as follows:
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Gj = ¢ 9 , gj = (alj(xj)’ azj(xj), cees an(Xj)), for X;eS51. . . (A.2)
The imbedded-state space for the jth stage is defined as follows:

F].:G].

-
i]

j GjOGj-l for j=2,3, ..., N

where the operator "o" is defined as the sums of each element of Gj with
each element of Gj_1, for all the elements contained in set Gj and Gj-1.
The resulting set Fj defines the state space for stages 1, 2, ..., Jj,

which can then be modified by feasibility and dominancy tests. The feasi-
bility of the elements in Fj is checked and those elements which provide an
infeasible solution are eliminated. As a result, a set of feasible points
is obtained at each stage. Let FE C Fj define the set of feasible points

at stage j. The mathematical expression for Fg is:
fo g ! !
FJ - {gj l gJ € Gj 0 Gj_l, and gJ i (bl, b2, LI bM)}

The dominancy test is performed to eliminate those solution points with

Tower return and higher resource consumption. As as result, a set of feas-
ible and efficient points are obtained. Let F? Q;Fg Q;Fj represent this

set. This iterative procedure is continued until Fﬁ is reached. The point(s)
in Fﬁ with the highest return value comprise the optimal solution to the
problem. The imbedded-state algorithmic procedure can now be prescribed

as follows:
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Algorithm 1

Step 1 -Set j=1, K= Kl’ F] = Gy = {a]1(§1), a12(§1), cees
aju(xq) | %y € S43, and ry = {ry(x)) | %y € S43
f
Step 2 - F7 = F1 = {g; | g7 < (bys by, «eus byl
Step 3 -~ Set j = j+1, K = Kj.

Step 4 - Set Gj = {aj](gj), ajz(gj), e ajM(Xj) | X; € Sj}

e
Step 5 - Set Fj Gj o F:

J=1
f — ] 1
Step 6 - Set Fj = {gj | g5 e Fj and 9y 5_(b1, bsy .+ e bM)}

' - c={r.(gl) + r.(x. . .
Step 7 - Set ry {rj(gJ) rJ(gJ) and X5 € SJ}

Step 8 - Set F? = {Ff - all points dominated by better points}

Step 9 - If j = N got to 10, otherwise go to 3.

*
Step 10- Find the maximum N’

Step 11 - Stop.

For computational purposes, the information regarding the state space and
return values at each stage are stored in a temporary matrix called TS.
This matrix consists of M1 columns and a number of rows which varies for

each stage. As an example, the TS matrix at the first stage consists of

\]
th stage it consists of 1 k1 rows, less rows eli-
i=1
minated either because they are infeasible or dominated. In addition

K] rows while in the j

another matrix Tj is employed to store the information required to recover

the optimal values of the decision variables through the backtracking
procedure. The Tj matrix is composed of two columns and the same number

th

of rows as the TS matrix (in the j~ stage), where the rows of Tj pOSSess

a one-to-one correspondence to TS. The first column stoves the value of
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the decision variables, st, corresponding to the point in the state space for
this row, and the second column stores an index showing the row number of the
previous stage from which the current state is obtained.

The algorithm is implemented by first setting TS] and T] to the following

initial values:

T] TS]
Row Xi Pointer to i R](g;)
i stage 0 9
1 X] - a]](X]), e e e e a]M(X1) r(X1)
2 X5 - a]](Xz), e e s a]M(XZ) r(XZ)
Ky XK] - a]](XK]), c e e a]M(XK]) r(XK])
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In the following stages, the matrix TS will be updated and will con-
tain the number of rows equal to ;g Ki’ less those eliminated by
feasibility and dominancy considerati;;l. The matrix Tj is constructed
accordingly. At any stage, the matrix TS is sorted according to increas-
ing return values and Tj is arranged in a similar fashion.

When the last stage is enumerated, the optimal value of r; is obtained
from the last row of the matrix TS. Referring to the corresponding row
of matrix TN’ the value of X; is obtained from the first column. The
second column of T, indicates the row of T,_; from which XS_] can be
obtained, and so forth.

It is apparent that this method creates a large number of points
in the state-space, even for small problems, particularly at intermediate
stages, because in each Stage almost all combinations of the previous state
must be considered. That is, feasibility will not remove many points un-
til the Tater stages. However, the dominancy properties may provide signi-
ficant reduction. Therefore, one must find a way to eliminate those states
which do not provide a good solution from the outset. An analytical method
will subsequently be developed and presented which will eliminate a consider-
able number of points in the state space which do not lead to a good
solution. Since the proposed method is based on the imbedded-state approach,
a simple example problem to better illustrate the imbedded state concept was
presented in Chapter 4.

In the following sections a methodology will be presented which reduces
the state-space solutions by elimination through partial enumeration using
a branch and bound (B&B) approach. First, a technique will be presented

for calculating the initial lower and upper bounds, and second, and al-

gorithm will be developed by combining the imbedded-state approach and B&B
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methodology.

A.3 Calculation of Initial Lower and Upper Bounds

Fathoming of a partial solution by branch and bound (B&B) effective-
1y eliminates nonpromising points from the state space and hence provides
extensive savings in computational time and storage. Since the potential
state-space grows in a combinatorial fashion with each stage, the use of
implicit enumeration approaches such as B&B can be used to reduce the
burden of this growth to a reasonable degree. Moreover, the degree of state
reduction through the bounds is highly dependent upon how near-optimal the
initial bounds are. As an example, if one considers a lower bound of
zero, (LB=0) none of the state-space is eliminated in the first stage.
However, the use of a better Tower bound might eliminate most of the non-
promising state-space in the first stage. Therefore, the efficiency of the
method is dependent upon the calculation of a good lower and upper bound.
There are several ways of calculating a lower and upper bound for
the optimal solution(s). The use of a surrogate constraint, which con-
verts the problem to a single-constraint problem, provides a narrow bound
on the optimal solution. Moreover the surrogate might provide a solution
which satisfies the feasibility condition of the original problem, and
hence is an optimal solution to the original problem. Subsequent discussion
will show that the surrogate problem is merely a relaxation of the constraints
and thereby should provide good bounds. A mathematical presentation of the
problem with its associated surrogate problem is shown as P and SP, re-

spectively.
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Problem P

N
. r.(X.
Max ji] J(XJ)
Su hject to:
N
XJ € Sj = {1, 2, . Kj}
Problem SP
, (X:)
Max. I r.(X.
j=1 J
Subject to:
M N o) M
x % . a..{(X.) < ¥ o. b.
j=1 j=1 ' W3 Ty V1
M
b3 a, = 1
j=1 !
a. > 0 ¥i-= ], 2,

.o M

s M

Before further discussion regarding the calculation of the Tower

and upper bounds, it will be useful to present some of the properties

of the surrogate problem. Let H](x) and H2(

X) be two set-functions de-

fining the feasible region of Problem P and Problem SP respectively.

1. If X is a feasible solution to Problem P, it is also feasible

to Problem SP, i.e.
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If X e HUX) = th(X) | hL(X) = 5 ass (Xo) <bs fori=1,2, ..., M}
i 4 j=1 W90~ i
Y o 2y 2 2 MoN o
A€ H (N) = {h (2() } h (2() = 121 1‘51 a'ia'ij(xj) = 'iz'l %3 -j}

*
2. If X 1is an optimal solution to probiem SP with objective func-
* *
tion value RSP (X ), the objective funtion value of problem P for any

* *
X is always less than or equal to the RSP (x Y, i.e.

* % )
RP(Z() = RSP (Z( ) Y XeH (.),()

3. If X* is an optimal solution to Problem SP, and X* satisfies
the feasibility conditions of Problem P, then g* is an optimal solution
to Problem P.

The above three properties are the consequence of Theorem 3-5 page
101 of Taha (6), where aij(xj) is a linear function defined by ain..
For the general case where aij(xj) is not a Tinear function, it can be
demonstrated that the above properties still hold. This demonstration
is aided by the extension of the above theorems to the case of discrete
nonlinear constraints. The extension is stated in the following theorem
and proved as follows:

Theorem: Any feasible solution point in Problem P is a feasible

solution to the problem SP, i.e.,

2(%)

¥ XeH(X) then XeH
Proof: Let X be any point such that X e H](X). This means that

Xe thl (0 = 2 a(X;) < by fori=1,2, ..., M
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'I h
Le {hj (X) = R

z ags(X) <by  fori=T1,2, ..., M)

On the other hand, the expanded form of Hz(x) is
o N
a..(X.) + Xo =

HE(X) = h s

ans(X:) + ...
=1 2373

N
ctay I an(X.) < oqby +anby oLl F aybyd

tZ(X) | aqghi(X) + aphy(X) + ..o+ oph(X) < ayby +
aoby « o+ aybyl (A.3)

but X e hi(X) <b; X a;hi(X) < asb; fora; > 0

Thus, each term of the left-hand side of the inequality is less than

each term of the right-hand side in Equation (A.3). Therefore, any

X e H](g) also belongs to Hz(x). It should be noted, however, that any
point feasible in Problem SP is not necessarily a feasible solution to
Problem P. Therefore, SP is a relaxation of Problem P, and hence the above
three properties also hold for the non-Tinear case.

The results obtained by this theorem reveal that to obtain a good
initial lower and upper bound, one may solve a single-constraint D.P.
problem SP, and if the optimal solution of SP is feasible with respect
to Problem P, the optimal solution has been found. On the other hand,
if the solution is not feasible with respect to Problem P, the right-
hand side of the single-constraint problem could be reduced until a
feasible solution to Problem P is obtained. This solution could be used

as an initial Tower bound for the optimal solution of Problem P, since
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it is feasible, and the optimal solution of SP could be used as an upper
bound.

The algorithmic procedure for obtaining lower and upper bounds is
similar to a tabular D.P. algorithm. For this reason, all the data of
the surrogate problem is rounded to integer-valued data. A conservative
way to obtain integer-valued data is to round down all the coefficients
of the surrogated right-hand side. This calculation is expressed mathe-
matically as follows:

Let [I] define the largest integer value less than or equal to I.

