TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog No.	ĺ
DHT 1-5-75-219-1F				1
4. Title and Subtitle			5. Report Date	
EVALUATION OF BRIDGE SL	AB STRENGTH	ENING	August 1976	
SYSTEM			6. Performing Organization Co	ode
7. Author's) H. D. Butler		· · · ·	8. Performing Organization Re	eport No.
Howard L. Furr, Edwin J. Suchick	Tex. A&M Un i	iversity	219-1F	
9. Performing Organization Name and Address			10. Work Unit No.	
Bridge Division		_	11 0	
Texas State Department Public Transportation	of Highways	and	1-5-75-219	
Austin, Texas 78701	·		13. Type of Report and Period	d Covered
12. Sponsoring Agency Name and Address Texas State Department of Highways and Public Transportation		and	Final	
Transportation Planning Division		3	14. Sponsoring Agency Code	
15. Supplementary Notes	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Study conducted in coop	eration wit	h the U.S. I	epartment of	
Transportation, Federal	Highway Ad	ministration	- L.	
16. Absure: A method has been developed to strengthen existing deteriorating bridge slabs from underneath, thus eliminating disruption of traffic. A small portion of two structures near downtown Houston, Texas, was strengthened using this method. The effectiveness of this strengthen- ing was evaluated by means of field measurements of deflection and strain under static wheel loading before and after strengthening. The strengthening system was erected under traffic conditions with little difficulty. It reduced slab deflections and stresses by more than 50% and provided a significant increase in ultimate strength. The strengthening system has not healed the existing slab cracking and some type of surface sealing will be required to prevent further surface decomposition by exposure to contaminants.				
17. Key Words	~] _]	18. Distribution State	nent	
Bridges, deteriorating slabs,		NO RESTRICTIONS. This document is		
strengthening, deflection re-		available to the public through the		
duction, evaluation, load tests.		Service, Springfield, Virginia 22161		
19. Security Classif. (of this report)	20. Security Class	sif. (of this page)	21. No. of Pages 22.	. Price
Unclassified	Unclass	ified	73	
Form DOT E 1700 7 (8-69)	- .		·	

.

Evaluation of Bridge Slab Strengthening System

by

H. D. Butler Senior Designing Engineer State Department of Highways and Public Transportation

Howard L. Furr Research Engineer Texas A&M University

Edwin J. Suchicki Supervising Bridge Engineer State Department of Highways and Public Transportation

Research Report Number 219-1F

Evaluation of Bridge Slab Strengthening System

Research Study 1-5-75-219

Conducted by

Bridge Division State Department of Highways and Public Transportation In Cooperation with the U.S. Department of Transportation Federal Highway Administration The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

ii

SUMMARY

A method has been developed to strengthen existing deteriorating bridge decks from underneath, thus eliminating disruption of traffic. A small portion of two structures near downtown Houston, Texas, was strengthened using this method. This research study was conducted to evaluate the effectiveness of this strengthening system. Evaluation was accomplished by measuring deflections and strains under a static wheel load before and after strengthening. Attempts were made to use aerial photography in evaluating the strengthening system; however, this was not very successful.

The strengthening system was erected under traffic conditions with little difficulty. It reduced slab deflections and stresses by more than 50% and provided a significant increase in ultimate strength. The strengthening system has not healed the existing slab cracking and some type of surface sealing will be required to prevent further surface decomposition by exposure to contaminants.

iii

RECOMMENDATION FOR IMPLEMENTATION

A new method has been developed to strengthen deteriorating bridge slabs from underneath, and thus eliminating disruption of traffic. It is recommended that this method of repair be considered when no suitable means of detouring traffic is available and removing and replacing a slab would cause severe traffic congestion and inconvenience to the travelling public.

TABLE OF CONTENTS

SUMMARY RECOMMENDATION LIST OF FIGURE	N FOR IMPLEMENTATION	iii iv vi
CHAPTER I.	INTRODUCTION	1 1 2
CHAPTER II.	CONDITION OF EXISTING BRIDGES	5
CHAPTER III.	DESIGN OF SLAB STRENGTHENING SYSTEM Design Approach	13 13 14 16 16 20
CHAPTER IV.	CONSTRUCTION	22
CHAPTER V.	STATIC LOAD TESTS ON SLAB STRENGTHENING SYSTEM	28 28 29 29 30
CHAPTER VI	SUMMARY AND CONCLUSIONS	54
APPENDIX A	DETAILS OF SLAB STRENGTHENING SYSTEM	56
APPENDIX B	SPECIAL SPECIFICATION FOR EPOXY GROUT	62

-*

LIST OF TABLES AND FIGURES

Figure No.		Page No.
1.1	I.H. 45 near Downtown Houston	3
1.2	Structures 97 and 98, I.H. 45	4
2.1	Condition of Structure 97 Slab at Time of Strengthening	9
2.2	Condition of Structure 98 Slab at Time of Strengthening	10
2.3	Slab Condition, Structure 98	11
2.4	Crack Pattern, Structure 97	11
2.5	Outside Traffic Lane and Shoulder, Structure 97	12
2.6	Condition of Adjacent Slab Placements, Structure 98	12
3.1	Location of Design Loads	17
3.2	Stringer and Floorbeam Deflections	18
3.3	Load Distribution for Slab Deflection	18
4.1	Working Platform	24
4.2	Stockpile of Grid Beams	25
4.3	Jacking Equipment	25
4.4	Strengthening System in Place	26
4.5	Typical Grid Beam Installation	26
4.6	Typical Beam Connection	27
4.7	Typical Stringer - Floorbeam Connection	27

LIST OF TABLES AND FIGURES

Figure No.

