		Technical Report Documentation Page					
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.					
FHWA/TX-01/1863-2							
4. Title and Subtitle		5. Report Date					
USER'S GUIDE FOR THE MODU		October 2000					
CORRECTION PROGRAM (MTC	Resubmitted: January 2001						
		6. Performing Organization Code					
7. Author(s)		8. Performing Organization Report No.					
Emmanuel G. Fernando and Wenti	ng Liu	Report 1863-2					
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)					
Texas Transportation Institute							
The Texas A&M University System		11. Contract or Grant No.					
College Station, Texas 77843-313	5	Project No. 0-1863					
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered					
Texas Department of Transportation	n	Research:					
Construction Division		September 1998 - August 2000					
Research and Technology Transfer	Section	14. Sponsoring Agency Code					
P. O. Box 5080							
Austin, Texas 78763-5080							
15. Supplementary Notes							
	with the Texas Department of Transp	ortation and the U.S. Department of					
Transportation, Federal Highway A							
-	e Use of FWD Data in Determining Se	easonal Variations in Pavement					
Structural Strength							
16. Abstract							
0 0	ometer is commonly used in Texas for	1					
	are made at a given date so that the d						
	ne of measurement. For pavement app						
	ted or corrected to reference or standa						
	emperature Correction Program (MT						
	ncrete (AC) moduli to user-prescribed						
	C modulus may be predicted for pave	ement evaluation and design					
purposes. Instructions in using MT	CP are given in this user's manual.						

17. Key Words		18. Distribution Statement							
Modulus Backcalculation, Modulus	Temperature	No restrictions. This document is available to the							
Correction, Falling Weight Deflecto	meter,	public through N	TIS:						
Nondestructive Testing, Pavement E	Evaluation	National Technical Information Service							
		5285 Port Royal Road							
		Springfield, Virg	inia 22161						
19. Security Classif.(of this report)	20. Security Classif.(of th	his page)	21. No. of Pages	22. Price					
Unclassified	Unclassified	56							

USER'S GUIDE FOR THE MODULUS TEMPERATURE CORRECTION PROGRAM (MTCP)

by

Emmanuel G. Fernando Associate Research Engineer Texas Transportation Institute

and

Wenting Liu Assistant Research Scientist Texas Transportation Institute

Report 1863-2 Project Number 0-1863 Research Project Title: Evaluate the Use of FWD Data in Determining Seasonal Variations in Pavement Structural Strength

> Sponsored by the Texas Department of Transportation In Cooperation with the U.S. Department of Transportation Federal Highway Administration

> > October 2000 Resubmitted: January 2001

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation (TxDOT) or the Federal Highway Administration (FHWA). This report does not constitute a standard, specification, or regulation, nor is it intended for construction, bidding, or permit purposes. The engineer in charge of the project was Dr. Emmanuel G. Fernando, P.E. # 69614.

ACKNOWLEDGMENTS

The work reported herein was conducted as part of a research project sponsored by TxDOT and FHWA. The objective of the study was to develop an automated procedure for temperature correction of backcalculated asphalt concrete modulus. The researchers gratefully acknowledge the support and guidance of the project director, Dr. Michael Murphy, of the Pavements Section of TxDOT.

TABLE OF CONTENTS

Page
LIST OF FIGURES viii
LIST OF TABLES x
CHAPTER
I INTRODUCTION
Background and Scope of Report 1 System Requirements 2
II USING THE MODULUS TEMPERATURE CORRECTION PROGRAM
Specifying MTCP Input Files
III MTCP OUTPUT 35
Getting Output of Analysis Results35Saving the Analysis Results38
REFERENCES
APPENDIX: FLOW CHART OF MODULUS TEMPERATURE CORRECTION PROGRAM

