TECHNICAL REPORT STANDARD TITLE PAGE

				CHRICAL REFORT ST	ANDARD TILE FA
	1. Report No.	2. Government Accessio	on No. 3.	Recipient's Catalog No	
	FHWATX78-207-3				
	4. Title and Subtitle				
	THE TEXAS REHABILITATION A	AND MAINTENANCE P		Report Date)
				November, 1978	
	OPTIMIZATIO	JN STSTEM	6.	Performing Organizatio	n Code
	7. Author(s)			Performing Organizatio	n Report No.
	N. V. Ahmed, D. Y. Lu, R.	L. Lytton, J. P.			
	and D. T. Phillips			esearch Report	t 207-3
	9. Performing Organization Name and Addr	ess	10.	Work Unit No.	
	Texas Transportation Insti	itute			
	Texas A&M University			Contract or Grant No.	
	College Station, Texas 77	7843	S	tudy 2-8-75-20)7
			13.	Type of Report and P	eriod Covered
	12. Sponsoring Agency Name and Address				
	Texas State Department of	Highways and Pub	olic	·	
	Transportation		. =		
	Transportation Planning Di	vision	14.	Sponsoring Agency Co	ode
	P. 0. Box 5051; Austin, Te			· · · · · · · · · · · · · · · · · · ·	
	15. Supplementary Notes				
	Work done in cooperat	ion with FHWA D	IOT TOT		
	Study Title: Flexible Pav	amont Evaluation	and Dobabilita	tion	
	Study III. Flexible Pav	rement Evaluation	anu kenabirita	LION	
	16. Abstract			1 . • •	
				nd maintonanc(נ
	This report described	l in detail the r	enabilitation a		
	optimization system (RAMS)	that has been d	leveloped for use	e by District	offices
	optimization system (RAMS) in the state of Texas. Th	that has been d e procedure invo	leveloped for use of	e by District a computer pr	offices rogram
	optimization system (RAMS) in the state of Texas. Th which is completely docume	that has been d he procedure invo nted, including	leveloped for use lves the use of a User's Guide,	e by District a computer pr in this repor	offices rogram rt.
	optimization system (RAMS) in the state of Texas. Th	that has been d he procedure invo nted, including	leveloped for use lves the use of a User's Guide,	e by District a computer pr in this repor	offices rogram rt.
	optimization system (RAMS) in the state of Texas. Th which is completely docume	that has been d procedure invo nted, including quired include t	leveloped for use lves the use of a User's Guide, he current cond	e by District a computer pr in this repor ition rating o	offices rogram rt. of all
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re	that has been d the procedure invo nted, including quired include t roadway network	leveloped for use lves the use of a User's Guide, he current cond which are cons	e by District a computer pr in this repor ition rating c idered to be c	offices rogram ^t. of all candidates
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main	that has been d e procedure invo nted, including quired include t roadway network tenance work eac	leveloped for use lves the use of a User's Guide, he current cond which are cons h year. The pro	e by District a computer pr in this repor ition rating c idered to be c ogram uses an	offices rogram rt. of all candidates integer
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi	that has been d procedure invo nted, including quired include t roadway network tenance work eac sed by Toyoda an	leveloped for use lves the use of a User's Guide, he current cond which are cons h year. The pro d Senju and ada	e by District a computer pr in this repor ition rating o idered to be o ogram uses an pted to this u	offices rogram rt. of all candidates integer use at
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti	that has been d e procedure invo nted, including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo	e by District a computer pr in this repor ition rating o idered to be o ogram uses an pted to this u rked to compar	offices rogram rt. of all candidates integer use at re the
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method	that has been d the procedure invo nted, including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an	leveloped for use lves the use of a User's Guide, the current cond which are cons d senju and ada problems are wo other procedure	e by District a computer pr in this repor ition rating o idered to be o ogram uses an pted to this u rked to compar s, including t	offices rogram rt. of all candidates integer use at re the the
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable	that has been d the procedure invo ented, including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedure in linear progra	e by District a computer pr in this report ition rating of idered to be of ogram uses an pted to this u rked to compar s, including t amming, and th	offices rogram rt. of all candidates integer use at re the the the
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
-	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
•	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp	that has been d e procedure invo equired including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wo other procedures in linear progra y the Texas Sta	e by District a computer pr in this repor ition rating c idered to be c ogram uses an pted to this u rked to compar s, including t amming, and th te Department	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d the procedure invo equired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are won other procedures in linear progra y the Texas Sta esults show that	e by District a computer pr in this repor ition rating o idered to be o ogram uses an pted to this u rked to compar s, including t amming, and th te Department t there is a o	offices rogram rt. of all candidates integer ise at re the the ie of
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d the procedure invo ented, including quired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are wor other procedures in linear progra y the Texas Sta esults show that	e by District a computer pr in this repor ition rating o idered to be o ogram uses an pted to this u rked to compar s, including t amming, and th te Department t there is a o	offices rogram rt. of all candidates integer ise at re the the of listinct
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d the procedure invo equired including equired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and ada problems are won other procedures in linear progra y the Texas Sta esults show that 18. Distribution Statement No Restrictions	e by District a computer pr in this repor ition rating of idered to be of ogram uses an pted to this u rked to compar s, including t amming, and th te Department t there is a of This docume	offices rogram rt. of all candidates integer ise at re the the of listinct
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d he procedure invo equired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and adap problems are won other procedures in linear progra y the Texas Sta esults show that 18. Distribution Statement No Restrictions available to the	e by District a computer pr in this repor ition rating o idered to be o ogram uses an pted to this u rked to compar s, including t amming, and th te Department t there is a o This docume e public throu	offices rogram rt. of all candidates integer use at re the the of listinct
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d he procedure invo equired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and adap problems are won other procedures in linear progra y the Texas States y the Texas States sults show that No Restrictions available to the National Technic	e by District a computer pr in this report ition rating of idered to be of ogram uses an pted to this u rked to comparts, including the amming, and the te Department t there is a of the there is a of the public throw cal Informatic	offices rogram rt. of all candidates integer use at re the the of listinct
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d he procedure invo equired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro d Senju and adap problems are won other procedures in linear progra y the Texas Sta esults show that 18. Distribution Statement No Restrictions available to the	e by District a computer pr in this report ition rating of idered to be of ogram uses an pted to this u rked to comparts, including the amming, and the te Department t there is a of the there is a of the public throw cal Informatic	offices rogram rt. of all candidates integer use at re the the of listinct
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d he procedure invo equired include t roadway network itenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro- d Senju and adap problems are won other procedures in linear progra y the Texas Star esults show that No Restrictions available to the National Technic Springfield, Vir	e by District a computer pr in this repor ition rating of idered to be of ogram uses an pted to this u rked to compar s, including the amming, and the te Department t there is a of the term of the term of term of the term of term of term of term of term term of term of term of term of term of term of term of term term of term of term term of term o	offices rogram rt. of all candidates integer use at re the of listinct
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d he procedure invo equired include t roadway network tenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro- d Senju and adap problems are won other procedures in linear progra y the Texas Star esults show that No Restrictions available to the National Technic Springfield, Vir	e by District a computer pr in this report ition rating of idered to be of ogram uses an pted to this u rked to comparts, including the amming, and the te Department t there is a of the there is a of the public throw cal Informatic	offices rogram rt. of all candidates integer use at re the the of listinct
	optimization system (RAMS) in the state of Texas. Th which is completely docume The input data that are re segments of the District's for rehabilitation or main programming technique devi Texas Transportation Insti results using this method continuous linear variable intuitive procedure curren Highways and Public Transp advantage to using the pro	that has been d he procedure invo equired include t roadway network itenance work eac sed by Toyoda an tute. Examples with those of an technique used tly being used b ortation. The r posed method.	leveloped for use lves the use of a User's Guide, the current cond which are cons h year. The pro- d Senju and adap problems are won other procedures in linear progra y the Texas Sta- esults show that solution Statement No Restrictions available to the National Technic Springfield, Vir (of this page)	e by District a computer pr in this repor ition rating of idered to be of ogram uses an pted to this u rked to compar s, including the amming, and the te Department t there is a of the term of the term of term of the term of term of term of term of term term of term of term of term of term of term of term of term term of term of term term of term o	offices rogram rt. of all candidates integer use at re the of listinct

THE TEXAS REHABILITATION AND MAINTENANCE DISTRICT OPTIMIZATION SYSTEM

by

N. V. Ahmed D. Y. Lu R. L. Lytton J. P. Mahoney D. T. Phillips

Research Report Number 207-3

Flexible Pavement Evaluation and Rehabilitation

Research Project 2-8-75-207

conducted for

The Texas State Department of Highways and Public Transportation

in cooperation with the U.S. Department of Transportation Federal Highway Administration

by the

Texas Transportation Institute Texas A&M University

November 1978

ABSTRACT

This report describes in detail the rehabilitation and maintenance optimization system (RAMS) that has been developed for use by District offices in the state of Texas. The procedure involves the use of a computer program which is completely documented, including a User's Guide, in this report. The input data that are required include the current condition rating of all segments of the District's roadway network which are considered to be candidates for rehabilitation or maintenance work each year. The program uses an integer programming technique devised by Toyoda and Senju and adapted to this use at Texas Transportation Institute. Example problems are worked to compare the results using this method with those of other procedures, including the continuous linear variable technique used in linear programming, and the intuitive procedure currently being used by the Texas State Department of Highways and Public Transportation. The results show that there is a distinct advantage to using the proposed method.

SUMMARY

This report describes a complete District maintenance and rehabilitation management planning and control system, and includes a detailed description of the Texas rehabilitation and maintenance system (RAMS) which has been developed at Texas Transportation Institute to assist District offices in optimally allocating the construction, safety and betterment, RRR, and other funds which are intended to keep the quality of service of Texas highways at an acceptable level.

The description of the computer program includes a user's guide, an example problem using actual Texas pavement condition and cost data, and appendices which explain the integer programming algorithm used in the RAMS program, as well as of all of the input data used in the example problem. The results achieved by using the program are compared with the result of using other techniques for allocating funds. The RAMS method is shown to be superior to all other methods.

The analysis of the optimal fund allocation problem for pavement maintenance and rehabilitation shows how "benefit" is described mathematically for use in the computer program.

Previous use of these mathematical optimization integer programming methods, together with known wear-out rates of machine parts in manufacturing industries, has resulted in maintenance budget savings of 10-25 percent. The example problem worked in this report shows that such savings are possible in the field of pavement maintenance and rehabilitation as well.

iii

IMPLEMENTATION STATEMENT

This report gives details of the Texas Rehabilitation and Maintenance System (RAMS), a computer program which has been developed for use by District offices in the state of Texas in optimally allocating pavement maintenance and rehabilitation funds and establishing priorities. The report is intended as a working document which can be used by implementation workshops to train Texas SDHPT personnel in the use of the RAMS program.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

TABLE OF CONTENTS

		Page
	ABSTRACT	ii
	SUMMARY	iii
	IMPLEMENTATION STATEMENT	iv
	LIST OF FIGURES	vii
	LIST OF TABLES	viii
	CHAPTER I - INTRODUCTION	1
	Management Planning and Control System	3
	CHAPTER II - PHASE 1: PROBLEM ANALYSIS AND DATA COLLECTION	9
	Management Decision	9
	Highway Segment	9
	Maintenance Strategies	9
	Pavement Distress	10
	Analysis Period	10
•	Roadway Description	11
	Pavement Condition	11
	Current Pavement Condition Rating	15
	Potential Gain of Rating	15
	Pavement Survival Rate	15
	Minimum Rating Requirement	21
	Resource Information	25
(CHAPTER III - PHASE 2: MATHEMATICAL MODEL	29
	Formulation of the Highway Pavement Problem	29
	Magnitude of the Highway Pavement Problem	32

	Page
CHAPTER IV - PHASE 3: OPTIMIZATION AND ANALYSIS OF SOLUTION	34
Effective Gradient Method	34
Program Steps	44
Example Problem Using the RAMS Method	46
Description of Highway Segments	47
Pavement Condition for Each Highway Segment	47
Gain-of-Rating Matrix	50
Pavement Survivor Matrices	52
Budget Resource	56
Comparison of TSDHPT and RAMS Selected Maintenance Strategies	59
CHAPTER V - SUMMARY	65
REFERENCES	67
APPENDIX A - AN ALGORITHM TO SOLVE 0-1 INTEGER LINEAR PROGRAMMING PROBLEMS WITH MULTIPLE CHOICE CONSTRAINTS	69
APPENDIX B - DOCUMENTATION OF HIGHWAY REHABILITATION AND MAINTE- NANCE COMPUTER PROGRAM	112
APPENDIX C - INPUT FOR THE HIGHWAY MAINTENANCE PROBLEM	128
APPENDIX D - OUTPUT FOR THE HIGHWAY MAINTENANCE PROBLEM	141
APPENDIX E - COMPUTER PROGRAM	160
APPENDIX F - GRAPHICAL DESCRIPTION OF THE COMPONENTS OF THE OBJECTIVE FUNCTION	210

vi

LIST OF FIGURES

Figure		Page
1	Management planning and control process	4
2	Strategic planning scheme for pavement maintenance and management	. 6
3	Roadway inventory matrix	12
4	Maintenance rating form for flexible pavements	14
5	Current pavement condition rating matrix	16
6	Gain-of-rating matrix of each highway segment	17
7	Pavement survival matrix of each highway segment and distress type	18
8	Effects of traffic and environmental adjustment indices	22
9	Minimum rating-requirement matrix of each highway	23
10	Pavement rating history and requirement	24
11	Resource-requirement matrices of each highway segment	27
12	Resource-availability matrices for all highway segments	28
13	Vector sum of resource requirements for each highway segment	38
14	Effective reduced length for highway segment 5	40
15	Generalized form of a survival curve for a maintenance strategy	57

LIST OF TABLES

<u>Table</u>		Page
1	Deduct values for flexible pavement	13
2	Resource requirements for five highway segments	36
.3	Five highway segments ranked by effective gradient	42
4	Selection of highway segments by dropping least effective	43
5	General discription of highway segments used in example problem	48
6	Current pavement condition rating information for highway segments	49
7	Maximum gain-of-rating matrix for all highway segments	51
8	Pavement survival matrix for transverse cracking	53
9	Cost requirements per unit area for each maintenance strategy and total available funds	58
10	Comparison of TSDHPT and RAMS selected maintenance strategies	60
11	Feasible maintenance strategies allowable by the minimum distress rating and overall rating constraints	62

CHAPTER 1

INTRODUCTION

Public demands for higher levels of pavement quality are expected to increase exponentially in the near future, especially when the interstate highway system begins to require extensive repairs. The estimate of the total expenditures on highway pavement structural maintenance may run as high as billions of dollars per year for all the U.S. roads. Funding for highway maintenance operations can be expected to become more stringently controlled in the future. In addition, highway management decisions will be greatly affected by new social attitudes toward the use of scarce natural resources, environmental impact and human responses, values, and preferences. It has been recognized that strategic planning for the optimal allocation of limited resources will result in a significant amount of economic saving. Thus, a systematic methodology is urgently needed to establish priorities for the optimal investment of available resources while satisfying the demands of the public for quality highway pavements. Moreover, the use of analytical techniques for the determination of optimal resource allocation policies for a given highway system can identify maintenance practices that can potentially gain money by using the money more effectively.

Management scientists have developed many mathematical models for resource allocation optimization. In operations research, resource allocation problems can usually be formulated in two alternative optimization schemes: (1) to maximize the overall effectiveness subject to limited resources, or (2) to minimize the use of resources subject to minimum requirements of effectiveness. The former scheme is adopted herein for the system development

since the current maintenance budget systems seem more consistent with maximizing effectiveness rather than minimizing the use of resources. However, the conversion from the one formulation to the other can easily be accomplished. In addition, the methodology based on zero-one integer linear programming techniques appears to be readily applicable to the resource allocation of a highway maintenance system.

This report presents basic concepts required for the development of a comprehensive pavement rehabilitation and maintenance management system. A conceptual model based on the zero-one integer linear programming algorithm is presented. Special emphases have been placed upon the following areas: (1) evaluation and rating of the condition of current pavement distress, (2) demands for pavement performance and service life, (3) effectiveness of different maintenance strategies and pavement maintenance survival rates, (4) requirements and availability of materials, supplies, equipment, manpower and overhead costs for pavement maintenance and rehabilitation, and (5) various budgetary constraints.

Management Planning and Control System

The pavement maintenance and management system can be organized within a framework of analysis as shown in Figure 1. The complete management function of planning and control involves an integration of three processes: strategic planning, management control and operational control. The three processes are complementary and obviously cannot be separated by sharply defined boundaries; one shades into another. Strategic planning is based on the policies and guidelines prescribed by top management. Strategic planning sets the guidelines for management control, and management control sets the guidelines for operational control. Definitions of these processes proposed by Anthony et al. (2, 3) are the following.

Strategic Planning - the process of deciding on the objectives of the organization, on changes in these objectives, on the resources used to attain these objectives, and on the policies that are to govern the acquisition, use, and disposition of these resources.

Management Control - the process by which managers assure that resources are obtained and used effectively and efficiently in the accomplishment of the organization's objectives.

Operational Control - the process of assuring that specific tasks are carried out effectively and efficiently.

These are three essential activities which provide the necessary data for planning and control: financial accounting, reporting on operating conditions, and processing the information. Examples of each are given below:

Financial accounting - determining budgetary constraints.

Operating information - determining the current distressed condition of all of the pavements in a given roadway network and the equipment, supplies, and manpower available to perform needed maintenance and rehabilitation work.

Information processing - organizing all of the financial and operating information in a form that is useful for the planning and control function.

Figure 1. Management planning and control processes

In pavement maintenace management, strategic planning for resource allocation at the District highway department level is based on the policies and guidelines prescribed by the federal and state transportation administrations. The objective at the District level is to maximize the total effectiveness of all maintenance and rehabilitation activities scheduled for the next year. Strategic planning is essentially built around a financial structure in order to provide the most cost effective decisions on maintenance strategies so that all highway segments within the District can be maintained above a specified level of serviceability for normal driving. Guidelines set by strategic planning will eventually be carried out by District engineers for management control and construction foremen for operational control.

A strategic planning scheme for pavement maintenance and management has been developed as shown in Figure 2. The figure illustrates the usual phases of a management system as applied to pavement maintenance and rehabilitation. The three phases are as follows: (1) problem analysis and data collection. (2) formulation of the mathematical model, (3) optimization and analysis of solution.

The next several sections of this report will describe in some detail each of these phases. It should be noted that the verbs in Figure 2 have been chosen carefully to indicate the kind of activity envisioned in each subtask. Roughly, they are taken to mean the following:

Determine - make a policy decision

Find out - collect information

Evaluate - judge the current condition

Predict - estimate using a mathematical model

Figure 2: Strategic planning scheme for pavement maintenance and management

......

PHASE 2:

PHASE 3: **OPTIMIZATION**

ÀND

FORMULATION OF MATHEMATICAL MODEL

7

Figure 2: (Continued)

Formulate - devise mathematical models

Apply - use an existing method

CHAPTER II

PHASE 1: PROBLEM ANALYSIS AND DATA COLLECTION

Phase 1 of the strategic planning for a pavement maintenance management system is the problem analysis and data collection which is categorized into four subtasks: (1) management decision, (2) roadway description, (3) pavement condition and (4) resource information.

Management Decision

Management decisions determine the number of highway segments that will be considered in a highway network, the number of maintenance strategies that will be employed, the number of distress types to be included in determining the current condition of all highway segments and the analysis period for planning and control.

<u>Highway Segment</u>. One highway segment can be a portion of a highway section or a combination of several sections such that a segment can be treated as a unity in the study. The traffic condition and environmental factors which affect the effectiveness of maintenance and rehabilitation activities within the unity must be very similar if not identical. Then the strategic planning system will select an optimal maintenance strategy for each unity, that is, each highway segment specified by the decisionmaker. Highway sections which are expected to provide acceptable serviceability and require no maintenance during the next year need not be included in the scope of the study.

<u>Maintenance Strategies</u>. Undoubtedly, numerous practical applications of maintenance strategies can be listed. However, the more strategies included in a given analysis, the more effort is required in assembling

maintenance effectiveness data and in the mathematical programming of the problem. Consequently, the current list has been restricted to eleven rehabilitation and maintenance strategies, from strip seal to reconstruction, which are shown herein for illustration: (1) strip seal, (2) fog seal, (3) seal coat, (4) light patching and seal coat, (5) extensive patching and seal coat, (6) seal coat and planned thin overlay, (7) plant mix seal or open graded friction course, (8) thin overlay, less than 2 inches asphalt concrete, (9) moderately heavy overlay, 2 to 3 inches asphalt concrete, (10) heavy overlay, 3 to 6 inches asphalt concrete and (11) reconstruction. These strategies are listed in order of increasing unit cost. Usually, strategies 1-4, as shown above, are funded from the state maintenance budget. Funding for strategies 5-8 is either from state maintenance budget or from the betterment budget. Strategies 9-11 are funded from the betterment budget as contract work.

<u>Pavement Distress</u>. Usually, pavement distress manifestations can be categorized into the following nine types: (1) rutting, (2) ravelling, (3) flushing, (4) corrugations, (5) roughness, (6) alligator cracking, (7) longitudinal cracking, (8) transverse cracking and (9) patching. This classification has been used in several visual rating systems for evaluating pavements ($\underline{6}$, $\underline{8}$, $\underline{12}$, $\underline{23}$).

<u>Analysis Period</u>. A heavy overlay will, undoubtedly, last longer than seal coats when applied to the same highway pavement. In order to calculate the overall effectiveness of all maintenance activities, it is necessary to analyze the pavement survival rates over a specified time period. An analysis period should be selected to be longer than the expected life of any maintenance or rehabilitation method, including reconstruction.

A period of ten years is recommended for analysis. This does not mean that maintenance decisions and budgeting for the next ten years will be studied. Instead, only the next year's maintenance strategies and budgeting will be determined, but their choice will be based upon the effectiveness of each maintenance strategy within the given analysis period.

Roadway Description

Once the number of highway segments to be considered in a resource allocation scheme is determined by management decisions, the pavement type, length, width, traffic and environmental conditions of each segment can be organized into a roadway inventory matrix as shown in Figure 3. Traffic and environmental indexes shown in that figure are multiplying factors which increase with traffic and climatic conditions that accelerate the appearance of various forms of distress. The formulation of these two indexes will be discussed subsequently.

Pavement Condition

The pavement condition can be analyzed in the following aspects:

- the current pavement condition rating of each segment for each distress type;
- (2) the potential gains of rating of each segment, for each maintenance strategy and distress type;
- (3) the pavement survival rate of each maintenance strategy, for each distress type and time period on each type of pavement;
- (4) the minimum rating requirement of each segment, for each distress type and time period; and

	HIGHWAY SEGMENT NUMBER								
	1	2	3	•••	• • •	• • •	N _H		
PAVEMENT TYPE						- 			
PAVEMENT LENGTH									
PAVEMENT WIDTH									
TRAFFIC INDEX									
ENVIRONMENT INDEX									

 ${\rm N}_{\rm H}$ - the total number of highway segments in analysis.

Figure 3. Roadway inventory matrix

Type of Distress		Degre	Degrees of Distress			Extent on (1)	Amoun (2)	t of	Distress (3)	
Rutting			Sligh Moder Sever	ate		0 5 10	2 7 12		5 10 15	
Raveling	·		Sligh Moder Sever	ate		5 10 15	8 12 18		10 15 20	
Flushing			Sligh Moder Sever	ate		5 10 15	8 12 18		10 15 20	
Corrugations			Sligh Moder Sever	ate		5 10 15	8 12 18		10 15 20	
Alligator Crack	ing		Sligh Moder Sever	ate	·	5 10 15	10 15 20		15 20 25	
Patching			Good Fair Pocr			0 5 7	2 7 15		5 10 20	
Deduct Points f										
Longitudinal Cr.										
	(1)	Sealed (2)	(3)	Part: (1)	ially (2)	Sealed (3)	No (1)	ot Se (2)	aled (3)	
Slight Moderate Severe	2 5 8	5 8 10	8 10 15	3 7 12	7 12 15	12 15 20	5 10 15	10 15 20	15 20 25	
Transverse Crac	king									
Slight Moderate Severe	2 5 8	5 8 10	8 10 15	3 7 10	7 10 15	10 15 20	3 7 12	7 12 15	12 15 20	
							30		40	.
Failures Mays Meter	Dedu SI	ct Poi	nts $\frac{50}{2.4}$	40	30	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) 5	0	4 U	

Table 1: Deduct Values for Flexible Pavement

7L

(5) the rating requirement of each segment and time period.

<u>Current Pavement Condition Rating</u>. Several pavement condition rating systems which are currently in use ($\underline{6}$, $\underline{8}$, $\underline{12}$, $\underline{23}$) are readily applicable to the resource allocation model developed herein. Table 1 and Figure 4 show the rating system which is currently being implemented in Texas ($\underline{4}$). Using such a rating system, a current pavement condition rating matrix as shown in Figure 5 can be filled out based on the rating of each highway segment and each distress type.

Potential Gain of Rating. The potential gain of rating is defined as the net expected increase of pavement rating of each segment, for each type of distress and maintenance strategy. The potential gain of rating for a given kind of distress cannot exceed the amount of rating that it lost by that form of distress as shown in Table 1. A gain-of-rating matrix as shown in Figure 6 is devised for each highway segment. When the number of segments gets large, the task of composing this collection of matrices can be done most efficiently by computer. It is possible that some maintenance strategies do not improve but reduce the pavement ratings of certain distress types. An an example, seal coating does not improve rutting, and a fog seal may accentuate flushing. In these cases, a zero or negative gain-of-rating will be required.

<u>Pavement Survival Rate</u>. Figure 7 shows a pavement survival matrix which contains the survival probability of each highway segment, for each distress type and maintenance strategy over the analysis period. Where maintenance and rehabilitation are concerned, the term "survival" indicates that the pavement condition is still expected to be rated high enough not to require additional maintenance or rehabilitation work. For instance,

						•		
•			, H	IIGHWA	Y SEGMEN	T NUMBER		
· .		1	2	3		• • •	•••	N _H
х.	2							
	m							
TYPE	:					-		
DISTRESS 1								
SIQ	• •							
	^C N							

 $N_{\rm H}$ - the total number of highway segments in analysis.

 $\rm N_{\rm D}$ - the total number of distress types.

Figure 5. Current pavement condition rating matrix

	DISTRESS TYPE								
	1. A.	1	2	3	•••	N _D			
		12	10	8		10			
	7	10	10	7		8			
EGY	ŝ	8	10	6		6			
NCE STRATEGY									
MAINTENANCE	• • •								
	NS	0	5	-4		-6			

 N_{S} - the total number of maintenance strategies

 N_{D} - the total number of distress types.

Figure 6. Gain-of-rating matrix of each highway segment

			TIME AFTER MAINTENANCE											
		0	1	2	3	4	•••	4 • •	•••	N _T				
		1.00	. 90	.70	. 40	0.0								
S	5	1.00	.80	. 50	. 20	0.0								
EGIE	en en	1.00	. 60	. 20	0.0									
MAINTENANCE STRATEGIES	•													
	•		 											
	NS	1.00	0.50	0.0										

 $N_{S}^{}$ - the total number of maintenance strategies

 N_{T} - the analysis period in years.

Figure 7. Pavement survival matrix of each highway segment and distress type.

for a specific highway segment i, maintenance strategy j and distress type k at t years after maintenance work has been performed, a typical survival rate, $P_{i,ikt}$, may be as follows:

P _{ijkt} = 1.00	if t = 0 yr
= 0.90	if t = 1 yr
= 0.70	if $t = 2 yr$
= 0.40	if t = 3 yr
= 0	if t <u>></u> 4 yr

This example indicates that the pavement survival rate is 100% immediately after the maintenance work is accomplished, 90%, 70% and 40%, respectively, at the end of the first, second and third year and 0% at and after the end of the fourth year. Suppose the current rating of a specific distress type k is 5 and the gain of rating of distress type k is 15 if maintenance strategy j is applied, then the rating after the maintenance is done is 20. The rating drops to 18.5, 15.5, and 11, respectively, at the end of the first, second and third year. The rating will be back down to 5 after the end of the fourth year.

The maintenance effectiveness when strategy j is applied per unit surface area of highway segment i when distress type k is presented is defined as

where

d ijk = potential gains of pavement rating of highway segment i, for maintenance strategy j and distress type k,

 N_T = number of years in analysis period.

To estimate the potential gains of rating of each highway segment can be a painstaking process for highway engineers. For instance, if 100 highway segments are considered in the analysis framework, the data for 100 gainof-rating matrices as shown in Figure 6 must be assembled. This problem may be simplified by categorizing the existing pavements into several major types, e.g., (1) surface treatment pavement, (2) hot mixed asphaltic concrete (HMAC) pavement without overlay, and (3) HMAC overlaid pavement. The gain-of-rating of the three pavement types at typical traffic and environment conditions can thus be used to compose three basic matrices. The gain-of-rating of each individual highway segment can now be derived by multiplying a traffic adjustment index and an environment adjustment index to the basic matrix. The maintenance effectiveness can be rewritten as

 $\sum_{\substack{\Sigma \\ t=1}}^{\Sigma} D_{njk} Max [1-a_ib_i(1-P_{ijkt}), 0]$

where

D_{njk} = potential gains of pavement rating of maintenance strategy j
and distress type k, if highway segment i is pavement type n;
a_i = traffic adjustment index of highway segment i; and

b_i = environment adjustment index of highway segment i. The master matrix of probability of pavement survival, P_{ijkt}, represents characteristic survival curves which may be modified by different traffic volumes and environmental effects. The characteristic curves should be the

highest expected probabilities within a given district so that the adjustment factors, a_i and b_i , will always be 1 or greater. Thus an increase in a_i or b_i will represent increasingly heavier traffic loading or more severe environmental conditions and will reduce the probability of survival. This is shown in Figure 8.

<u>Minimum Rating Requirement</u>. Figure 9 illustrates a rating requirement matrix of each highway segment. Instructions for preparing the matrix are as follows:

- 1. For highway segment i and distress type k, the rating requirement $R_{ikt} = 0$ if $t \ge T_{ik}$. T_{ik} is the expected service life of the next year's maintenance activity of that highway segment and distress type, that is, another maintenance activity will be scheduled for highway segment i at or before time T_{ik} .
- 2. For highway segment i, the total rating requirement of all distress types $W_{it}=0$ if $t \ge T_i$. T_i is the expected service life of the next year's maintenance activity of highway segment i. Another maintenance activity will be scheduled for this segment at or before time T_i .
- 3. There are two alternatives to assign the pavement rating requirement. In Figure 10(a), the rating requirement remains unchanged with time. In Figure 10(b), the rating requirement increases with time due to increasing public demands for better highways and increasing traffic volumes. Figure 10 also shows the predicted pavement ratings of five different maintenance strategies. In Figure 10(a) strategies 3, 4, and 5 satisfy the rating requirement at service life, T. However, strategy 3 does not

Time after Maintenance

Time after Maintenance

				TIM	E AFTER MAINTENANCE	
· ·		0	1	2	•••	NT
	7					
	e					
TYPES	•					
DISTRESS						
	•					
	л _р и		4) 	1		
TOI	TAL					

 $\boldsymbol{N}_{\!\!\!D}$ - the total number of distress types.

 $N_{T}^{}$ - the analysis period in years.

Figure 9. Minimum rating-requirement matrix of each highway segment

Figure 10. Pavement rating history and requirement

satisfy the increasing requirement in Figure 10(b) at the same time.

4. The total rating requirement is not necessarily the sum of the rating requirements of all distress types. Usually, for highway segment i, and at time t,

$$W_{it} > \sum_{k=1}^{N_D} R_{ikt}$$

where N_{D} is the total number of distress types in the analysis. The constraint of total rating requirement is unnecessary if

$$\int_{k=1}^{N} \frac{N_{D}}{k=1} Rik1$$

Resource Information

The resource allocation scheme described below is especially devised for annual budgeting and management. However, a substantial degree of flexibility for decision-making has been retained. For instance, seasonal (or even monthly) reviews of the selected maintenance strategies are strongly encouraged so that inflated costs and the scarcity of resources as well as the need for changing pavement rating score requirements can all be included in the management analysis framework to alter or justify previous maintenance decisions.

Resources for pavement maintenance and rehabilitation can be categorized into the following groups: (1) material and supply, (2) equipment, (3) manpower, (4) district overhead cost and (5) betterment budget for contract work. First of all, the number of material types, equipment types and manpower types must be identified. In light of the availability of the re-

sources and the design engineer's preference, the types of materials, equipment and manpower adopted and utilized for maintenance and rehabilitation in one district are not necessarily the same as those adopted and utilized in another district.

The resource requirements per unit surfacing area (one-mile long and one-foot wide) of each resource type, maintenance strategy and highway segment are represented in the matrices shown in Figure 11. This unusual unit area measurement is to allow segment lengths to be recorded in miles and pavement widths recorded in feet. The numbers entered into the materials requirement matrix are in units that are consistent with the way the material is ordinarily measured, for instance, pounds, tons or cubic feet of material per one-mile-long and one-foot-wide unit surface area. The requirements for equipment and manpower can be represented, respectively, by equipment-days and manpower-days per unit surface area as mentioned before. The overhead and betterment costs use monetary terms as dollars per unit surface area.

Figure 12 illustrates the resource-availability matrices should be consistent with the units used in the respective columns of the resourcerequirement matrices. Resource-availability matrices show the quantities of all of the materials available for maintenance and rehabilitation activities. These inventories should be updated each time a new resource allocation decision is to be made.

Figure 11. Resource-requirement matrices of each highway segment

(a) Material-availibility matrix

(b) Equipment availibility matrix

(c) Manpower-availability matrix

(d) Overhead-budgetavailibility matrix

- (e) Betterment-budgetavailability matrix
- $\rm N_{G}^{}$ the total number of material types.
- ${\rm N}_{\rm F}^{}$ the total number of equipment types.
- N_0 the total number of manpower types.

Figure 12. Resource-availability matrices for all highway segments

CHAPTER III

PHASE 2. MATHEMATICAL MODEL

Formulation of the Highway Pavement Problem

The objective of the resource allocation model for highway maintenance is to maximize the overall effectiveness of the maintenance activities, subject to constraints such as limited resources and minimum requirements of pavement quality and service life. Mathematically, the problem as formulated by Lu and Lytton (5) is as follows:

)

subject to

M

multiple choice decision variable constraints,

$$\sum_{j=1}^{1} x_{ij} \leq 1 \qquad i = 1, 2, 3, \dots, N_{H}$$
(2)

material availability constraint,

$$\begin{array}{ccc} N_{H} & N_{S} \\ \Sigma & \Sigma & S_{ijg} L_{1i} L_{2i} x_{ij} \leq S_{g} g = 1, 2, \dots, N_{G} \end{array}$$
(3)
i = 1 j = 1

equipment availability constraint,

$$\begin{array}{cccc} N_{H} & N_{S} \\ \Sigma & \Sigma & e_{ijf} L_{1i} L_{2i} x_{ij} \leq E_{f} & f = 1, 2, \dots, N_{F} \end{array}$$
(4)
i = 1 j = 1

manpower availability constraint,

available overhead constraint,

$$N_{H} N_{S}$$

$$\Sigma \Sigma OC_{ij} L_{1i} L_{2i} X_{ij} \leq CC \qquad (6)$$

minimum rating requirement constraint,

$$cr_{ik} + \sum_{j=1}^{N} d_{ijk} P_{ijkt} x_{ij} \ge R_{ikt} \quad i = 1, 2, ..., N_{H} \quad (7)$$

$$k = 1, 2, ..., N_{D}$$

$$t = 0, 1, ..., N_{T}$$

overall pavement rating requirement constraint.

$$N_{D} = N_{S}$$

$$\sum_{k=1}^{\Sigma} \{cr_{ik} + \sum_{j=1}^{Z} d_{ijk} P_{ijkt} x_{ij}\} \ge W_{it} \quad i=1,2,..N_{H} \quad (8)$$

$$t=0,1,..N_{T}$$

where

 $N_{\rm H}$ = number of highway segments in analysis,

 N_{S} = number of maintenance strategies,

 N_{D} = number of distress types,

 N_T = number of years in analysis period,

L_{li} = pavement length in mile of highway segment i,

L₂₁ = pavement width in feet of highway segment i,

Sijg = amount of material (or supply) type g per unit surface area (one mile long and one foot wide) required for highway segment i, if maintenance strategy j is selected,

 S_q = total amount of material (or supply) type g available,

 N_{G} = number of material or supply types,

^eijf = amount of equipment type f (in equipment-days per unit one mile long and one foot wide surface area) required for highway segment i, if maintenance strategy j is selected,

$$E_{f}$$
 = total amount of equipment type f (in equipment-days)
available,

 N_F = number of equipment types,

h_{ijq} = amount of manpower type q (in man-days per unit, one mile long and one foot wide surface area) required in highway segment i, if maintenance strategy j is applied.

 $N_0 =$ number of manpower types,

OC_{ij} = overhead cost (in dollars per unit one mile long and one foot wide surface area) required for highway segment i, if maintenance strategy j is selected,

CC = total overhead budget (in dollars) available, cr_{ik} = current pavement condition rating of highway segment i, and distress type k,

R_{ikt} = minimum required pavement rating of highway
 segment i and distress type k at time t, and,
W_{it} = minimum required pavement rating of highway
 segment i of all distress types, at time t.

Magnitude of the Highway Pavement Problem

A convenient way to apply this formulation to a state the size of Texas is to divide the entire State highway system into several smaller subsystems. The existing highway districts may be considered as a suitable subsystem or in some cases a subsystem may be formed by the combination of several highway districts. It should be noted that this sort of apportionment may not be optimal state-wide. However most of the highway maintenance operations are planned by highway districts

rather than the entire state as a single unit, and funds are allocated by districts.

In an average subsystem the number of highway segments may be 300 and on the average there may be 15 strategies per segment. Hence there are typically around $300 \times 15 = 4500$, 0-1 decision variables. The number of material availability constraints is roughly 20, and the number of equipment and manpower availability constraints are roughly the same. There may also be additional budget requirement constraints. In addition, there are 300 multiple-choice constraints, one for each highway segment. The number of minimum rating requirement constraints and the overall rating requirement constraints may run into several hundreds. The minimum and overall rating requirement constraints are used to specify the feasible strategies for each highway segment and for overall system (subsystem) efficiency. Hence, an average size problem may consist of 4500 0-1 variables, 60 to 70 resource constraints, 300 multiple-choice constraints, and several hundred minimum and overall pavement rating constraints. For the current state of the art in 0-1 integer linear programming, the above problem is considered to be very large and indeed formidable.

CHAPTER IV

PHASE 3. OPTIMIZATION AND ANALYSIS OF SOLUTION

Optimizing the maintenance strategies for a large number of highway segments with numerous strategies, resources and feasibility constraints exceeds the capacity of current state of the art of integer programming. A special algorithm (solution technique) is developed in this report to solve for large-scale problems as are encountered in the optimization of highway maintenance operations. The concept utilized in the development of this algorithm is termed effective gradient. The idea of effective gradient is briefly described in the following section. The detailed algorithmic development to solve large-scale 0-1 integer programming problem is presented in Appendix A. In Appendix B the documentation of the RAMS (Rehabilitation and Maintenance) program is presented with an example.

Effective Gradient Method

Consider a simple example by using five highway segments. The data for these highway segments comes from a larger, more realistic problem which will be discussed later. The goal of this short example is to demonstrate by use of the effective gradient method how the five segments can be maintained optimally. For simplicity it is assumed that only one maintenance strategy and two resources are needed. The maintenance strategy chosen in reconstruction and the two resources are the amount of budget and materials available to accomplish the work. The RAMS problem presented later actually considers six maintenance strategies and the resources of materials, equipment, manpower, and budget.

Table 2 shows a listing of the five segments (designated H_1 , H_2 , ..., H_5) and the percentage of the total resources used for each. These segments correspond to the last five segments shown in Table 5. The maintenance strategy that is considered is reconstruction with a total available budget of \$300,000. The cost to reconstruct each segment was obtained by multiplying the length and width by the cost per unit area. The percentage of materials required by each segment was assumed to approximate the percentage of the budget consumed. The total required for each resource is shown and is the sum of the individual percentages for each highway segment. For the budget resource, the total required is larger than the available budget by a factor of 2.85. A similar situation occurs for the material resource.