The surrogate constraint coefficients are obtained by:

A (%) |

)
'I'_'.'

and the right hand side of the surrogated constraint is:

M M M
151 0L1b_I 1'f"1.§1 0L1b_i = 151 oc_ib_i
B=
M
r o.b +1 otherwise

—e
—

The following algorithm provides a procedure for obtaining the initial
Tower and upper bounds. Notice that the inherent sensitivity analysis

in D.P. enables one to find the optimal solution for different values of

the right-hand side (RHS).

Algorithm 2 - Calculation of Initial Bounds

Step 1 - Set k=1

Step 2 - Solve the following single constraint D.P. problem
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Max. R(B) =
J

1 rj(Xj)

™M=

Subject to:

: Aj(xj) < B

N~z

J

Xj is contained in Sj

Step 3 - Check whether the solution obtained in Step 2 is feasible to

Problem P, i.e., if the optimal solution from Step 2, 5*, satisfies
) < b for i=1,2, ..., M

go to Step 5, otherwise go to Step 4.

Step 4 - Find the optimal solution of SP for the RHS of B-k, i.e.,

designate this solution as X*, and set k = k+1. Go. to 3.

Step 5 - If k > 1 got to Step 6, otherwise set LB = UB = R(B) and stop.
Step 6 - Set UB = R(B) and LB = R(B-K) and stop.

Depending on the result of this algorithm, it will be determined
whether further calculations are needed, or the optimal solution has
already been obtained (LB=UB). If LB < UB, further iterations must be
performed in order to push the bounds to equality. The procedure for

further computations is discussed in the next section.

A.4 Development of the Hybrid Algorithm

As previously mentioned, the computational effort required to solve
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a NKP grows rapidly as the problem size increases. This is due to the
combinatorial nature of the problem , which demands the evaluation of

a large state space, which increases substantially at each stage. However,
implementation of the algorithm in Section A.3 fathoms partial solutions
in the state-space which would result in a solution worse than the pre-
determined lower bound. Although this will reduce the solutions to be
examined by a significant amount, it is still important to consider the
computational demands of the remaining problem. Therefore, additional
reduction techniques are important for increasing the computational
capability. This additional reduction can be accomplished by updating
the Tower and upper bound as the computation progresses. These updates
are performed as the size of the gap between the lower and upper bound
becomes smaller, until either the size of the gap reaches zero or becomes
very small.

The upper and lower bounds can easily be calculated for incorporation
in the hybrid algorithm. At each stage, two sets of upper bounds for
the objective function value is calculated by two different methods.

The first method is to ignore all the constraints in succeeding stages.

This set of upper bounds can be calculated by:

. . N
B1! = Ty 4+ .
UB1j = Rlgp) + = vy (Ky) (A.4)
where R(g}) is the return of the ithe1ement of the state space gj at
N
stage j, and I ry (Kt) is the sum of maximum possible returns from
t=j+1

the succeeding stages.

The second method for obtaining a set of upper bounds is based on the
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surrogate approach. At any stage j, the bound can be estimated by com-

bining the return of the ith

point in gj with the returns of the succeed-
ing stages calculated from the surrogate problem. Note that returns

from the succeeding stages of the surrogate problem con easily be obtained
by sensitivity analysis on the RHS of the surrogate solution. The set

of upper bounds assigned by the second method can be calculated as follows:

UB] = R(g}) + Rp (B- B'(g)) ) (A.5)

where RSP is the return of the surrogate problem as a function of the RHS,
and B - B'(g;) is the initial RHS value (B) Tess the integer value of
the surrogated resource consumed through stage j. These two sets of upper
bounds will then be utilized as one of the criteria for discarding ineffi-
cient points from g.. The discarded points are those that satisfy the

J
following relations.

w1l < LB . ,or UBZ} < LB. (A.6)

J j- J-1

Further, at each stage the upper and lower bounds are updated and used
as a termination criterion; i.e., the algorithm terminates whenever the
Jower bound reaches the upper bound. The updated upper bound is determined
as follows:
s . i
UBj Min. {Mgn.(UBZj),UBj_]} (A.7)
Based on the concept of the imbedded state and surrogate bounding

along with the above updating considerations, a hybrid algorithm has

been developed to find the optimal solution to the NKP. In summary,
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the first algorithm gives a procedure for generating a reduced state
space, the second algorithm facilitates the computation of an initial
bounding criteria to aid further reduction of state space, and the com-
bination of these two algorithms incorporating updating of the lower and
upper bounds provides an efficient algorithmic procedure for solving NKP's
in a reduced state space.

A general description of the hybrid algorithm is given below and
also appears in flowchart form as Figure A.1. Steps 1-8 of the algorithm
comprise the solution of the original surrogate problem to obtain an initial
bound. If the optimal solution of the surrogate problem satisfies the
feasibility condition of the main problem, steps 9-29 are discarded and
the final solution will be obtained by step 30; otherwise, further compu-
tation will take place starting from step 9. The computations regarding
the first stage are performed through steps 10-11. Steps 11 and 12 com-
prise the construction of the imbedded state space. The reductions in the
imbedded state space through feasibility and dominancy tests are performed
by steps 13-15, and the further reductions by bounding are achieved through
steps 18-22. The lower and upper bounds are updated by steps 23-24 and the

remaining steps comprise the tests for termination of the algorithm.

Algorithm 3 - The Hybrid Algorithm

Step 1 - Set R=0 %=0 and a% = %- for 1

i
—
-
N
-
-
=
-

M
R

Step 2 - Set Aj(xj) = [1

: o aij(xj)] for j = 1,2, ..., N
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M M M
I a.b, if r  asb. =l ¥ a.b.
Step 3 - Set B =il U LU
‘ M
Lz aibJ + 1 otherwise
2

Step 4 - Find the optimal solution to the following problem:

N
Max. RSP(B) = jzl rj(Xj)

Subject to:

o™=

Aj(xj) <B

j=1

R * *
call the solution X and RSP(B), and let UB = RSP(B)‘

N
Step 5 - If £  a..(X:) <b, fori=1,2, ..., M go to step 8,
P N e
otherwise go to step 6.
Step 6 - Set 2 = ¢ + 1
Step 7 - lLet B = B-g and find the optimal solution of RSP(é), call
* * ~
this solution X , RSP(B), and go to step 5.
Step 8 - If ¢ >0, set LB, = R;P (é), go to step 9, otherwise set
LBO(B) = UBO(B), go to step 30.
1= = e: = . . X . . . )
Step 9 - Let j=1, S Sj, Fj Gj {aj1(XJ), and aJZ(YJ), cens aJM(XJ),

for Xj e S} and r(gj) = {rj(Xj) | Xj e S}
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Step 10 -~ Go to step 16.
Step 11 - Let j = j+1, S=Sj, Kj=K and Gj = {aj](Xj), ajz(Xj), cees
ajM(Xj)3 for X. ¢ S}

j
. e
Smp12-Fj—GjoF}]
Step 13 - FT = {gl | g' ¢ F. and g} < (bys bys +evs By)?
jTvgy g5 ety and gy = ibys By M
i i
- R. = . . = R, )+ r. . . .
Step 14 RJ {rJ | ry RJ(gJ) rJ(gJ) and XJ € SJ}

Step 15 - Let F? = {Ff- all the points dominated by better points}

Step 16 - Let the number of points in F? be KK

Step 17 - i=1
i i N

Step 18 - Let UB1: = R(g.) + & rt(K)
I =g

1

R(g]) + Rgp (B - B'(g)) )

i
Step 19 - Let UBZj ek

.i

Step 20 - Let R(g}) = -1 for those i which satisfy UB1;<LB; ; or

1
UB2; < LB;_;

Step 21 - If i=KK go to step 22 otherwise set i=i+1 and go to step 18
Step 22 - Redefine R(gj) by elimination of all negative R(gj)

= Mi ; i
Step 23 - Let UBj Min. {M}n. UB2j, UBJ_]}

Step 24 - Set LB, = Max. {Max. R(g.), LB, -}
J 3 23 -1

Step 25 - If LBj = UBj go to step 27, otherwise go to step 26
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Figure A.1. Flow Chart for Hybrid Algorithm
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Figure A.1. (continued)
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0O,
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Figure A.1. (continued)
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Let KK be the number
of points in F?

Let i=1-

1ed

Determine UB1, and UBZ

. . N
UB1! = R(gl) + 2 r(K)
L

us] = R(g]) + R(B-[8" (g})])

Let R(g3) = -1 if UB1; or

us2! < LB.
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Figure A.1. (continued)
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Update lower and upper bounds as:
. . i
.= Min. . ., UB.
UB; = Min {M}n UBZJ UBJ_}}

..i
.= . 1ax. . ) B.
LBJ Max {N?x R(gJ) L 3—1}

* i
Set R =Max. R(g.)
3 J

and recover Xk Tor
k=1, 2, ..., N

T
2
A

Stop
e et s,

Set x; = 0 for k=j+1,

j*2, ..., N

£

' *
Set R = UBj and recover

*

K for k=1, 2, ... ]

X

Figure A.1. (continued)
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Step 26 - If j=N go to step 28, otherwise go to step 11
Step 27 - If j<N, set Xj+1’ Xj+2, cees XN =0 go to step 29, otherwise
go to step 28.
* 'I *
Step 28 - Set R = Max R(gj) and recover X, fork=1, 2, ..., N
and stop.
*
Step 29 - Set R = UBj and recover XZ fork =1, 2, ..., j and stop.
Step 30 - Indicate that the solution is obtained by surrogate problem,

*

*
set R = UB] and recover Xk for k=1, 2, ..., N, and stop.

The information regarding the returns at each stage, and the corres-
ponding state space solutions, is stored in a matrix similar to the matrix
TS presented in Section A.2. Similarly, the Tj vectors are used for

*
backtracking to obtain the optimal solution X .

