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ABSTRACT 

A computer program has been developed in this study to perform 

the calculations for the design of continuous prestressed concrete 

bridge girders. The continuous girder is constructed from simple 

span precast concrete !-shaped beams made continuous by supplementary 

reinforcing in the deck and the ends of the precast beams. Specifi~ 

cation for the designs produced are those currently accepted by the 

Texas Highway Department. 

This volume of the report describes the analysis techniques used 

in the determination of design moments and shears and the design 

criteria and methods of computation used in completing a design. 

DISCLAIMER 

The contents of this report reflect the views of the authors 

who are responsible for the facts and the accuracy of the data presented 

herein. The contents do not necessarily reflect the official views or 

policies of the Federal Highway Administration. This report does not 

constitute a standard, specification, or regulation. 
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SUMMARY 

This report describes the analysis techniques and design calcula­

tions used in a computer program developed for the design of continuous 

prestressed concrete bridge girders. The continuous girder is con­

structed from simple span precast prestressed concrete !-shaped beams 

made continuous by supplemental reinforcing in the deck and the ends of 

the beam. The program is limited to continuous girders in which precast 

.beams in all spans are of identical shape. The program considers live 

loads produced by standard AASHTO trucks and lane loadings, by an 11 axle 

train 11 of up to 15 wheels of arbitrary weight and spacing and by a uni­

form distributed load on the continuous beam. Dead load due to beam 

weight, diaphrams and slab weight are also included. Provisions are 

made to treat cases where a portion of the deck over interior supports 

is cast first to establish continuity and the remaining deck weight is 

carried by the continuous beam. 

The program computes for each span of the girder the number of pre­

stressing strands and their placement, the area of conventional rein­

forcing required in the deck to resist negative moment, the area of rein­

forcing required at interior supports to resist positive moment and the 

spacing of stirrups. 
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RECOMMENDATION FOR IMPLEMENTATION 

A computer program was developed in this study to carry out the 

necessary calculations for the design of continuous bridge girders 

constructed from simple span precast prestressed concrete !-shaped 

beams. 

This program is being used by the Texas Highway Department, and 

its continued use is recommended. 
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I. INTRODUCTION 

This report provides a general description of the design considera­

tions incorporated in a computer program for the automated design of 

continuous bridges, constructed with precast, prestressed concrete beams. 

This type of bridge differs from conventional simple span prestressed 

concrete beam and cast-in-place deck construction in that the deck slab 

is continuous over interior supports and is reinforced to withstand 

negative moments arising from continuity. The construction sequence for 

such a structure consists of placement of the beams on bent caps and 

pouring of a portion of the deck over each interior support to establish 

continuity. After the initial continuity pours have gained sufficient 

strength, the remaining segments of deck are cast. A common variation on 

this construction sequence is the casting of the entire deck at one time, 

without the initial continuity pours. The first construction sequence 

subjects the simple span beams to the dead load force of the initial deck 

segment placed for continuity, while the remainder of the dead load of 

the slab and all subsequent 1 ive loads are carried by the continuous beam. 

·This mode of construction is said to be partially continuous for dead load. 

In the latter construction sequence, all dead load produced by the deck is 

carried by the simple beams, while subsequent live loads are carried by 

the continuous beam. This construction sequence is said to be continuous 

for live load only. 

With either method, some economy in design is obtained through the 

reduction of the maximum positive moments that a beam must sustain. The 

design of this type of bridge beam requires certain additional considera­

tions which do not arise in the design of simple span prestressed concrete 

1 



highway beams. The computation of live load moments and shears involves 

the analysis of a statically indeterminate structure. In addition, if 

the bridge is partially continuous for dead load, the forces produced by 

the casting of the remainder of the deck must be obtained from an indeter­

minate structural analysis. Concrete bridge structures are subject to 

time dependent deformations produced by creep of the deck and beam concrete . 
and by differential shrinkage between the deck and beams. In continuous 

structures, these deformations cannot occur freely due to the restraint 

of continuity. As a result, additional moments and shears are produced in 

the beam which must be considered during design. Negative moments are 

produced in the continuous beam by live loads and by a portion of the dead 

load of the deck in the case of beams partially continuous for dead load. 

The negative moments are resisted by conventional reinforcing bars, whose 

required area must be determined at those sections which resist negative 

moment. 

This mode of construction depends on adequate continuity connections 

at interior supports. References 4 and 8 devote considerable attention 

to the details of such a connection and the reader is referred to these 

studies for additional information. 

The remainder of this report describes the design calculations and 

analysis methodology incorporated in the computer program. Sections II 

and III are devoted to the development of analysis techniques to determine 

the forces which the bridge beam must sustain, while Section IV describes 

the design criteria on which the program is based. The details of program 

operation, and specific instructions for its use are contained in Vol. II 

of this report. 
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II. LIVE LOAD AND DEAD LOAD 
SHEAR AND MOMENT COMPUTATIONS 

The most expedient means of determining the maximum and minimum 

moments and largest (in absolute value) shear force produced at a point 

in a continuous beam by moving or variable loads is through the use of 

influence lines. The method found to be the most efficient computa­

tionally for the requirements of this work is construction of influence 

lines for the reactions of the beam. The influence lines for both shear 

and moment at a specified point can then be constructed directly through 

the application of statics and these in turn are utilized for the calcu­

lation of live load and dead load design moments and shears. 

2.1 Influence Lines for Continuous Beams 

Consider the continuous prismatic beam of N spans with (N+l) reaction 

forces, shown in Fig. 1. The computation of reaction forces R1 , ... , RN+l 

produced by the unit load at position Z can be accomplished through the 

application of Castigliano•s Second Theorem. That is, 

i=l, ... , (N-1) (1) 

In Equation (1), Ri is the ith support reaction, and the expression applies 

to only (N-1) of the reactions which are chosen as redundant. Let 

i 

1 i = I: Li 
j=l 

3 

1 =0 
0 

(2) 
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The strain energy of the beam U can be written as 

L
N Jli 

U - 1 
- 2EI M~(x)dx 

i=l li-1 

where Mi(x) is the expression for bending moment in the interval 

(3) 

(4) 

1. 1<x<1 .. In writing Equation (4), it is assumed that EI is the same 
1- -- 1 

for all spans. The moment expression for each interval can be written as 

i . I: 1 M. (x) = R. (x-1 . 1) - (x-Z) ; 
1 J J-

j=1 
1. 1 <X<l. ,_-- 1 

which when substituted into Equation (4) gives 

or 

. N 1 . I i . 2 

· U = 2 ~ 1 ~ j
1 
~ Rj (x-1 j-l )- (x-Z)1 dx 

1=1 li-1 J=l 

- 1 U - 2EI 

5 
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Equation (6) contains reactions R1 through RN. Since the structure is 

indeterminate to the (N-1) degree, only (N-1) reaction forces may be 

treated as independent variables in Equation (6). Applying statics 

through the summation of moments about support (N+l) yields the following 

expression for RN in terms of the remaining {N-1) independent reactions. 