Maintenance effectiveness is also shown in Table 2 and is computed from the objective function in Equation 1. Thus, the maintenance effectiveness is obtained by multiplying together the length, width, gain-ofrating for each distress, and the sum of the survival probabilities (gainof-rating and survival probabilities will be discussed in more detail later in the paper). The maintenance effectiveness would be greater for highly distressed pavements as opposed to nondistressed pavements of equal length and width. Highway segment H_5 will be used to demonstrate how maintenance effectiveness is computed. For H_5 :

- 1. Length = 7.444 mi (11.980 km)
- 2. Width = 20 ft (6.1m)
- 3. Gain-of-rating points for reconstruction for distress types present on roadway:

Highway Segment	Percent of Total Available Budget Resource Used	Percent of Total Available Material Resource Used	Maintenance Effectiveness
H. 1	74	70	6507
H ₂	46	45	4072
H ₃	76	70	3863
H 4	42	40	78,109
H ₅	47	50	78,355
Total Required	285	275	170,906
Total Available (Limit)	100	100	<u> </u>
Extra Resource Required	185	175	

Table 2. Resource Requirements for Five Highway Segments

Total Available Budget = \$300,000

Dist	ress type		Maximum Points Available		Current Condition Rating		Gain- of- Rating
(a)	Rutting	=	15	-	10	=	5
(b)	Alligator cracking	=	25	-	10	=	15
(c)	Longitudinal cracking	=	25	÷	10	=	15
(d)	Transverse cracking	. ==	20	-	8	22	12
(e)	Failures/mile	=	40		20	=	20

4. Probability of survival for reconstruction summed over ten years for distress types present on roadway:

	(a)	Rutting	= 7.97				
	(b)	Alligator cracking	= 6.86				•
	(c)	Longitudinal cracking	= 9.25				
	(d)	Transverse cracking	= 9.25				
	(e)	Failures/mile	= 6.69	-	· -	-	
5.	Main	tenance effectiveness =	Lichor	Ι Σ	Σ.	5 Σ	

 $= (7.444)(20){(5)(7.97)} + (15)(9.25) +$

(12)(9.25) + (20) (6.69) = 78,355

In Figure 13 the vectors \overline{H}_1 , \overline{H}_2 , ..., \overline{H}_5 are plotted as a function of the required resources for each highway segment, i.e., \overline{H}_1 denotes the amount of budget and materials required if reconstruction is done to this segment. The following vectors are defined:

Let \overline{R} = resultant vector of all highway segments

 $= \overline{H}_1 + \overline{H}_2 + \overline{H}_3 + \overline{H}_4 + \overline{H}_5$

 \overline{L} = limiting resources vector

= (100,100) in example

Budget Resource (Percent of Available)

Figure 13. Vector Sum of Resource Requirements For Each Highway Segment

 \overline{E} = excess vector

 $= \overline{R} - \overline{L} = (285, 275) - (100, 100) = (185, 175)$

If enough resources are available to reconstruct all five highway segments, that is what should be done. Of course, this situation will rarely occur. Resources are generally scarce so maintenance cannot be applied to all the highway segments being considered. The maintenance should be applied to that combination of highway segments that maximize the overall maintenance effectiveness and satisfy the available resource restraints. Thus, some method must be used to determine which segments are dropped from consideration.

Figure 14 shows highway segment H₅ being dropped. This caused the point R to move in the general direction of L and 78,355 units of maintenance effectiveness is lost. Highway segment H_5 's contribution toward moving back toward L (to satisfy the resource availability constraint requirement) is expressed by the projected length of vector $\overline{\mathrm{H}}_{5}$ on the excess vector \overline{E} (denoted by $\overline{A'R}$). The decision to drop a highway segment should be based on a comparison of maintenance effectiveness with the projected length on the vector \overline{E} . This comparison determines the "effective gradient" and is taken as the ratio of maintenance effectiveness for a highway segment to the projected length $\overline{A'R}$ for that highway Phrased another way, effective gradient indicates which highway segment. segments have the greatest maintenance effectiveness for the smallest amount of resources. Highway segments with small effective gradients are less desirable to schedule for maintenance than segments with large effective gradients. Therefore, the effective gradient for each segment is

Budget Resource (Percent of Available)

is calculated and those segments with the smallest gradients are dropped until the availability resource constraints are satisfied.

The effective gradient for each highway segment is shown in Table 3. The following will demonstrate how the effective gradient is calculated. Let \overline{U} stand for a unit vector parallel to \overline{E} and with the same sense.

 $\overline{U} = \overline{E} / |\overline{E}|$

and from the example

 $\overline{U} = \{185/(185^2 + 175^2)^{1/2}, 175/(185^2 + 175^2)^{1/2}\}.$ Let U_5 = projection of vector = \overline{H}_5 on vector - \overline{U} where U_5 is given by the scalar product of vectors - \overline{H}_5 and -U $U_5 = -\overline{H}_5 \cdot -\overline{U} = (47)(185/(185^2 + 175^2)^{1/2}) + (50)(175/(185^2 + 175^2)^{1/2})$ = 68.5.

Let G_5 = effective gradient of maintenance effectiveness

= maintenance effectiveness U_5 = $\frac{78,355}{68.5}$ = 1144

Similarly, the effective gradients for the other four highway segments were computed.

By using the ranked effective gradients, a choice of highway segments to be dropped can be made. The segments dropped are shown in Table 4. It can be seen that after dropping highway segments H_3 , H_2 , and H_1 , 11 percent of the budget and 10 percent of the materials are not used. The overall result is that only segments H_4 and H_5 can be reconstructed and represent the optimal solution.

The problem of determining optimum maintenance strategies grows

Proposed Order	Effective Gradient
н.	27
H ₃	37
^H 2	63
^H 1	64
H ₅	1144
H ₄	1347

Table 3. Five Highway Segments Ranked By Effective Gradient

	Budget Resource	Material Resource
Initial Excess Resource Requirements	185	175
Jubtract H ₃ (76, 70)	109	105
Subtract H ₂ (46, 45)	63	60
Subtract H ₁ (74, 70)	-11	-10

Table 4. Selection of Highway Segments by Dropping Least Effective

rapidly when additional strategies, resources, and distress considerations are added. The RAMS program treats this kind of problem.

Program Steps

The RAMS program considers the following steps in obtaining optimal maintenance solutions:

1. Finds the feasible maintenance strategies for each highway segment according to the minimum rating for each distress constraint (Equation 7 and Table 11) and the overall pavement rating constraint (Equation 8 and Table 11).

 Ranks the feasible strategies for each highway segment according to the ratio of maintenance effectiveness to resource requirement.
 The ranking criterion is computed as follows:

$$r_{ij} = \frac{M_{ij}}{m}$$
$$\sum_{l=1}^{\Sigma} a_{ijl}$$

where:

 r_{ij} = ranking ratio for highway segment i and strategy j.

- M_{ij} = maintenance effectiveness if strategy j is applied to highway
 segment i.
- a_{ijl} = percent of lth type of resource needed if strategy j is applied to highway segment i.

For each highway segment the feasible strategies are ranked according to the highest value of the ranking ratio.

3. Selects the best ranked feasible strategy for each highway segment and calculates the effective gradient. 4. Sorts the effective gradients for all highway segments.

5. Selects the highway segment with the smallest effective gradient and exchanges its currently considered strategy with the next best available. This highway segment with its exchanged strategy and the remaining highway segments with their current strategies are used to recalculate the effective gradients for all highway segments. The program then switches back to Step 4 unless all the available, feasible strategies for this highway segment are exhausted in which case the program goes to Step 6.

6. One of two possible decisions are made at this step. These two decisions are:

- (a) If any of the constraints are exceeded, drop the highway segment from the solution and subtract the resources required for the segment from the excess resource vector. The effective gradients for the remaining highway segments with their current strategies are recalculated and the program then returns to Step 4.
- (b) If all of the constraints are satisfied, there is no need to drop more highway segments. The program goes to Step 7.

7. The remaining highway segments together with their corresponding strategies constitute the optimal solution set. If additional or "slack" capacity is available in the resource constraints then additional highway segments may be added back to eliminate or reduce this capacity.

Example Problem Using the RAMS Program

The purpose of this larger example problem is to compare the maintenance strategies that were selected by TSDHPT personnel and with those selected by the RAMS program. The problem was prepared using actual field data which was obtained from fifteen highway segments located in TSDHPT District 17. This district is located in eastern-central Texas.

Eleven of the fifteen highway segments selected were scheduled for various kinds of contracted highway maintenance or rehabilitation within the next several months. The highway department has actually scheduled these segments for either a seal coat, asphalt concrete overlay, or reconstruction. Four additional highway segments were added to the initial eleven because they were considered to be in excellent condition and as such to require no significant maintenance. Although the intent of the methodology contained in RAMS was not to optimize maintenance on segments which require none, it was felt that adding the four segments would demonstrate that the program could distinguish a segment that needed rehabilitation from one that does not.

The following outline will be used in describing this example problem:

- 1. A description of the highway segments used.
- 2. Pavement condition determination for each segment.
- 3. The gain-of-rating matrices used.
- The pavement survivor matrices used and how these matrices were obtained.
- 5. Resource information with emphasis on the budget.
- A comparison of the TSDHPT selected maintenance strategies and those selected by the RAMS program.

Description of Highway Segments

Table 5 contains general information for each highway segment used. It includes a general description of each segment and the TSDHPT scheduled maintenance strategies. Additionally, the average Serviceability Index (SI) for each segment is shown and was obtained by use of the Mays Ride Meter. As can be seen in the table, a mixture of US, State and Farm-to-Market highways were used. The pavement length and width for each highway were direct inputs into the computer.

Pavement Condition For Each Highway Segment

The pavement condition rating system used is the one currently being implemented in Texas (6, 7) with slight modifications. This system is based on evaluating the quantity and severity of nine different distress manifestations. Due to reasons which will be explained later, only five distress types were used in this example problem.

Each distress type is assigned a certain amount of "points" up to a maximum amount. The "points" determine the current pavement rating of highway segment i and distress type k. The more points assigned to a certain highway segment and distress type, the less distress is present. The summation of available points for the individual distress types for a given highway segment will determine the overall rating. Table 6 shows the current condition rating information which was used as input to the computer program. Note that the maximum overall rating score taken over the five distress types is 125, not 100 as used in many other rating systems (8). The "Percent of Total" is taken as the ratio of the overall rating to the maximum rating and is equivalent to a pavement score based on a 0 to 100 scale.

Table 5.

5. General Description of Highway Segments Used In Example Problem

Segment Number	Highway	County	Segment Length mi (km)	Segment Width ft (m)	Avg. SI	TSDHPT Scheduled Maintenance
1	US 79	Milam	4.525 (7.282)	26 (7.9)	2.7	2.5 cm HMAC Overlay + Extensive Patching
2	US 77	Milam	12.316 (19.821)	28 (8.5)	2.5	2.5 cm HMAC Overlay
3	US 190	Milam	3.617 (5.821)	26 (7.9)	2.1	3.8 cm HMAC Level-up Overlay
4	SH OSR	Madison	7.000 (11.265)	20 (6.1)	2.3	Seal Coat
5	SH OSR	Madison	2.257 (3.632)	22 (6.7)	1.9	Seal Coat
6	FM 1696	Walker	13.804 (22.215)	20 (6.1)	1.9	Seal Coat
7	FM 1791	Walker	12.374 (19.914)	22 (6.7)	0.8	Seal Coat
8	FM 2821	Walker	3.337 (5.370)	24 (7.3)	2.1	Seal Coat
9	SH 30	Walker	7.385 (11.885)	26 (7.9)	3.4	Seal Coat
10	SH 36	Burleson	12.021 (19.346)	26 (7.9)	3.9	None
11	US 290	Washington	9.019 (14.515)	26 (7.9)	3.9	None
12	US 79	Milam	5.644 (9.083)	.26 (7.9)	4.5	None
13	SH 36	Burleson	9.321 (15.001)	26 (7.9)	4.7	None
14	SH OSR	Brazos	6.667 (10.729)	20 (6.1)	0.9	Recondition Base and Surfacing
15	FM 908	Milam	7.444 (11.980)	20 (6.1)	1.5	Recondition Base and Surfacing

Table	6.	Current Pavement Condition Rating	
		Information For Highway Segments	

Distress	Highway Segment Number									Maximum						
Туре	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Points Available
Rutting	10	10	10	10	10	10	8	10	15	15	15	15	13	8	10	15
Alligator Cracking	5	15	10	20	25	25	0	15	25	25	25	25	25	5	10	25
Longitudinal Cracking	20	25	15	20	25	25	10	25	5	25	25	25	25	0	10	25
Transverse Cracking	17	20	13	20	20	20	20	20	5	20	17	17	20	17	8	20
Failures/Mile	20	40	40	40	40	40	10	20	40	40	40	40	40	20	20	40
Total Points (Overall Rating)	72	110	88	110	120	120	48	90	90	125	122	122	123	50	58	125
Percent of Total	- 58	88	70	88	96	96	38	72	72	100	98	9 8	98	40	46	100

Gain-of-Rating Matrix

The gain-of-rating matrix represents the d_{ijk} input for the RAMS program. The gain-of-rating "points" are the same kind of points as used in determining the pavement condition for the highway segments.

There are three kinds of ratings (points) which are used to generate the gain-of-rating matrix. These are: <u>Maximum points available</u> (Table 6) for a given type of distress, <u>Maximum gain-of-rating points</u> (Table 7) for a given maintenance strategy and distress type and <u>current pavement rating</u> (Table 6) for a given highway segment and distress type. The maximum points available for a distress type indicates what magnitude of points constitute a perfect rating (no distress condition). The maximum gainof-rating points indicate the maximum gain which can be expected by using a given kind of maintenance strategy to treat a specific distress. Current pavement rating was previously discussed.

The three ratings are used by the RAMS program to generate the gainof-rating points (d_{ijk}) for each highway segment (i), maintenance strategy (j) and distress type (k) by one of two possible procedures. If the maximum gain-of-rating and the current pavement rating points sum to less than the maximum points available for a given highway segment and distress type, then the maximum gain-of-rating points is used at the d_{ijk} input. If the above sum of points is greater than the maximum points available, then the difference between the maximum points available and current pavement rating points is used as the d_{ijk} input. For example, if a moderate overlay, thick overlay, or reconstruction maintenance strategy is used, the maximum gainof-rating points for rutting is 15. This indicates for a highway segment

Maintenance		Distress Type										
Strategy	Rutting	Alligator Cracking	Longitudinal Cracking	Transverse Cracking	Failures Mile							
Seal Coat	0	15	15	15	10							
Thin Overlay (3.8cm or less)	13	20	20	20	25							
Moderate Overlay (>3.8 to 7.6cm)	15	25	25	20	30							
Thick Overlay (>7.6cm)	15	25	25	20	35							
Reconstruction (Light-Duty)	15	25	25	20	40							
Reconstruction (Heavy-Duty)	15	25	25	20	40							

Table 7. Maximum Gain-of-Rating Matrix for All Highway Segments

with a rutting distress rating of 0 (which is the most severe rutting condition), application of one of these three strategies would completely eliminate the distress manifestation immediately after the required work was performed. Some maintenance strategies may have negative gain-ofrating points for some types of distress indicating that they have accentuated the distress.

The six maintenance strategies used in this example problem are considered to be typical of the maintenance performed on TSDHPT District 17 pavements. The only maintenance strategies which require additional description are light-duty and heavy-duty reconstruction. Light-duty reconstruction is generally used on low traffic highways and consists of scarifying the existing surface and base, recompacting, and then applying a one course surface treatment. Heavy-duty reconstruction is generally used on higher traffic highways and consists of scarifying the existing surface and base, adding additional flexible base (unstabilized), recompacting and applying a thin (3.8 cm or less) asphalt concrete surface.

The maximum gain-of-rating points associated with each maintenance strategy and distress type were obtained from subjective ratings by TTI personnel and are expected to change slightly as TSDHPT personnel begin to use the computer program.

Pavement Survivor Matrices

Pavement survivor matrices were developed for each distress type and maintenance strategy combination. An example of this is Table 8 which shows the probability of survival for the six maintenance strategies obtained for transverse cracking conditions. The determination of the

Maintenance Strategy	Time After Maintenance (Yrs)										
	1	2	3	4	5	6	7	8	9	10	
Seal Coat	1.00	0.92	0.86	0.85	0.67	0.38	0.33	0.18	0.09	0.06	
Thin Overlay (3.8 cm or less)	1.00	1.00	0.94	0.94	0.43	0.18	0.18	0.14	0.06	0.01	
Moderate Overlay (>3.8 to 7.6 cm)	1.00	1.00	1.00	1.00	1.00	0.63	0.26	0.22	0.11	0.04	
Thick Overlay (>7.6 cm)	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.28	0.17	0.17	
Reconstruction (Light-Duty)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.65	0.60	
Reconstruction (Heavy-Duty)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.65	0.60	

Table 8. Pavement Survival Matrix For Transverse Cracking

probabilities for each of the five distress types used in this example problem will be described in detail below. The maintenance strategies considered are: (1) seal coat, (2) thin overlay, (3) moderate overlay, (4) thick overlay, (5) reconstruction (light-duty), (6) reconstruction (heavyduty).

To determine the probability of survival for a given maintenance strategy, failure must first be defined. Sivazlian and Stanfel (19) define it as ". . an event associated with a shift in the operating characteristics of a system from its permissible limits". Thus pavement failure may be when the Serviceability Index for a given highway type reaches or goes below a preselected lower limit. Failure could also be defined as when the highway develops a certain amount of a particular distress manifestation. But, for this problem, the time to failure for a given maintenance strategy will be taken as that time when some type of maintenance strategy must be accomplished which supersedes the previously applied maintenance.

The pavement survival matrices are currently based on subjective "failure analysis" data obtained from TSDHPT district maintenance management personnel. This data was obtained from a diagnostic examination of pavement segments located in four separate areas within the state. The district personnel evaluated these highway segments for future maintenance and rehabilitation needs based on their visual observations of the pavement and objectively measured data which was provided to them. These data included traffic, skid, deflection, ride, and construction histories.

From such information, time to failure was calculated for each maintenance strategy considered. For seal coats, a time to failure is determined

when any of the six maintenance strategies considered were rescheduled for application. For the three overlays and reconstruction, a time to failure is determined only when one of these five maintenance strategies are rescheduled for application i.e., seal coats were not considered as superseding any of these five.

The time to failure data obtained for each maintenance strategy was arranged into histograms. These histograms approximate the failure density distribution curve discussed in reliability theory (9, 10). Failure density distributions are similar to normal distributions of data in that the area under the curve is equal to one.

From these histograms or failure density distributions, the failure density function can be defined by f(x) taken over $0 < x < \infty$ where x defines a time scale. The probability that a maintenance strategy will fail within a time interval (x, x + dx) is given by f(x)dx.

The corresponding cumulative density function can be defined by F(x) also taken over the interval $0 < x < \infty$ and is the probability that a given maintenance strategy will fail on or before some time t. This can be expressed as follows:

Probability of failure on or before $t = F(t) = \int_{0}^{t} f(x) dx$

The above expression assumes that a maintenance strategy will survive past time t is given by R(t) and is expressed as:

$$R(t) = 1 - F(t) = \int_{t}^{\infty} f(x) dx$$

This expression can be adequately approxmiated for a given maintenance strategy by a cumulative frequency distribution which may be plotted from a histogram of time to failure data. The result is a survival curve, a generalized form of which is shown as Figure 15. Data from such curves are entered into the RAMS program in matrix form as is demonstrated by the use of Table 8.

The pavement survival matrices currently being used will be updated in the near future. This will be accomplished by combining the subjectively obtained data just described with objective data from a pavement data base assembled for Texas pavements. It is planned to use Bayesian techniques to accomplish this task.

Budget Resource

There are four types of resource constraints used in the program: (1) material and supply, (2) equipment, (3) manpower, and (4) cost. Each resource constraint has two major inputs: requirements and availability. The requirement input indicates how much of a given resource will be used by a maintenance strategy and availability indicates how much of a given resource is available to be used. Of the four types of resource constraints, budget is the most significant in this example problem.

The available budget used as input was essentially the same amount as the contract funds allocated for the TSDHPT selected maintenance strategies. This is an important constraint because it forced the computer program to consider maintenance decisions within approximately the same financial framework used by TSDHPT personnel. This value is shown in Table 8 as the total available funds.

The budget requirement matrix indicates the required cost per unit area for each maintenance strategy and is shown in Table 9. The costs

Figure 15. Generalized Form of a Survival Curve For A Maintenance Strategy

Maintenance Strategy	Cost Pe \$/ft-mi	r Unit Area (\$/m-km)
Seal Coat	214	(436)
Thin Overlay	925	(1886)
Moderate Overlay	2000	(4078)
Thick Overlay	3549	(7234)
Reconstruction (Light-Duty)	944	(1925)
Reconstruction (Heavy-Duty)	2600	(5301)

Table 9. Cost Requirements Per Unit Area for Each Maintenance Strategy and Total Available Funds

Total Available Funds = \$ 1,130,000

generally increase as the maintenance strategies become more extensive. The notable exceptions to this are the two kinds of reconstruction.

Comparison of TSDHPT and RAMS Selected Maintenance Strategies

Comparisons of the TSDHPT and RAMS selected maintenance strategies for the fifteen highway segments in the example are shown in Table 10. First, the TSDHPT and RAMS (Case 1) selected strategies are shown and both use the same original TSDHPT budget amount. Another RAMS solution (Case 2) is also shown and was obtained by increasing the TSDHPT budget by approximately six percent. To facilitate discussion of the comparisons, those highway segments which reveal little or no difference between the TSDHPT and RAMS (Case 1 and 2) selected maintenance strategies will not be examined.

A combination of highway types was used in this example and the RAMS program treated all with equal priority except in applying the two kinds of reconstruction. For low traffic segments (Segment Numbers 4, 5, 6, 7, 8, 14 and 15), the program was restricted to applying only the light-duty type of reconstruction (if required) and for the remaining higher traffic segments only the heavy-duty type of reconstruction could be used. Traffic and climate indices can also be used as input to account for differences in highway types. Additionally, groupings of similar highway types can be assembled and processed together if desired.

Table 10 shows that the selected strategies for Segment Number 2 differ. The TSDHPT selected strategy is a thin overlay and the RAMS program (Cases 1 and 2) selected a seal coat. The pavement distress manifestations for this segment are comprised of alligator cracking and extensive flushing (flushing is not considered in this run of the RAMS program). All maintenance

Table 10. Comparison of TSDHPT and RAMS Selected Maintenance Strategies

Segment Number	Highway	*Overall Pavement Rating Percent of Total	**Serviceability Index (SI)	TSDHPT Selected Maintenance Strategies	RAMS Computer Program Selected Maintenance Strategies Using TSDHPT Budget (Case 1)	RAMS Computer Program Selected Maintenance Strategies Using TSDH Budget + 6.3% (Case 2)
1	US 79	72 58	2.7	2.5cm HMAC Overlay +Extensive Patching	Moderate HMAC Overlay	Moderate HMAC Overlay
2	US 77	110 88	2.5	2.5cm HMAC Overlay	Seal Coat	Seal Coat
3	US 190	88 70	2.1	3.8cmHMAC Level-up Overlay	Thin HMAC Overlay	Thin HMAC Overlay
4	SH OSR	110 88	2.3	Seal Coat	Seal Coat	Seal Coat
5	SH OSR	120 96	1.9	Seal Coat	None	None
6	FM 1696	120 96	1.9	Seal Coat	None	None
7	FM 1791	48 38	0.8	Seal Coat	Light Duty Reconstruction	Light Duty Reconstruction
8	FM 2821	90 72	2.1	Seal Coat	Thin HMAC Overlay	Thin HMAC Overlay
9	SH 30	90 72	3.4	Seal Coat	None	Thin HMAC Overlay
10	SH 36	125 100	3.9	None	None	None
11	US 290	122 98	3.9	None	(Seal Coat)	None
12	US 79	122 98	4.5	None	(Seal Coat)	None
13	SH 36	123 98	4.7	None	None	None
14	SH OSR	50 40	0.9	Recondition Base and Surfacing	Light Duty Reconstruction	Light Duty Reconstruction
15	FM 908	58 46	1.5	Recondition Base and Surfacing	Light Duty Reconstruction	Light Duty Reconstruction
*Perfect Poorest		**Smoothe Roughes		Budget Used = 100% (\$1,130,000)	Budget Used = 97.8% (\$1,105,140)	Budget Used = 106.3% (\$1,201,520)

60

. •

.

strategies are feasible on this segment as determined by the minimum and overall rating constraints, the results of which are shown in Table 11. Thus, on this section the RAMS program evaluated five maintenance strategies (seal coat, thin overlay, moderate overlay, thick overlay and heavy-duty reconstruction). For this segment, the maintenance effectiveness computed for a seal coat is about one-half of that calculated for a thin overlay but the cost of a thin overlay is four times as great. It can be seen in a subjective way that a seal coat is an attractive maintenance strategy. The TSDHPT decision to use a thin overlay may have been additionally based on the rough ride and flushing present on this highway.

Segment Numbers 5 and 6 were scheduled for seal coats by the TSDHPT and no strategies were scheduled by the RAMS program. An examination of the Table 6 shows that no distress manifestations, with the exception of minor rutting, were present on these pavements. But, in fact, flushing was present (not shown in Table 6) and may have been a consideration in the TSDHPT decision.

Segment Number 7, which has numerous and extensive distress manifestations, is scheduled for maintenance by RAMS. The feasible strategies allowed by the minimum and overall rating constraints shown in Table 11 indicate that only a thick overlay strategy or greater is allowable. A similar situation occurs with Segment Number 8.

For Segment Number 9, the TSDHPT scheduled a seal coat but the RAMS program (Case 1) scheduled no maintenance. This occurred because there was not enough budget to allow application of a thin overlay or greater to this segment. The inexpensive seal coat alternative was eliminated by the minimum and overall rating constraints. For the RAMS (Case 2) selection, the orginial TSDHPT budget was increased by approximately six percent.

Highway	Feasible = 1 Maintenance Strategy: Infeasible = 0					
Segment	Sea 1	Thin	Moderate	Thick	Reconstruction	Reconstruction
	Coat	Overlay	Overlay	Overlay	(Light Duty)	(Heavy Duty)
1	0	0	1	1	1	1
2	1	1.	. I	1.	1.	1
3	0	1	• 1 . • •	1	1	1
4	1	1	1	1	1	1 1
5	1	1	ана (р. 1997) 1997 — Стала Стала (р. 1997) 1997 — Стала (р. 1997)	1	1	1
6	1]	1	1	1	1
7	0	0	0	1	1	1
8	0	1	1	1	1	1
9	0	1	1	1	1	1
10	1	1	1	.1	1	1
11	1	. I	1	1	1	1
12	1	1	1	1	1 · · · · · · · · · · · · · · · · · · ·	1
13	1	1	1	1	1	1
14	0	0	0	0	1	1
15	0	0	1	1	1	1

Table 11. Feasible Maintenance Strategies Allowable by the Minimum Distress Rating and Overall Rating Constraints
This small budget change allowed the segment to be scheduled for a suitable, cost effective maintenance strategy (thin overlay).

As shown by use of Segment Number 9, the RAMS program can also be used to help estimate required maintenance budgets. This can be accomplished by inputting all data as previously discussed but varying the budget amount. The budget could be selected where adequate maintenance is scheduled for all necessary segments.

Segment Numbers 11 and 12 are in excellent condition with both having only minor transverse cracking. The RAMS program in Case 1 scheduled seal coats for these segments since some benefit could be obtained by using this strategy. This occurred because the program maximizes the maintenance effectiveness for the amount of budget available. In Case 2, the funds were more adequately used by slightly increasing the available budget with one result being that these two seal coats were eliminated.

A comparison of overall maintenance effectiveness resulting from the TSDHPT, RAMS, Case 1 and Case 2 maintenance strategy selections provides an indication of the optimality of the computer solutions. The maintenance effectiveness obtained by use of Equation 1 for the three maintenance programs are:

> TSDHPT: 359,412 RAMS - Case 1: 425,106 RAMS - Case 2: 451,318

Comparing the TSDHPT and RAMS Case 1 selections shows that use of the computer program increased the maintenance effectiveness by 18 percent and resulted in a two percent budget savings. But, Case 1 selections did exclude one pavement segment which needed maintenance. Case 2 selections filled

this need and resulted in an increase in maintenance effectiveness of 26 percent over TSDHPT selections. The RAMS program accomplished this by using a budget approximately six percent larger than used by the TSDHPT.

CHAPTER V

SUMMARY

셞

The main thrust behind this research effort was to develop a comprehensive technique to optimize the allocation of resources for maintenance and rehabilitation of Texas State highway system. The different subtasks considered was (1) problem analysis and data collection, (2) formulation of a mathematical model that realistically represents the state highway maintenance and rehabilitation (3) optimization and analysis of solution.

The state highway maintenance problem was realistically represented by a 0-1 integer linear programming formulation. To include all the aspects in highway management, this 0-1 integer linear programming formulation becomes very large in terms of number of variables and constraints. Only small size 0-1 integer linear programming problem can be solved by the current state of the art. A special solution technique is developed so that large 0-1 integer programming problems as are encountered in highway management can be solved efficiently.

An operating computer program based on the solution techniques developed was constructed to determine optimal strategies for pavement maintenance. The program uses the current pavement condition, potential-gain-of-rating, and survivor matrices as input to maximize the overall maintenance effectiveness for any group of highway segments. The program can use numerous maintenance strategies, resources, and feasibility constraints in determining optimal solutions. The required inputs can be expanded or reduced as necessary. The documentation of the program is provided in Appendix B.

An example problem with fifteen highway segments located in one highway district in Texas was used to demonstrate the program. Based on the actual field data a comparison of the computer program and TSDHPT selected maintenance strategies revealed similar selections with notable exceptions. It was shown that by using the RAMS program with the same budget the maintenance effectiveness of the selected maintenance strategies could be increased by 18 percent over TSDHPT selections. The maintenance effectiveness was increased by 26 percent with a six percent increase in the available budget.

REFERENCES

- Ahmed, Nazim U., "A Code for Zero-One Integer Linear Programming Problems with Multiple-Choice Constraints", Department of Industrial Engineering, Texas A&M University, College Station, Texas, January 1978.
- Anthony, R. M., Dearden, J., and Vancil, R. F., <u>Management Control</u> Systems: Text, Cases, and Readings. Irwin, 1972, pp. 1-19.
- 3. Anthony, R. M., <u>Planning and Control Systems: A Framework for Analysis</u>. Graduate School of Business Administration, Harvard University, 1965.
- Balas, E., "An Additive Algorithm for Solving Linear Programs with Zeroone Variables," <u>Operations Research</u>, Vol. 13, No. 4, (July - August, 1965), pp. 517-546.
- 5. Danny, Y. Lu and Lytton, Robert L., "Strategic Planning for Pavement Rehabilitation and Management System," <u>Transportation Research Record</u>, No. 598, 1976, pp. 29-35.
- 6. Epps, J. A., Meyer, A. H., Larrimore, I. E., and Jones, H. L., Roadway Maintenance Evaluation User's Manual, Research Report 151-2, Texas Transportation Institute, 1974.
- 7. Epps, J. A., Larrimore, I. E., and Scott, W. W., Implementing Maintenance Rating Techniques, Research Report 199-1F, Texas Transportation Institute, 1976.
- 8. Garrison, W. A., Finn, F. N., and Evans, G. H., Developing a County Pavement Management System. <u>Proceedings</u> of an ASCE Specialty Conference on Pavement Design for Practicing Engineers, Atlanta, Georgia, 1975.
- Geoffrion, A. M., "Integer Programming by Implicit Enumeration and Balas' Method," <u>Siam Review</u>, Vol. 9, No. 2, (April, 1967), pp. 178-190.
- Geoffrion, A. M., "Lagrangean Relaxation for Integer Programming," Working Paper No. 195, Western Management Science Institute, University of California, Los Angeles, December, 1973.
- Gomory, R. E., "On the Relation Between Integer and Non-Integer Solutions to Linear Programs," <u>Proc. Nat. Acad. Sci.</u>, Vol. 53, (1965), pp. 260-265.
- 12. LeClerc, R. V., and Marshall, T. R., A Pavement Condition Rating System and Its Use. Symposium on Pavement Evaluation, AAPT Proceeding, 1969.

- 13. Kuester, J. L. and Mize, J. H., Optimization Techniques with FORTRAN, McGraw-Hill, 1973, pp. 91-104.
- 14. Kulkarni, R., F. H. Finn, R. LeClerc and H. Sandahl, Development of a Pavement Management System, TRB, Transportation Research Report 602, 1976, pp. 117-121.
- Lytton, R. L., Moore, W. M., and Mahoney, J. P., Pavement Evaluation. Draft final report on FHWA contract no. DOT-FH-11-8264, Texas Transportation Institute, Texas A&M University, 1975.
- 16. Pieruschka, E., Principles of Reliability, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963.
- Phillips, D. T., and Ravindran, A. and Solberg, J. J., "Operations Research: Principles and Practice," John Wiley and Sons, Inc., New York, 1976.
- 18. Raiffa, H. and Schlaiffer, R., <u>Applied Statistical Decision Theory</u>, Graduate School of Business Administration, Harvard University, 1961.
- 19. Sivazlian, B. D., and L. E. Stanfel, Analysis of Systems in Operations Research, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1975.
- Smith W. S., and Moinsmith, C. L., "Maintenance Management System for Asphalt Pavements," <u>Transportation Research Record</u>, No. 598, 1976, pp. 17-25.
- 21. Taha, H. A., <u>Operations Research An Introduction</u>, MacMillan, 1971, pp. 327-342.
- Toyoda, Yoshiaki and Senju, Shizuo, "An Approach to Linear Programming with 0-1 Variables," <u>Management Science</u>, Vol. 15, No. 4, (December, 1968), pp. B-196-207.
- 23. Voss, D. A., Terrel, R. L., Finn, F., and Hovey, D. "A Pavement Evaluation System for Maintenance Management," A paper prepared for presentation at the Western Summer Meeting, Highway Research Board, Olympia, Washington, 1973.
- 24. Young, M. H., Tso, K. L., et al., "A Code for Zero-One Integer Programming JLLIP-2," Department of Computer Science, University of Illinois, Urbana, Illinois, April, 1977.

į.

APPENDIX A

AN ALGORITHM TO SOLVE 0-1 INTEGER LINEAR PROGRAMMING PROBLEMS WITH MULTIPLE-CHOICE CONSTRAINTS

A generally accepted efficient procedure for solving small to medium sized 0-1 integer linear programming problems is to apply an implicit enumeration algorithm (9) which uses branch and bound techniques or treesearch procedures. The cutting plane method (11) and/or combinations of implicit enumeration in association with the cutting plane procedure are also frequently used. An exact optimal solution may be obtained in most cases if the number of variables is not large (30 or less variables). However, if the number of variables becomes large, branch and bound and other algorithms may require excessive computation. In addition it may not be practical to obtain an optimal solution or even a "good" feasible solution (a feasible solution which is close to optimal) in the algorithmic procedure.

This report documents the development of a computationally efficient algorithm to obtain optimal or near optimal solutions to large scale integer linear programming problems with multiple-choice constraints. The solution approach is based on a preference indicator among the solution variables referred to as "the effective gradient".

Explanation of the Effective Gradient

In this section the concept of the effective gradient, which was originally developed by Toyoda, (22) is presented through a numerical example. Suppose one considers the capital budgeting problem where an optimal selection of projects is to be made from a choice of nine different projects. The objective will be to maximize profit, subject to the stated

constraints. For simplicity it is assumed that only two resources, A and B are required for implementing each project. The resource requirement and profit from each project is shown in Table A-1. Investing in all projects is not feasible due to the lack of available resources. Therefore one seeks to select those projects which maximize profit while simultaneously satisfying the resource availability constraints. Specifically, let

 $\overline{I}_i = i^{th}$ project vector (resource vector of i^{th} project),

 \overline{R} = resource vector of all projects,

- $=\overline{I}_1 + \overline{I}_2 + \overline{I}_3 + \dots, + \overline{I}_9,$
- = (48, 50),

 \overline{L} = limiting resource vector or availability

vector,

- = (38, 38), and
- \overline{S} = surplus vector = \overline{R} \overline{L} ,

= (10, 12).

In Figures A. 1 and A. 2 R' and L' represent the end points of the vectors \overline{R} and \overline{L} originating from the origin.

As it is not possible to select all of the projects due to resource limitations, it may be necessary to move back from the resultant point R' in Figure A. 1 towards the feasible zone by dropping some projects in such a way that the remaining profit is maximized.

If project 9 is dropped, the point R' moves along- $\overline{I_9}$ and \$700 in profit is lost. $\overline{I_9}$'s contribution to moving back towards the point L' is expressed by the projected length B'R' on the surplus vector \overline{S} as illustrated in Figure A. 2. It is preferable to drop the projects which possess smaller

TABLE A-1

An Example with Two Resources

	Resource Re	equirements	
Project	А	В	Profit
1	3	5	150
2	8	3	300
3	2	7	200
4	5	8	600
5	3		150
6	7	6	700
7	5	7	400
8	6	8	650
9	9	5	700
TOTAL	48	50	
AVAILABLE	38	38	
EXCESS NEEDED	10	12	

Fig. A.1 Vector Sum of Projects

Resource A

Fig. A.2 Effective Gradient

profits compared to their projected length on the surplus vector \overline{S} . In dropping a project, the ratio of the projected length B'R' to the profit is significant. This ratio is termed the <u>effective gradient</u> of profit. To determine which projects should be dropped to maximize profit, it is essential to calculate the effective gradients of all the projects. Hence, those projects which have the least effective gradients should be dropped in a sequence of increasing effective gradients until the resource requirements are satisfied. It may be noted that, this still may not generate an optimal solution but it will be feasible.

Calculation of the Effective Gradient

(A-1)

(A-2)

Let \overline{V} be a unit vector parallel to the surplus vector \overline{S} as shown in Figure A.2. Thus,

$$V = \overline{S} / |\overline{S}|,$$

and in the example shown in Table 3-1 (p. 17),

$$V = \{10/(10^2 + 12^2)^{\frac{1}{2}}, 12/(10^2 + 12^2)^{\frac{1}{2}}\}$$

Let,

 $P_i = projection of vector - \overline{I}_i on - \overline{V}$,

 P_i is given by the scalar product of the vectors $-\overline{I}_i$ and $-\overline{V}$,

$$P_{i} = -\overline{I}_{i} \cdot -\overline{\nabla} = \overline{I}_{i} \cdot \overline{\nabla}.$$

Thus, $P_{1} = -\overline{I}_{1} \cdot -\overline{\nabla} = \overline{I}_{1} \cdot \overline{\nabla},$
 $= (3 \times 10) / (10^{2} + 12^{2})^{\frac{1}{2}} + (5 \times 12) / (10^{2} + 12^{2})^{\frac{1}{2}}$
 $= (3 \times 10 + 5 \times 12) / (10^{2} + 12^{2})^{\frac{1}{2}}.$

Now define E_i as effective gradient of profit for project i, where

$$E_i = \frac{Profit \text{ for project } i}{P_i}$$

Thus, $E_1 = effective gradient of profit for project 1,$

$$= \frac{\text{Profit for project 1}}{P_1}$$
$$= \frac{150}{90/(10^2 + 12^2)^{\frac{1}{2}}}$$
$$= 26.03.$$

Similarly, effective gradients of profit for all the other projects are:

$$E_{2} = \frac{300}{(8 \times 10 + 3 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 40.40$$

$$E_{3} = \frac{200}{(2 \times 10 + 7 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 30.40$$

$$E_{4} = \frac{600}{(5 \times 10 + 8 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 69.94$$

$$E_{5} = \frac{150}{(3 \times 10 + 1 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 55.78$$

$$E_{6} = \frac{700}{(7 \times 10 + 6 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 77.00$$

$$E_{7} = \frac{400}{(5 \times 10 + 7 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 46.62$$

$$E_{8} = \frac{650}{(6 \times 10 + 8 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 70.50$$

$$E_{9} = \frac{700}{(9 \times 10 + 5 \times 12)/(10^{2} + 12^{2})^{\frac{1}{2}}} = 72.89$$

(A-3)

At this point, effective gradients for all the projects are arranged in ascending order. This is shown in Table A-2. Those projects which have the least effective gradients should be dropped until the resource

TABLE A-2

Sorting of Projects According to the Negative Priority of Effective Gradient

*
Effective Gradient
$E_1 = 26.03$
$E_3 = 30.04$
$E_2 = 40.40$
$E_7 = 46.62$
E ₅ = 55.78
$E_4 = 69.94$
$E_8 = 70.50$
$\bar{e}_{9} = 72.89$
E ₆ = 77.00

requirement is satisfied. The process of dropping the project is shown in Table A-3. It may be observed that after dropping the projects 1, 2, and 3 in Table A-3, there remains some slack capacity in the resource constraints. Sometimes it may be possible to include additional projects from the projects already dropped. For this example it is not possible to add more projects. The final solution is shown in Table A-4.

TABLE A-3

Dropping of Projects

	Surp	lus
	Resource A	Resource B
Initial Surplus	10	12
Subtract \overline{I}_1 (3, 5)	7	7
Subtract \overline{I}_3 (2, 7)	5	0
Subtract \overline{I}_2 (8, 3)	- 3	- 3

TABLE A-4

Resultant Selection of Projects

Project	Profit	Net Profit
4	600	
5	150	•
6	700	
7	400	3200
8	650	
.9	700	
3	/00	

Generalization.

