TECHNICAL REPORT STANDARD TITLE PAGE

FHWATX78-218-3	2. Government Accessi	01110.	3. Recipient's Catalog No.						
rnwala/0~210-3									
4. Title and Subtitle	<u></u>		5. Report Date						
	alutical and Eu	1	•						
TRAPS 52 User's GuideAr	-		March 21, 1978 6. Performing Organization Code						
Assessment of Highway Imp	pact on Air Qual	ity	0. Performing Urganization	n Code					
7. Author's)			8. Performing Organization Report No.						
J. A. Bullin, J. C. Polas	sek		Research Report 218-3						
9. Performing Organization Name and Addre Chemical Engineering Depa			10. Work Unit No.						
Texas Transportation Inst		-	11. Contract or Grant No.						
Texas A&M University			2-8-75-218						
College Station, Texas 7	77843	F	13. Type of Report and Pe	ind Coursed					
12. Sponsoring Agency Name and Address									
Texas State Department of	F Wighwave and D	ublic	Research - Se	-					
			Fe	bruary, 1978					
Transportation: Transpor		·	14 6	1					
Division: P. O. Box Austin, Te	exas 78763	·	14. Sponsoring Agency Co	de					
15. Supplementary Notes				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					
Work done in cooperation	with FHWA, DOT								
16. Abstract									
Data from essentiall									
develop and verify an imp	proved roadway d	ispersion mode	e1. The TRAPS 52	2					
model presented here is b	based on the TRA	PS II model.	The latter was						
modified from the origina				in					
that program with a fitte									
calculational speed. In									
by direct iteration rathe				L					
model. The development o			is presented alo						
with the coding for the u		and a Manage Trac							
held programmable calcula			struments SR 52 h	nand					
magnetic cards. The vari		52 coding red	struments SR 52 h uires the use of	nand E 3					
		52 coding red	struments SR 52 h uires the use of	nand E 3					
along with the variables	lables required	52 coding red from the user	struments SR 52 h quires the use of are fully explai	nand 53 ined,					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand 53 ined, are					
	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand 53 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand 53 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand 53 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand 53 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand E 3 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand E 3 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand E 3 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand E 3 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 h quires the use of are fully explai gram limitations	nand 53 ined, are					
along with the variables	lables required output to the u	52 coding red from the user ser. The prog	struments SR 52 H quires the use of are fully explai gram limitations del are included.	nand 53 ined, are					
along with the variables also explained and two ex	lables required output to the u	52 coding red from the user ser. The prog e TRAPS 52 mod	struments SR 52 H quires the use of are fully explai gram limitations del are included.	hand E 3 ined, are					
along with the variables also explained and two ex 17. Key Words	lables required output to the u camples using th	52 coding red from the user ser. The prog e TRAPS 52 mod 18. Distribution State No Restrict	struments SR 52 H quires the use of are fully explai gram limitations del are included.	nand E 3 ined, are					
along with the variables also explained and two ex ^{17. Key Words} Roadway pollution dispers	lables required output to the u camples using th	 52 coding red from the user ser. The prog e TRAPS 52 mod 18. Distribution State No Restrict available t 	struments SR 52 H quires the use of are fully explai gram limitations del are included.	nand E 3 ined, are					
along with the variables also explained and two ex 17. Key Words	lables required output to the u camples using th	 52 coding red from the user ser. The prog e TRAPS 52 mod 18. Distribution State No Restrict available t National Te 	ment struments SR 52 h quires the use of are fully explain gram limitations del are included.	nand E 3 ined, are					
along with the variables also explained and two ex ^{17. Key Words} Roadway pollution dispers	lables required output to the u camples using th	 52 coding red from the user ser. The prog e TRAPS 52 mod 18. Distribution State No Restrict available t National Te 	struments SR 52 H quires the use of are fully explai gram limitations del are included.	nand E 3 ined, are					
along with the variables also explained and two ex ¹⁷ . Key Words Roadway pollution dispers	lables required output to the u camples using th	 52 coding red from the user ser. The prog e TRAPS 52 mod 18. Distribution State No Restrict available t National Te Springfield 	ment struments SR 52 h quires the use of are fully explain gram limitations del are included.	nand E 3 ined, are					
along with the variables also explained and two ex ¹⁷ Key Words Roadway pollution dispers programmable calculators	lables required output to the u camples using th	 52 coding red from the user ser. The prog e TRAPS 52 mod 18. Distribution State No Restrict available t National Te Springfield if. (of this page) 	ment struments SR 52 H quires the use of are fully explain gram limitations del are included. ment tions. This docu to the public thr echnical Informat l, Virginia 2216	ment is rough the cion Service					