1 1901C NO.		Page No.
5.1	Structure 97 - Location of Test Panels	32
5.2	Structure 98 - Location of Test Panels	33
5.3	Positions of Dial Gages and Load Plate - Structure 97	34
5.4	Positions of Dial Gages and Load Plate - Structure 98	35
5.5	Positions of Electrical Gages	36
5.6	Gage Mount for Dial Gages	37
5.7	Load Plate Details	38
5.8	Structure 98, Additional Load Positions, June 1975 Test	39
5.9	Strains in Transverse Beam at Midspan	40
5.10	Slab Deflections, Panel 98-1-A	41
5.11	Slab Deflections, Panel 98-2-A	42
5.12	Slab Deflections, Panel 97-3	43
5.13	Slab Deflections, Panel 97-4	44
5.14	Slab Deflections, Panel 98-1-B	45
5.15	Slab Deflections, Panel 98-2-B	46

Table No.

.

5.1	Gage Readings Before Strengthening	47
5.2	Gage R e adings After Strengthening	48
5.3	Deflections and Strains	49
5.4	Percent Reduction of Slab Deflections, Structure No. 98	52
5.5	Percent Reduction of Slab Deflections, Structure No. 97	53

CHAPTER I

INTRODUCTION

Many older highway structures which were designed for 12 kip (5443.1 kg) wheel loads are now experiencing extensive deck distress and deterioration due to increased traffic loads. On heavily travelled facilities where adequate detours are not available, current repair methods require a disruption of traffic which results in high user costs. This report describes a method developed to strengthen these deteriorating slabs from underneath, thus eliminating the disruption of traffic.

Test Structures

The structures selected for the installation of this pilot strengthening project are structures 97 and 98 of the IH-45 interchange complex near downtown Houston (See Figures 1.1 and 1.2). The maximum daily traffic in this area is approximately 150,000 vehicles with peak hour traffic usually bumper to bumper. This elevated portion of IH-45 is approximately six tenths of a mile (0.96 km) in length and was completed in 1961.

These structures consist of rolled steel beams, continuous for two to three spans, with span lengths averaging approximately 70 feet (21.34 m). The beams are 33 WF 130 spaced on about 8 foot (2.44m) centers with cover plates over the supports. The slab is 6½ inches (16.5 cm) thick and lightweight concrete was used in a majority of the spans. The slab was designed using 1957 AASHO Specifications for Highway Bridges which provided for a design wheel load of 12 kips (5443.1 kg). Under the current standards the slab is under-designed by approximately 26 percent.

Objectives

The overall objective of this study was to thoroughly evaluate this pilot project to determine the practicality of the repair method and provide a tangible basis for decision making involving future repair work of this type. Specific objectives of this research study were as follows:

- Verify the assumptions and approximations for the theoretical analysis used to design the strengthening system.
- Determine if the system relieves slab distress and prevents further deterioration.
- Determine whether or not slab deflections are the primary cause of the deck deterioration.
- Determine if the strengthening system can be installed as required and is within the capabilities of the average highway contractor.

Figure 1.1. I.H. 45 Near Downtown Houston

Figure 1.2. Structures 97 and 98, I.H. 45

CHAPTER II

CONDITION OF EXISTING BRIDGE SLABS

In 1972 maintenance personnel reported that extensive repair work was being required on the slabs of structures 97 and 98. As a result of these reports an extensive investigation of structure 97 was undertaken to determine the extent of this deck deterioration. The deck was subjected to a thorough visual inspection, a large area of deck was inspected for delamination, and several core samples were taken for examination and testing. The following results of this investigation were reported by Mr. M. U. Ferrari of the Texas State Department of Highways and Public Transportation:

- The no traffic or shoulder lane of the lightweight slabs exhibited no visible cracking on the top surface with some widely spaced hairline cracking at random intervals on the bottom surface.
- 2. The travelled lanes showed closely spaced pattern or map cracking over the entire lightweight surface with "working" tension cracks on the underside. There was some evidence of water migration through the deck.
- 3. Surface cracking in the hard-rock concrete spans

was in evidence although less in extent than in the lightweight spans.

- 4. Examination of the cores showed lightweight slab thicknesses from 6-5/16 inches to 6-5/8 inches (16.02-16.84 cm). Bottom tension cracking on some of the cores, particularly the shorter ones, was traced up to the neutral axis of the slab, with cracking passing through some of the lightweight aggregate. Depth of the hardrock cores ranged from 6-7/8 inches to 6-15/16 inches (17.48-17.63 cm). No noticeable corrosion was found on the reinforcing steel even though some water pockets or voids were in evidence in the concrete around the steel perimeter.
- The measured clear depth of the top layer of the reinforcing steel was greater than specified. This condition, in company with slab thicknesses less than specified, places the top and bottom layers of reinforcing steel closer together than intended. Clear distance between top and bottom layers of reinforcing steel ranged from 2.1 inches to 2.5 inches (5.33-6.35 cm) for lightweight concrete and 2.4 inches to 2.45 inches (6.10-6.22 cm) for the hard-rock concrete.
 Chemical tests on the lightweight cores showed pro-

nounced carbonation from the upper surface down to 3/4 inch (1.90 cm) and deeper along cracks (a reflection of high water - cement ratio paste).

