# FOR LOAN ONLY Texas Transportation Institute ENGINEERING ECONOMY AND ENERGY CONSIDERATIONS

# COSTS ASSOCIATED WITH PAVEMENT CONSTRUCTION, REHABILITATION AND MAINTENANCE

RESEARCH REPORT 214-18

AUGUST 1980



STATE DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION TASK FORCE ON ENGINEERING, ECONOMY AND ENERGY CONSIDERATIONS

Larry G. Walker, Task Force Chairman and Materials and Tests Engineer Charles H. Hughes, Sr., Study Contact Representative and Assistant Materials and Tests Engineer

A.H. Pearson, Jr., Assistant State Engineer-Director
Wayne Henneberger, Bridge Engineer
Robert L. Lewis, Chief Engineer, Highway Design
Byron C. Blaschke, Chief Engineer, Maintenance Operations
J.R. Stone, District Engineer
William V. Ward, Urban Project Engineer-Manager
Phillip L. Wilson, State Planning Engineer
Franklin C. Young, District Engineer
Theodore E. Ziller, Construction Engineer

#### Technical Reports Center Texas Transportation Institute

#### COSTS ASSOCIATED WITH PAVEMENT CONSTRUCTION, REHABILITATION AND MAINTENANCE

L.

bу

J. A. Epps and F. N. Finn

Research Report 214-18

#### Engineering, Economy and Energy Considerations in Design, Construction and Materials

2-9-74-214

Sponsored by

State Department of Highways and Public Transportation

August 1980

Texas Transportation Institute The Texas A&M University System College Station, Texas 77843

### TABLE OF CONTENTS

-

×.

|                                             | Page |
|---------------------------------------------|------|
| TNTRODUCTION                                | 1    |
| REHABILITATION                              | 2    |
| COSTS ASSOCIATED WITH PAVEMENT THE          | 3    |
| SELECTION OF DISCOUNT RATE                  | 0    |
| COST DATA                                   | 4    |
| Construction Costs                          | 4    |
| Rebabilitation and Pavement Recycling Costs | 5    |
| Maintonanco                                 | 5    |
| raince                                      | 6    |
| Example Problem                             | 7    |
| COST UPDATING PROCEDURES                    | /    |
| CONCLUSIONS AND RECOMMENDATIONS             | 10   |
| DEFERENCES                                  | 11   |
|                                             | 12   |
| TABLES                                      | 36   |
| FIGURES                                     |      |

#### INTRODUCTION

The engineer responsible for the rehabilitation of a road network is responsible for allocating his monetary resources in an optimum manner. Thus, he must decide on what portion of the roadway network he intends to perform rehabilitation as well as what specific rehabilitation action is most appropriate for a particular roadway segment. Project feasibility is determined at the network level by comparing the needs of the entire roadway system. Selection of a specific rehabilitation alternative for a given project requires that a variety of alternatives be considered from an economic standpoint. The economic tools used by the engineer to make those "network" and "project" decisions are nearly the same with the amount of detailed information required as the major difference.

This paper presents techniques suitable for selection of a rehabilitation strategy for a particular project. The techniques available make use of the principles of engineering economy and methods of economic evaluation. Thus, cost information is required together with information concerning the life of various rehabilitation alternatives. Cost information must be projected for the life of the project and techniques utilized to reduce these costs at various ages after reconstruction to some "common denominator". Hence, the term "life cycle analysis" is often utilized.

Information defining component costs of various construction and rehabilitation alternatives has also been included. These data can be used for sensitivity analyses. For example, if the price of asphalt cement is increased 50 percent, what will be the impact on the cost of asphalt concrete, chip seal coats and asphalt-rubber chip seals.

Indexes have been included in the paper in order that estimates of current costs can be made with the data enclosed. These indexes are continually updated by the Federal Highway Administration and are readily available.

#### COSTS ASSOCIATION WITH PAVEMENT REHABILITATION

The initial and recurring costs that an agency may consider in the economic evaluation of alternative rehabilitation strategies have been defined in Reference 1 and include the following:

- 1. Agency costs
  - a. Initial capital costs of rehabilitation
  - b. Future capital costs of reconstruction or rehabilitation (overlays, seal coats, etc.)
  - c. Maintenance costs, recurring throughout the design period
  - d. Salvage return or residual value at the end of the design period
  - e. Engineering and administration
  - f. Costs of investments
- 2. User costs
  - a. Travel time
  - b. Vehicle operation
  - c. Accidents
  - d. Discomfort
  - e. Time delay and extra vehicle operating costs during resurfacing or major maintenance
- 3. Nonuser costs

Certainly all of these costs should be included if a detailed economic analysis is desired. However, definition of many of these costs is difficult while other costs do not significantly affect the analysis of alternatives for a given roadway segment. For the sake of simplicity the method of analysis suggested for use in these guidelines will consider only the following costs:

1. Initial capital costs of rehabilitation,

- 2. Future capital costs of reconstruction or rehabilitation,
- 3. Maintenance costs and
- 4. Salvage value.

Į,

It is suggested, however, that certain user costs such as time delay costs during rehabilitation be considered on high traffic volume facilities. The reader is directed to References 1 and 2 for additional detail.

#### SELECTION OF DISCOUNT RATE (INTEREST RATE)

The discount rate (interest rate) (rate of return) is utilized to reduce future expected costs for projects to present day terms for economic comparison purposes. The value selected for discount rate deserves careful attention by the engineer. The rate selected is normally between 4 to 10 percent while the actual value selected should be based upon consideration of the following:

- 1. Interest rate currently charged to borrow capital
- 2. Rate of return expected of private investments
- 3. Rate of return expected of public works investments
- 4. Risks and uncertainties associated with investments

5. Short term and long term inflation rates

It should be noted that rehabilitation alternatives with large initial costs and low maintenance or user costs are favored by low interest rates. Conversely, high interest rates favor strategies that combine low initial costs with high maintenance and user costs.

A discount rate of 8 percent has been utilized together with a 20year analysis period for examples in these guidelines. Present worth factors and capital recovery factors for discount rates of 6, 7, and 8 percent are shown in Table 1. Values for other discount rates can be found in Reference 2 or text books on engineering economy. Both present worth and the uniform annual cost method are illustrated below. Costs are estimated in terms of dollars per square yard; however, costs in terms of dollars per lane-mile is also a convenient unit.

#### COST DATA

Data are included in this paper which define costs associated with pavement construction, reconstruction and maintenance operations. These costs are intended to be representative only. If costs for these operations are available from local agencies' historical records, they should be substituted appropriately.

#### Construction Costs

Costs of common pavement construction operations are shown in Table 2. These costs are considered representative of average in-place costs in the United States. Costs are based on pavement layers in the range of 4 to 8 inches (102 to 203 mm) for untreated base and stabilized layers. Asphalt concrete costs are typical of 1.5 to 3 inch (38 to 97 mm) lifts

while portland cement concrete costs are typical for pavements 8 to 10 <sup>-</sup> inches (203 to 254 mm) in thickness.

#### Rehabilitation and Pavement Recylcing Costs

Costs associated with selected rehabilitation and pavement recycling operation costs are shown in Tables 3, 4 and 5. The common rehabilitation activities of asphalt concrete overlays, chip seal costs, etc. can be found in Table 3. Recycling costs are shown in Tables 4 and 5.

#### Maintenance Costs

Costs assoicated with flexible pavement maintenance operations are shown in Table 6 and with rigid pavement maintenance operations in Table 7. Costs were obtained from the states of Arizona, California, Nevada, and North Dakota and are representative of costs in 1977.

A general description for each maintenance activity has been prepared and is shown in the tables together with the average, low, and high unit costs for these activities. The reported suggested costs are the author's best estimate of representative unit costs for the stated maintenance activity. The wide range of reported unit costs for this condensed list of activities is due in part to:

- 1. Different crew sizes utilized in the various states
- 2. Different equipment requirements for various states
- Differences in maintenance work activity as defined by various states
- Variety of traffic conditions under which maintenance is performed
- 5. Type of facility on which maintenance activities are performed

6. Amount of work performed per lane mile

Maintenance unit cost information has been converted to costs per square yard (square m) of total pavement surface area treated and cost per lane mile (km) (Table 8). In order to develop these costs, assumptions were made as to the thickness and extent of the area treated. Costs associated with maintenance activities of different thicknesses and extent can be calculated from Table 6 and 7.

The summary of information contained in the previous tables is for 10 flexible and 5 rigid pavement maintenance activities. As stated, these costs are based on the data obtained from four states. If the reader has need of determining maintenance costs for activities other than those listed in the tables, it will be necessary to obtain data from a local state, county, or city performing that activity.

The reader is reminded that the maintenance activities described in this report are normally performed on pavements with certain specific types of distress. For example, fog seals and chip seals are popular maintenance or rehabilitation activities that are used to correct raveling flexible pavements. Typical types of flexible pavement distress and maintenance activites associated with maintenance of these types of distress are shown in Table 9.

#### Example Problem

A nine-mile segment of pavement in West Texas is in need of rehabilitation. The present pavement consists of 4 inches of asphalt concrete and chip seal coats placed over 8 inches of an unstabilized crushed limestone base. The existing pavement has extensive longitudinal and transverse cracks with a limited amount of alligator cracks. Ten

rehabilitation plans are under consideration. These plans are briefly described in Table 10 while costs for the rehabilitation alternatives are shown in Table 11. The anticipated life cycle costs are shown in Table 12.

Plans 1 and 7 have been selected to demonstrate the calculations associated with life-cycle costs. Plan 1 consists of a two inch asphalt concrete overlay with maintenance. Overlays are scheduled on a 7-year cycle. Plan 7 consists of recycling the existing 4 inches of asphalt bound material and a 2-inch overlay of asphalt concrete with maintenance. Subsequent overlays will not be needed during its 20-year life. Tables 13 and 14 show the life cycle costs calculations associated with Plans 1 and 7. Table 15 is a blank calculation sheet. Present worth values for all 10 rehabilitation alternatives on a 20-year life cycle are shown in Table 16. Values are shown for both 0 and 8 percent rates of returns.