Research Report

on

TRAPS 52 USER'S GUIDE: ANALYTICAL AND EXPERIMENTAL ASSESSMENT OF HIGHWAY IMPACT ON AIR QUALITY

by

J. A. Bullin J. C. Polasek

Submitted to

File D-8 P State Department of Highways and Public Transportation

Research Report 218-3

Research Study No. 2-8-75-218

Sponsored by

State Department of Highways and Public Transportation in cooperation with the U.S. Department of Transportation Federal Highway Administration

> CHEMICAL ENGINEERING DEPARTMENT and TEXAS TRANSPORTATION INSTITUTE College Station, Texas 77843

> > March 21, 1978

Implementation

A study of the dispersion of pollutants from roadways is under way. Early results in the model development portion of the project indicate that existing models should be used with caution. The TRAPS pollution dispersion model was developed from the data of previous experimental programs outside Texas. An improved version of that model, called TRAPS II, is presented here. The new version is approximately twice as fast as its predecessor and is at least 10 times faster than any model prior to the original TRAPS model. Due to its speed and simplicity, this model has been adapted for use on a Texas Instruments SR 52 hand held programmable calculator. Called TRAPS 52, it can be conveniently used in the field, or where access to a computer is limited. A listing of this program is presented in this manual.

Disclaimer

This work was sponsored by the Texas State Department of Highways and Public Transportation in cooperation with the United States Department of Transportation, Federal Highway Administration. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Please be advised that no warranty is made by the Texas State Department of Highways and Public Transporation, the Federal Highway Administration, or the Texas Transportation Institute as to the accuracy, completeness, reliability, usability, or suitability of the computer program and its associated data documentation. No responsibility is assumed by the above parties for incorrect results or damages resulting from the use of the program.

ii

Summary

Data from essentially all previous experimental programs were used to develop and verify an improved roadway dispersion model. The TRAPS 52 model presented here is based on the TRAPS II model. The latter was modified from the original TRAPS model by replacing an iterative step in that program with a fitted fourth degree polynomial in order to increase calculational speed. In addition, the virtual origin is now calculated by direct iteration rather than the secant method used in the original model. The development of the TRAPS series of models is presented along with the coding for the use of TRAPS 52 on a Texas Instruments SR 52 hand held programmable calculator. The TRAPS 52 coding requires the use of 3 magnetic cards. The variables required from the user are fully explained, along with the variables output to the user. The program limitations are also explained and two examples using the TRAPS 52 model are included.

TABLE OF CONTENTS

Section																									Page
Introduction	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Terminology and Background	•	•	•	•	•	•								•	•	•	•	•	•	•	•	•	•	•	1
Theory of Operation	•	•	•		•	•					•			•	•	•	•	•	•	•	•	•	•	•	5
Using the Program		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
Examples	•	•	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
Appendix	•	•	• .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
Register Usage Table	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
Program Installation	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
Program Coding	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•'	•	•	•	•	•	•	17
Bibliography	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23

Introduction

TRAPS 52 is a simplified version of the TRAPS II air pollution dispersion model. This version has been designed to run on the Texas Instruments' SR52 hand held programmable calculator. The program calculates the carbon monoxide concentration at any distance downwind from a roadway, given site geometry, meteorology, and traffic parameters.

The program is quite flexible, accepting inputs in either metric units, English units, or a mixture of both. Many error conditions are caught as soon as the parameter is entered and the parameter is rejected. If an error occurs later, a code indicating the most probable cause is returned. Meteorology and traffic parameters can be updated without changing the site geometry for running multiple cases at a single site.

Terminology and Background

In the following discussion <u>underlined</u> variables are required from the user, and those with a broken underline are calculated and returned by the program.

Consider a straight multilane roadway passing through reasonably level terrain as represented in Figures 1 and 2. The road has a width of <u>HWID</u> ft. (m), including a narrow median. A windspeed of <u>UBAR</u> miles/hour (meter/sec) is measured or predicted at a height of <u>REFHT</u> ft.(m). The terrain has associated with it a parameter Z_0 ft. (m) equal to 0.15 times the average height of the obstacles on the terrain. A given number of vehicles (<u>VPH</u>) pass the site in any given hour. The vehicles emit an average of <u>EFACT</u> gms of carbon monoxide per vehicle per mile traveled. At some downwind distance <u>X</u> ft. (m) and at some height <u>Z</u> ft. (m), it is desired to determine the CO concentration.