A.5 Modifications of the Hybrid Algorithm for Large Scale NKP

In order to find a solution to a large NKP, a computationally effi-
cient routine must be developed. The hybrid algorithm developed in Section
A.4 provides optimal solutions to medium-size problems in a reasonable
amount of computer time. However, the combinatorial increases in
the state space solution will result in the enumeration of a very
large state variable vector at each stage for large problems even
with the reductions provided by the hybrid algorithm. This causes the
algorithm to require a very large computational time. In this section,
a heuristic procedure is developed and is incorporated in the hybrid
algorithm in order to 1imit the growth of the state variable vector.
This modification will increase the computational speed and convergence

rate, and reduce the stovage required by the algorithm. A mathematical
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support for the heuristic procedure is demonstrated in the form of a pro-
position. This modification suffers from the fact that the solution ob-
tained by the modified method may not be an optimum. However, it should
be a good solution to a previously intractable problem.

Preliminary investigation has shown that the increase in the size
of the state variable vector is the primary cause of the increase in
computation time. The size of this vector is a monotonically increasing
function of Kj (number of alternatives in each stage) and N (number of
stages). Therefore, to resolve the probiem of slow computational speed,
either N and/or Kj must be kept at reasonably low value(s). In general,
the number of stages N cannot be reduced. However, the value of Kj can
be limited by a systematic approach.

The modification of the hybrid algorithm is based primarily on the

Timitation of Kj values. In order to construct a good heuristic proce-

dure, consider the monotonicity and separation properties of the objec-

tive function. Let 51 = (X}, X;, cees X&) be any feasible solution to
the following probiem:
Problem A.1
N
Max. R(X) =z r.(X.)
~ j=-|JJ

Subject to:

) (X;)

z a X. b i=1, 2, » M

j=p W= i

X. is contained in S.
J J

Sj={], 2, s e o 8 KJ'}
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g, cens Xﬁ) be an optimal solution obtained from the

surrogated version of the above problem. As discussed in Section A.3,

Let X2 = (xf, X

it is known that the optimal solution to problem A.1 satisfies the follow-

ing relationship:

R(XT) < ROX) < R(X) (A.9)

~

Thus, a good heuristic procedure would be to find a solution which

falls within the Timits defined by A.9. Let S} be a set defined by

T 1 1 2 1_,2

Ly Xot A2, oo XS < X3

g (XJ XJ 1, XJ 2, XJ) for XJ<XJ
U 12
Xj for Xj > Xj

Then the following proposition can be stated:

Proposition: Any feasible point 53 belonging to the set Sj will
have an objective funtion value within the Timits defined by F(X]) as a
satisfactory solution to the original problem, and F(gz) as the optimal

solution of the surrogate Problem A.1. That is,

3 1

2) € Sj

¥ X (A.70)

~

Fx!) < F(x3) < F(x

~

Proof - The following holds true based on the monotonicity and separa-
tion properties of the objective function:

(1) By the separation property:
R(X) = r](X.,) + rz(Xz) + ...+ rN(XN)
(2) by the monotonicity property:

m n m n
rj(Xj) 3_rj(Xj) y Xj 3_Xj
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therefore, the following relation holds:

N N
m n ] m n
-21 ] (Xj) ijz] rj(xj) ¥ j where Xj Z.Xj

J

Since any point belonging to S§ is greater than or equal to that of

i<

R(XT) < ROXK) X

e s} and i =1, 2, oous N

Further, since X2 is the optimal point obtained from a relaxation
(surrogate) of the constraints, any feasible point in S} has the property

that;

ROK) < RO) for X5 < )

N2

ai.(Xk) < b,

and §\%5) < by

J=1
. D B .
The above proposition has indicated that the choice of Sj will Timit
the variation of the alternative solution and provide a good solution
point if X] is calculated properly. Algorithm 2 presented in Section
A.3 seems to have the ability of providing such a point. Thus, the only

modification to the hybrid algorithm is to substitute S} for Sj.
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APPENDIX B

PROGRAM DOCUMENTATION
OF
RAMS

STATE PLANNING PROGRAM
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Card

DESCRIPTION OF INPUT DATA

CoTumn Variable Description

6-65 Title Name of the problem

6-10 NODS No. of districts

11-15 N No. of segments in each
districts

16-20 M No. of constraints

21-25 KJ No. of maintenance
strategies

26-35 CAPT The capital available

in (10,000) dollars

The names of maintenance strategies along with the over-
head budget requirements for the strategies. KJ cards are
read in.

6-25 STRT Strategy Name

26-40 CRi Overhead budget re-
guirement for mile-foot

Names of distress type and maximum possible rating for
the distress type. ND (number of distress type) cards
are read in

6-25 DSTR Distress type

26-40 RMAXi Maximum possible
rating for the
distress i

Names of resources types and amounts of resources available
per mile-ft. (M-1) cards to be read in.

6-25 RSRC Resource type

26-40 RS 5 Amount of 1™ resource
available per mile-foot

Resource requirements per mile-foot unit for each strategy.

6-10 L Strategy number

11-17 RSRL1 1St resource require-

ments for Lth strategy
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nd

18-24 RSRL2 2~ resource requirement
for Lth strategy
74-80 RSRL 10th resource require-

10 ment for Lth strategy.

The number cards to be read in are KJ. Currently the assump-
tion is that there are at most 10 resources, excluding
money.

Potential gains of pavement rating for each distress type.
When a certain maintenance strategy is applied. KJ cards
are read in. Currently the assumption is that there are
at most 10 distress types.

6-10 L Strategy number

11-17 DISTL Gain of rating for the
1st distress when Lth

strategy is applied

18-24 DISTL 5 Gain of rating for the
> 2nd distress for the L
strategy is applied

th

74-80 DISTL 10 Gain of rating for the
i 10th distress when Lth
strategy is applied

Probability of survival for different strategies and distress
types for the length of the planning horizon. Length of
planning horizon is assumed to be 20 years. (KJ x 20) cards
are to be read in. The maximum number of distress types

are assumed to be less than 10

6-7 L Strategy number

8-10 M Year in the planning
horizon

11-17 PL M.1 Probability of survival

e for the Lth strategy

in Mth year when Ist
distress type is present

74-80 PL,M,]O Probability of survival

for the Lth strategy in
Mth year when 10 th
distress type is present.

Cards type 9, 10, and 11 are associated with each district.
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Highway segment information H cards are to be read in.

6-8
9-10

11-18
19-30
31-38
39-45
46-52
67-73
74-80

L
HTYP (L)

PAR1
PAR2
PAR3
LT(L)
L2(L)
TRAF(L)
ENVR(L)

Segment number

Highway type of Lth
segment

Segment Name

County Identification

District Name

Length of Lth segment (miles)
Width of Lth segment (feet)
Traffic index of the Lth segment

Environmental index of the
Lth segment

Overhead budget available for the district

26-35

cC

Current pavement rating.
that there are at most 10 distress types

11-17

74 -80

RCr 1

RC1,10

104

Overhead budget in dollars

H cards to be read in. It is assumed

Current pavement rating for
the Ith highway if 1st distress
type is present.

Current pavement rating for
the Ith highway segment if
10th distress type is present.



APPENDIX C
INPUT AND OUTPUT
OF
THE EXAMPLE PROBLEM
FOR

STATE OPTIMAL FUND ALLOCATION PROGRAM II
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INPUT DATA
FOR
EXAMPLE PROBLEM
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C0000000011111111112222222222333333333344444444349555555555566666666667
12345678901234567890123456789012345678901234567890123456789012345678%90

STATE OPTIMAL FUND ALLUOCATION - PROGRAM 11

3 10 8 6 250
R1 SEAL COAT 2144000
R2 140 INCH OVERLAY $50.000
R3 2.5 INCH OVERLAY G25.000
R4 4.0 INCH OVERLAY 2000.,000
RS 7.5 INCH OVERLAY 26004000
R6 10- INCH OVERLAY 3549.000
RUTTING 15000
ALLIGATOR CTRACKING 254000
LONGTUD. CRACKING 25,000
TRANSVERSE CRACKING 20000
FATLURES/MILE 40.000
SERVICEABILITY INDEX 50.000
ASPHALT CEMENT 4600
GRADER 0700
LOBADER 0¢340
TRUCK 0+840
GRADER OPERATCR 0700
LOADER OPERATOR 02340
TRUCK DOPERATOR 0+ 840

02800 0000 02012 0.060 0.000 0,012 0,060
3,000 O0-000 D0+000 04278 04000 0000 0.278
14500 Q4000 0000 04278 0,000 0.000 04278
42100 Q02000 02000 0556 05000 0000 04556
82100 Q02000 04000 04834 0.000 0.000 0.834
1,500 01.000 0.333 3.611 1.000 02333 3.611
02000 15000 15,000 15,000 10,000 2,000
13000 15000 152000 19+000 24.000 45,000
13.000 20000 202000 20000 25.000 45,000
15.000 25,000 25.000 2C-000 30,000 50,000
15000 25000 25000 20,000 35,000 50.000
15000 2S.000 25,000 2C.000 40,000 50.000
1,000 1000 1000 1000 12000 1.000
0.830 Cea840 Ce930 04820 1.000 0C.900
02910 02890 0880 0.860 0,910 0700
D880 0.890 0870 04850 0780 (2500
D780 DVe650 0670 04670 0470 04400
06310 04280 02370 (0380 0220 0.300
De220 00240 04320 04330 02200 04200
0+15C Cel50 04180 0.180 0.100 0100
0070 0090 0+090 04090 0.040 0.100
10 0+050 0070 (070 0060 0.010 0.000
11 D020 0020 0,020 0+010 0000 040090
12 0020 0,010 0,010 0,010 0.000 04000
13 0020 0010 04010 0.010 0.000 02000
14 02020 0010 €010 0,000 0,000 0.000
15 04010 0000 0.000 D.000 0.000 02000
16 04010 02000 0+000 0,000 0+,000 04000
17 0010 0000 D,000 0.000 02000 0000

IIITIITIITIIIIITIIIZOONDOOOMM A AN TITMOAMAMMIOMOOOUOOUAONAND D
DN NPLPUN=OTN DL WNOT D WN -~

P e e et B e e e e et g Bt e e g e
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00000000011 11111111222222222232333333333444444434435555555555666666666067
1234567890123456789012345678301234567890123456789012345678901234567890