LIST OF FIGURES

Figure	Page
1	MTCP Title Screen
2	MTCP Main Menu
3	Dialog Box for Specifying MODULUS Output File to Analyze
4	MODULUS Output File Imported into MTCP
5	Viewing the MODULUS Summary Output File
6	Dialog Box for Specifying the FWD Data File
7	Temperature Data Imported from the FWD Data File
8	Dialog Box to Specify Input Data for Pavement Temperature Prediction
9	Equations Available for Predicting Pavement Temperatures
10	Predicted Pavement Temperatures from MTCP16
11	Resizing the Comment Box Using the <i>Edit Comment</i> Function in Excel
12	Dialog Box Showing TxDOT's Equation for Modulus Temperature Correction
13	Chen Equation for Modulus Temperature Correction
14	Dialog Box for Temperature Correction Based on Witczak's Dynamic Modulus Equation
15	Drop-Down List of AC-Graded Asphalts with Default Coefficients
16	Temperature Corrected Moduli from the Analysis
17	Dialog Box of Monthly Air Temperatures for Specified County
18	List of Texas Counties by District (TxDOT, 1998)

LIST OF FIGURES (Continued)

Figure	Page
19	Dialog Box of Input Parameters for the Monthly Modulus Prediction
20	Dialog Box to Specify Equation for Monthly Modulus Prediction
21	Illustration of Output from Monthly Modulus Prediction
22	MTCP Plot Menu
23	Example Plot of Corrected and Backcalculated AC Moduli vs Pavement Temperature
24	Example Plot of Predicted Monthly Variations in AC Modulus
25	Dialog Box to Delete Program Worksheets Prior to a New Analysis

LIST OF TABLES

Table	Page
1	Coefficients of the BELLS2 and BELLS3 Equations
2	Default A and VTS Coefficients for AC-Graded Asphalts
3	Default A and VTS Coefficients for PG-Graded Asphalts
4	Available Charts in MTCP

CHAPTER I INTRODUCTION

BACKGROUND AND SCOPE OF REPORT

The Texas Department of Transportation uses the Falling Weight Deflectometer (FWD) for pavement evaluation. A common application is the backcalculation of pavement layer moduli by deflection basin fitting. In Texas, pavement engineers use the MODULUS program (Michalak and Scullion, 1995) to provide estimates of pavement layer moduli from measured FWD deflections. These estimates are subsequently used in other applications, such as the FPS-19 flexible pavement design procedure, the Program for Analyzing Loads Superheavy (Jooste and Fernando, 1995 and Fernando, 1997), and the Program for Load Zoning Analysis (PLZA) developed by Fernando and Liu (1999).

For pavement applications, the results obtained from the FWD need to be adjusted or corrected to reference or standard conditions of temperature, moisture, and loading frequency. The Modulus Temperature Correction Program (MTCP) described in this user's guide incorporates procedures for adjusting asphalt concrete moduli to user-prescribed reference pavement temperatures. To provide compatibility with the MODULUS program which is currently implemented within TxDOT, the output from MODULUS is used as an input to the modulus temperature correction program. This approach is expected to facilitate the implementation of MTCP within TxDOT.

To provide for implementation, researchers prepared this user's guide to explain how MTCP is used. The guide is organized into three chapters and an appendix:

- 1. Chapter I identifies the system requirements for running MTCP;
- Chapter II provides instructions on using the program to estimate pavement temperatures, adjust backcalculated asphalt concrete (AC) moduli to a specified reference temperature, and predict the monthly variation of AC moduli at a given site;
- 3. Chapter III illustrates program output; and
- 4. the appendix provides a flow chart that may serve as a map of the analysis functions for practical applications.

Users of the program must have a working knowledge of MODULUS. The temperature corrections depend, to a considerable degree, on the layer moduli backcalculated from the FWD data. Thus, having a good working knowledge of MODULUS (and backcalculation, in general) will aid in understanding the results from the temperature corrections. In practice, it may be necessary to run MODULUS and MTCP a number of times to achieve realistic and reasonable results, particularly when the initial backcalculation indicates the need to divide the FWD data into two or more segments to better model the variations in pavement deflections, backcalculated moduli, or pavement layering.