- 7. The petrography investigation revealed the following:
 - a. Entrapped or free water.
 - b. High water cement ratio.
 - c. No entrained air.
 - d. Three to five percent entrapped air.
 - e. Vertical cracking.
 - f. Pronounced bleed channels.
 - g. Secondary compound present in many of the voids (calcium - sulfate silicate or calcium - sulfate aluminate - probably from the aggregates).
 - h. Complete hydration of all cement particles supporting high water - cement ratio.
 - i. Highly porous paste (encouraging carbonation).
 - j. Some specimens showed voids and lack of consolidation or washed out paste.
- 8. Compression tests were as follows:

Cores	Lightweight	
1	4,014 psi	(27.7 MPa)
2	3,714 psi	(25.6 MPa)
3	4,544 psi	(31.4 MPa)

4	4,253 psi	(29.3 MPa)
5	4,363 psi	(30.1 MPa)
	Hard-rock	
12	3,554 psi	(24.5 MPa)
13	4,412 psi	(30.4 MPa)

Figures 2.1 through 2.6 are photographs showing the condition of slabs on structures 97 and 98.

Figure 2.1. Structure 97 at Time of Strengthening (Strengthened Area is Between Dashed Lines)

Figure 2.2. Structure 98 at Time of Strengthening (Strengthened Area is Between Dashed Lines)

Figure 2.3. Slab Condition, Structure 98

Figure 2.4. Crack Pattern, Structure 97

Figure 2.5. Outside Traffic Lane and Shoulder, Structure 98

Figure 2.6. Condition of Adjacent Slab Placements, Structure 98

CHAPTER III

DESIGN OF SLAB STRENGTHENING SYSTEM

Design Approach

Several methods of repairing the deteriorated decks were considered. Included were the following:

- Seal the deck with a rubber formula and overlay with asphalt.
- Chip the slab down to the steel and overlay with concrete.
- 3. Remove and replace the slabs.
- Strengthen the slabs with a system of supporting beams under the slab.

Due to the heavy traffic carried by the structure, and since no suitable means of detouring traffic is available, removing and replacing the deck or overlaying the surface with concrete would cause severe traffic congestion and inconvenience to the travelling public. It was decided that this type of repair was to be used only as a last resort. An asphalt overlay was ruled out because it was believed that this would only treat the slab cosmetically, and further slab damage would not be visible until it was too late.

Results of the investigation of the condition of Structure 97 indicated that a significant amount of strength remained in the slab and if the live load stresses could be reduced, the service life of the slab could be significantly extended. It was, therefore, decided to strengthen a portion of the deteriorating structure using a beam support system and evaluate its strengthening effects.

The approach taken to reduce the live load slab stresses was one of reducing the slab deflection, thus reducing the amount of live load carried by the slab. It was decided that a deflection reduction of approximately 50% would be necessary to help the deteriorating slab to any significant degree. After several trial designs, using a variety of beam arrangements, a grid system of beams was found to give the greatest benefit to the slab in terms of overall deflection reduction.

Design Assumptions

The following assumptions were made in order to provide a method by which a designer could select supporting beam sizes and spacing with reasonable accuracy without resorting to a rigorous mathematical analysis:

- The slab configuration will conform to the deformation of the supporting grid beam system.
- There is no composite action between the slab and the supporting grid system.
- 3. The supporting grid system is simply supported at

the ends.

- 4. For calculating stringer deflection, the wheel load will be uniformly distributed over its entire length.
- 5. For calculating beam deflection, the wheel load will be considered concentrated at mid-span of the beam.
- 6. The modulus of elasticity of the lightweight slab is 2.0 x 10^6 psi (13.8 x 10^6 kN/m²).
- 7. The effective width of slab for calculating slab deflections is equal to the wheel distribution width in accordance with AASHTO Standard Specifications, Section 1.3.2(c), Case A; i.e.

b = 8L / (L + 2)

where: b = Distribution width, ft

L = Girder spacing, ft

To calculate slab deflection over a stringer, the full distribution width, b , is used.

To calculate slab deflection over a floorbeam, the effective slab width is b' = Kb, where:

$$K = 1 - \left[E_{s}I_{s} / (E_{s}I_{s} + E_{c}I_{c}) \right]^{3/2}$$

 $E_SI_S = Stiffness properties of steel floorbeam$ $E_CI_C = Stiffness properties of the concrete$ slab with effective width, b.

Design Method

The method used to analyze the system of grid beams is one of equating slab and beam deflections, then solving for the percent of load carried by each. If the percent of load carried by the supporting beam is represented by the factor "C", then the percent carried by the slab is (1-C). Based on the assumption that the beam and slab deflect together, the slab deflection will be equated to the beam deflection in terms of "C" and the value of "C" determined.

Through a trial and error solution, it was found that a grid beam system of 14 W 22 beams gave a deflection benefit factor of approximately 50%. The following sample calculations are based upon the use of these beams. Concentrated loads, P, will be placed as shown in Figure 3.1 and the resulting deflections calculated.