(7} 

Hence, Equation (6) becomes 

N-1 ·r: 
j=l 

(8) 

The application of Equation (1) to Equation (8) yields (N-1) linear 

equations in the (N-1) redundant reactions R1, ..• , RN-l" This system of 

equations can be conveniently written in matrix notation as 

[A][R] = [li] (9) 

6 
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where [A] is an (N-1) by {N-1) coefficient matrix with elements aij' 

[R] is the vector of unknown reactions R1 , ... , RN-l and [b] is a vector 

of constants b1, •.. , bN-l' The terms in Equation (9) are 

- { l N·.- l • 1 ) a.N. /LN+a. .. J- 1 lJ {lO) 

where 

(11) 

and 

( 12) 

Equations (10) through (12) define the elements of the linear 

system of equations appearing in Equation (9), and for a specified 

position Z of the unit load, this system may be solved through standard 

matrix algebra operations to obtain R1, .•• , RN-l' The elements aij of 

the coefficient matrix [A] are independent of the position Z of the unit 

load. Thus, one may construct a matrix whose elements define the 

7 



reaction forces for a number of different unit load positions (e.g., 

Z=l ft, Z=2 ft, ... , Z=lN ft) by writing 

[A][R] = [B] 

where 

and 

The term bi in Equation (15) is obtained from Equation (12), with Z 

being the jth value of Z (unit load j ft from the left support). 

( 13) 

(14) 

( 15) 

Equation (13) can be solved for the matrix of support reactions [B] quite 

effeciently by a standard computer routine. If the solution to Equation (13) 

is stored in the matrix [B],' the element in the ith row and jth column of 

[B] is the value of Ri when the unit load is j ft from the left support. 

The values of shear and moment at a point y ft from the left end of 

the beam and with the unit load Z ft from the left end of the beam follow 

from statics to give 

N+l 

V = L: R;(Y-1;_1>
0
-l.O 

i=l 

8 

( 16) 
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N 

M =I: Ri(y-1 i _1)1-1. O(y-Z)l 
i=l 

(17) 

Repeated application of Equations (16) and (17) for Z values from 

zero to lN yields the ordinates of the influence lines for shear and 

moment at pointy. It should be noted that the Ri term in Equations (16) 

and (17} is taken from the ith row and zth column of [B]. 

2.2 Maximum and Minimum Values for Moment and Shear - Moving Loads 

Once the influence lines for moment and shear at a point on the 

continuous beam have been obtained by the method just presented, maximum 

and minimum values of moment and shear at the point for moving loads can 

be determined. Of interest here are extremes for standard AASHTO trucks 

(!) and a train of arbitrarily spaced wheels (axle train). Fig. 2 shows 

influence lines for moment and shear for a design point located in the 

first span. Within each span, both the influence line for moment and for 

shear will contain an extreme point (either a relative maximum or relative 

minimum). In seeking the position of series of moving wheel loads which 

produces either an absolute maximum or minimum value of moment or shear, 

one need consider only those positions where an extreme point is contained 

between the first and last wheels in the series. These limiting positions 

are shown in Fig. 3 for the first extreme point on the moment influence 

line for an axle train moving from left to right across the bridge. The 

magnitude of the moment produced at the design point by a series of wheels 

is obtained by multiplying the weight of each wheel times the ordinate of 

the moment influence line beneath that wheel, and summing the results over 

all wheels in the series. A relative maximum value of moment at the 

9 
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design point will occur for some intermediate position of the wheel series 

lying between the starting and terminal positions shown in Fig. 3. The 

position for maximum moment can be found in an efficient manner by sequen­

tially moving the leading wheel (W1 in Fig. 3) from its starting to 

terminal position and computing the moment for each move. Once the trailing 

wheel (W4 in Fig. 3) has reached its terminal- position, the wheel series 

"skips" to the starting position for the next extreme point on the influence 

line. This procedure is repeated until the last extreme point is traversed 

and then the process is repeated, with the wheel series moving from right 

to left, beginning at the right - most extreme point. An inspection of 

the relative maximum and minimum values of moment obtained for each extreme 

point produces the absolutely largest and smallest (most negative) values 

of moment at the design point. The largest and smallest values of shear 

force at the design point are obtained by the same procedure. 

A slight variation on this method is necessary to accommodate the 

AASHTO HS-truck, which has a variable wheel spacing. For each position of 

the leading wheel w1, the spacing of the rear wheels w2 and w3 must be 

varied )between the limits of 14 and 30 ft to find the relative maximum 

moment for that leading wheel position. The terminal position of the HS­

truck is reached when the rear wheel w3 is over the influence line 

extreme point and the rear wheel spacing is 30ft. These limiting positions 

are shown in Fig. 4 for an HS-truck moving from left to right. 

2.3 Maximum and Minimum Values for Moment and Shear - Lane and Uniformly 
Distributed Loads · 

Influence lines for shear and moment may be integrated to compute the 

shear or moment at a design point produced by a uniform load. For uniformly 

11 
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distributed loads extending over the entire beam, the total area under 

the curves in Fig. 2, scaled by the magnitude of the uniform load, will 

give the moment and shear at the design point. With AASHTO lane loading, 

partial spans may be loaded to produce maximum effects. In Fig. 2, inte­

gration should be carried over spans 1 and 3 to produce maximum at the 

design point. In general, the maximum and minimum values of moment and 

shear are obtained by summing all positive or negative areas beneath the 

curves, respectively. Lane loadings also include an additional concen­

trated force (two in the case of negative moment) positioned to produce 

maximum effect. The position of the concentrated force can be determined 

from inspection of the ordinates of the influence lines. The requisite 

integrations can be executed numerically since ordinates of the influence 

lines are known at discrete points along the span. 