1 18 0.01¢C D000 0,000 0000 0+0080 0,000
0010 0eD00 04000 €000 0000 0000
0.010 CeD00 02000 D000 0+000 04000
1000 1000 1000 1.000 1000 1.000
1000 1.000 1000 1.000 1000 1.000
1.000 0890 1.000 1000 1000 1000
1000 C+820 1.000 1.000 1000 0.900
0+880 C+730 1.000 1.000 1000 0.800
0780 CeB670 V750 0.830 1000 0,700
Q:4690 D+670 04500 0.670 1000 045600
02250 0670 04500 04670 0330 0.500
i0 0250 C+360 D000 C+000 0330 C.3040
11 0000 Qs110 0,000 0000 0.000 0.000
12 0.000 0090 0000 O0+000 0,000 G000
13 0000 0000 0000 0,000 0,000 0,000
14 0,000 0000 D000 0000 02000 02000
15 D.000C 0000 0.000 C+000 0000 0000
16 0,000 0«000 0,000 0000 02000 0,000
17 D«.0CC D.0C0 0000 0000 D0+0C0 D000
18 06000 02000 02000 0000 02000 0.000
19 0000 0000 0000 0+000 0000 02000
20 0,000 0e000 0000 02000 02000 04000

- -
N b
[« 3" +}

CONNU L UWN -

IrIr:r:r:r1r11IrIi1IrrIIrr1rrIX1r1r1r1rrrrr1r:r1r1r11r1:1r1IxII1II1IxIxIIxrxxxxxrITX

&P e PR WHWWWWWWUWWWWWWWUWNWWHNNINNNMMDNNODNMNNNMDONMNRNONNNNDNNDN

1 1000 1000 1000 1.000 1000 14000
2 14000 1000 1.000 1000 1000 1,000
3 1.00¢C 02950 C+930 0+940 1.000 1000
4 1.000 0a910 Ce930 0940 0890 0900
5 0.750 02800 02400 D2430 04530 0800
6 04750 04510 €140 04180 0.230 0,700
7 0750 0560 0.140 02180 02,160 0600
8 0s750 €550 02120 0.140 02150 0.500
9 Q02750 0510 0070 04060 02130 00400
10 0.750 C2280 Ce020 0,010 0,080 C.300
11 0330 02170 04000 G000 0020 0.000
12 04250 D140 0.000 0000 0,000 04,000
13 02250 06140 0.000 0000 0,000 0,000
14 D0+4170 Ces140 0000 024000 04000 04000
15 0,080 C£.080 0000 04000 0000 0.000
16 0.00¢C 02010 04000 02000 0000 <C.000
17 02000 02000 04000 02000 0000 0.000
18 0,000 0,000 0C+000 02000 0-000 0,000
19 D0e00C Co000 04000 Q0000 0+000 04000
20 04000 0000 0.000 02000 0,000 0.000
1 1,000 1.000 1,000 1000 1.000 1.000
2 1000 1.000 14000 1000 1.000 14000
3 1.00¢C 1000 1000 1000 1+000 1000
4 14000 12000 1,000 1000 1.000 1,000
S 1+000 0770 12000 1000 04770 0,900
5 0eB8B30 0640 L2330 €630 02510 C.E00
7 04710 €580 05110 02260 0480 0,700
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D0000000011111111112222222222333333333344444448445555555555666566666667
1234557890123456789012345£678901234567890123456789012345678901234567890

H 4 B8 D650 06530 0.000 02220 04360 04500
H 4 9 0820 G.510 0.000 Cel110 04330 04500
H 4 10 0380 Ce3830 0.000 04040 0+240 0500
H 4 11 02300 02210 04000 (000 D170 0,000
H 4 12 04300 0.150 0000 0000 0+170 0.000
H 4 13 04300 Csa190 0.000 0000 0+170 02000
H 4 14 02280 0170 0,000 0,000 D170 0,000
H 4 15 02220 G150 04000 0000 0170 0.200
H 4 16 0170 C+100 0,000 04000 0170 0.000
H 4 17 0120 0-070 0000 02000 0.070 04000
H 4 18 0+040 D0e060 (0.000 04000 0,000 0.000
H 4 19 02040 0060 04000 Q000 0000 04000
H 4 20 0«040 0030 C.000 Q2000 0.0C0 OC.C00
H 5 1 1000 1.000 1.000 1,000 1,000 1.0030
H 5 2 12000 1+000 1,000 1000 1000 1000
H 5 3 12000 14000 1.000 1.9200 1.000 1,000
H 5 4 1,000 1,000 1.000 14000 1.000 1,000
H 3 5 12000 1.000 1000 1.000 1.000 1,000
H 5 6 14000 Q47108 04330 £330 04750 02900
H 5 7 1000 G820 €330 0330 0.550 0.800
H 5 8 1.000 Cs440 02280 C+280 045C0 1D0+800
H 5 9 14000 02290 0170 06170 0500 04700
H 5 10 1000 Q0s290 02170 04170 0,480 0.600
H 5 11 028670 €290 0170 Ce170 0.250 0.C00
H 5 12 0670 0170 0.170 0,170 02250 0.000
H 5 13 0670 Q04140 0170 C2170 04250 0,000
H 5 14 02670 Celd0 Col70 0170 04250 0000
H 5 15 0220 06120 0170 04170 04200 0000
H 5 16 0+000 Q.000 0170 ©Cs170 02000 0,000
H 5 17 G+000 0s000 0170 05170 02,000 06000
H 5 18 0.0CC Ce000 Del170 Cel70 0,000 0.C00
H 5 19 D000 04000 04170 Cel170 04000 04000
H 5 20 0.00C Ce000 0170 04170 0.000 04,000
H 6 1 1.000 1000 12000 12000 1,000 1.000
H 65 2 1000 1000 1.000 1000 14000 1,000
H 5 3 1.000 14000 1.000 14000 1,000 1.000
H 5 4 1.000 1000 1000 1000 14080 045060
H 6 5 14000 1.000 1,000 1.000 1.000 0.800
H B B 04720 Ce490 1000 14000 02470 0700
H 5 7 0570 L3600 14000 14000 0360 0600
H 65 8 0.580 Ce360 1,000 14000 0.320 04500
H 6 9 0.500 Ce360 (2650 0650 06270 0,400
H 5 10 0500 06290 04600 0+£00 0270 02300
H 6 11 0.36C Ce270 (600 05600 0270 0000
H 6 12 04330 04270 04600 0600 0200 04000
H 65 13 03320 04270 L8530 (0510 0.180 0.000
H 5 14 04280 C2270 02400 Q0400 0180 0,000
H 65 15 0170 04210 04380 04380 04150 0,000
H 6 16 De170 Col90 0210 04200 02080 0.000
H 6 17 0170 Cel190 04200 04000 0,090 0000
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00000000011 11111111222222222233333333334444444444555555555566666666667
1234567890123456789012345678901234557890123456783%0123456789012345678990

65 18 04170 CelB80 02200 04000 0,080 04000
H 19 0170 Ce110 0200 02000 0,090 0.000
6 20 02170 C»090 02200 02000 04050 0,000

1 1DIST 3.309 36.000
2 1D1IsST 22266 12000
3 2D1ST 3.818 12.000
4 IDISTY 24512 12,000
5 1DISTY 4712 3€.000
6 2D1IST 1663 12.000
7 IDIST 32572 24.000
8 1DISTY 24462 12.000
9 2DIST 225625 12,000
10 1DISY 14590 12,000
OVERHEAD BUDGET 705800

1 154000 25,000 20,000 25000 304000 40.0090
2 54000 20.00C 204000 254000 30.000 04000
3 15,000 10,000 S+000 25000 30,000 10.000
4 5000 25000 25.000 254000 30.000 40,000
5 5,000 10.000 15.000 E.000 30,000 0.000
6 15,000 25000 15000 25000 30.0C0 40,000
7 152000 2S%.000 25,000 25,000 30000 40,000
B 152,000 204000 204000 25.000 304000 404000
9 5,000 25000 202000 S+000 30.000 10.000
10 BS.000 Se000 S4000 54000 30,000 10,000

1 1DIST 3317 3€.000
2 1DISY 22313 12,000
3 2D1ISY 4.029 12,000
4 1DISTY 3+356 12.000
5 1D1IST 3876 244000
5 1D1IST 12084 12,000
7 1DISY 34439 24,000
8 2DIST 3+151 12,000
9 2DIST 3.548 24,000
10 1DIST 33321 12000
OVERHEAD BUDGET 837700

1 35.00C 104000 15,000 25.000 30.0C0 40.000
2 154000 25000 S5.000 25.000 30,000 0.000
3 S5+000 20000 25+000 254000 30.000 404000
4 54000 25.000 20.000 254000 30000 0000
5 154000 10000 25,000 2%5.000 30,000 10,000
6 15200C 25.000 5.000 25.000 30,000 4C.000
7 15.000 25.000 25.000 25,000 30.000 10.000
8 15.00C 1C+000 25,000 25,000 30.000 0.000

A b et bt KR K KR R K R R R G e kg et R i e mt e s KK K K R K K K K R G b e b s el el b e b4 el T LT

9 152000 20000 15.000 25+000 30,000 40.000

1D 15,000 25.000 25.000 25000 30.000 40.000
1 1D01IST 34324 36.+000
2 1DISY 2+ 360 124000
3 2DISY 4,240 12,000
4 1D1S7 4200 124000
5 1DIST 3040 12.000
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DO0DODO001111111111222222222232333333333344444444445555555555606666666667
1234567890123456789C123456789012345678901234567839012345678901234567890

1D1IS5T 42445 12,000
1DIST 3.307 24.000
1DIST 3,829 12.000
2D1ST 1.270 12.000
10 1D1IST 1073 36,000
DVERHEAD BULCET 1002300
15.000 2%.000 25,000 25,000 30.000 0.000
152000 10000 20,000 25,000 30.0CC 1C.000
152000 2S+000 254,000 25000 30,000 40.000
54000 25000 20000 254000 30,000 40.000
15000 20000 2062000 54000 30.000 40000
15000 25,000 S.000 25.000 30,000 404000
5000 25000 204000 254,000 30.000 104000
15+000 254000 25,000 S5+000 30000 404000
15000 10000 20.000 25.000 30.000 0.000
15,000 Se000 SHD00 25,000 30,000 40.000

O B ~NO;

ARAXEKERXERREKEK R @ o bt ha
O U ONOUH W -

]
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OUTPUT OF
EXAMPLE PROBLEM
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TEXAS TRANSPORTATION INSTITUTE
TEXAS A&M UNIVERSITY
CCLLEGE STATION, TEXAS 77843

REHABILITATICN AND MAINTENANCE SYSTEMS
STATE OPTIMAL FUND ALLOCATION - PROGRAM II

EUDGET LEVELS
DISTRICT MAXIMUM MINIMOM OPTINUM BENEFIT

1 710000 690000 710000 2187.
2 840000 776000 770000 1896.
3 1010000 930000 1010000 1803.