Calculations for Load on Stringer

Assume that the portion of the load P carried by the stringer is CP = 20.8(C) and is uniformly distributed throughout the stringer span (Figure 3.2a). The stringer support reactions acting on the centers of floorbeams are assumed as concentrated loads (Figure 3.2b).

$$\Delta_{1} = \frac{5 \text{w } \text{L}_{1}^{3}}{384 \text{ } \text{E}_{\text{s}} \text{I}_{\text{s}}} = \frac{5 \text{ x } (20.8\text{C}) \text{ x } (7.5)^{3} \text{ x } (12)^{3}}{384 \text{ x } 29,000 \text{ x } 198}$$

(a) Load on Stringer

(b) Load on Floorbeam

Figure 3.1. Location of Design Loads

Figure 3.2. Stringer and Floorbeam Deflection

Figure 3.3. Load Distribution for Slab Deflection

$$\Delta_{1} = 0.0344 \text{ C (in.)}$$

$$\Delta_{2} = \frac{(10.4 \text{ C})\text{L}_{2}^{3}}{48 \text{ E}_{\text{s}}\text{I}_{\text{s}}} = \frac{10.4 \text{ C} \times (8.0)^{3} \times (12)^{3}}{48 \times 29,000 \times 198}$$

$$\Delta_{2} = 0.0334 \text{ C (in.)}$$

To calculate the slab deflection a concentrated load P', equal to 20.8(1-C), is placed at the center of an interior span of transverse slab and distributed over a width "b" as shown in Figure 3.3.

Using moment coefficients for a series of continuous spans,

$$M_1 = 0.172 P' L_2$$

 $M_2 = 0.078 P' L_2$

the slab deflection may then be written:

$$\Delta_{slab} = \frac{P' L_2}{96 E_C I_C} (2 L_2^2 - \frac{12 L_2 M_2}{P'})$$

substituting for M_2

 $I_{c} = \frac{1}{12} \ b \ d^{3} \ and \ b = \frac{8 \ L_{2}}{(L_{2} + 2)}$

where

$$I_{C} = \frac{1}{12} \times \frac{8 \times 8.0}{(8.0 + 2)} \times 12 \times (6.5)^{3} = 1,757.6 \text{ in}^{4}$$

$$0.0678 C = 0.0580 (1-C)$$

$$C = 0.46$$

Thus 46% of the applied load is carried by the supporting stringer, near enough to the desired 50%.

Calculations for Load on Floorbeam

The floorbeam deflection due to a load CP located at midspan is:

$$b' = (K) \frac{8L}{(L+2)}$$

$$K = 1 - \left(\frac{E_{S}I_{S}}{E_{S}I_{S}} + E_{C}I_{C}\right)^{3/2}$$

where

b':

$$K = 1 - \left(\frac{29,000 \times 198}{29,000 \times 198 + 2,000 \times 1,757.6}\right)^{3/2}$$

then
$$K = 0.51$$

 $b' = 0.51 \times \frac{8 \times 8.0}{(8.0 + 2)} = 3.26' = 39.1''$

Using similar Equation (2) from previous calculation:

$$\Delta_{\text{slab}} = \frac{.01108 \text{ P' L}^3}{\text{E}_{c}\text{I}_{c}^{'}}$$

where

$$I_{c} = \frac{1}{12} \quad b'd^{3} = \frac{1}{12} \times 39.1 \times (6.5)^{3} = 895.3 \text{ in}^{4}$$
$$\Delta_{slab} = \frac{.01108 \times 20.8 (1-C) \times (8.0)^{3} \times (12)^{3}}{2,000 \times 895.3} =$$

Equating (4) and (5):

0.0668 C = 0.114 (1-C)

$$C = 0.63$$

Thus 63% of the applied load is carried by the floorbeam.

CHAPTER IV

CONSTRUCTION

A work platform underneath the bridge deck was required since this work was to be accomplished without any disruption of the traffic above. The contractor provided enough materials for a platform under approximately one-half of the portion of each structure to be strengthened. This minimized the time required for erection and dismantling of the platform. The work platform is pictured in Figure 4.1.

To ensure good contact between the slab and grid beam system shim plates were placed on top of the beams and the space between the beams and slab filled with a stiff epoxy grout (details of the strengthening system are shown in Appendix A and the specifications for epoxy grout in Appendix B). Plans called for the shims to be hand driven between the slab and beams; however, this was revised to permit the contractor to preweld them to the beams (see Figure 4.2) and place the epoxy grout on top of the beams prior to jacking them into place. This eliminated the tedious work of placing the shims and packing the grout by hand after the beams were in place.

Small hand operated hydraulic jacks were used to position the beams (see Figure 4.3). The pressure gage for each jack was calibrated to read directly in pounds. The floorbeams were jacked into position first with a maximum load of 1000 pounds

(453 kg). The stringers were then jacked into place using approximately one-half the load used for the floorbeams. This method produced a very tight fit between the slab and shim plates. Figures 4.4 through 4.8 show the grid system in place.

One of the objectives of this project was to find out if the designed strengthening system could be installed by the average contractor. The ease with which this system can be installed is reflected in the short time required to erect the steel after it was delivered to the job site. The more than 750 pieces of steel were erected and painted in less than two months.