In general consider the following formulation :

(IP A-1) maximize
$$\sum_{i=1}^{n} C_i \times_i$$

subject to

 $\sum_{i=1}^{n} a_{i} \times (\sum_{i=1}^{n} b_{\ell}) \ell = 1, 2, ..., m,$

$$x_i = 0, 1$$
 $i = 1, 2, ..., n$

where

 $C_i = \text{profit if } i^{th} \text{ project is implemented,}$ $a_{i\ell} = \text{amount of } \ell^{th} \text{ resource needed for } i^{th} \text{ project, and}$ $b_{\ell} = \text{amount of } \ell^{th} \text{ resource available.}$

In the preceding example for $\overline{V} = \overline{S} / |\overline{S}|$, $|\overline{S}| = (10^2 + 12^2)^{\frac{1}{2}}$, was common for all of the effective gradients. However $|\overline{S}|$ is not necessary as the relative measure of effective gradient is essentially important, not the absolute measure. So \overline{V} may be replaced by $\overline{V'} = \overline{S}$ where,

$$P_{i}' = \text{projection of vector} - \overline{I}_{i} \text{ on } \overline{V}',$$
$$= -\overline{I}_{i} \cdot -\overline{V};$$
$$= \overline{I}_{i} \cdot \overline{S}, \qquad (A-4)$$

 E_i' = relative effective gradient or simply the effective gradient of project i,

$$= \frac{\text{Profit for the i}^{\text{th Project}}}{P_i'}$$
$$= \frac{C_i}{T_i \cdot S} \cdot$$

It may be advantageous to express the resource requirement $a_{i\ell}$ as the percent of total resource of the ℓ^{th} type available. Since the upper limit on all resource is 100%, the project which individually exceeds one or more resource limitations may be automatically excluded from consideration. Let $w_{i\ell}$ denote the percent of ℓ^{th} resource needed for the ith project, then

 \overline{R} = resultant vector of all projects,

$$\overline{R} = \begin{pmatrix} n & n \\ \Sigma & W_{i1}, & \Sigma & W_{i2}, & \dots, & \Sigma & W_{i\ell} \end{pmatrix}.$$
(A-6)
$$i = 1 \quad i = 1 \quad i2, \quad \dots, \quad i = 1 \quad W_{i\ell} \end{pmatrix}.$$

(A-5)

When a resource has some slack capacity, that is when a strict inequality holds, viz.

$$\sum_{i=1}^{n} W_{il} \leq 100$$
, (A-7)

that resource can be neglected. Generally, the ℓ^{th} component of surplus vector \overline{S} , may be expressed as,

when $S_{\ell} = 0$, this implies that the resource which has slack capacity should be neglected.

The project vector \overline{I}_i can be expressed as,

is

$$\overline{I}_{i} = (W_{i1}, W_{i2}, \dots W_{i\ell}).$$
 (A-9)

The scalar product P_i ' of the ith project vector and surplus vector

$$P_{i}' = \overline{I}_{i} \cdot \overline{S},$$

$$= (W_{i1}, W_{i2}, ..., W_{i\ell}) \cdot (S_{1}, S_{2}, ..., S_{\ell}),$$

$$= \sum_{\ell=1}^{m} W_{i\ell} \cdot S_{\ell}.$$
(A-10)

In rare instances, it may occur that P_i' is zero. When this occurs one should select project i. The reason is that for the ℓ^{th} resource, it's addition neither exceeds the limitations when $S_\ell = 0$ (Since $\sum_{i=1}^{n} W_{i\ell} \leq 100$), nor effects the surplus (since $W_{i\ell} = 0$).

So the effective gradient of the ith project may be redefined as,

$$E_{i}' = \frac{Profit \text{ for project } I_{i}}{P_{i}'},$$
$$= \frac{C_{i}}{P_{i}}r \cdot (A-1)$$

For the example problem shown in Table 3-1 (p. 17),

 $E_1' = Effective gradient of project 1$ = $\frac{Profit \text{ for project 1}}{P_1}$,

$$E_{1}' = \frac{150}{3 \times 10 + 5 \times 12} = \frac{150}{90} = 1.66,$$

$$E_{2}' = \frac{300}{8 \times 10 + 3 \times 12} = \frac{300}{116} = 2.59,$$

$$E_{3}' = \frac{200}{2 \times 10 + 7 \times 12} = 200 = 1.92,$$

and so on. The projects are dropped in order of negative priority of effective gradient until the resultant point R in Figure a.l enters the feasible region.

An Algorithm to Solve Multiple-Choice 0-1 Integer Linear Programming Problem

In the preceding section Toyoda's (21) algorithm to solve 0-1 integer linear programming problems without multiple-choice constraints was discussed. In this section an algorithm developed by the author to solve 0-1 integer linear programming problems with multiple-choice constraints is presented. The algorithm utilizes the concept of an effective gradient incorporating successive deletion of the least preferred variable from the variables in the GUB set.

In order to develop these concepts, consider the capital budgeting problem with GUB/(generalized upper bound or multiple-choice) constraints of the following form:

(IP A-2) maximize
$$i = 1 j = 1$$
 ij xij

subject to

$$\begin{array}{ccc} n & P_{i} \\ \Sigma & \Sigma^{i} & a_{ijk} & xij \leq b_{k}, \ k = 1, 2, 3, \dots, m, \\ i = 1 & j = 1 \end{array}$$

$$\Sigma^{i} \times_{ij} \leq 1$$
, $i = 1, 2, 3, ..., n,$
 $j = 1$

 $x_{ij} \in \{0, 1\}.$

where

a_{ijl} = amount of lth resource required if ith
 project is implemented with jth policy,
 b_l = amount of lth resource available, and
 p_i = number of available policies for
 implementing ith project.

In the above problem, each project with its corresponding policies may be assumed to constitute a generalized upper bound (GUB) set. The variables x_{ij} , $j = 1, 2, ..., p_i$ are the decision variables in GUB set i, where $x_{ij} \in \{0, 1\}$. When $x_{ij} = 1$ this implies that, project i using the jth policy should be implemented and when $x_{ij} = 0$, that ith project with jth policy should not be implemented.

The problem is solved in three phases. First, a good feasible solution based upon the concept of the effective gradient is obtained. Secondly an attempt is made to include additional variables in the current (feasible) solution provided there are some slack capacities in the resource constraints. Finally, within each GUB set a search is made to improve upon the current solution. The steps of the algorithm are as follows:

Phase 1. Finding a good feasible solution based upon the concept of the effective gradient.

<u>Step 0</u>: Initially set all $x_{ij} = 0$. In each GUB set, consider the variable that has the highest value of profit. Set those variables to 1. Check whether the resource constraints are satisfied. If all the resource constraints are satisfied go to Step 11. Otherwise go to Step 1.

<u>Step 1</u>: Rank the variables in each GUB set in descending order i.e. the highest value first. To facilitate the ranking, define the ranking factor $\gamma_{i,i}$ as:

$$\gamma_{ij} = \frac{C_{ij}}{m} \qquad (A-12)$$

$$\ell = 1^{a_{ij\ell}/b_{\ell}}$$

<u>Step 2</u>: Set all $x_{ij} = 0$, then let the highest ranked variable from each GUB set, to 1.

<u>Step 3</u>: If all of the resource constraints are satisfied go to Step 7. If at least one resource constraint is not satisfied, go to Step 4.

<u>Step 4</u>: Calculate the effective gradients of the variables in the solution set.¹ Sort the variables in ascending order of the effective gradient. Consider the GUB set that contains the variable having the least effective gradient. Search for any lower ranked variable in that particular GUB set. If there is any lower ranked variable, go to Step 5. Otherwise go to Step 6.

Step 5: Set the lower ranked variable in this GUB set to 1,

¹The term solution set is used to specify the set of variables having value 1.

and the variable that previously had the least effective gradient to O. Go to Step 3.

<u>Step 6</u>: Set the variable that previously had the least effective gradient to 0. The corresponding GUB set is temporarily excluded from the solution set. The current solution set now consists of the previous solution set minus the variable that was just set to 0. Go to Step 3.

Phase 2. Inclusion of additional variables.

<u>Step 7</u>: Check whether all GUB sets are in solution. If all GUB sets are in solution, go to Step 9. Otherwise consider the GUB sets not in the solution. Within each such GUB set determine the variables that are feasible with respect to the remaining slack capacity in the resource constraints. If there is no such feasible variable go to Step 9. Otherwise go to Step 8.

<u>Step 8</u>: Rank the candidate (feasible) variables in each GUB set determined in Step 7, according to the ranking criterion used in Step 1. Consider the highest ranked variable in each such GUB set. Rank these variables according to the descending order of ranking ratio. Set the variable with highest ranking ratio to 1. Go to Step 7.

Phase 3. The GUB Search

<u>Step 9</u>: Consider the GUB sets which are currently in solution. In each such GUB set, search for the feasible variables whose profit coefficient is higher than the variable in solution. This may be accomplished by adding the resource requirements of the variable in consideration to the total resource requirements, and subtracting the

resource requirements of the variable in the solution. If the resource constraints are satisfied, then the corresponding variable is feasible. If there is any such feasible variable go to Step 10. Otherwise the solution is optimal or near optimal. Go to Step 11.

Step 10: For each feasible variable, find the difference in profit. This can be obtained by subtracting the profit of the variable in solution from the profit of the variable being considered in that particular GUB set. Set the variable with maximum profit difference to 1. Go to Step 9.

It may be worth mentioning that instead of selecting the variable with greatest profit difference, one could select a combination of variables which together, may yield a better profit difference. From computational experience it has been observed that though this situation may occur in some cases, the subsequent improvement in the objective function value is relatively small. From a practical viewpoint, the small improvement may not offset the additional computational cost for enumerating different combinations of variables for large problems.

<u>Step 11</u>: The solution is optimal or near optimal. Terminate. The steps of the algorithm is summarized by means of a flow chart in Figure A-3.

Fig. A-3 Flow Chart

87

Fig. A-3 Cont'd.

Fig. A-3 Cont'd.

The following numerical example is used to illustrate the Steps of the algorithm. In this example,

n = number of GUB sets = 13,

m = number of resource constraints = 4,

and p = number of variables in each GUB set = 4.

The problem may be stated as follows:

	1. N	maximize	71	×1 1	+	80	^x 1 2	+	94	^x 1 3	. +	86	×1 4	+	
		•	81	×2 1	+	71	×2 2	+	83	^x 2 3	.+	82	×2 4	+	
			78	×3 1	+	93	×3 2	+	83	×3 3	+	95	×3 4	+	
•			_70	× _{4 1}	+	103	×4 2	+	107	^x 4 3	+	71	×4 4	+	
			80	×5 1	+	103	× ₅₂	· +	85	×5 3	+	93	^x 5 4	+	
			94	×6 1	+	84	×6 2	+	83	^x 6 3	+	92	^x 6 4	+	(R0)
			78	× ₇₁	+	89	×7 2	+	99	×7 3	+	82	×74	+	(10)
			75	× ₈₁	+	104	×8 2	+	86	^x 8 3	+	95	×8 4	+	
			73	×91	+	94	×92	+	103	×9-3	ŧ	72	× ₉₄	+	
			79	×10 1	+	73	×10	2 +	101	×10 :	3 +	102	×10 4	+	
			102	×11 1	ł	98	×11	2 +	70	×11 ;	3 +	88	×11 4	+	
			71	×12 1	+	91	×12	2 +	98	×12 :	3 +	95	×12 4	+	
•			88	×13 1	+	71	×13	2 +	102	×13 :	3 +	94	×13 4		

subject to

 $15 x_{31} + 9 x_{32} + 7 x_{33} + 5 x_{34} +$ $15 x_{41} + 13 x_{42} + 8 x_{43} + 5 x_{44}$ $13 x_{51} + 15 x_{52} + 4 x_{53} + 7 x_{54} +$ $14 \times_{61}$ + $6 \times_{62}$ + $14 \times_{63}$ + $10 \times_{64}$ + $15 x_{71} + 7 x_{72} + 13 x_{73} + 8 x_{74} +$ $5 x_{81} + 11 x_{82} + 8 x_{83} + 12 x_{84} +$ $10 x_{91} + 5 x_{92} + 13 x_{93} + 10 x_{94} +$ $10 \times_{10} + 4 \times_{10} + 5 \times_{10} + 9 \times_{10} + 4 \times_{10} + 5 \times_{10} + 9 \times_{10} + 4 \times_{10} + 10 \times_{10} +$ $6 x_{111} + 4 x_{112} + 7 x_{113} + 6 x_{114} +$ 6 x_{12 1} + 11 x_{12 2} + 14 x_{12 3} + 7 x_{12 4} + $4 x_{13 1} + 13 x_{13 2} + 13 x_{13 3} + 10 x_{13 4} \leq 100$

14	×ı	1	+	8	×ı	2	+	9	×1	3	+	13	× ₁	4	+	
4	×2	1	+	8	×2	2	ł	12	×2	3	4	7	x ²	4	÷	
12	×3	1	+	14	×3	2	+	4	×3	3	÷	10	×3	4	+	
6	×4	1	+	4	×4	2	+	4	×4	3	ł	8	×4	4	+	
5	× ₅	1	Ŧ	4	×5	2	ł	. 4	×5	3	+	8	×5	4	+	
8	×6	1	+	15	×6	2	+	7	× ₆	3	+	8	х ₆	4	Ŧ	
10	×7	1	+	4	×7	2	ł	11	×7	3	+	11	×7	4	+	
5	x ₈	1	+	7	×8	2	+	5	×8	3	+	12	×8	4	4	
12	×9	1	ł	13	×9	2	+	10	×9	3	+	9	×9	4	+	
5	×10)]	+	8	×10) 2	+	4	×10) 3	÷	12	×10	4	÷	
14	×'n	1	+	13	×11	2	ŧ	11	×11	3	ŧ	7	×11	4	+	
14	×12	1	+	11	×12	2	ŧ	4	×12	3	+	15	×12	4	+	
12	×13	1	+	13	×13	2	÷	13	×13	3	+	11	×13	4		<u><</u>

(R1)

(R2)

100

14	x ₁	1	+	4	×ı	2	+	5	×٦	3	÷	5	×1 4	4	+ "	
6	×2	1	+	13	×2	2	+	4	×2	3	+	10	×2	4	+	
4	×3	1	÷	14	×3	2	+	8	×3	3	+	10	×3	4	+	
6	×4	1	+	11	×4	2	+	8	× ₄	3	+	12	×4	4	+	
10	×5	1	ŧ	9	×5	2	+	10	× ₅	3	+	8	×5	4	+	
14	×6	1	÷	7	×6	2	+	5	×6	3	+	. 5	× ₆	4	+	1
6	×7	۱	+	15	×7	2	+	11	×7	3	ŧ	14	×7	4 :	+	
	×8		+	11	×8	2	+	13	×8	-3	Ŧ	8	×8	4	÷	
14	×g	1	+	15	×9	2	+	15	×9	3	+	8	×9	4	+	
9	×ı	0 1	+	11	×	02	+	6	×ı	03	+	14	×10	4	+	
14	×	1 1	+	12	x ₁	12	+	10	×1	13	+	5	×11	4	+	
15	×1	2 1	+	11	× ₁	2 2	+	13	×ı	2 3	+	12	×12	4	ł	
11	×ı	31	+	9	×ĩ	32	+	4	×ı	33	+	7	×13	3 4		< 1
													•		•	
4	×ı	1	+	5	×ı	2	+	13	x.	~	+	7	х.	4	+	
13					-				~1	3		•		H		
	×2	21	+		×2	2			•	•			×2	. •		
		1		10		-	+	12	×2	3	+	11		4	+	
13		1	• +	10 12		2	+	12 7	×2 ×3	3	+ + +	11 10	×2	4	+	
13 5	×3 ×4	1	+	10 12 14	×3 ×4	2	+	12 7 5	×2 ×3 ×4	3 3 3	+ + + +	11 10 11	×2 ×3	4	+ + +	
13 5 9	×3 ×4 ×5	1	+++++	10 12 14 15	×3 ×4 ×5	2 2 2 2	+ + +	12 7 5 5	×2 ×3 ×4 ×5	3 3 3 3	++++++	11 10 11 5	×2 ×3 ×4	4 4 4	+ + +	
13 5 9 5	×3 ×4 ×5 ×6	1 1 1	· + + +	10 12 14 15 9	×3 ×4 ×5 ×6	2 2 2 2	+ + + +	12 7 5 5 15	×2 ×3 ×4 ×5 ×6	3 3 3 3 3 3	+ + + + + + + + +	11 10 11 5 11	×2 ×3 ×4 ×5	4 4 4 4	+ + + +	
13 5 9 5 12	×3 ×4 ×5 ×6		+ + + + + + + + + + + + + + + + + + + +	10 12 14 15 9 6	×3 ×4 ×5 ×6 ×7	2 2 2 2 2 2 2	+ + + + +	12 7 5 15 6	×2 ×3 ×4 ×5 ×6 ×7	3 3 3 3 3 3 3	+ + + + +	11 10 11 5 11 9	×2 ×3 ×4 ×5 ×6	4 4 4 4 4	+ + + + +	
13 5 9 5 12 14	×3 ×4 ×5 ×6 ×7 ×6		+ + + + + + + + + + + + + + + + + + + +	10 12 14 15 9 6	×3 ×4 ×5 ×6 ×7 ×8	2 2 2 2 2 2 2 2	+ + + + +	12 7 5 15 6 10	×2 ×3 ×4 ×5 ×6 ×7 ×8	3 3 3 3 3 3 3 3 3 3	+ + + + +	11 10 11 5 11 9 9	×2 ×3 ×4 ×5 ×6 ×7	4 4 4 4 4 4	+ + + + + + + + +	

(R3)

00

(R4)

Equation (RO) is the objective function which is to be maximized. Equations (R1), (R2), (R3) and (R4) are resource constraints. It is assumed that each GUB set has 4 variables. In general the number of variables in each GUB set need not be the same.

Iteration 1.

<u>Step 0</u>: The variable with the highest objective function coefficient is selected from each GUB set. Table A-5 lists those variables which have the highest value of objective function coefficients. The resource requirements for the variables in Table A-5 sums to more than that available. Hence, the solution is not feasible. The value of the objective function is 1286.

<u>Step 1</u>: All variables in each GUB set are ranked according to the ranking criterion described by equation **4**-12. In GUB set 1,

$$\gamma_{11} = \frac{71}{14/100 + 14/100 + 14/100 + 4/100} = 154.35$$

$$\gamma_{12} = \frac{80}{5/100 + 8/100 + 4/100 + 5/100} = 363.64$$

$$\gamma_{13} = \frac{94}{8/100 + 9/100 + 5/100 + 13/100} = 268.57$$

$$\gamma_{14} = \frac{86}{6/100 + 13/100 + 5/100 + 7/100} = 277.42$$

Hence, for GUB set 1, the variables should be ranked according to the order x_{12} , x_{14} , x_{13} and x_{11} . All variables in each GUB set are ranked as shown in Table A-6.

TABLE A-5

Variables with Highest Profit Coefficient

GUB set Variable Profit 1 ×1 3 94 2 ×2 3 83 3 ×3 4 95 4 ×4 3 107 5 ×5 2 103 6 ×6 1 94 7 ×7 3 99		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GUB set	Profit
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	83
5 x _{5 2} 103 6 x _{6 1} 94	3	95
6 x ₆₁ 94	4	107
	5	
7 x _{7 3} 99	6	94
	7	99
8 × _{8 2} 104	8	104
9 × ₉₃ 103	9	103
10 × _{10 4} 102	10	102
11 x _{11 1} 102	. 11	102
12 m x _{12 3} 98	12	98
13 x _{13 3} 102		102

<u>Step 2</u>: The highest ranked variable is selected from each GUB set. The initial solution set consists of the variables, $x_{1 2}$, $x_{2 3}$, $x_{3 3}$,

		Ranked V	lariables	
GUB Set	Rank 1	Rank 2	Rank 3	Rank 4
1	×1 2	×1 4	×13	× ₁₁
2	×2 3	×2 1	×2 4	×2 2
3	×3 3	×3 4	×3 2	×3 1
4	×4 3	×4 2	×4 1	×4 4
5	× ₅₃	× ₅₄	×5 2	×5 1
6	× ₆₄	^х б 1	[×] 6 2	×63
7	×7 2	×7 3	×74	×7 1
8	×8 2	×8:3	×8.4	×8 1
9	×9 2	×9 4	×93	[×] 9 1
10	×10 3	×10 4	×10 2	×10 1
11	×11 4	×11 2	xillil	×11 3
12	×12 3	×12 2	×12 4	×12 1
13	×13 3	×13 4	×13 1	[×] 13 2
		<u> </u>	İ	

Ranking of Variables in Each GUB set

x₄ 3, x₅ 3, x₆ 4, x₇ 2, x₈ 2, x₉ 2, x₁₀ 3, x₁₁ 4, x₁₂ 3 and x₁₃ 3.

<u>Step 3</u>: The resource requirements for the variables in the initial solution set add up to 102 units of resource 1, 92 units of resource 2, 108 units of resource 3, and 112 units of resource 4. Since the limiting resource is 100 units for all resources, all resource constraints except the second are violated, so the solution is infeasible. The value of the objective function is 1210.

Step 4: The effective gradients for the variables in the initial

solution set are calculated and shown in Table A-7. From this table it can be observed that variable x_{72}^{has} has the least effective gradient. From Table A-6, variable x_{73}^{3} is the next lower ranked variable in GUB set 7.

Step 5: The variable x_{72} is exchanged with the variable x_{73} . The current solution set consists of the variables x_{12} , x_{23} , x_{33} , x_{43} , x_{53} , x_{64} , x_{73} , x_{82} , x_{92} , x_{114} , x_{123} , and x_{133} .

TABLE A-7

Effective Gradient of the Variables

	1
Variable in Solution	Effective Gradient
×1 2	1.5385
×2 3	1.2206
× _{3 3}	0.9022
×4 3	1.1146
× ₅₃	0*8854
× ₆₄	1.120
×72	0.6014
×8 2	0'7879
×9 2	0.6214
×10 3	1•4853
×11 4	1.3750
×12 3	0.6212
×13_3	1.2143

in First Iteration

Iteration 2

<u>Step 3</u>: Summing the resource requirements for the variables in the current solution, it is observed that the constraints are not satisfied. The objective function value at this iteration is 1212.

<u>Step 4</u>: The effective gradients of the variables in the current solution set are calculated as shown in Table A-8.

TABLE A-8

Variable in Solution	Effective Gradient
×1 2	1.2121
^x 2 3	0.7830
×3 3	0.8137
×4 3	0.9554
×5 3	1.0625
×64	0.7667
×7 3	0.5690
×8 2	0.6753
×92	0.8446
×10 3	1.3649
×11 4	1.1000
×12 3	0.5104
×13 3	0.6986
	and the second

Effective Gradient of Variables in Second Iteration

In Table A-8 the variable x_{12}_{12} has the least effective gradient. From Table A-6, the variable x_{12}_{12} is the next lower ranked variable in GUB set 12.

Step 5: The variable x_{12} 3 is exchanged for the variable x_{12} in GUB set 12. The current solution set consists of the variables x_1 2, x_2 3, x_3 3? x_4 3, x_5 3, x_6 4, x_7 3, x_8 2, x_9 2, x_{10} 3, x_{11} 4, x_{12} 2, x_{13} 3. Iteration 3

<u>Step 3</u>: Summing the resource requirements for the current solution set, it is observed that the constraints are not satisfied. The value of the objective function is 1205.

<u>Step 4</u>: The effective gradients of the variables in the current solution set are calculated as shown in Table A-9. Variable $x_{12,2}$ has the least effective gradient. From Table A-6, the variable $x_{12,4}$ is the next lower ranked variable in GUB set 12.

<u>Step 5</u>: x_{124} is exchanged for the variable x_{122} in GUB set 12. The current solution set consists of the variables x_{127} , x_{237} , x_{337} , x_{437} , x_{537} , x_{647} , x_{737} , x_{827} , x_{927} , x_{1037} , x_{1147} , x_{124} and x_{133} :

Iteration 4

<u>Step 3</u>: The resource requirements are summed for the variables in the current solution set. The resource constraints are not satisfied. The objective function value is 1209.

<u>Step 4</u>: The effective gradients of the varialbes in the current solution set, is calculated as shown in Table A-10. The variable x_{124} has the least effective gradient. x_{121} is the next lower ranked variable in GUB set 12.

TABLE A-9

Effective Gradients of the Variables

in Third Iteration

Variables	in the	Solution	Effective Gradient
	×1 2		0•8791
	x ₂₃		0.5804
	×3 3		0.9326
	^x 4 3		1.1146
	×5 3		1.1806
and the second second second	^x 6 4		0.7186
	× ₇₃		0.5531
	× ₈₂		0.7376
	× ₉₂		0.6574
	×10 3		1.4226
	×11 4		0•9362
	×12 2		0.5515
	×13 3		0.5763
Effective Gradients of the Variables

in Fourth Iteration

Variables in Solution	Effective Gradient
×1 2	0.7477
×2 3	0.5220
×3 3	0.9765
× ₄₃	1.2160
× ₅₃	1.0366
× ₆₄	0.7360
×73	0.5440
×8 2	0.7647
×9 2	0.4948
×10 3	1-3836
×11 4	0.8544
×12 4	0.4500
×13 3	0.5636

<u>Step 5</u>: x_{12} is exchanged for the variable x_{12} 4. The variables in the current solution set are: x_1 2, x_2 3, x_3 3, x_4 3, x_5 7, x_6 4, x_7 3, x_8 2, x_9 2, x_{10} 3, x_{11} 4, x_{12} 1 and x_{13} 3. <u>Iteration 5</u>

<u>Step 3</u>: The resource constraints are not satisfied, as the resource requirements for the variables in the solution sum to more

than the limiting resource. The objective function value is 1189.

<u>Step 4</u>: The effective gradients are calculated as shown in Table A-11. The variable x_{12} has the least value of effective gradient. From Table A-6 it can be observed that there is no other variable in GUB set 12 that may be exchanged for the variable x_{12} 1.

<u>Step 6</u>: GUB set 12 is dropped from the solution set. The variables in the current solution set are, $x_{1 2}$, $x_{2 3}$, $x_{3 3}$, $x_{4 3}$, $x_{5 3}$, $x_{6 4}$, $x_{7 3}$, $x_{8 2}$, $x_{9 2}$, $x_{10 3}$, $x_{11 4}$ and $x_{13 3}$.

Iteration 6

<u>Step 3</u>: The resource requirements for the variables in the current solution set add to 96 units of resource 1, 95 units of resource 2, 91 units of resource 3 and 86 units of resource 4. Since all resource constraints are satisfied, the current solution set is feasible. The objective function value is 1118. The slack capacities in the four resource constraints are 4, 5, 9 and 14 units respectively.

<u>Step 7</u>: GUB set 12 is the only GUB set which is not in solution. The variables in GUB set 12, are x_{12} , x_{12} , x_{12} , x_{12} , and x_{12} . The resource requirements for these variables are shown in Table A-12. From Table A-12 it can be observed that there are no feasible variables that can be added which simultaneously satisfy the remaining slack capacities in the resource constraints. Thus, GUB set 12 will not be added back to the solution set. Iteration 7

<u>Step 9</u>: The GUB sets in the solution are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13. GUB sets 1, 3, 5, 6, 9, 10, and 11 have variables with higher objective function coefficients than the variables in the solution. Table 3-13

Effective Gradients of the Variables

in Fifth Iteration

Variables in Solution	Effective Gradient
×1 2	0.7207
×2 3	0.5124
×3 3	0•7905
×4 3	1.0191
×5 3	0.7798
× ₆₄	0.6918
×7 3	0. 2026
× _{8 2}	0.6624
×9 2	0.4197
×10 3	1.0923
×11 4	0.7928
×12 1	0. 2922
×13 3	0. 2896

· ·**101** ·

Resource Requirements for the Variables of the GUB Sets Not Included in the Solution

Variable		Resource Red	quirements	
-	Resource 1	Resource 2	Resource 3	Resource 4
×12 1	6	14	15	15
×12 2	11	11	11	6
×12 3	14	4	13	11
×12 4	7	15	12	12
Slack Capacity	4	5	9	14

(p. 49) shows the variables that can be exchanged for the variables in solution and still satisfy the resource constraints.

<u>Step 10</u>: Table A-13 shows the feasible variables which can be brought into the solution in exchange for the variables already in the solution, and also the corresponding difference in the objective function value. Variable $x_{1,3}$ has the maximum difference in profit. Any other combination of feasible variables shown in Table 3-13 does not yield a better objective function value than that obtained by bringing $x_{1,3}$ into the solution. Therefore, $x_{1,3}$ is brought into solution in exchange for $x_{1,2}$. The new solution set consists of the variables $x_{1,3}$, $x_{2,3}$, $x_{3,3}$, $x_{4,3}$, $x_{5,3}$, $x_{7,3}$, $x_{8,2}$, $x_{9,2}$, $x_{10,3}$, $x_{11,4}$ and $x_{13,3}$. The objective function value is 1132. The resource requirements add up to 99, 96, 92 and 94 units of resources 1, 2, 3, and 4 respectively. Since there still exists some slack in the resource constraints, Step 9 is repeated.

Exchange of Variables Within the

GUB Set	Variable With Higher Profit	Is Exchange Feasible?	Difference in Profit
_	×1 3	yes	14
1	× ₁₄	yes	6
	× _{3 2}	no	
3	× ₃₄	no	
	×5 2	no	
5	× ₅₄	yes	8
6	^х б 1	yes	2
9	×9 3	no	
10	×10 4	yes	1
11	ר וו ^x	no	
	×11 2	no	

GUB Sets in Solution

Iteration 8

<u>Step 9</u>: Variables having higher profit co-efficients than the ones currently in solution, are not feasible. This is due to the fact that they cannot satisfy the remaining slack capacities in the resource constraints.

Step 11: The final solution is $x_{13} = 1$, $x_{23} = 1$, $x_{33} = 1$, $x_{43} = 1$, $x_{53} = 1$, $x_{64} = 1$, $x_{73} = 1$, $x_{82} = 1$, $x_{92} = 1$, $x_{103} = 1$, $x_{11 4} = 1$ and $x_{13 3} = 1$. The remaining variables are 0, and the final objective function value is 1132.

Fig. A.4 shows the value of the objective function in successive iterations. In iterations 1 through 5 the solution is infeasible. Feasibility is attained in iteration 6 and the value of the objective function is further improved in the 7th iteration. After that no further improvement is possible in the algorithmic procedure and consequently the algorithm is terminated.

Fig. A..4 Change in Objective Function Value in Successive Iterations

<u>Computational Experience:</u>

Comparison with Other Algorithms

To test the veracity of the solution obtained by the proposed algorithm, several test problems were generated, using random number generators. All test problems are of the following form:

(IP A.3)
$$\max \sum_{i=1}^{n} \sum_{j=1}^{p_i} C_{ij} x_{ij}$$

subject to

The test problems were deliberately kept moderate in size, so that other algorithms can satisfactorily be applied. The algorithm developed [1] was coded in the FORTRAN IV computer language, and the test problems were run on an AMDHAL 470/V6 computer. To compare the solutions obtained, the test problems were also solved by the ILLIP-2 (24) code obtained from the University of Illinois. The ILLIP-2 code uses branch and bound and implicit enumeration technique (4, 9) to solve 0-1 integer linear programming problems. The ILLIP-2 is coded in FORTRAN IV and proved to be superior than other available general 0-1 integer programming codes because of it's ability to

handle relatively larger problems.

The solutions obtained by the algorithm developed were used as the starting solutions for the ILLIP-2 code, so that convergence of ILLIP-2 could be obtained in minimum number of iterations. In only three cases better solutions (which were close to the solutions obtained by the algorithm) were obtained after 5000 iterations. In all other test problems, no better solutions could be obtained by the ILLIP02 code.

From Table A-14, it may be observed that, the solution times for problems having variables between 30 and 52, ranged from 1.06 seconds to 1.47 seconds by the proposed algorithm. The solution time for ILLIP-2 code ranged from 40 to 60 seconds. The average solution time for all the test problems were 1.36 seconds by the proposed algorithm and 56 seconds by ILLIP-2.

The proposed algorithm converges very rapidly, once the feasibility is attained. The solution time by ILLIP-2 code is longer as it implicity enumerates a large number of different possible solutions (for n variables, there may be 2^n possible enumerations). The ILLIP-2 code showed improvements in objective function values for test problems 2, 3, and 4. Note that the improvements were insignificant from the percentage standpoint and varied from 0.16% for test problem 4 to a maximum of 1.8% for test problem 3. The average improvement for 13 test problems was only 0.258% which is also insignificant for all practical purposes.

The computational speed and the sorting method employed in this computer program can both be improved still farther.

T/	۱B	LE	A-	14	

Comparison of Results

Test Problem #	1	2	3	Δ	F	6	7	8	9	10	7.7	10	1 1 2	A
		4	3	4	5	0	/	0	9	10	11	12	13	Average
Number of Variables	30	52	50	40	50	50	40	50	50	50	50	50	40	46.3
Number of Resource Constraints	5	4	5	5	5	5	. 7	5	. 5	5	5	5	5	5.15
Number of GUB Constraints	10	13	10	10	10	10	10	10	10	10	10	10	10	10.2
Solution Time in Seconds by the Pr o posed Algorithm	1.06	1.36	1.3	1.29	1.39	1.31	1.46	1.45	1.45	1.43	1.42	1.47	1.33	1.36
Solution Time in Seconds by the ILLIP-2 Code	40	60	60	45	60	60	50	60	_ 60	60	60	60	52	56
Does ILLIP-2 Code Give Better Solution?	No	Yes	Yes	Yes	No									
Percent Improvement by ILLIP-2 Code Over Proposed Algorithm	0	1.4	1.8	1.6	0	0	0	0	0	0	0	0	0	. 258

<u>Comparison to Continuous Linear</u> Programming Solutions

One of the approaches used to judge the quality of solutions obtained by the proposed algorithm was to find the gap between the integer solution and the continuous linear programming solutions without the integrality requirement. This gap may be termed as the "integrality gap". In some cases at optimality, the integrality gap may not be very wide.

The algorithm was applied to two test problems developed by the Texas Transportation Institute of the Texas A&M University. The same test problems were also solved by the MPSX package (Mathematical Programming System) of IBM (International Business Machine), to generate continuous linear programming solutions. (The MPSX package at the Texas A&M University Computer Center did not have the O-1 integer programming algorithm, during the period of this research.) The continuous linear programming solutions are infeasible (as they do not satisfy the integrality requirements of the 0-1 variables) and super optimal relative to the problems. However the objective function values obtained by the proposed algorithm were significantly close to that of continuous linear programming solutions. Table A-15 shows the comparison of results with the continuous linear programming solutions. From Table A-15 it may be observed that, for problems A and B the "integrality gap" is 5.9% and 0.72% respectively. This reflects that the solutions obtained by the proposed algorithm are significantly close to the continuous linear programming solutions. It may be noted that the solutions obtained by the proposed algorithm for problem B is either optimal or very close to optimal. However, for problem A the integrality gap is a little bit higher, but not significantly high to

Problem	No. of Variables	No. of GUB Constraints	No. of Resource Constraints	Objective Function Value by the Proposed Algorithm	Objective Function Value by MPSX	Difference in Objective Function Value
A	50	5	16	539401	572993 (310694)	5.9 %
В	50	5	16	705889	711047 (512849)	.72%

Comparison of Results With MPSX Solution

5

TABLE A-15

109

discard near optimality the integer programming solution. The figures in parentheses under the column "Objective Function Value by MPSX" represent the objective function value of the rounded integer LP solution. In both of the cases the objective function value is significantly lower than those obtained by the proposed algorithm.

Computational Experience With

Large Problems

The main thrust behind this research effort is to develop an algorithm to solve large scale 0-1 integer programming problems with multiple-choice constraints. Several large test problems were generated through the use of random number generators. The test problems were run on the AMDHAL 470/V6 computer. These test problems could not be checked by other algorithms with regard to the optimality of solution. The reason is due to the fact that available algorithms are incapable of handling such large scale problems. The average solution times (on the basis of 6 problems) for problems of different sizes are presented in Table A-16. From Table A-16 it may be observed that solution times for fairly large problems (variables between 200 - 1000) is relatively low. Also the solution times for very large problems (> 1000 variable) is within manageable limits. Solution time for a problem of 4000 variables is 719 seconds which is reasonable, relative to the size of the problem. Solution time seems to increase linearly up to 200 variables, then the increase follows an exponential pattern.

Average Solution Time

for Large Scale Problems

Number of Variables	Number of GUB Constraints	Number of Resource Constraints	Average Solution Time in Seconds
200	40	5	2.37
500	100	18	10.43
600	100	19	17.91
1000	100	15	24.30
4000	400	5	719.00

а

.

APPENDIX B

DOCUMENTATION OF

HIGHWAY REHABILITATION

AND

MAINTENANCE COMPUTER PROGRAM

PROGRAM FOR REHABILITATION AND

MAINTENANCE OF HIGHWAY SYSTEMS

Author:

Installation:

Nazim Uddin Ahmed AMDHAL 470/V6 at Texas A&M University

Date written:

Spring 1978

The program consists of the following subroutines.

(1) INPUT

This subroutine reads the input data from cards.

(2) DATACK

This subroutine provides the printout of the input data.

(3) ECOCK

This subroutine prints the objective function coefficients and the constraint coefficients in the form of a 0-1 integer programming problem. This subroutine is optional to the program and may be executed, only if necessary.

(4) SORT

This subroutine sorts an array in ascending order.

(5) SORT 1

This subroutine sorts an array in descending order.

(6) MINDIS

This subroutine finds the feasible strategies for all highway segments according to the minimum pavement rating requirement constraint.

(7) ALLDIS

This subroutine obtains the feasible strategies for all highway

segments according to the overall rating requirement constraint.

(8) CALC

This subroutine calculates the objective function coefficients, converts the constraint coefficients as the percent of respective resources available and ranks the feasible strategies in each highway segment.

(9) GRAD

This subroutine generates the initial feasible solution, utilizing the criterion of effective gradient.

(10) PICKUP

This subroutine attempts to include additional highway segments into the solution, after the initial feasible solution is obtained in subroutine GRAD.

(11) SEARCH

The purpose of this subroutine is to improve the solution, by searching for better strategies than the ones obtained in subroutines GRAD and PICKUP.

(12) RPRINT

This subroutine prints the initial optimal solution and adds strategysection combinations to use the remaining budget, with preference for the lowest rated sections.

(13) IPRINT

This is an auxiliary subroutine used as input to subroutine RPRINT. The organization of the subroutines is presented in Figure B. 1.

The following instructions are designed to help users to code input data for the "RAMSDØ1" program.

1) A card to read in the title of the problem.

<u>Column</u>	Description	Data Type
1 - 80	Name of the problem	Alphanumeric

2) A card that reads in the following variables:

<u>Column</u>	Description	Data Type
1-5	NH = number of highway segments	Integer, right justified
5-10	NS=number of strategies	Integer, right justified
11-15	TDATA=number of years on input data	Integer, right justified
16-20	T=number of time periods used in analysis	Integer, right justified
21-25	ND = number of distress types	Integer, right justified
26-30	NHTYP = number of highway types	Integer, right justified
31-35	G=number of material types	Integer, right justified
36-40	F = number of equipment types	Integer, right justified
41-45	Q = number of manpower types	Integer, right justified

<u>Column</u>	Description	Data Type
46-50	IECK = An indicator for calling the subroutine ECØCK. If IECK=1, the subroutine ECØCK will be executed and the objective function coefficients and the constraint coefficients will be printed as in a regular integer programming problem.	Integer, right justified

3) Number of cards equals the number of highway segments, with each card containing the following information for each highway segment.