D . R D W D P D W A S T -

2490000 5886.
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TEXAS TRANSPORTATION INSTITUTE
TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS 77843

REHABILITATION AND MAINTENANCE SYSTEMS
STATE OPTIMAL FUND ALLOCATION - PROGRAM II

DISTRICT SEGHENT STRATEGY

A D S R A AR AR A W D A D - —

-

-
w2V WWNOUN@eEsaEoDUNINaebRn&E wutoumu,

oW W W W W W RN NI N B0 B N IO IVt e amd e d o ok wad b b
CWOWONLNOUVEWNwOOWOSNTTUNMEWN OO JdTUME WRN -

b
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APPENDIX D
LISTING OF COMPUTER PROGRAM
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N s NN Na N sl e NN e N e NeRaNaNaRaNaNaRs N Ns R Na Ro N s Na RS

500
510
520
530
540

R ok ok ok ok ok Aok B3Rk K ok ok ok Rk ok Kok ook ok ok ok K Jokokok kokok %k kok K

REHABILATATICN AND M

STATE QOPTIMAL FUND A

AINTENANCE SYSTEM

LLOCATICN — PROGRAM T1

TEXAS TRANSPORTATION INSTITUTE

TEXAS AEM UNIVERSITY
COLLEGE STATICN.

(Y]

AUTHORS

INSTALLATICN

LANGUAGE

‘e

DATE

Fookak ok Rk ok ok ook ok ok sk ok ok

7Al/
A2/
/A3/7
/B1/
/B2/
783/
/7Cl1/
7C2/
/7C3/
7C4/
/D1/
/E1/
7E27
/E3/
/E4/

NODSs N
NDs INFI
M1s JON>s
MIN( 5),
MAX{ 5},
BI{ Ss11
IKL{10)
IKU{10),
R{10+56)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
INTEGER
INTEGER
INTEGER
REAL
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
UNIT = 10000
TLY = 100
READ {5,500) TITL
WRITE (6+500) TITL
READ (5,510) NODS»

I58{S00),
HTYP{(10)
PAR1{10»
PAR4{(10)
RC{10,8)
CAPT,
TRC,

FTYP, PA
LB, IMS,
15A4 )

415, I1
I3, 12,
F10.0

5X
SXs
5Xe
25X s
10X,

g gy g,

C{B8s10+6),

UNIT,
TRC1,

TEXAS 77843

TARI
SHANMUGHAM

GHASHEMI F.
CHIYYARATH V,

AMDAHL 470V/56
DATA PROCESSING CENTER
TEXAS AEM UNIVERSITY

FORTRAN 1V

SEPTEMBER 19890

Fok ok fokkok ok kkkklk kg ok kkok xRk Rk kkkkk k&

KJds CCs CAPT
Se UNIT, AICHs TLV,
FMAXs IDMAX, LMs LB,
MINAL S)s ILOWL S)»
MAXA{ S)s IHIGL 5).
0)s BIT{ 5.110), ICY{(
BAR{10)s X{10)
I0D(10), FM{10)
ICS{10+,8)s F(10+4300)s ID{10,300)
TRACE{S500+10:2)s B{8)
TRCI500+2)s IMS{S00+9)»
» L1C10), L2{(10)
2)s PAR2{10+3),
» PARS5{10)s TRAF(10}>

M,
ICHEK IR
uB

NALT( 5)
ZIBR{ 5)

Ss110),

I8,

IMS1{(500,+,9)

PAR31{10,2)
ENVR{10)

TRACE
TLY
D

TOTCo»
TRL2
Rls PAR2,

IMS1. L1

X
TRLC3,
PAR3,

L2

0 )
TA4
}

6F73 )

10F7.3 )

N Ms KJs CAPT

116
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WRITE {(65,510) NDDSs N, M, KJds CAPT

LALL DATAIN

D0 2000 D = 1 NODS

DO 1100 I = 1, N

READ {5,520) Ls HYYP{L)s { PARI{L,J)s J = 1ls 2 }s

1 { PAR2{L+J}s J = 1s 3 )s { PARZ{LsJ)s J = 1s 2 )

2 L1{L)s L2(L)s PAR4{L)s PARS{L)s TRAF(L), ENVR{L)
WRITE (65,520) Ls HTIYP{L)s ( PARI({L»J)s J = 1 2 )

1 { PARZ2I{LsJ) s J = 19 3 )s { PARI{LsJ)s J = 1s 2 )

L1{L), L2{L)s PAR4{L)s PARS{L}» TRAF{L)» ENVR{L)

1100 CONTINUE

READ {5,530) CC

DN 1200 I = 15 N

READ {5+540) { RC{I+J)s J = 15 KJ )

WRITE {(5+540) { RC{1sJ)» J = 1, KJ )
1200 CONTINUE

CALL DOBJFCKN

DG 2345 I = 1, N

WRITE {6.,6656)

WRITE (6+667) { R{IsJ)s J = 1, KJ )

WRITE {6,+,666)

DO 1234 J = 1y KJ

WRITE {6,667) { C{KsIsJd)y K = 1, M)
1234 CONTINUE
2345 CONTINUE
566 FORMAT ( 1X )
667 FORMAT { 10F12.5 )

ND = D

LB=0»

UB=0D.

ZIBR{ND)}=0.

TO CALCULATE THE INITIAL LOWER AND UPPER BCUNDS

slaRe!

DO 10 J=2sN
UB=UB+R{J+KJ)
10 CONT INUE
DO 11 Jd=1,N
DO 11 K=14KJ
S=0e
DO 12 I=1+M
S=S+C{I»JsK)
i2 CONT INUE
ICS{ JsK)=5/M
11 CONTINUE
TIB=0.
DO 13 I=1,M
TIB=TIB+B(I)
13 CONTY INUE
C D0 34556 J = 14 N
C WRITE (5.669) { ICS{JsK)» K = 15 KJ )
£3456 CONTINUE
C 669 FORMAT { ¢ ICS *» 10110 )
IB=TIB/M+1
C WRITE {6+670) TIB, IB
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C 670 FORMAY { ¢ TiB?y F12.3, * I8 *, IS )
CALL RETRN1
INFS = ¢
CALL SERCH1 { INfFS )
IF { INFS +EGe 0 ) GG TD 4738
WRITE (6+689) ND
689 FORMAT { CISTRICT®*, I3, * IS INFEASIBLE * )
60 TO 2000
4738 CONTINUE
C PRINT ,LB,UBR
IF{ICHEK.EQs0) GO TO 15
CALL IMBEDD
10LP=1IR
IF{JON-GT.0) GO TO 1000
Z=IMS1{IR.M1)
DO 90 JJ=1ssN
J=EN=-JJ+1
X{J)=TRACE{IR»Js1)
IR=TRACE{IR+J»2)
90 CONTINUE
G0 TO 16
1000 Z=IMS51{IR,M1)
DO 1001 JJ=1-JON
J=JON-JJI+1
X{JI=TRACE(IR+Js1)
IR=TRACE{IRsJ»2)
1001 CONTINUE
JON=JON+1
DO 1002 JJ=JCNSN
X{tid)=1
1002 CONTINUE
GO TO 16

15 Z=FM{N)

DO 60 J=1,N
X(J4)¥=10D1{J)

650 CONTINUE
PRINT 202

202 FORMAT{(20X?*SUROGATE SOLUTION',//)
PRINT 203,7
PRINT 206
DO 17 J=1,.N
PRINT 205+:Jd+X%X1(J)

17 CONTINUE
MAXA{ND)=ATICH+*1,
MINA(ND)=AICH+1.
ZIBR{ND)=-10-.
BITI(ND,s1)}=2
NALT{ND)=1
ICZ{NDs1)=1
DO 30 J=1N
ICY{ND»J)=X{J)

30 CONTINUE
G0 TO 2000

C 16 PRINT 203,2Z
16 CONTINUE

O ON

8]
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600

203

206

205
18

23

22

21

2000

600
610

FORMAT{20X+"CBJECTIVE FUNCTION VALUE=?3F1245,+//)
PRINT 206
FORMAT{12Xs?"CFTs DECs VALUE?,/)
DO 18 J=1,N

PRINT 205sJeX{J)
FORMAT{12X,12+12X,13)
CONTINUE

IR=I0LP

LOC=M1—-1
MINA{ND)=IMNS1{1,L0C)+1
KOK=MINA(ND)
ICZIND+ 1 )=KOK—-MINA{ND)+1
ICY{ND»1)=1
BITI{IND»1)=IMS{1,M1)

K=1

DO 21 J=1,»1IR
SUB=IMS1{J.LCC)
IFI{KOK=SUB) 22+23+23
BITIND+K)I=IMS1(J,M1)

G0 10O 21
KOK=IMS1{JLCC)+1

K=K+1
ICZINDsK)=KOK—MINA(NDI+1
ICY{NDsK)=J
BII{NDK)=IMS1(JsM1)
CONTINUE

NALT{ND}=K
MAXA{ND)=TICZINDsK)+MINAIND)I-1
CONTINUE

UNIT=10000

CALL RESULT

STOP

END

SUBROUTINE RESULTY

COMMON ZA1/ NODSs Na» M, KJs CCs CAPT
COMMON /A2/7 NOs INFIS, UNITs AICHs TLVs ICEEK, I8,
COMMON /A3/ M1, JONs FMAXs IDMAX, LM. LBs UB
COMMON /Bl/ MIN( S)s MINAL S)s ILOW{ 5)s NALT( 5)
COMMON /B2/ MAX{ 5)s MAXA{ 5), IHIG{ 5), ZIBR{ 5)
COMMON /B3/ BI{ 5.,110)s BII( 5,110)s ICY{ 55110)»
COMMON /C1/ IKL(10), BAR(10)» X{(10)