(a) Platform Support

(b) Work Platform

Figure 4.1. Working platform

Figure 4.2. Stockpile of Grid Beams

Figure 4.3. Jacking Equipment

Figure 4.4. Strengthening System in Place

Figure 4.5. Typical Grid Beam Installation

Figure 4.6. Typical Beam Connection

Figure 4.7. Typical Stringer - Floor beam Connection
CHAPTER V

STATIC LOAD TESTS OF SLAB STRENGTHENING SYSTEM

Static load tests were made to assist in evaluating the effectiveness of the slab strengthening system. Load tests were made on four panels, two in each structure, prior to and after installation of the strengthening system. The panels were selected as representative of the strengthened area and were located in the outside lanes so that testing could be conducted with minimum interference to traffic.

Loads

A loaded dump truck supplied the static load used in the test. The rear wheels, previously weighed on a commercial scale, were rolled to the centerline of a 96 inch x 70 inch (243.8 cm x 177.8 cm) steel plate which was centered on the test panel. The load, approximately 24,000 pounds (10,886 kg), was transferred to the concrete deck through a 29 inch (73.7 cm) diameter steel plate. Details of the load-plate are shown in Figure 5.7 and load plate positions are shown in Figures 5.3 and 5.4. Two additional load positions were used on Structure 98 after the strengthening beams were placed. Those two positions are shown in Figure 5.8.

The load was applied and removed three times in each test,

except that four applications were made at position 4, Structure 97 because time permitted it. All gages were read before and after each loading.

Gages

Dial gages reading to 0.0001 in. (.00025 cm) were used to take deflection readings. These gages were mounted on frames, Figure 5.6, in positions shown in Figures 5.3 and 5.4. Electrical resistance gages were installed on the mid-panel transverse beam, top and bottom flanges as shown in Figure 5.5. Dummy gages were mounted on a small steel block which was set beside the active gage for temperature compensation.

Deck slab deflections were measured with the dial gages both before and after strengthening of the bridge. Strains were measured only on one of the strengthening beams, so there were no strain readings before strengthening.

Tests

The outside traffic lane was blocked off from traffic but other lanes were open. Truck and car traffic continued to use the open lanes throughout the test.

All gages were initially zeroed under no-load condition. The test vehicle was then run upon the load plate and gages were read. When the load was removed they were again read,

and so on through three load applications (four applications in the instance noted earlier).

Under this procedure the test ran smoothly with no particular difficulties noted.

Results of Load Tests

Dial gage data were reduced to give deflection when the load was applied, and rebound when the load was removed. Strain gage data were reduced to give strain with each load application and each load removal. Gage readings are shown in Tables 5.1 and 5.2; deflections and strains are shown in Table 5.3.

Strains are plotted in Figure 5.9. The average deflections and rebounds are plotted in Figures 5.10 through 5.13. The strain gage readings show that there was very little horizontal shear transfer between slab and beams in Structure 97, whereas considerable interaction is indicated in Structure 98.

The deflections shown in Figures 5.10 through 5.13 clearly show a great stiffening effect of the added beams. The individual deflections shown in tables show some scatter, but they are generally in good agreement. In Table 5.3, load position 98-1-A, gage 4 before strengthening, the value shown for deflection at second loading is one of the values so far out of line that it is very likely incorrect. This is probably due to an

incorrect reading of the gage. Other readings show that deflections sometimes increase and sometimes decrease as the load applications increase. These are very likely due, in part, at least, to the cracks in the deck slab that existed before the tests began.

FIG. 5.1. STRUCTURE 97 -- LOCATIONS OF TEST PANELS.

FIG. 5.2. STRUCTURE 98--LOCATIONS OF TEST PANELS.

ω

FIG. 5.3. POSITIONS OF DIAL GAGES AND LOAD PLATE - STRUCTURE 97.

FIG. 5.4 POSITIONS OF DIAL GAGES AND LOAD PLATES-STRUCTURE 98.

ω 5

Electrical Resistance Gages: Two single gages per location after strengthening only; Ailtech Weldable, Type SG-189,120 ohm.

FIG. 5.5. POSITIONS OF ELECTRICAL GAGES.

FIG. 5.6. GAGE MOUNT FOR DIAL GAGES.

FIG. 5.7. LOAD-PLATE DETAILS.

Ş.

FIG. 5.8. STRUCTURE 98, ADDITIONAL LOAD POSITIONS, JUNE / 75 TEST

FIG. 5.9. STRAINS IN TRANSVERSE BEAM AT MIDSPAN.

FIG. 5.10. SLAB DEFLECTIONS, PANEL 98-1-A

Deflections are averages from at least three load applications.

FIG. 5.11. SLAB DEFLECTIONS, PANEL 98-2-A

FIG. 5.12. SLAB DEFLECTION, PANEL 97-3.

load applications.

FIG. 5.13. SLAB DEFLECTIONS, PANEL 97-4.

and are based on measurements made at load position 98-1-A

FIG. 5.14. SLAB DEFLECTIONS PANEL 98-1-B

FIG. 5.15. SLAB DEFLECTIONS PANEL 98-2-B

TABLE 5.1 GAGE READINGS BEFORE STRENGTHENING

Struct.	Position	Load	1	2	GAGE 3	NUMBER 4	5	6
				(1/10,000	inch)			
98	1A	zero 24.2 ^k zero 24.2 zero 24.2 zero	800 155 803 158 805 160 810	800 253 675 905 670 925 670	700 012 600 905 610 923 610	700 236 790 730 380 705 375	100 850 090 815 310 025 305	300 945 045 650 922 510 920
	2A	zero 24.2 zero 24.2 zero 24.2 zero	900 143 915 141 920 148 922	700 183 720 177 723 187 728	500 830 510 815 527 831 515	900 459 922 460 931 465 937	500 346 638 345 649 356 656	500 090 535 100 540 100 545
97	3	zero 24.14 zero 24.14 zero 24.14 zero	400 132 432 133 429 111 432	700 690 740 675 740 700 745	100 755 117 750 115 785 125	100 511 117 591 111 575 112	000 640 005 610 005 605 005	500 865 503 850 500 855 505
	4	zero 24.14 zero 24.14 zero 24.14 zero	200 914 203 956 216 942 213	700 723 727 714 737 717 717 742	900 658 904 530 915 537 915	000 377 013 400 010 384 011	500 010 510 020 520 005 515	900 380 905 368 911 358 907