#### COST UPDATING PROCEDURES

As cost information is obtained from various sources at various times, it is necessary to bring these costs to a common time frame. In order to convert cost figures contained in this report to a current date, the cost index method is suggested. The following equation can be used.

$$C_{c} = C_{o} \left(\frac{I_{c}}{I_{o}}\right)$$

where:  $C_c$  = Current estimated cost  $C_o$  = Cost at other time "O"

 $I_c = Current index number$ 

 $I_0$  = Index number at other time "0"

The index number to use depends upon the type of cost being estimated. Four indices are given from which to choose:

1. The ENR Construction Cost Index (3)

2. Bid Price Trends on Federal-Aid Highway Contracts (4)

3. The ENR Equipment Price Index (3)

4. The Cost Trends on Highway Maintenance and Operations (4)

The ENR Construction Cost Index (Table 17) was designed as a general purpose construction cost index to chart basic costs with time. It is a weighted index of constant quantities of structural steel, portland cement, lumber, and common labor, valued at \$100 in 1913.

The Bid Price Trends on Federal-Aid Highway Contracts is compiled by the Federal Highway Administration as reported by state transportation agencies (Table 18). The base year for this index is 1967.

The ENR Equipment Price Index (Table 19) is compiled from Bureau of Labor statistics and only the January, 1980, index is given (for a base year of 1967). To use this index subtract 100 from the 1980 index then divide by 13 to obtain an average yearly percent increase in equipment costs or use the percent change listed for the period 1979-1980.

The Cost Trends for Highway Maintenance and Operations (Table 20) are given through 1978 (the latest year available).

#### FUTURE COST TRENDS

The information contained in Tables 17-20 can be supplemented and used to project future cost trends associated with materials used for construction, rehabilitation and maintenance. Figure 1 and 2 illustrate

the rate of increase of costs since 1967. The rapid increases in costs between 1973 and 1974 were a result of ending the federal price controls and the Arab oil embargo. Highway price moderations during the period 1974 to 1977 were a result of a general decrease in highway construction work (more competition for the same projects) and moderation of the general rate of inflation and crude oil prices.

It is important to realize that considerable regional and local price differences exist throughout the United States. Figure 3 illustrates the differences among the price of asphalt concrete in Texas, Region 6 of the FHWA (Texas, Oklahoma, New Mexico, Arkansas and Louisiana) and the average price for the United States. Potential reasons for these differences are outlined in Reference 6. Three reasons which are responsible for price increases throughout the United States are the price of crude oil, asphalt cement and the cost of transportation. Figure 4 illustrates the price of imported crude oil from 1973 to present. (The United States presently imports about 45 percent of its crude oil.) Figure 5 shows the price increases associated with asphalt cement in Similar price increases are noted throughout the United States. Texas. The present posted price of asphalt cement is about 130 dollars F.O.B. refinery. Transportation cost increases will closely follow the price increases associated with crude oil.

A review of the attached cost trends indicate the following annual rates of inflation for the various items during the period 1977-1979 in the United States.

| Item or Index                     | Annual Rate<br>of Inflation,<br>Percent |
|-----------------------------------|-----------------------------------------|
| Building cost index               | 8.8                                     |
| Construction cost index           | 8.2                                     |
| Highway bid price index           | 21.2                                    |
| Highway maintenance cost index    | 7.8                                     |
| Asphalt concrete                  | 18.5                                    |
| Portland cement concrete          | 19.7                                    |
| Excavation                        | 19.8                                    |
| Mideastern crude oil              | 13.6                                    |
| Asphalt cement                    | 21.5                                    |
| Rail transportation               | 10.8                                    |
| Truck transportation (Texas only) | 16.3                                    |

The expected rate of cost increases for many construction related items in the 1980 to 1981 period are expected to be  $20 \pm percent$ . The expected price increases associated with asphalt cement and No. 2 fuel oil are shown in Figure 8.

#### CONCLUSIONS AND RECOMMENDATIONS

Cost and cost updating procedures have been presented for a wide range of construction, rehabilitation and maintenance operations. These data together with predictions of service life can be used to predict life cycle costs as demonstrated in the report.

#### REFERENCES

- 1. Haas, Ralph and W. R. Hudson, Pavement Management Systems, McGraw-Hill Book Company, 1978.
- 2. Yoder, E. J. and M. W. Witczak, Principles of Pavement Design, Second Edition, John Wiley and Sons, Inc., 1975.
- 3. "Engineering News Reocrd", March 20, 1980.

- 4. "Price Trends for Federal-Aid Highway Construction", U. S. Department of Transportation, Federal Highway Administration, 4th Quarter, 1979.
- 5. <u>Highway Statistics</u>, U. S. Department of Transportation, Federal Highway Administration, 1978.
- 6. Epps, J. A. and C. W. Smoot, "Asphalt Concrete Price Escalation" Report 214-15, Texas Transportation Institute, May, 1980.
- 7. U. S. News and World Report, June 23, 1980.
- 8. U. S. Department of Labor, Bureau of Labor Statistics.
- 9. Fehd, C., "Introducing Price Indexes for Railroad Freight", Monthly Labor Review, June, 1975.
- 10. Texas Railroad Commission, September, 1979.
- 11. Engineering News Record, December 20, 1979.

|       | Prese  | ent Worth F  | Capita | al Recovery | Factor        |         |
|-------|--------|--------------|--------|-------------|---------------|---------|
|       | I      | nterest Rate | e      | ]           | Interest Rate | 9       |
| Years | 6      | 7            | 8      | 6           | 7             | 8       |
| 1     | 0.9434 | 0.9436       | 0.9259 | 1.06000     | 1.07000       | 1.08000 |
| 2     | 0.8900 | 0.8734       | 0.8573 | 0.54544     | 0.55309       | 0.56077 |
| 3     | 0.8396 | 0.8173       | 0.7938 | 0.37411     | 0.38105       | 0.38803 |
| 4     | 0.7921 | 0.7629       | 0.7350 | 0.28859     | 0.29523       | 0.30192 |
| 5     | 0./4/3 | 0./130       | 0.6806 | 0.23740     | 0.24389       | 0.25046 |
| 6     | 0.7050 | 0.6663       | 0.6302 | 0.20336     | 0.20980       | 0.21632 |
| /     | 0.6651 | 0.6227       | 0.5835 | 0.17914     | 0.18555       | 0.19207 |
| 8     | 0.6274 | 0.5820       | 0.5403 | 0.16104     | 0.16/47       | 0.1/401 |
| 9     | 0.5919 | 0.5439       | 0.5002 | 0.14702     | 0.15349       | 0.16008 |
|       | 0.5584 | 0.5083       | 0.4632 | 0.1358/     | 0.14238       | 0.14903 |
|       | 0.5268 | 0.4/51       | 0.4289 | 0.12679     | 0.13336       | 0.14008 |
| 12    | 0.49/0 | 0.4440       | 0.3971 | 0.11928     | 0.12590       | 0.13270 |
| 13    | 0.4688 | 0.4150       | 0.36/7 | 0.11296     | 0.11965       | U.12652 |
| 14    | 0.4423 | 0.3878       | 0.3405 | 0.10758     | 0.11434       | 0.12130 |
| 15    | 0.41/3 | 0.3624       | 0.3152 | 0.10296     | 0.109/9       | 0.11683 |
| 10    | 0.3936 | 0.3387       | 0.2919 | 0.09895     | 0.10586       | 0.11298 |
| 1/    | 0.3174 | 0.3166       | 0.2703 | 0.09544     | 0.10243       | 0.10963 |
| 18    | 0.3505 | 0.2959       | 0.2502 | 0.09236     | 0.09941       | 0.106/0 |
| 19    | 0.3305 | 0.2765       | 0.2317 | 0.08962     | 0.09675       | 0.10413 |
| 20    | 0.3118 | 0.2584       | 0.2145 | 0.08/18     | 0.09439       | 0.10185 |
| 21    | 0.2942 | 0.2415       | 0.1987 | 0.08500     | 0.09229       | 0.09983 |
| 22    | 0.2/75 | 0.2257       | 0.1839 | 0.08305     | 0.09041       | 0.09803 |
| 23    | 0.2618 | 0.2109       | 0.1703 | 0.08128     | 0.08871       | 0.09642 |
| 24    | 0.2470 | 0.1971       | 0.1577 | 0.07968     | 0.08719       | 0.09498 |
| 25    | 0.2330 | 0.1842       | 0.1460 | 0.0/823     | 0.08581       | 0.09368 |
| 20    | 0.2198 | 0.1/22       | 0.1352 | 0.0/690     | 0.08456       | 0.09251 |
| 27    | 0.20/4 | 0.1609       | 0.1252 | 0.0/5/0     | 0.08343       | 0.09145 |
| 28    | 0.1956 | 0.1504       | 0.1159 | 0.01459     | 0.08239       | 0.09049 |
| 29    | U.1846 | 0.1406       | 0.1073 | 0.07358     | 0.08145       | 0.08962 |
| 30    | 0.1/41 | 0.1314       | 0.0994 | U.U/205     | 0.00033       | <b></b> |

Table 1. Present Worth and Capital Recovery Factors.

|                            | Representative Costs<br>\$ Per Sq. Yard - In. |             |  |  |
|----------------------------|-----------------------------------------------|-------------|--|--|
| Construction Operation     | Average                                       | Range       |  |  |
| Crushed stone base         | 0.60                                          | 0.30 - 0.75 |  |  |
| Gravel base                | 0.50                                          | 0.20 - 0.75 |  |  |
| Lime stabilized subgrade   | 0.30                                          | 0.15 - 0.45 |  |  |
| Cement stabilized subgrade | 0.40                                          | 0.20 - 0.50 |  |  |
| Cement treated base        | 1.00                                          | 0.60 - 1.40 |  |  |
| Asphalt treated base       | 1.00                                          | 0.60 - 1.25 |  |  |
| Limefly ashaggregate base  | 0.90                                          | 0.60 - 1.00 |  |  |
| Chip seal                  | 0.45                                          | 0.20 - 0.55 |  |  |
| Asphalt concrete           | 1.25                                          | 0.70 - 1.50 |  |  |
| Portland cement concrete   | 1.65                                          | 1.00 - 2.50 |  |  |

Table 2. Cost of Common Pavement Construction Operations - 1979.