COMMON /C2/ IKU(10)s 10D(10), FM(10)

COMMON /7C37 R{10:6)s ICS{10+8)s FL{10+s300)s ID{10,300)

COMMON /C4/7 Cl{8510+6)s TRACE(S500+10,2), B8(2)

COMMON /D17/ IS{500)s TRC{S500+2)s IMS{500+9)s IMS1{(500+9)

DIMENSICN IY{ Ss+10)

INTEGER CAPT, UNIT, TOTCs Xs TRACE
INTEGER TRCs» TRC1, TRC2, TRC3, TLYV
REAL LBy IMS, IMS1

FORMAT ( 1Hls //77/ )
FORMAT { S1X, 30HTEXAS TRANSPORTATION INSTITUTE,
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SEXe 20HTEXAS AEM UNIVERSITYy /o
E2Xs 28HCOLLEGE STATION, TEXAS 77843 /7>
47X s IBHREHABILITATION AND MAINTENANCE SYSTEMS, /.,
45X s 42HSTATE OPTIMAL FUND ALULOCATION — PROGRAM (I, 7/ )
620 FORMAT 58Xs 13HBUDGET LEVELS, /.
1 44Xs 44HDISTRICT MAXIMUM MINIMUM QOPTIMUM BENEFIY, 7/
630 FORMAT 47Xs I2¢ 3Xs ISs 1Gs 19s FO20s 7/ )
6531 FORMAT 79 70Xs 19y F9,0)
£35 FORMAT Zs 44X, 43{('-%), / )
6540 FORMATY 53Xs 27HDISTRICT SEGMENT STRATEGY. /.,
i 53Xe 26{*—1), /7 )
6550 FORMAT { E8Xs I2s 6Xs 1I2s BXs 12 )
660 FORMAT { /s 53Xy 26{*-%), / )
WRITE {(65£00)
WRITE (6+£10)
WRITE (65620)
CAPTN=0.,
DO 826 I=14+NCDS
CAPTN=CAPTA+MINA(TI)
826 CUONTINUE
CAPT=CAPT-LARPTN+NODS
DO BO06 I=1,NGDS
NOAL=NALT(1)
DO 8066 J=1sNCAL
C PRINT S506+I+1ICZ(1:5J3)+8BI1(1,J)
B06 CONTINUE
C506 FORMAT{32Xs13:8Xs1I835XsF10,.2)
INFIS=-9938GGE
DO 4 1IN=1,NODS
MAX{IN)=MAXA{IN)-MINA(IN) +1
MIN{IN)=1
CALL RETRAZ2{(1IN)
4  CONT INUE
CALL SERCHZ2

U N e
-~

Sy ey ey gy

CUT PUT

s el

TOTC=0
DO 30 I=1.NODS
MIN{II=MINA{I)&UNIT
MAX{I)=MAXA(I)*UNIT
J=10D(1)
ICZ{I+J)=(ICZLI»J)+NINACT )—1)RUNIT
TOTC=TOTCH+ILCZ{IsJ)
iF{1.EQ.1) GO TO 31
IT=1-1
RIGH=FM{II)
BI{I»J)=FM{I)I-RIGH
GO TO 32
31 BI({l.J)=FM{(I)
32 CONTINUE
WRITE {(5+630) TMAX{I)SMIN{TI)SICZL{T1,0)+8BI{(1+J)
IF{ZIBR{T)-EQ.—10-) GO TOD 855
IR=ICY{15J)
DO 850 JJ=1N
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850

856
30

1235
1236

40
41

NIN=N-J

J+1

IY(T+NIN)=TRACE(IRNIN, 1)
IRTETRACE{ IR NIN»2)

CONTINU
G0 10O 3

DO 856 J=1.N

E
0

IY(leJd)=ICY(I,53)
CONTINUE

CONT INU

E

TOTR=FM{NODS)
WRITE (6,€35)
HRITE (64+631) TOTC,
WRITE (6+600)
WRITE (6:,610)
WRITE (6.+640)

DO 1236

I =

DO 1235 J =
WRITE (H6+650) 1y Js

CONTINU
CONTINU

£
E

1 NODS
1+ N

WRITE {H6+660)
WRITE {(6+600)

RETURN
END

SUBROUT
LOMMON
COMMON
COMMON
COMMON
COMMON
COMMDN
COMMON
COMMON
COMMON
COMMON
COMMON
INTEGER
INTEGER
REAL

INE

ZAl/
7A2/7
/A3/
781/
/82/
/83/
7Cl/
72/
/C3/
/7Car/
/Dl/

RETRN2(1
NODSs N
NDs INFI
Mlse JUONos
MIND S)»
NMAXL S)s
BI{ S5.11
IKL{10)»
IKU{10)»
R{10s6)»

C{Bs1056)

I1S{500),

TOTR

IY(i1,J)

)
My KJ»s CCos

CAPT

Ss UNITs AICH, TLV, ICHEK, IB. IR
FMAXs IDMAX,s LM, LEBs UB
MINA( 5)» ILOW{ S)s NALT{ 5)

HIG{ 5), ZIBR{ 5)

10)s ICYL Z,110)s ICZ( 541190)

MAXAL{ S)s+ 1
0)s BII{ 501
BAR{10)s, X{

10)

I0D{10), FM{10)
F{10+300), ID{10.,300)

1ICS{10.8),

TRC{SD00+2)»

CAPT, UNIT, TOTCs X
1+ TRC2, TRC3s TLY

TRCs» TRC
LBs IMS,

IF{I1.GTs1) GC TG 3

KK=MAX{

ISS=MIN{I )1
NOAL=NALT(1)

K=MIN{1

1)

)-1

IMS1

IF{NOAL.EQ.1) GG TC 40

NIL=NOA
GO TOD 4
NIL=1

L-1
1

DO 2 JOZ=1.NIL
KOI=ICZ{1,J07Z)

JOZY=.J0

Z+1
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TRACE
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590

51

KO2=1CZ{1.,J8ZY)—1

DO 2 J=K01.+K02

IS{J)=K+1

K=1S({J)

15K=K

F{I+1I5K)=BII{1,J02)

ID{1I+ ISK)=J07

CONTINUE

J=ICZ(1+NCAL)

I1S{J)=K+1

K=15{J)

ISK=K
FL{I-+ISK)=BI{i{I:NOAL)
ID(I S ISK)=NOAL

ISS=MIN{I)

GO0 TO 16

IF{1.EQ«NCODS) 608 TO0 15
KK=0

I1S5=0

DO 4 J=1,1

KK=MAX(J) +KK

ISS=MIN{ J)+ISS

CUONT INUE

IF{KKLTLCAPT) G0 TC SO
KK=CAPT

I5SK=155-1

DD 5 K=ISS+KK

IS{K)=K

ISK=1IS5(K)

F{1,ISK)=INFIS
ID{IL18K)=~1

NOAL=NALT{ 1)

DO 6 J=1sNGAL
ICII=1ICZ{T1+J)

11=1~-1

ICH=1ISK—-ICTJ

MAXCH=D0

MINCH=0

DO 7 L=1,11

MINCH=MIN{L) +MINCH
MAXCH=MAX(L ) +MAXCH

CONT INUE
IFIMAXCH.LELCAPT) GG TO 51
MAXCH=CAPT
IF(ICHJLT«MINCH) GO TO
IF{ICHGT«MAXCH) GO T0O
FIF=BII{I+J)+F{IT1,4ICF)
IF{FIF LT F(ILISK))Y GO TO
F{I1+1ISK)=FIF

ID{I»I5K)=J

GO T0 6

KA=MA XCH
F{I»ISK)=BII{1:+J)+4F(I1+KA)
ID{TIISKI=J

CONTINUE

(3 I |
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15

61

62

11

52

12

CONTINUE

GO TO 16

CONT INUE

NOAL=NALT(I)

DO 9 J=1sNCAL
IF{CAPT.GT«300) GC TC 61
I SK=CAPT

GO TO 62

I1SK=249

CAPT=1ISK

F{I,ISK)=INFIS
ID(I+1ISK)=-1

I1i=1-1

ICIJ=1CZ{1.+J)
ICH=ISK-IL1J

MAXCH=0

MINCH=0

DO 11 L=1,11
MINCH=MIN(L)+MINCH
MAXCH=MAX{L)+MAXCH
CONTINUE
IF{MAXCH.LELCARPT) GC TD 52
MAXCH=CAPT
{IF{ICHLTLNINCH) GG TO 9
IF(ICHGT «MAXCH) GG TO 12
FIF=BTI(I.J)+F({I1,ICH)
IF{FIF.LT.F{1:15K})) GO TO 9
F{1,ISK)=FIF

ID(I1ISK)Y=J

GO 70 9

KA=MAXCH
FUILISK)=BII{I1,J)4+F{11.KA)
ID{I,ISK)=J

CONTINUE

ILOW({I)=ISS

IHIGI I)=KK

RETURN

END

SUBROUTINE SERCH2

COMMON /Al/ NODS»s Ns Ms KJs CTLs CAPT
COMMON 7A2/ ND, INFIS, UNITs AICHs TLV, ICHEK, IB,
COMMON /A3/ M1, JDNs FMAX, IDMAXs LMs LE, UB
COMMON /B1/7 MIM{ S)s MINA( S5), ILOW{ S)s NALT( 5)
COMMON /B2/ MAX( S), MAXA( 5), IHIG{ S)» ZIBR{ 3)
COMMON /B3/ BI{ 5+110), BII{ 5,110), ICY( 55110}
COMMON /C1/ IKLI10)s BAR(10)s X{(10)

CCMMON /7C2/ 1IKU{10), I0D{(10)s FHM{10)

COMMON /C37/ R{10,6)s ICS{10.8)s F{10,300), ID{10,300)