<u>Column</u>	Description	Data Type
1-8	L1(I)=Length of Ith high- way segment in miles	Numeric, with a decimal point
9-16	L2(I) = Width of Ith highway segment in feet	Numeric, with a decimal point
17-20	HYTYP(I) = Type of Ith high- way segment	Integer, right justified
21-28	TRAF(I) = Traffic Index of Ith highway segment	Numeric with a decimal point
29-36	ENVIR(I) = Environmental Index of Ith high- way segment	Numeric with a decimal point
37-44	PAR1(I) = name of Ith highway segment	Alphanumeric, left justified
45-56	PAR2(I) = County name of the Ith highway segment	Alphanumeric, left justified
57-64	PAR3(I) = Control section name of the Ith highway segment	Alphanumeric, left justified
65-72	PAR4(I) = Beginning milepoint of the Ith highway segment	Numeric with a decimal point
73-80	PAR5(I) = Ending milepoint of the Ith highway segment	Numeric with a decimal point

4) Cards to read in name of strategies. Up to 3 names may be coded on one card. Users may use as many cards as required with each card having the following format:

<u>Column</u>	Description (I from 1 to NS)	Data Type
1-24	STRAT(I) = name of the Ith strategy	Alphanumeric, left justified
25-48	STRAT(I) = name of the Ith strategy	Alphanumeric, left justified
49-72	STRAT(I)=name of the Ith strategy	Alphanumeric, left justified

5) Cards to read in name of distress types. Up to 4 distress types may be coded on one card, users may use as many cards as required with each card having the following format:

Column	Description (K from 1 to ND)	Data Type
1-20	DISTR(K) = name of the Kth distress type	Alphanumeric, left justified
21-40	DISTR(K) = name of the Kth distress type	Alphanumeric, left justified
41-60	DISTR(K) = name of the Kth distress type	Alphanumeric, left justified
61-80	DISTR(K) = name of the Kth distress type	Alphanumeric, left justified

6) Cards to read in names of the material types. Up to 4 material types may be coded on each card. Use as many cards as required. Each card has the following format:

<u>Column</u>	Description (I from 1 to G)	Data Type
1-20	MAT(I)=name of Ith material type	Alphanumeric, left justified
21-40	MAT(I)=name of Ith material type	Alphanumeric, left justified
41-60	MAT(I)=name of Ith material type	Alphanumeric, left justified
61-80	MAT(I) = name of Ith material type	Alphanumeric, left justified

7) Cards to read in the amount available for each material type which is to be expressed as quantity divided by the number of mile-feet sections in the NH number of highway segments. Up to 8 items can be coded on each card. Use as many cards as required. Each card has the following format:

<u>Column</u>	Description (I from 1 to G)			Data Type		
1-10	SG(I) = am I	ount of material ty available	pe Numeric	with a decimal	point	
11-20	H	11	н	II		
21-30	II .	11	11	H		
31-40	11	II	ŧ	11		
41-50		. 11	11			
51-60	H .	н		2 - S 11		
61-70	п	II	11	11		
71-80	U	н	11	11		

3) Cards to read in material requirement per mile-foot unit for each of the strategies applied. Up to 8 types of materials may be coded on each card. Use as many cards as needed for each strategy. Each card has the following format:

<u>Column</u>	(Description (J from 1 to NS) L from 1 to G)	Data	Туре
1-10	men if	material require- t in tons/ft.mile Jth strategy is lied	Numeric with	a decimal point
11-20	\mathbf{u}_{i} , \mathbf{u}_{i}	Ш	11	11
21-30	I	16	H	n de la constante de la consta
31-40	ана на <mark>п</mark> ана на селото на с Селото на селото на с	. H	. 11	H
41-50	н .	- II	R	H
51-60	H .	. N	. II.	II .
61-70	H		11	H
71-80	Ð	11	H	H H

9) Cards to read in names of the equipemnt types per mile-foot unit. Up to 4 names may be coded on each card. Use as many cards as required. Each card ahs the following format:

Column	Descript	on (I from 1 to F)	Data	Туре
1-20	EQUIP(I)	= name of the Ith equipment type	Alphanumeric,	left justified
21-40	11	н	11	11
41-60	11	н.,	11	H
61-80	11	n .	п	11

10) Cards to read in amount available for each mile-foot unit in the NH number of segments of each equipment type. Up to 8 items may be coded on each card. Use as many cards as required. Each card has the following format:

<u>Column</u>	Descrip	escription (I from 1 to F)			Data	Data Type	
1-10		amount of type I ava		Numer	ic with a	a decimal	point
11-20	11	11			11	£1	
21-30	II	н		•	H	11	
31-40	· 11	н		•	11	н.	
41-50	11	11		•	н.	н	
51-60	11	fi -	· .	• • • • •	I	11	
61-70		11			ar	н	
71-80	.° п	н			(1	11	

11) Cards to read in equipment requirement per mile-foot unit for each strategy applied. Up to 8 items may be coded on each card. Use as many cards as needed for the equipment requirement for each strategy. Each card has the following format:

<u>Column</u>	(J from 1 to NS) Description (L from 1 to F)	Data Type
1-10	EFR(J,L) = Lth equipment require- ment in equipment-days per ft. mile if Jth strategy is applied	Numeric with a decimal point

<u>Column</u>	Descripti	(J from 1 to NS) on (L from 1 to F)	Data Type		
11-20	EFR(J,L)	= Lth equipment requirement in equipment-days per ft. mile if Jth strategy is applied	Numeric with	n a decimal point	t
21-30	н	н	11	11	
31-40	Ħ	п	11	II .	
41-50	11	u	H	B	
51-60	H	н	H	11	
61-70	11	II 	11	11	
71-80	11	H	N	н	

12) Cards to read in names of manpower types. Up to 4 names may be coded on each card. Use as many cards as needed. Each card has the following format:

Column	Description	Description (I from 1 to Q)		Туре
1-20		name of the Ith manpower type	Alphanumeric,	left justified
21-40	H	11	11	11
41-60	н	н	IJ	н
61-80	U.	н	н Поделение Поделение	R

13) Cards to read in amount available per mile-foot unit in NH segments for each manpower type. Up to 8 items may be coded on each card. Use as many cards as needed. Each card has the following format:

Column	Descrip	tion (I from 1 to Q)	Data Type Numeric with a decimal point		
1-10		amount of manpower type I available	Numeric			
11-20	u	н	н	(1		
21-30	11	u L	11	11		
31-40	11	II	11	11		

<u>Column</u>	Description (I from 1 to Q)		<u>to Q)</u>	Data Type	
41-50	HQ(I)= amount of manpower type I available			meric with	a decimal point
51-60	н	н		. u	н
61-70	· 11	н		at .	в
71-80	11	н н П		81	11

14) Cards to read in manpower requirement per mile-foot unit for each strategy applied. Up to 8 items may be coded on each card. Use as many cards as needed for each strategy applied. Each card has the following format:

Column	Descripti	(J from 1 to NS) Description (L from 1 to Q) Data Type					
1-10	HQR(J,L)	= Lth manpowe ment in man ft. mile if strategy is	-days per Jth	Numeric	: with a	decimal	point
11-20	н	П		, I	t	11	
21-30	11	II .			r .	11	
31-40	11	11		1	I		
41-50	·	п		1	I	H	
51-60	11	11		. 1	I	11	
61-70	11	11			t .	II	
71-80	II	. 11		ł	I	ii.	

15) A card to read in name of the overhead budget. It has the following format:

Column	Description	Data Type
1-20	OVHD = overhead budget name	Alphanumeric, left justified

16) Cards to read in overhead budget requirement per mile-foot unit for each strategy applied. Use as many cards as needed. Each card has the following format:

Column	Descript	ion (I from 1 to NS)	Data Type	
1-10	q	verhead budget re- uirement if Ith trategy is applied	Numeric with a dec	imal point
11-20	L.	н	11	U ¹
21-30	H ¹	II .	H	. 8
31-40	11	11	н	U
41-50	n.	ii ii	Ħ	II
51-60	· • •	ii	11	. 11
61-70	· H	11	п	́н
71-80	н	41	a	. 11

17) A card to read in total budget available. It has the following format:

Column	Description	Data Type		
1-20	CC = total overhead budget available	Numeric with a decimal point		

18) Cards to read in potential gains of pavement rating for each distress type if a certain strategy is applied. Up to 8 items may be coded on each card. Use as many cards as needed for each strategy applied. Each card has the following format:

Column	Description	(J from 1 to NS) (K from 1 to ND)	Data	Туре
1-10		potential gains of pavement rating for Kth distress type if Jth strategy is applied	Numeric with	a decimal point
11-20	81	11	11	11
21-30	11	n.	п	II
31-40	11	н	н	11

Column	Description	(J from 1 to NS) n (K from 1 to ND)	Data	Туре
41-50	DIST(J,K) =	potential gain of pavement rating for Kth distress type if Jth strategy is applied	Numeric with	a decimal point
51-60	H	н	н	н
61-70	н	11	11	н
71-80	11	11	11	11

19)

Cards to read in maximum possible rating for each of the distress types. Up to 8 items may be coded on one card. Use as many cards as needed. Each card has the following format:

<u>Column</u>	Descript	ion (K from 1 to ND)	Data Type	
1-10	RMAX(K) = maximum possible rating for Kth distress type		Numeric with a dec	imal point
11-20	н	II	н	0
21-30	н	n	H	u
31-40	II .	n	11	H
41-50	11	н	H .	11
51-60	н	п	n	H
61-70	H	H.	u ·	u
71-80	н	11	н	11

20) Cards to read in current pavement rating for each highway segment if a certain distress type is present. Up to 8 items may be coded on one card. Use as many cards as needed for each highway segment. Each card has the following format:

<u>Column</u>	(I from 1 to NH) Description (K from 1 to ND)	Data Type		
1-10	R(I,K) = current pavement rating for Ith highway segment if Kth distress is present	Numeric with a decimal point		

Column	(I from 1 to NH) Description (K from 1 to ND)	Data Type	
11-20	R(I,K) = current pavement rating for Ith highway segment if Kth distress	Numeric with a decima	l point
Ť	is present		
21-30	11 11	н	11
31-40	11 II	н	H
41-50	ii ii	It	11
51-60	н п	II	11
61-70	ii n	u	11
71-80	и и	II	86

21) Cards to read in minimum pavement rating requirement for a specific time period and distress type of a certain highway type. Up to 8 items may be coded on one card. Use as many cards as needed to code all time periods for each distress type. Each card has the following format:

<u>Column</u>	Descrip	(II is 1 t (K is 1 to tion (L is to 1	ND)	<u>Da</u>	ata Type	2	
1-10	rat tim typ	L,II) = minimum ing requirement e period and Kt e if the highwa of type II	for Lth h distress	Numeric	with a	decimal	point
11-20	Ш	8	· · ·	н	- -	н	
21-30	Ŧŝ	H		F 3		н	
31-40	TF.	н		, it		н	
41-50	58	11		н	•	11.	
51-60	п	II .		н		Ħ	
61-70	11	81		н		H.	
71-80	11	11		п	• •	Ħ	ı

22) Cards to read in probability of survival for certain time period if certain strategy is applied. Up to 8 items may be coded on each card. Use as many cards as needed to code all time periods for each strategy. Each card has the following format:

<u>Column</u>	Descriptio	(K from 1 to ND) (J from 1 to NS) on (L from 1 to TDATA)	Data	Туре
1-10	P(J,K,L) =	probability of survival for the Lth time period if Kth distress type is present and strategy J is applied	Numeric with	a decimal point
11-20	H.	11	N	11
21-30	. 11	. 11	. II	11
31-40	11	11	11	11
41-50		IT	H	н
51-60	11	u	п	- H
61-70	11	п	II.	11
71-80	II.	ан сан сан сан сан сан сан сан сан сан с	n I	11

23) Cards to read in overall pavement rating requirement of each highway type. Up to 8 items may be coded on each card. Users may use as many cards as needed. Each card has the following format:

Column	Description		Data Type	
1-10	WW(I)=overall pavement rating requirement of the Ith highway type		Numeric with a c	lecimal point
11-20	11	11	в	n
21-30	u Î		п	11
31-40	H .	II	1)	11
41-50	17	н		Ħ
51-60	H	H .	H	
61-70	H	u.	н	ii.
71-80	H	H .	u	н

24) Cards to read in restrictions on decision variable X(I,J). The first card in this group indicates the number of X(I,J) (or cards) to be read in. It has the following format:

<u>Column</u>	Description	Data Type
1-4	Number of X(K,J) or cards to be read in	Integer, right justified

Each of the rest of the cards reads in a value of I (a highway segment number), a value of J (a strategy number), and the value of X(K,J) (which is \emptyset for withhold) with the following format:

Column	Description	Data Type
1-5	Value of I	Integer, right justified
6-10	Value of J	Integer, right justified
11-15	Value of X(I,J)	Integer, right justified

25) Cards to read in a list of complete strategies withheld with a \emptyset at the end of the list. One strategy number is coded on each card with the following format:

Column	Description	Data Type
1-5	JOUT = strategy number	Integer, right justified

The last card on the list should be coded as follows:

Column	Data
1-4	Blanks
5	Ø

APPENDIX C

INPUT

FOR THE

HIGHWAY MAINTENANCE PROBLEM

TEST PROBLEM FOR THE STATE OF TEXAS

THE FOLLOWING REPRESENTS THE INPUT FOR THE PROBLEM

NO. OF HIGHWAY SEGMENTS= 15 NO. OF STRATEGIES= 8 NO. OF ANALYSIS PERIOD= 10 NO. OF DISTRESS TYPES= 6 NO. OF HIGHWAY TYPES= 2 IECK= 0 YEARS OF INPUT DATA= 20

NO. OF MATERIAL TYPES= 4 NO. OF EQUIPMENT TYPES= 8 NO. OF MANPOWER TYPES= 8

SEGMENT	TYPE	HIGHWAY	COUNTY	CONTROL Section	LENGTH	WIDTH	BEGINNING NILE POINT	ENDING MILE POINT	TRAFFIC INDEX	ENVIRONMENTAL INDEX
1	t	US 79	MILAM	9 294-95	4.530	26.899	. Ø		1.959	1.999
2	1	US 77	NILAN	0209-05	12.329	28.000	0.0	Ø.Ø	1.059	1.999
3	1	US 199	MILAN	Ø815-Ø2	3.620	26.505	0.0	Ø.9	1.999	1.666
. 4	2	SH OSR	MADISON	Ø475-Ø4	7.699	20.000	Ø.Ø	Ø.Ø	1.000	1.590
5	2	SH OSR	MADISON	Ø475-Ø3	2.260	22.000	Ø.Ø	9.9	1.600	1.000
6	2	FN1696	WALKER	1809-02	13.800	20.000	ø.ø	Ø.Ø	1.000	1.999
7	2	FN 1791	WALKER	1706-01	12.370	22.999	Ø.Ø	5.9	1.000	1.995
8	2	FN2821	WALKER	2805-01	3.340	24.000	5.9	5.9	1.000	1.995
. 9	1	SH 30	WALKER	Ø212-Ø2	7.390	26.999	9.9	ø.ø	1.005	1.095
19	1	SH 36	BURLESON	Ø816-Ø3	12.910	26.999	ŧ.Ø	5.0	1.665	1.999
71	1	US 290	WASHINGTON	0114-09	9.921	26.000	0.0	9.9	1.999	1.000
12	1	US 79	HILAH	Ø2Ø4-Ø8	5.640	26.000	ø.ø	ø.ø	1.090	1.555
13	1	SH 36	BURLESON	Ø186-Ø2	9.325	26.000	ø.ø	5.9	1.995	1.666
14	2	SH OSR	BRAZOS	Ø475-Ø2	6.675	20.000	9.9	0.0	1.995	1.555
15	2	FN 998	HILAN	#858-#2	7.44 5	20.000	9.9	9.9	1.999	1.555

STRATEGY NO.

NAME

1	FOG SEAL
2	SEAL COAT
3	OGPMS
4	THIN OVERLAY
5	NODERATE OVERLAY
6	HEAVY OVERLAY
7	LIGHTDUTY RECONSTRUCTION
8	HEAVY DUTY RECONSTRT.

DISTRESS TYPE

NAKE

1	RUTTING
2	ALLIGATOR CRACKING
3	LONGTUD. CRACKING
4	TRANSVERSE CRACKING
5	FAILURES/MILE
6	SERVICEABILITY INDEX

MATERIAL REQUIREMENT AND AVAILABILITY

MATERIAL TYPE

NAME

SURFACING AGGREGATE ASPHALT CEMENT Aggregate(ITEM 340:) Aggregate ITEM 290

	KA	TERIAL TYP	ΡE		
STRATEGY	t	2	3	4	
1	Ø.Ø	0.400	0.0	8.9	
2	9.500	9.899	0.0	9.9	
3	0.0	3.000	20.000	1.0	•
4		1.500	29.340	0.0	
5	Ø.Ø	4.100	80.500	6.0	
6	9.8	8.100	29.300	132.000	
7	10.000	1.500	Ø	.0	
8	#. Ø	1.500	29.300	143.000	
AVAILABLE	9.500	4.600	87.749	87.700	

EQUIPMENT REQUIREMENT AND AVAILABILITY

EQUIPMENT TYPE NAME

1	GRADER
2	PICKUP
3	LOADER
4	TRUCK
 5	ROLLER
6	SPREADER
7	LAYDOWN MACHINE
8	ASPHALT DISTRIBUTOR

			EQUIP	HENT TYPE						
STRATEGY	1	2	3	- 4	[.] 5	6	7	8		
1	0.0		Ø.Ø	9.9 17	9.9	6.9	0.0	 8		
2	6.0	0.012	0.012	6.060	Ø.#24	0.012	Ø. 	Ø.Ø12		
3	Ø.Ø	0.111	0.0	.278	0.111	Ø.0	0.056	0.056		
4	9.0	0.111	Ø.0	.278	0.111	0.0	Ø.956	₿.Ø56		
5	9.9	0.222	Ø.Ø	₿.556	0.222	ő.Ø	Ø.111	#.111		
6	0.0	9.333	6.0	Ø.834	0.333	8.0	5. 168	Ø.168		
7	9.667	0.667	0.333	1.667	1.600	Ø.333	1.9	Ø.333		
8	1.000	0.778	0.333	3.611	1.111	Ø.Ø	Ø.056	0.0		
			ne de las nos de vie de un ca au de .						,	
AVAILABLE	6.700	0.700	8.340	Ø.84#	1.999	0.340	0. 179	Ø.340		

HANPOWER REQUIREMENT AND AVAILABILITY

NANPOWER TYPE

NAME

			KANPOVE		2 LOA 3 TRU 4 ROL 5 SPR 6 LAY 7 ASP	DER OPERATI DER OPERATO CK OPERATO LER OPERATO EADER OPERA DOWN MC. OF HALTDIS. OF ERAL LABOR	DR R DR DR Ator Perator Perator		
STRATEGY	1	2	3	4	5	6	7	8	
1 2 3 4 5 6 7 8	0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.6 0.6	0.5 9.612 9.6 9.6 0.0 5.6 6.333 9.333	Ø.Ø17 Ø.Ø65 Ø.278 Ø.278 Ø.556 Ø.834 1.667 3.611	5.0 5.024 5.111 5.111 5.222 5.333 1.050 1.111	9.9 9.948 9.5 9.9 9.5 9.5 1.332 9.5	9.5 9.289 9.285 9.565 9.849 5.6 9.849 9.289	9.916 9.924 9.956 9.956 9.111 9.168 9.666 9.956	5.658 6.612 5.168 5.168 9.336 5.564 1.659 1.818	
AVAILABLE	Ø.700	8.340	0.840	1.000	1.340	Ø.85Ø	Ø.67Ø	1.669	
OVERHEAD BUDGET REQUIREMENT AND AVAILABILITY

STRATEGY

REQUIREMENT

FOG SEAL	56.000
SEAL COAT	214.000
DGPNS	950.000
THIN OVERLAY	925.000
MODERATE OVERLAY	2000.005
HEAVY OVERLAY	3549.000
LIGHTDUTY RECONSTRUCTION	944.000
HEAVY DUTY RECONSTRT.	2600.000

AVAILABLE

1202000.0

GAIN OF RATING MATRIX

DISTRESS TYPE

STRATEGY	· . 1	2	3	4	5	.6
4	B B	5 848	5.600	5.999	2.600	2.000
1	ø.ø	5.000				
2	9.9	15.000	15.000	15.000	10.000	2.000
3	13.000	19.000	19.000	19.000	24.000	45.000
4	13.000	20.600	20.500	20.000	25.000	45. <i>000</i>
5	15.000	25.000	25.000	20.000	30.000	50.000
6	15.000	25.000	25.000	20.000	35.000	50.000
7	15.000	25.000	25.000	20.000	40.000	50.000
8	15.000	25.000	25.000	20.000	40.000	50.000

MAXIMUM GAIN OF RATING

DISTRESS	TYPE	GAIN	I OF	RATING
1			15	.999
2			25	.000
3			25	. 999
4			20	.000
5			40	.000
6			50	.000

CURRENT RATING FOR DIFFERENT HIGHWAY SEGMENTS AND DISTRESS TYPES

DISTRESS TYPE

SEGMENT I	NUMBER 1	2	3	4	5	6
. 1	10.000	5.000	20.000	17.000	20.000	10.000
2	10.000	15.ØØØ	25.000	20.000	40.000	3.000
3	10.000	18.989	15.000	13.000	40.000	Ø. Ð
4	10.000	20.000	20.000	20.000	40.000	Ø.0
5	10.000	25.000	25.000	20.800	40.000	9.9
6	10.000	25.000	25.000	20.000	40.000	5.0
7	8.000	9.0	10.000	20.000	10.000	9.0
8	10.0 00	15.000	25.000	20.000	20.000	5.9
9	15.000	25.000	5.000	5.100	40.000	42.000
19	15.000	25.000	25.000	20.000	48.080	47.000
11	15.000	25.000	25.000	17.000	40.000	47.000
12	15.000	25.000	25.000	17.000	40.500	49.000
13	13.000	25.000	25.000	20.000	40.600	50.000
14	8.000	5.000	Ø.Ø	17.000	20.000	6.9
15	10.000	10.000	18.080	8.000	20.000	6.0

MINIMUM PAVEMENT RATING REQUIREMENT FOR DIFFERENT HIGHWAY TYPES

HIGHWAY TYPE= 1

				TINE	PERIOD					
DISTRESS TYPE	1	2	3	4	5	6	7	8	9	19
	11	12	13	14	15	16	17	18	19	20
1	5.000 5.000	5.000 5.000	5.000 5.000	5.000 5.600	5.000 5.000	5.000 5.000	5.000 5.000	5.000 5.000	5.000 5.000	5.000 0.0
2	20.000 5.000	20.000 5.000	20.000 5.000	15.000 5.000		1 <i>0.000</i> 5.000		19.000 5.000	5.000 5.000	5.000 5.000
3	20.009 5.009	20.000 5.000	20.000 5.000		15.000 5.000		10.000 5.000	1 9,999 5 ,999	5. <i>000</i> 5.000	5.000 5.000
4	15.000 5.000	15.000 5.000	10.000 5.000			19.005 5.995	5.000 5.000	5.000 5.000	5.000 5.000	5 .000 5.000
5	40.000 20.000	30 .0 00 20.000	30.000 20.000	3 9.000 20.000	30.000 20.000	20.000 20.000	28.080 20.000	20.000 20.000	2 0.000 20.000	20.000 20.000
6	48.099 8.0	35.000 0.0	30.000 5.6	25.#ØØ Ø.Ø	20.000 0.0	20.000 0.0	15.000 0.0	15.000 0.0	10.000 0.0	10.000 0.0

HIGHWAY TYPE= 2

				TINE I	PERIOD					
DISTRESS TYPE	1	2	3	4	5	6	7	8	9	19
	11	12	13	14	15	16	17	18	19	20
1	5.000 5.000	5.000 5.000	5.000	5.000 5.000	5.000 5.000	5.000 5.000	5.000 5.000	5.000 5.000	5.995 5.995	5.000 5.000
2	20.000 5.000	15.000 5.000	15.000 5.000	10.000 5.000	10.000 5.000	5.000 5.000	5.000 5.000	5.000 5.000	5. <i>009</i> 5.000	5.000 5.000
3	20.000 5.000	15.000 5.000	15.000 5.000		10.000 5.000		5.000 5.000	5.999 5.999	5.000 5.000	5.000 5.000
4	15 .000 5.000	1 0.00 0 5.000	10.000 5.000	10.000 5.000	10.000 5.000	10.000 5.000	5. <i>000</i> 5.000	5.000	5.000 5.000	5.000
5	0.020 20.000	0.020 20.000	Ø.020 20.000	Ø.Ø20 20.000	Ø.020 20.000	0.030 20.009	0.030 20.000	8.0 30 20.880	20.000	20.000 20.000
6	25.999 \$.9	28.080 8.0	15.Ø#Ø Ø.Ø	15.000 0.0	19.090 0.0	10.900 0.0	5.000 0.0	5.000 0.0	9.0 9.9	0.0 0.0

5

				TIME	E PERIOD					
STRATEGY	1	2	3	4	5	6	7	8	9	19
	11	12	13	14	15	16	17	18	19	25
1				1.995						0.140
		0.0		Ø.Ø	5.9	9.9	12.0	9.9	9.9	Ø.Ø
2	1.000	0.930	0.910	Ø.880	Ø.78Ø	Ø.31Ø	0.220	0.150	0.070	0.050
	Ø.Ø2Ø	0.020	0.020	Ø.02Ø	0.010	0.010	0.010	0.010	8.010	6.619
3	1.900			1.000						0.250
-	Ø.Ø	0.0	9.9	Ø.Ø	Ø.Ø	Ø.Ø	9.9	9.0	Ø.8	9.9
4	1.999	1.909	1.000	1.000	0.790	0.750	0.750	8.750	0.750	0.750
	0.330	0.250	0.250	0.170	Ø.Ø8Ø	9.9	Ø.Ø	ð.Ø	0.0	0.0
5	1.000	1.000	1.900	1.000	1.000	Ø.83Ø	9.719	Ø.660	0.620	0.380
	0.300	0.300	6.360	₿.28Ø	Ø.22Ø	Ø.17Ø	9.120	Ø.Ø4Ø	6.949	8.949
6	1.000	1.600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	0.670	0.670	0.670	Ø.67Ø	Ø.220	Ø.Ø	Ð.Ø	0.9	Ø.Ø	8.1
7	1.000	1.000	1.000	1.000	1.000	0.720	9.670	0.580	0.500	0.590
				Ø.28Ø						
8	1.000	1.000	1.000	1.000	1.000	0.720	0.670	Ø.58Ø	0.500	0.500
	9.369	0.330	0.330	Ø.28Ø	₿.17Ø	0.170	0.170	0.170	Ø.170	0.170

RUTTING

ALLIGATOR CRACKING

				TIME	E PERIOD					
STRATEGY	1	2	3	- 4	5	6	7	8	9	10
	11	12	13	14	15	16	17	. 18	. 19	20
1			1.000			Ø.5ØØ	Ø.25Ø	Ø.Ø8Ø	0.0	Ø.Ø
	9.9	0.0	Ø.Ø	Ø. Ø	Ø.0	Ø.Ø	Ø.Ø	0.0	0.0	8.9
2			Ø.89Ø			Ø.28Ø	Ø.240	0.150	8.099	0.070
	0.020	0.010	9.919	0.010	6.0	Ø.Ø	Ø.Ø	Ø.Ø	0.0	Ø.Ø
3	1.999	i.000	Ø.89Ø	Ø.82Ø	0.730	Ø.678	0.670	6.670	8.679	0.360
	Ø.11Ø	9.099	9.9	Ø.9	0.0	Ø.Ø	Ø .Ø	0.0	Ø.Ø	0.0
4	1.000	1.000	Ø.95Ø	Ø.91 5	Ø.9Ø8	Ø.61#	Ø.56Ø	0.550	0.510	Ø. 28Ø
	0.170	ð.14Ø	9.149	9.149	0.085	9.919	Ø.Ø	0.0	0.0	Ø . Ø
5	1.890	1.000	1.000	1.000	6.770	9.649	Ø.58Ø	0.530	0.510	
	9.219	Ø.19Ø	0.190	9.170	Ø.150	6.169	0.070	0.969	6.660	0.030
6	1.000	1.000	1.600	1.000	1.000	0.710	0.620	6.440	Ø. 29Ø	0.290
	Ø. 29 Ø	0.170	0.140	9.149	Ø.120	ø.ø	0.0	Ø.Ø	9.9	0.6
7	1.000	1.000	1.000	1.000	1.000	0.490	0.360	0.360	0.360	0.290
	₿.279	0.270	0.270	Ø.27Ø	Ø.210	Ø.198	0.190	9.189	8.119	9.690
8	1.000	1.000	1.000	1.000	1.000	Ø.49Ø	0.360	0.360	0.360	0.290
	9.270	0.270	0. 27Ø	₿.27Ø	0.210	0.190	Ø.19Ø	Ø.18Ø	9.110	6.696

LONGTUD. CRACKING

				TIN	E PERIOD					
STRATEGY	1	2	3	4 14	5	6	7	8	9	10
	11	12	13	14	15	16	17	18	19	20
1	1.000 0.0	1.000 9.0	0.790 0.0		0.500 0.9		9.9 8.9	0.0 0.0	0.0 0.9	9.9 0.9
2	1.980 8.929		Ø.88Ø Ø.919		9.670 9.9	Ø.370 Ø.9		9.189 9.9	9.999 9.9	9.670 0.9
3			1.000 0.0		1.000 0.0		0.500 0.0	6.599 6.9	Ø.250 Ø.9	9.9 0.9
4		1. <i>999</i> 5.9	Ø.938 Ø.Ø			0.140 0.0		Ø.120 Ø.Ø	9.979 9.9	Ø.929 Ø.9
5		1.000 0.0	1.000 0.0		1.000 0.0	Ø.33Ø Ø.Ø		9.9 9.9		0.0 0.0
6	1.000 0.170	1.000 0.170	1.009 9.170	1. 00 0.170	.1 .000 Ø.170	Ø.330 Ø.170	Ø.330 Ø.170	Ø.280 Ø.170	0.170 0.170	Ø.17Ø Ø.17Ø
7	1.989	1.000 0.600	1.000 0.530	1.000 0.400	1 .000 Ø.380	1.999 9.219	1 .999 9.299	1.000 0.200	0.650 0.200	0.600 0.200
8	1.999 9.699		1.000 0.530	1.000 0.400	1 .0 99 Ø.389	1.000 0.210	1 .005 Ø.200	1.000 9.200	9.659 9.299	

TRANSVERSE CRACKING

				TIME	PERIOD					
STRATEGY	1	2	3	4	5	6	7	8	9	19
	11	12	13	14	15	16	17	18		20
t	1.009 0.0			Ø.53Ø Ø.Ø			9.969 9.6		. 5. 9 9.9	0.0 0.0
2	1.999 9.919		Ø.869 Ø.010		9.670 9.9		Ø.33Ø Ø.Ø	Ø.18Ø Ø.9		9.969 9.9
3	1.000 0.0		1.000			0.830 0.0		0.670 5.0		9.9 9.9
4			Ø.94Ø Ø.Ø					0.140 0.0		9.919 9.5
5			1.000 9.0		1.000 0.0	9.63Ø Ø.0		5.229 9.9		0.040 0.0
6	1.999 8.179	1.000 0.170	1.090 9.179	1.959 Ø.179	1.969 9.176	0.330 0.170	Ø.33Ø Ø.17Ø	Ø.285 Ø.17Ø	Ø.170 Ø.170	9.179 5.179
7	1.000 0.600	1.000 0.600	1.000 0.510	1.000 0.400	1.000 0.380	1.000 0.200	1.000 0.200	1.000 0.200	Ø.65Ø Ø.200	9.699 9.209
8	1.000	1.000 9.600	1.000 0.510	1.699 0.406	1.000 0.380	1.609	1. <i>998</i> 8.9	1.959	9.659 9.9	9.699 9.6

FAILURES/MILE

				TIME	PERIOD					
STRATEGY	1	2	3	4	5	6	7	8	9	19
	11	12	13	14	15	16	17	18	19	20
1	1.000	1.000	1.000	0.670	0. 67Ø	6.330	0.330	9.0	0.8	0.0
	Ø.Ø	Ø.Ø	0.0	0.0	6.0	Ø.Ø	Ø.Ø	0.0	0.0	8.8
2	1.000	1.000	9 .910	0.780	0.470	Ø.22Ø	9.200	8.180	8.848	5 .618
	Ø.Ø	9.0	ø.ø	Ø.Ø	0.0	8 .Ø	Ø.Ø	0.0	0.0	0.0
3	1.000	1.999	1.600	1.000	1.600	1.000	1.000	6.330	0.330	0.330
	Ø.Ø	0.0	0.0	Ø.Ø	Ø.Ø	6.9	Ø.Ø	0.0	Ø.Ø	0.0
4	1.000	1.000	1.500	0.890	0.530	Ø.230	0.160	0.150	8.130	9.989
	0.020	0.0	Ø.Ø	Ø.Ø		8.9	0.0	0.0	0.0	9.9
5	1.969	1.600	1.000	1.000	9.779	0.510	Ø.48Ø	0.360	6.330	0.240
-		0.170					0.070	Ø.Ø	6.0	0.0
6	1.000	1.000	1.000	1.000	1.000	0.750	Ø.59Ø	0.500	0.500	0.480
	0.250		9.250				0.0	Ø.Ø	0.0	ø.ø
7	1.000	1.800	1.000	1.000	1.000	8.479	0.360	Ø.32Ø	0.270	Ø.270
		0.200					Ø.89Ø	0.090	8.9 98	Ø.090
8	1.000	1.999	1.000	1.000	1.000	0.470	9.369	Ø.32Ø	Ø.270	
	0.270		0.180	0.180	Ø.15Ø	0.090	0.090	0.090	0.990	9.990

SERVICEABILITY INDEX

				TIM	E PERIOD					
STRATEGY	1	2	3	4			7	8	9	10
	11	12	13	14	15	16	17	18	19	20
1	1.000	0.900	0.700	0.500	Ø.4Ø#	ø.3ø#	0.200	8.100	0.100	0.0
	9.9	Ø.Ø	Ø.Ø	Ø.Ø	Ø.Ø	Ø.Ø	Ø.Ø	9.9	0.0	0.0
2	1.000	8.980	8.700	0.500	0.400	0.300	0.200	0.100	Ø.100	Ø.Ø
	9.0		Ø.Ø	Ø.Ø	5.0	0.0	0.0	Ø.0	0.0	0.0
3	1.000	1.600	1.600	0.900	Ø.8ØØ	9.790	9.690	6.560	8.400	0.300
-	9.9		Ø.0			Ø.Ø	Ø.Ø	Ø.Ø	. 9	0.5
4	1.000	1.000	1.000	6.900	0.800	9.700	0.600	0.500	0.400	0.300
	0.0	0.0		9.0		Ø.Ø	Ø. 0	0.0	Ø.Ø	9.9
5	1.000	1.000	1.900	1.000	8.988	0.800	0.700	0.600	0.500	0.500
	0.0	8.9	9.9	Ø.0	0.0	Ø.Ø	0.0	Ø.Ø	9.0	8.8
6	1.000	1.000	1.000	1.000	1.060	. 9 6 Ø	8.980	9. 8 9 9	9.799	0.605
	Ø.Ø	Ø.Ø	9.9	Ø.Ø	8 .0	Ø.Ø	Ø.0	Ø.Ø	Ø.Ø	9.9
7	1.590	1.599	1.000	0.900	6.850	8.788	9.699	0.500	8.400	0.300
	0.0	Ø.Ø	0.0	Ø.Ø	Ø.Ø	ð.Ø	Ø.Ø	9.9	9.0	0.9
8	1.000	1,000	1.000	9.999	Ø.8ØØ	0.799	Ø.6Ø#	0.500	8.488	0.300
	Ø.Ø	Ø.0	Ø.Ø	Ø.Ø	5.0	0.0	0.0	Ø.Ø	ø.ø	Ø.Ø

OVERALL PAVEMENT RATING REQUIREMENT

HIGHWAY TYPE	RATING
1	131.00
2	114.00

. . APPENDIX D OUTPUT FOR THE HIGHWAY MAINTENANCE PROBLEM

MATRIX OF FEASIBLE STRATEGIES ACCORDING TO THE MINIMUM PAVEMENT RATING REQUIREMENT CONSTRAINT

X(I,J)=0 NEANS THE JTH MAINTENANCE STRATEGY FOR THE ITH HIGHWAY SEGMENT IS INFEASIBLE X(I,J)=1, MEANS MAINTENANCE STRATEGY J FOR THE ITH HIGHWAY SEGMENT IS IS FEASIBLE

SEGNENT NUMBER			STR	ATEGY				
	1	2	3	4	5	6	7	8
1	Ø	Ð	1	1	1	_ 1 _ 1	1	1
- 3 4	9 9	6 Ø	1	1	1	, 1 . 1	1	1
5 6	Ð	9 8	1	1	1	1	1 · ·	· 1
. 7 8	Ø 9	0 9	Ø 1	1	1	1	1	1
1 <i>9</i> 11	1	1 1 1	1 1 1	1 1	1	1	1	, 1 1
12 13	, † 1	1	· 1 ·	1	, 1 1	1	1	1
14 · · · · · · · · · · · · · · · · · · ·	6 Ø	9 6	Ø	1	· 1	1 1	1	1

MATRIX OF FEASIBLE STRATEGIES ACCORDING TO OVERALL PAVEMENT RATING REQUIREMENT CONSTRAINT

X(I,J)=0 MEANS THE JTH MAINTENANCE STRATEGY FOR THE ITH HIGHWAY SEGMENT IS INFEASIBLE X(I,J)=1, NEANS MAINTENANCE STRATEGY J FOR THE ITH HIGHWAY SEGMENT IS IS FEASIBLE

SEGMENT NUMBER			STRAT	TEGY				
	1	2	3		5	6	7	R
•		6	5	7	5	Ū	•	Ŭ
1	ø	1	1	t	1	1	1	1
2	ĩ	1	1	1	1	1	1	1
3	ø	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	t
5	1	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1
s 7	Ø	Ø	1	1	. 1	1	1	. 1
8	9	1	1	1	1	1 .	1	1
7	1	1	1	I t	1		1	1
11	1	1	1	1	1	1	1	1
12	1	1	1	1	1	1	• •	1 -
13	1	1	i	i	1	1	i	1
14	9	ø	1	1	1	1	1	1
15	Ø	1	1	1	1	1	1	1
X(I,J)=Ø M	EANS THE JTH	MAINTENAN	CE STRATEGY	FOR THE	ITH HIGHWAY	SEGNENT	IS INFEASI)LE
X(I,J)=1,	HEANS HAINTE	NANCE STRA	TEGY J FOR	THE ITH	HIGHWAY SE	GNENT IS IS	5 FEASIBLE	
SEGMENT NUMBER			STRATEGY					
SCOUCKT ROUDER			SINHIEUI					
	t	2	3	4	5	6	7	8
1	ø	ø	1.	1	1	1	1	1
2	5	Ð	1	1	1	t	1	1
3	ø	ø	1	1	1	1	1	1
4	9	ø	1	1	1	· 1	1	1
5	Ø	ø	1	1	1	1	1	1
0 7	9 4	Ø	1	1	1	1	1	1
2 . 8	.9 (A	9	1	1	1	1	1	1
9	10 ·	1	1	.1	1	1	- 1	1
19	1	1	1	1.	1	t	1	· 1
11	1	1	t	1	· i	1	1	i
12	1	1	1	1	i	1	1	1
13	1	1	1	1	1	1	1	1
14	Ð	ø	6	1	1	1	1	1
15	ø	Ø	1	1	1	1	1	1

:

RESTRICTED SECTION-STRATEGY CONBINATIONS

J

I

1	7
2	7
3	7
9	7
10	7
11	7
12	7
13	7
4	8
5	8
6	8
7	8
8	8
14	8
15	8

COMPLETE STRATEGIES WITHHELD

1

3

Ø

JOUT

RANKING OF STRATEGIES FOR ALL HIGHWAY SEGMENTS

SEGNENT NUMBER

1

İ

STRATEGY

1	4	5	6	8	ø	9	Ø	ø
2	4	5	8	ø	Ø	ø	Ø	ø
3	4	5	6	8	ø	Ø	Ø	ø
4	4	5	7	6	Ø	6	ø	ø
5	4	5	7	6	0		Ø	9
6	4	5	7	6	ø	ø	ø	ø
, 7	7	4	5	6	Ø	ø	Ø	ø
8	4	5	7	6	Ø	ø	ø	ø
9	2	4	5	8	.6	Ø	Ø	Ø
1Ø	4	.5	6	8	ø	Ø	2	ø
11	4	2	5	8	6	ø	ø	Ø
12	2	4	5	8	6	9	Ø	9
13	4	6	5	8	Ø	ø	2	Ø
14	4	7	5	6			ø	Ø
15	4	7	5	6	ø	Ø	ø	Ø

OBJECTIVE FUNCTION COEFFICIENTS

SEGNENT	NUMBER
---------	--------

STRATEGY

	1	2	3	4	5	6	7	8
1	Ø.\$	Ø.0	Ø.#	61569.3	79925.9	89367.9	9.9	67293.4
2	Ø.Ø	8.0	5.0	99155.2	152937.7	9.9	9.5	140001.7
3	Ø.Ø	9.0	0.0	36231.4	56363.7	62989.7	9.5	56594.9
4	9.9	Ø.Ø	0.0	38304.0	66233.9	76299.9	63118.9	9.9
5	9.9	Ø.Ø	9.0	11838.3	21285.1	24611.4	19184.4	9.5
6	9.9	9.9	Ø.Ø	65715.6	118155.4	136619.7	106494.4	5.5
7	9.9	9.9	9.5	11#298.1	237727.4	268479.2	237006.1	6.6
8	Ø.Ø	0.0	Ø.Ø	28789.4	45254.3	53053.8	42953.7	9.9
9	0.0	16178.2	Ø.9	326#6.1	42472.5	44826.1	Ø.Ø	65951.9
10	Ø.Ø	Ø.Ø	Ø.Ø	2810.3	3747.1	4683.9	0.0	2819.3
11	9.9	1078.9	6.0	4362.5	6332.7	7036.4	Ø. 6	7740.0
12	6.6	821.2	0.0	1847.7	2786.2	2932.8	0.0	3959.3
13	Ð.Ø	0.0	0.0	1938.6	2423.2	4846.4	1.9	2423.2
14	0.0	9.9	0.0	66499.7	109754.6	124642.0	117931.6	9.0
15	0.0	9.0	0.0	74749.5	110803.7	123927.9	118943.1	0.0

PHASE 1

INITIAL SOLUTION BY THE METHOD OF EFFECTIVE GRADIENT

HIGHWAY	SEGMENT Segnent Segnent	13 13 13	EXCHANGE STRATEGY 6 WITH STRATEGY Exchange strategy 5 with strategy Exchange strategy 8 with strategy	4 6 5
			DROP 13	
	SEGNENT	1Ø	EXCHANGE STRATEGY 5 WITH STRATEGY	4
HIGHWAY		10	EXCHANGE STRATEGY 6 WITH STRATEGY	5
HIGHWAY	SEGMENT	1Ø	EXCHANGE STRATEGY 8 WITH STRATEGY	6
			DROP 19	
HIGHWAY	SEGMENT	11	EXCHANGE STRATEGY 2 WITH STRATEGY	4
HIGHWAY		11	EXCHANGE STRATEGY 5 WITH STRATEGY	2
HIGHWAY		11	EXCHANGE STRATEGY 8 WITH STRATEGY	5
HIGHWAY	SEGMENT	11 -	EXCHANGE STRATEGY 6 WITH STRATEGY	8
			DROP 11	•
HIGHWAY	SEGNENT	12	EXCHANGE STRATEGY 4 WITH STRATEGY	2
HIGHWAY	SEGNENT	12	EXCHANGE STRATEGY 5 WITH STRATEGY	4
HIGHWAY	SEGMENT	12	EXCHANGE STRATEGY 8 WITH STRATEGY	5
HIGHWAY	SEGNENT	12	EXCHANGE STRATEGY 6 WITH STRATEGY	8
			DROP 12	
HIGHWAY	SEGMENT	6	EXCHANGE STRATEGY 5 WITH STRATEGY	4
HIGHWAY		6	EXCHANGE STRATEGY 7 WITH STRATEGY	5
HIGHWAY	SEGNENT	5	EXCHANGE STRATEGY 5 WITH STRATEGY	4
HIGHWAY	SEGNENT	5	EXCHANGE STRATEGY 7 WITH STRATEGY	5
HIGHWAY	SEGNENT	2	EXCHANGE STRATEGY 5 WITH STRATEGY	4
HIGHWAY	SEGNENT	2	EXCHANGE STRATEGY 8 WITH STRATEGY	5
			DROP 2	
HIGHWAY	SEGNENT	4	EXCHANGE STRATEGY 5 WITH STRATEGY	4
HIGHWAY		4	EXCHANGE STRATEGY 7 WITH STRATEGY	5
HIGHWAY	SEGNENT	8	EXCHANGE STRATEGY 5 WITH STRATEGY	4
HIGHWAY	SEGMENT	8	EXCHANGE STRATEGY 7 WITH STRATEGY	5
HIGHWAY	SEGMENT	9	EXCHANGE STRATEGY 4 WITH STRATEGY	2
	SEGNENT	9	EXCHANGE STRATEGY 5 WITH STRATEGY	4
	SEGNENT	9	EXCHANGE STRATEGY 8 WITH STRATEGY	5.
HIGHWAY	SEGNENT	9	EXCHANGE STRATEGY 6 WITH STRATEGY	8
			DROP 9	
HIGHWAY	SEGMENT	6	EXCHANGE STRATEGY 6 WITH STRATEGY	7
			•	

DROP 6

NO MORE HIGHWAY SEGNENT SHOULD BE DROPPED

INITIAL FEASIBLE SOLUTION

HIGHWAY SEGNENT	STRATEGY	BENEFIT
1	4	61569.
3	4	36231.
4	7	63119.
5	7	19184.
7	7	237006.
8	7	42954.
14	4	66500.
15	4	74750.