The program uses the <u>UBAR</u> and <u>Zo</u> to calculate a 10 meter (32.8 ft.) wind velocity (<u>U10</u>), a 1 meter (3.28 ft) wind velocity (<u>U1</u>), a roughness wind velocity (<u>U*</u>), and an eddy diffusivity (<u>DIFFY</u>) in order to fill in all the meteorological parameters needed to calculate the plume concentrations using the non-Fickian Gaussian plume equation. It calculates a roadedge CO concentration (<u>C01</u>) using an empirical formula developed by Maldonado¹. The program then finds the point at which the concentration in the Gaussian plume matches the empirical concentration at the roadedge. This moves the apparent or "virtual" origin of the plume <u>XPRIME</u> ft (m) upwind. The concentration at any downwind point, <u>C0</u> <u>-X2Z</u>, can then <u>-X2Z</u>

The program was developed using limited data and should not be applied outside the limits imposed by the design data. In addition, some of the algorithms used place further restrictions on the region of accurate results. The program accordingly should be applied with care and only inside the following limits:

1. 0.1 m(0.38 ft) \leq Zo \leq 0.8 m (2.63 ft). This is sufficient to account for all cases from a full grown grain crop to a thin forest of 20 ft (6m) tall trees. Most residential areas fall inside these bounds. City street canyons do not.

2. U10 \geq 0.54 m/sec (1.2 mile/hour). Below this windspeed, Gaussian pluming becomes less important than buoyant pluming, which is not accounted for in this model. Few, if any, models work below this windspeed.

3. The median width must be less than 20 ft (6m). The program assumes a mixing cell extending 10 ft (3m) beyond the last active traffic lane, allowing inclusion of a 20 ft median, but including a wider median will cause serious underprediction!

-2-

Aerial View of Typical Site

Cross Section of Typical Site

Theory of Operation

The TRAPS series of models are somewhat unusual from a user point of view because they use a different version of the diffusion equation to calculate the dispersion downwind of a roadway as opposed to such models as Caline 2, Hiway, and Airpol 4. These other models all employ a Fickian solution to the anisotropic diffusion equation, imposing two highly restrictive boundary conditions on the system. First, the solution is based on a completely smooth site. Obstacles on the terrain must be ignored. Second, the wind shear due to velocity changes with altitude is assumed nonexistant.

The development of the TRAPS models is reported by Maldonado in his master's thesis (1976), and in papers by Maldonado and Bullin (1977), and Polasek and Bullin (1976). This series avoids these two major restrictions by using the non-Fickian solution to the diffusion equation proposed by Sutton (Pasquill, 1974).

$$\Psi_{(X,Z)} = \frac{Qr}{u_1 \Gamma(s)} \left[\frac{u_1}{r_{K_1}^2 K_1} \right]^s \exp \left[\frac{u_1 Z^2}{r_{K_1}^2 K_1} \right]$$
(1)

where

Х

Ζ

= distance downwind of source

= vertical distance above source

 $\Psi(X,Z) = C0$ concentration at X,Z

Q = source strength

 $u_1 = windspeed at 1 meter$

 $K_1 = diffusion constant$

$$\mathbf{r} = \alpha - \beta + 2 \qquad \mathbf{r} > 0$$

$$s = (\alpha + 1)/r$$

 $\Gamma(s) = Gamma function of s$

 α = constant from the power law wind equation 0 < α < 1

= stability constant

β

t $0.5 < \beta < 1.5$

-5-

Sensitivity analyses run on early versions of TRAPS prototypes showed that changes in the stability constant β had very little effect on the answers generated. This constant was then "fixed" at 1.0 to increase computational speed. This forces s and $\Gamma(s)$ to 1.0 as well, making the form used in the TRAPS models

$$\psi_{(X,Z)} = \frac{Q}{rK_1 X} \exp \left[\frac{u_1 Z^{L}}{r_{K_1 X}^{2}} \right]$$
(2)

with $r = \alpha + 1$.

In order to use this equation, three meteorological parameters, u_1 , K_1 , α , must be calculated.

Calculation of u_1, K_1 , and α

It has been well documented that windspeed is not constant with height, (Project Prairie Grass, 1958). The shape of the windspeed profile with height is mainly dependent on the surface roughness. One of the best equations for predicting this profile is the log law equation:

> $u_{Z} = \frac{u_{\star}}{K} \ln \left(\frac{Z}{Z_{o}}\right)$ (3) $u_{Z} = \text{windspeed at height } Z > Z_{o}$ $u_{\star} = \text{friction velocity}$ K = von Karmon's Constant

 Z_0 = roughness height (0.15 times average obstacle height) Given a wind velocity at a particular height, and an estimate of Z_0 , this equation can generate the value of u_1 and u_* .

