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Introduction 

ENVIRONMENTAL CONDITIONS FOR 
PLACING ASPHALT CONCRETE 

By 

Roy A. Smith 

and 

Jon Epps 

The importance of proper compaction of asphalt concrete pavements has 

been recognized for many years. Engineers have shown that pavement stability, 

durability, tensile strength, fatigue resistance, stiffness, flexibility 

and pavement performance are controlled to a certain degree by the density 

of the asphalt concrete. 

To insure adequate compaction, agencies specify initial in-place density 

and/or paving temperature limitations. The paving temperature limitations or 

cessation requirements are based on air temperature (except for a very few 

agencies that use base temperature). Paving is permitted when the air tem­

perature is a certain value and not remitted when the temperature is below a 

certain value. These requirements are based on historical experience and are 

intended to regulate construction so that paving is permitted only when con­

ditions are favorable for obtaining a satisfactory density. 

Initial in-place density requirements are often based on standard lab­

oratory density. For example, when the State Department of Highways and 

Public Transportation specifies in-place density for surface course mixtures, 

it is usually relative to the density obtained in the laboratory utilizing 

a standard gyratory compaction method. A common density range for field 
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cores is from 95 to 100 percent of the density achieved in the laboratory. 

The laboratory density presently specified by Texas is from 95 to 99 percent 

of theoretical maximum density with 97 percent suggested as optimum (1). The 

specification ranges indicate an air void content of from 1 to 5 percent in 

the laboratory mixtures and from 1 to 10 percent air voids allowable for in­

place density. Desirable in-place air voids are 3 to 5 percent. 

Test results from 15 test sections placed in Texas from 1965 to 1967 

indicate that initial air void contents of from 8 to 12 percent were common 

(£). During two years of traffic these pavements would decrease in air void 

content from about 3 to 6 percent. Over half of the pavements had an initial 

air void content in excess of 10 percent. Results of this study indicate the 

importance of obtaining density during construction as traffic will densify 

a pavement only a limited amount in service under most conditions. 

Methods have recently been developed to allow the engineer to determine 

under what environmental conditions he is likely to successfully place asphalt 

concrete and achieve the desirable in-place density for a given mat or thick­

ness (1, i, ~, ~, L, ~,~). These methods will be utilized to explore the 

validity of the current Texas cessation limits given below. 

"The prime coat, tack coat or the asphaltic mixtures,when placed with 

a spreading and finishing machine, shall not be placed when the air tempera­

ture is below 50°F and falling; but it may be placed when the air tempera­

ture is above 40°F and rising". This limitation according to the data 

presented below prohibits the placement of asphalt concrete several days a 

year in the southern part of the state and for weeks at a time in the 

northern parts of the state when satisfactory densification could probably 

be achieved. Thus a better definition of when asphalt concrete can be 
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rllace0 will result in an extended construction season allowing better equip-

ment utilization and perhaps a reduction in cost of placement of asphalt 

concrete mixtures. 

On the other hand, the current Texas cessation requirement allows con-

struction of thin asphalt concrete mats under conditions when satisfactory 

densification cannot be achieved. Thus, higher maintenance and/or rehabili-

tation costs will result. Details illustrating the limitations of the 

present Texas cessation requirements are presented below. 

Background Information 

Corlew and Dickson (2, i, i) were among the first to utilize heat 

transfer models to predict cool-down rates for asphalt concrete mixtures. 

Wind velocity, initial base temperature, solar radiation, air temperature, 

asphalt concrete mixture temperature, mat or lift thickness and thermal 

properties of the base and asphalt concrete mixture were considered in these 

solutions. Corlew and Dickson's work was utilized by Foster (~) to establish 

cessation requirements for constructing asphalt concrete pavements. Based 

on Foster's work, Maupin (L) has developed a specification which is utilized 

in Virginia to determine cold weather paving limitations. Factors considered 

to establish this limitation include; mat temperature, time available for 

compaction and base temperature. 

Dempsey (~, 2) has extended the work of Corlew and Dickson, Foster and 

others such that the following factors can be considered as inputs and 

variables in determining the time available to compact asphalt concrete. 