FOLLOWING HIGHWAY SEGNENTS WITH THE CORRESPONDING STRATEGIES REPRESENTS THE INITIAL FEASIBLE SOLUTION

SEGNENT NUMBER

STRATEGY

1	THIN OVERLAY
3	THIN OVERLAY
4	LIGHTDUTY RECONSTRUCTION
5	LIGHTDUTY RECONSTRUCTION
7	LIGHTDUTY RECONSTRUCTION
8	LIGHTDUTY RECONSTRUCTION
14	THIN OVERLAY
15	THIN OVERLAY
	• • • • • • • • • • • • • • • • • • •

THE NET BENEFIT=

601313.

CONSTRAINT	PERCENT	PERCENT
	UTILIZATION	UNUTILIZED
SURFACING AGGREGATE	20.49	79.51
ASPHALT CEMENT	12.13	87.87
AGGREGATE(ITEN 340:)	5.93	94.07
AGGREGATE ITEM 290	8 .9	198.90
GRADER	18.54	81.46
PICKUP	21.36	78.64
GRADER PICKUP LOADER TRUCK POLLER	19.96	80.94
TRUCK	44.49	55.51
ROLLER	21.43	78.57
TRUCK ROLLER SPREADER	19.06	80.94
LAYDOWN MACHINE	5.84	94.16
ASPHALT DISTRIBUTOR	21.98	78.Ø2
GRADER OPERATOR	18.54	81.46
LOADER OPERATOR	19.06	80.94
TRUCK OPERATOR	44.49	55.51
ROLLER OPERATOR	21.43	78.57
SPREADER OPERATOR	19.35	89.65
LAYDOWN NC. OPERATOR	5.84	94.16
ASPHALTDIS. OPERATOR	20.83	79.17
GENERAL LABOR	21.14	78.86
OVERHEAD BUDGET	80.59	19.41

PHASE 2

INCLUSION OF ADDITIONAL HIGHWAY SEGMENTS.

SEGNENT NUMBER	STRATEGY	BENEFIT
9	2	16178.
12	2	821.
11	2	1079.

NO NORE HIGHDAY SEGMENT CAN BE INCLUDED

NET BENEFIT= 619391.

2.1

Ŧ

~

.

CONSTRAINT	PERCENT
	UTILIZATION
1	41.07
2	15.71
3	5.93
· 4	Ø.Ø
5	18.54
6	21.71
7	19.79
8	45.97
9	21.93
10	19.79
11	5.84
12	22.71
13	18.54
14	19.79
15	45.97
16	21.93
17	20.08
18	5.84
19	21.57
20	21.29
21	90.80

******** 99 ENTERED ******

PHASE 3

FINAL SOLUTION OBTAINED AFTER SEARCHING FOR BETTER STRATEGIES THAN THOSE SELECTED IN PHASE 1 AND PHASE 2

OPTINUM SOLUTION

HIGHWAY SEGMENT	STRATEGY	BENEFIT
1	4	61569.
3 .	4	36231.
4	7	63119.
5	7	19184.
7	7	237006.
. 8	7	42954.
9	2	16178.
11	2	1979.
12	2	821.
14	7	117032.
15	7	118943.
THE NET BENEFIT	r is	714117.

CONSTRAINT	PERCENT
	UTILIZATION
1	51.74
2	15.71
3	2.54
4	Ø.Ø
5	28.20
6	29.76
7	29.71
8	62.72
9	30.93
10	29.71
11	2.51
12	30.97
13	28.20
14	29.71
15	62.72
16	30.93
17	30.16
18	2.51
19	39.79
2Ø	30.34
21	91.24

OPTIMAL MAINTENANCE DECISIONS

SEGNENT NO.	NAME	STRATEGY	BENEFIT
1	US 79	THIN OVERLAY	61569.
3	US 190	THIN OVERLAY	36231.
4	SH OSR	LIGHTDUTY RECONSTRUCTION	63119.
5	SH OSR	LIGHTDUTY RECONSTRUCTION	19184.
7	FN 1791	LIGHTDUTY RECONSTRUCTION	237006.
8	FN2821	LIGHTDUTY RECONSTRUCTION	42954.
ÿ	SH 30	SEAL COAT	16178.
11	US 290	SEAL COAT	1079.
12	-US 79	SEAL COAT	821.
14	SH. OSR	LIGHTDUTY RECONSTRUCTION	117032.
15	FN 908	LIGHTDUTY RECONSTRUCTION	118943.
		NET BENEFIT=	714117.

NET BENEFIT=

RESOURCE REQUIREMENTS

NATERIAL REQUIREMENTS IN PERCENTS

SEGNERT	NG.	STRATEGY	SURFACING AGGREGATE	ASPHALT CENENT	AGGREGATE(ITEN 340:)	AGGREGATE ITEN 290
1		THIN OVERLAY	9.9	1.38 1.1≢	1.41	5.1 9. 0
3		THIN OVERLAY Lightduty reconstruction	Ø.Ø 5.29	1.64	0.0 0.0	9.6 9.8
5 7		LIGHTDUTY RECONSTRUCTION	1.88 1 <i>0</i> .29	Ø.58 3.19	9.5	0.0
8		LIGHTDUTY RECONSTRUCTION SEAL COAT	3. # 3 6.90	#,94 1,25	#. # Ø.Ø	0.9 9.9
11		SEAL COAT SEAL COAT	8.42 5.27	1.46 #.92	0.0 0.0	0.5 5.0
14		LIGHTDUTY RECONSTRUCTION	5.84 5.62	1.56	0.0 8.0	0.8 8.9
15		LIGHTDUTY RECONSTRUCTION	J.02	1 +7 7		

EQUIPHENT REQUIREMENTS IN PERCENTS

SEGMENT NO.	STRATEGY	GRADER	PICKUP	LOADER	TRUCK
	THIN OVERLAY	9.0	9.67	0.0	1.48
3	THIN OVERLAY	9.1	8.54	6.0	1.12
3	LIGHTDUTY RECONSTRUCTION	4.79	4.79	4.92	9.98
1	LIGHTDUTY RECONSTRUCTION	1.70	1.70	1.75	3.54
5		9.31	9.31	9.57	19.39
	LIGHTDUTY RECONSTRUCTION	2.74	2.74	2.82	5.71
8	LIGHTDUTY RECONSTRUCTION	9.9	9 .12	9.24	9. 49
9	SEAL COAT		J .14	1.31	5.65
11	SEAL COAT	Ø.1	Ø	Ø.19	1.38
12	SEAL COAT	0.5	4.56	4.69	9.51
14	LIGHTDUTY RECONSTRUCTION	4.56	5.19	5.23	19.60
15	LIGHTDUTY RECONSTRUCTION	5.09	3.27		
SEGMENT NO.	STRATEGY	ROLLER	SPREADER	LAYDOWN MACHINE	ASPHALT DISTRIBUTOR
		Ø.47	5.0	1.39	0.70
. 1	THIN OVERLAY	9.38	9.0	1.11	0.56
3	THIN OVERLAY Lightduty reconstruction	5.03	4.92	9.9	4.92
.4		1.79	1.75	9.0	1.75
2	LIGHTDUTY RECONSTRUCTION	9.77	9.57	6.9	9.57
7	LIGHTDUTY RECONSTRUCTION	2.68	2.82	0.0	2.82
- 8	LIGHTDUTY RECONSTRUCTION		0.24	9.9	9.24
9	SEAL COAT	. #. 17		9.0	0.30
11	SEAL COAT	0.20	Ø.30		Ø.19
12	SEAL COAT	8.13	Ø.19		4.69
14	LIGHTDUTY RECONSTRUCTION	4.79	4.69	5.0	5.23
15	LIGHTDUTY RECONSTRUCTION	5.34	5.23	0.0	4.23

HANPOWER REQUIREMENTS IN PERCENTS

SEGMENT	NO.	STRATEGY	GRADER OPERATOR	LOADER OPERATOR	TRUCK OPERATOR	ROLLER OPERATOR
1		THIN OVERLAY	9.9	1.0	1.40	Ø.47
3		THIN OVERLAY	9.9	9.9	1.12	9.38
. 4		LIGHTDUTY RECONSTRUCTION	4.79	4.92	9.98	5.03
5		LIGHTDUTY RECONSTRUCTION	1.70	1.75	3.54	1.79
7		LIGHTDUTY RECONSTRUCTION	9.31	9.57	19.39	9.77
8		LIGHTDUTY RECONSTRUCTION	2.74	2.82	5.71	2.88
9		SEAL COAT	0.0	Ø.24	0.49	Ø. 17
11		BEAL COAT	9.9	8.35	9.69	0.20
12		SEAL COAT	9.5	9.19	Ø.38	Ø.13
14		LIGHTDUTY RECONSTRUCTION	4.56	4.69	9.51	4.79
15		LIGHTDUTY RECONSTRUCTION	5.09	5.23	19.69	5.34
SEGMENT	ND.	STRATEGY	SPREADER OPERATOR	LAYDOWN NC. OPERATOR	ASPHALTDIS. OPERATOR	GENERAL LABOR
. 1		THIN OVERLAY	9.9	1.39	Ø.35	0.43
3		THIN OVERLAY	9.9	1.11	Ø.28	Ø.34
4		LIGHTDUTY RECONSTRUCTION	5.00	.	5.00	5.00
. 5		LIGHTDUTY RECONSTRUCTION	1.77	9.0	1.77	1.77
7		LIGHTDUTY RECONSTRUCTION	9.71	. 9	9.71	9.71
. 8		LIGHTDUTY RECONSTRUCTION	2.86	0.0	2.86	2.86
9		SEAL COAT	0.25	9.9	Ø.25	0.05
11		SEAL COAT	0.30	9.5	Ø.3Ø	Ø.86
12		SEAL COAT	9.19	9.9	Ø.19	0.04
14		LIGHTDUTY RECONSTRUCTION	4.76	Ø.9	4.76	4.76
15		LIGHTDUTY RECONSTRUCTION	5.31	9.0	5.31	5.31

OVERHEAD BUDGET REQUIREMENT IN PERCENTS

SEGNENT	NO.	NAME	STRATEGY	OVERHEAD BUDGET
1		US 79	THIN OVERLAY	9.96
3		US 199	THIN OVERLAY	7.24
4		SH OSR	LIGHTDUTY RECONSTRUCTION	11.00
5		SH OSR	LIGHTDUTY RECONSTRUCTION	3.95
7		FM 1791	LIGHTDUTY RECONSTRUCTION	21.37
8		FM2821	LIGHTDUTY RECONSTRUCTION	6.30
9		SH 39	SEAL COAT	3.42
11		US 29#	SEAL COAT	4.18
12		US 79	SEAL COAT	2.61
14		SH OSR	LIGHTDUTY RECONSTRUCTION	10.48
15		FN 908	LIGHTDUTY RECONSTRUCTION	11.69

RESOURCE UTILIZATION

CONSTRAINT	PERCENT
	UTILIZATION
SURFACING AGGREGATE	51.74
ASPHALT CEMENT	15.71
AGGREGATE(ITEN 340:)	2.54
AGGREGATE ITEN 290	0.0
GRADER	28.20
PICKUP	29.76
LOADER	29.71
TRUCK	62.72
ROLLER	30.93
SPREADER	29.71
LAYDOWN MACHINE	2.51
ASPHALT DISTRIBUTOR	30.97
GRADER OPERATOR	28.20
LOADER OPERATOR	28.2 <i>0</i> 29.71
TRUCK OPERATOR	62.72
ROLLER OPERATOR	30.93
SPREADER OPERATOR	30.16
LAYDOWN NC. OPERATOR	2.51
ASPHALTDIS. OPERATOR	3#.79
GENERAL LABOR	38.34
OVERHEAD BUDGET	91.24
RESULTS OF UP	DATE ROUTINE
RESOURCE UTILI	ZATION

CONSTRAINT PERCENT UTILIZATION

	SURFACING AGGREGATE	5	.74
	ASPHALT CEMENT	1	5.71
	AGGREGATE(ITEN 340:)	:	2.54
	AGGREGATE ITEN 290	1	ð.Ø
	GRADER	28	3.20
	PICKUP	2	7.76
	LUADER		7.71
	TRUCK		2.72
	ROLLER	36	9.93
	SPREADER	29	7.71
	LAYDOWN NACHINE		2.51
	ASPHALT DISTRIBUTOR	36	9.7
	GRADER OPERATOR	28	3.29
	LOADER OPERATOR	29	7.71
	TRUCK OPERATOR	6	.72
	ROLLER OPERATOR	3	.93
	SPREADER OPERATOR		9.16
	LAYDOWN MC. OPERATOR		2.51
	ASPHALTDIS, OPERATOR	-	.79
	GENERAL LABOR		.34
HIGHWAY SEGMENT NO.	2 HAS BEEN ABDED		
THE OVERHEAD BUDGET UT			97.3861
ADDITIONAL BENEFIT =		TOTAL	BENEFIT
THEFT ANTICE ACTELLY		I U I ML	PLINEF II.

TOTAL BENEFIT = 725931.312

THE STRATEGY USED WAS 2

NO HORE SECTIONS CAN BE ADDED

CONNAND?

APPENDIX E

COMPUTER PROGRAM

1.	//TRYIT JOB (W106,006A,S10,005,AM),'KNIGHTMOD'
2.	/*JOBPARN R=290,K=0
3.	/*LEVEL 2
4.	// EXEC FORTX, REGION=290K
5.	//SYSPRT DD SYSOUT=A,DCB=(RECFN=FB)
6.	//SOURCE DD *
7.	C
8.	C C
9.	C
10.	C PROGRAM FOR REHABILITATION AND
11.	C MAINTENANCE OF HIGHWAY SYSTEM
	C AUTHORS: NAZIN UDDIN AHMED
12.	-
13.	C R. L. LYTTON
14.	C W. D. YANDELL
	-
15.	-
16.	C 5.Y.WU
17.	C
18.	C
19.	C
20.	C THIS PROGRAM IS BASED ON AN
21.	C Ø-1 INTEGER LINEAR PROGRAMMING
22.	C ALGORITHN TO SOLVE FOR THE
23.	
24.	C FOR A GIVEN HIGHWAY SYSTEM.
25.	C
26.	C
.27.	C
28.	C
29.	C TEXAS TRANSPORTATION INSTITUTE
30:	C TEXAS A AND M UNIVERSITY
31.	C COLLEGE STATION, TEXAS 77843
32.	C
33.	C
	Č
34.	
35.	C DATE WRITTEN: FEBRUARY,1978
36.	С
37.	C
38.	C
39.	C THIS PROGRAM WAS WRITTEN IN
40.	C FORTRAN IV CONPUTER LANGUAGE
	C USING THE WATFIV COMPILER,
41.	
42.	C THEN CONVERTED TO IBN'S
43.	C FORTRAN H EXTENDED COMPILER
44.	C IN FEBRUARY, 1979.
	•
45.	. C
46.	С
47.	Ċ
48.	C
49.	C INSTALLATION: AMDHAL 470/V6
50.	C
51.	C
52.	С
53.	Ċ
54.	C
55.	C
56.	C NAIN PROGRAM
57.	C
58.	с С
59.	Č
69.	C
61.	REAL DIST(10,11),P(10,11,20),R(20,11),
62.	1 RHIN(11,20,2),RX(200),JP(200)
63.	REAL L1(200), L2(200),XL(200)

64.		INTEGER T, TDATA, X(20 , 10), G, F, Q, JJ(20 , 10), A(20 , 10
65.		1),INF(200),HYTYP(20)
66.	14	DINENSION SG(10), SGR(10, 10), EF(10), EFR(10, 10)
67.		1,HQ(10),HQR(10,10),CR(10),CO(20,10),IP(200),
68.		2 S(31), PSBR(20,10,10), PHBR(20,10,10),
69.		4 PEBR(20,10,10),PCR(20,10),WW(20)
70.		DIMENSION CONSTR(30) , PCON(30), JFLAG(200)
71.		DIMENSION RMAX(11)
72.		DIMENSION TRAF(20),ENVIR(20)
73.		DIMENSION PAR4(50), PAR5(50)
74.		INTEGER TITLE(20)
75.		INTEGER PAR1(50,2),PAR2(50,3),PAR3(50,2)
		INTEGER STRAT(15,6), DISTR(15,5)
76.		
77.		INTEGER HAT(10,5), EQUP(10,5), MANP(10,5)
78.		INTEGER OVHD(5)
79.		CONMON /AREA1/DIST, P, R, RMIN, WW , TRAF, ENVIR
80.		COMMON /AREA2/ NH,NS,T,ND ,NHTYP
81.		COMMON /IEC1/ IECK
82.		COMMON /AREA3/X
83.		CONKON /AREA4/ A
84.		CONMON /AREA5/ INF
85.		CONHON /AREA6/ HYTYP
86.		COMMON /TOY2/SG,HQ,EF,CC
87.		COMMON /TOY3/ G,F,Q
88.		CONMON/TOY4/JJ,CO
89.		COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP
90.		COMMON /DATCK1/ L1,L2
91.	÷	COMMON /DATCK2/ SGR,EFR,HQR ,CR
92.		CONMON /KNPSK1/ CONSTR,XSUN
93.		COMMON /DATIN1/ PAR1,PAR2
94.		COMMON /DATIN2/PAR3,PAR4,PAR5
95.		COMMON /DATIN3/ STRAT,DISTR
96.		COMMON /DATINA/ MAT, EQUP, MANP, OVHD
97.		COMMON /DATINS/ TITLE
98.		COMMON /DATING/ RHAX
99.		COMMON /SERCH1/ PCON
100.		COMMON /SERCH2/ XXSUM, JFLAG
101.		COMMON /ADDON/ TDATA
102.	С	
103.	· č	
104.	C	
		CALL INPUT(TDATA)
105.	° c	VALE 111 VI VI VI VI VI VI VI VI VI VI VI VI VI
106.	C	
107.	С	
108.	· C	
159.	_	IF(IECK. EQ. 1) CALL ECDCK
119.	C	
111.	С	
112.	C	
113.		CALL CALC
114.	С	
115.	C	
116.	C	
117.	-	STOP
118.		END
119.	C	
120	C	
1417.	· •	

121.	C	
122.	C	
123.	С	
124.	С	
125.	Ċ	
126.	С	
127.	C	*******
128.	. Č	*
129.	Č	* SUBROUTINE INPUT *
130.	C	* SOBRODITAC TREVI *
130.	C	
	-	*******
132.	C	
133.	C	
134.	С	
135.		SUBROUTINE INPUT(TDATA)
136.	С	
137.	C	
138.	C	
139.	С.	THE PURPOSE OF THIS SUBROUTINE IS TO READ
140.	C	THE INPUT DATA AND PRINT THEM OUT.
141.	C	
142.	C	
143.	C	
144.	С	INPUT VARIABLE NAMES
145.	C	nille and and and and and and and and and and
146.	C	
147.	C	
148.	C	TITLE= NAME OF THE PROBLEM
149.	C	NH=NUMBER OF HIGHWAY SEGMENTS
150.	C	NS=NUMBER OF STRATEGIES
151.	C	T=NUMBER OF TIME PERIOD IN ANALYSIS
152.	C	TDATA=NUMBER OF YEARS ON INPUT DATA
153.	č	ND=NUMBER OF DISTRESS TYPES
154.	č	NHTYP=NUMBER OF HIGHWAY TYPES
155.	Č	G=NUMBER OF MATERIAL TYPES
156.	-0	
157.	C	FENUMBER OF EQUIPMENT TYPES
		Q=NUNBER OF NANPOWER TYPES
158.	C	
159.	C	IECK= AN INDICATOR FOR CALLING THE
160.	C	SUBROUTINE ECOCK. IF IECK=1, THE
161.	C	SUBROUTINE ECOCK WILL BE EXECUTED AND
162.	C	THE OBJECTIVE FUNCTION COEFFICIENTS AND
163.	C	THE CONSTRAINT COEFFICICIENTS WILL BE
164.	C	PRINTED AS IN A REGULAR INTEGER
165.	C	PROGRAMMING PROBLEM
166.	С	
167.	С	L1(I)=LENGTH OF ITH HIGHWAY SEGMENT
168.	C	IN HILES
169.	С	L2(I)=WIDTH OF ITH HIGHWAY SEGMENT
170.	Ĉ	IN FEET
171.	Č.	HYTYP(I)=TYPE OF ITH HIGHWAY SEGMENT
172.	Č	TRAF(I)=TRAFFIC INDEX OF ITH
173.	Ċ	HIGHWAY SEGNENT
173.		
	C	ENVIR(I)=ENVIRONMENTAL INDEX OF ITH
175.	C	HIGHWAY SEGMENT
176.	С (PAR1(I)=NAME OF ITH HIGHWAY SEGMENT
177.	C	PAR2(I)=COUNTY NAME OF THE ITH
178.	C	HIGHWAY SEGMENT
179.	C	PAR3(I)= CONTROL SECTION NAME OF THE ITH
189.	. C	HIGHWAY SEGMENT
181.	.C	

182.	C	ITH HIGHWAY SEGMENT
183.	C	PAR5(I)=ENDING MILEPOINT OF THE ITH
184.	C	HIGHWAY SEGMENT
185.	С	STRAT(I)=NAME OF THE ITH STRATEGY
186.	С	DISTR(I)=NAME OF THE ITH DISTRESS TYPE
187.	С	MAT(I)=NAME OF THE ITH MATERIAL TYPE
188.	С	EQUP(I)=NAME OF THE ITH EQUIPMENT TYPE
189.	С	MANP(I)=NAME OF THE ITH MANPOWER TYPE
190.	С	OVHD=OVERHEAD BUDGET NAME
191.	С	SG(I)=AMOUNT OF MATERIAL TYPE I AVAILABLE
192.	С	EF(I)=AMOUNT OF EQUIPHENT TYPE I AVAILABLE
193.	С	HQ(I)=ANOUNT OF MANPOWER TYPE I AVAILABLE
194.	Č	CR(I)=OVER HEAD BUDGET REQUIREMENT
195.	С	IF ITH STRATEGY IS APPLIED
196.	С	SGR(J,L)=LTH MATERIAL REQUIREMENT IN
197.	Ĉ	TONS PER FT.MILE IF JTH STRATEGY
198.	C `	IS APPLIED
199.	С	EFR(J,L)=LTH EQUIPMENT REUIREMENT IN
		•
200.	С	EQUIPMENT-DAYS PER FT.MILE IF
201.	С	JTH STRATEGY IS APPLIED
202.	C	HQR(J,L)=LTH MANPOWER REQUIREMENT
203.	C	IN MAN-DAYS PER FT.MILE IF
204.	3	JTH STRATEGY IS APPLIED
205.	C	DIST(J,K)=POTENTIAL GAINS OF PAVEMENT
206.	C	RATING FOR KTH DISTRESS TYPE
207.	C	IF JTH STRATEGY IS APPLIED
208.	С	R(I,K)=CURRENT PAVEMENT RATING
		•
209.	C	FOR ITH HIGHWAY SEGMENT IF KTH DISTRESS
210	С	IS PRESENT
211.	С	RMIN(K,L,II)=MINIMUM PAVEMENT RATING
212.	С	REQIUREMENT FOR LTH TIME PERIOD AND
213.	C	KTH DISTRESS TYPE IF THE HIGHWAY SEGMENT
214.	C	IS OF TYPE II
215.	C	P(J,K,L)=PROBABILITY OF SURVIVAL FOR LTH
216.	C	TIME PERIOD IF KTH DISTRESS TYPE IS
217.	С	PRESENT AND STRATEGY J IS APPLIED
218.	C	WW(I)=OVERALL PAVEMENT RATING REQUIRMENT
219.	C	OF THE ITH HIGHWAY TYPE
220.	С	RNAX(K)=NAXIMUM POSSIBLE RATING
		· · · · · · · · · · · · · · · · · · ·
221.	C	FOR KTH DISTRESS TYPE
222.	C	CC=TOTAL OVERHEAD BUDGET AVAILABLE
223.	C	
224.	С	
225.	С	
	Ĉ	
226.		
227.	C	
228.		REAL DIST(10,11),P(10,11,20),R(20,11),
229.		1 RMIN(11,20,2)
23Ø.		REAL L1(200),L2(200)
231.		INTEGER T, TDATA, G, F, Q, HYTYP(20), TITLE(20)
232.		DINENSION SG(10), SGR(10,10), EF(10), EFR(10,10)
233.		1,HQ(10),HQR(10,10),CR(10),VW(20),RMAX(11)
		DIMENSION TRAF(20), ENVIR(20)
234.		
235.		DIMENSION PAR4(50),PAR5(50)
236.		INTEGER PAR1(50,2),PAR2(50,3),PAR3(50,2)
237.		INTEGER STRAT(15,6),DISTR(15,5)
238.		INTEGER MAT(10,5),EQUP(10,5),MANP(10,5)
239.		INTEGER OVHD(5)
-		
24Ø.		COMMON /AREA1/ DIST,P,R,RMIN,WW,TRAF,ENVIR

241.	COMMON /AREA2/ NH,NS,T,ND,NHTYP
242.	CONMON /IEC1/ IECK
243.	COMMON /AREA6/ HYTYP
244.	COMMON /TOY2/ SG,HQ,EF,CC
245.	COMMON /TOY3/ G,F,Q
246.	COMMON /DATCK1/ L1,L2
247. 248.	COMMON /DATCK2/ SGR,EFR,HQR,CR COMMON /DATIN1/ PAR1,PAR2
240.	COMMON /DATIN2/ PAR3,PAR4,PAR5
250.	COMMON /DATIN3/ STRAT,DISTR
251.	COMMON /DATINA/ MAT,EQUP,MANP,OVHD
252.	COMMON /DATINS/ TITLE
253.	CONMON / DATING/ RHAX
254.	
255.	
256.	C
257.	č
258.	Ŭ.
259.	READ (5,106)(TITLE(I),I=1,20)
269.	106 FORMAT(20A4)
261.	READ(5,101) NH,NS,TDATA,T,ND,NHTYP,G,F,Q ,IECK
262.	101 FORMAT(1515)
263.	WRITE(6,700) (TITLE(I),I=1,20)
264.	700 FORNAT(11, T30,20A4,////)
265.	WRITE(6,800)
266.	800 FORMAT(29X, THE FOLLOWING REPRESENTS THE INPUT
267.	1 , T FOR THE PROBLEM',//)
268.	WRITE(6,801) NH,NS,T,ND,NHTYP,IECK,TDATA
269.	801 FORMAT(15X, NO. OF HIGHWAY SEGMENTS=", I5,5X,
27ø.	1 'NO. OF STRATEGIES=',14,3X,'NO. OF ANALYSIS'
271.	2, PERIOD=', I4, /, 15X, 'NO. OF DISTRESS TYPES='
272.	3,I4,5X,′NO. OF HIGHWAY TYPES=′,I3,∕,
273.	4 15X, TIECK=T, I4, 7, 15X, TYEARS OF INPUT DATA=T, I4, 7)
274.	WRITE(6,802) G,F,Q
275.	802 FORMAT(15X, NO. OF MATERIAL TYPES=',13,5X,
276.	1'NO. OF EQUIPMENT TYPES=',13,5X,'NO. OF ',
277.	2 'MANPOWER TYPES= (,I3,//)
278.	C
279.	C
28Ø.	C
281.	C

282.	C	
283.	Ĉ	
284.	-	DO 91 I=1,NH
285.		READ(5,103) L1(I),L2(I),HYTYP(I),TRAF(I),
286.		1 ENVIR(I), (PAR1(I,J), J=1,2), (PAR2(I,J), J=1,3),
287.		3 (PAR3(I,J),J=1,2),PAR4(I),
288.		2 PAR5(I)
289.		91 CONTINUE
290.		103 FORMAT(2F8.3,14,2F8.3,2A4,3A4,2A4,2F8.3)
291.		WRITE(6,803)
292.		803 FORMAT(2X, 'SEGMENT', 3X, 'TYPE', 4X, 'HIGHWAY', 5X
293.		1, 'COUNTY', 8X, 'CONTROL', 7X, 'LENGTH', 5X, 'WIDTH'
294.		2, 5X, 'BEGINNING', 5X, 'ENDING', 5X, 'TRAFFIC', 5X,
295.		4'ENVIRONMENTAL',/,2X, NUMBER', T47, SECTION',
296.		5T81, 'MILE POINT', T93, 'NILE POINT', T106, 'INDE'
297.		6, X', 8X, 'INDEX',//)
298.		DO 1 I=1.NH
299.		WRITE(6,804) I,HYTYP(I),(PAR1(I,J),J=1,2),
300.		1 (PAR2(I,J),J=1,3),(PAR3(I,J),J=1,2),L1(I),L2(I),
301.		2 PAR4(I), PAR5(I), TRAF(I), ENVIR(I)
302.		1 CONTINUE
303.		804 FORMAT(3X, I3, 6X, I3, 5X, 2A4, 4X, 3A4, 1X, 2A4, 4X,
304.		1 F8.3,4X,F8.3,2X,F9.3,4X,F8.3,T106,F6.3,
305.		2 T120,F6.3)
306.	С	
307.	č	
308.	Ĉ	
309.	Ĉ	
310.	c	·
311	Č	
312.		READ(5,104) ((STRAT(I,J),J=1,6),I=1,NS)
313.		104 FORMAT(18A4)
314.		WRITE(6,701)
315.		701 FORMAT('1', T50,'STRATEGY N0.',5X,'NAME',//
316.		1)
317.		DO 21 IK=1,NS
318.		WRITE(6,702) IK,(STRAT(IK,J),J=1,6)
319.		21 CONTINUE
320.		702 FORMAT (53X,14,7X,6A4)
329.	r	/ #Z TOMME VJAN # T#/ N#OMT/
321.	C C	
	с С	
323.		
324.	C	

325.	С
326.	C
	-
327.	READ(5,105) ((DISTR(I,J),J=1,5),I=1,ND)
328.	105 FORMAT(20A4)
329.	WRITE(6,703)
330.	703 FORMAT(////,49X, DISTRESS TYPE',8X, MAME',//
331.	1)
332.	DO 22 IJ=1,ND
333.	WRITE(6,704) IJ.(DISTR(IJ.K).K=1.5)
334.	22 CONTINUE
335.	704 FORMAT(55X,I3, 6X,5A4)
336.	C
337.	C
338.	Ċ
339.	Ū.
340.	Č .
341.	Ċ
342	READ(5,105) ((MAT(I.J).J=1.5).I=1.G)
343.	
344.	READ(5,108)(SG(I),I=1,G)
345.	$\frac{11}{100} \frac{11}{100} = 1.000$
345.	11 READ(5,108)(SGR(J,L),L=1,G)
	107 FORMAT(8F10.3)
347.	108 FORMAT(8F10.3)
348.	WRITE(6,705)
349.	205 FORMAT(11, T50, MATERIAL REQUIREMENT -,
350.	1 AND AVAILABILITY',///,50X, MATERIAL TYPE',
351.	2 8X, (NAME(,//)
352.	D0 23 IL=1,G
353.	WRITE(6,704)IL,(MAT(IL,K),K=1,5)
354.	23 CONTINUE
355.	WRITE(6,805) (I,I=1,G)
356.	805 FORMAT(////,25%,/WATERIAL TYPE/,7/,5%,
357.	1'STRATEGY',5X,10(15,5X),//)
358.	WRITE(6,599)
359.	599 FORWAT(/)
36Ø.	DO 2 J=1,NS
361.	WRITE(6,806) J,(SGR(J,L),L=1,G)
362.	2 CONTINUE
363.	806 FORMAT(8X,12,8X,10(F7.3,3X))
364.	WRITE(6.807)
365.	807 FORMAT(18X,
366.	1 /
367.	2 '
368.	WRITE(6,808) (SG(I),I=1,G)
369.	808 FORMAT(4X, AVAILABLE', 4X, 10(F8.3,2X))
379.	C
371.	Ω.
3/2.	
------	--
373.	C
374.	C
375.	C
376.	READ(5,105) ((EQUP(I,J),J=1,5),I=1,F)
377.	READ(5,107)(EF(I),I=1,F)
378.	DO 860 J=1.NS
379.	860 READ(5,108)(EFR(J,L),L=1,F)
380.	WRITE(6,706)
381.	706 FORMAT("1",48X, "EQUIPMENT REQUIREMENT ANI
382.	1 "AVAILABILITY",////,50%, EQUIPMENT TYPE
383.	2 8X, NAME (,//)
384.	DO 24 IH=1,F
385.	WRITE(6,704) IH,(EQUP(IH,K),K=1,5)
386.	24 CONTINUE
387.	C
388.	C
389.	C
390.	C
391.	C
392.	C
393.	WRITE(6,809) (I,I=1,F)
394.	809 FORMAT(////,42X, EQUIPMENT TYPE',//,5X,
395.	1 'STRATEGY',5X,10(15,5X),//)
396.	WRITE(6,599)
397.	DO 3 J=1,NS
398.	WRITE(6,806) J,(EFR(J,L),L=1,F)
399.	3 CONTINUE
400.	WRITE(6,807)
401.	WRITE(6,808) (EF(I),I=1,F)
402.	С
403.	C
404.	C
405.	C

۶,

	_
406.	C
407.	C
408.	READ(5,105) ((HANP(I,J),J=1,5),I=1,Q)
409.	READ(5,107)(HQ(I),I=1,Q)
410.	DO 861 J=1,NS
411.	861 READ(5,198)(HQR(J,L),L=1,Q)
412.	
	WRITE(6,707)
413.	707 FORMAT(11,50X, MANPOWER REQUIREMENT AND 1,
414.	1 'AVAILABILITY',///,50X,'MANPOWER TYPE',8X,
415.	2 'NAME',//)
416.	DO 25 IM=1,0
417.	WRITE(6,704) IM, (MANP(IM,K),K=1,5)
418.	25 CONTINUE
419.	WRITE(6,810) (I,I=1,Q)
420.	
	810 FORMAT(40X, 'MANPOWER TYPE',//,5X, 'STRATEGY',
421.	1 5X, 1Ø(I5, 5X),//)
422.	WRITE(6,599)
423.	DO 4 J=1,NS
424.	WRITE(6,806)J,(HQR(J,L),L=1,Q)
425.	4 CONTINUE
426.	WRITE(6,807)
427.	WRITE(6,808) (HQ(I),I=1,Q)
428.	
429.	C
43Ø.	C
431.	C
432.	C
433.	С
434.	READ(5,105) (OVHD(I),I=1,5)
435.	READ(5,107)(CR(I),I=1,NS)
436.	READ (5,109) CC
437.	· · · · · · · · · · · · · · · · · · ·
	109 FORMAT (F20.2)
438.	WRITE(6,811)
439.	811 FORNAT('1',30X,'OVERHEAD BUDGET REQUIREMENT',
440.	1 ″ AND AVAILABILITY′,///,36X,
441.	1 STRATEGY , 20X, REQUIREMENT , //)
442.	DO 5 J=1,NS
443.	WRITE(6,828) (STRAT(J,K),K=1,6) ,CR(J)
444.	828 FORMAT(32X,6A4,8X,F8.3)
445.	5 CONTINUE
446.	
447.	WRITE($6,812$) CC P12 EDEMAT(4 , Z2Y (AUATLABLE) TED E14 (1)
	812 FORMAT(// ,32X, AVAILABLE', T58, F16.1)
448.	
449.	C .
450.	C
451.	C
452.	C
453.	C

458.	KEAU(5,10/) (RMAX(K),K=T,ND)
459.	WRITE(6,813) (1,1=1,ND)
469.	813 FORMAT('1', 29X,'GAIN OF RATING MATRIX',//,
461.	1 34X, DISTRESS TYPE ///,8X, STRATEGY /,5X,
462.	2 1Ø(I3,6X),//)
463.	WRITE(6,599)
464.	D0 6 J=1,NS
465.	WRITE(6,814) J,(DIST(J,K),K=1,ND)
466.	6 CONTINUE
467.	814 FORMAT(8X,14,7X,10(F7.3,2X))
468.	WRITE(6,713)
469.	713 FORMAT (/////,25X, MAXIMUM GAIN OF /,
470.	1 'RATING',//,20X, DISTRESS TYPE',5X,
471.	2 'GAIN OF RATING',/)
472.	DO 61 II=1,ND
473.	61 WRITE(6,714) II,RMAX(II)
474.	714 FORMAT(25X,13,11X,F10.3)
475.	C
476.	C
477.	C
478.	DO 88 I=1,NH
479.	88 READ(5,107)(R(I,K),K=1,ND)
480.	WRITE(6,815) (I,I=1,ND)
481.	815 FORMAT('1',30X,'CURRENT RATING ',
482.	\$/,20X, FOR DIFFERENT HIGHWAY SEGMENTS AND ',
483.	2'DISTRESS TYPES',//,33X, DISTRESS TYPE',//,5X
484.	3 , 'SEGMENT NUMBER', 2X, 10(13, 6X), //)
485.	WRITE(6,599)
486.	DO 7 I=1,NH
487.	WRITE(6,814)I,(R(I,K),K=1,ND)
488.	7 CONTINUE
489.	C

and a start of the

49Ø.	C
491.	C
492.	DO 13 II =1,NHTYP
493.	DO 13 K=1,ND
494.	READ(5,107) (RMIN(K,L,II),L=1,TDATA)
495.	13 CONTINUE
496.	WRITE(6,816)
497.	816 FORMAT(*14,25X,4MINIMUM PAVE4,
498.	MENT RATING REQUIREMENT FOR DIFFERENT ',
499.	2 'HIGHWAY TYPES',//)
500.	DO 8 II=1,NHTYP
501.	WRITE(6,817) II
502.	817 FORMAT(//,48X, HIGHWAY TYPE=',13,//)
503.	WRITE (6,818) (K,K=1,TDATA)
504.	818 FORMAT(50X, TIME PERIOD', /, 5X, DISTRESS TYPE
505.	1 ,I6,9I9,(/17X,1ØI9))
506.	DO 8 K=1,ND
507.	WRITE(6,8180) K, (RMIN(K,L,II),L=1,TDATA)
508.	8180 FDRMAT(/,8X,14,5X,10F9.3,(/19X,10F9.3))
509.	8 CONTINUE
510.	C
511.	Ĉ
512.	C
513.	Č
514.	DO 14 K=1,ND
515.	DO 14 $J=1,NS$
516.	14 READ(5,107)(P(J,K,L),L=1,TDATA)
517.	READ(5,107)(WW(I),I=1,NHTYP)
518.	WRITE(6,819)
519.	•
520.	819 FORMAT(11,10X , SURVIVOR PROBABILITIES FOR
521.	1 , DIFFERENT MAINTENANCE STRATEGIES AND ',
522.	2 DISTRESS TYPES',///)
523.	DO 9 K=1,ND
	WRITE (6,820) (DISTR(K,J),J=1,5), (I,I=1,TDATA)
524.	820 FORMAT(//,43X,5A4,//,43X, TIME PERIOD',/,2X,
525.	1 (STRATEGY', 15, 919, (/9X, 1019))
526.	DO 9 J=1,NS
527.	WRITE(6,821) J, (P(J,K,L),L=1,TDATA)
528.	821 FORMAT(/,5X,I3,10F9.3,(/10X,10F9.3))
529.	9 CONTINUE
530.	WRITE(6,822)
531.	822 FORMAT(/////,5X, OVERALL PAVEMENT RATING ',
532.	1 'REQUIREMENT',// ,8X,'HIGHWAY TYPE',4X,
533.	2 (RATING(,/)
534.	DO 10 I=1,NHTYP
535.	WRITE(6,823) I,WW(I)
536.	10 CONTINUE
537.	823 FORMAT(10X,15,6X,F8.2)
538.	RETURN
539.	END
540.	
541.	С
542.	C