TABLE 5.2 GAGE READINGS AFTER STRENGTHENING

Struct.	Position	Load	1	2	GAGE 3	NUMBER 4	5	6.	Eleo Top	ctrical Bottom
,				(1/10),000 i	inch)				
98	18	zero 23.66 ^k zero 23.66	2200 110 2210 113	3400 3738 3415 3710	1600 2830 1610 2840	1700 1805 1702 1805	3400 3551 3405 3523	0400 0620 0410 0615		
	14	zero 23.66 zero 23.66 zero 23.66 zero	2213 105 2215 2200 2384 2195 2365 2387	3385 3715 3385 3355 3474 3347 3447 3336	1610 2840 1620 1690 1793 1685 1780	1705 1817 1700 1705 1845 1708 1825 1707	3375 3530 3370 3400 3698 3404 3570 3393	0400 0620 0405 0410 0670 0413 0675 0415	+330 364 335 361	+627 842 638 847
	2B	23.66 zero 23.66 zero 23.66 zero	2380 2185 331 605 335	3460 3333 2538 2815 2542	1790 1675 2510 2656 2500	1845 1705 4189 4277 4187	3393 3570 3378 2690 2791 2675	0413 0670 0413 1725 1800 1720	330 360 332	840 848 635
	2A	23.66 Zero 23.66 Zero 23.66	600 338 605 348 325 395	2818 2543 2845 2580 2558 2661	2660 2500 2693 2503 2590 2564	4268 4178 4267 4172 4175 4299	2784 2662 2773 2550 2555 2778	1800 1715 1794 1710 1716 1834	665 673	855 1028
		23.66 23.66 28.66	322 397 320 398	2557 2662 2558 2665	2585 2563 2585 2565	4167 4299 4161 4295	2510 2782 2581 2659	1700 1835 1700 1831	664 670 657 668	858 1029 857 1030
97	-3	zero 23.66 ^k zero 23.66 zero 23.66 zero	1600 1945 1610 1940 1610 1930	1600 2025 1602 2030 1603 2021 Not t	800 1026 803 1031 802 1027	3100 3353 3110 3360 3110 3340	4400 4613 4408 4620 4407 4697	1200 1448 1205 1453 1202 1436	-100 -213 -104 -218 -110 -218	-130 +135 -128 +135 -128 +135
	4	zero 23.66 zero 23.66 zero 23.66 zero 23.66 zero	3700 4077 3605 3960 3610 3990 3610 3977 3610	2600 3040 2595 2998 2600 3040 2602 3032 2603	1700 1927 1708 1916 1704 1920 1710 1933	0200 0432 0200 0420 0200 0450 0210 0435 0200	1000 1387 1007 1370 1005 1307 1009 1292	0800 0930 0898 908 895 935 897 922	-200 -350 -199 -350 -210 -363 -210 -360	-665 -440 -657 -432 -660 -422 -653 -432

48

.

TABLE 5.3 DEFLECTIONS AND STRAINS

	امدما	Deflection (10000 in.) at Gage Number								(microin)
Struct.	Position	Load	1	2	3	4	5	6	Тор	Bottom
		(24.2 kip)	→ Before sti	rengtheni	ng					
98	1A	Load Unload Load Unload Load Unload	355 down 352 up 355 353 355 355 350	453 578 230 235 255 255	312 412 305 295 313 313	536 446 out 960 350 325 330	750 760 725 505 715 720	645 900 605 728 588 590		
	2A 	Avg. Load Unload Unload Load Unload Avg. 23.66 ^k →	(353) 243 down 228 up 226 221 228 226 (229) After strengt	(334) 483 463 457 454 464 459 (463)	(325) 330 320 305 288 304 316 (310)	(397) 559 537 462 529 534 528 (525)	(696) 846 708 707 696 707 700 (727)	(676) 590 555 565 560 560 555 (564)		
	1A	Load Unload Load Unload Load Unload	184 down 189 up 170 178 193 195	119 127 100 111 124 127	103 108 95 100 110 115	140 137 117 118 138 140	198 194 166 177 177 192	260 257 262 260 255 257	+ 34 - 29 + 26 - 31 + 30 - 28	+215 -204 +209 -207 +208 -213
	18	Avg. Load Unload Load Unload Unload Avg.	(185) 410 down 400 up 403 400 392 390 (399)	(118) 338 295 325 330 330 (323)	(105) 230 200 230 230 230 230 220 (227)	(132) 105 103 103 100 112 117 (107)	(184) 151 146 118 148 155 160 (146)	(258) 220 210 205 215 220 215 (214)	+(30)	+(209)

TABLE 5.3 DEFLECTIONS AND STRAINS (continued)