1. Time of day and day of year, 
2. Percent sunshine or percent of sky not covered by clouds, 
3. Average wind velocity, 
4. Ambient air temperature, 
5. Temperature of asphalt concrete, 
6. Temperature difference between asphalt concrete and air, 
7. Temperature of surface upon which hot-mix is to be placed, and 
8. Thickness of mat to be placed. 
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Results of the above mentioned research can be utilized to illustrate 

the relative effect of the above mentioned factors on the time available for 

compacting asphalt concrete. Figures 1, 2, 3 and 4 illustrate the effect of 

mixture temperature, mat thickness, wind velocity and surface temperature on 

the time available for compaction. The time available for compaction is 

defined as the increment of time between placing of the mat and the cooling 

of the mat to 175°F. Figure 5 was prepared using the method developed by 

Dempsey and Tegeler (~) and utilizing the same conditions as Foster (~) and 

Dickson and Corlew (i) (See Table 1). From these data it is apparent that 

the major factors controlling the time available to achieve adequate com-

paction are as follows; 
1. Base temperature, 
2. Mat temperature or temperature of the asphalt concrete mat at 

the time of placement, and 
3. Mat thickness. 

Air temperature, percent sunshine and solar radiation are included to some 

degree in base temperature. 

Additional calculations utilizing Demsey's method assuming the following 

illustrates the difficulty of using only air temperatures when establishing 

cessation requirements. 
1. 8:00 am on January 20, 
2. 40 percent sunshine, 
3. 15 mph wind velocity, 
4. Air temperatures of 10, 20, 35 and 40, 
5. Temperature of asphalt concrete 300°F, 
6. Base temperatures of 20, 30, 40 and 50, 
7. Mat thickness of 1,2 and 3 inches. 

Results of these calculations are shown in Tables 2, 3 and 4. From the var-

ious mat thicknesses and base temperatures it is apparent that at least 15 

minutes of compaction time is available for 2-and 3-inch mats under the worst 

temperature conditions. However, even under the more desirable conditions, 

there is not enough compaction time available to produce the desired density 

in the l-inch mat. 
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Figure 5 

Effects of Surface Temperature 

Minutes ~o Cool to 175"F 

Table 1 

Sunshine Solar Radiation Surface Temperature Air Temperature 
BTU/FT2/hr of of 

50% 50 20 20 
50% 50 40 40 
50% 100 60 50 
50% 100 80 70 
50% 200 100 80 
50% 200 120 100 
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Table 2 
Compaction Time (Minutes) for 3" Mat Thickness 

r 
Surface Temperature Air Temperature of 

of 40 30 20 10 

50 34 33 32 31 
40 32 31 30.5 30 
30 30 29 28 27.5 
20 28 27 26.5 26 

Table 3 
Compaction Time U1i nutes) for 2" Mat Thi ckness 

Surface Temperature Air Temperature of 
of 40 30 20 10 

50 21.5 21 20.5 20 
40 20 19.5 19 19 
30 18.5 17 17 17 
20 17 16.5 16 16 

Table 4 
Compaction Time (Minutes) for 1" Mat Thickness 

Surface Temperature Air Temperature of 
of 40 30 20 10 

50 7 6.75 6.6 6.6 
40 6.25 6.25 6 6 

30 5.75 5.65 5.5 5 
20 5.20 5.20 5 5 
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Fifteen and eight minute compaction times were specifically referred to 

above as these are the times selected by the National Asphalt Pavement Asso­

ciation Quality Improvement Committee as being desirable for thick lifts and 

thin lifts respectively (6). Specific delineation between thick and thin 

lifts may, however, not be needed because the 8-minute time could be used for 

any thickness of lift if rollers were available that could accomplish the 

required compaction in 8 minutes. The 8-minute and l5-minute available com­

paction time has been adopted by Virginia (L) to imply that two rollers must 

be available for breakdown rolling to obtain desirable compaction in 8 min­

utes and one roller for the l5-minute criteria. 

Establishing Cessation Requirements 

From the above discussion it appears as if air temperature is not suf­

ficient by itself to establish cessation requirements. A more logical 

requirement would be to stop placing asphalt concrete mixtures when condi­

tions are such that the contractor will not have a IIreasonable time ll to com­

pact the pavement before it cools such that it cannot be densified. The 

discussion above describes methods that can be utilized to establish these 

conditions and illustrates those factors that assume significance in the 

calculations. 

Utilizing Figure 5 as a basis, Figures 6 and 7 have been prepared as 

described by Foster (~) to establish cessation requirements. These figures 

represent a go-no go combination of mix and base temperatures for 8-minute 

and l5-minute compaction times. If the combination of base and mix tempera­

tures are above the line the asphalt concrete may be placed allowing a min­

imum rolling time. Included in Figures 6 and 7 are the compaction curves 

for one-and two-inch mats. Under the conditions utilized for this calcula­

tion 3-inch mats have cooling times in excess of 15 minutes. 
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Figure 6 
Requirements for 8-Minute Rolling Time 
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Figure 7 
Requirements for 15-Minute Rolling Time 
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A second method of establishing cessation requirements is by use of a 

nomograph solution such as that utilized in Virginia and shown in Figure 8. 