 $1 yd^{2} = 8.361 \times 10^{-1} m^{2}$ 1 in. = 2.54 x  $10^{-2} m$ 

|                                 | Approximate        | Representative Cost<br>\$ per sq. yd. |             |  |  |
|---------------------------------|--------------------|---------------------------------------|-------------|--|--|
| Rehabilitation Operation        | Inickness,<br>Inch | Average                               | Range       |  |  |
| Chip seal coat                  | 1/2                | 0.45                                  | 0.20 - 0.55 |  |  |
| Fabric interlayers              | 1/4                | 1.10                                  | 0.75 - 1.75 |  |  |
| Asphalt-rubber interlayer       | 1/2                | 1.25                                  | 0.90 - 1.50 |  |  |
| Open graded friction course     | 5/8                | 1.50                                  | 1.00 - 2.50 |  |  |
| Asphalt concrete (dense graded) | 1                  | 1.50                                  | 1.00 - 2.50 |  |  |
| Asphalt concrete (dense graded) | 2                  | 2.60                                  | 1.80 - 4.80 |  |  |
| Asphalt concrete (dense graded) | 3                  | 3.30                                  | 2.40 - 6.00 |  |  |

Table 3. Cost of Pavement Rehabilitation Operations (1979).

 $1 \text{ yd}^2 = 8.361 \text{ x } 10^{-1} \text{ m}^2$ 1 in. = 2.54 x  $10^{-2} \text{ m}$ 

j

|                                                                                                           | Represer<br>\$ Per Sc | ntative Costs<br>q. Yard - In* |
|-----------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|
| Recycling Operation                                                                                       | Average               | Range                          |
| Heat and Plane Pavement - 3/4 inch depth                                                                  | 0.30                  | 0.15 - 0.60                    |
| Heat and Scarify Pavement - 3/4 inch depth                                                                | 0.50                  | 0.15 - 0.90                    |
| Cold Mill Pavement                                                                                        | 0.85                  | 0.30 - 1.25                    |
| Rip, Pulverize and Compact - Existing<br>Pavement less than 5 inches of Asphalt<br>Concrete               | 0.25                  | 0.13 - 0.45                    |
| Rip, Pulverize, Stabilize and Compact -<br>Existing Pavement less than 5 inches of<br>Asphalt Concrete    | 0.45                  | 0.20 - 0.50                    |
| Rip, Pulverize and Compact - Existing<br>Pavement greater than 5 inches of Asphalt<br>Concrete            | 0.30                  | 0.15 - 0.50                    |
| Rip, Pulverize, Stabilize and Compact -<br>Existing Pavement Greater than 5 inches of<br>Asphalt Concrete | 0.50                  | 0.25 - 0.60                    |
| Remove and Crush Portland Cement Concrete                                                                 | 0.60                  | 0.30 - 0.90                    |
| Remove and Crush Asphalt Concrete                                                                         | 0.40                  | 0.20 - 0.60                    |
| Cold Process - Remove, Crush, Place, Compact,<br>Traffic Control - (Cold Process) without<br>Stabilizer   | 0.50                  | 0.30 - 0.75                    |
| Cold Process - Remove, Crush, Mix, Place,<br>Compact, Traffic Control - (Cold Process)<br>with Stabilizer | 0.60                  | 0.35 - 0.90                    |
| Hot Process - Remove, Crush, Place, Compact,<br>Traffic Control - without Stabilizer                      | 0.75                  | 0.45 - 1.20                    |
| Hot Process - Remove, Crush, Mix, Place<br>Compact, Traffic Control - with Stabilizer                     | 0.90                  | 0.50 - 1.25                    |

Table 4. Costs of Common Recycling Operations - 1979.

 $^{\star}$ Costs are for a square yard inch except where listed.

1 yd. = 8.361 x  $10^{-1}$  m<sup>2</sup> 1 in. = 2.54 x  $10^{-2}$  m

|               |                                                |                                                 |            | Repre<br>Costs | sentative<br>Per Sq. Yd. |                                                                                                                                        |
|---------------|------------------------------------------------|-------------------------------------------------|------------|----------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Гуре          | Operation                                      | Option or Expected Results                      |            | Average        | Range                    | Assumptions                                                                                                                            |
|               | Heater Planer                                  | Without Additional Aggregate                    | A1         | 0.60           | 0.45 - 1.15              | heat, plane, clean-up, haul, traffic control                                                                                           |
|               |                                                | With Additional Aggregate                       | <b>A</b> 2 | 0.55           | 0.40 - 1.00              | spread aggregate, heat, roll, traffic control and clean-up                                                                             |
| ace           | Heater Scarify                                 | Heater scarify only                             | A3         | 0.60           | 0.35 - 1.00              | heat, scarify, recompact, traffic control (3/4 inch scarification)                                                                     |
| 91<br>A. Surf |                                                | Heater scarify plus thin overlay of aggregate   | A4         | 0.40           | 1.00 - 1.75              | heat, scarify, recompact, add 50 lbs.<br>of asphalt concrete per square yard,<br>compact, traffic control, (3/4 inch<br>scarification) |
| 0.            |                                                | Heater scarify plus thick overlay               | A5         | 4.10           | 3.25 - 5.00              | heat, scarify, recompact, add 300<br>lbs. of asphalt concrete per square<br>yard, compact, traffic control (3/4<br>inch scarification) |
|               | Surface<br>Milling or                          | Surface milling only                            | A6         | 0.75           | 0.45 - 1.50              | milling, cleaning, hauling, traffic<br>control. (l inch removal)                                                                       |
|               | Grinding                                       | Surface milling plus thin overlay               | A7         | 3.25           | 2.50 - 3.75              | milling, cleaning, hauling, 200 lbs.<br>of asphalt concrete, traffic control<br>(l inch removal)                                       |
|               |                                                | Surface milling plus thick overlay              | A8         | 5.75           | 4.70 - 7.20              | milling, cleaning, hauling 400 lbs.<br>of asphalt concrete, traffic control<br>(l inch removal)                                        |
| ]n-Place      | Asphalt<br>Concrete surface<br>less than 4 in. | Minor structural improvement without new binder | B1         | 3.50           | 2.75 - 4.25              | rip, pulverize and remix to 4 inch<br>depth with 2 inches of asphalt<br>concrete, traffic control                                      |

الالاجار بتقدير ويتجار والمحاد المتدار المتق

an and a second of the

,

#### Table 5. Representative Costs for Pavement Recycling Operations (1979).

.

and a sugger a second and a second second

ы. С 10 AV 18 ~

| a an | n an an an george name wage a be                  |                                                 |    |         | sentative<br>Per Sq. Yd. | Ň                                                                                                                   |
|------------------------------------------|---------------------------------------------------|-------------------------------------------------|----|---------|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| Туре                                     | Operation                                         | Option or Expected Results                      |    | Average | Range                    | Assumptions                                                                                                         |
|                                          | Asphalt Concrete<br>Surface less than<br>5 in.    | Minor structural improvement with new binder    | B2 | 3.00    | 2.40 - 3.70              | rip, pulverize and remix with stabil-<br>izer to 4 inches depth with 1 inch of<br>asphalt concrete, traffic control |
|                                          |                                                   | Major structural improvement without new binder | B3 | 6.50    | 5.10 - 7.90              | rip, pulverize and remix to 6 inches<br>depth with 4 inches of asphalt<br>concrete, traffic control                 |
| e                                        |                                                   | Major structural improvement with new binder    | B4 | 5.10    | 4.10 - 6.20              | rip, pulverize and remix with stabil-<br>izer to 6 inch depth with 2 inches of<br>asphalt concrete, traffic control |
| In-Plac                                  | Asphalt Concrete<br>Surface Greater<br>Than 5 in. | Minor structural improvement without new binder | 85 | 3.75    | 3.00 - 4.50              | rip, pulverize and remix to 4 inch<br>depth with 2 inches of asphalt<br>concrete, traffic control                   |
|                                          |                                                   | Minor structural improvement with new binder    | B6 | 3.25    | 2.60 - 3.90              | rip, pulverize and remix with stabilizer to 4 inch depth with 1 inch of asphalt concrete, traffic control           |
|                                          |                                                   | Major structural improvement without new binder | 87 | 6.90    | 5.50 - 8.25              | rip, pulverize and remix to 6 inch<br>depth with 4 inches of asphalt<br>concrete, traffic control                   |
|                                          |                                                   | Major structural improvement with new binder    | 88 | 5.50    | 4.35 - 6.65              | rip, pulverize and remix with stabil-<br>izer to 6 inch depth with 2 inches of<br>asphalt concrete, traffic control |
| itral<br>ant                             | Cold Mix<br>Process                               | Minor structural improvement without new binder | CI | 4.50    | 3.60 - 5.40              | remove, crush and replace to 4 inch<br>depth with 2 inches of asphalt<br>concrete, traffic control                  |
| C. Cer<br>Pl₫                            |                                                   | Minor structural improvement with new binder    | C2 | 3.75    | 3.00 - 4.50              | remove, crush, mix, and replace to<br>4 inch depth with 1 inch of asphalt<br>concrete, traffic control              |

. . .