	543.	C
	544.	C
	545.	С
	546.	C
	547.	C
	548.	C ************************************
	549.	C * *
	550.	C * SUBROUTINE ECOCK *
	551.	C * *
	552.	- [************************************
	553.	Ū.
	554.	C
	555.	
	556.	SUBROUTINE ECOCK
	557.	С
	558.	С
	559.	C
	560.	C
	561.	C THIS SUBROUTINE PROVIDES THE PRINTOUT OF
	562.	C THE OBJECTIVE FUNCTION COEFFICIENTS AND
	563.	C THE CONSTRAINT COEFFICIENTS.
	564.	
	565.	C
	566.	С
	567.	DIMENSION SG(10),EF(10),HQ(10),CO(20,10),
	568.	1 S(31), IP(200)
	569.	DIMENSION PSBR(20,10,10),PEBR(20,10,10),
	570.	1 PHBR(20,10,10),PCR(20,10)
	571.	INTEGER X(20,10),T,G,F,Q,JJ(20,10)
	572.	COMMON /AREA2/NH.NS.T.ND ,NHTYP
	573.	COMMON /AREA3/X
	574.	COMMON /TOY2/SG,HQ,EF,CC
	575.	COMMON /TOY3/G.F.Q
	576.	COMMON /TOY4/ JJ,CO
	577.	COMMON/CHCK1/PSBR, PHBR, PEBR, PCR, S, IP
	578.	DO 4 I=1.NH
	579.	DO 4 J=1,NS
	58Ø.	IF(X(I,J).EQ.1) GO TO 4
	581.	DO 1 II=1,6
	582.	$1 \text{ PSBR}(I, J, II) = \emptyset.$
	583.	DO 2 II=1,F
	584.	2 PEBR(I, J, II) = 0.
	585.	DO 3 II=1,Q
•	586.	$3 \text{ PHBR}(I, J, II) = \emptyset$.
	587.	$PCR(I,J)=\emptyset$.
	588.	CO(I,J) = 0.
	589.	4 CONTINUE
	59Ø.	WRITE(6,1001) (SG(II),II=1,G)
	591.	1001 FORMAT(11,50X, THESE ARE THE VALUES OF SG',/
	592.	1 ,5X,10(2X,F10.2),//)
	593.	WRITE(6.1002) (EF(II),II=1,F)
		9715 a line 5 W B 5 Ar Ar Ar Ar - 5 Web 5 A A A 7 B A A 7 B A A 7 B 7 F

594.	1002 FORMAT(5X, THESE ARE THE VALUES OF EF ,/,5X,
595.	1 1Ø(2X,F10.2),//)
596.	WRITE(6,1003) (HQ(II),II=1,F)
597.	1003 FORMAT(5X, THESE ARE THE VALUES OF HQ ,/,5X,
598.	1 10(2X,F10.2),//)
599.	WRITE(6,1004) CC
600.	1004 FORMAT(20X, THE VALUE OF CC IS ',5X,F16.2,//)
601.	DO 5 II=1,G
602.	WRITE(6,1005) II
603.	<pre>1005 FORMAT(55X, "MATERIAL TYPE", 14,//)</pre>
604.	DO 5 I=1,NH
605.	WRITE(6,1006) I
696.	1006 FORMAT(15X, HIGHWAY SEGMENT , 14)
607.	WRITE(6,1007)(PSBR(I,J,II),J=1,NS)
608.	1007 FORMAT(5X,10(2X,F10.2))
609.	5 CONTINUE
619.	DD 6 II=1,F
611.	WRITE(6,1008) II
612.	1008 FORMAT(55X, 'EQUIPMENT TYPE', 14,//)
613.	DO 6 I=1,NH
614.	WRITE(6,1011) I
615.	WRITE(6,1009) (PEBR(I,J,II),J=1,NS)
616.	1009 FORMAT(5X,10(2X,F10.2))
617.	6 CONTINUE
618.	DO 7 II=1,Q
619.	WRITE(6,1010) II
620.	1010 FORMAT(55X, MANPOWER TYPE', I4,//)
621.	DO 7 I=1,NH
622.	WRITE(6,1011) I
623.	1011 FORMAT(15X, "HIGHWAY SEGMENT", I4)
624.	WRITE(6,1009) (PHBR(I,J,II),J=1,NS)
625.	7 CONTINUE
626.	WRITE(6,1012)
627.	1012 FORMAT(5X, THE VALUES OF BUDGET CONSTRAINT',
628.	1 ' COEFFICIENTS ARE ',//)
629.	DO 8 I=1,NH
630.	WRITE(6,1009) (PCR(I,J),J=1,NS)
631.	8 CONTINUE
632.	WRITE(6,1014)
633.	1014 FORMAT(11,40X, THES ARE THE OBJECTIVE ',
634.	1 'FUNCTION COEFFICIENTS',//)
635.	DO 9 I=1,NH
636.	WRITE(6,1015) (CO(I,J),J=1,NS)
637.	1015 FORMAT(5X,10(2X,F10.1))
638.	9 CONTINUE
639.	RETURN
640.	END
641.	C
642.	C

643.	С	
644.	C	********
645.	C	* *
646.	C	* SUBROUTINE SORT *
647.	С	* *
648.	C	*******
649.	C	
650.	C	
651.	C	
652.	С	
653.		SUBROUTINE SORT(XG,NN,KP)
654.	C	
655.	С	
656.	С	THIS SUBROUTINE SORTS AN ARRAY IN
657.	C.	ASCENDING ORDER.
658.	С	
659.	C	
660.		INTEGER START
661.		DIMENSION XG(200),KP(200)
662.	CCCC	ARRANGE FOR (NN-1) COMPARISON SETS
663.		LIM=NN-1
664.		DO 4 I=1,LIM
665.	C	
666.	C	
667.	C	ARRANGE STARTING POINT FOR EACH SET.
668.	C	
669.	C	
670.		START=I+1
671.	С	
672.	С	
673.	С	BEGIN COMPARISON SET
674.	С	
675.	C	
676.	- · ·	DO 4 J=START,NN
677.		IF(XG(I)-XG(J))4,4,2
678.	С	at the ar ever surving ign
679.	C	
68Ø.	C	INTERCHANGE POSITION IN STORAGE
681.	C	IRTERCHARDE FOSTITOR IN CROKIDE
682.	C	
		SAVE=XG(I)
683.	2	
684.		XG(I) = XG(J)
685.		XG(J)=SAVE
686.		ISAVE=KP(I)
687.		KP(I) = KP(J)
. 688 .	-	KP(J)=ISAVE
689.	4	CONTINUE
690.		RETURN
691.		END
692.	С	
693.	С	

		•
694.	C	
695.	C	*****
696.	C	* *
697.	C	* SUBROUTINE SORT1 *
698.	Č	* * *
699.	C	·· ***********************************

700.	C	
701.	С	
702.	C	
703.		SUBROUTINE SORTI(YG,NX,KX)
704.	C	
205.	0	
706.	C	THIS SUBROUTINE SORTS AN ARRAY IN
707.	č	DESCENDING ORDER.
708.	Č	DESCRIPTIO ONDER.
700.	C	
710.	C	
711.		INTEGER BEGIN
712.		DIMENSION YG(NX),KX(NX)
713.	C	
714.	С	
215.	С	ARRANGE FOR (NX-1) COMPARISON SETS
716.	C	
717.	С	
218.	~	LIMT=NX-1
719.		
	_	DO 4 I=1,LINT
720.	C	
721.	С	
722.	С	ARRANGE STARTING POINT FOR EACH SET
723.	C	
724.	С	· · · ·
725.		BEGIN=I+1
726.	С	
727.	č	
728.	C	BEGIN COMPARISON SET
729.	C	
73Ø.	С	
731.		DO 4 J=BEGIN,NX
732.		IF(YG(I)-YG(J))2,2,4
733.	С	
734.	С	
735.	Ĉ	INTERCHANGE POSITION IN STORAGE
736.	č	THERONAUC FOOTITOR IN STOCADE
737.	Ċ	
	ι.	
738.		2 SAVE=YG(I)
739.		YG(I)=YG(J)
740.		YG(J)=SAVE
741.		ISAVE=KX(I)
742.		KX(I) = KX(J)
743.		KX(J)=ISAVE
744.		4 CONTINUE
745.		RETURN
746.		
	~	END
747.	C	
748.	C	
		•

	749.	С	
	750.	С	*****
	751.	C	* *
	752.	C	* SUBROUTINE MINDIS *
	753.	Ċ	* *
	754.	C	*****
	755.	Ċ	
	756.	č	
	757.	č	
	758.		SUBROUTINE MINDIS
	759.	C	SERVETIRE HIRDIS
	760.	č	· · · ·
	761.	C	
		C	THIS SUBROUTINE FINDS THE FEASIBLE
	762.		
	763.	C	STRATEGIES FOR ALL HIGHWAY SEGMENTS
	764.	C	ACCORDING TO THE WINIMUM PAVEMENT RATING
	765.	C	REQUIREMENT CONSTRAINT.
·	766.	, C	
	767.	C	
	768.		REAL DIST(10,11),P(10,11,20),R(20 ,11),
	769.		1 RMIN(11,20,2),WW(20)
	77Ø.		INTEGER T,X(20,10),A(20,10),HYTYP(20)
	771.		DIMENSION TRAF(20),ENVIR(20)
	772.		CONMON /AREA1/DIST,P,R,RMIN,WW ,TRAF,ENVIR
	773.		COMMON /AREA2/ NH,NS,T,ND ,NHTYP
	774.		CONMON /AREA3/X
	775.		COMMON /AREA4/ A
	776.		COMMON /AREA6/ HYTYP
	777.	С	
	778.	ĉ	
	779.		DO 4 I=1,NH
	78Ø.		DO 3 J=1.NS
	781.		DO = 1 + 1 + ND
	782.		L=1
	783.		SUM=R(I,K)+DIST(J,K)
	784.		IF(SUM.LT.RMIN(K,L,HYTYP(I))) GO TO 3
	785.		1 CONTINUE
	786.		DO 2 JJ=J,NS
	787.		2 X(I,JJ)=1
	788.		GO TO 4
	789.		3 X(I,J)=Ø
	790.		4 CONTINUE
	291.	С	
	792.	C	
	793.	С	
	794.		WRITE (6,601)
	795.		601 FORMAT((1/,45X, //,15X, MATRIX OF/,
	796.		2 ' FEASIBLE STRATEGIES ACCORDING TO THE
	797.		2 , MINIMUM PAVEMENT RATING REQUIREMENT ",
	798		3 CONSTRAINT ,//)
	799.		WRITE(6,602)(J,J=1,NS)
			······································

800.		(80 FORMAT/10V /V/T D ar WEAVE THE STU /
801.		602 FORMAT(17X,'X(I,J)=0 MEANS THE JTH ',
802.		1 MAINTENANCE STRATEGY FOR THE ITH HIGHWAY ',
8ø3.		2'SEGMENT IS INFEASIBLE',/,17X,'X(I,J)=1,',
804.		3' MEANS MAINTENANCE STRATEGY J FOR THE ITH',
		4' HIGHWAY SEGMENT IS IS FEASIBLE',//,10X,
805.		5 'SEGMENT NUMBER', 35X, 'STRATEGY', //, 28X,
806.		6 10(6X,I4),//)
807.		WRITE(6,599)
808.	~	599 FORMAT(/)
809.	C	
81Ø.	C	
811.	С	
812.		DO 5 I=1,NH
813.		5 WRITE(6,603)I,(X(I,J),J=1,NS)
814.		603 FORMAT(14X,14,10X,10(6X,14))
815.	0	·
816.	0	
817.	C	
818.		RETURN
819.		END
82Ø.	С	
821.	C	
822.	С	
823.	С	***********
824.	C	*
825.	C	* SUBROUTINE ALLDIS *
826.	C	*
827.	C	********
828.	С	
829.	С	
83Ø.	С	
831.		SUBROUTINE ALLDIS
832.	С	
833.	Ĉ	
834.	Ĉ	
835.	ċ	THIS SUBROUTINE FINDS THE FEASIBLE
836.	č	STRATEGIES FOR ALL HIGHWAY SEGMENTS
837.	Č	ACCORDING TO OVERALL PAVEHENT RATING
838.	č	REQUIREMENT CONSTRAINT.
839.	č	READIRENERI CORDINAIRI.
84Ø.	č	
841.	Ŭ	INTEGER T,X(20 ,10),A(20 ,10) ,HYTYP(20)
842.		DIMENSION WW(20),DIST(10,11),P(10,11,20),
843.		1 R(20,11), RMIN(11,20,2)
844.		
845.		DIMENSION TRAF(20), ENVIR(20)
846.		COMMON /AREA1/DIST,P,R,RMIN,WW,TRAF,ENVIR
847.		COMMON /AREA2/ NH,NS,T,ND ,NHTYP
848.		COMMON /AREA3/X
		COMMON /AREA4/A
849.	~	CONHON /AREA6/ HYTYP
850.	C	
851.	C	
852.	-	CALL MINDIS
853.	С	

854.	C	
855.		DO 11 I=1,NH
856.	Ç	
857.	C	
858.	C	CHECKING WHETHER THE OVERALL RATING
859.	C	REQUIREMENT CONSTRAINT IS NECESSARY FOR A
860.	C	PARTICULAR HIGHWAY SEGMENT.
861.	C	
862.	С	
863.		DO 2 L=1,T
864.		SUNY=Ø.
865.		DO 1 K=1,ND
866.		<pre>t SUMY=SUMY+RMIN(K,L,HYTYP(I))</pre>
867.		IF(SUNY-WW(HYTYP(I))) 4,2,2
868.	~	2 CONTINUE
869.	C	
870.	C	marken som asser är temma för en annen som en medaten men som som
871.	C	THIS MEANS OVERALL RATING REQUIREMENT
872.	C	CONSTRAINT IS NOT NECESSARY AND ALL THE
	C	STRATEGIES FOR THIS HIGHWAY SEGMENT
874.	C	IS FEASIBLE.
875.	С	
876.	С	
877.		DO 3 J=1,NS
878.		A(I,J)=1
879.		3 CONTINUE
880.		GO TO 11
881.	С	
882.	С	
883.	С	THIS MEANS THAT THE CONSTRAINT IS
884.	С	NECESSARY AND THE INDIVIDUAL STRATEGIES
885.	С	FOR EACH HIGHWAY SEGMENT SHOULD BE CHECKED
886.	С	TO FINDOUT WHETHER THE STRATEGIES ARE
887.	С	FEASIBLE OR NOT.
888.	С	
889.	С	
890.		4 DO 9 J=1,NS
891.		L=1
892.		SUMZ=Ø.
893.		DO 5 K=1.ND
894.		5 SUMZ=SUMZ+R(I,K)+DIST(J,K)
895.		IF(SUMZ-WW(HYTYP(I)))7,6,6
896.		6 CONTINUE
897.		GO TO 8
878.		7 A(I,J)=Ø
899.		X(I,J)=Ø
900.		GO TO 9
901.		8 A(I,J)=1
902.	C	
903.	Ċ	
904.	C	
905.		9 CONTINUE
906.		11 CONTINUE
907.	С	· · · · · · · · · · · · · · · · · · ·
· · · ·		

040	
9 # 8.	C
999.	C
910.	WRITE (6,701)
911.	701 FORMAT('1', //,18X, 'MATRIX OF',
912.	1 < FEASIBLE STRATEGIES ACCORDING TO OVERALL (,
913.	2' PAVEMENT RATING REQUIREMENT CONSTRAINT',//)
914.	
915.	C
916.	WRITE(6,702) (J,J=1,NS)
917.	702 FORMAT(18X, $X(I, J) = 0$ means the Jth $'$,
918.	1'HAINTENANCE STRATEGY FOR THE ITH HIGHWAY ',
919.	2'SEGMENT IS INFEASIBLE',/,18X,'X(I,J)=1,',
920.	3' MEANS MAINTENANCE STRATEGY J FOR THE ITH",
921.	4' HIGHWAY SEGMENT IS IS FEASIBLE',//,10X,
922.	5 'SEGMENT NUMBER',34X,'STRATEGY',//,28X,
923.	6 10(6X,I4),//)
924.	WRITE(6,599)
925.	599 FORMAT(/)
926.	C
927.	C
928.	DO 10/I=1,NH
929.	10 WRITE(6,703)I,(A(I,J),J=1,NS)
930.	703 FORMAT(14X,14,10X,10(6X,14))
931.	RETURN
932.	END
933.	C
934.	Č
935.	č
936.	````````******************************
937.	· C * * *
938.	C * SUBROUTINE CALC *
939.	
940.	· · · · · · · · · · · · · · · · · · ·
941.	
942.	C
943.	C
944.	
945 .	
	C
946.	
947. 948.	C THIS SUBROUTINE CONVERTS THE INPUT DATA C INTO CONVENIENT FORM
949.	C
950.	C
951.	REAL DIST(10,11),P(10,11,20),R(20,11),
952.	1 RMIN(11,20,2),RX(200),JP(200)
953.	REAL L1(200), L2(200),XL(200)
954. 055	INTEGER T, TDATA, X(20,10), G, F, Q, JJ(20,10), A(20,10)
955.	1 ,INF(200) ,HYTYP(20)
956.	DIMENSION SG(10),SGR(10,10),EF(10),EFR(10,10)
957. 050	1 ,HQ(10),HQR(10,10),CR(10),CO(20,10),IP(200)
958. 950	2 ,S(31),FSBR(20,10,10),PHBR(20,10,10),
959. 96ø.	3 PEBR(20,10,10),PCR(20,10),WW(20)
70 0. 961.	DIMENSION CONSTR(30)
701.	DIMENSION RMAX(11)

962.	DIMENSION TRAF(20), ENVIR(20)
963.	CONMON /AREA1/DIST,P,R,RMIN,WW ,TRAF,ENVIR
964.	COMMON /AREA2/ NH,NS,T,ND ,NHTYP
965.	CONMON /AREA3/X
966.	COMMON /AREA4/ A
967.	COMMON /AREA5/ INF
968	CONMON / AREA6/ HYTYP
969.	COMMON /TOY2/SG,HQ,EF,CC
970.	COKMON /TOY3/ G,F,Q
971	COMMON/TOY4/JJ,CO
972.	COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP
973.	
974.	COMMON /DATCK1/ L1,L2
	COMMON /DATCK2/ SGR,EFR,HQR ,CR
975.	COMMON /ADDON/ TDATA
976.	COMMON/NETG/ PRES(20,20),RATIMP(20,20),NLIF(20),IX(20),
977.	1RATNOD(1000,10),CCO(20)
978.	COMMON /KNPSK1/ CONSTR,XSUM
979.	CONMON /DATIN6/ RMAX
980.	C
981.	C
982.	C
983.	C
984.	CALL ALLDIS
985.	C
986.	
987.	Ĉ.
988.	C WRITE (6,501)
989.	C 501 FORMAT('1', //,45X,'MATRIX OF',
99 0.	
991.	WRITE (6,201)(J,J=1,NS)
992.	201 FORMAT(20X, X(I,J)=0 MEANS THE JTH ′,
993.	1'MAINTENANCE STRATEGY FOR THE ITH HIGHWAY ',
994.	2'SEGMENT IS INFEASIBLE',/,20X, X(I,J)=1,',
995.	3' MEANS MAINTENANCE STRATEGY J FOR THE ITH',
996.	4' HIGHWAY SEGMENT IS IS FEASIBLE',//,10X,
997 .	5 'SEGMENT NUMBER',28X,'STRATEGY',//,28X,
998.	6 1Ø(6X,I4),//)
999.	WRITE(6,599)
1999.	599 FORMAT(/)
1001.	DO 5 I=1,NH
1992.	$INF(I) = \emptyset$
1003.	5 WRITE(6,202)I,(X(I,J),J=1,NS)
1994.	202 FORMAT(14X,14,10X,10(6X,14))
1005.	C
1006.	Ū.
1007.	C C
1008.	C* WITHHOLD SECTION-STRATEGY
1007.	C* NUM=Ø FOR NO MODIFICATIONS
1010.	
1011.	C
1012.	WRITE(6,301) 741 FORMAT/(1/ // FAY APECTRICIED SECTION_STRATECY COMPINATIONS
1013.	301 FORMAT('1',//,50X, RESTRICTED SECTION-STRATEGY COMBINATIONS',
1014.	\$ //,65X,'I',1ØX,'J',//)
1015.	NU=Ø

	· ·
1016.	161 READ (5,159)NUM
1017.	159 FORMAT(14)
1018.	IF(NUM) 164,164,163
1019.	163 READ (5,160) I,J,X(I,J)
1020.	160 FORNAT (315)
1021.	IF (X(I,J).EQ.1) GO TO 304
1022.	WRITE(6,302)I,J
1023.	302 FORMAT(/,60X,15,5X,15)
1024.	3Ø4 NU=NU+1
1025.	IF (NUM-NU) 164,164,163
1926.	164 CONTINUE
1027.	C
1028.	C
1029.	C* TO WITHHOLD COMPLETE STRATEGIES LIST
1030.	C* EQUIVALENT J NUMBERS AS JOUT WITH Ø AT
1031.	C* END OF LIST
1032.	С
1Ø33.	C
1034.	WRITE(6,303)
1035.	303 FORMAT(////,50X,'COMPLETE STRATEGIES WITHHELD',
1036.	\$//,60X,'JOUT',//)
1037.	168 READ(5,166)JOUT
1038.	166 FORMAT(IS)
1039.	IF(JOUT)167,167,165
1040.	165 WRITE(6,305)JOUT
1041.	305 FORMAT(/,60X,15)
1042.	DO 169 I=1,NH
1943.	169 X(I, JOUT)=Ø
1044.	60 TO 168
1045.	167 CONTINUE
1046.	C
1047.	C
1048.	WRITE(6,901)
1049.	901 FORMAT('1', //,39X,'RANKING OF ',
1050.	1 STRATEGIES FOR ALL HIGHWAY SEGMENTS',/)
1051.	C
1052.	
1053.	
1054.	DO 20 I=1,NH
1055.	XL(I)=L1(I)*L2(I)
1056. 1057.	XXL=XXL+XL(I) 20 CONTINUE
1058.	DO 21 II=1,G
1059.	21 SG(II)=SG(II)*XXL
1060.	DO 22 II=1.F
1061.	22 EF(II)=EF(II)*XXL
1062.	DO 23 II=1.0
1063.	23 HQ(II)=HQ(II)*XXL
1064.	WRITE(6,931)
1065.	931 FORMAT(10X, SEGMENT NUMBER ', 31X, STRATEGY')
1066.	C

1067.	С	
1068.	C	
1069.	L.	10 14 I=1,NH
1070.		INDEX=0
1071.		
1072.		DO 13 J=1,NS
		IF(X(I,J).EQ. 0) GO TO 11
1073.		SUM=0.0
1074.		DO 225 K=1,ND
1075.		L=Ø
1076.		IT=T
1077.		DDIST=DIST(J,K)
1078.		IF((R(I,K)+DIST(J,K))-RMAX(K))31,31,32
1079.	32	DDIST=RMAX(K)-R(I,K)+Ø.1
1080.	31	CONTINUE
1Ø81.		L=L+1
1082.		PP=1-TRAF(I)*ENVIR(I)*(1-P(J,K,L))
1083.		IF(PP.LE.Ø.) PP=Ø.
1084.		PP=PP*(RMAX(K))
1085.		RR=R(I,K)+DDIST
1086.		IF(RR.LT.PP)60 TO 223
1087.	C	IF(R(I,K).LT.RMIN(K,L,HYTYP(I))) GO TO 228
1088.	C	SUM=SUM+PP-RMIN(K,L,HYTYP(I))
1089.	C	IF(SUM.LE.Ø.)SUM=Ø.
1090.	C	GO TO 224
1091.	228	IF(PP-R(I,K))225,222,222
1092.	222	SUM=SUM+PP-R(I,K)
1093.		IF(SUN,LE.Ø.)SUM=Ø.
1094.		GO TO 226
1095.	223	IT=IT+1
1096.	226	IF(IT-TDATA)224,225,225
1097.	224	IF(L-IT)31,225,225
1098.	225	CONTINUE
1099.	C	Υ.
1100.	С	
1101.	С	CO(I,J) IS THE OBJECTIVE FUNCTION
1102.	C	COEFFICIENT.
1103.	C	
1164.	C	
1105.		CO(I,J)=SUM*XL(I)
1106.		XSGR=Ø.
1107.		DO 8 II=1,6
1108.		PSBR(I,J,II)=XL(I)*SGR(J,II)/SG(II)*100.
1109.		IF(PSBR(1,J,II).GT.100.) GO TO 12
1110.	8	XSGR=XSGR+PSBR(I,J,II)
1111.	C	· ·
1112.	С	
1113.		XHQR=Ø.
1114.		DO 9 II=1,Q
1115.		PHBR(I,J,II)=XL(I)*HQR(J,II)/HQ(II)*100.
1116.		IF(PHBR(I,J,II).6T.100.) 60 TO 12
1117.	9	XHQR=XHQR+PHBR(I,J,II)
1118.	C,	······································
	-	

1119.	C	
1120.	XEFR=Ø.	
1121.	DO 10 II=1,F	
1122.	PEBR(I,J,IÍ)=XL(I)*EFR(J,II)/EF(II)*100.	
1123.	IF(PEBŔ(Í,J,II).GT.100.) GO TO 12	
1124.	1Ø XEFR=XEFR+PÉBR(I,J,II)	
1125.	PCR(I,J)=XL(I)*CR(J)/CC*100.	
1126.	IF(PCR(I,J).GT.100.) GO TO 12	
1127.	C RX(J)=CO(I,J)/(XHQR+XEFR+XSGR+PCR(I,J))	
1128.	RX(J)=CO(I,J)/((XHQR+XEFR+XSGR)*.20+	
1129.	1 PCR(I,J))	
1130.	C	
1131.	c	
1132.	C RX IS THE RANKING RATIO	
1133.		
1134.		
1135.	C STRATEGIES ARE TO BE SORTED ACCORDING	
1136.	C TO THE VALUES OF RX IN ASCENDING ORDER.	
1137.	C	
1138.	С	
1139.	L=(L) 9L	
1140.	GO TO 13	
1141.	12 X(I,J)=Ø	
1142.	11 JP(J)=J	
1143.	RX(J)≖Ø.	
1144.	CO(I,J)=Ø.	
1145.	INDEX=INDEX+1	
1146.	IF(INDEX-NS)13,17,13	
1147.	17 INF(I)=I	
1148.	WRITE(6,203)I	
1149.	203 FORMAT(/,15X, NO FEASIBLE STRATEGY EXISTS /,	
1150.	1 'FOR HIGHWAY SEGMENT NO.=', I4, '***',/)	
1151.	13 CONTINUE	
1152.	CALL SORT(RX,NS,JP)	
1153.	DO 15 K=1,NS	
1154.	JJ(I,K)=JP(NS-K+1)	
1155.	IF(X(I, JP(NS-K+1)).EQ.Ø) JJ(I,K)=Ø	
1156.	15 CONTINUE	
1157.	WRITE(6,206) I,(JJ(I,K),K=1,NS)	
1158.		
1159.	206 FORMAT(//,14X,I4,10X,10(4X,I4))	
1169.	14 CONTINUE	
1161.	WRITE(6,204)	
1162.	204 FORMAT(11,41X, TOBJECTIVE FUNCTION COEFFICIES	
1163.	1 , NTS',//,7 X, SEGHENT NUMBER', 34X,	
1164.		
1165.	WRITE(6,207) (J,J=1,NS) 207 FORMAT(21X,10(I3,8X),//)	
1167.	WRITE(6,599)	
1168.	DO 16 I=1,NH	
1169.	WRITE(6,205)I,(CO(I,J),J=1,NS)	
1170.	205 FORMAT(10X,15,10(1X,F10.1))	
1171.	16 CONTINUE	
1172.	C	
11/24	U Contraction of the second seco	

たいな

		7
1173.	C	· · ·
1174.	С	
1175.		CALL GRAD
1176.	C	
1177.	С	
1178.	С	
1179.	-	RETURN
1189.		END
1181.	С	
1182.	C	
	c	
1183.		*****
1184.	C	
1185.	С	
1186.	C	* SUBROUTINE GRAD *
1187.	С	* *
1188.	С	*********
1189.	C	
1190.	С	
1191.	С	
1192.		SUBROUTINE GRAD
1193.	С	
1194.	С	
1195.	С	
1196.	C	THIS SUBROUTINE GENERATES THE INITIAL
1197.	ĉ	FEASIBLE SOLUTION BY CALCULATING THE
1198.	Č	EFFECTIVE GRADIENT FOR THE HIGHWAY
1199.	č	SEGMENTS.
1200.	C	SCORLEG.
	C	
1201.	L L	DINENOTON COLLAN CLOTN HOLLAN FELLAN H/06 711
1202.		DIMENSION SG(10),S(31),HQ(10),EF(10),H(20,31)
1203.		1 ,CO(20,10),JJ(20,10),XG(200),PSBR(20,10,10),
1294.		2 PHBR(20,10,10),PEBR(20,10,10),PCR(20,10),
1205.		3 SX(31),CONSTR(30),RLEFT(30)
1206.		INTEGER G,F,Q ,IP(200),IK(200),LFLAG(200),
1207.		1 KFLAG(200),TOP,INF(200),X(20,10)
1208.		INTEGER RES(30,6)
1209.		INTEGER STRAT(15,6),DISTR(15,5)
1210.		INTEGER WAT(10,5),EQUP(10,5),WANP(10,5)
1211.		INTEGER OVHD(5)
1212.		DATA BLANK/ 1/
1213.		COMMON /AREA2/ NH,NS,T,ND ,NHTYP
1214.		COMMON /AREA3/X
1215.		CONMON /TOY2/SG,HQ,EF,CC
1216.		COMMON /TOY3/ G,F,Q
1217.		COMMON/TOY4/JJ,CO
1218.		COMMON /AREA5/ INF
1219.		COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP
1220.		COMMON /KNPSK1/CONSTR,XSUM
1221.		CONMON /PICK1/ KFLAG,LFLAG
1222.		COMMON /DATIN3/ STRAT, DISTR
1223.		CONNON /DATIN4/ MAT, EQUP, MANP, OVHD
1224.		EQUIVALENCE(IK(1), IP(1))
1225.	C	ыңығаттышылығы уалууға уалууға (
1440	L .	

۰.

1225.

1226.	С	
1227.	Ű	WRITE(6,301)
1228.		301 FORMAT('1',50X,'PHASE 1',/50X,'',//,
1229.		1 30X, 'INITIAL SOLUTION BY THE METHOD OF ',
1230.		2 'EFFECTIVE GRADIENT',//)
1231.	Ċ	2 EFFECTIVE ORMOTENT y///
1232.	C	
1233.	6	NRES=G+F+Q+1
1234.	C	11AC3-07F7071
1235.	C C	
1235.	C	
1230.	- C	KFLAG IS THE HIGHWAY INDICATOR
1237.	C C	LFLAG IS THE STRATEGY INDICATOR
1230.	C C	
1240.	C	THITTALLY ALL THE HIPHHAY BECKENTS ADD
1241.	ւ Ը	INITIALLY ALL THE HIGHWAY SEGNENTS ARE
	с С	ASSUMED TO HAVE THE BEST FEASIBLE STRATEGY
1242.		
1243.	С	
1244.		D0 5 I=1,NH
1245.		KFLAG(I)=Ø
1246.		IF(I.EQ.INF(I)) KFLAG(I)=I
1247.		LFLAG(I)=1
1248.		5 CONTINUE
1249.		TOP=NH
1250.		100 DO 7 II=1,G
1251.		XSBR=Ø
1252.		DO 6 I=1,NH
1253.	-	IF(I-KFLAG(I))51,6,51
1254.	C	
1255.	C	
1256.	· C	THIS IS TO CHECK WHETHER A HIGHWAY SEGMENT
1257.	0	HAS ALREADY BEEN DROPPED.
1258.	C C	
1260.	ι L	51 VCDD-DCDD/T 11/T 151AC/T\\ TT\
1261.		51 YSBR=PSBR(I,JJ(I,LFLAG(I)),II) XSBR=XSBR+YSBR
1262.		6 CONTINUE
1263.		S(II)=XSBR-190.
264.		SX(II)=S(II)
265.		IF(S(II).LE.Ø.)S(II)=Ø.
266.		7 CONTINUE
267.	С	
268.	č	
269.	č	
270.	č	
271.	-	DO 9 II=1.F
272.		XEFR=Ø.
273.		DO 8 I=1,NH
274.		IF(I-KFLAG(I))52,8,52
275.		52 YEBR=PEBR(I,JJ(I,LFLAG(I)),II)
276.		XEFR=XEFR+YEBR

1277.		8	CONTINUE
1278.			S(II+G)=XEFR-100.
1279.			SX(II+G)=S(II+G)
1280.			IF(S(II+G).LE.Ø.) S(II+G)=Ø.
1281.		9	CONTINUE
1282.	С		
1283.	С		
1284.	С		
1285.			D0 11 II=1,Q
1286.			XHQR=Ø.
1287.			D0 10 I=1,NH
1288.			IF(I-KFLAG(I))53,10,53
1289.		53	YHBR=PHBR(I,JJ(I,LFLAG(I)),II)
1290.			XHQR=XHQR+YHBR
1291.	•	10	CONTINUE
1292.			S(II+G+F)=XHQR-100.
1293.			SX(II+G+F)=S(II+G+F)
1294.			IF(S(II+G+F).LE.Ø.)S(II+G+F)=Ø.
1295.		11	CONTINUE
1296.	C	•••	
1297.	ċ		
1298.	ĉ		
1299.			XCR=Ø.
1300.			D0 12 I=1,NH
1301.			IF(I-KFLAG(I))54,12,54
1302.			YCR=PCR(I,JJ(I,LFLAG(I)))
1303.			XCR=XCR+YCR
1304.			CONTINUE
1305.			S(NRES)=XCR-100.
1306.			SX(NRES)=S(NRES)
1307.	~		IF(S(NRES).LE.Ø.) S(NRES)=0.
1308.	C		
1309.	C		
1310.	С		0.011117
1311.			COUNT=Ø
1312.			DO 91 NK=1,NRES
1313.			IF(S(NK).EQ.Ø) COUNT=COUNT+1
1314.			IF(COUNT.EQ.NRES) GO TO 101
1315.	~	¥1	CONTINUE
1316.	C		
1317.	C C		
1318. 1319.	C C		THIS CALCULATES THE SUMMATION OF H(I,J)
1320.	C		FOR A PARTICULAR HIGHWAY SEGMENT FOR All active constraints.
1321	C		ALL HUTTVE CUNSTRAINTS.
1322.	Ċ		
1323.	U U		DO 16 I=1.NH
1324.			DO 13 II=1,6
1325.			
1326.			IF(I-KFLAG(I))55,13,55
1320.			H(I,II)=PSBR(I,JJ(I,LFLAG(I)),II) CONTINUE
	r	13	
1328. 1329.	C C		
1327.	L		

đ

1330.	C
1331	DO 14 II=1,F
1332.	IF(I-KFLAG(I))56,14,56
1333.	56 H(I,II+G)=PEBR(I,JJ(I,LFLAG(I)),II)
1334.	14 CONTINUE
1335.	C
1336.	C ,
1337.	С
1338.	DO 15 II=1,Q
1339.	IF(I-KFLAG(I))57,15,57
1340.	57 H(I,II+G+F)=PHBR(I,JJ(I,LFLAG(I)),II)
1341.	15 CONTINUE
1342.	С
1343.	C
1344.	C
1345.	IF(I-KFLAG(I))58,16,58
1346.	58 H(I, NRES)=PCR(I, JJ(I, LFLAG(I)))
1347.	16 CONTINUE
1348.	C
1349.	· C
1350.	C CALCULATION OF EFFECTIVE GRADIENT
1352.	C
1352.	C
1353.	U TOP=Ø
1354.	DO 18 I=1,NH
1355.	XN=0.
	IF(I-KFLAG(I))59,18,59
1356.	59 DO 17 IJ=1,NRES
1357.	17 XN=XN+H(I,IJ)*S(IJ)
1358.	TOP=TOP+1
1359.	XG(TOP)=CO(I,JJ(I,LFLAG(I)))/XN
1360.	IP(TOP)=I
1361. 1362.	18 CONTINUE
1362.	C
1364.	Č
1365.	č
1366.	CALL SORT (XG,TOP,IK)
1367.	С
1368.	Č .
1369.	C
1370	KST=IP(1)
1371.	$F_{1} \Delta G(TP(1)) = LFLAG(KST) + 1$
1372.	TE(LELAG(IP(1)).EQ.(NS+1)) GO TO 19
1373.	IF(JJ(IP(1),LFLAG(IP(1))))99,19,99
1374.	00 KKK=1FLAG(TP(1))-1
1375.	WRITE(6,71) IP(1) ,JJ(IP(1),LFLAG(IP(1))),
1376.	1 JJ(IP(1),KKK)
1377	71 EDEMAT(25% (HIGHWAY SEGMENT', I4, 4%,
1378.	1 'EXCHANGE STRATEGY', I4, 1X, WITH STRATEGY'
1379.	2 14)
1380.	GO TO 100
1381.	19 NN=IP(1)
1382.	KFLAG(NN)=IP(1)
1383.	WRITE(6,304)IP(1)
1384.	304 FORMAT(/, 50X, DROP', 1X, I3,/)
1385.	GO TO 1ØØ

٠,

1386.	101 WRITE(6,305)
1387.	305 FORMAT(/,30X, NO MORE HIGHWAY SEGMENT ',
1388.	1 'SHOULD BE DROPPED',/)
1389.	C
1390.	С
1391.	WRITE(6,306)
1392.	306 FORMAT('1',40X,'INITIAL FEASIBLE SOLUTION',//)
1393.	WRITE(6,308)
1394.	308 FORMAT(33X, HIGHWAY SEGMENT', 5X, STRATEGY', 5X,
1395.	1 (BENEFIT',/)
1396.	
1397.	C
1398.	C ·
1399.	XSUM=Ø.
1400.	DO 61 I=1,NH
1401.	IF(I-KFLAG(I))60,61,60
1402.	60 WRITE(6,307)I,JJ(I,LFLAG(I)),CO(I,JJ(I,LFLAG(
1403.	1 I)))
1404	307 FORNAT(37X,14,13X,13,9X,F9.0)
1405.	XSUM=XSUM+CO(I,JJ(I,LFLAG(I)))
1496.	61 CONTINUE
1407.	
	C
1408.	
1409.	C
1410.	WRITE(6,31Ø)
1411.	310 FORMAT(11,25X, FOLLOWING HIGHWAY SEGMENTS /,
1412.	1 WITH THE CORRESPONDING STRATEGIES ,/,30X,
1413.	3 'REPRESENTS THE INITIAL FEASIBLE SOLUTION',
1414.	4 //,35X,'SEGMENT NUMBER',10X,'STRATEGY',/)
1415.	DO 63 I=1,NH
1416.	IF(I-KFLAG(I)) 62,63,62
1417.	62 M=JJ(I,LFLAG(I))
1418.	WRITE(6,311) I,(STRAT(M,N),N=1,6)
1419.	63 CONTINUE
1420.	311 FORMAT(4ØX,14,15X,6A4)
1421.	C
1422.	Č
1423.	C C
1424.	DO 70 II=1,NRES
1425.	IF(II-G)64,64,65
1426.	64 DO 644 K=1,5
1427.	RES(II,K)=WAT(II,K)
1428.	644 CONTINUE
1429.	RES(II,6)=BLANK
1430.	GO TO 7Ø
1431.	65 IF(II-(G+F))66,66,67
1432.	66 DO 666 K=1,5
1433.	RES(II,K)=EQUP(II-G,K)
1434.	666 CONTINUE
1435.	RES(II,6)=BLANK
1436.	60 TO 7Ø
1437.	67 IF(II-NRES) 68,69,69
	68 DO 688 K=1,5
14.48	
1438. 1439.	RES(II,K)=MANP((II-G-F),K)