						1				
				Def	lection	(10000 in.) at Gag	e Number	Strain	(microin)
Struct.	Position	Load	1	2	3	4	5	6	Тор	Bottom
	2A	Load	70 down	103	26	124	223	118	+ 8	1172
		Unload	73 up	104	21	132	268	134	_ 9	170
		Load	75	105	22	132	272	135	- 9 + 6	-170
		Unload	77	104	22	138	201	135	- 13	+1/1
		Load	78	107	20	134	178	131	+ 11	-1/2
		Avg.	(75)	(105)	(22)	(132)	(228)	(131)	(+0)	+1/3
	2B	Load	274 down	277	146	88	101	75	(+9)	(+1/2)
		Unload	270 up	273	156	90	116	80		
		Load	265	276	160	81	111	80		
		Unload	262	275	160	90	122	95		
		Load	267	302	193	89	111	0J 01		
		Unload	257	265	190	95	103	01		
		Avg.	(266)	(278)	(168)	(89)	(114)	(81)		
		24.14 ^k	Before strer	ngtheni	.ng		()	(01)		
97	3	Load	732 down	990	655	411	640	365		
		Unload	700 up	950	638	394	635	362		
		Load	701	935	633	474	605	347		
		Unload	704	935	635	480	605	350		
		Load	682	960	670	464	600	355		
		Unload	679	955	660	463	600	350		
		Avg.	(700)	(954)	(649)	(448)	(614)	(355)		
	4	Load	714 down	1023	758	377	510	480		
		Unload	711 up	996	754	364	500	400		
		Load	753	987	626	387	510	475		
		Unload	740	977	615	390	500	403		
		Load	726	980	622	374	485	4J7 1/17		
		Unload	729	975	622	373	405 490	777/ 151		
		Avg.	(729)	(990)	(666)	(378)	(499)	(462)		

-

TABLE 5.3 DEFLECTIONS AND STRAINS (continued)

						<u> </u>				
	Load			Defl	ection	(10000 in.)	at Gage	e Number	Strain	(microin)
Struct.	Position	Load	1	2	3	4	5	6	Тор	Bottom
		23.66 ^k	After streng	gthenin	g					
97	3	Load	345 down	425	226	253	213	248	-113	+265
		Unload	335 up	423	223	243	205	243	+109	-263
		Load	330	428	228	250	212	248	-114	+263
		Unload	330	427	229	250	213	251	+108	-263
		Load	320	418	225	230	290	234	-108	+263
		Unload	Not reco	rded						
		Avg.	(332)	(424)	(226)	(245)	(227)	(245)	(-110)	(+263)
	4	Load	377 down	440	227	232	387	130	-150	+225
		Unload	472 up	445	219	232	380	32	+151	-217
		Load	355	403	208	220	363	10	-151	+225
		Unload	350	398	212	220	365	13	+140	-228
		Load	380	440	216	250	202	40	-153	+238
		Unload	380	438	210	240	298	38	+153	-231
		Load	367	430	223	225	283	25	-150	+231
		Unload	367	429	218	235	277	30	+154	-218
		Avg.	(381)	(428)	(217)	(232)	(332)	(27)	(-150)	(+227)

TABLE 5.4 PERCENT REDUCTION OF SLAB DEFLECTIONS, STRUCTURE NO. 98

	Deflection		
	Before	After	Reduction in
	Strengthening	Strengthening	Deflection(%)
Load Pos. 1-A			
Gage Pos. l	.0353	.0185	47
2	.0334	.0118	64
3	.0325	.0105	67
4	.0397	.0132	66
5	.0696	.0184	73
6	.0676	.0258	62
			(avg) 63
Load Pos 2-A			
Gage Pos 1	0229	0075	67
ouge 105. 1	.0223	0105	77
2	0310	.0103	92
5	0525	0132	74
5	0727	0228	68
5	0564	0131	76
Ŭ	.0304		(avg) 75
Load Pos. 1-B*	0207	0200	
Gage Pos. 1	.0397	.0399	-
2	.0696	.0323	54
3	.0676	.0227	00 70
4	.0353	.0107	70
5	.0334	.0146	50
6	.0325	.0214	34
			(avg) 56
Load Pos. 2-B*			
Gage Pos. l	.0525	.0266	49
2	.0727	.0278	62
3	.0564	.0168	70
4	.0229	.0089	61
5	.0463	.0114	75
6	.0310	.0081	74
			(avg) 65

* Deflections before strengthening at load positions 1-B and 2-B are assumed and are based on measurements made at load positions 1-A and 2-A.

			Deflection		
			Before	After	Reduction in
			Strengthening	Strengthening	Deflection (%)
Load Pos	. 3				
Gag	e Pos.	1	.0700	.0332	53
		2	.0954	.0424	56
		3	.0649	.0226	65
		4	.0448	.0245	45
		5	.0614	.0227	63
		6	.0355	.0245	31
					(avg) 52
Load Pos	. 4				
Gag	e Pos.	1	.0729	.0381	47
		2	.0990	.0428	57
		3	.0666	.0217	67
		4	.0378	.0232	39
		5	.0499	.0332	33
		6	.0462	.0026	91
					(avg) 56