Mat and base temperature are utilized to determine available compaction time. 

A third method available to establish cessation requirements is that 

proposed by Dempsey (8, i). 

This procedure developed for Illinois latitude is defined in detail in the 

Appendix of this report. After discussions with Dempsey as to the effects 

of changing the latitude from 40° in Illinois to say 31° in Texas, it was 

determined that only Section 3 of Figure 1 inthe Appendix would change. This 

graph is of solar radiation by time of day and day of year. Extraterrestrial 

radiation is higher at lower latitudes; therefore, more heat would be radiated 

into the hot mix on any day at lower latitudes, if cloud cover is equal. This 

additional heat input would provide a slight addition to compaction time. 

Table 5 presents a comparison of extraterrestrial radiation between latitudes 

400N and 32° 27'N. 
Table 5 

Solar Radiation at Noon (BTU/hr-FT2). 

Latitude Jan 1 Jan 2 Jan 3 Jan 4 Jan 5 

400N 201.4 202.5 203.6 204.4 205.1 

32° 27'N 238.6 239.1 239.7 240.3 240.9 

The Dempsey method allows for,a wide range of factors to be included by 

use of his nomographs and charts and does not necessitate the assumption for 

solar radiation, air temperature and wind velocity utilized to establish 

Figures 5, 6 and 7. 
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Lightweight Aggregate Mix Consideration 

Due to the limited availability of polish resistant aggregate, manufac-

tured lightweight aggregate has been increasingly utilized. The character­

istics of lightweight aggregates differ from natural, dense aggregates in 

water absorption capacity, water absorption rate, and thermal properties (~). 

Figure 9, from Gallaway, illustrates the difference in cooling curves for 

lightweight and normal aggregates under the same conditions. 

Figure 9 
Cooling Curves-Normal & Lightweight Mixes 
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Gallaway utilized the Corlew and Dickson (3) computer program and deve­

loped cooling curves for lightweight aggregate mixes. The results are sum-

marized in Figure 10. 



14 

Thus far, the cooling curves presented for both normal and manufactured 

aggregates have assumed that the mix is dry. Lightweight aggregate has a 

nigher moisture capacity and a slower rate of removal--as discussed by 

Gallaway (10). Figures 10 through 14 present Gallaway's findings on the effects 

of moisture on compaction time--assuming l75 c F a cessation requirement. 

In comparing lightweight and normal mixes, the moisture content of the 

lightweight mix will cause a faster rate of cooling than a normal mix. This 

is countered by the insulation properties of lightweight mixes. As a gen­

eral assumption--if a lightweight mix is used and the moisture content is 

about .75%, the cooling curves of a normal aggregate present an approximation 

for the cooling curves of a lightweight aggregate mixture. 

Conclusion 

The importance of proper compaction of asphalt concrete pavements has 

been recognized for many years. Engineers have shown that pavement stability, 

durability, tensile strength, fatigue resistance, stiffness, flexibility and 

pavement performance are controlled to a certain degree by the density of 

the asphalt concrete. 

To insure adequate compaction, agencies specify initial "in-place" 

density and/or paving temperature limitations cessation limits. The paving 

temperature limitations or cessation requirements are based on air tempera­

ture (except for a very few agencies that use base temperature). Paving is 

permitted when the air temperature is above a certain value and stopped when 

the temperature is below a certain value. These requirements are based on 

historical experience and are intended to regulate construction so that pav­

ing is permitted only when conditions are favorable for obtaining a satis­

factory density. In-place density requirements are often based on a percen­

tage standard laboratory compaction density. 
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This paper describes procedures that can be utilized to explore the 

validity of cessation requirements based on air temperature only and illus­

trates that existing requirements as currently practiced in Texas unduly 

r~strict the placement of thick lifts of asphalt concrete and are not suf­

ficiently restrictive for thin lifts of asphalt concrete. Utilizing infor­

mation presented in this report as a basis, it may be possible to extend 

the construction season if thick mats of asphalt concrete are to be placed. 