1440.	688 CONTINUE	
1441.	RES(II,6)=BLANK	
1442.	GO TO 20	
1443.	69 DD 699 K=1.5	
1444.	RES(II,K)=OVHD(K)	
1445.	699 CONTINUE	
1446.	RES(II,6)=BLANK	
1447.		
	70 CONTINUE	
1448.	C	
1449.	C	
1450.	C	
1451.	WRITE(6,309) XSUM	
1452.	309 FORMAT(/,37X, THE NET BENEFIT=',F16.0)	
1453.	DO 80 II=1,NRES	
1454.	8Ø CONSTR(II)=Ø.	
1455.	C	
1456.	С	
1457.	С	
1458.	DO 84 I=1,NH	
1459.	IF(I-KFLAG(I))82,84,82	
1469.	82 DO 81 II=1,NRES	
1461.	IF(II.LE.G)CONSTR(II)=CONSTR(II)+	
1462.		
1463.	1	
1464.		
1465.	1 CONSTR(II) +PEBR(I,JJ(I,LFLAG(I)),II-G)	
1465.	IF(II.GT.(G+F).AND.II.LE.(G+F+Q))CONSTR(II)=	
	1 CONSTR(II)+ PHBR(I,JJ(I,LFLAG(I)),(II-G-F))	
1467.	IF(II.GT.(G+F+Q))CONSTR(II)=CONSTR(II)+	
1468.	1 PCR(I,JJ(I,LFLAG(I)))	
1469.	81 CONTINUE	
1470.	84 CONTINUE	
1471.	C	
1472.	C	
1473.	C	
1474.	WRITE(6,74)	
1475.	74 FORMAT('1',35%,'CONSTRAINT',15%,'PERCENT',10%	
1476.	1, 'PERCENT', /, 59X, 'UTILIZATION',	
1477.	2 7X, 'UNUTILIZED',/)	
1478.	DO 83 II=1,NRES	
1479.	IF(CONSTR(II).GT.100.)CONSTR(II)=100.	
1480.	RLEFT(II)=100CONSTR(II)	
1481.	C	
1482.	C	
1483.	C RLEFT(II)=RESOURCE LEFT IN IITH CONSTRAINT	
1484.	C	
1485.	Ċ	
1486.	WRITE(6,75) (RES(II,K),K=1,6),CONSTR(II),RLEFT(II	١
1487.	75 FORMAT(33X,6A4,4X,F6.2,11X,F6.2)	′
1488.	83 CONTINUE	
1489.	C	
1490.	C	
1475.	C	
1492.	CALL PICKUP	
1493.	C	
1494.	C	
1495.	C	
1496.	RETURN	
1497.	END	
1498.	C	
	·	

-

1589. C 1591. C 1592. C 1593. C 1593. C 1594. C 1595. C 1596. C 1597. C 1511. C 1512. C 1513. C 1514. C 1515. C 1516. C 1517. C 1518. C 1529. C 1520. DIMENSION PSBR(2Ø, 1Ø, 1Ø), PHBR(2Ø, 1Ø, 1Ø), T 1522. 1 PEBR(2Ø, 1Ø, 1Ø), PCR(2Ø, 1Ø), IP(2Ø, 1Ø), T 1523. DIMENSION CO(2Ø, 1Ø, A(2Ø, 1Ø), A(2Ø, 1Ø), T	499.		
1592. C * S U B R O U T I N E P I C K U P 1593. C * * 1594. C * * 1595. ************************************	1500.		-
1592. C * S U B R O U T I N E P I C K U P * 1594. C * * 1595. C ************************************	1501.		
1584. * * 1585. C * 1585. C ************************************	1502.	*	
1504. C * * * 1505. C ************************************	1503.		-
1505. C 1507. C 1518. C 1511. C 1512. C 1513. C 1514. C 1515. C 1516. C 1517. C 1518. C 1520. C 1521. DIMENSION PSBR(20, 10, 10), PHBR(20, 10, 10), 1522. I PEBR(20, 10, 10), PCR(20, 10), 1523. DIMENSION CO(22, 10), S(31), IP(200) 1524. INTEGER X(20, 10, A(20, 10), G, F, Q, JJ(20, 10), T 1525. DIMENSION XG(20, RR(20), RATIO(20, 10), T 1526. 1 RLEFT(30), ICON(30), CONSTR(30), PCON(30), 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), 1528. C 1529. <td< td=""><td></td><td>*</td><td>•</td></td<>		*	•
1506. C 1507. C 1510. C 1511. C 1512. C 1513. C THE PURPOSE OF THIS SUBROUTINE IS TO 1514. C PICKUP ADDITIONAL HIGHWAY SEGMENTS INTO 1515. C THE SOLUTION SET AFTER THE INITIAL 1516. C SOLUTION IS OBTAINED BY THE METHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C 1524. 1521. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1522. 1 PEBR(20,10,40), PCR(20,10),GT(20,10), 1523. DIMENSION XG(20,10),GT(20,0),GT(20,10), 1524. INTEGER X(20,10),A(20,10),GT(20,10), 1525. DIMENSION XG(20,0),RATIO(20,10), 1526. 1 RLEFT(30),ICON(30),CONSTR(30),PCON(30), 1527. 2 LFLAG(200),KFLAG(200),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP		******	k
1507. C 1508. C 1509. SUBROUTINE PICKUP 1510. C 1511. C 1512. C 1513. C THE PURPOSE OF THIS SUBROUTINE IS TO 1514. C PICKUP ADDITIONAL HIGHWAY SEGMENTS INTO 1515. C THE SOLUTION SET AFTER THE INITIAL 1516. C SOLUTION IS OBTAINED BY THE METHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1520. C DIMENSION CO(20,10),S(31),IF(200) 1521. DIMENSION CO(20,10),AC(20,10),GF,0,0),T 1522. I PEBR(20,10),AC(20,10),GF,0,0),T 1523. DIMENSION XXG(20),RR(20),RATIO(20,10),T 1524. INTEGER X(20,10),AC(20,0),CONSTR(30,PCON(30),CONSTR(30),FCON(30),CONSTR(30),T 1527. 2 LFLAG(200),KFLAG(200),INF(200),JN(20),J 1528. 1 RLEFT(30),ICON(30),CONSTR(30,PCON(30),CONSTR(30),FCON(30),CONSTR(30),FCON(30),CONSTR(30),FCON(30),CONSTR(30),S 1529. COMNON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMNON /AREA5/ INF 1531. COMNON /AREA5/ INF			
15#8. C 15#9. SUBROUTINE PICKUP 151#. C 1514. C 1515. C 1514. C 1515. C 1514. C 1515. C 1516. C 1517. C 1516. C 1517. C 1518. C 1520. C 1521. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1522. IFFECTIVE GRADIENT. 1524. DIMENSION C0(20,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,			
1509. SUBROUTINE PICKUP 1510. C 1511. C 1512. C 1513. C 1514. C 1515. C 1516. C 1517. C 1518. C 1517. C 1518. C 1517. C 1518. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1517. C 1518. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1521. DIMENSION C0(20,10,10),PHBR(20,10,10), 1522. I PEBR(20,10,10,0,00,00,00,00,00,00,00,00,00,00,			
1510. C 1511. C 1512. C 1513. C 1514. C 1515. C 1516. C 1517. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1521. DIMENSION CO(20,10),S(31),IP(20,0) 1523. DIMENSION XXG(20,10),RC(20,10),G,F,0,JJ(20,10),T 1524. I RLEFT (30),ICON(30),CONSTR(30),PCON(30), 1527. 2 LFLAG(200),KFLAG(200),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA5/ IN		SUBROUTINE PICKUP	
1511. C 1512. C 1513. C THE PURPOSE OF THIS SUBROUTINE IS TO 1514. C PICKUP ADDITIONAL HIGHWAY SEGMENTS INTO 1515. C THE SOLUTION SET AFTER THE INITIAL 1516. C SOLUTION IS OBTAINED BY THE NETHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1517. C 1518. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1521. DIMENSION CO(20,10),S(31),IP(200) 1522. I PEBR(20,10,10), PCR(20,10),G(30,1),IP(200) 1523. DIMENSION CO(20,10),S(31),IP(200) 1524. INTEGER X(20,10,A(20,10),G,F,Q,J)(20,10),T 1525. DIMENSION XXG(20),RR(20,RATIO(20,10),T 1526. 1 RLEFT (30),ICON(30,CONSTR(30),PCON(30), 1527. 2 LFLAG(200),KFLAG(2000),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /AREA3/ X 1531. COMMON /AREA3/ X 1533. COMMON /AREA3/ X			
1512. C 1513. C THE PURPOSE OF THIS SUBROUTINE IS TO 1514. C PICKUP ADDITIONAL HIGHWAY SEGMENTS INTO 1515. C THE SOLUTION SET AFTER THE INITIAL 1516. C SOLUTION IS OBTAINED BY THE METHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1521. DIMENSION PSBR(20,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,			
1513. C THE PURPOSE OF THIS SUBROUTINE IS TO 1514. C PICKUP ADDITIONAL HIGHWAY SEGMENTS INTO 1515. C THE SOLUTION SET AFTER THE INITIAL 1516. C SOLUTION IS OBTAINED BY THE METHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C 1529. C 1521. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1522. I PEBR(20,10,10), PCR(20,10), 1523. DIMENSION C0(20,10),S(31),IP(200) 1524. INTEGER X(20,10),A(20,10),G,F,0,JJ(20,10),T 1525. DIMENSION XXG(20),RR(20),RATIO(20,10),T 1526. 1 RLEFT (30),ICON(30),CONSTR(30),PCON(30), 1527. 2 LFLAG(200),KFLAG(200),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /TOY4/J,CO COMMON /TOY4/J,CO COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA3/X COMMON /AREA3/X COMMON /AREA3/X 1536. C 1537. COMMON /SERCH1/ PCON 1538. C			
1514. C PICKUP ADDITIONAL HIGHWAY SEGMENTS INTO 1515. C THE SOLUTION SET AFTER THE INITIAL 1516. C SOLUTION IS OBTAINED BY THE METHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1521. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1522. 1 PEBR(20,10,10),PCR(20,10), 1523. DIMENSION CO(20,10),S(31),IP(200) 1524. INTEGER X(20,10),A(20,10),G,F,0,JJ(20,10),T 1525. DIMENSION XXG(20),RR(20),RATIO(20,10),T 1526. 1 RLEFT(30),ICON(30),CONSTR(30),PCON(30), 1527. 2 LFLAG(200),KFLAG(200),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /TOY4/J,CO 1531. COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA5/ INF 1535. COMMON /AREA3/X 1536. C 1537. COMMON /AREA3/X 1538. C 1539. <		THE PURPOSE OF THIS SUBROUTINE IS TO	
1515. C THE SOLUTION SET AFTER THE INITIAL 1516. C SOLUTION IS OBTAINED BY THE METHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C 1529. C 1521. DIMENSION PSBR(2Ø,1Ø,1Ø),PHBR(2Ø,1Ø,1Ø), 1522. 1 1523. DIMENSION CO(2Ø,1Ø),S(31),IP(2ØØ) 1524. INTEGER X(2Ø,1Ø),A(2Ø,1Ø),G,F,Q,JJ(2Ø,1Ø),T 1525. DIMENSION XXG(2Ø),RR(2Ø),RATIO(2Ø,1Ø), 1526. 1 1527. 2 1528. 3 1529. COMMON /AREA2/ NH,NS,T,ND ,NHT(2ØØ),JP(2Ø), 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /AREA5/ INF 1531. COMMON /AREA5/ INF 1532. COMMON /AREA5/ INF 1533. COMMON /AREA3/X 1534. COMMON /AREA3/X 1535. COMMON /AREA3/X 1536. COMMON /AREA3/X 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1549. C		DICKING ADDITIONAL HIGHWAY SEGMENTS INTO	
1516. C SOLUTION IS OBTAINED BY THE METHOD OF 1517. C EFFECTIVE GRADIENT. 1518. C 1519. C 1520. DIMENSION PSBR(20,10,10),PHBR(20,10,10), 1521. DIMENSION CO(20,10), PCR(20,10) 1522. 1 PEBR(20,10,10), PCR(20,10), 1523. DIMENSION CO(20,10),S(31), IP(200) 1524. INTEGER X(20,10),A(20,10),G,F,Q,JJ(20,10),T 1525. DIMENSION XXG(20),RR(20),RATIO(20,10),T 1526. 1 RLEFT (30), ICON(30),CONSTR(30),PCON(30), 1527. 2 LFLAG(200),KFLAG(200),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1536. COMMON /TOY3/ G,F,Q 1531. COMMON /AREA5/ INF 1532. COMMON /AREA5/ INF 1533. COMMON /AREA3/X 1534. COMMON /AREA3/X 1535. COMMON /AREA3/X 1536. COMMON /AREA3/X 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1540. C		THE COUNTION SET AFTER THE INITIAL	
1517. C EFFECTIVE GRADIENT. 1518. C 1519. C 1520. C 1521. DIMENSION PSBR(20,10,10), PHBR(20,10,10), 1522. 1 PEBR(20,10,10), PCR(20,10) 1523. DIMENSION CO(20,10), S(31), IF(200) 1524. INTEGER X(20,10), A(20,10), G, F, Q, JJ(20,10), T 1525. DIMENSION XXG(20), RR(20), RATIO(20,10), 1526. 1 RLEFT(30), ICON(30), CONSTR(30), PCON(30), 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH, NS, T, ND , NHTYP 1530. COMMON /TOY3/ G, F, Q 1531. COMMON /TOY4/JJ, CO 1532. COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA5/ INF 1535. COMMON /AREA3/X 1536. COMMON /AREA3/X 1537. COMMON /AREA3/X 1538. C 1539. C 1540. C		COLUTION TO OBTAINED BY THE METHOD OF	
1518. C 1519. C 1529. C 1521. DIMENSION PSBR(20,10,10), PHBR(20,10,10), 1522. 1 PEBR(20,10,10), PCR(20,10) 1523. DIMENSION CO(20,10), S(31), IP(200) 1524. INTEGER X(20,10), A(20,10), G,F,Q,JJ(20,10), T 1525. DIMENSION XXG(20), RR(20), RATIO(20,10), 1526. 1 RLEFT(30), ICON(30), CONSTR(30), PCON(30), 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH, NS, T, ND , NHTYP 1530. COMMON /TOY3/ G, F, Q 1531. COMMON /AREA5/ INF 1532. COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA3/X 1535. COMMON /AREA3/X 1536. COMMON /AREA3/X 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1540. C		SULUTION IS OBTAINED DI THE HETHOP C	
1519. C 1520. C 1521. DIMENSION PSBR(20,10,10), PHBR(20,10,10), 1522. 1 PEBR(20,10,10), PCR(20,10) 1523. DIMENSION CO(20,10), S(31), IP(200) 1524. INTEGER X(20,10), A(20,10), G, F, Q, JJ(20,10), T 1525. DIMENSION XXG(20), RR(20), RATIO(20,10), 1526. 1 RLEFT(30), ICON(30), CONSTR(30), PCON(30), 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH, NS, T, ND , NHTYP 1530. COMMON /TOY3/ G, F, Q 1531. COMMON /TOY4/JJ, CO 1532. COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA3/X 1535. COMMON /AREA3/X 1536. COMMON /AREA3/X 1537. COMMON /SERCH1/ PCON 1538. C 1537. COMMON /SERCH1/ PCON		EFFECTIVE ORADIENT.	
1520. C 1521. DIMENSION PSBR(20,10,10), PHBR(20,10,10), 1522. 1 PEBR(20,10,10), PCR(20,10) 1523. DIMENSION CO(20,10), S(31), IP(200) 1524. INTEGER X(20,10), A(20,10), G, F, Q, JJ(20,10), T 1525. DIMENSION XG(20), RR(20), RATIO(20,10), T 1526. 1 RLEFT (30), ICON(30), CONSTR(30), PCON(30), 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), 1528. 3 TONSTR(30) 1529. COMNON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMNON /TOY3/ G,F,Q 1531. COMMON /AREA5/ INF 1532. COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA5/ INF 1535. COMMON /AREA5/ INF 1536. COMMON /AREA5/ INF 1537. COMMON /AREA3/X 1536. COMMON /KNPSK1/ CONSTR,XSUN 1537. COMMON /AREA3/X 1538. C 1539. C 1540. C			
1521. DIMENSION PSBR(20,10,10), PHBR(20,10,10), 1522. 1 PEBR(20,10,10), PCR(20,10), 1523. DIMENSION CO(20,10), S(31), IP(200) 1524. INTEGER X(20,10), A(20,10), G,F,Q,JJ(20,10), T 1525. DIMENSION XXG(20), RR(20), RATIO(20,10), 1526. 1 RLEFT(30), ICON(30), CONSTR(30), PCON(30), 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /TOY3/ G,F,Q 1531. COMMON /TOY3/ G,F,Q 1532. COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA5/ INF 1535. COMMON /AREA3/X 1536. COMMON /AREA3/X 1537. COMMON /AREA3/X 1538. C 1539. C 1539. C 1549. C			
1522. 1 PEBR(20, 10, 10), PCR(20, 10) 1523. DIMENSION CO(20, 10), S(31), IP(200) 1524. INTEGER X(20, 10), A(20, 10), G, F, Q, JJ(20, 10), T 1525. DIMENSION XXG(20), RR(20), RATIO(20, 10), 1526. 1 RLEFT(30), ICON(30), CONSTR(30), PCON(30), 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH, NS, T, ND , NHTYP 1530. COMMON /TOY3/ G, F, Q 1531. COMMON /TOY3/ G, F, Q 1532. COMMON /AREA5/ INF 1533. COMMON /AREA5/ INF 1534. COMMON /AREA5/ INF 1535. COMMON /AREA3/X 1536. COMMON /AREA3/X 1537. COMMON /AREA3/X 1538. C 1539. C 1539. C 1540. C			
1523. DIMENSION CO(20,10),S(31),IP(200) 1524. INTEGER X(20,10),A(20,10),G,F,Q,JJ(20,10),T 1525. DIMENSION XXG(20),RR(20),RATIO(20,10), 1526. 1 RLEFT(30),ICON(30),CONSTR(30),PCON(30), 1527. 2 LFLAG(200),KFLAG(200),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /TOY3/ G,F,Q 1531. COMMON /TOY3/ G,F,Q 1532. COMMON /AREA5/ INF 1533. COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP 1534. COMMON /KNPSK1/ CONSTR,XSUN 1535. COMMON /AREA3/X 1536. COMMON /PICK1/ KFLAG,LFLAG 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1540. C		DIMENSION PSBR(20,10,10), PhBR(20,10)	
1524. INTEGER X(20,10), A(20,10), G,F,Q,JJ(20,10), I 1525. DIMENSION XXG(20), RR(20), RATIO(20,10), I 1526. 1 RLEFT(30), ICON(30), CONSTR(30), PCON(30), I 1527. 2 LFLAG(200), KFLAG(200), INF(200), JP(20), I 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND, NHTYP 1530. COMMON /TOY3/ G,F,Q 1531. COMMON /TOY4/JJ,CO 1532. COMMON /AREA5/ INF 1533. COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP 1534. COMMON /KNPSK1/ CONSTR,XSUN 1535. COMMON /AREA3/X 1536. COMMON /PICK1/ KFLAG,LFLAG 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1540. C		1 PEBR(20, 10, 10), PUR(20, 10)	
1525. DIMENSION XXG(2Ø),RR(2Ø),RATIO(2Ø,1Ø), 1526. 1 RLEFT(3Ø),ICON(3Ø),CONSTR(3Ø),PCON(3Ø), 1527. 2 LFLAG(2Ø0),KFLAG(2ØØ),INF(2ØØ),JP(2Ø), 1528. 3 TONSTR(3Ø) 1529. CONMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /TOY3/ G,F,Q 1531. COMMON /TOY4/JJ,CO 1532. COMMON /AREA5/ INF 1533. COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP 1534. COMMON /AREA3/X 1535. COMMON /AREA3/X 1536. COMMON /PICK1/ KFLAG,LFLAG 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 154Ø. C		DIMENSION CU($20, 10$), 5(31), 16(200)	
1526. 1 RLEFT (30), ICON (30), CONSTR (30), PCON (30), 1527. 2 LFLAG (200), KFLAG (200), INF (200), JP (20), 1528. 3 TONSTR (30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /TOY3/ G,F,Q 1531. COMMON /TOY4/JJ,CO 1532. COMMON /AREA5/ INF 1533. COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP 1534. COMMON /AREA3/X 1535. COMMON /AREA3/X 1536. COMMON /PICK1/ KFLAG,LFLAG 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1540. C		INTEGER X(20,10), A(20,10), G, F, G, SJ(20,10),	
1527. 2 LFLAG(200),KFLAG(200),INF(200),JP(20), 1528. 3 TONSTR(30) 1529. COMMON /AREA2/ NH,NS,T,ND ,NHTYP 1530. COMMON /TOY3/ G,F,Q 1531. COMMON /TOY4/JJ,CO 1532. COMMON /AREA5/ INF 1533. COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP 1534. COMMON /KNPSK1/ CONSTR,XSUN 1535. COMMON /AREA3/X 1536. COMMON /PICK1/ KFLAG,LFLAG 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1540. C	1525.	DIMENSION XXG(20), $RR(20)$, $RR(20)$, $RR(20)$	
1528.3 TONSTR(3Ø)1529.CONNON /AREA2/ NH,NS,T,ND ,NHTYP1530.COMMON /TOY3/ G,F,Q1531.COMMON /TOY4/JJ,CO1532.COMMON /AREA5/ INF1533.COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP1534.COMMON /KNPSK1/ CONSTR,XSUN1535.COMMON /AREA3/X1536.COMMON /PICK1/ KFLAG,LFLAG1537.COMMON /SERCH1/ PCON1538.C1540.C	1526.	1 $RLEFT(39), ICUN(39), CUNSTR(39), FCOR(39), IS(39),	
1529.CONNON /AREA2/ NH,NS,T,ND ,NHTYP1530.COMMON /TOY3/ G,F,Q1531.COMMON /TOY4/JJ,CO1532.COMMON /AREA5/ INF1533.COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP1534.COMMON /KNPSK1/ CONSTR,XSUN1535.COMMON /AREA3/X1536.COMMON /PICK1/ KFLAG,LFLAG1537.COMMON /SERCH1/ PCON1538.C1540.C	1527.	2 LFLAG(200), KFLAG(200), INF(200), JF(20),	
1530.CONNON /TOY3/ G,F,Q1531.COMMON /TOY4/JJ,CO1532.COMMON /AREA5/ INF1533.COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP1534.COMMON /KNPSK1/ CONSTR,XSUN1535.COMMON /AREA3/X1536.COMMON /PICK1/ KFLAG,LFLAG1537.COMMON /SERCH1/ PCON1538.C1539.C1540.C	1528.	3 TONSTR(30)	
1531.CONMON /TOY4/JJ,CO1532.COMMON /AREA5/ INF1533.COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP1534.COMMON /KNPSK1/ CONSTR,XSUN1535.COMMON /AREA3/X1536.COMMON /PICK1/ KFLAG,LFLAG1537.COMMON /SERCH1/ PCON1538.C1539.C1540.C	1529.		
1532.COMMON /AREA5/ INF1533.COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP1534.COMMON /KNPSK1/ CONSTR,XSUN1535.COMMON /AREA3/X1536.COMMON /PICK1/ KFLAG,LFLAG1537.COMMON /SERCH1/ PCON1538.C1539.C1540.C	1530.		
1533.COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,S,IP1534.COMMON /KNPSK1/ CONSTR,XSUN1535.COMMON /AREA3/X1536.COMMON /PICK1/ KFLAG,LFLAG1537.COMMON /SERCH1/ PCON1538.C1539.C1540.C	1531.	COMMON /TOY4/JJ,CO	
1534.CONMON /KNPSK1/ CONSTR,XSUN1535.COHMON /AREA3/X1536.CONMON /PICK1/ KFLAG,LFLAG1537.COMMON /SERCH1/ PCON1538.C1539.C1540.C	1532.	COMMON /AREA5/ INF	
1535. COMMON /AREA3/X 1536. COMMON /PICK1/ KFLAG,LFLAG 1537. COMMON /SERCH1/ PCON 1538. C 1539. C 1540. C	1533.	COMMON /CHCK1/PSBR,PHBR,PEBR,PCR,5,1P	
1536. CONNON /PICK1/ KFLAG,LFLAG 1537. CONNON /SERCH1/ PCON 1538. C 1539. C 1540. C	1534.		
1536. CONNON /PICK1/ KFLAG,LFLAG 1537. CONNON /SERCH1/ PCON 1538. C 1539. C 1540. C			
1537. CONHON /SERCH1/ PCON 1538. C 1539. C 1540. C		CONMON /PICK1/ KFLAG,LFLAG	
1538. C 1539. C 154 <i>9</i> . C		COMMON /SERCH1/ PCON	
1539. C 154 <i>9</i> . C			
154 <i>9</i> . C			
1541. NRES=G+F+Q+1		NRES=G+F+Q+1	
The manufact of EAV Source of 1 SAV Same		44 EDENAT((1/ // 50% (PHASE 2'./.50% (,/
A WAY ATNOLUCTON OF ADDITIONAL NIGHUAY ".		A ZAN STACHISTON OF ADDITIONAL HIGHWAY	•
		1 / JAA IROCUUIDA DI REDATIONNE NEENNE ,	
		•	
1546. WRITE (6, 101)		WKIIE(0,1017	X.
1547. 1Ø1 FORMAT (35X, SEGMENT NUMBER , 5X, STRATEGY , 3X,		91 FUKMAI (30X, SEDMENT NUMBER , JA, STRATEOT , 3	
1548. 1 'BENEFIT',/)			
1549. DU 122 1=1,8H	1549.	DU 122 1=1,MH	
155Ø. NKS=Ø	1550.		÷
1551. DO 121 J=1,NS		D0 121 J=1,NS	
1552. IF(CD(I,J))121,129,121		IF(CO(I,J))121,120,121	

1553.		120	NKS=NKS+1
1554.			A(I,J)=Ø
1555.		121	CONTINUE
1556.			IF(NKS.EQ.NS) INF(I)=I
1557.		177	CONTINUE
1558.	С	14.4	CONTINOL
1559.	c		
	C		
1560.	L	~~	
1561.		9 9	DO 1 II=1,NRES
1562.			ICON(II)=II
1563.			PCON(II)=CONSTR(II)
1564.		1	CONTINUE
1565.	С		
1566.	С		
1567.	С		
1568.			CALL SORTI (CONSTR, NRES, ICON)
1569.	С		
1570.	С		
1571.	С		
1572.	С		SORTING THE CONSTRAINTS IN POSITIVE ORDER
1573.	С		ACCORDING TO THEIR UTILIZATION.
1574.	C		
1575.	С		
1576.	С		
1577.			DO 2 II=1,NRES
1578.			IF(CONSTR(ICON(II))-100.)2,2,999
1579.		2	CONTINUE
1580.	C	•	
1581.			
	ç		
1582.	C		
1583.	C		CHECKS WHETHER ALL THE CONSTRAINTS ARE
1584.	C		SATISFIED OR NOT.
1585.	C		
1586.	С		
1587.	С		
1588.			INTEX=0
1589.			DO 49 I=1,NH
1595.			IF(I-INF(I))47,46,47
1591.		46	INTEX=INTEX+1
1592.			GO TO 49
1593.		47	IF(I-KFLAG(I))48,50,48
1594.			INTEX=INTEX+1
1595.			CONTINUE
1596.	С	••	
1597.	č		
1598.	C		
	. L		TE (THTEN FO HUN CO TO DOO
1599.	~		IF(INTEX.EQ.NH) GO TO 999
1600.	C		
1601.	С		
1692.	С		
1693.	С		THIS IS TO CHECK WHETHER ALL THE FEASIBLE
1694.	C		HIGHWAY SEGMENTS ARE ALREADY IN THE
1605.	C		SOLUTION OR NOT.
1696.	С		
1607.	С		

1698.	С
1609.	50 DO 60 I=1,NH
1610.	IF(I.EQ.INF(I)) GO TO 60
1611.	IF(I-KFLAG(I))60,3,60
1612.	3 INDEX=0
1613.	C
1614.	C
1615.	Ē.
1616.	D0 13 J=1,NS
1617.	IF (CO(I,J) .LE. Ø.) 60 TO 12
1618.	IF (X(I,J))4,12,4
1619.	C
1620	C
1621.	C
1622.	4 DO 43 JX=1,NRES
	IF(ICON(JX)-G)5,5,6
1623.	5 TONSTR(ICON(JX))= PCON(ICON(JX))+
1624.	
1625.	1 PSBR(I,J,ICON(JX)) Go to 11
1626.	•
1627.	6 IF(ICON(JX)-(G+F))7,7,8
1628.	7 TONSTR(ICON(JX))= PCON(ICON(JX))+
1629.	1 PEBR(I,J,ICON(JX)-G)
1630.	GO TO 11 C TECTEONY IN COLECOND D 14
1631.	8 IF(ICON(JX)-(G+F+Q))9,9,10
1632.	9 TONSTR(ICON(JX))= PCON(ICON(JX))+
1633.	1 PHBR(I,J,ICON(JX)-G-F)
1634.	
1635.	10 TONSTR(ICON(JX)) = PCON(ICON(JX))+PCR(I,J)
1636	11 IF(TONSTR(ICON(JX))-100.) 43,43,12
1637.	43 CONTINUE
1638.	C
1639.	C
1640.	C
1641.	C
1642.	45 A(I,J)=1
1643.	GO TO 13
1644.	12 A(I,J)=0
1645.	INDEX=INDEX+1
1646.	13 CONTINUE
1647.	C
1648.	C
1649.	
1650.	IF(INDEX.EQ.NS) INF(I)=I
1651.	68 CONTINUE
1652.	NHH=Ø
1653.	C
1654.	C
	C
1655.	
1656.	DO 65 I=1,NH
1657.	IF(I-INF(I))61,70,61
1658.	6 T 1 E F F A F F A F F T 3 7 7 (R 5 6 5 7 7 A
	61 IF(I-KFLAG(I))70,65,70
1659.	70 NHH=NHH+1

1662.	C	
1663.	· C	
1664		IF(NHH.EQ.NH) GO TO 999
1665.	C	
1666.	С	
1667.	C	
1668	Ċ	х. Х
1669.		DO 3Ø I=1,NH
1670.		IF(I-INF(I))14,30,14
1671		14 IF(I-KFLAG(I))30,15,30
1672.		15 LFLAG(I)=1
1673.	C	
1674.	C	
1675.	С	
1676.		DO 28 J=1,NS
1677.		DENOM=Ø.
1678.		IF(A(I,J))16,25,16
.1679.	C	
1680.	С	
1681.	C	•
1682.		16 DO 24 KK=1,NRES
1683.		IF(PCON(ICON(KK))-50.)24,24,17
1684.		17 IF(ICON(KK)-G)18,18,19
1685.	· ·	18 DENOM=DENOM+PSBR(I, J, ICON(KK))
1686.		GO TO 24
1687.		19 IF(ICON(KK)-(G+F))20,20,21
1688.		20 DENOM=DENOM+PEBR(I, J, ICON(KK)-G)
1689.		GO TO 24
1690.		21 IF(ICON(KK)-(G+F+Q))22,22,23
1691.		22 DENOM=DENOM+PHBR(I, J, ICON(KK)-G-F)
1692.		GO TO 24
1693.		23 DENOM=DENOM+PCR(I,J)
1694.	-	24 CONTINUE
1695.	С	
1696.	Ċ	
1697.	Č	
1698.		GO TO 26
1699.		25 RATIO(I,J)=Ø.
1700.		GO TO 27
1701.		26 RATID(I,J)=CO(I,J)/DENOM
1702.		27 JP(J)=J
1703.		RR(J)=RATIO(I,J)
1704.		28 CONTINUE
1705.	C	20 OUNTINDE
1706.	Č.	· · ·
1707.	č	
1768.	U 1	CALL SORT1(RR,NS,JP)
1709.	С	WHEE JUNII (IN gRO JUT)
1710.	č	
1711.	C	
1712.	C	SORTING IN POSITIVE ORDER
713.	C	CONTINU IN FUSILIVE UNDER
1714.	Č	
	0	

1715.	C
1716.	DO 29 K=1,NS
1717.	29 JJ(I,K)=JP(K)
1718.	30 CONTINUE
1719.	С
1720.	C
1721.	C
1722.	D0 34 I=1,NH
1723.	IP(I)=I
1724.	IF(I-INF(I))31,32,31
1725.	31 IF(I-KFLAG(I))32,33,32
1726.	32 XXG(I)=Ø.
1727.	GO TO 34
1728.	33 XXG(I)=RATIO(I,JJ(I,LFLAG(I)))
1729.	34 CONTINUE
1730.	С
1731.	C · ·
1732.	C
1733.	CALL SORTI(XXG,NH,IP)
1734.	C
1735.	С
1736.	C
1737.	KFLAG(IP(†))=Ø
1738.	LFLAG(IP(1)) =1
1739.	WRITE(6,107) IP(1),JJ(IP(1),LFLAG(IP(1))),
1749.	1 CO(IP(1), JJ(IP(1), LFLAG(IP(1))))
1741.	107 FORMAT(40X,14,11X,13,4X,F10.0)
1742.	XSUM=XSUN+CO(IP(1),JJ(IP(1),LFLAG(IP(1))))
1743.	C
1744.	C
1745.	C
1746.	DO 57 II=1,NRES
1747.	IF(II-G)51,51,52
1748.	51 CONSTR(II)=PCON(II)+PSBR(IP(1),JJ(IP(1),
1749.	1 LFLAG(IP(1)),II)
1759.	60 TO 57
1751.	52 IF(II-6-F)53,53,54
1752.	53 CONSTR(II)=PCON(II)+PEBR(IP(1),JJ(IP(1),
1753.	1 LFLAG(IP(1)),II-G)
1754.	GO TO 57
1755.	54 IF(II-G-F-Q)55,55,56
1756.	55 CONSTR(II)=PCON(II)+PHBR(IP(1),JJ(IP(1),
1757.	1 LFLAG(IP(1))),II-G-F)
1758.	GO TO 57
1759.	56 CONSTR(II)=PCON(II)+PCR(IP(1),JJ(IP(1),
1760.	1 LFLAG(IP(1)))
1761.	57 CONTINUE
1762.	C
1763.	
1764.	
1765.	GO TO 99
1766.	999 WRITE(6,188)XSUN 188 FORMAT(/,35X, NO MORE HIGHWAY SEGMENT CAN B',
1767.	1'E INCLUDED',//,41X, NET BENEFIT=',F14.Ø,//)
1768.	I E INCLUDED \$775MIN\$ REI DEREFII" \$FIM.89777

1769.	WRITE(6,189)	
1770.	189 FORMAT('1',45X,'CONSTRAINT',15X,'PERCENT',/,	
1771.	1 69X, UTILIZATION (,//)	
1772.	DO 83 II=1,NRES	
1773.	CONSTR(II)=PCON(II)	
1774.	WRITE(6,190) II,PCON(II)	
1775.	83 CONTINUE	
1776.	С	
1777.	С	
1778.	С	
1779.	190 FORMAT(48X,14,19X,F6.2)	
1780.	С	
1781.	C	
1782.	C	
1783,	CALL SEARCH	
1784.	C	
1785.	C	
1786.	Ĉ	
1787.	RETURN	
1788.	END	
1789.	C	
1790.	C	
	C	
1791.		
1792.	C ************************************	
1793.	C * *	
1794.	C * SUBROUTINE SEARCH *	
1795.	C * *	
1796.	C ************************************	
1797.	C	
1798.	C	
1799.	SUBROUTINE SEARCH	
1800.	С	
1801.	С	
1802.	C THE PURPOSE OF THIS SUBROUTINE IS TO	
1803.	C IMPROVE THE CURRENT SOLUTION BY	
1804.	C SEARCHING THE STRATEGIES WITHIN THE	
1805.	C HIGHWAY SEGMENTS ALREADY IN SOLUTION.	
1806.	C HIGHWAT GEBRERTS HEREHDT IN SOUSTION.	
1807.	C	
1808.		
	DIMENSION PSBR(20,10,10), PHBR(20,10,10),	
1809.	1 PEBR(20,10,10),PCR(20,10),XX(200),KX(200)	
1810.	DIMENSION CO(20,10),S(31),IP(200),INF(200),	
1811.	1 CCO(200),CONSTR(30),PCON(30),LFLAG(200),	
1812.	2 KFLAG(200),TCON(30)	
1813.	INTEGER G,F,Q,JJ(20 ,10),T,MFLAG(200),	
1814.	1 JFLAG(200)	
1815.	C	
1816.	C	
1817.	С	`
1818.	COMMON /AREA2/ NH,NS,T,ND,NHTYP	
1819.	COMMON /TOY3/ G.F.Q	
1820.	CONNON /TOY4/ JJ,CO	
1821.	COMMON /AREA5/ INF	
1822.	COMMON /CHCK1/ PSBR,PHBR,PEBR,PCR,S,IP	
1823.	CONMON/KNPSK1/CONSTR, XSUN	
	wwentering new west warrang nawn	

1824.	COHMON /PICK1/ KFLAG,LFLAG
1825.	COMMON /SERCH1/ PCON
1826.	COMMON /SERCH2/ XXSUM, JFLAG
1827.	C
1828.	C
1829.	С
1830.	NRES=G+F+Q+1
1831.	C
1832.	Ĉ.
1833.	DO 229 I=1,NH
1834.	CCO(I)=#.
1835.	IP(I)=I
	IF(I)-I IF(I- KFLAG(I)) 228,229,228
1836.	228 MFLAG(I)= JJ(I,LFLAG(I))
1837.	
1838.	JFLAG(I)=MFLAG(I)
1839.	229 CONTINUE
1840.	
1841.	C
1842.	1 DO 10 I=1,NH
1843.	C*** NEXT 2 STATEMENTS ADDED BY DALE SCHAFER
1844.	CCO(I)=Ø
1845.	IP(I)=I
1846.	IF(KFLAG(I).EQ1) GO TO 10
1847.	IF(I-KFLAG(I)) 2,10,2
1848.	2 DO 3 J=1,NS
1849.	XX(J) = CO(I, J)
1850.	KX (J)=J
1851.	3 CONTINUE
1852.	C
1853.	C
1854.	C PICKS THE BEST OBJECTIVE FUNCTION
1855.	C COEFFICIENT IN EACH HIGHWAY SEGMENT
1856.	C IN SOLUTION.
1857.	C
1858.	C
1859.	CALL SORTI (XX,NS,KX)
1860.	XNUM= CO(I, JFLAG(I))
1861.	IF(CO(I,KX(1)).LE. XNUH) GO TO 5
1862.	C
1863.	Č
	C
1864.	
1865.	DO 9 J=1,NS
1866.	IF(CO(I,KX(J)) -XNUH) 10,10,6
1867.	C
1868.	С
1869.	6 DO 7 II=1,NRES
1870.	IF(II-G) 21,21,22
1871.	21 TCON(II)= PCON(II)+ PSBR(I,KX(J), II) -
1872.	1 PSBR(I,NFLAG(I),II)
1873.	GO TO 27
1874.	22 IF(II-G-F) 23,23,24
1875.	23 TCON(II) =PCON(II) + PEBR(I,KX(J),II-G) -
1876.	1 PEBR(I,MFLAG(I),II-G)
1877.	60 TO 27
E W7 7 8	

1878.	24 IF(II-G-F-Q) 25,25,26
1879.	25 TCON(II)= PCON(II) + PHBR(I,KX(J), II-G-F)-
1880.	1 PHBR(I, MFLAG(I), II-G-F)
1881.	60 TO 27
1882.	26 TCON(II)=PCON(II)+ PCR(I,KX(J))-
1883.	1 PCR(I,MFLAG(I))
	27 IF(TCON(II) -100.) 7,7,9
1884.	7 CONTINUE
1885.	
1886.	C
1887.	
1888.	CCO(I) = CO(I, KX(J)) - XNUM
1889.	MFLAG(I) = KX(J)
1890.	GO TO 1Ø
1891.	9 CONTINUE
1892.	5 KFLAG(I) = -1
1893.	10 CONTINUE
1894.	C
1895.	C
1876.	č
1897.	CALL SORTI(CCO,NH,IP)
1878.	
1899.	C C
1900.	IF(ABS(CCO(1)).LT.1.E-4) GO TO 77
1901.	
1992.	KFLAG(IP(1)) = -1
1903	DO 88 II=1,NRES
1904.	IF(II-G) 35,35,36
1905.	35 PCON(II) = PCON(II) + PSBR(IP(1), MFLAG(IP(1)) 35 PCON(II) = PCON(II) + PSBR(IP(1), MFLAG(IP(1)))
1906.	1,II)-PSBR(IP(1),JJ(IP(1),LFLAG(IP(1))),II)
1907.	GO TO 88
1908.	36 IF(II-G-F) 37,37,38
1909.	37 PCON(II)=PCON(II)+ PEBR(IP(1), MFLAG(IP(1)),
1910.	1 II-G)-PEBR(IP(1), JJ(IP(1), LFLAG(IP(1))), II-G
1911.	2)
1912.	GO TO 88
1913.	38 IF(II-G-F-Q) 39,39,40
1914	39 PCON(II)=PCON(II)+ PHBR(IP(1), MFLAG(IP(1)),
1915.	1 II-G-F)-PHBR(IP(1),JJ(IP(1),LFLAG(IP(1))),
1916.	211-G-F)
1917.	GO TO 88
	40 PCON(II) = PCON(II) + PCR(IP(1), MFLAG(IP(1)))
1918.	1 - PCR(IP(1), JJ(IP(1), LFLAG(IP(1))))
1919.	IF(PCON(II) -100.) 88,88,99
1920.	
1921.	88 CONTINUE JFLAG(IP(1))=NFLAG(IP(1))
1922 -	
1923.	GO TO 1
1924.	C
1925.	C
1926.	99 WRITE(6,1234)
1927.	1234 FORMAT(1H , ******** 99 ENTERED ********)
1928.	DO 15 II=1,NRES
1929.	IF(II-G) 41,41,42
1930.	41 PCON(II)=PCON(II)-PSBR(IP(1), NFLAG(IP(1)), II)
1931.	2+PSBR(IP(1), JJ(IP(1), LFLAG(IP(1))), II)
1932.	GO TO 15

1933.	42 IF(II-G-F) 43,43,44
1934.	43 PCON(II)=PCON(II) -PEBR(IP(1), MFLAG(IP(1)),
1935.	1 II-G) +PEBR(IP(1), JJ(IP(1), LFLAG(IP(1))), II-G)
1936.	GO TO 15
1937.	44 IF(II-G-F-Q) 45,45,46
1938.	45 PCON(II)= PCON(II)- PHBR(IP(1), MFLAG(IP(1)),
1939.	1 II-G-F)+PHBR(IP(1),JJ(IP(1),LFLAG(IP(1))),II-G-F)
1940.	GO TO 15
1941.	46 PCON(II)=PCON(II)- PCR(IP(1), MFLAG(IP(1)))
1942.	2+PCR(IP(1),JJ(IP(1),LFLAG(IP(1))))
1943.	15 CONTINUE
1944.	
1945.	
1946.	77 WRITE(6,100)
1947.	100 FORMAT('1',//,50X,'PHASE 3 ',/,50X,'',
1948.	1//,20X, FINAL SOLUTION OBTAINED AFTER ',
1949.	2 SEARCHING FOR BETTER STRATEGIES THAN THOSE
1950.	3 ,/,20X, SELECTED IN PHASE 1 AND PHASE 2 ,//
1951.	4)
1952.	WRITE(6,101)
1953.	101 FORMAT(// ,35X, OPTIMUM SOLUTION ', //,
1954.	1 25X, HIGHWAY SEGMENT', 4 X, STRATEGY', 3X,
1955.	2 'BENEFIT',/)
1956.	XXSUM=Ø.
1957.	DO 17 I=1,NH
1958.	IF(I-KFLAG(I))16,17,16
1959.	16 WRITE(6,102) I,JFLAG(I),CO(I,JFLAG(I))
1960.	XXSUM=XXSUM+ CO(I, JFLAG(I))
1961.	17 CONTINUE
1962.	102 FORMAT(31X,14,12X,13,4X,F10.0)
1963.	WRITE(6,103)XXSUM
1964.	103 FORMAT(/,29X, THE NET BENEFIT IS ',F16.0,///)
1965.	WRITE(6,104)
1966.	104 FORMAT(///,33X, CONSTRAINT',8X, PERCENT',
1967.	1 /,49X, UTILIZATION ,/)
1968. 1969.	DO 18 II=1,NRES
1979.	WRITE(6,105) II, PCON(II) 18 CONTINUE
1971.	105 FORMAT(35X, 14, 12X, F6.2)
1972.	
1973.	C
1974	C C C C C C C C C C C C C C C C C C C
1975.	CALL RPRINT
1976.	RETURN
1977.	END
1978.	C
1979.	č

1980.	C
1981.	[]
1982.	C *
1983.	C * SUBROUTINE IPRINT *
1984.	C · · * *
1985.	C ************************************
1986.	C
1987.	Č
1988.	č
1989.	-
1999.	SUBROUTINE IPRINT(MAT,STRAT,JFLAG,PSBR,NH,G)
1991.	
1992.	C
1993.	C THIS SUBROUTINE IS USED AS INPUT TO THE
1994.	C SUBROUTINE RPRINT.
1995.	C
1996.	С
1997.	C
1998.	INTEGER MAT(10,5),STRAT(15,6)
1999.	DIMENSION FSBR(20,10,10), JFLAG(200), KFLAG(20
2000.	10),LFLAG(200)
2001.	INTEGER 6
2002.	COMMON /PICK1/ KFLAG,LFLAG
2003.	
2004.	C
2005.	C
2006.	IF(G-4) 5,5,6
2007.	5 K=G
2008.	GO TO 7
2009.	6 K=4
2010.	
	7 WRITE(6,107) ((MAT(II,M),M=1,5),II=1,K)
2011.	107 FORMAT(///,5X, SEGMENT NO. ', 3X, 'STRATEGY', 17X
2012.	1 ,4(2X,5A4),/)
2013.	C
2014.	C
2015.	DO 9 I=1,NH
2016.	IF(I-KFLAG(I))8,9,8
2017.	8 WRITE(6,108) I,(STRAT(JFLAG(I),H),H=1,6),(PSBR(I,
2018.	1JFLAG(I),II),II=1,K)
2019	108 FORMAT(8X,14,6X,6A4,T50,4(F7.2,13X))
2020.	9 CONTINUE
2021.	C
2022.	C
	IF(G.LE. 4) GO TO 25
2023.	
2024.	IF (G-8) 10,10,11
2025.	1Ø KK=6
2026.	GO TO 12
2927.	11 KK=8
2028.	12 WRITE(6,107) ((MAT(II,M),M=1,5),II=5,KK)
2029.	C
2030.	С
2031.	Ĉ.
2032.	DO 14 I=1,NH
2033.	IF(I-KFLAG(I)) 13,14,13
2034.	13 WRITE(6,108) I,(STRAT(JFLAG(I),M),M=1,6),(PSBR(I,
2035.	1 JFLAG(I),II),II=5,KK)
2036.	14 CONTINUE
2037.	C
203/ .	