COMMON /C4/ C{8s10+€)s TRACE(500,10,+2), B(Z2)

COMMON /D17 IS(500)s TRC{500s2)s IMS{S00,8)s IMS1(500,9)

INTEGER CAPT, UNIT, TOTC» X» TRACE

123

1ICZ{ 5,110}



INTEGER TRCs TRC1s TRC2s TRC3, TLV
REAL LBs IMS, IMS1
I=N0DS
FM{T)=F({I.CAPT)
10D{(1)=ID(I,CAPT)
J=I0D(1)
KEK=NODS~1
ISIS=CAPT-ILZ(1+J)
DO 2 I=1.KEK
I I=NODS~1{
IF{ISIS-GT.IKIG{II)) GO TO 3
K=1ISIS
FM{II)I=F{I1,K)
I0D{IIN=ID{11.K)
J=IOD(11)
ISIS=ISIS—-ICZ{11.+J)
50 TO 2

3 K=IHIG(I1)
FMIII)=F{II.K)
IOD(IIYI=ID{IT,4+K)
J=10D{I11)
ISIS=ISIS—ICZ{I1+J)

2 CONTINUE
RETURN
END

SUBROUTINE RETRNI1

COMMON /Al/ NODSs Ne My, KJs CCs» CAPT

COMMDN /A2/7 NDso INFISs UNITs AICHs TLV.s ICHEKs I8, IR
COMMON /Z/A3/ M1, JUONs FMAX, IDMAX, LM, LB, UB

COMMON /B1/ MIN{ 5)s MINA{ S)s ILOW{ S)s NALT{ S5)

COMMON /B2/ MAX{ 5)s MAXA{ 5)s IHIG{ S)s ZIER{ 3)

COMMON /8B3/7 BI{l S$5110)s BII{ 5+110)s ICY{ S»110)s 1CZ{ S,110)
COMMON /Cl/ IKL{10)s BAR{10)s X(10)

COMMON /C2/ Ixu{10)s I0D(10), FM(10)

COMMON /7C37 R{10+6}s ICS{1058)s F(105,300)» ID{(10+300)
COMMON /7C4/ C1{8510s€6)s TRACE(S500+10+2)» B(8)

COMMON /D1/ 15({500)s TRC({(500+2)s IMS(S00+9)s IMS1{500,9)

INTEGER CAPT, UNIT, TOTCs Xs TRACE
INTEGER TRCs TRC1s TRC2s TRC3, TLYV
REAL tBs IMS, IMS1

FMAX=0.

LM = 0

IF { IB «LE. 300 ) GG TC 1200
WRITE (H6+667)
s = 3¢90
1200 CONTINUE
667 FORMAT { * *%%%x IB GT 300. SET I8 = 300°* )
DO 11 J=1sN
D3 11 L=1,.1IB8
IDUJ.L)=1
F{JsL)=-93G,
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DO 12 K=1sKJ
ICSI=ICS{JsK)
ISL=L-1
IF{ISL.LTLICSI) GO TC 11
IF{J«GT«1) GO TO 13
FI=R{J+K)
60 YO 14

13 JI=ISL-ICS51I+1
JK=J—1
FI=R{J+KI+F(JIK»IJ)

14 IF{Fl.LT.F{JsL)) GC TO 12
F{Jd.L)=F1
IDUJsL)=K

12 CONTINUE
IF{JLTN}) G0 TO 11
IF{FNAXGE-F{JsL)) GC TOQ 11
FMAX=F{J.L)}
IOMAX=ID{ JsL)

LM=L
11 CONTINUE
C DO 1234 L = 1, IB
C WRITE (647773 { ID(JsL)s J = 1s N )s { FlUdsL)e J = 15 N )

C1234 CONTINUE

C 777 FORMAT { 1015, 10F7.1 )

C WRITE {(6+,778) LM

C 778 FORMAT ({ * LM 'y IS5 )
IF { LM +GTs D ) RETURN
WRITE (6+.6€6) LM

666 FORMAT { 1X, v2?27227272?222227?27 LM IS *, 13 )

STOP
END

SUBROUTINE SERCH1 ( INFS )

COMMON /Al/ NODSs Ns M, KJy CC» CAPT

COMMON /A2/ ND, INFIS, UNITs AICHs TLVs ICHEK, IB,s IR
COMMON /A3/ M1, JUON, FMAX. IDMAX, LM, LB, UB

COMMON /B1/7 MIN{ S5), MINA{ S5), ILOW{ S5)s NALT{ 5)

COMMON 7B2/ MAX{ 5), MAXA( 5), IHIG{ S)s ZIBR{ 5)

COMMON 783/ BI{ S,110), BII{ S5+110), ICY{ S»110)s ICZ{ S5,110)
COMMON /C1/ IKL{10)s BAR{10)s X(10)

COMMON /C2/7 1IKU{10), IDD{10)» FM(10)

COMMON /C3/7 R{103:6)s I£S{10+8)s F(10,300)s ID(10,300)
COMMON /C4/ C{8510,6)s TRACE(500510+2)s B(E8)

COMMON /D1/ 15{500)s TRC{50022)s IMS{500+9)s IMS1(500,9)

INTEGER CAPT, UNIT, TOTCs X» TRACE
INTEGER TRCs TRC1l, TRC2s TRC3, TLV
REAL L3, IMS, IMSi

IND=0

16 LM=LM-IND
KK=ID{NsLM)
FMIN}=F{N,LM)
IODAN)=ID(N,-LM)
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ICC=LM-ICS{N,KK)
J =20
WRITE {6+666) Js Ns KK, ICC, FMAN)
NN = N - 1
DO 10 J = 1+ NN
JJIJ=N—-J
666 FORMAT { * g = *, [5, * S = *, IS5, ¢ KK = %, 15,
1 » ICC = %y 15, ? FM 7, F10.1 )
FM{JJI=F{JJ, ICC)
IODLIJ)=ID{JII,-T1ICC)
KK=100{J44)
ICC=ICC-ICS{JJsKK)
WRITE {6:6656) J» JJs KK, ICC, FM{JJ)
10 CONTINUE
IF{IND.GT0) GO TO 20
DG 21 J=14N
IKU(II=I0DL{I)
21 CONTINUE
20 CONTINUE
DO 11 I=1sM
AICH=0,
DO 12 J=1sN
IK=10D{J)
AICH=AICH#C{I4+Js1IK)
12 CONTINUE
IF(AICH.GTSE(1)) GC TO 13
11 CONT INUE
IF{IND-GT»0) GO TC 14
ICHEK=0
DO 22 J=1sN
IKL{J)=1IKU(J)
22 CONTINUE
LB=FM{N)
uB=LBa
G0 1O 17
14 ICHEK=1
DO 23 J=1,sN
IKL{.3)=1I0D41J)
23 CONTINUE
LB=FMI(N)
G0 10O 17
13 IF({IND.GT.0) GO TO 15
Ug=FM(N)}
15 IND=IND+1
IF { LM 4GT. IND )} GO TO 16
INFS = 1
ICHEK = 1
17 RETURN
END

SUBRGUT INE IMBEDD
COMMON /A1/ NGODS»s Ns M, KJe CC, CAPT
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00

11

10

18

]

COMMON Z7A2/
COMMON /7A2/
COMMON /B1/
COMMON 7B2/
COMMON /B3/
COMMON /C1l/
COMMON /C2/
COMMON /C3/
COMMON /7C4/
COMMON /D1/
INTEGER
INTEGER
REAL

J=1

JON=0

uca=uUB

DO 10 K=1,KJ
IR=K

DO 11 I=1,N
IMS1{KsT3)=C{
IMSIK,1)=C{1
CONTINUE
Mi=M+1

NDs INFIS, UNIYT, AICHs TLV, ICHEKs 1IB. IR
M1, JONs FMAX, IDMAXs LM, LE, UB

MIN( 5)s MINA( S)» ILDW{ 5)» NALTI( 5)
MAX{ S)s MAXA( 5)s IHIGL{ 5)s ZIBR{ 5)

BI{ 5+110), BII{ 5,110), ICY( S5,110),s ICZ{ 5,110)

IKL{10)» BAR{10),s X{1D)

IKU{10)s IDD{10)s FM{10)

R{10,6)s ICS{10+8)s F{(10+,300)s 1ID{10,300)
Ci{8s1046)s TRACE{(500,10+2), B(2)

1IS{500)s TRC(500+2)s IMS{500+,5)» IMS1{500,9)
CAPT, UNITs TOTCs Xs TRACE

TRCs TRC1s TRCZ2, TRC3. TLY

LEs INS, IMSI1

TsdsK)
o Ja K}

IMSI{K M1 )=R{JsK)

IMS{K M1 )=R{
TRC{IR,1)=K
TRC{IR,2)=1
TRACE({IRs 11
TRACE{IRs14+2
CONT INUE

DO 12 J=2+N
DD 18 IRR=1,
TRC{IRR,1)=1
TRC{IRRs2)=1
CONT INUE
IRB=IR
TLILY=IMS14(1
TLILI=IMS1(1]
IRM=IR
KJu=1KU{J)
KIL=1IKL(J)
IF{KJL.EQ.1)
IF{KJIU—-KIL)
KIU=KJL

GO0 1D 4
KaL=2
IF{KJUSGES2)
G0 YO 76

DD 13 K=KJlL,
DO 14 L=1+1IR

FEASIBILITY

DO 99 I=1.M
FISIB=IMSIA{L

J oK)

1=K
)=1

IR

RR

RsM1)
RaM)

GO TC 3
2+2+4

GC TO 4

KJu
¥

TEST

2 II4C{T2J,K)
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el e Ne] OO0

e Moy’

99

15

16

85

17

14
13

50

40

IF{FISIB.GT.B{1}) GO TD 14
CONTINUE

IF{J«EQaN) GO TO 85
RT1=IMSI{L M1 )+R{J+K)
JK=J+1

UB1=RT1

DO 15 JIa=JK,\
UBI=UB1+R{JJ K J)

CONTINUE

TMSR=0.