Extension of the construction season would allow a greater utilization of 

asphalt concrete related construction equipment and thus offer a potential 

cost savings. Additionally, construction of thin mats would be prohibited 

when insufficient compaction time was available and thus lower maintenance 

and rehabilitation costs would be expected during the life of the facility. 
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APPENDIX 

PROCEDURE FOR DETERMINING 
COMPACTION TIME FOR 

HOT-MIX BITUMINOUS CONCRETE 

The detailed procedure for utilizing the Climatic Input Chart, 

Figure 1, and the accompanying Compaction Time Curves, Figures 2 

through 25, to determine available compaction time for hot-mix bitumi-

nous concrete is as follows: 

1. Obtain the climatic data and pavement data listed below. 

a. Note the day of the year and the time of day. 

b. Percentage of sunshine or sky not covered with clouds 

(sunshine, %). 

c. Average wind velocity (mph). 

d. Temperature of air in degrees Fahrenheit (Tair , F). 

e. Temperature of the hot-mix bituminous concrete immediately 

before entering spreader in degrees Fahrenheit (Tmix ' F). 

f. The difference between the temperature of the hot-mix 

bituminous concrete and the temperature of the air in 

degrees Fahrenheit (~T = Tmix - Tair , F). 

g. Temperature of the existing surface upon which the hot-mix 

bituminous concrete will be placed in degrees Fahrenheit 

(Tsurf ' F). 
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h. Thickness of the bituminous concrete lift to be placed (in.). 

i. Note the type of pavement system that is to be covered with 

the hot-mix bituminous concrete lift. 

2. Enter graph 1 of the Climatic Input Chart, Figure 1, with the per­

centage of sunshine and draw a line parallel to line 1 until it 

intersects the appropriate Tmix line. 



3. Draw a line parallel to line 2 and project it entirely through 

graph 2. 

4. Enter graph 3 with the day of the year and extend a line 

parallel to line 3 until it intersects the time of day. 

5. Extend a line parallel to line 4 from the point located in 

21 

step 4 until it intersects the line representing the percentage 

of sunshine in graph 4. 

6. Draw a line from the point located in step 5 parallel to line 

5 until it intersects the line in graph 2 which was produced in 

step 3. 

7. Draw a line parallel to line 6 and extend it entirely across 

graph 5. 

8. Enter graph 6 with the wind velocity and draw a line parallel 

to line 7 until it intersects the specified temperature dif­

ference, 6T, curve. 

9. Draw a line parallel to line 8 from the point located in step 

8 until it intersects the line from step 7 in graph 5. 

10. Draw a line from the point located in step 9 parallel to line 9 

to determine the heat loss factor, Q, in graph 7. 

11. From the compaction time curves, Figures 2 through 25, select 

the figure which represents the pavement system and bituminous 

mixture temperature for which compaction time is to be determined. 

12. Enter the x-axis with the heat loss factor, Q, determined in step 

10 and extend a line parallel to the y-axis until it intersects 

the appropriate surface temperature curve, Tsurf ' 
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13. Draw a line from the point located in step 12 parallel to the 

x-axis to determine the available compaction time for the 

climatic conditions and pavement system specified. 

The available compaction time is the time in which rolling must be 

completed in order to get sufficient density. The time begins at the 

instant the hot-mix is placed on the surface and ends when the mix has 

cooled to 1750 F. 

Note: Graph 3 is applicable only for a latitude of 40 degrees. However, 
a latitudinal difference of a few degrees would probably have 
very little effect on the available compaction time. 



23 

Examples 

Two examples are presented below to demonstrate the use of the proce-

dure outlined above. The initial conditions will be assumed as follows: 

l. January 20 

2. 40% sunshine 

3. 8:00 a.m. 

4. Tmix = 300°F 

5. Tair = 40°F and rising 

6. Tsurface =40°F 

7. Wind velocity 15 mph 

8. Mat thickness = 3 in. 

Using Figure 1, the heat loss factor is first determined and in this 

case is 1450 BTU/hr-FT2. Using the appropriate figure (Figure 14) for mix 

temperature and mat thickness, the compaction time is found to be 32 minutes. 

If the air temperature is assumed to be 20°F and the surface temperature 

is also 20°F, and all other conditions are the same as in the first example, 

the heat loss factor is determined to be 1500 BTU/hr-FT
2

. Again, using 

Figure 14 and a surface temperature of 20°F the compaction time is found to 

be 27 minutes. 

Additional examples were developed for mat thicknesses of 3 inches, 2 

inches, and 1 inch, and the results are given in Tables 2, 3, and 4 on page 

seven in this report. 
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