SYSTEM REQUIREMENTS

MTCP requires a microcomputer with the Windows (9x, NT, 2000, ME) operating system and Microsoft Excel, version 97 or later. A Pentium microprocessor or its equivalent and a minimum of 32 Mb of memory are recommended. Users must have a good working knowledge of the Windows operating system and Microsoft Excel. To install the program, simply copy the files in the program disk onto a subdirectory of your computer's hard drive. For example, you may want to create a subdirectory called C:\MTCP and copy the program files into this subdirectory. Once you copy the files, you may run the program by first going into Excel and loading the spreadsheet called *MTCP.XLS* in the program subdirectory using Excel's File/Open command. You will then be asked if you want to disable or enable the macros that are in the MTCP spreadsheet. Click on the *Enable Macros* button of the dialog box to use the program for temperature correction of backcalculated AC moduli. The title screen in Figure 1 is then displayed. If the MTCP title screen is bigger or smaller than your computer display, you may resize the screen using the zoom box at the top toolbar of the Excel spreadsheet. In the example shown in Figure 1, the zoom box is currently set at 100%. Click the size you want in the zoom box or enter a number between 10 and 400 to resize the screen.

To start using MTCP, click anywhere on the MTCP title screen to get to the main program menu illustrated in Figure 2. From this menu, you may access the available program functions. The available functions are described in the remainder of this user's guide.

Figure 1. MTCP Title Screen.

Figure 2. MTCP Main Menu.

CHAPTER II USING THE MODULUS TEMPERATURE CORRECTION PROGRAM

The FWD is commonly used in Texas for pavement evaluation and design purposes. Typically, pavement engineers make measurements at a given date so that the data reflect the environmental conditions prevailing during the time of measurement. MTCP has been developed to give TxDOT pavement engineers a tool for adjusting backcalculated AC moduli to account for temperature effects. Through this program, seasonal variations in AC moduli may be predicted for pavement evaluation and design purposes. Instructions for using MTCP are given in this chapter.

SPECIFYING MTCP INPUT FILES

Within TxDOT, pavement engineers use MODULUS for backcalculating layer moduli from FWD measurements. Consequently, researchers developed MTCP to use the output from MODULUS directly. This is done by clicking on the *Read MODULUS Result ASCII File* button of the main menu given in Figure 2. Specifying the MODULUS summary output file is the first step in using the program for temperature correction of backcalculated AC moduli. Clicking on *Read MODULUS Result ASCII File* brings up the dialog box shown in Figure 3. From this menu, the user can specify the MODULUS summary output file to use in the analysis. Simply highlight the file by clicking on the file name in the dialog box. Then click on the *Open* button at the lower right corner of the dialog box to confirm your selection. From this menu, you may also search the different drives and subdirectories on your computer for the particular file you want to process.

The MODULUS output file is read, and the contents of the file are imported into the *output* worksheet shown in Figure 4. To view the information, click on *Exit the Program* to close the main menu as illustrated in Figure 5. You may go back to this menu at any time by pressing the *Ctrl*, *Shift*, and *M* keys in combination (*Ctrl*+*Shift*+*M*). The information displayed in Figure 5 is the same as that given in the MODULUS summary output and consists of the:

🔀 Mi	icrosoft Exc	el - mtcp.x	ds													la ×
	<u>∃</u> ile <u>E</u> dit <u>V</u> ie															8×
	🛩 日 🔒	a 🖪	💱 🔏 🖻	b 🛍 🝼	ю - сч -	🍓 Σ 🌆		10 🚯 🛍	0% 🖣 🙎	l 🖶 🗸 👘						
1	 Security. 	🤊 🕉	° 🖌 🛷	Arial		• 10 •	BIU	[≣ ≣		3 % , 1	.0 .00	ŧ	ð - <u>A</u> - ,			
. ·		-	=	, hi				-				· —				
	A	B	С	D	E	F	G	Н	1	J	K	L	M	N	0	-
1																
2																- 1
3												1				
4				UserFo	Please select	the FWD I	ile						?×			- 1
6					Look in:	🗋 Mto	:p		•	🗕 🗈 🔍	X 👛 🖩	▼ Tools ▼				
7				- I I I I I I I I I I I I I I I I I I I		1068	.asc									
8					3	Anne Anne										
9					History											
10																- 1
11				-												- 1
12 13				- EI												
14					My Document:	5										
15					7-/											
16					ſ											
17				-												
18																- 1
19				_	(
20 21					Favorites											
21																
23						l Tile a serie							_			
24						File <u>n</u> ame							<u>O</u> pen			
25					Web Folders	Files of <u>t</u>	ype: FWD	Asc Files (*.a	asc)			-	Cancel			
26 27																
27																
28 29																
30																
31																
32																
33																
34	► N\MTCF															► ►
Read		-/														
		<i>1</i> 8 10-1 10		») P	/ ID () O (юци, <u>і</u> 1	1			01.1.5.	, ,	1 0.4			2 00 -	
90 5	tart 🛛 🧭 🤅	C 🗇 🕅	(🔊 💦		/ordPerfect 9 -	U: \Mtcp\	Micros	soft Excel -	mtc <u> **</u>	untitled - Pain	(_ 63%	◈♬ᢤ⁄@\$	3 A N 🔊	Q 🌱 9:	33 PM