-

----

Same and the second second second

Table 5. Continued

ATTEMPT CONTRACTOR STREET AT

|      |                  |                                                 |    | Repre<br>Costs | sentative<br>Per Sq. Yd. |                                                                                                         |
|------|------------------|-------------------------------------------------|----|----------------|--------------------------|---------------------------------------------------------------------------------------------------------|
| Туре | Operation        | Option or Expected Result                       |    | Average        | Range                    | Assumption                                                                                              |
| -    | Cold Mix Process | Major structural improvement without new binder | C3 | 8.00           | 6.40 - 9.70              | remove, crush and replace to 6 inch<br>depth with 4 inches of asphalt<br>concrete, traffic control      |
|      |                  | Major structrual improvement with new binder    | C4 | 6.25           | 5.00 - 7.50              | remove, crush, mix and replace to 6<br>inch depth with 2 inches of asphalt<br>concrete, traffic control |
|      | Hot Mix Process  | Minor structural improvement without new binder | C5 | 4.90           | 3.90 - 5.90              | remove, crush, and replace to 4 inch<br>depth with 1.5 inches of asphalt<br>concrete, traffic control   |
|      |                  | Minor structural improvement with new binder    | C6 | 4.10           | 3.25 - 5.00              | remove, crush, mix and replace to 4<br>inch depth with 1/2 inch of asphalt<br>concrete, traffic control |
|      |                  | Major structural improvement without new binder | C7 | 8.25           | 6.60 - 9.90              | remove, crush and replace to 6 inch<br>depth with 3 inches of asphalt<br>concrete, traffic control      |
|      |                  | Major structural improvement with new binder    | C8 | 6.50           | 5.25 - 7.75              | remove, crush, mix and replace to 6<br>inch depth with 1 inch of asphalt<br>concrete                    |

\_\_\_\_

-----

Table 6. Unit Cost for Flexible Pavement Maintenance Operations (1977).

|                                      | General Description                                                                                                                    |                                              | No.                                                          | Described Ave                                                                                                                                                               | Suggest Cost, Dollars |       |        |                 |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|--------|-----------------|
| Descriptive<br>Title                 |                                                                                                                                        | State                                        |                                                              | Unit Cost,<br>Dollars                                                                                                                                                       | Avg.                  | Low   | Hign   | Unit<br>Meas.   |
| Fog Seal -<br>Partial Width          | Light application of diluted emulsion<br>or a proprietary material over a<br>cartial lane.                                             | ARI                                          | 109                                                          | 0.095/yd <sup>2</sup>                                                                                                                                                       | . 095                 | .075  | .131   | yd <sup>2</sup> |
| Fog Seal -<br>Full Wigth             | Light application of diluted emulsion<br>or a proprietary material over a full<br>lane width in a continuous section.                  | ARI<br>CAL<br>NEV<br>ND                      | 108<br>01.983<br>101.06<br>435                               | 0.069/yd <sup>2</sup><br>0.06/yd2<br>0.06/yd <sup>2</sup><br>0.11/yd <sup>2</sup>                                                                                           | .06                   | . 05  | .11    | ۶d2             |
| Chip Seal -<br>Partial Width         | Application of asphait and cover aggregate to a limited area.                                                                          | ARI<br>CAL<br>NEV<br>ND                      | 104<br>01-051<br>101.05<br>412                               | 0.36/yd <sup>2</sup><br>0.41/yd <sup>2</sup><br>0.23/yd <sup>2</sup><br>0.26/yd <sup>2</sup>                                                                                | . 35                  | .23   | .41    | رمر2            |
| Chip Seal -<br>Full Width            | Application of asphalt and cover<br>aggregate to a full lane width in a<br>continuous section.                                         | ARI<br>CAL<br>NEV<br>ND                      | 106<br>01-054<br>101.09<br>422                               | 0.18/yd <sup>2</sup><br>0.24/yd <sup>2</sup><br>0.23/yd <sup>2</sup><br>0.21/yd <sup>2</sup>                                                                                | .21                   | . 18  | . 24   | yd <sup>2</sup> |
| Surface<br>Patch-Hand<br>Method      | Application of a Premix material to the surface of the pavement by hand method.                                                        | ARI<br>Cal<br>Nev                            | 102<br>01-031<br>101.02                                      | 34.56/yd <sup>3</sup><br>147.00/yd <sup>3</sup><br>123.60/yd <sup>3</sup>                                                                                                   | 130.00                | 60.00 | 170.00 | yd <sup>3</sup> |
| Surface<br>Patch-Machine<br>Method   | Application of a Premix material to<br>the surface of the pavement with<br>machine.                                                    | ARI<br>CAL<br>CAL<br>CAL<br>CAL<br>NEV<br>ND | 102<br>01-021<br>01-022<br>01-023<br>01-024<br>101.03<br>421 | 34.56/yd <sup>3</sup><br>52.50/yd <sup>3</sup><br>43.00/yd <sup>3</sup><br>28.50/yd <sup>3</sup><br>40.40/yd <sup>3</sup><br>27.96/yd <sup>3</sup><br>22.35/yd <sup>3</sup> | 28.00                 | 20.00 | 40.00  | yd <sup>3</sup> |
| Digout &<br>Repair Hand<br>Method    | Removal and repair of limited areas<br>by use of hand tools.                                                                           | ARI<br>CAL<br>ND                             | 101<br>01-034<br>411                                         | 112.29/yd <sup>3</sup><br>145.00/yd <sup>3</sup><br>55.34/yd <sup>3</sup>                                                                                                   | 110.00                | 40.00 | 160.00 | yd <sup>3</sup> |
| Digout &<br>Repair Machine<br>Method | Removal and repair of limited areas<br>by use of mechanized equipment.                                                                 | ARI<br>CAL<br>NEV                            | 105<br>01-011<br>101.01                                      | 27.38/yd <sup>3</sup><br>68.00/yd <sup>3</sup><br>17.35/yd <sup>3</sup>                                                                                                     | 25.00                 | 10.00 | 70.00  | yd <sup>3</sup> |
| Crack<br>Pouring                     | Pouring cracks in flexible pave-<br>ment with asphalt material (may<br>include cleaning with compressed<br>air and covering with sand. | ARI<br>CAL<br>CAL<br>NEV<br>ND               | 103<br>01-041<br>01-042<br>101.07<br>414                     | 3.38/gal<br>4.83/gal<br>6.41/gal<br>6.41/gal<br>1.18/gal                                                                                                                    | 3.25                  | ì.10  | 6.50   | ga l            |
| Asphalt<br>Concrete<br>Overlay       | Application of an asphalt concrete<br>overlay usually less than about 2<br>inches.                                                     | TEX<br>US                                    |                                                              | 21.00 <sup>*</sup> /ton<br>15.12 <sup>*</sup> /ton                                                                                                                          | 31.00                 | 23.00 | 43.00  | yd <sup>3</sup> |

\*Cost per ton

61

Metric Conversions:  $1 \text{ yd}^2 = 0.83 \text{ m}$   $1 \text{ yd}^3 = 0.76 \text{ m}$  1 ton = 907 kg

N

- - - - **-**

|                           | Maintenance Activity<br>General Description                                                                   |                   |                            | Poportod Ava                      | Suggested Unit Cost, Dollars |      |       |                    |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-----------------------------------|------------------------------|------|-------|--------------------|--|
| Descriptive<br>Title      |                                                                                                               | State             | No.                        | Unit Costs,<br>Dollars            | Avg.                         | Low  | High  | Unit of<br>Measure |  |
| Mudjacking                | Drilling holes and pumping<br>concrete slurry under slab<br>to fill the voids and raise<br>the slab to grade. | CAL               | 02-011                     | 7.28/yd <sup>2</sup>              | 7.25                         |      |       | sq yd              |  |
| Temporary<br>Patching     | Patch with bituminous materials.                                                                              | CAL               | 02-021                     | 25.50/yd <sup>3</sup>             | 80                           | 20   | 160   | cu yd              |  |
| Permanent<br>Patching     | Patch with P.C.C.                                                                                             | NEV               | 111.02                     | 106.26/yd <sup>3</sup>            | 375                          |      |       | cu yd              |  |
| Joint<br>Sealing          | Cleaning joint, pour joint and apply sand as required.                                                        | CAL<br>CAL<br>NEV | 02-042<br>02-043<br>111.05 | 5.57/gal<br>4.77/gal<br>10.00/gal | 7.00                         | 5.00 | 12.00 | gal                |  |
| Expansion<br>Joint Repair | Cut along distressed area.<br>Clean out area, place<br>filler material.                                       | NEV               | 111.06                     | 6.79/lin ft                       | 6.75                         | 5.00 | 40.00 | lin ft             |  |

Table 7. Unit Cost for Rigid Pavement Maintenance Operations (1977).

Metric Conversion:  $yd^2 = 0.83 m^2$  $yd^3 = 0.76 m^3$ gal = 0.26 litreft = 0.305 m

| Ma és han an ao                     | Cost Dol | lars <sup>*</sup> Per | Deveent of Total                          |  |  |
|-------------------------------------|----------|-----------------------|-------------------------------------------|--|--|
| Activity                            | Sq. Yd.  | Lane Miles            | Percent of lotal<br>Pavement Area Treated |  |  |
| Fog Seal -<br>Partial Width         | 0.045    | 320                   | 50 percent                                |  |  |
| Fog Seal -<br>Full Width            | 0.06     | 420                   | 100 percent                               |  |  |
| Chip Seal -<br>Partial Width        | 0.06     | 420                   | 15 percent                                |  |  |
| Chip Seal -<br>Full Width           | 0.21     | 1,500                 | 100 percent                               |  |  |
| Surface Patch -<br>Hand Method      | 0.10     | 700                   | 2.5 percent<br>1 inch thick               |  |  |
| Surface Patch -<br>Machine Method   | 0.08     | 560                   | 10 percent<br>1 inch thick                |  |  |
| Digout & Repair<br>Hand Method      | 0.25     | 1,760                 | 2 percent<br>4 inches thick               |  |  |
| Digout & Repair -<br>Machine Method | 0.20     | 1,400                 | 5 percent<br>6 inches thick               |  |  |
| Crack Pouring                       | 0.12     | 850                   | 250 lin. ft.<br>per station               |  |  |
| Asphalt Concrete<br>Overlay         | 1.90     | 13,400                | 100 percent<br>2 inches thick             |  |  |

<sup>7</sup> Table 8. Representative Costs for Maintenance and Rehabilitation Activities - 1977.