2.4 Moments and Shears Produced by Dead Load 

Dead load moments and shears are produced by the weight of the beams 

themselves, diaphrams and deck slab. The moments and shears due to beam 

weight are computed in the usual manner. The forces resulting from 

diaphrams is computed from simple beam theory, based on their number and 

spacing input to the program. 

Forces resulting from the weight of the slab depend on deck place­

ment sequence. The program computes moments and shears due to the place­

ment of slab segments over supports for continuity, using simple beam 

theory. Forces resulting from the placement of the remainder of the 

deck utilizes numerical integration of the influence lines as described 

above. 

14 

' 



.· 

·. 

III. CREEP AND SHRINKAGE RESTRAINT FORCE COMPUTATIONS . ' 

The manner in which restraint forces are created in a continuous 

beam can be visualized as those forces necessary to re-establish continuity 

when each span of the beam is allowed to deform without restraint. 

Figure 5(a) and (b) shows a prestressed beam immediately after placement 

on its supports and at some later period after creep has occurred. 

Hith the passage of time, the simple beam will continue to deform from 

its initial position. Two opposing effects are at work; creep under 

dead weight stresses which tend to sag the beam downward, and creep 

under prestress forces which tend to camber the beam upward. The latter 

effect dominates for the situation shown in Fig. 5. The two simple 

beams are not free to deform independently as shown, because continuity 

is established at the outset. The moment that would exist at some time 

t, assuming that no stress redistribution was produced in the beam by 

creep, is that moment necessary to establish continuity of slope (the 

angles e in Fig. 5) at the supports. Obviously, stress redistribution 

does occur as the result of creep, and the true final restraint moments 

at time t are obtained from scaling the moments which re-establish 

continuity by (~) 

SFcreep = 1!q, 

where 

Ec =creep strain at timet due to unit stress, 

Ee = initial strain due to unit stress, and 

a = fraction of E which has occurred when 
continuity connection is established. 

15 
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(a) INITIAL DEFORMATION 

M1 

I 
{c) RESTORATION OF CONTINUITY 

ld) CREEP RESTRAINT MOMENT DIAGRAM 

FIGURE 5. CREEP RESTRAINT MOMENT 
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The end result is a linearly varying moment superimposed on those 

described in the previous section. The creep restraint moments may be 

either positive or negative, depending on the amount and location of 

prestressing. 

Figure 6 indicates the deformation produced by differential 

shrinkage between slab and beam concrete. When the deck is cast, a 

substantial portion of the shrinkage in the beams has already occurred. 

Thus, the shrinkage rate in the slab is more rapid, and overruns the 

rate of shrinkage of the beams. The result is an overall compression 

of the top of the beams, where they interface with the deck, which 

produces downward deflection. The final moments which occur in the 

beam as a result of its continuity are the moments necessary to re-

establish continuity, scaled by (_g) 

1 
SFshrinkage = 1+~ 

where~ is defined by Eq. (19). 

3.1 Computation of Unsealed Restraint Moments 

(20) 

The unsealed restraint moments produced by shrinkage and dead load 

and prestress creep are computed by the slope-deflection method of 

elastic analysis. The fixed end moments for span (i ,j) of the continuous 

beam are denoted by FEM .. and FEM ... Positive fixed end moments are lJ Jl 
those which tend to rotate the support in a counterclockwise direction. 

Expressions for the fixed end moments from each of the three restraint 

moment sources are given in Figs. 7 through 9. 

17 



r------------------

(a) INITIAL DEFORMATION 
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(b) DEFORMATION AT TIME t 
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(c) RESTORATION OF CONTINUITY. 

(d) SHRINKAGE RESTRAINT MOMENT DIAGRAM 

FIGURE 6. SHRINKAGE RESTRAINT MOMENTS 
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e.g. DRAPED STRANDS e.g. AXIS OF BEAM 
e.g. STRAIGHT e.g. AXIS OF COMPOSITE BEAM 

STRANDS 

d, d0 , ds, eL ,&eR ALL POSITIVE AS SHOWN 

P5 = TOTAL PRESTRESS FORCE IN. STRAIGHT STRANDS 

P 0 = TOTAL PRESTRESS FORCE IN DRAPED STRANDS 

Mo = P5 ( d + ds ) 

M 1 P0 ( d .. eL) 

M2 =P 0 (d+d 0 ) 

M 3 = Po ( d + e R ) 

( p) 

FEMij = M0 + a(2- a)M 1 + (1-a)M
2

- a( l-a)M
3 

( P) 
FEMji =-M0 + (r(l-a)M 1 -(1-a)M 2 -a(2-a)M 3 

FIGURE 8 FIXED END MOMENTS FOR PRESTRESS 
CREEP 
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FIGURE 9. FIXED END MOMENTS FOR SHRINKAGE 
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The slope deflection method relates the rotations at each support 

of the continuous beam to the stiffnesses of the spans and the fixed 

end moments. For a beam of N spans, this can be written as 

EI 4 I 2 0 0· •• 0 el -FEM12 (21) 
I7 

= 
I l1 

--~- ---+-- ---t --- --- -------
.£ I .1.+.1. I .£ I 0·. ·0 62 = -FEM21-FEM23 
Ll I Ll L2 I L2 
~-~--.?. -~--4-+-4-t --- --- -------

2 -FEM32-FEM3'+ - • ·0 63 = 
I l2 I l2 l3 I L3 

--t-- ---.J- -----1 --- --- -------
0 

I 
0 I 2 I •••• 0 -FEM43 -FEM45 I I [3 e'+ = 

I 
.. 

__ L_ 
---.J-- ---r --- --- -------

I I 

l ~ -r - -~- -i - ___ ,_ 
0 I 

where e1 , ••• , eN+l are the rotations at the supports. Solution of 

Eq. (21) yields support rotations, which can be used to compute final 

moments at each of each span from 

M .. = ~EI '(2e .+e.) + FEM .. 
1J ij 1 J 1J 

2EI M. . = -L - (e. +2e . ) + FEM .. 
J1 . . 1 J J1 

1J 

3.2 Computation of Scale Factors for Restraint Moments 

(22) 

The final unsealed moments which are produced by shrinkage, dead 

load creep and prestress creep may be computed separately by substituting 
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the appropriate fixed end moments into Eqs. (21) and (22). The resulting 

moments are scaled by the shrinkage and creep factors given in Eqs. 