Figure 3. Dialog Box for Specifying MODULUS Output File to Analyze.

L and D	icrosoft Exc <u>File E</u> dit <u>Vi</u> er	_		Tools D	ata Wind	tow Help														_ 8 ×
						റ - വ		~ f A		10	0% 🖣 [) 🔒 🚬								
		<i>a</i> <u>a</u>											10.00			•				
	 Security. 		8 🔟		Arial MT Bl		▼ 16									<u></u> -	<u>A</u> • •			
	A1	<u> </u>						<u>``</u>	MMARY	REPORT)	K		(Version (<u> </u>	•	Р				T .
r	A	В	C	D	E	F	G	H		J	K		M	N	0	P	Q	R	S	_
1			TT	I MO	DUL				SYST	EM (S	UMM	ARY R	EPOR	<u>1)</u>			(Versi	on 5.1	<u>.) </u>
	District	1					s Range													
	County	139			Thick (in)) Min 30	Max 1500	Poisson												
4				Surface Base	10.9 6	15	200	0.4												
6						10	200	0.00												
7				St <mark>User</mark> St	rormi										×					
8																	TEMPE			
		Load	R1	R	MO	DUL	US	TEM	PER	RATU	RE C	ORR	ECTI	ON		Limit	Air	Surface	Paveme	Test tin
10	75.100 75.200	9375 9279	6.76 6.84												E					
12	75.200	9279	7.06						PRC	DGRA	IVI				ĥ					
13	75.400	9167	7.14												- 1					
14	75.500	9807	6.46			- Julopus	uc na di	ACCT OF	. 1					P	1 1					
15	75.600	9879	6.71	1	Re	ad MODUL	.US Resul	: ASCII Fili	e		Modu	us Temperal	ture Correc	tion						
16	75.700	9671	7.10	I											1					
17	75.800	9471	7.87	1	Read F	=WD Test I	File & Get	: Temperal	tures		Mo	nthly Modulu	is Prediction	ו						
18 19	75.900	9375 9391	8.47 9.88												1					
20	76.000	9383	10.39									Plot Ou	tput							
21	76.200	9407	12.10			Interpolat	e Tempe	atures												
22	76.300	9279	14.20	1								Clear Progra	m Sheets							
23	76.400	9390	12.13	1					1	1					7 F					
24	76.500	9342	12.69	1	Pr	edict Pave	ement Terr	peratures	;			Exit the Pi	rogram							
25 26	76.600 76.700	9283 9271	14.88 16.48	1																
20	76.800	9168	17.17	12.07	9.90	7.90	6.13	3.72	1.73	119.0	23.0	0.0	13.0	0.5	123.7					
28	76.900	9513	11.79	9.26	8.16	6.79	5.53	3.60	1.70	291.0	20.0	0.0	14.5	0.3	123.8					
29	77.000	9561	11.94	9.48	8.37	6.95	5.68	3.66	1.72	302.0	15.0	0.0	14.5	0.3	123.6					
30	77.100	9418	12.90	9.99	8.76	7.23	5.79	3.63	1.74	248.0	15.3	0.0	14.3	0.6	131.9					
31	77.200	9338	14.55	10.81	9.17	7.43	5.85	3.60	1.63	180.0	17.7	0.0	14.1	0.4	115.4					
32 33	77.300	9597 9609	12.28	9.50 9.63	8.26 8.38	6.89 6.95	5.57 5.60	3.68 3.60	1.69 1.68	250.0 275.0	31.7 17.1	0.0 0.0	14.0 14.8	0.3	114.9					
	77.400		12.23	9.63	0.30	0.93	5.60	3.00	1.00	2/5.0	17.1	0.0	14.0	0.3	120.7				-	▼
Read												1.1								
	41.	🧭 🗊 🖡	8 🔊 P	×	X Wo	ordPerfect !	9 - [C:\Mto	op\	Microso	oft Excel - 1	106 🦹]untitled - Pa	aint		av	, % [,	 4 ag) 🐹 🕅) 🕺 🖓	9:52 PM