\*Costs are for square yards of total pavement surface maintained. For example, surface patching by the hand method may have been applied over only 5 percent of total pavement suface area, yet costs reported are for the total pavement area maintained or one mile of pavement.

Metric Conversions:

5.5

- $1 yd^2 = 0.83 m^2$
- 1 mi = 1609 m
- 1 in. = 0.024 m
- 1 ft. = 0.305 m

| Type of Distress         | Maintenance Activity                                                      |                                                                                 |  |  |  |  |  |  |
|--------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| Rutting                  | Surface Patch - Hand<br>Surface Patch - Machine                           | Asphalt Concrete Overlay                                                        |  |  |  |  |  |  |
| Raveling                 | Fog Seal - Partial Width<br>Fog Seal - Full Width                         | Chip Seal - Partial Width<br>Chip Seal - Full Width                             |  |  |  |  |  |  |
| Flushing<br>(Bleeding)   | Overlay<br>Chip Seal - Full Width                                         |                                                                                 |  |  |  |  |  |  |
| Corrugations             | Surface Patch - Hand<br>Surface Patch - Machine                           | Digout & Repair - Hand<br>Digout & Repair - Machine                             |  |  |  |  |  |  |
| Alligator<br>Cracking    | All maintenance operations                                                | could be used                                                                   |  |  |  |  |  |  |
| Longitudinal<br>Cracking | Fog Seal - Partial Width<br>Fog Seal - Full Width<br>Crack Pouring        | Chip Seal - Partial<br>Chip Seal - Full Width<br>Asphalt Cone - Overlay         |  |  |  |  |  |  |
| Transverse<br>Cracking   | Crack Pouring<br>Chip Seal - Full Width                                   | Asphalt Concrete Overlay                                                        |  |  |  |  |  |  |
| Patching                 | Surface Patch - Hand<br>Surface Patch - Machine<br>Chip Seal - Full Width | Digout & Repair - Hand<br>Digout & Repair - Machine<br>Asphalt Concrete Overlay |  |  |  |  |  |  |
| Failures                 | Surface Patch - Hand<br>Surface Patch - Machine<br>Asphalt Cone Overlay   | Digout & Repair - Hand<br>Digout & Repair - Machine                             |  |  |  |  |  |  |

## Table 9. Maintenance Activities Associated with Flexible Pavement Distresses.

Table 10. Pavement Rehabilitation Alternatives Defined.

- Plan 1: Two-inch asphalt concrete overlay with maintenance on a 7-year cycle (asphalt concrete \$25.00 per ton).
- Plan 2: Chip seal plus 2 -inch asphalt concrete overlay with maintenance (chip seal \$0.55 per square yard, asphalt concrete \$25.00 per ton).
- Plan 3: Fabric reinforcement plus 2-inch asphalt concrete overlay with maintenance (fabric reinforcement \$1.25 per square yard, asphalt concrete \$25.00 per ton).
- Plan 4: Recycle existing 4 inches of material and blend a selected aggregate into recycled mixture. A 2-inch overlay is scheduled after 5 years (recycling at \$20.00 per ton and overlay at \$25.00 per ton).
- Plan 5: Recycling existing 4 inches of asphalt materials and 2 inches of asphalt concrete overlay with maintenance (recycling \$16.00 per ton, asphalt concrete \$25.00 per ton).
- Plan 6: Recycling existing 4 inches of asphalt materials and 2 inches of asphalt concrete overlay with maintenance which includes a 2-inch overlay (recycling \$16.00 per ton, asphalt concrete \$25.00 per ton).
- Plan 7: Recycling existing 4 inches of asphalt materials and 2 inches of asphalt concrete overlay with maintenance (recycling \$20.00 per ton, asphalt concrete \$25.00 per ton).
- Plan 8: Delay recycling 4 years and then recycle and add 2 inches of asphalt concrete overlay with maintenance (recycling \$16.00 per ton, asphalt concrete \$25.00 per ton).
- Plan 9: Heater-scarify to a depth of 1 to 1.5 inch and 2 inches of asphalt concrete overlay with maintenance (heater-scarifica-tion \$0.90 per square yard, asphalt concrete \$25.00 per ton).
- Plan 10: Aspahlt-rubber interlayer and 2 inches of asphalt concrete overlay with maintenance (asphalt-rubber interlayer \$1.25 per square yard, aspahlt concrete \$25.00 per ton).

| Table 11. | Cost Data | Used to | Analyze | Rehabilitation | Strategies. |
|-----------|-----------|---------|---------|----------------|-------------|
|-----------|-----------|---------|---------|----------------|-------------|

|                           |        | Cost       |  |
|---------------------------|--------|------------|--|
| Material or Operation     | \$/Ton | \$/Sq. Yd. |  |
| Asphalt Concrete          | 25.00  | 1.25*      |  |
| Recycle Asphalt Concrete  | 20.00  | 1.00*      |  |
| Recycle Asphalt Concrete  | 16.00  | 0.80*      |  |
| Chip Seal Coat            |        | 0.55       |  |
| Fabric Interlayer         |        | 1.25       |  |
| Heater-Scarification      |        | 0.90       |  |
| Crack Sealing             |        | 0.15       |  |
| Asphalt-Rubber Interlayer |        | 1.25       |  |

\*Cost per square yard for one-inch thickness.

The second second

Table 12. Rehabilitation Alternatives Cost Schedule.

| Year | Plan l<br>2" A.C.<br>Overlay | Plan 2<br>Seal Coat<br>+2" A.C.<br>Overlay | Plan 3<br>Fabric<br>Reinforcement<br>+2" A.C.<br>Overlay | Plan 4<br>Recycle | Plan 5<br>Recycle<br>+2" A.C.<br>Overlay | Plan 6<br>Recycle<br>+2" A.C.<br>Overlay | Plan 7<br>Recycle<br>+2" A.C.<br>Overlay | Plan 8<br>Recycle<br>+2" A.C.<br>Overlay | Plan 9<br>Heater-Scarify<br>+2" A.C.<br>Overlay | Plan 10<br>Asphalt-Rubber<br>Interlayer<br>+2" A.C.<br>Overlay |
|------|------------------------------|--------------------------------------------|----------------------------------------------------------|-------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|
| 1980 | 2.50                         | 3.05                                       | 3.75                                                     | 4.00              | 5.70                                     | 5.70                                     | 6.50                                     | 0.15                                     | 3.40                                            | 3.75                                                           |
| 1981 |                              |                                            |                                                          |                   |                                          |                                          |                                          | 0.15                                     |                                                 |                                                                |
| 1982 |                              |                                            |                                                          |                   |                                          |                                          |                                          | 0.15                                     |                                                 |                                                                |
| 1983 | 0.08                         |                                            |                                                          |                   |                                          |                                          |                                          | 0.15                                     |                                                 |                                                                |
| 1984 | 0.13                         | 0.08                                       | 0.08                                                     |                   |                                          |                                          |                                          | 6.50                                     | 0.08                                            | 0.08                                                           |
| 1985 | 0.15                         | 0.13                                       |                                                          | 2.50              |                                          |                                          |                                          |                                          | ·                                               |                                                                |
| 1986 | 0.15                         | 0.15                                       | 0.13                                                     |                   |                                          |                                          |                                          |                                          | 0.13                                            | 0.13                                                           |
| 1987 | 2.50                         | 0.15                                       |                                                          |                   |                                          |                                          |                                          |                                          |                                                 |                                                                |
| 1988 |                              | 0.15                                       | 0.15                                                     |                   | 0.08                                     | 0.08                                     | 0.08                                     |                                          | 0.15                                            | 0.15                                                           |
| 1989 |                              | 2.50                                       |                                                          |                   |                                          |                                          |                                          |                                          |                                                 |                                                                |
| 1990 | 0.08                         |                                            | 2.50                                                     |                   | 0.13                                     | 0.13                                     | 0.13                                     |                                          | 2.50                                            | 2.50                                                           |
| 1991 | 0.13                         |                                            |                                                          | 0.08              |                                          |                                          |                                          | 0.08                                     |                                                 |                                                                |
| 1992 | 0.15                         | 0.08                                       |                                                          | 0.15              | 0.15                                     | 0.15                                     |                                          |                                          |                                                 |                                                                |
| 1993 | 0.15                         | 0.13                                       | 0.08                                                     | 0.13              |                                          |                                          |                                          | 0.13                                     | 0.08                                            | 0.08                                                           |
| 1994 | 2.50                         | 0.15                                       | 0.13                                                     |                   | 0.15                                     | 2.50                                     | 0.15                                     |                                          | 0.13                                            | 0.13                                                           |
| 1995 |                              | 0.15                                       | 0.15                                                     | 0.15              |                                          |                                          |                                          | 0.15                                     | 0.15                                            | 0.15                                                           |
| 1996 |                              | 3.05                                       | 0.15                                                     |                   | 0.15                                     |                                          | 0.15                                     |                                          | 0.15                                            | 0.15                                                           |
| 1997 | 0.08                         |                                            | 0.15                                                     | 0.15              |                                          |                                          |                                          | 0.15                                     | 0.15                                            | 0.15                                                           |
| 1998 | 0.13                         |                                            | 0.15                                                     |                   | 0.15                                     | 0.08                                     | 0.15                                     |                                          | 0.15                                            | 0.15                                                           |
| 1999 | 0.15                         |                                            | 0.15                                                     | 0.15              |                                          |                                          |                                          | 0.15                                     | 0.15                                            | 0.15                                                           |
| 2000 | 0.15                         | 0.08                                       | 0.15                                                     |                   | 0.15                                     | 0.13                                     | 0.15                                     |                                          | 0.15                                            | 0.15                                                           |

\*Numbers represent costs per square yard.