However, the nonFickian solution to the diffusion equation assumes that the wind follows a power law equation:

-6-

$$u_{Z} = u_{1} \left(\frac{Z}{Z_{1}}\right)^{\alpha} = u_{1} Z^{\alpha}$$

for $Z_1 = 1.0$

Accordingly, an α must be estimated which gives a profile closely matching that of the power law equation. This is best done by minimizing the squared error over a representative interval. In the case of the TRAPS models, the interval of 1 to 10 meters was chosen as the best interval to fit. Since both functions are continuous in this range, the squared error can be integrated over this interval. The " α of best fit" can then be calculated iteratively. However, the original TRAPS model was modified by eliminating this iterative step through the use of a fitted polynomial equation. Examination of Equations (3) and (4) reveals that α is solely a function of z_0 . The α 's were then calculated for 150 different values of z_0 and the results fitted to a fourth degree polynomial. This procedure reduces required computational time by approximately 50%.

-7-

Last, K_1 is estimated from an equation given by Calder (1949) to be:

$$K_1 = 0.4 u_*$$
 (5)

Since the total source Q of a highway is not concentrated in a single thin line, but rather is diffused from a large area, the effect is the same as that of a line source at some distance upwind of the roadway. In order to match equation (2) to the real world, this distance must be estimated. The method used consists of independently calculating the concentration at the downwind edge of the roadway and then calculating the point in the plume that matches the concentration.

An empirical equation was used to calculate the roadedge concentration at a five foot height. This equation was obtained by dimensional analysis followed by a statistical analysis. It agrees with the form presented by Pasquill (1974). The final equation is

(4)

$$\chi = 3.44 \text{ Q/(u}_{10}\text{W}) \tag{6}$$

 χ = CO concentration at a 5 ft. height and on the downwind edge of roadway

 $u_{10} = 10$ meter windspeed

W = width of roadway (including median)

This equation provided a better "fit" to the data from North Carolina (Noll, et. al., 1975) than equations incorporating a wind direction parameter.

The result was then matched to the Gaussian plume by direct iteration. Maldanado (1976) originally used the secant method to determine the virtual original distance. The convergence equation used is

$$x_{n+1} = \frac{Q}{rK\chi} \exp \left[\frac{u_1 Z'}{r^2 K_1 X_n}\right]$$
(7)

where

$$X_{n+1} = X$$
 of the $(n + 1)^{th}$ trial
 $X_n = X$ of the n^{th} trial

 X_1 is set at three times the highway width. Convergence to plus or minus one meter usually occurs on the third or fourth trial.

Once this point is known, any downwind concentration can be calculated directly by equation (2).

-8-

Using The Program

Traps 52 may be coded onto 3 magnetic cards. The necessary coding is shown in detail in the Appendix. The first card is used to enter the site geometry and needs to be loaded only once per site. The second card is used to load the traffic and meteorology parameters and calculate the roadedge concentration. It must be reloaded every time these parameters are changed. The third card is used only to calculate the downwind concentrations. It must be loaded after card 2 if downwind concentrations are needed. Often, the roadedge concentration is enough to show that the road is no threat to air quality and card 3 does not have to be loaded.

To use the program, locate card 1. Load both sides. One may now enter in any order the following parameters: HWID, REFHT, and Zo. The program returns an integer code to remind the user of the last parameter entered. REFHT is parm 1., HWID is parm 2., and Zo is parm 3. As soon as the program has both Zo and REFHT, it calculates a number of meteorological parameters needed to calculate the plume characteristics, stopping with the parameter R in the display (see Maldonado for an explanation of this parameter). If a parameter code is returned flashing, the program found the parameter to lie outside of the valid model range and rejected Reset the parameter in range and reenter it after pressing 'CE'. To enter it. REFHT, punch in the number and strike key A. To enter HWID, punch in the number and strike key B. To enter Zo, punch in the number and strike key C. If an entered number is positive, the program assumes the units to be feet. If the number is negative, it changes the sign and assumes the units to be meters. To display any of the parameters, strike 2nd and the entering key. The result will be in feet. To convert to meters, strike key D.

-9-

After these three parameters have been successfully entered, locate card 2. Load both sides. One may now enter in any order: UBAR (parm 4.), VPH (parm 5.), and EFACT (parm 6.). The parameter number is echoed as each parameter is entered. A flashing 4. indicates that the calculated U10 is less than 0.54 meter/second (1.2 mile/hour). Reenter a higher windspeed after pressing CE. To enter UBAR, punch in the desired value and strike key A. If the number entered is positive, the program assumes the units to be miles/hour. If the number is negative, the program changes the sign and assumes the units to be meters/second. To enter VPH, punch in the desired value and strike key B. The only permitted units are vehicles per hour. A negative input here will result in a negative CO output. To enter EFACT, punch in the desired value and strike key C. The only units permitted are grams per vehicle mile. Entering a negative here will also result in a negative CO concentration. To review any of these parameters, simply strike 2nd and the entering key. Key E will convert the displayed value of UBAR miles per hour to meters per second. When satisfied with these parameters, strike key The program will halt with the roadedge CO concentration in the display. If D. this is low enough, nothing more need be done and another UBAR, VPH, and EFACT can be keyed in without loading any other cards.