Figure 4. MODULUS Output File Imported into MTCP.

4	licrosoft Exc																			_ -
	<u>File E</u> dit <u>V</u> ie	-																		<u>_ 8 ×</u>
	🖻 🖬 🔒	5 🖪	, 💞 🖁	6 🖻 🕻	L 🝼 ×	0 v CM	- 😫 1	Σ <i>f</i> * <mark>2</mark>		10 🚜 🌆	0% 🔹 🕻	2 🖶 🗸								
	 Security. 	🕭 🖞	🛠 🔟	🥢 🗸 🗍	Arial MT Bl	ack	- 16	- B	ΙŪ		= •	\$%,	+.0 .00 •.0 +.0	€ →	E 🔲 +	👌 -	<u>A</u> - ,			
	A1	-	= TTI	MODU	LUS AN	IALYSIS	SYSTE	EM (SU	MMARY	REPORT)		(Version			_	_			
	A	B	C	D	E	F	G	Ĥ	1	J	к	L	M	Ň	0	P	Q	R	S	T
1			TT	тмо	DUL	US A	NAL	VSIS	SYST	EM (S	IIMM	ARYE	REPOR	(TS				Versi	on 5.1	<u>n</u>
	District	1		1 1010	000		s Range				.0101101	111(11						(vers	 	<u></u>
	County	139			Thick (in)		Max	Poisson												
4	coonty			Surface	10.9	30	1500	0.4												
5				Base	6	15	200	0.35												
6				Subbase	-	0	0	0.3												
7				Subgrad	118.6	10		0.4									TC) (50	DATH		
8	Obsting	l l	D4			D4	DC	DC	07	E ()	E (h -)		E ()	E/0	DDG-A	1.1		RATUR		
9 10	Station 75,100	Load 9375	R1 6.76	R2 6.09	R3 5.66	R4 5.10	R5 4.51	R6 3.40	R7 1.88	E(ac) 1050.0	E(bs) 45.8	E(sb) 0.0	E(sg) 12.6	Err/Sen 0.6	DB(in) 181.2	Limit	Air	Surface	Paveme	Test tin
11	75.100	9375	6.84	6.05	5.66	5.06	4.51	3.35	1.88	918.0	45.0 74.1	0.0	12.6	0.6	194.9					
12	75.300	9263	7.06	6.17	5.78	5.14	4.51	3.40	1.88	849.0	73.8	0.0	12.6	0.0	181.0					
13	75.400	9167	7.14	6.26	5.78	5.19	4.56	3.35	1.93	792.0	72.4	0.0	12.7	0.7	233.0					
14	75.500	9807	6.46	5.87	5.57	5.10	4.60	3.53	2.14	1260.0	119.5	0.0	11.3	1.0	300.0					
15	75.600	9879	6.71	6.09	5.70	5.23	4.69	3.49	2.01	1238.0	46.9	0.0	12.3	1.1	226.0					
16	75.700	9671	7.10	6.35	5.91	5.27	4.69	3.53	1.97	944.0	72.9	0.0	12.4	0.6	189.6					
17	75.800	9471	7.87	6.95	6.30	5.57	4.87	3.44	1.76	747.0	21.2	0.0	13.9	1.0	147.1					
18	75.900	9375	8.47	7.25	6.55	5.75	4.96	3.49	1.76	543.0	55.4	0.0	13.1	0.9	141.4					
19	76.000	9391	9.88	8.28	7.36	6.35	5.35	3.71	1.88	413.0	38.4	0.0	12.9	0.5	146.7					
20	76,100	9383	10.39	8.66 9.65	7.74 8.42	6.65	5.58 5.89	3.79	2.01	422.0	17.4	0.0	13.2	0.4	178.0					