2038.	C	
2039.	C	
2040.		IF(G.LE. 8) GO TO 25
2041.		IF(G-12)15,15,16
2042.		15 KK=G
2043.		G0 TO 17
2044.		16 KK=12
2045.		17 WRITE(6,107) ((MAT(II,M),M=1,5),II=1,KK)
2045.	C	
	C	
2047.	C	
2048.	Ŀ	
2049.		DO 19 I=1,NH IF(I-KFLAG(I))18,19,18
2050.		18 WRITE(6,108) I,(STRAT(JFLAG(I),M),M=1,6),(PSBR(I,
2051.		18 WRITE(6,198) 1,(STRHIGPLHO(1),)),(1),(1),(1),(1),(1),(1),(1),(1),(
2052.		1JFLAG(I),II),II=9,KK)
2053.		19 CONTINUE
2054.	С	
2055.	С	
2056.	С	
2057.		IF (G.LE. 12) GO TO 25
2058.		IF (G-16) 20,20,21
2059.		2Ø KK=G
2060.		60 TO 22
2061.		21 KK=16
2062.		22 WRITE(6,107) ((MAT(II,M),M=1,5),II=13,KK)
2063.	C	
	C	
2064.	C	
2065.	L	
2066.		DO 24 I=1,NH
2067.		IF(I- KFLAG(I))23,24,23
2068.		23 WRITE(6,108) I,(STRAT(JFLAG(I),M),M=1,6),(PSBR(I,
2069.		1 JFLAG(I),II),II=13,KK)
2070.		24 CONTINUE
2071.		25 RETURN
2072.		END
2073.	С	
2074.	С	
2075.	C	
2076.	С	
2077.	C	*****
2078.	C	* * * * *
2079.	C	* SUBROUTINE RPRINT *
2080.	C	*
2981.	C	******
2082.	0	
2083.	С	
2084.	С	
2085.		SUBROUTINE REFRINT
2086.	С	
2087.	Č	
2088.	Ĉ	
2089.	Č	THIS SUBROUTINE PRINTS THE OPTIMAL
2090.	c	MAINTENANCE DECISIONS, AND THE RESOURCE
2090.	C	REQUIREMENTS ASSOCIATED WITH THE
	C	OPTIMAL MAINTENANCE DECISIONS.
2092.	L C	WE LANTE THIAN FERRING FREE FREE
2093.	L.	

2094.	С	
2074.		
2096.	DIMENSION PSBR(20,10,10), PHBR(20,10,10),TOTR(20),IEX(20),	
2097.	1 PEBR(20,10,10), PCR(20,10),R(20,11),CR(10),XL(200)	
2098.	REAL*4 L1(200),L2(200)	
2099.	DIMENSION CO(20,10), S(31), IP(200), PCON(30)	
2100.	1 ,LFLAG(200),KFLAG(200) ,CONSTR(30),COST(20,10)	
2101.	INTEGER G,F,Q, JJ(20,10), T,WFLAG(200),	
2102.	1 JFLAG(200),TDATA	
2103.	INTEGER FAR1(50,2),STRAT(15,6),	
2104.	1 MAT(10,5),EQUP(10,5),MANP(10,5),	
2105.	2 OVHD(5),PAR2(50,3)	
2106.	INTEGER DISTR(15,5)	
2107	C	
	C	
2108.	C	
2109.		
2110.	COMMON /AREA2/ NH,NS,T,ND,NHTYP	
2111.	COMMON /DATIN1/PAR1,PAR2	
2112.	COMMON /DATIN4/ MAT,EQUP,MANP,OVHD	
2113.	COMMON /TOY4/ JJ,CO	
2114.	CONNON /CHCK1/ PSBR,PHBR,PEBR,PCR,S,IP	
2115.	COMMON /TOY3/ G,F,Q	
2116.	COMMON /KNPSK1/ CONSTR,XSUM	
2117.	COMMON /PICK1/ KFLAG,LFLAG	
2118.	COMMON /SERCH1/ PCON	
2119.	COMMON /SERCH2/ XXSUM, JFLAG	
2120.	COMMON /DATIN3/STRAT,DISTR	
2121.	COMMON /AREA1/DIST(10,11),P(10,11,20),R,	
2122.	1RNIN(11,20,2),WW(20),TRAF(20),ENVIR(20)	
2123.	CONNON /TOY2/SG(10),HQ(10),EF(10),CC	
2124.	COMMON /DATCK1/ L1,L2	
	COMMON /DATCK2/ SGR(10,10),EFR(10,10),HQR(10,10),CR	
2125.		
2126.	CONMON /ADDON/ TDATA	
2127.	COHMON /DATING/ RHAX(11)	
2128.	C	
2129.	C	
2130	C	
2131.	WRITE(6,101)	
2132.	101 FORMAT('1', 41X, 'OPTIMAL MAINTENANCE DECIS',	
2133.	1 (IONS',///)	
2134.	WRITE(6,102)	
2135.	102 FORMAT(20X, SEGMENT NO. ,6X, NAME, 10X,	
2136.	1 'STRATEGY',21X,'BENEFIT',//)	
2137.	C	
2138.	C	
2139.	C	
2140.	DO 2 I=1,NH	
2141.	IF(I-KFLAG(I)) 1,2,1	
2142.	1 WRITE(6,103) I, (PAR1(I,J),J=1,2),(STRAT(JFLAG(I),K),K=1,6),
2143.	1 CO(I,JFLAG(I))	
2144.	2 CONTINUE	
2145.	1Ø3 FORMAT(23X,I4,9X,2A4,2X,6A4,2X,F15.Ø)	
2146.	C	
2147.	C	
2148.	WRITE(6,104) XXSUN	
2149.	104 FORMAT(/, T60, NET BENEFIT=', F16.0)	
2150.		

01E1		•
2151.		
2152.		
2153.	105 FORMAT(111, 45X, RESOURCE REQUIREMENTS1,///)	
2154.	C	
2155.	C	-
2156.		
2157.		
		:
2158.		
2159.		
2160.	С	•
2161.	C	
2162.	CALL IPRINT(MAT,STRAT, JFLAG,PSBR,NH,G)	
2163.	C	
2164.	C C	
2165.		
2166.	107 FORMAT(11, 41X, EQUIPMENT REQUIREMENTS /,	
2167.	1 'IN PERCENTS',/)	
2168.	C	
2169.		·
2170.	CALL IPRINT(EQUP.STRAT, JFLAG, PEBR, NH, F)	
2171.	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	
2172.	C	•
2173.	WRITE(6,108)	
2174.	108 FORMAT(11, 41X, MANPOWER REQUIREMENTS (,	
2175.	1 (IN PERCENTS')	
2176.	C	
2177.		
2178.	CALL IPRINT(MANP,STRAT,JFLAG,PHBR,NH,Q)	
2179.	\mathbf{C} , where \mathbf{C}	
2180.	C	
2181.	WRITE(6,109)	
2182.	109 FORMAT('1', 34X, OVERHEAD BUDGET REQUIREMENT'	
2183.	1 , IN PERCENTS',//)	
2184.	WRITE(6,110)	
2185.	110 FORMAT(20X, SEGMENT NO. 7,7X, NAME , 10X,	
2186.	1 'STRATEGY', 10X, 'OVERHEAD BUDGET', //)	
2187.		
		·
2188.	C	
2189.	DO 197 II=1,NH	
2190.	TOTR(II)=Ø.	
2191.	197 CONTINUE	
2192.	1E=Ø	
2193.	DO 4 I=1,NH	
2194.		
		1/
2195.	3 WRITE(6,111) I, (PAR1(I,J), J=1,2), (STRAT(JFLAG(I),K)	,K=1,0/,
2196.	1 PCR(I,JFLAG(I))	
2197.	111 FORMAT(23X, I4, 9X, 2A4, 2X, 6A4, 6X, F6.2)	
2198.	GD TO 4	
2199.	200 IE=IE+1	
2200.	IEX(IE)=I	
2201.		
	4 CONTINUE	
2202.	IET=IE	
2203.	C	
2204.	C	

0045	c	
2205.	C	515.00M A. 10 . A. 1
2206.		NRES=G+F+Q+1
2207.		WRITE(6,112)
2208.		FORMAT('1',///,29X, 'RESOURCE UTILIZATION',
2209.		//,25X, CONSTRAINT',12X, PERCENT',/,45X,
2210.		2 'UTILIZATION',/)
2211.	С	
2212.	C	
2213.	C .	
2214.		DO 11 II=1,NRES
2215.		IF(II-G)5,5,6
2216.	5	WRITE(6,113) (MAT(II,M),M=1,5),PCON(II)
2217.		GO TO 11
2218.	6	IF(II-(G+F)) 7,7,8
2219.		WRITE(6,113) (EQUP((II-G),N),N=1,5), PCON(II)
2220.		GO TO 11
2221.	8	IF(II-(G+F+Q)) 9,9,10
2222.		WRITE(6,113) (MANP((II-G-F),M),M=1,5), PCON(II)
2223.	113	FORMAT(23X,5A4,4X,F6.2)
2224.		GO TO 11
2225.	1Ø	WRITE(6,113) (OVHD(M), H=1,5), PCON(II)
2226.	11	CONTINUE
2227.		J=2
2228.		RTOTH=1.E20
2229.		DO 201 IE=1,IET
2230.		IEXNOW=IEX(IE)
2231.		DO 202 K=1,ND
2232.		TOTR(IEXNOW)=TOTR(IEXNOW) + R(IEXNOW,K)
2233.		XL(IEXNOW)=L1(IEXNOW) * L2(IEXNOW)
2234.	201	COST(IEXNOW, J)=XL(IEXNOW) * CR(J)
2235.		DO 215 I=1, IET
2236.	211	DO 203 IE=1,IET
2237.		IF (TOTR(IEX(IE)).GE.RTOTM) GO TO 203
2238.	÷	RTOTM=TOTR(IEX(IE))
2239.		IEM=IEX(IE)
2240.	2Ø3	CONTINUE
2241.		COST2=CC*PCON(21)/100. + CDST(IEM,J)
2242.		COST2=CC - COST2
2243.		IF (COST2.LT.Ø.) 60 TO 2065
2244.		PBUSD=(CC-COST2)/CC * 100.
2245.		SUM=Ø.Ø
2246.		DO 725 K=1,ND
2247.		L=Ø
2248.		IT=T
2249.		DDIST=DIST(J,K)
2250.		IF ((R(IEM,K) + DIST(J,K)) - RMAX(K))731,731,732
2251.		DDIST=RMAX(K) - R(IEM,K) + Ø.1
2252.		CONTINUE
2253.		L=L + 1
2254.		PP=1-TRAF(IEN)*ENVIR(IEN)*(1P(J,K,L))
2255.		IF (PP.LE.Ø.) PP=Ø.
2256.	1	PP=PP*(RMAX(K))
2257.	ł	RR=R(IEM,K) + DDIST
2258.		IF (RR.LT.PP) GO TO 723
2259.		IF (PP-R(IEM,K)) 725,722,722
		· · ·
2260.	722	SUM=SUM + PP - R(IEM,K)
-------	--------	--
2261.		IF (SUM.LE.Ø.) SUM=Ø.
2262.		GO TO 726
2263.	723	II=II + 1
2264.	726	IF (IT-TDATA) 724,725,725
2265.	724	
2266.	725	CONTINUE
2267.		ADBNF=SUM*XL(IEN)
2268.		XXSUN=XXSUM + ADBNF
2269.		IGG=Ø
227ø.		IGF = Ø
2271.		16Q=Ø
2272.		WRITE(6,712)
2273.	712	•
2274.		129X, 'RESOURCE UTILIZATION', //25X, 'CONSTRAINT', 12X, 'PERCENT',
2275.		2/45X, UTILIZATION //)
2276.		D0 7Ø1 II=1.6
2277.		
		PCON(II)=PCON(II) + PSBR(IEM,J,II)
2278.		WRITE(6,113) (MAT(II,H),H=1,5),PCON(II)
2279.		IF (PCON(II).GT.100.) IGG=1
2280.	701	CONTINUE
2281.	С	
2282.		DO 702 II=1,F
2283.		III=II+G
2284.		PCON(III)=PCON(III) + PEBR(IEM,J,II)
2285.		WRITE(6,113) (EQUP(II,M),M=1,5),FCON(III)
2286.		IF (PCON(III).GT.100.) IGF=1
2287.	7ø2	CONTINUE
2288.	С	
2289.		DO 703 II=1,Q
2290.		III=II+G+F
2291.		PCON(III)=PCON(III) + PHBR(IEM,J,II)
2292.		WRITE(6,113) (MANP(II,M),M=1,5),PCON(III)
2293.		IF (PCON(III).GT.100.) IGQ=1
2294.	203	CONTINUE
2295.	С	
2296.		IF ((IGG.EQ.1).OR.(IGF.EQ.1).OR.(IGR.EQ.1)) WRITE(6,714)
2297.	714	FORMAT(1H-, ***** NOTE: ONE OR MORE PERCENTS ARE',
2298.		1'GREATER THAN 100 ******)
2299.		WRITE(6,1210) IEM, PBUSD, ADBNF, XXSUM
2300.	1210	FORMAT(1HØ, HIGHWAY SEGMENT NO. 7, I3, 1X, HAS BEEN ADDED7,
2301.		1/1HØ, THE OVERHEAD BUDGET UTILIZATION NOW BECOMES 4, F12.4,
2302.		2/1HØ, ADDITIONAL BENEFIT = (,F12.4,10X, TOTAL BENEFIT = (,F12.4)
2303.		WRITE(6,1213) J
2304.	1/21/7	FORMAT(1H+,90X, THE STRATEGY USED WAS (,13)
2305.	1210	PCON(21) = (CC - COST2) / CC * 100.
2306.	7415	
2307.		TOTR(IEM)=1.E21
	5.15	RTOTM≔1.E2Ø
2308.	215	CONTINUE
2309.		WRITE(6,1214)
2310.	1214	FORMAT(1H-, NO MORE SECTIONS CAN BE ADDED ()
2311.		WRITE(6,699)
2312.	699	FORMAT(1H1)
2313.	÷	RETURN
2314.		END

								÷
2315.	//SYSIN	DD *						
2316.	TE	ST PROBLEM	FOR THE	STATE OF	TEXAS			
2317.	15	8 20	16 6	2 4		8		
2318.	4.53	26.0	1 1.0	1.Ø US		MILAM	Ø2Ø4-Ø5Ø.Ø	0.0
2319.	12.32	28.00	1 1.0			MILAM	Ø2Ø9-Ø5	
2320.	3.62	26.Ø	1 1.0	1.0 US	190	MILAM	Ø815-Ø2	
2321.	7.99	20.0	2 1.0			MADISON	0475-04	
2322.	2.260	22.0	2 1.0			MADISON	Ø475-Ø3	
2323.	13.80	20.0	2 1.0			WALKER	1809-02	
2324.	12.37	22.00	2 1.0			WALKER	1706-01	
2325.	3.34	24.00	2 1.0			VALKER	2805-01	
2326.	7.39	26.0	1 1.0	1.0 SH	30	WALKER	0212-02	
2327.	12.01	26.0	1 1.Ø	1.Ø SH	36	BURLESON	Ø816-Ø3	
2328.	9.021	26.0	1 1.0	1.Ø US	290	VASHINGTON	0114-09	· · · · ·
2329.	5.64	26.0	1 1.0			MILAN	Ø204-08	
2330.	9.32	26.0	1 1.Ø			BURLESON	Ø186-Ø2	
2331.	6.67	2Ø.Ø				BRAZOS	Ø475-Ø2	
2332.	7.44	20.0	2 1.0		9 0 8 i		Ø858-Ø2	
2333.	FOG SEAL	. *	SEAL			OGPMS		
2334.	THIN OVER			ATE OVERL		HEAVY OV	ERLAY	
2335.		Y RECONSTRU						
2336.	RUTTING					TUD. CRACKIN	IG TRANSVE	RSE CRACKING
2337.	FAILURES			ILITY IND		** *** * ***		
2338. 2339.		3 AGGREGATE			AGGRI	EGATE(ITEM 3	40:)AGGREGA	IE IIEM 290
2337.	9.5 Ø.	4.6	87.7	87.7				
2340.	9.5	Ø.4 Ø.8	Ø.	Ø.				
2342.	9.J Ø.Ø	3.0	Ø.9 20.0	9.9 Ø.9				
2343.	ø.ø	1.5	29.3	Ø.Ø				
2344.	Ø.0	4.1	27.J 8Ø.5	v.v 9.9				
2345.	Ø.Ø	8.1	29.3	132.0				
2346.	10.0	1.5	Ø.Ø	9.9				
2347.	Ø.Ø	1.50	29.30	143.0	9			
2348.	GRADER		PICKUP		LOAD	ER	TRUCK	
2349.	ROLLER		SPREADER		LAYD	OWN MACHINE	ASPHALT	DISTRIBUTOR
2350.	.70	.70	.34	. 84	1.	.ø3	4 .17	.34
2351.	Ø.Ø	0.008	Ø.Ø	0.017	Ø.\$	ð ø.ø	Ø.Ø	Ø.ØØ8
2352.	Ø.Ø	0.012	Ø.Ø12	0.060	Ø.4	024 Ø.01	2 Ø.Ø	0.012
2353.	Ø.Ø	0.111	Ø.Ø	Ø.278	Ø.1	111 Ø.	Ø.Ø56	0.056
2354.	ø.	0.111	ø.ø	Ø.278	9 .1	111 Ø.Ø	Ø. Ø56	0.056
2355.	Ø.Ø	0.222	Ø.Ø		Ø.:			0.111
2356.	Ø.Ø	0.333	9.0	0.834	Ø.3			0.168
2357.	0.667	Ø.667	Ø.333	1.667	1.4			0.333
2358.	1.0	0.778		3.611	1.1		0.056	å
2359.	GRADER OP		LOADER OP			(OPERATOR		OPERATOR
2360.	SPREADER					ALTDIS. OPER		
2361.	.79	. 34	.84	1.Ø		.34 .8		
2362.	Ø.	ø.	0.017	Ø.	Ø.			
2363.	Ø.	0.012	Ø.Ø65	0.024	ø.4			
2364.	Ø.	Ø.	0.278	0.111	ø.			
2365.	Ø.	Ø.	Ø.278	Ø 111	ø.			
2366.	Ø.	Ø. a a	Ø.556	Ø.222	ø.¢			0.336
2367. 2368.	9.9 0.667	Ø.Ø Ø.333	Ø.834	0.333	Ø.			
2369.	1.0	ø.333	1.667	1.0	1.3			
2007.	1 = 17	₩	3.611	1.111	ø.	Ø.280	Ø.Ø56	1.818

2370.	OVERHEAD	BUDGET						
2371.	56.		950.	925.	2000.	3549.	944.	2600.
2372.	1202000							
2373.	Ø.	5.	5.	5.	2.	2.		
2374.	Ø.	15.	15.	15.	10.	2.		
2375.	13.	19.	19.	19.	24.	45.		
2376.	13.	20.	20.	20.	25.	45.		
2377.	15.	25.		20.	30.	50.		
2378.	15.	25.	25.	20.	35.	5ø.		
2379.	15.	25.	25.	20.	40.	50.		
2380.	15.0	25.0	25.0	20.0	49.0	50.		
2381.	15.	25.	25.	20.	40.	50.		
2382.	10.	5.	20.	17.	20.	10.		
2383.	10.	15.	25.	20.	40.	3.		
2384.	10.	10.	15.	13.	40.			
2385.	10.	20.	20.	20.	40.			
2386.	19.	25.	25.	20.	40.			
2387.	10.	25.	25.	20.	40.			
2388.	8.	Ø.	10.	20.	10.			
2389.	10.	15.	25.	20.	20.		· · · · · ·	
2390.	15.	25.	5.	5.	40.	42.		
2391.	15.	25.	25.	20.	40.	47.		
2392.	15.	25.	25.	17.	40.	47.		
2393.	15.	25.	25.	17.	40.	49.		
2394.	13.	25.	25.	20.	4Ø.	50.		
2395.	8.	5.	ø.	17.	20.			
2396.	10.	- tø.	10	8.	20.			
2397.	5.	5.	5.	5.	5.	5.	5.	5.
2398.	5.	5.	5.	5.	5.	5.	5.	5.
2399.	5.	5.	5.					
2400.	20.	20.	20.	15.	15.	10.	10.	10.
2401.	5.	5.	5.	5.	5.	5.	5.	5.
2402.	5.	5.	5.	5.				
2403.	20.	20.	20.	15.	15.	10.	10.	10.
24Ø4.	5.	5.	5.	5.	5.	5.	5.	5.
2405.	5.	5.	5.	5.				
2406.	15.	15.	10.	10.	10.	10.	5.	5.
2407.	5.	5.	5.	5.	5.	5.	5.	5.
2408.	5.	5.	5.	5.				
2409.	40.	3Ø.	30.	30.	30.	20.	20.	20.
2410.	20.	20.	20.	20.	20.	20.	20.	20.
2411.	20.	20.	20.	20.		-		· - ·
2412.	40.	35.	30.	25.	20.	2Ø.	15.	15.
2413.	10.	10.						
2414.								
2415.	5.	5.	5.	5.	5.	5.	5.	5.
2416.	5.	5.	5.	5.	5.	5.	5.	5.
2417.	5.	5.	5.	5.				
2418.	20.	15.	15.	10.	10.	5.	5.	5.
2419.	5.	5.	5.	5.	5.	5.	5.	5.
2420.	5.	5.	5.	5.				
2421.	20.	15.	15.	10.	10.	5.	5.	5.
2422.	5.	5.	5.	5.	5.	5.	5.	5.
2423.	5.	5.	5.	5.	5.			
2424.	15.	10.	10.	10.	19.	10.	5.	5.
	1.147.18							

0.00								
2425.	5.	5.	5.	5.	5.	5.	5.	5.
· 2426.	5.	5.	5.	5.				
2427,	.02	. 02	.ø2	.02	.ø2	.ø3	.ø3	.03
2428.	20.	20.	20.	20.	20.	20.	20.	20.
2429.	20.	20.	2Ø.	20.				
2430.	25.	2Ø.	15.	15.	10.	10.	5.	5.
2431.							•	
2432.								
2433.	1.0	1.Ø	1.0	1.0	Ø.69	0.67	Ø.48	0.26
2434.	0.17	Ø.14						
2435.								
2436.	1.0	Ø.93	0.91	Ø.88	Ø.78	0.31	0.22	0.15
2437.	Ø.Ø7	Ø.Ø5	Ø.Ø2	0.02	Ø.02	Ø .Ø2	0.01	9.01
2438.	0.01	0.01	0.01	0.01				
2439.	1.	1.Ø	1.0	1.0	Ø.88	0.78	0.46	0.25
2440.	Ø.25	0.25						
2441.								
2442.	1.0	1.0	1.0	1.0	0.79	0.75	0.75	Ø.75
2443.	0.75	0.75	0.33	Ø.25	Ø.25	0.17	0.08	
2444.								
2445.	1.0	1.0	1.Ø	1.0	1.0	0.83	0.71	0.66
2446.	0.62	Ø.38	Ø.3Ø	0.30	Ø.3Ø	Ø.28	Ø 22	Ø.17
2447.	Ø.12	0.04	9.04	0.04				
2448.	1.0	1.Ø	1.0	1.0	1.0	1.Ø	1.0	1.0
2449.	1.0	1.0	0.67	9.67	0.67	Ø.67	Ø.22	1 . 1/
2 4 5Ø.	* · · · ·							
2451.	1.0	1.Ø	1.0	1.0	1.0	9.72	0.67	Ø.58
2452.	Ø.5Ø	0.50	0.36	Ø.33	Ø.33	0.28	Ø.17	Ø.17
2453.	0.17	9.17	Ø.17	Ø.17	2.00	0.20		X/ • 17
2454.	1.0	1.0	1.0	1.0	1.0	Ø.72	Ø.67	Ø.58
2455.	0.50	0.50	0.36	0.33	0.33	Ø.28	Ø.17	Ø.17
2456.	Ø.17	Ø.17	Ø. 17	Ø.17	2:00	V U	V •17	V • 17
2457.	1.0	1.0	1.0	Ø. 87	0.62	0.50	Ø.25	<i>A A</i> D.
2458				v . 07	¥/ = 0 £	Ø.JØ	2.20	Ø.Ø8
2459.								
2460.	1.0	0.94	Ø. 89	Ø.89	Ø.65	<i>A</i> 00		
2461.	0.09	0.07	Ø.07	Ø.91		Ø.28	0.24	Ø.15
2462.	U • U /	v • v /	₽ • X) Z	12 • 17 t	0.01	Ø.Ø1		
2463.	1.0	1.Ø	Ø.89	<i>a</i>				
2464.	0.67			Ø.82	0.73	Ø.67	6.67	Ø.67
2465.	V • 07	0.36	0.11	0.09				
2466.	1 4							
	1.0	1.0	9.95	Ø.91	Ø.9Ø	0.61	0.56	0.55
2467.	0.51	0.28	Ø.17	Ø.14	Ø.14	0.14	Ø.Ø8	6.01
2468.								
2469.	1.00	1.0	1.Ø	1.0	Ø.77	Ø.64	6.58	0.53
2470.	9.51	9.38	Ø. 21	Ø.19	0.19	Ø.17	0.15	Ø.1Ø
2471.	0.07	0.06	Ø.Ø 6	0.03				
2472.	1.0	1.0	1.0	1.0	1.0	0.71	5.62	0.44
2473.	Ø.29	0.29	Ø.29	Ø.17	0.14	Ø.14	6.12	
2474.	an An an							
2475.	1.0	1.0	1.0	1.0	1.0	0.49	0.36	0.36
2476.	Ø.36	Ø. 29	Ø.27	Ø.27	9.27	Ø.27	Ø.21	0.19
2477.	Ø.19	Ø.18	0.11	0.09				
2478.	1.0	1.0	1.0	1.6	1.0	Ø.49	0.36	9.36
2479.	0.36	9.29	0.27	0.27	Ø.27		- 0.21	Ø.19
2489.	Ø.19	Ø. 18	0.11	0.09			er # 4 (W + 1 /
2481.	1_#	1.0	5.29	Ø.5Ø	0.50	Ø.21		
						ar 1 dai 1		

2482.								
2483.								
2484.	1.0	Ø.93	Ø .88	Ø.87	Ø.67	0.37	0.32	Ø.18
2485.	0.09	0.07	Ø.Ø2	0.01	Ø.01	0.01	¥.02	0.10
2486.		2	2.01.	<i></i>	2.01			
2487.	1.0	1.0	1.0	1.0	1.0	9.75	0.50	0.50
2488.	Ø.25			1.2	1.5.27	U • 7 0	2.02	2.02
2489.			:					
2490.	1.0	1.0	0.93	0.93	0.40	0.14	6.14	0.12
2491.	0.07	Ø.Ø 2	<i>v./5</i>	¥7 a 7 G	20 1 12	****	8.14	W . I
2492.		2122						
2493.	1.0	1.0	1.0	1.0	1.0	0.33	0.11	
2474.					1 4 27	0:00	27 8 1 1	
2495.								
2496.	1.0	1.0	1.0	1.0	1.Ø	0.33	Ø.33	Ø.28
2497.	Ø.17	Ø 17	. Ø. 17	Ø.17	Ø.17	Ø.17	9.17	Ø.17
2498.	Ø.17	Ø.17	0.17	Ø.17	X/ a 1/	¥ • 17	1.17	v. 17
2499.	1.0	- 19						
2500.	0.65		1.0	1.0	1.0	1.0	1.0	1.0
2501.		0.60	0.60	0.60	Ø.53	0.40	Ø.38	0.21
	Ø.20	0.20	0.20	Ø.2Ø				
2502.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2503.	0.65	9.69	9.60	0.60	Ø.53	0.40	9.38	Ø.21
2504.	Ø.2Ø	9.20	9.20	0.20		:		
2505.	1.0	1.0	6.56	Ø.53	Ø.39	Ø.19	6.96	0.05
2506.								
2507.								
2508.	1.0	Ø.92	9.86	Ø.85	Ø.67	Ø.38	0.33	Ø.18
2509.	0.09	0.06	0.01	0.01	Ø.Ø1			
2510.								
2511.	1.Ø	1.0	1.0	1.0	1.0	Ø.83	0.67	0.67
2512.	Ø.33							
2513.								
2514.	1.0	1.0	0.94	Ø.94	0.43	Ø.18	5. 18	Ø.14
2515.	0.06	0.01						
2516.								
2517.	1.0	1.0	1.0	1.0	1.Ø	0.63	Ø.26	Ø.22
2518.	9.11	9.94					2120	
2519.								
2520.	1.0	1.0	1.0	1.0	1.0	Ø.33	Ø.33	Ø.28
2521.	Ø.17	0.17	Ø.17	Ø.17	Ø.17	Ø.17	Ø.17	0.17
2522.	Ø.17	Ø.17	0.17	Ø.17	D .()	W • 17	27 . 17	
2523.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2524.	0.65	Ø.6Ø	Ø.60	0.60	Ø.51	Ø.4Ø	ø.38	0.20
2525.	Ø.20	0.20	Ø.2Ø	Ø.2Ø	x/ • U 1	vv	V .30	<i>v.</i> 2 <i>v</i>
2526.	1.0				н <i>л</i>	4 A	+ 4	1 A
2527.		1.0	1.0	1.0	1.0	1.0	1.0	1.5
	Ø.65	Ø.6Ø	9.60	9.60	Ø.51	0.40	Ø.38	Ø.20
2528.	+ A	1 11		a (7	a / 3		<i>a</i>	
2529.	1.0	1.0	1.0	0.67	Ø.67	0.33	Ø.33	
2530.								
2531.			"				.	- , -
2532.	1.0	1.0	0.91	Ø.78	Ø.47	Ø.22	0.20	0.10
2533.	0.04	0.01						
2534.	. –							
2535.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Ø.33
2536.	Ø.33	0.33						2
2537.								
2538.	1.0	1.0	1.0	Ø.89	0.53	Ø.23	Ø .16	0.15
2539.	Ø.13	Ø.Ø8	Ø.Ø2					

2540.								
2541.	1.0	1.0	1.0	1.0	Ø.77	0.51	Ø.48	Ø.36
2542.	0.33	Ø.24	Ø.17	Ø.17	Ø.17	Ø.17	0.17	Ø.17
2543.	0.07				V • 17	20.17	0.17	90.17
2544.	1.0	1.0	1.0	1.0	1.0	A 75	4 50	4 5 4
2545.	Ø.5Ø	Ø.48	Ø.25	Ø.25		0.75	0.59	0.50
2546.	2.52	D .40	¥7 • ∠.J	17 • x J	Ø.25	Ø.25	0.20	
2547.	1.0	4 7	4 7					
2548.		1.0	1.0	1.0	1.0	Ø.47	9.36	Ø.32
	0.27	0.27	Ø.27	0.20	Ø.18	0.18	0.15	0.09
2549.	9.99	0.07	0.09	0.09				
2550.	1.0	1.0	1.0	1.0	1.0	0.47	0.36	Ø.32
2551.	Ø.27	0.27	0.27	0.20	ø.18	Ø.18	Ø.15	0.09
2552.	0.09	6.09	5.09	0.09		2010	2110	
2553.	1.0	0.9	0.7	Ø.5	Ø.4	Ø.3	0.2	Ø.1
2554.	9.1			~	2 • • •	w .5	V	2/ 6 1
2555.								
2556.	1.0	Ø.9	Ø. 7	A E				
2557.		\$7.7	9 ./	Ø.5	Ø.4	Ø.3	Ø.2	Ø.1
	Ø.1							
2558.								
2559.	1.0	1.0	1.0	Ø.9	Ø.8	Ø.7	9.6	Ø.5
2560.	Ø .4	0.3	•			•		
2561.								
2562.	1.0	1.0	1.0	0.9	ø.8	9.7	9.6	0.5
2563.	0.4	0.3						D .0
2564.								
2565.	1.0	1.0	1.6	1.0	<i>a</i> 0			·
2566.	Ø.5	Ø.5	1.0	1 • 12	Ø.9	Ø.8	Ø.7	Ø.6
2567.	V . J	¥•J						
					(
2568.	1.0	1.0	1.0	1.0	1.0	0.9	Ø.9	Ø.8
2569.	Ø.7	9.6						
2570.								
2571.	1.0	1.0	1.0	0.9	Ø.8	ø.7	0.6	0.5
2572.	Ø.4	Ø.3						
2573.								
2574.	1.0	1.0	1.0	0.9	Ø. 8	Ø.7	9.6	0.5
2575.	9.4	Ø.3				u ./	2.0	v •0
2576.								
2577.	131.	114.						· · ·
2578.	15	117.						
2579.					÷			
	1 7	ø						
2580.	2 7	Ø						•
2581.	3 7	Ð				•		
2582.	97	ø						
2583.	16 7	ø						
2584.	11 7	Ø					•	
2585.	12 7							
2586.	13 7	ø						
2587.	4 8	ø						
2588.	5 8	ø						
2589.	6 8	Ð						
2590.	7 8	ø						
2591	8 8	ø						
2592.	.14 8	ø						
2593.	15 8	ø						
2594.		17				•		
	1							
2595.	3			-				
2596.	9						• •	
2597.	/*END							
2598.								
2599.								

APPENDIX F GRAPHICAL DESCRIPTION OF THE COMPONENTS OF THE OBJECTIVE FUNCTION

APPENDIX F

GRAPHICAL DESCRIPTIONS OF THE COMPONENTS OF THE OBJECTIVE FUNCTION

Figure F1 shows five diagramatic plots all with abscisa as representing time. Figure F1(A) shows some sample relationships P(J, K, L) which estimate the probability of rating survival for particular strategies (e.g. fog seal, thin overlay, etc.) for particular distress types (e.g. alligator cracking, rutting, etc.) and for particular time periods T (which have a maximum TDATA).

Figure F1(B) shows examples of characteristic plots of:

$$\left[1 - \text{Traf}(I) \times (I - P(J, K, L))\right] \times \text{RMAX}(I)$$

which are the distributions of rating decline with time each for a given distress type (e.g. rutting) after being subjected to a given strategy (e.g. seal coating). It will be noted that each of these curves is scaled by the maximum possible rating of the particular distress type at T = 0. The detrimental effects of excess traffic and environment as specified by Traf(I) and Envir(I) are taken into account in the curves also. Figure F1(B) has plotted also two-typical distributions with time of the minimum acceptable ratings for given distress (K) and highway types (II). These can range from being constant to non-linear with time.

Figures F1(C), (D), and (E) demonstrate how benefit contributions from three rating type improvements (e.g. alligator cracking, rutting, longitudinal cracking) resulting from the application of a particular strategy (e.g. thin overlay) to a section (I) of the highway are

calculated by the program. It will be noted in Figure F1(C) that the program calculates benefit down to the present rating level (R(I, K)) which in this case is below the minimum acceptable rating (RMIM (K, L, II)). That portion of the survival curve that bounds the benefit area is dictated by the relative magnitude of the maximum possible rating and the rating that the improvement (DIST (J, K)) raises the pavement to at T = 0. In Figure F1(C) the maximum possible rating is greater than the improved level, so benefit starts at a time instant on the diagram when the survival curve has dropped to the improved level of rating. That particular instant is then considered by the program to be the present so that the life of the improvement in this case is 8.8 - 4.8 = 4 years.

Figure F1(D) shows the case where the potential improvement (DIST (J, K)). achieveable by the strategy (thin overlay) is <u>more</u> than sufficient to take the present rating to the maximum possible level (RMAX (K)).

Benefit is calculated down to the present rating level whether it is above or below the minimum. This means that for a given strategy those sections in initial low rating states will have greater benefit/cost ratios and hence will be more likely to be chosen for treatment by the integer program.

The total benefit wrought on a particular road section is equal to the sum of six or so hatched areas (three of which are shown), each of which represent improvement contributions to an individual rating type from the treatment.

In previous subroutines of the program those strategies which fail to bring a rating of to the minimum (RMIN (K, L, II)) of <u>any</u> distress type are considered infeasible. Those treatments which fail to give an

Total Benefit of thin overlay on road section (I) = BENEFIT 1+BENEFIT 2+BENEFIT 3+-+BENEFIT (K)

overall rating, to a pavement section, at least equal to the recommended minimum (WW (HYTYP(I))) are also considered infeasible and are not considered by the integer program. The program also has the facility of withholding any section-strategy combination or withholding complete strategies from the solution.

· ·