(18), (19) and (20) and summed to give the final restraint moments. 

The scale factors in Eqs. (18) and (20) depend on the creep factor 

~'which is defined by Eq. (19). To determine~' one must have a unit 

creep curve for the beam and deck concrete (the deck and beam concretes 

are assumed to have the same creep and shrinkage behavior) to establish 

ec. Previous research has been conducted on the creep and shrinkage 

of concretes typically used by the Texas Highway Department for pre­

stressed beams (1). Creep and shrinkage data were taken on concretes from 

four localities in Texas, and the properties of these concretes are 

listed in Table 1. Studies on creep and shrinkage were conducted on 

3 in. x 3 in. x 16 in. prisms stored under laboratory conditions of 

50% humidity and 73°F. Expressions which were found to fit the shrinkage 

and unit creep strain data are listed in Table 2. A reasonable estimate 

of the overall average ·unit creep function ec(t) and shrinkage strain 

function es(t), applicable for all locations, is given by 

ec(t) = 425t (in./in./ksixl0- 6) 34+t 

( ) 525t (' /' 10-6) es t = 20+t 1n. 1n.x 

(23) 

(24) 

where the constant terms in each expression are the average of those 

values appearing in Table 2. The value for ec appearing in Eq. (19) 

should correspond to the maximum unit strain expected for any time t . 
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Measured Computed* 
Release Strength Release Modulus Release Modulus 

Location (psi) (ksi) ( ksi) 

Dallas 7,080 5,200 4,800 

Odessa 5,050 3,260 4,050 

San Antonio 5,250 4,220 4,130 

Lufkin 5,760 4,440 4,330 

* Using ACI 318-71 Equation, E = 57,000 Jf7 c 

Location 

Dallas 

Odessa 

San Antonio 

Lufkin 

TABLE 1. STRENGTH AND MODULI VALUES 
FROM REFERENCE (1) 

Shrinkage _
6 

Creep 
(in./in. x 10 ) (in./in./ksi x 10-6

) 

SOOT* 365T 
lS+T 40+T 

650T 525T 
20+T 25+T 

SOOT 385T 
20+T 25+T 

450T 430T 
25+'F 45+T 

* T-time in days 

TABLE 2. EXPRESSIONS FOR SHRINKAGE STRAIN. 
AND UNIT CREEP STRAIN FOR 3 in. x 
3 1n. x 16 in. PRISMS STORED UNDER 
LABORATORY CONDITIONS 
(From Reference 3) 

24 

~ 

-· 



... 

·-

This will occur, according to Eqs. (23), ~hen t = oo and yields sc = 425 

(in./in./ksixl0- 6
). This basic unit creep strain is for concrete 

specimens with a volume/surface ratio of approximately 1.0, loaded at 

approximately 1 day after casting, and cured under a constant relative 

humidity of 50%. Corrections to the basic unit creep strain are required 

for volume/surface ratios significantly different from 1.0. The age of 

the test specimens at loading is representative of the production sequence 

used by most manufacturers, so no correction is applied for age at loading. 

The modified unit creep strain €c is written as 

(25) 

where av/s is the correction to the basic unit creep strain. A plot of 

this correction factor versus volume/surface ratio is given in Fig. 10. 

It was obtained by downward shift of a similar curve appearing in 

reference (i), so that av/s = 1.0 for the volume/surface ratio of 1.0 

at which the creep data were taken. Noting that ~ in Eg. (19) is given by 

1 425t t 
a = 425 • 34+t = 34+t (26) 

that 

(27) 

and that Eq. (25) gives the corrected unit creep strain, we have 

(28) 
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where 

Ei = modulus of elasticity of beam concrete at release 
of strands (ksi), 

t =age of.the beam in days, when continuity connection 
made, and 

av/s = correction factor from Fig. 10. 

Corrections to the ultimate shrinkage strain of 525 (in./in.xl0-
6

) 

(obtained from Eq. (24) with t = oo) must be made for relative humidities 

greatly different from 50%. Letting esu be the corrected ultimate 

shrinkage strain, we have 

(29) 

where aH is a humidity correction factor taken from reference (i), and 

shown in Fig. 11. The differential shrinkage strain eSD used in Fig. 9 

for the computation of fixed end moments due to shrinkage can be written 

as 

(30) 

The factors is the fraction of shrinkage which has occurred in the beam 

concrete before the deck is cast. From Eq. (24), 

( 31) 

Substituting Eqs. (29) and (31) into (30) gives 

(32) 
I 
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where 

aH =correction factor from Fig. 11, and 

t = age of beam concrete when deck cast. 

Thus, the final scaled restraint moments may be obtained by performing 

the elastic analysis described previously (using Eq. (32) to obtain shrinkage 

fixed end moments), computing the creep factor from Eq. (28) and scaling 

the moments resulting from prestress and dead load creep by Eq. (18) and 

from shrinkage by Eq. (20). 
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IV. DESIGN CRITERIA 

The computer program developed in this study carries out the design 

of a continuous beam constructed with precast, prestressed concrete I-

beams. The applicable design code is Standard Specifications for Highway 

Bridges, 11th edition, published by The American Association of State 

Highway and Transportation Officials (l_). This section reviews the 

provisions of this Specification which govern the design and outlines 

the computations made in arriving at a satisfactory design. In the 

following discussion, reference to a "Section" denotes a provision from 

this document. 

4.1 Predesign Decisions 

The structural engineer, charged with the responsibility for the 

complete design of a bridge, can utilize this program to carry out 

routine computations involved in selection of strand patterns, longi­

tudinal deck reinforcing, stirrups, and continuity connection reinforce-

ment. To interface with the program, he must first specify: 

(i) the length.of each span in the continuous beam, 

(ii) the geometrical properties of the precast beam (which 
must be the same for all spans), 

(iii) the properties of reinforcement, beam concrete and 
slab concrete, 

(iv) the beam spacing, 

(v) the slab thickness, 

(vi) the design live load, and 

(vii) the type of continuity construction {partially 
continuous for dead load or continuous for live load 
only}. 
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The program contains a greatly simplified input format to accommodate 

designs which incorporate standard THO and AASHTO beams, reinforcement 

and loadings. The details of program input are explained in Vol. II of 

this report. 