21 22	76.200 76.300	9407 9279	12.10	9.65	0.42 9.02	7.12 7.50	5.09	3.84 3.88	1.93 1.97	286.0 174.0	23.7 39.7	0.0 0.0	13.1 12.5	0.6 0.8	151.6 158.4					
22	76.400	9390	12.13	9.63	8.39	6.94	5.64	3.68	1.69	280.0	16.4	0.0	14.2	0.0	116.4					
24	76,500	9342	12.69	10.00	8.75	7.18	5.83	3.73	1.72	259.0	15.3	0.0	13.9	0.2	119.3					
25	76.600	9283	14.88	10.93	9.42	7.65	6.05	3.73	1.71	175.0	19.6	0.0	13.4	0.7	119.6					
26	76.700	9271	16.48	11.83	9.87	7.89	6.20	3.77	1.75	137.0	20.9	0.0	13.1	0.4	123.6					
27	76.800	9168	17.17	12.07	9.90	7.90	6.13	3.72	1.73	119.0	23.0	0.0	13.0	0.5	123.7					
28	76.900	9513	11.79	9.26	8.16	6.79	5.53	3.60	1.70	291.0	20.0	0.0	14.5	0.3	123.8					
29	77.000	9561	11.94	9.48	8.37	6.95	5.68	3.66	1.72	302.0	15.0	0.0	14.5	0.3	123.6					
30	77.100	9418	12.90	9.99	8.76	7.23	5.79	3.63	1.74	248.0	15.3	0.0	14.3	0.6	131.9					
31	77.200	9338	14.55	10.81	9.17	7.43	5.85	3.60	1.63	180.0	17.7	0.0	14.1	0.4	115.4					
32 33	77.300 77.400	9597 9609	12.28	9.50 9.63	8.26 8.38	6.89 6.95	5.57 5.60	3.68 3.60	1.69 1.68	250.0 275.0	31.7 17.1	0.0 0.0	14.0 14.8	0.3	114.9 120.7					
	77.400		12.23	9.63	0.30	0.93	0.00	3.00	1.00	2/5.0	17.1	0.0	14.0	0.5	120.7				-	•
Rea		ut /																		
		<i>a</i>		.	1 1897	10 (1			Da est tra		1						
	Start 🛛 🌌 🤅	🦲 🗐 🖡	🖏 🕟 🕨	\$ "	J 📐 Wa	ordPerfect	9 - [C: \Mb	:р\	Microso	oft Excel -	106 💾	🖞 untitled - I	Paint		00	ζ ≫ ⊑,	((A)	3 💥 🦉	🤍 🛇 🏠	10:05 PM

Figure 5. Viewing the MODULUS Summary Output File.

- 1. district and county where FWD measurements were taken;
- 2. pavement layer thicknesses;
- 3. allowable range of the backcalculated modulus for each layer;
- FWD load, sensor deflections, and backcalculated layer moduli at each test location along with the absolute error per sensor between the predicted and measured deflections;
- 5. depth to bedrock estimated from the measured deflections at each station; and
- 6. computed means, standard deviations, and coefficients of variation for the measured deflections, backcalculated moduli, depths to bedrock, and absolute errors per sensor.