١

1.

57**79**1

(1, 1)

| Year          |         | Cost,<br>Dollars Per<br>Square Yard | Present Worth<br>Factor, 8% | Present Worth,<br>Dollars |
|---------------|---------|-------------------------------------|-----------------------------|---------------------------|
| Initial Cost  |         | 2.50                                | 1.0000                      | 2.500                     |
| 1             |         |                                     | 0.9259                      |                           |
| 2             |         |                                     | 0.8573                      |                           |
| 3             | RM      | 0.08                                | 0.7938                      | 0.064                     |
| 4             | RM      | 0.13                                | 0.7350                      | 0.096                     |
| 5             | RM      | 0.15                                | 0.6806                      | 0.102                     |
| 6             | RM      | 0.15                                | 0.6302                      | 0.095                     |
| 7             | Overlay | 2.50                                | 0.5835                      | 1.459                     |
| 8             |         |                                     | 0.5403                      |                           |
| 9             |         |                                     | 0.5002                      |                           |
| 10            | RM      | 0.08                                | 0.4632                      | 0.037                     |
| 11            | RM      | 0.13                                | 0.4289                      | 0.056                     |
| 12            | RM      | 0.15                                | 0.3971                      | 0.060                     |
| 13            | RM      | 0.15                                | 0.3677                      | 0.055                     |
| 14            | Overlay | 2.50                                | 0.3405                      | 0.851                     |
| 15            |         |                                     | 0.3152                      |                           |
| 16            |         |                                     | 0.2919                      |                           |
| 17            | RM      | 0.08                                | 0.2703                      | 0.022                     |
| 18            | RM      | 0.13                                | 0.2502                      | 0.033                     |
| 19            | RM      | 0.15                                | 0.2317                      | 0.035                     |
| 20            | RM      | 0.15                                | 0.2145                      | 0.032                     |
| Salvage Value |         | 0.00                                | 0.2145                      | -0.000                    |

Table 13. Life-Cycle Calculations for Plan 1.

TOTAL = <u>5.497</u> ←

Uniform Annual Cost = Present Worth x Capital Recovery Factor. =  $5.497 \times 0.10185$ 

\*RM = Routine maintenance

Overlay - Asphalt concrete overlay

| Year          |     | Cost, Dollars Per<br>Square Yard | Present Worth<br>Factor, 8% | Present Worth,<br>Dollars |
|---------------|-----|----------------------------------|-----------------------------|---------------------------|
| Initial Cost  |     | 6.50                             | 1.0000                      | 6.500                     |
| 1             |     |                                  | 0.9259                      |                           |
| 2             |     |                                  | 0.8573                      |                           |
| 3             |     |                                  | 0.7938                      |                           |
| 4             |     |                                  | 0.7350                      |                           |
| 5             |     |                                  | 0.6806                      |                           |
| 6             |     |                                  | 0.6302                      |                           |
| 7             |     |                                  | 0.5835                      |                           |
| 8             | RM* | 0.08                             | 0.5403                      | 0.043                     |
| 9             |     |                                  | 0.5002                      |                           |
| 10            | RM  | 0.13                             | 0.4632                      | 0.060                     |
| 11            |     |                                  | 0.4289                      |                           |
| 12            | RM  | 0.15                             | 0.3971                      | 0.060                     |
| 13            |     |                                  | 0.3677                      |                           |
| 14            | RM  | 0.15                             | 0.3405                      | 0.051                     |
| 15            |     |                                  | 0.3152                      |                           |
| 16            | RM  | 0.15                             | 0.2919                      | 0.044                     |
| 17            |     |                                  | 0.2703                      |                           |
| 18            | RM  | 0.15                             | 0.2502                      | 0.038                     |
| 19            |     |                                  | 0.2317                      |                           |
| 20            | RM  | 0.15                             | 0.2145                      | 0.032                     |
| Salvage Value |     | 0.00                             | 0.2145                      | -0.000                    |
| TOTAL =       |     |                                  | Tot                         | al = <u>6.829</u> ↔       |

\_Table 14. Life-Cycle Calculations for Plan 7.

.

.

S

t. F

Uniform Annual Cost = Present Worth x Capital Recovery Factor.

$$= 6.828 \times 0.1085$$
  
= 0.695 \leftarrow

\*RM = Routine maintenance

| Year          | Cost, Dollars Per<br>Square Yard | Present Worth<br>Factor, 8% | Present Worth,<br>Dollars |  |  |
|---------------|----------------------------------|-----------------------------|---------------------------|--|--|
| Initial Cost  |                                  | 1.0000                      |                           |  |  |
| 1             |                                  | 0.9259                      |                           |  |  |
| 2             |                                  | 0.8573                      |                           |  |  |
| 3             |                                  | 0.7938                      |                           |  |  |
| 4             |                                  | 0.7350                      |                           |  |  |
| 5             |                                  | 0.6806                      |                           |  |  |
| 6             |                                  | 0.6302                      |                           |  |  |
| 7             |                                  | 0.5835                      |                           |  |  |
| 8             |                                  | 0.5403                      |                           |  |  |
| 9             |                                  | 0.5002                      |                           |  |  |
| 10            |                                  | 0.4632                      |                           |  |  |
| 11            |                                  | 0.4289                      |                           |  |  |
| 12            |                                  | 0.3971                      |                           |  |  |
| 13            |                                  | 0.3677                      |                           |  |  |
| 14            |                                  | 0.3405                      |                           |  |  |
| 15            |                                  | 0.3152                      |                           |  |  |
| 16            |                                  | 0.2919                      |                           |  |  |
| 17            |                                  | 0.2703                      |                           |  |  |
| 18            |                                  | 0.2502                      |                           |  |  |
| 19            |                                  | 0.2317                      |                           |  |  |
| 20            |                                  | 0.2145                      |                           |  |  |
| Salvage Value |                                  | 0.2145                      |                           |  |  |

Table 15. Calculation Form for Life-Cycling Costing.

TOTAL = \_\_\_\_\_

Total = \_\_\_\_\_ +

Uniform Annual Cost = Present Worth x Capital Recovery Factor.

= \_\_\_\_\_ x 0.10185 = \_\_\_\_\_ ←

#### Table 16. Cost and Energy Summary.

|      |                                                |         |              | Cc      | ost, Dollars/Sq. Yd. |           |  |
|------|------------------------------------------------|---------|--------------|---------|----------------------|-----------|--|
| Dlan |                                                | Energy, | BTU/Sq. Yd.  |         | 20 Year              | Life      |  |
| No.  | Method                                         | Initial | 20 Year Life | Initial | 0 Percent            | 8 Percent |  |
| 1    | 2" AC Overlay                                  | 57,800  | 200,000      | 2.50    | 9.03                 | 5.50      |  |
| 2    | Seal Coat + 2" AC Overlay                      | 61,700  | 203,000      | 3.05    | 9.85                 | 5.80      |  |
| 3    | Fabric + 2" AC Overlay                         | 60,000  | 145,000      | 3.75    | 7.72                 | 5.44      |  |
| 4    | Recycle                                        | 119,600 | 190,000      | 4.00    | 7.16                 | 5.91      |  |
| 5    | Recycle + 2" AC Overlay                        | 177,400 | 195,000      | 5.70    | 6.66                 | 6.03      |  |
| 6    | Recycle + 2" AC Overlay                        | 177,400 | 244,000      | 5.70    | 8.77                 | 6.76      |  |
| 7    | Recycle + 2" AC Overlay                        | 177,400 | 195,000      | 6.50    | 7.46                 | 6.83      |  |
| 8    | Recycle + 2" AC Overlay                        | 2,200   | 201,000      | 0.15    | 7.76                 | 5.52      |  |
| 9    | Heater-Scarify + 2"<br>AC Overlay              | 74,800  | 160,000      | 3.40    | 7.37                 | 5.09      |  |
| 10   | Asphalt Rubber Inter-<br>layer + 2" AC Overlay | 64,000  | 149,000      | 3.57    | 7.72                 | 5.44      |  |

N

 $^{\star}\ensuremath{\mathsf{Equal}}$  annual costs assuming 0 and 8 percent rate of return.