4.2 Beam Design Loads 

from 

The live load moments and shears used in design can be computed 

(i) standard AASHTO trucks and lane loadings, 

(ii) a series of up to 15 arbitrarily spaced, 
moving wheels "axle train", 

(iii) a uniformly distributed live load applied 
to the continuous beam and superimposed on the 
load produced by (i) or (ii). 

The portion of an AASHTO truck and lane loading applied to the beam 

is determined from Section 1.3.1 and taken as S/5.5, unless specified 

otherwise on the input form. The fraction of wheel loads from an axle 

train which is applied to the beam is specified on input. No lateral 

distribution of uniform load is included in the program. 

Dead load moments and shears from beam weight, diaphrams and 

portions of the deck poured for continuity are computed from input 

information. 
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4.3 Criteria for Strand Pattern Selection 

Strand pattern selection for a span of the continuous beam is 

based primarily on service load stress considerations, although ul­

timate strength requirements may in some cases govern strand placement. 

In each span, stresses produced by loads are checked at top and bottom 

of the beam at tenth points (each end and 9 interior points). Stresses 

produced by prestress at strand release are checked at top and bottom 

of beam, at each end and hold down points. Hold down points vary with 

span length and are listed in Table 3. 

4.3.1 Calculation of Load Induced Stresses - Four stress checks 

are made at each tenth point during strand placement, as indicated in 

Table 4. Stress produced by external loads at the top and bottom of a 

beam at the ith tenth point are given by 

where 

+ MRi} 

= 1 {M(B) + M(DNC)} 0 bi rb Dli Dli 

+ MRi} 

1 
+ zc. 

t 

1 
+ zc 

b 

Zt = top section modulus of beam, 

{ 
(DC) 

MDLi + (MLLi + I) 

{ 
(DC) 

MDLi + (MLLi + I) 

Zb = bottom section modulus of beam, 

zct = top section modulus of composite beam, 

ZCb = bottom section modulus of composite beam, 

M~~~= moment at ith tenth point due to beam weight, 
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Span Distance Each Side 
Length (ft) of Midspan (ft) 

0 to 119 5.0 

120 to 140 6.0 

141 to 159 7.0 

160 to 180 8.0 

.~ TABLE 3. LOCATION OF HOLD DOWN POINTS 

Location Stress Load 

top of beam camp. DL. + Max ( +) LL + I + restraint moment if positive 

bottom of beam ten. DL. + Max ( +) LL + I + restraint moment if positive 

top of beam ten. DL. + Max (-) LL + I + restraint moment if negative 

bottom of beam camp. DL. + Max (-) LL + I + restraint moment if negative 

TABLE 4. STRESS CHECKS FOR DESIGN 

·. 
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M~~~C) = moment at ith tenth point due to segment of 
deck slab poured to establish continuity, 

M
(DC) 
Dli 

= moment at ith tenth point due to segment of 
deck slab cast after initial continuity pour, 

(MLLi + i) =moment due to live load, plus impact (for 
AASHTO loadings only), 

MRi = restraint moment at ith tenth point. 

4.3.2 Calculation of Prestress Induced Stresses - The computation 

of stresses at the top and bottom of the beam resulting from prestress 

force are set up in terms of the number of strands in each strand row 

of the beam. The total number of strand rows available in the beam is 

denoted by the variable NRAV. For I shaped cross sections, the lower 

rows can contain both 11 flange strands 11 (strands which are outside the 

confines of the web and must remain straight) and 11Web strands'' (which 

may be draped). The variable NRFLG denotes the number of lower rows 

which may contain both flange and web strands. The remaining upper 

rows have only web rows. The variable x(i) denotes one-half of the 

number of flange strands in flange row i. The variable I(i) is a 

binary variable (has a value of either 0 or 1) and indicates the 

presence of NSWEB strands in row i if it has the value 1.0. These 

variables are defined in Fig. 12 for a standard THO beam. The number of 

strand rows and the maximum number of strands permitted in a row are deter­

mined from the cross sectional dimensions and the strand grid spacing 

(GRIDS). The stresses at the top and bottom of the beam at design 

point i are given by 
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NRAV = 19 

NRFLG = 6 . 

NSWEB: 2 

~RIDS 

X(l) = X(2) = 4 

X(3) = 3 

X(4) = I 

X(5) = X(6) = 0 

STRANDS 

I ( I} = 1( 2) = I ( 3) = l ( 4} = I 

1(5) = ... = 1 ( 19) = 0 

FIGURE 12. VARIABLES DEFINING STRAND PATTERN 
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NRFLG 
ai~)= L -(1- ~) F 0 [1/A+d/Zt] 2xj 

j=l 

NRAV 
+ L -( 1- ~ ) F 0 • NSWEB [ 1 I A+d /Zt] I j 

j=l 

T • 

- ( 1- ~ ) F
0 

• NSWEB • 1 
• GRI OS • J • ECC ( 35) zt 

NRFLG 
(P) = " 0 bi £..J 

where 

j=l 

NRAV 
+ L - (1- ~) F 0 • NSWEB [-1/A+d/Zb] Ij 

j=l 

T • 

+ ( 1- ~ ) F • NSWEB ·-1 
• GRIDS • J • ECC o zb 

(36) 

F
0 

= initial force in prestressing strand before release 
of strands, 

~ = fraction of initial strand force lost after 
release (assumed to be 0.20), 

A = cross sectional area of beam, 

Zt = top section modulus of beam, 

Zb = bottom section modulus of beam, 

J = number of strand rows which contain strands, 

ECC = end eccentricity of web strands (number of rows by 
which the web strands are raised). If i=l thru 6, 
ECC is the 1 eft end eccentricity. If i =7 thru 12, 
ECC is the right end eccentricity. 

dj =distance from e.g. axis of beam to row j. dj is 
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positive if row j is above the e.g. axis, 

l {a-i/10); 0~ iL/lO~aL 
a 

T i = 0 ; al <i L/ 1 O<L ( 1-a) 
l (i/10-a); L(l-a)<iL/lO<L, and 
a -

a, L = defined in Fig. 8. 