DG 16 I=1,M
THUSR=TMSR+IMS1I{(L»I)+C{1I+J+K)
CONTINUE

IMSR=TMSR/M

LL=1IB-IMSR

UB2=F{NsLL)+RT1

THE LOWER EGUND TEST

IF{UBL.LT,.L8) GO TC 14
IF{UB2.LT.1B) GO TS 14

TO UPDATE THE UPPER BOUND

IF{UB2.6T.UR) GO TC 85
uB=uB2
IRB=IRB+1

TO CONSTRUCTY THE IMBEDDED STATE VECTOR

DO 17 I=1.¥M
IMS{IRB+I)=IMSI{(L+1)4+C{14sJsK)}
CONTINUE
IMS{IRBsM1)=IMSI{L+M1)I+R{JsK)
TRC{IRBs1)=K

TRC{IRBs2)=L

CONTINUE

CONTINUE

IR=IRS8

IF(J«EQeN) GO TL SO
IF{IRLLT.TLV) GC TO 786

DO 19 IRR=141IR

NI=IR—IRR#*1

BOZ=IMS{1,M1)

JAK=1

IF{NI+EQel1) GC TO 19

DO 21 IRLC=2,NI
IF{IMS({IRC+M1).LT.BCZ) GO TO 21
BOZ=IMS{IRC,M1)
TRCI=TRC{IRC,1)
TRC2=TRC{IRC,2)

DO 40 I=1.M1
BAR{I)=IMS{IRC,1)

COUNTINUE

JAK=IRC
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21

22

23

19

39

45
25

28

26

32

34

33

31

35
24

CONTINUE

DO 22 I=1,¥M1
IMS{JAK, I)=I¥S{NI,I)
IMS{NI2I)=BAR(I)
CONT INUE

DO 23 I=1,2

TRC{JIAK I)=TRCINISI)
CONTINUE
TRCINIs1)=TRC1
TRC{NI+2)=TRC2
CONTINUE

IF{J+EQsN) GC TG 76

DOMINANCY TESTY

D0 24 IRR=Z,1IR

IF{IMS{IRR:M1)+1Ts—1») GO

IR1=IRR-1
IF{IMS{IRL+M1}aGT0)

GD TO 45

IF{IR1.EQa.1) GO TC 24

IR1I=IR1-1
G0 TO 39

IF{IMS{IR1,M1)—IMS{IRRsM1)) 25:,26+24

DO 28 I=1+M

IF{IMS{IRR+I)-IMS{IR1,1)) 28,28,24

CONTINUE
IMS{IR1,M1)=-GGT.

IF{IR1.EQ.1) GO TO 24

IR1I=IR1-1
60 TD 39
ICH1I=0
ICH2=0

D0 31 I=1.¥

IF{IMS{IRR.1I)-IMS{IR1,1})) 32,33,34

ICH1=1

60 70O 31
ICH2=1

GO TO 31
ICH3=TCHI1*[CH2

IF{ICH3.EG-0) GG TC 31

50 TO 24
CONTINUE
ICH3=TICH1* ICK?2

IF{ICH3.EQ.1) GO TO 24
IF{ICHL.EQ«C) GO TG 35

IMSI{IRI M1 )==-59T.

IF{IR1.EQ.1) GO TOQ 24

IRI=IR1-1

GO TD 39
IMS{IRRsM1)=-599G.,
CONTINUE

IF{J-EQsN) GC TC 76
JAHL=J+1

IRM=IR

IRMI=]IR
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77

76

200

201

37

33
35

aNale!

el e e}

12

1002

300

1000

C1001
1901

DO 88 L=1,IRM
IF(IMS(L+M1).LT.0.) GO TO 88
TOKH=0.

DO 77 JJ=JAHL sN
TOKH=IMS{L +M1 )+R{JJ+KJI) +TOKH
CONT INUE

IF{TOKH«GESLB) GO TC 756
IMS{L +M1)=-999G,

CONT INUE

I11=0

IF{IR.GT«0) GC TO 200

60 TO 390

IRIM=1

IF{IR.LTL.TLV) GO TC Z01
IRIM=IR-TLV+1

DO 36 IRR=IRINSIR
IF(IMS{IRRsM1)1L. T+0) G0 7O 36
I11=111+1

DO 37 I=1sN1
IMSI{I1II»1)=IMS{IRR,T)
IMSITIII»I)=INSI(TII1,1)
CONTINUE

DO 38 I=1.2

TRACE{IIT+J» I)=TRC{IRR, 1)
CONT INUE

CONT INUE

IR=I11

IF(IIT.EQsC) GO TC 1002
PRINT yND» Js IR IMSI(III+M1)
LIIB=IMS1I{I1TsM1}

T0O UPDATE THE LOWER BOUND

IF(LITB.LELLB)Y GO TO 12
18=L118B

TERMINATICN TESTY

IF{LB.GE-UB) GO TG 1000
CONT INUE

GO TO 1001

IR=1IRM
IMSI{TIRSMLI)=TLILY
LILA=M1-1
IMSI{IR,LILAY=TLILI
JON=J~-1

G0 TO 1001

IF{J-EQeN) GC TO 1001
JON=J

PRINT»UB

CONT INUE

RETURN

END
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500
510
520

1200

1300

1400

1500

1600

1800

SUBROUTINE CATAIN

COMMON /A1l/ NODSs N» NCs NSy CCs CAPT

COMMON /F1/ STRT(E,5)s DSTR(6+5)s RSRC(10,5)
COMMON /F2/ CR{6)s RMAX(6)s RS{10)s RSR1{6,10)
COMMON /F3/ DIST{Hs€)s P{H5+20:6)

COMMON /G177 T+ NPAN, NTYP

INTEGER T

M1 = NC - 1

FORMAT ( 5Xs SA4s F15.3 )
FORMAT { EX, 15, 10F7.3 )
FORMAT ( SX, 12, 13, 10F7.3 )
ND = 6

NTYP = 2

T = 1¢C

NP AN = 20

DO 1200 I = 1+ NS

READ (5,500) { STRT{I,J)s J
WRITE (565s500) { STRT{1+J)s J
CONTINUE

DO 1300 I = 1, ND

READ {(5,500) { DSTR{Is+J)>»
WARITE {(6+500) { DSTR{I+J)s J

i

1» 5 )» CR(I)
1is 5 )y CREI)

H

1s 5 3} RMAXI{I)
1+ 5 )s RMAX(I)

(9%
i

i

CONTINUE

DN 1400 I = 1. M1

READ {5,500) { RSRC{Is3)s J = 14 5 )s RS{I}
WRITE {6+500) { RSRC{I+J)s J = 1» 5 )»s RS{I)
CONTINUE

DO 1500 1 = 1+ NS

READ {5,510) Ls { RSR(IsJ)s» J = 1s M1 )}
WRITE (6,510) L

CONT INUE

DO 1600 1 = 1s NS

READ {5,510) Ly { DIST{I»J)s J = 1ls ND )
WRITE {(6+510) L

CONT I NUE

DO 1800 1 = 14 NS

DO 1800 J = 1, NPAN

READ {5+s520) Las My { PI{L.4MsK)s K = 15 ND )
WRITE {6,520) L» M

CONTINUE

RETURN

END

SUBRDUTINE CBJFCN

COMMON /Al/ NODSs Ns Ms NS, CCs CAPT

COMMON /Z/A27 ND, INFT1Ss UNIT, AICHs TLV. ICHEK, IBs IR
COMMON 7C3/ R{10s6)s ICS(10+8)s F{10,300},s 1ID{(10,300)
COMMON /C4/7 C{Bs10:6)s TRACE(500,104+2), B(2)

COMMON /Z/EL/ HTYP{10). L1{10)s L2{(10)

COMMDON /F2/ CR{6), RMAX(H)s RS{10)s RSR{6510)
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COMMON /G1/ T NPAN, NTYP
DIMENSION XL{(10)

INTEGER Ts UNIT
REAL L1s L2
M1 = M - 1
AXL = 00
DO 2000 1 = 1s N
XLA(1) = L1{I) * L2(1)
XXL = XXL + XL{I)
2000 CONTINUE
DO 2100 I = 1+ M1
RS5(1) = RS{I) % XXL
8L{1) = 70.0C0
2100 CONTINUE
B{M) = C€C / UNITY
DO 4000 I = 1, N
INDX = 0

DO 3700 J = 1. NS
CALL BENFIT { 1, J, SUM )

R{IsJ) = SUM % XL{I) / 100,90

XSGR = 00

DO 3100 K = 1, M1

C{KsIed) = 1000 * XL{I) * RSR{J,K) / RS5{XK)
3100 CONTINUE

C{MsI+3) = € XL{I) % CR{J) ) / UNIT

3700 CONTINUE

4000 CONTINUE
RETURN
END

SUBRBUTINE EENFIT { T, Js SUM )

COMMON A1/ NCDSs, Ns Ms NSs CCs CAPT

COMMON /7C3/ R{10+,6)s ICS{10s8B)s F(10,300)s ID{10,300)
COMMON /E3/ PAR4{10)s PARS{10)s TRAF(10)s ENVR(10)
COMMON /E£4/ RL{10+8)

COMMON /F2/7 CR{6)s RMAXI{5}s» RS{10)s RSR{6,510)

COMMON /F3/ DIST(6s6)s P{6520+56)

COMMON /G1/ Tas NPANs NTYP

INTEGER T
REAL i1, L2
SUM = 00
DO 3000 K = 1s NS
L = Q
I7 = 7T
DTJIK = AMINI(DIST{JsK)sRMAX(K}I~RC{TIsK)4041)
RR = RC{I+K) + DTJUK
2500 CONTINUE
L =L + 1
pp = 140 — TRAF({I) % ENVR{I) % { 1.0 - P{Js+LsK) )
PP = AMAX1{0+04PPXRMAX(K]))

IF { RR LT, PP )} GG TO 2600
IF { PP 1T+ RC{I.K) ) GO TO 3000
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2600
2700

3000

SUM

IF ( sum
GO YO 27
1T

IF {4 17

= SUM + PP — RC(I,K)
2LEs D20 ) SUM = 0490
oG
= IT + 1
+GEs NPAN ) GO TO 3000

IF { L LT IT ) GO TO 2500

CONTINUE
RETURN
END
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