|                                                                                                                                      | Monthly                                                                                                                       |                                                                                                                               |                                                                                                                               |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                        |                                                                                                                                |                                                                                                                                | A                                                                                                                              |                                                                                                                                        |                                                                                                                                        |                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                      | Jan.                                                                                                                          | Feb.                                                                                                                          | Mar.                                                                                                                          | Apr.                                                                                                                           | May                                                                                                                            | June                                                                                                                           | July                                                                                                                                   | Aug.                                                                                                                           | Sept.                                                                                                                          | Oct.                                                                                                                           | Nov.                                                                                                                                   | Dec.                                                                                                                                   | Annua I<br>Average                                                                                                                     |
| 1960<br>1961<br>1962<br>1963<br>1964<br>1965<br>1966<br>1967<br>1968<br>1969<br>1970<br>1971<br>1972<br>1973<br>1974<br>1975<br>1976 | 812<br>834<br>855<br>883<br>918<br>948<br>983<br>1039<br>1107<br>1216<br>1309<br>1469<br>1686<br>1838<br>1940<br>2103<br>2305 | 813<br>834<br>858<br>883<br>920<br>957<br>997<br>1041<br>1114<br>1229<br>1311<br>1467<br>1691<br>1850<br>1940<br>2128<br>2314 | 813<br>834<br>861<br>884<br>922<br>958<br>998<br>1043<br>1117<br>1238<br>1314<br>1496<br>1697<br>1859<br>1940<br>2128<br>2322 | 815<br>838<br>863<br>885<br>926<br>957<br>1006<br>1044<br>1124<br>1249<br>1329<br>1513<br>1707<br>1874<br>1961<br>2135<br>2327 | 823<br>847<br>872<br>894<br>930<br>958<br>1014<br>1059<br>1142<br>1258<br>1351<br>1551<br>1735<br>1880<br>1961<br>2164<br>2357 | 827<br>850<br>873<br>899<br>935<br>969<br>1029<br>1068<br>1154<br>1270<br>1375<br>1589<br>1761<br>1896<br>1993<br>2205<br>2410 | 829<br>854<br>877<br>909<br>945<br>977<br>1031<br>1078<br>1158<br>1283<br>1414<br>1618<br>1772<br>1901<br>2040<br>2248<br>2414<br>2570 | 830<br>854<br>881<br>914<br>948<br>934<br>1033<br>1089<br>1171<br>1292<br>1418<br>1629<br>1777<br>1902<br>2076<br>2274<br>2445 | 831<br>854<br>881<br>914<br>947<br>986<br>1034<br>1092<br>1186<br>1285<br>1421<br>1654<br>1786<br>1929<br>2089<br>2275<br>2465 | 830<br>854<br>880<br>916<br>948<br>986<br>1032<br>1096<br>1190<br>1299<br>1434<br>1657<br>1794<br>1933<br>2100<br>2293<br>2478 | 830<br>855<br>880<br>914<br>948<br>986<br>1033<br>1097<br>1191<br>1305<br>1445<br>1665<br>1808<br>1935<br>2094<br>2292<br>2486<br>2650 | 831<br>855<br>880<br>915<br>948<br>988<br>1034<br>1098<br>1201<br>1305<br>1445<br>1672<br>1816<br>1939<br>2101<br>2297<br>2490<br>2660 | 824<br>847<br>872<br>901<br>936<br>971<br>1019<br>1070<br>1155<br>1269<br>1385<br>1581<br>1753<br>1895<br>2020<br>2212<br>2401<br>2577 |
| 1977<br>1978<br>1979<br>1980                                                                                                         | 2672<br>2872<br>3132                                                                                                          | 2505<br>2681<br>2877<br>3134                                                                                                  | 2693<br>2886<br>3159                                                                                                          | 2698<br>2886<br>3151                                                                                                           | 2515<br>2783<br>2889<br>3139                                                                                                   | 2853<br>2984<br>3198                                                                                                           | 2821<br>3052                                                                                                                           | 2829<br>3071                                                                                                                   | 2851<br>3120                                                                                                                   | 2875<br>2851<br>3122                                                                                                           | 2861<br>3131                                                                                                                           | 2869<br>2869<br>3140                                                                                                                   | 2776<br>3003                                                                                                                           |

Table 17. Construction Cost Index History 1960-1980.

#### From Reference 3.

How ENR builds the Index: 200 hours of common labor at the 20-cities average rate, plus 25 cwt of standard structural steel shapes at the mill price, plus 22.56 cut (1.128 tons) of Portland cement at the 20-cities average price, plus 1,088 board feet of 2 x 4 lumber at the 20-cities average price.

|          |                                      |       |                                   | Surfacing                     |                        |                                 | Struct                           | cures                                         |                        |                                       |                                       |
|----------|--------------------------------------|-------|-----------------------------------|-------------------------------|------------------------|---------------------------------|----------------------------------|-----------------------------------------------|------------------------|---------------------------------------|---------------------------------------|
|          | Exca-<br>vation<br>Price<br>(y3) Ind | Index | PCC<br>Price<br>(y <sup>2</sup> ) | Bit.<br>Conc.<br>Price<br>(t) | Com-<br>bined<br>Index | Rein.<br>Steel<br>Price<br>(1b) | Struc.<br>Steel<br>Price<br>(1b) | Struc.<br>Conc.<br>Price<br>(y <sup>3</sup> ) | Com-<br>bined<br>Index | High-<br>way<br>Bid<br>Price<br>Index | ENR<br>Build-<br>ing<br>Cost<br>Index |
| 1967     | 0.54                                 | 100.0 | 4.43                              | 6.47                          | 100.0                  | 0.131                           | 0.247                            | 70.30                                         | 100.0                  | 100.0                                 | 100.0                                 |
| 1970     | 0.66                                 | 121.8 | 5.42                              | 8.04                          | 123.3                  | 0.163                           | 0.338                            | 92.73                                         | 132.2                  | 125.6                                 | 124.4                                 |
| 1971     | 0.67                                 | 123.8 | 6.06                              | 8.54                          | 134.5                  | 0.177                           | 0.348                            | 92.02                                         | 138.5                  | 131.7                                 | 141.1                                 |
| 1972     | 0.72                                 | 133.4 | 6.25                              | 9.22                          | 141.9                  | 0.181                           | 0.342                            | 100.17                                        | 140.6                  | 138.2                                 | 156.0                                 |
| 1973 Av. | .80                                  | 147.1 | 6.87                              | 9.99                          | 154.8                  | 0.207                           | 0.373                            | 111.83                                        | 156.5                  | 152.4                                 | 169.3                                 |
| Q1       | 0.67                                 | 124.7 | 6.57                              | 9.85                          | 150.3                  | 0.181                           | 0.295                            | 109.34                                        | 141.9                  | 137.8                                 |                                       |
| Q2       | .75                                  | 138.0 | 6.36                              | 9.90                          | 148.2                  | 0.193                           | 0.352                            | 113.51                                        | 153.4                  | 145.9                                 |                                       |
| Q3       | .81                                  | 149.5 | 7.10                              | 9.61                          | 154.7                  | 0.212                           | 0.422                            | 110.60                                        | 162.1                  | 155.1                                 |                                       |
| Q4       | .93                                  | 172.7 | 7.43                              | 10.83                         | 167.7                  | 0.233                           | 0.379                            | 113.51                                        | 162.0                  | 167.8                                 |                                       |
| 1974 Av. | 1.00                                 | 184.1 | 8.67                              | 14.74                         | 211.3                  | 0.340                           | 0.551                            | 136.80                                        | 214.5                  | 201.8                                 | 119.2                                 |
| Q1       | .97                                  | 179.1 | 8.17                              | 13.28                         | 194.6                  | 0.281                           | 0.459                            | 129.64                                        | 190.2                  | 187.4                                 |                                       |
| Q2       | .96                                  | 178.0 | 8.48                              | 15.77                         | 216.8                  | 0.342                           | 0.555                            | 137.07                                        | 215.4                  | 201.4                                 |                                       |
| Q3       | 1.02                                 | 187.9 | 8.82                              | 14.64                         | 212.4                  | 0.371                           | 0.577                            | 152.57                                        | 233.7                  | 209.7                                 |                                       |
| Q4       | 1.03                                 | 190.6 | 9.10                              | 15.18                         | 219.7                  | 0.362                           | 0.648                            | 130.33                                        | 224.1                  | 209.9                                 |                                       |
| 1975 Av. | 1.03                                 | 190.6 | 8.62                              | 15.13                         | 213.8                  | 0.297                           | 0.554                            | 138.76                                        | 210.5                  | 203.8                                 | 194.3                                 |
| Q1       | 1.02                                 | 188.1 | 9.84                              | 13.95                         | 219.1                  | 0.332                           | 0.577                            | 140.93                                        | 219.7                  | 207.3                                 |                                       |
| Q2       | 1.00                                 | 184.9 | 8.22                              | 14.35                         | 203.2                  | 0.320                           | 0.542                            | 139.85                                        | 213.1                  | 199.3                                 |                                       |
| Q3       | 1.02                                 | 188.8 | 8.49                              | 15.58                         | 215.5                  | 0.283                           | 0.556                            | 142.13                                        | 211.5                  | 203.9                                 |                                       |
| Q4       | 1.10                                 | 202.6 | 9.00                              | 16.41                         | 227.7                  | 0.277                           | 0.548                            | 131.90                                        | 207.9                  | 209.8                                 |                                       |
| 1976 Av. | 1.03                                 | 191.2 | 8.65                              | 15.07                         | 213.7                  | 0.257                           | 0.493                            | 138.75                                        | 198.1                  | 200.4                                 | 212.1                                 |
| Q1       | 1.04                                 | 192.0 | 7.70                              | 16.28                         | 212.3                  | 0.251                           | 0.543                            | 133.72                                        | 199.3                  | 200.3                                 |                                       |
| Q2       | 1.05                                 | 194.3 | 8.56                              | 14.13                         | 205.5                  | 0.242                           | 0.510                            | 145.65                                        | 203.1                  | 200.4                                 |                                       |
| Q3       | 1.03                                 | 191.1 | 9.18                              | 15.12                         | 219.4                  | 0.264                           | 0.438                            | 135.28                                        | 189.6                  | 199.0                                 |                                       |
| Q4       | 1.01                                 | 187.3 | 9.17                              | 14.76                         | 217.4                  | 0.271                           | 0.481                            | 141.34                                        | 200.4                  | 200.4                                 |                                       |

A MARK MILLING LAND AND ALL

N

Table 18. Bid Price Trends on Federal-Aid Highway Contracts.