4.3.3 Selection of Number and Positions of Strands - A trial strand 

pattern is selected based on tension stress at the bottom of the beam at 

the tenth point where maximum positive moment occurs. The end eccentricities 

are assumed to be zero during strand pattern selection. The allowable 

tensile stress is taken as 

crten = 6.0 ~ (37) 

where f~ is the minimum 28 day strength of the beam concrete, specified 

on input. The total stress at the bottom of the beam is the sum of those 

stresses given by Eqs. (34) and (36). 

The strand pattern selection proceeds with sequential placement of 

strands in each row. NSWEB strands are first placed in row 1, (I 1 = 1), 

followed by placement in pairs of flange strands (x1). If additional 

strands are required, the sequence of events is repeated for higher rows, 

until the final tension stress in the bottom of the beam is less than that 

given by Eq. (37). 

After an initial pattern of strands has been selected, cracking and 

ultimate moment capacities of the section are computed. If the ultimate 

moment is less than 1.2 times the cracking moment, additional strands are 

added, by the same process described above, until this code provision (Section 

1.6.10 (B)) is met. 
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At th1s point, no provisions have yet been made to insure that 

service load stresses at the top of the beam under positive moment, 

stresses top and bottom under negative moment and release stresses do 

not exceed their allowables. The problem of determining the end ec­

centricities, release strength and 28 day strength of the beam is cast 

as a mathematical programming problem. The problem may be stated as: 

Minimize f~i + f' c 
Subject to: 

0 • f'. - 0.6 f' - aiel - bieR 2 °Ptl 
(+) 

Cl c + 0 L tl 

0 • f'. - 0 6 f' - alleL - blleR ~ crPtll 
+ cr (+) 

Cl . c Lt11 

0 • f'. - 6.0 Vfl + c.el + d.eR < -crPb" 
( +). j=l ' 11 

Cl c J J - J -
0 Lbj ' 

0 • f'. - 6.0 ~+ a.el- b.eR < -crPt" 
(+). j=1' 11 

Cl c J J - J -
0 Ltj ' 

0 • f'. - 0 6 f' (-) 
Cl . c - cleL - d1 eR ~ 0 Pbl + 0 Lbl 

0 • f~i - 0.4 f~- cjel - djeR ~ crPbj + crl~j); j=2, 10 

0 • f~i - 0.6 f~ - c11 el - d11 eR ~ crPb
11 

+ crlb~~) 

0 6 f • + 0 f' b (r) - . ci • c - aleL - leR ~ crPtl 

-7.5 Jf~ + 0 f~ + c1el + d1eR 2 crp~:) 

0 6 f • + 0 f' ~ c e d e (r) - ' ci • c 1 L - 1 R ~ 0 Pb 1 
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(43) 
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(46) 

(47) 

(48) 
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-7.5 ~ + 0 • f' + a11 eL + b11 eR < crPt(r) 
C1 C - ll 

-0.6 f'. + 0 • f' - a11 eL - b11 eR < crPt(r) 
C1 C - ll 

-7.5 ~ + 0 • f' + c11 eL + d11 eR < crPb(r) 
C1 C - ll 

-0.6 f~i + 0 • f~ - 0 • eL - 0 • eR ~ crpi~)+ crwth 

-7.5 /f~i + 0 • f~ + 0 • eL + 0 • eR ~ crp~~)- crwbh 

-0.6 f'. 
C1 

+ 0 . f' + 0 . eL + 0 . eR :: crPbh + crwbh c 

eL ~ emax 

e < e R - max 

-f'. < -4.0 
C1 

-f' < -5.0 c 

f'. -f' < 0.0 
C1 c -

where 

f~i = release strength, 

f~ = 28 day strength, 

eL = strand eccentricity at left end of beam, 

e = strand eccentricity at right end of beam, R 
T • 

a. - - (1-t;) F • NSWEB • f · GRIDS • J 
J 0 -t 

b. - - (1-l;) • F 
J 0 

NSWEB • 
T. 
_1_. 
zt 

GRIDS • J 

~9 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 



1". 

c. = (1-1;) . Fo • NSWEB • zl · GRIDS • J 
J b 

-
1" • 

d. = (1-1;) • F • NSWEB • zL · GRIDS • J 
J 0 b 

= l (a-j/10); 
.L 

1" • 0 ~ m ~ al J a 

0 ; 
'L 

al ~ tij- ~ L 

'L 
1'· = 

J 
0 ; 0 ~ fij ~ L(l-a) 

1 . .L 
~ (J/10-l+a); L(l-a) ~ 1o ~ L 

= stress top and bottom of beam at jth tenth 
point, respectively, due to prestress and computed 
from Eqs. (35) and (36) .with the omission of the 
last term in each of these equations, 

(+) (+)_ crltj + crlbj - stress top and bottom of beam at jth tenth point 
produced by dead load moment, positive live load 
moment and creep restraint moment, if positive, 

al~;)+ cr~~J = stress top and bottom of beam at jth tenth point 
produced by dead load moment, negative live load 
moment and creep restraint moment, if negative, 

stress top and bottom of beam at jth tenth point 
(j=l is left end, j=ll is right end and j=h is 
hold down point) due to prestress at release, 
computed from Eqs. (35) and (36) with the omission 
of the last term in each of these equations, 

crwth + crwbh = stress top and bottom of beam at hold down point 
produced by beam weight, and 

e = maximum number of rows that web strands may be 
max raised at end of beam (depends on J, the number 

of rows with strands). 

This problem contains four variables (f~i' f~, eland eR) and 61 

inequality constraints (Eqs. 39 thru 63). The constraints are linear 

with the exception of those containing ~ or ~. These are 
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linearized by using the first order Taylor series expansion 

~=7.4535 f~ + 33.552 (64) 

where~ is in psi and f~ is in ksi. This expansion is taken about 

the point f~ = 4.5 ksi. The error involved in the use of Eq. (64) is 

small, amounting to approximately 7% for f~ = 9.5 ksi and being smaller 

for smaller values off~ or f~i· Substitution of Eq. (64) into all 

constraints containing f~i or f~ produces a constraint equation linear 

in the variables. Equation (42), for example, becomes 

The completely linear programming problem is solved by applying the 

standard Simplex (i) algorithm to the dual of this program. The re­

sulting solution of this program is the end eccentricities, for the 

strand pattern selected on the basis of maximum positive moment, which 

minimizes the sum of the release and 28-day beam strengths. The re­

strictions imposed by the inequality constraints are summarized in Table 

5. 