If, however, this value exceeds the ambient air standards, or if a numerical value must be known for a downwind receptor for some other reason, the third card must be loaded. Locate it and load both sides. Strike key A. The value returned is the virtual origin distance in ft. The program is now ready to calculate downwind concentrations at the 5 ft. (1.524 m) height. Simply key in a distance and strike key C. The returned value is the concentration in PPM. For other heights, key in the desired height and strike key B. This permanantly changes the

-10-

height until it is changed again by the B key or until a new virtual origin is calculated. The displayed value is the height in meters. If either X or Z is positive, the program assumes the units to be ft. If the value is negative, the program reverses the sign and assumes meters. All internal carried values are metric in the program. See the register usage table for exact placement and units.

To change a parameter, one must reload the card by which the parameter was originally entered, reenter the parameter and continue from that point, skipping any other parameter loading steps unless changes are desired. To go to a new site, reload card 1 and strike RESET. This makes the program forget the existing parameters.

Examples

Here are 2 examples of the utility of Traps 52 for the traffic designer. They each have no specific real world counterpart, but, in searching, many similar situations can be found.

Example 1

Rural Bypass Interstate highway passing 500 ft from a school play ground. 4 ft brush upwind and downwind. 4-15 ft wide traffic lanes with 10 ft median. Average vehicle speed 63 miles per hour; most vehicles warm. 1200 VPH during rush hour. Do worst case analysis $(1.2 = U_{10})$.

- 1. Load Card 1.
- 2. Enter 10 +/- A 1. (REFHT)

3	Enter	4 x 15 + 10 = 70. B 2.	(HWID)
.			· · · ·

- 4. Enter $4 \times .15 = 0.6$ C <u>1.378</u>... (Zo)
- 5. Load Card 2.

6.	Enter	.54 +/- A	4.	(Minimum Windspeed)	(UBAR)
----	-------	-----------	----	---------------------	--------

7. Enter 1200 B 5. (VPH)

8. Enter 23 C <u>6.</u> (Emission Factor for Warm Cars) (EFACT)
9. Key D <u>3.876...</u> (Roadedge CO concentration)

This roadway offers no threat to environmental quality even at the edge of the roadway. At 500 ft the rise in CO due to the roadway is probably indetectable. No further calculations need be done.

Example 2

A proposed freeway is 150 ft wide with an 8 ft median (158 ft total). There are parking lots on both sides of the expressway for use by spectators of sporting events in a large arena 1000 ft upwind of the expressway. The lowest recorded windspeed for this area is 0.8 mile per hour measured at 8 ft. There are 8 metered ramps in the area that may be used by spectators leaving the parking lots, each ramp permitting 1000 VPH onto the roadway. The expressway normally carries 3000 VPH thru traffic. Calculate the exposure of those people sitting in the cars 150 ft downwind of the freeway, ignoring the cars idling in the parking lot immediately after a large event lets out.

1.	Load	Card 1.
2.	Enter	8 A <u>1.</u> (REFHT)
3.	Enter	158 B <u>2.</u> (HWID)
4.	Enter	$5 \times .15 = 0.75$ C <u>1.418</u> (Assume average car height 5 ft) (Zo)
5.	Load	Card 2.
6.	Enter	.8 A <u>4.</u> (UBAR)
7.	Enter	$3000 + 8 \times 1000 = 11000.$ B 5. (VPH)
8.	Enter	29 C <u>6.</u> (Emission Factor for mostly cold cars) (EFACT)
9.	Кеу	D <u>21.4</u> (Roadedge CO concentration)
10.	Load	Card 3.
11.	Кеу	A <u>176.6</u> (Virtual Origin. Calculation will take about 2 minutes)
12.	Enter	150 C <u>13.0</u> CO concentration 150 ft downwind at 5 ft height)

This is inside Ambient Air standards. However, methods should be considered to limit the number of people reaching their cars at one time.