NATION OF A STATE OF A STATE OF A STATE

|             |                                                    |       |                                   | Surface                       |                        |                                 | Structures                       |                                               |                        |                              | END                            |
|-------------|----------------------------------------------------|-------|-----------------------------------|-------------------------------|------------------------|---------------------------------|----------------------------------|-----------------------------------------------|------------------------|------------------------------|--------------------------------|
|             | Exca-<br>vation<br>Price<br>(y <sup>3</sup> ) Inde | Index | PCC<br>Price<br>(y <sup>2</sup> ) | Bit.<br>Conc.<br>Price<br>(t) | Com-<br>bined<br>Index | Rein.<br>Steel<br>Price<br>(lb) | Struc.<br>Steel<br>Price<br>(1b) | Struc.<br>Conc.<br>Price<br>(y <sup>3</sup> ) | Com-<br>bined<br>Index | way<br>Bid<br>Price<br>Index | Build-<br>ing<br>Cost<br>Index |
| 1977 Av.    | 1.16                                               | 215.2 | 9.68                              | 15.47                         | 228.4                  | 0.272                           | 0.520                            | 143.51                                        | 206.8                  | 216.4                        | 229.9                          |
| Q1          | 1.03                                               | 189.8 | 8.69                              | 14.88                         | 212.6                  | 0.262                           | 0.562                            | 139.60                                        | 207.6                  | 202.2                        |                                |
| Q2          | 1.16                                               | 214.6 | 9.41                              | 15.29                         | 224.1                  | 0.268                           | 0.499                            | 149.54                                        | 208.3                  | 215.4                        |                                |
| Q3          | 1.19                                               | 219.5 | 10.05                             | 15.32                         | 231.8                  | 0.273                           | 0.462                            | 139.42                                        | 196.9                  | 215.9                        |                                |
| Q4          | 1.29                                               | 237.7 | 10.32                             | 16.94                         | 247.1                  | 0.285                           | 0.536                            | 148.34                                        | 214.1                  | 233.0                        |                                |
| 1978 Av.    | 1.54                                               | 233.7 | 11.49                             | 17.15                         | 262.3                  | 0.315                           | 0.603                            | 172.41                                        | 244.4                  | 264.9                        | 249.1                          |
| Q1          | 1.13                                               | 209.1 | 9.68                              | 16.10                         | 233.3                  | 0.283                           | 0.563                            | 151.43                                        | 219.4                  | 219.5                        |                                |
| Q2          | 1.43                                               | 263.8 | 11.96                             | 17.54                         | 270.6                  | 0.310                           | 0.570                            | 171.78                                        | 239.5                  | 258.1                        |                                |
| Q3          | 1.84                                               | 339.8 | 12.04                             | 17.11                         | 268.4                  | 0.346                           | 0.638                            | 198.97                                        | 268.9                  | 296.1                        |                                |
| Q4          | 1.90                                               | 350.3 | 13.06                             | 18.09                         | 237.5                  | 0.334                           | 0.681                            | 176.17                                        | 259.0                  | 302.7                        |                                |
| 1979 Av.(p) | ) 1.62                                             | 298.7 | 13.47                             | 21.21                         | 315.7                  | 0.421                           | 0.759                            | 220.28                                        | 313.1                  | 308.3                        | 270.7                          |
| Q1          | 1.48                                               | 278.2 | 11.59                             | 18.35                         | 272.3                  | 0.381                           | 0.737                            | 195.60                                        | 286.6                  | 277.2                        |                                |
| Q2          | 1.54                                               | 284.7 | 12.91                             | 20.72                         | 305.4                  | 0.411                           | 0.749                            | 202.82                                        | 297.5                  | 294.9                        |                                |
| Q3          | 1.31                                               | 334.9 | 15.09                             | 22.08                         | 341.1                  | 0.429                           | 0.755                            | 215.41                                        | 310.1                  | 328.8                        |                                |
| Q4 (p)      | 1.86                                               | 343.6 | 16.85                             | 23.67                         | 373.6                  | 0.489                           | 0.804                            | 240.14                                        | 342.6                  | 352.1                        |                                |

Table 18. (continued).

After References 3 and 4.

#### ~ Table 19. Equipment Price Indexes.

「「「「「「」」」」

こうかいたまたいでいたが、これできた時に、いたまた、いたいます。

|                                                                                                                                                                                                                                                                                                             | Jan.<br>1980                                                                                                                                                                                                                                                                                                                                        | % Chg.<br>10/79-<br>1/80                                                                                                                                                                               | % Chg.<br>1/79-<br>1/80                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All. construction equipment Power cranes, excavators & equip                                                                                                                                                                                                                                                | Jan.         1980         275.4         266.8         230.2         174.0         191.1         196.9         226.9         199.7         357.3         341.2         244.4         273.5         288.5         282.2         301.3         231.0         295.3         316.2         308.1         266.9         202.1         229.5         299.6 | 10779-<br>1/80<br>+4.8<br>+3.7<br>+1.3<br>+6.4<br><br>+2.9<br>+4.9<br>+3.7<br><br>+4.2<br>+5.6<br>+4.5<br><br>+5.9<br>+5.2<br>+3.7<br><br>+4.8<br>+3.0<br>+1.2<br>+1.4<br>+2.8<br>+3.0<br>+2.3<br>+4.4 | +12.2<br>+10.8<br>+11.4<br>+7.8<br>+13.5<br>+13.5<br>+13.5<br>+13.5<br>+13.5<br>+13.5<br>+13.3<br>+13.7<br>+13.9<br><br>+12.7<br>+12.6<br>+13.4<br>+10.8<br>+11.2<br>+11.5<br>+10.8<br>+11.2<br>+11.5<br>+10.8<br>+11.4<br>+11.4<br>+12.5 |
| Koller, tandempneumaticvibratory (d)Dewatering pump, 10 m gph90 m gphPortable air compressorsMixers, pavers, spreadersConcrete mix plant, mobile (c)Truck mixer, 7 cu ydSlipform paver (d)Bituminous batch plant, portable (b)Bituminous spreaderCrushing plant, portable (b)Welding machines and equipment | <br>253.4<br>287.4<br>152.6<br>223.2<br>198.5<br>208.7<br>151.7<br>235.5<br>249.1<br>259.1<br>232.7                                                                                                                                                                                                                                                 | <br>0<br>0<br>+4.8<br>+2.1<br>+1.6<br>+4.2<br>-14.1<br>+3.7<br>+1.6<br>+8.7<br>+2.2                                                                                                                    | <br>+13.7<br>+7.2<br>+14.7<br>+9.4<br>+9.5<br>+16.1<br>-10.2<br>+9.1<br>+5.9<br>+16.1<br>+7.6                                                                                                                                             |

Source Bureau of Labor Statistics, 1967 = 100 (a) Dec. '67 = 100, (b) Dec. '68 = 100, (c) Dec. '69 = 100, (d) Dec. '70 = 100, (e) Dec. '72 = 100.

After Reference 3.

#### Table 20. Cost Trends.

#### Highway Maintenance and Operation<sup>1</sup>

| 19 | 67 = | Base | Year |
|----|------|------|------|
|----|------|------|------|

| Year | Labor  | Material | Equipment | Overhead | Total  |
|------|--------|----------|-----------|----------|--------|
| 1950 | 43.58  | 74.53    | 57.66     | 57.07    | 51.31  |
| 1951 | 47.76  | 81.07    | 64.34     | 62.23    | 56.41  |
| 1952 | 51.15  | 81.99    | 66.86     | 65.05    | 59.28  |
| 1953 | 52.00  | 82.54    | 68.76     | 65.73    | 60.33  |
| 1954 | 54.89  | 83.49    | 70.40     | 66.42    | 62.55  |
| 1955 | 55.94  | 82.80    | 74.24     | 67.71    | 64.09  |
| 1956 | 58.70  | 86.91    | 74.06     | 70.55    | 66.31  |
| 1957 | 63.20  | 90.86    | 75.66     | 78.22    | 70.28  |
| 1958 | 65.74  | 92.27    | 78.91     | 81.21    | 72.90  |
| 1959 | 67.82  | 92.40    | 83.15     | 81.88    | 75.17  |
| 1960 | 71.02  | 94.68    | 86.98     | 84.19    | 78.35  |
| 1961 | 73.25  | 95.18    | 87.19     | 85.08    | 79.82  |
| 1962 | 76.06  | 96.66    | 88.76     | 86.47    | 82.09  |
| 1963 | 79.46  | 96.87    | 89.25     | 88.05    | 84.32  |
| 1964 | 81.79  | 97.48    | 91.25     | 89.98    | 86.35  |
| 1965 | 85.69  | 99.23    | 94.23     | 92.01    | 89.66  |
| 1966 | 98.02  | 99.68    | 96.70     | 96.23    | 97.76  |
| 1967 | 100.00 | 100.00   | 100.00    | 100.00   | 100.00 |
| 1968 | 103.63 | 102.03   | 100.42    | 105.03   | 102.79 |
| 1969 | 113.71 | 106.24   | 104.24    | 110.24   | 110.44 |

<sup>1</sup>These data are prepared for the unit cost information submitted each year by State highway departments, and cover both physical maintenance and major traffic service items including snow and ice control. Previous issues of this table used base period 1957-59.

After Reference 5

| -Table | 20. | (Continued.) |
|--------|-----|--------------|
|        |     | (            |

| Year | Labor  | Material | Equipment | Overhead | Total  |
|------|--------|----------|-----------|----------|--------|
| 1970 | 122.02 | 111.03   | 106.56    | 116.81   | 116.78 |
| 1971 | 129.67 | 117.37   | 107.93    | 122.76   | 122.68 |
| 1972 | 138.21 | 124.27   | 119.98    | 128.71   | 131.68 |
| 1973 | 148.04 | 130.42   | 133.70    | 134.66   | 141.75 |
| 1974 | 160.67 | 170.41   | 153.50    | 140.61   | 158.65 |
| 1975 | 173.15 | 198.74   | 170.58    | 145.56   | 172.97 |
| 1976 | 192.99 | 192.74   | 184.37    | 152.51   | 188.08 |
| 1977 | 211.89 | 202.66   | 194.17    | 158.51   | 202.92 |
| 1978 | 226.70 | 233.41   | 208.63    | 164.41   | 218.80 |

After Reference 5.



Figure 1.

37



YEAR

Figure 2. Pavement Construction Indexes.



Figure 3. Average Annual Contract Price for Bituminous Concrete. After Reference 4.



/

Figure 4. Imported Mideast Crude Oil Price Trends 1973 to 1980. After Reference 7.





40

Ę.



Figure 6. United States Price Index for Railroad Freight.

After References 8 and 9.



tor Rofeponce 1.0





Figure 8. Asphalt Cement Price Forecast: 1980-82. After Reference 11.



Figure 9. Grading chart illustrating grading specifications established to avoid undesirable conditions.

After Hveem.