4.4 Computation of Positive Ultimate Moment Capacity 

Section 1.6.3 stipulates that beams be designed to supply a specified 

ultimate moment capacity. Equations are presented in Section 1.6.9 for 

the computation of ultimate moment for flanged sections in which the 

neutral axis at ultimate lies within the deck slab or within the constant 

width section of the top flange of the beam. For cases where the neutral 

axis lies within the slab, ultimate moment capacity is computed from the 
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Constraint 
Eq. (s) No. 

39 

40 

41 

42 

43 

44 

45 

46 

47-50 

51-54 

55-58 

59&60 

61&62 

63 

... 

Design Restriction 

Limits compression stress at the top of the left end of the beam due to prestress, 
dead load, positive live load and positive restraint moments to less than 0.6 f•. c 

Limits compression stress at top of beam at interior tenth points due to prestress, 
lead load, positive live load and positive creep restraint moments to less than 
0.6 f~. 

Same as Eq. (39), except for right end of beam. 

Limits tension stresses at bottom of beam at all tenth points due to prestress 
dead load, positive live load and positive restraint moment to less than 6.0 Jf~. 

Limits tension stresses at top of beam at all tenth points due to prestrjss, dead 
load, negative live load and negative restraint moment to less than 6.0 f~. 

Limits compression stress at bottom of left end of beam due to prestress, dead load 
negative live load and negative restraint moment to less than 0.6 f~. 

Same as Eq. (44), for all interior tenth points and limits stress to 0.4 f~. 

Same as Eq. (44), for right end. 

~imits rele~se stresses top and bottom left end, to 7.5 f~i if tension and 0.6 
1f compress10n. 

Same as Eqs. (47) - (50), except for right end. 

Same as Eqs. (47) - (50), except for hold down point. 

Limits left and right end eccentricities. 

f~i and f~ must be greater than 4.0 ksi and 5.0 ksi, respectively. 

f~ must be greater than or equal to f~i· 

TABLE 5. VERBAL DESCRIPTION OF CONSTRAINTS 

• .. ... 

f•. 
Cl 
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AASHTO equations 

where 

* * * * P fsu Mu = A f d (1~0.6 f• ) s su c 

* p fl 
= f• (1-0.5 ----f.s 

s c 

* As = total area of prestressing strands, 

* fsu= average stress in strands at ultimate, 

f 1 = ultimate strength of strands, s 

f~ = 28-day strength of beam concrete, 

* * p = As/bd 

d = distance from e.g. of strands to top of slab, 

b = effective width of slab used in moment calculation, 

f• slab c 
= beff • f• beam 

c 

beff= effective slab width from Section 1.6.23. 

(65) 

(66) 

Equation (65) does not include the contribution to ultimate moment 

capacity of longitudinal reinforcing in the deck for temperature, lateral 

load distribution and negative bending moment. However, little additional 

moment capacity would be gained by including this steel area in the 

calculations because its proximity to the neutral axis results in small 

strains, and thus small compressive forces. 
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For situations where the neutral axis lies in the beam, Eq. (65) 

is not applicable. In addition, the stress in conventional reinforcing 

in the deck slab will generally be at or near yield because of its 

distance from the neutral axis. The calculation of ultimate moment 

capacity when the neutral axis lies in the beam is therefore based on 

the following assumptions: 

(i) at failure, the compression strain at the top of the 
deck is .003 in./in., 

(ii) the strain profile is linear at ultimate, 

(iii) the distribution of compression stress in the concrete 
can be replaced with the equivalent stress block shown 
in Figure 13, and the resultant compressive force in 
the concrete (C ) acts through the centroid of the 
area of the conErete under compression (shaded area 
in Figure 13), 

(iv) the conventional reinforcing in the deck is assumed to 
be concentrated at mid-depth of the slab for calculation 
purposes, and its stress at ultimate is proportional 
to its strain up to the yield stress of 60 ksi and is 
constant thereafter, 

(v) the average stress in the strands at ultimate is obtained 
from the stress-strain curve for the strands ·developed 
below. 

The amount of reinforcing in the deck must be adequate to resist negative 

moments produced by live loads and creep and shrinkage restraint moments. 

The calculation of this required reinforcing area is described in the 

next section. In addition, the AASHTO Specification requires certain 

deck reinforcing for temperature and lateral load distribution. These 

requirements are met by THO through the use of standard reinforcement 

details for various beam spacings (~). The total area of reinforcing for 

temperature and load distribution contained in the flange of the deck 
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for various beam spacings is shown in Table 6, and were computed from 

reference (~). The area of deck reinforcing used in the computation of 

ultimate moment capacity when the neutral axis lies in the beam is the 

greater of those areas required for negative moment at midspan and for 

temperature and load distribution. 

The stress-strain properties of the strands (assumption v above) 

are assumed as: 

Es = f /28,000; f < f 1 s- p (67) 

f ~ (f' - f ) fQl (f~- fQ1)2 
= Ql s Ql 

Es 28 '000 l + ( f ~ 2fpl) - ( f l .:; 2f ) 
s pl 

(68) 1 
f.)) f > f 1 

fs (f' s p s 

where 

Es = strain in the strand (in./in.) 

fs = stress in the strand (ksi) 

f' = ultimate strength of the strand ( ks i) s 

fpl= proportional limit stress, assumed as 63 f' • s 

Equations (67) and (68) are plotted for f~ = 250 and 270 ksi in Fig. 14. 

The ultimate moment capacity of sections where the neutral axis falls 

below the slab is given by 

M = C • d + C • d' u c s 
(69) 

where Cc' d, Cs and d' are defined in Fig. 13. The resultant compressive 

forces Cc and Cs can be computed once the location of the neutral axis c 
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Lateral Beam 
Spacing S 

(ft.) 

0.00 to 4.99 

5.00 to 6.83 

6.84 to 8.00 

8.01 to 9.00 

Area of Longitudinal Reinforcing 
per Foot Width of Slab 

(sq. in.) 