Register Usage Table

Reg	jister #	Variable Name	<u>Definition</u> Para	ameter #
	00	X	Downwind distance of receptor (meters)	
	01	REFHT/Zo	Altitude ratio for log law windspeed	
	02	X + X PRIME	Virtual downwind distance of receptor (meters)	
	03	Z	Height of receptor (meters)	
	04	X PRIME	Virtual origin distance (meters)	· .
	05	VAR2	Intermediate variable 2	
	06	VAR1	Intermediate variable l	
	07	C01	Roadedge CO concentration (gm/m ³)	
	08	EFACT	Average vehicle emission factor (gm/veh-mi)	6
	09	VPH	Vehicles per hour	5
	10	R	ALPHA + 1	
	11	ALPHA	Power Law Windspeed constant	
	12	Zo	0.15 times the average obstacle height (meters)	3
	13	REFHT	Height of Windspeed measurements (meters)].
	14	HWID	Highway width (meters)	2
	15	DIFFY	Eddy Diffusivity (meter ² /sec)	
	. 16	U*	Friction wind velocity (meter/sec)	
	17	U1	One meter windspeed (meter/sec)	
	18	U10	Ten meter windspeed (meter/sec)	
	19	UBAR	Windspeed at REFHT (meter/sec)	4

Program Installation

The method of installing the program is simple and straightforward. The basic method used for installing programs will be found in the SR52 users manual on pages 76 and 77. The program listing can be found in the Appendix of this report.

The listing is in 3 sections since 3 cards are required. Each section must be "keyed in" and then recorded before the next section is "keyed in". As many copies as desired can be recorded before the next section is "keyed in".

In the listing, the '*' designates the use of the '2nd' key, as per Texas Instruments convention.

PROGRAM CODING

-17-

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000	46	*LBL			04	4			78	*5		A REFHT
	11	A			50	*st flg	4		50	*st flg		^B HIWID
	94	+/-		040 152	01	1			02	2		C Zo
	80	*if pos			25	CLR			60	*if flg		D
	87	*1			02	2		080 192	00	0		E
005 • 117	51	SBR			81	HLT			67	*7		A'
	22	INV			46	*LBL			25	CLR		B
	46	*LBL		045 157	13	С			03	3		C'
	87	*1			94	+/-			81	HLT		D'
	42	STO			80	*if pos	3	085 197	46	*LBL		E'
010 122	01	1			89	*3			67	*7		REGISTERS
	03	3			51	SBR			25	CLR		00
	50	*st flg		050 162	22	INV			43	RCL		⁰¹ ln <u>REFHT</u> Zo
	00	0			46	*LBL			01	1		02
	60	*if flg		-	89	*3		090 202	03	3		03 ·
015 127	02	2			42	STO	-		55	÷		04
	67	*7			01	1			43	RCL		05
•	25	CLR		055 167	02	2			01	1		06
	01	1			75	1			02	2		07
2	81	HLT			93	•		095 207	54)		08
020 132	46	*LBL			01	1			23	Ln ×		09
	12	В			54)			42	STO		10
	94	+/-		060 172	80	*if pos			00	0		11
	80	*if pos	5		77	*4			01	1		¹² Zo
 	88	*2			46	*LBL		100 212	90	*if zr	9	13 REFHT
025 137	51	SBR			78	*5			68	*2		14 HWID
	22	INV			25	CLR			80	*if po	\$	15
	46	*LBL		065 177	03	3			79	*6		16
 	88	*2			85	+			46	*LBL		17
	85	+		ļ	95	=		105 217	68	*2		18
030 142	06	6			81	HLT			25	CLR		19
·	93	•	 		46	*LBL			04	4	ļ	FLAGS
	00	0		070 182	77	*4			85	+		0
1	09	9	 		75	-			95	=		1
	06	6			93			110 222	81	HLT	l	2
035 147	95	=			07	7			46	*LBL		3
	42	STO	 		54)		TE			UMENTS	4
	01	1	<u> </u>	075 187	80	*if pos	5			CORPORAT	LD	ll

-18-

	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LÆ	ABELS
000 112	79	*6			42	STO			81	HLT		A	
	25	CLR			01	1			46	*LBL		в	
	03	3		040 152	00	0			22	INV		С	
	93	•			56	*RTN			94	+/-		D	
	04	4			46	*LBL		080 192	46	*LBL	-	E	
005		2	`		16	*A'			14	D		A	REFHT
	07	7			43	RCL			65	X			HWID
	51	SBR		045 157	01	1			46	*LBL		C.	
	65	X			03	3			26	*INV		D'	
	75	_			55	÷.		085 197	93	•		E.	
010	03	3			51	SBR			03	3		REC	GISTERS
	93	¥			27	*INV			00	0		00	
	08	8		050	95	=			04	4		01	n <u>REFHT</u> N <u>Zo</u>
	02	2			81	HLT			-08	8		02	
	09	9			46	*LBL		090 202	<u> </u>)		03	
015	51	SBR	1		17	*B'			56	*RTN		04	
	65	X			10	RCL			46	*LBL		05	
	85	+	-	055 167	01	1			65	X		06	· · · · · · · · · · · · · · · · · · ·
	02	2	1		04	4			F ()		07	
	93				55	- <u>-</u>		095 207	65	X	· · · · · · · · · · · · · · · · · · ·	08	
020 132	00	0		}	51	SBR			43	RCL		09	
	03	3			27	*INV			01	1		10	R
	03	3		060 172		-			02	2	+	11	α
	09	9			02	2			56	*RTN		12	Zo
	51	SBR			00	0		100 212				13	REFHT
025	65	X	1		95	=					-	14	HWID
	85	+			81	HLT						15	
	93	<u>·</u>		065 177		*LBL						16	
	01	1			18	*C ¹						17	
	01				43	RCL		105 217	1			18	
030	03	3		1	01	1						19	
	95	=		1	02	2			<u> </u>		1		LAGS
	42	STO		070	55	÷		1	<u>+</u>	 		0	<u> </u>
•	01	1	+		51	SBR		1		 		1	<u></u>
	01	<u>+</u>	+		27	*INV		110	1	+ 		2	· · · · · · · · · · · · · · · ·
035	85	<u>+</u>	· ·		95	=						3	·····
	01	1			81	HLT		Тт	YAG	INSTR	UMENTS	4	
	95			075	81	HLT				LIN SIK CORPORAT			