TABLE 5.5PERCENT REDUCTION OF SLAB DEFLECTIONS,
STRUCTURE NO. 97

CHAPTER VI

SUMMARY AND CONCLUSIONS

A method has been developed to strengthen existing deteriorating bridge slabs from underneath, thus eliminating the disruption of traffic. A small portion of two structures near downtown Houston, Texas, was strengthened using this method. The effectiveness of this strengthening was evaluated by means of field measurements of deflection and strain under static wheel loading before and after slab strengthening. Based on this evaluation, the following conclusions are made:

- The added grid beam system reduced slab deflections by an average of 62% when loaded at midspan of a floorbeam and an average of 56% when loaded at midspan of a stringer. Calculated design values were 63% and 46% respectively.
- 2. Stresses in the bottom flange of the added floorbeams were calculated from measured strains and ranged from 5160 psi (35.6 MPa) to 7890 psi (54.4 MPa) with an average value of 6558 psi (45.2 MPa). This compares with a stress of 12,400 psi (85.5 MPa) calculated using the test load and design load distribution coefficients.

- The strengthening system can be erected under live load conditions without a great deal of difficulty.
- 4. This strengthening system has not healed the existing slab cracking. Some type of surface sealing will be required to prevent further surface decomposition by exposure to contaminants.
- 5. Should the slab ultimately require replacement, the added beams will be beneficial to the new slab.
- 6. The cost of this project was high, 61% over the Engineer's estimate. This was probably due to the experimental nature of the project and the critical shortage of steel at the time of bidding and future costs should be lower.

Attempts at using aerial photographic techniques to evaluate the rate of slab deterioration have not been entirely successful. Photographs were made using an airplane equipped for photogrametry, and a helicopter. A series of photographs was also taken from a 60-foot (18.3 m) platform, however, none of these methods produced the detail necessary to evaluate the slab cracking patterns. The best results have been obtained from aerial photographs which show the areas of slab that have been patched. This gives a rough estimate of the current amount of deterioration and these can be compared with future photographs to obtain an estimate of the rate of deterioration. APPENDIX A

DETAILS OF SLAB STRENGTHENING SYSTEM

58 Ծ

APPENDIX B

SPECIAL SPECIFICATION FOR EPOXY GROUT

TEXAS HIGHWAY DEPARTMENT

SPECIAL SPECIFICATION

ITEM 4089

EPOXY GROUT

4089.1. Description. This item shall consist of a twocomponent, 100%-solids, epoxy-resin system mixed with a round grain-silica sand to form a flow resistant grout for filling a one-half inch to one inch space between the underside of a concrete bridge deck and the top flange of steel I-beams to obtain uniform load transfer.

4089.2. Materials. Unless otherwise indicated, tests shall be performed in accordance with AASHTO T 237-731, "Method of Test for Epoxy Resin Adhesive".

(1) Epoxy Binder Properties.

(a) The ratio of resin and hardener components to be mixed together to form the finished binder shall be either 1 to 1 or 2 to 1 by volume.

(b) All fillers, pigments and/or thixotropic agents in either the epoxy resin or hardener component must be of sufficiently fine particle size and dispersed so that no appreciable separation or settling will occur during storage. The components must be free of lumps, skinning and/or foreign material.

(c) The binder shall not contain volatile solvents.

(d) Binder Properties When Mixed.

Pot Life at 77° F., minimum - 26 minutes

Set Time:

At 77° F., maximum - 5 hours At 60° F., maximum - 8 hours

Thixotropy:

The mixed binder shall not evidence any flow at either 77° F. or 120° F.

4089.000 **1**-74
Consistency:

The mixed binder shall have a gel-like consistency but must be sufficiently fluid that when mixed with equal parts by volume of round grained silica sand, a workable mix will be obtained.

(e) Binder Properties When Cured.

Adhesive Shear Strength, minimum - 2800 p.s.i.

Water Gain, percent by wt., maximum - 0.20%

Shore Durometer Hardness:

At 77° F., maximum -90At 120° F., minimum -65

(Determined by ASTM D 2240 using a 10 second time interval)

(2) Sand: The sand used shall be a round grain 30 mesh silica sand (at least 98% passing a No. 20 U.S. Standard Screen and retained on a No. 30 U.S. Standard Screen). The sand shall be clean and absolutely dry when mixed with binder.

(3) Epoxy Binder - Sand Mixture (Epoxy Grout).

(a) The grout formed by mixing equal parts by volume of epoxy binder and sand shall have a good troweling consistency.

(b) Test for Flow or Sag.

The epoxy grout shall satisfy the following laboratory test for flow or sag:

Immediately after mixing, a three inch by six inch by one-half inch thick volume of grout shall be applied on a smooth, clean steel panel and the panel and grout shall be placed in a vertical position with the six inch dimension vertical. The grout must not evidence any flow or sag. The ambient temperature and initial temperature of the materials shall be $77^{\circ} \pm 2^{\circ}$ F. for this determination.

4089.3. Application of Epoxy Grout.

(1) Surface Preparation. Remove all dust, laitance, grease, curing compounds, impregnations, waxes, and other foreign particles and disintegrated material. Surface must be dry and sound.

(2) Installation. The epoxy grout shall be placed in such a manner as to completely fill the gap between the bottom of slab and top of steel beams.

4089.000 1-74 Placement of epoxy grout shall be completed within the pot life of the material.

4089.4. Measurement and Payment. No measurement for payment will be made under this item. All materials, labor, equipment, methods and incidentals required by this item shall be considered subsidiary to the various bid items in the contract.

4089.000 1-74