2.86/S 

3.57/S 

4.08/S 

4.39/S 

TABLE 6. STANDARD LONGITUDINAL 
TEMPERATURE AND DISTRI­
BUTION REINFORCING 
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is determined by trial and error solution to the condition that 

T = C + C 
c s 

(70) 

Equation (69) reduces to Eq. (65) if the area of the deck reinforcing 

is zero (Cs = 0) and the neutral axis is in the slab. For this situation, 

Cc = .833 f~ be 

* - A f s su 
d = d-0·5 .833 f~b 

and 

(71) 

Equation (71) differs from Eq. (69) only in the stress in the strands at 

ultimate, fsu· The strain in the strands at ultimate is given by 

where 

E: • 
Sl 

esu = • 003 [. 8f33 
su 

f' c . *-
p 

1] - E: • 
Sl 

= strain in the strands after release of strands 
and all prestress losses have occurred. 

(72) 

The ultimate stress in the strands, fsu is found from the simultaneous 

solution of Eqs. (72) and (67) or (68). A comparison between the ultimate 

moment computed by Eq. (65)(the AASHTO equation for neutral axis in the 

flange) and by Eq. (71) is shown in Fig. 15. The initial strand strain 
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was taken as .00002 f~. For practical ranges of reinforcement index, the 

two approaches give nearly identical results for cases where the neutral 

axis lies in the slab. 

4.5 Computation of Negative Moment Deck Reinforcement 

Negative moments are produced in the continuous beam by live loads, 

and in some cases, by creep restraint effects. Section 1.6.12(c) (3) 

stipulates that reinforcing be proportioned by ultimate strength design. 

The stress in the reinforcing under live load service conditions should 

not exceed 21 ksi to reduce the possibility of fatigue failure (Section 

1.5.25(b)). 

The computation of negative moment reinforcing for interior tenth 

points is based on the assumptions listed in the previous section. The 

computations for negative moment involve several additional considerations. 

As shown in Fig. 16, the compressive strain in the concrete at failure is 

the failure strain .003 in./in. minus the strain Eci produced by pre­

compression due to prestress. The strands are separated into straight 

and drapped categories for computation of strand force. The ultimate 

moment capacity of the section can be computed from 

M = C d - T 1d 1 
- T11 d 11 

u c (73) 

The va 1 ues of T 1 
, d 1 

, T11 and d 11 can be determined from the strain profile 

in Fig. 17 and strand stress-strain characteristics, if the location of 

the neutral axis c is known. The selection of the required area of deck 

steel to resist a specified ultimate moment proceeds by establishing a 

trial value of neutral axis location c which produces a net compressive 

force Cc equal to the tensile forces in the strands (T 1 + T11
). The 
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moment capacity for this condition is computed and compared with that 

required. If it exceeds the required moment (which can occur when the 

e.g. of the draped strands is high), then no supplemental deck steel 

is required to obtain the requisite capacity. If the strands alone 

do not provide adequate tensile force, the location·of the neutral 

axis c is incremented, the stress in the deck reinforcing is computed 

from the known strain €s' and the area of steel necessary to satisfy 

equilibrium, i.e. 

T + T· + ru = cc (74) 

is computed. Equation {73) is then used to compute capacity of the 

section. If the capacity exceeds that required, the computations are 

complete. If not, then c is incremented again and the process repeated. 

The computation of negative moment reinforcing required at an end 

of a beam differs from that just described in that the prestressing 

strands are ineffective at this point. The pretension stress in the 

strands is essentially zero at the end of the beam because of the 

development length they require. Thus, they are ignored in the calcu­

lations. The strain profile must produce a compressive strain of .003 

in./in. in the concrete at failure since there is no precompression from 

prestress a.t this point. From Fig. 17, the ultimate moment capacity of 

the section can be written as 

M = C d 
u c 

{75) 

The area of reinforcing required is found by trial and error. A value 

of the c is assumed, and the area of steel necessary to satisfy T = C 
c 
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is computed from the known steel strain Es· The capacity is then computed 

from Eq. (75). If it is insufficient, c is increased and the process 

repeated. 

4.6 Computation of Positive Moment Reinforcement at Supports 

Positive moments at interior supports will generally occur from live 

loads in remote spans, and under certain conditions, from creep and 

shrinkage restraint. Nonprestressed reinforcement is determined from 

ultimate strength computations analagous to those for negative moment re­

inforcing at supports described in the previous section. The e.g. of the 

reinforcing is assumed to be 2.5 in. from the bottom face of the beam. To 

preclude fatigue failure of the bars, the stress produced by service live 

loads is limited to 21 ksi. 

4.7 Computation of Shear Reinforcing 

The required area for stirrups are computed for three segments of 

each span; left end to left quarter point, left quarter point to right 

quarter point, and right quarter point to right end. The required areas 

are computed from the worst condition within each segment. Stirrup 

spacings are computed according to AASHTO (l) and ACI (I.) provis.ions. 

The AASHTO provisions stipulate that 

(76) 
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where 

s = stirrup spacing, 

A = area of stirrups required, 
v 

Vu = largest (in absolute value) ultimate shear force 
existing in segment under consideration, 

Vc = .06 f~b.jd, but not more than 180 b1 jd, 

fsy= yield strength of reinforcing, 

jd = 0.9 times the beam depth if the moment at the point 
under consideration is positive, and .875 times 
(beam depth - 1/2 slab thickness) if the moment is 
negative. 

4> = 0.9 

Vpr= vertical component of strand force (kips) 

The required stirrup spacings can be obtained by solving Eq. (76). 

The maximum spacing permitted is 12 inches (Section 1.6.14(0)). 

Sections 11.1.2 and 11.6.1 of ACI gives the following expressions 

for minimum required stirrup area (modified here to deduct the vertical 

component of strand force from the shear carried by the section) 

(77) 

(78) 

where 

s = stirrup spacing, 

bw = beam web width, 

fy = yield strength of reinforcing, 

vu = ultimate shear stress to be resisted, = VU/$ bwd 
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v = shear stress carried by the concrete section, given by 
c 

v d 
vc = 1.6 ~ + 700 M u ; 2 {f{_ ~ vc < 5 ~ 

u 

Vu' Mu = ultimate shear force and bending moment at the 
section, 

(79} 

d = effective depth. For positive moment it is the distance from the 
e.g. of the strands to the top of the beam or 0.8 times the beam 
depth, whichever is greater. For negative moment, it is the distance 
from the bottom of the beam to mid-depth of slab. 

<P = 0.85 
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