TITLE	Traps	52	Card	2	
PROGR	AMMER			-	

-19-

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000	46	*LBL			01	1			81	HLT		A
	11	А			00	0			46	*LBL		B
	94	+/-		040 152	51	SBR			14	D		С
	8-	*if pos			23	ln x			25	CLR		D
	87	*1			42	STO		080 192	93	•		E
005		SBR			01	1			01	1		A
•	22	INV			08	8			09	9		В
1	46	*LBL		045 157	75	_			08	8		C
•	87	*1			93	•			01	1		D'
	42	STO			05	5		085 197	45	y ^x		E'
010 122		1			03	3			08	8		REGISTERS
	09	9			06	6			65	Х		00
	65	Х		050 162	95	=			43	RCL		() 1
	93	•			80	*if pos	3		00	0		02
	04	4			89	*3		090 202	09	9		03
015 127		÷			04	4			65	X		04
	43	RCL			85	+			43	RCL		05
	00	0		055 167	95	=			00	0		06
	01	1			81	HLT			08	. 8		07
	90	*if zro	2		46	*LBL		095 207	54)		08
020	88	*2			89	*3			90	*if zr	.o	09
	95	=			50	*st fl	2		77	*4		10
	42	STO		060 172	03	3			55	+		11
	01	1			04	4			43	RCL		12
	06	6			81	HLT		100 212		1		13
025 137	65	x			46	*LBL				4		14
	93	•			12	В			90	*if zı	:0	15
	04	4		065 177	42	STO			78	*5		15
	95	=			00	0			55	+		17
	42	STO			09	9		105 217		RCL		13
030	01	1			05	5			01	1		19
٣	05	5			81	HLT			08	8		FLAGS
	01	1		070 182	46	*LBL			95	=		0.
•	51	SBR			13	С			42	STO		1
	23	ln x			42	STO		110	2 00	0		2
035 147	42	STO			00	0			07	7		3
	01	1		1	08	8		Т			UMENTS	4
	07	7		075 187		6		1.		NCORPORA		

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000	41	GTO			81	HLT			93	•		A
	55	<u>+</u>			46	*LBL			01	1		В
	46	*LBL		040 152	22	INV			04	4		С
	_23	ln x			94	+/-			02	2		D
	55				46	*LBL		080 192	08	8		E
005 117	43	RCL			15	E			45	y ^x		A'
	01	1			65	X			08	8		B'
	02	_2		045 157	46	*LBL			65	<u>X</u>		C'
	54)			27	*log			43	RCL		ם.
	23	ln x		·	93	•		085 197	00	0		E'
010 122	65	X			04	4			09	9	_	REGISTERS
	43	RCL			04	4			65	X		00
	01	1		050 162	07	7			43	RCL		01
	06	6			95	=			01	1		02
	55	*			56	*RTN		090 202	T	0		03
015 127	93	•			46	*LBL			65	X		04
	04	4			16	*A'			43	RCL		05
1	95	æ		055 167	43	RCL			00	0		06
	56	*RTN			01	1			08	8		07
	46	*LBL			09	9		095 207	55	÷		08
020 132	88	*2			55	*			43	RCL		09
	01	1			51	SBR			01	1		10
	03	3		060 172	27	*log			07	7		11
	85	+			81	HLT			95	=		12
	95	=			46	*LBL		100 212	42	STO		13
025 137	81	HLT			16	*B '			00	0		14
	46	*LBL			43	RCL			06	6		15
	77	*4		065 177	00	0			43	RCL		16
	05	5			09	9			00	0		17
	06	6			81	HLT		105 217	07	7	· ·	18
030 142	85	+			46	*LBL			65	X		19
	95	=			18	*C'			08	8		FLAGS
	81	HLT		070 182	43	RCL		1	07	7		0
	46	*LBL	·····		00	0		1	05	5	1	1
	78	*5			08	8		110	2 95	=		2
035	02	2			81	HLT			- -	HLT_		3
	85	 _+			46	*LBL		Т			UMENTS	4
	95	=		075	55	<u></u>				UN STR URPORA		

TITLE	Traps	52	Card
PPOCRAMMED			

-22-

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LABELS
000 112	60	*if flg			46	*LBL			65	X		A
	04	4	· · · · · · · · · · · · · · · · · · ·		13	C			08	8		В
	77	*4		040 152		+/			07	7	· · · · · · · · · · · · · · · · · · ·	С
·······	03	3			80	*if pos			05	5		D
005 117 010 122 015 127	05	5			79	*6		080 192	95	=		E
		+			94	+/-			81	HLT		A'
	95	=		<u></u>	65	X			46	*LBL		B'
	81	HLT		045 157		D			17	*B'		C'
	46	*LBL			46	*LBL			43	RCL		D'
	77	*4			79	*6		085 197	00	0		E
	25	CLR			42	STO			03	3		REGISTERS
	81	HLT			00	.0			51	SBR		00
	46	*LBL		050 162		0			22	INV		01
	222	INV			75	_			81	HLT		02
	55	+			03	3		090 202		*LBL		03
	46	*LBL	·		93	~			16	*A'		04
	14	D			00	0			43	RCL		05
	93			055 167		4			00	0		06
	03	3			08	8			04	4		07
	00	0		<u> </u>	95	=		095 207		SBR		08
020 132		4			80	*if po	¢		22	INV		09
025 137	08	8			67	*7			75	-		10
	95	=		060	25	CLR			01	1		11
	56	*RTN			46	*LBL			00	0		12
	46	*LBL	••		67	*7		100 212	95	=		13
		В			95	+			81	HLT		14
	94	+/-			43	RCL			46	*LBL	-	15
	80	*if pos		065 177		0			18	*C'		16
	78	*5			04	4			43	RCL		17
	65	X			95	=		105 217		0		18
030 142	14	D			42	STO			00	0		19
	94	+/-			00	0			51	SBR		FLAGS
·	46	*LBL		070	02	2			22	INV		0
035 147	78	*5			51	SBR			81	HLT		1
	42	STO			87	*1		110	1 1			2
	00	0			43	RCL						3
	03	3			00	0		TEXAS INSTRUMENTS				4
	81	HLT		075 187	.02	2				CORPORAT		

Literature Cited

- Barad, M. L., "Project Prairie Grass, A Field Program in Diffusion," Vol. II, Geophysical Research Papers, No. 59, (1958).
- Calder, K. L., "Eddy Diffusion and Evaporation in Flow over Aerodynamically Smooth and Rough Surfaces: A Treatment based on Laboratory Laws of Turbulent Flow with Special References to Conditions in the Lower Atmosphere," Quart. Journal Mech. and Applied Math., 11, 153 (1949).
- Carpenter, William A., G. G. Clemena, and W. R. Lunglhafer, "Supportive Data and Methods for the Evaluation of Airpol-4," Virginia Highway and Transportation Research Council, Report No. UHTRC75-R57, Charlottesville, Virginia (1975).
- Bullin, J. A. and Cesar Maldanado, "Modeling Carbon Monoxide Dispersion from Roadways," Environmental Science and Technology, Vol. II, No. 12, (1977).
- Maldanado, Cesar, "Computer Simulation of the Dispersion of Carbon Monoxide from Roadways," MS Thesis, Texas A&M University, College Station, Texas, (1976).
- Noll, K. E., "Air Quality Report: Interstate 40 Modification Between Stratford Road and Peter's Creek Parkway in Forsyth County, North Carolina," Report for Harland Bartholomew and Associates, Raleigh, N. C., (1973).
- Noll, K. E., T. L. Miller, R. H. Rainey, and R. C. May, "Final Report on the Air Monitoring Program to Determine the Impact of Highways on Air Quality," Department of Civil Engineering, University of Tennessee, Knoxville, Tennessee (1975).
- Pasquil, F., Atmosphesic Diffusion, 2nd Edition, Ellis Norwood Ltd., Sussex, (1974).
- Polasek, J. C. and Bullin, J. A., "Analytical and Experimental Assessment of Highway Impact on Air Quality," Interim Report to Texas State Department of Highways and Public Transportation, (1976).
- Ranzieri, A. J., G. R. Bemis and E. C. Shirley, "Air Pollution and Roadway Location Design, and Operation," California Division of Transportation Report No. A-DOT-TL-7080-75-15, Sacramento, California, (1975).