In addition, the column labeled *Limit* in the worksheet gives an indication of whether any of the backcalculated moduli reached the limits set by the user during the backcalculation. If moduli reach any limit, the program shades the cell for that particular station red under the *Limit* column. Otherwise, the cell is shaded green. To the right of the *Limit* column are blank cells where temperature data taken during FWD testing are entered. Air and surface temperatures are normally measured from sensors built into the FWD and are recorded at each test location. These measurements are written in the same data file where the deflections are saved. For the purpose of predicting pavement temperatures using the methods built into the program, surface temperatures taken with an infrared sensor are required. Consequently, researchers recommend that infrared sensors be installed in TxDOT's FWDs to implement the computer program developed from this project. In practice, attention must be given to maintaining the infrared sensor in good operating condition and checking the sensor calibration to ensure the validity of the temperature measurements.

In addition, the operator collects pavement temperatures at specific locations using a temperature probe. For this purpose, researchers recommend that temperatures be measured at half the depth of the surface layer if the thickness is known at the time of FWD testing, or at a depth of 1.6 inches (4 cm) from the surface if the thickness is not known. These recommendations are based on the findings from this study (Fernando and Liu, 2001).

Since layer thicknesses are needed to analyze the FWD deflections using MODULUS, users may obtain this information beforehand and use it in planning the FWD testing. For this purpose, researchers strongly suggest a Ground Penetrating Radar (GPR) survey on the route to establish the variations in layer thicknesses from the profiles obtained. Specifically, the GPR survey should be conducted to:

- detect changes in pavement layer thicknesses and divide the project into analysis segments,
- 2. establish the locations of FWD measurements consistent with pavement thickness variations identified from the radar data, and
- establish the need for cores or Dynamic Cone Penetrometer (DCP) data to supplement the radar survey and identify locations where coring and DCP measurements should be made.

Microsoft																		_ & ×
j ≊) <u>F</u> ile Edit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rma	at <u>T</u> ools	<u>D</u> ata <u>W</u>	<u>/</u> indow <u>H</u> e	elp												<u>- 8 ×</u>
🗋 🗁 🔛	<i>a</i>	мвс 🐰	B 🔒	ダ 🗠	- Σ	f≈ ≜ ↓	🛍 100°	% 🔹 🖸	🕴 🙄 Arial		▼ 10	• B	ΙU	≣≣		+.0 .00	÷.00 📃 • 🕭 • ,	<mark>∧</mark> - ~ ~
	•	= T	ti mod	ULÚS A	ANÁLYS	IS SYS	STEM (S	UMMAR	Y REPOR	Ŋ		(Versio	n 5.1)					
A	В	C	D	E	F	G	Н		J	ĸ	L	M	N	0	P C			T 🔼
1		T	II MO	DUI	Please s	elect th	e FWD fi	e				TRAT				? X	Version 5.1)	
2 District	1					kin:	D Mtcp			•	4.0	l 🔕 🗙	ek 📼	– Toola				
3 County	139			Thick (w ii n	<u> </u>	,		<u> </u>								
4			Surface	10.9			Name	Fuel				ize Type 2 KB FWD I	Tilo	Modifi	ied 00 3:04 PM			
6			Base Subbas	UserFo			anne 🔊				-	4 KBFWDI			0 3:04 Pr 0 4:53 PM	"		
7			Subgra		Hist	ory	<u> </u>				-			-1-1				
8						<u>_</u>											JURE (F)	
9 Station	Load	R1	R2			<u> </u>											urface PavemeTe	st time
10 75.100 11 75.200		6.76 6.84	6.09 6.05		My Docu	uments												
12 75.300		7.06	6.17			2												
13 75.400		7.14	6.26															
14 75.500		6.46	5.87		Desk	top												
15 75.600		6.71	6.09	_	-													
16 75.700 17 75.800		7.10	6.35 6.95	Γ														
18 75.900		8.47	6.95 7.25	L	Favo	rites												
19 76.000		9.88	8.28															
20 76.100	9383	10.39	8.66		🥰		, File <u>n</u> ame						-		🖁 Open			
21 76.200		12.10	9.65	-	Web Fr	elders	_							4 4	∳ <u>O</u> pen			
22 76.300		14.20	10.42				Files of ty	pe: FW	D Test Files ('	*.FWD)				· _	Cance	I		
23 76.400 24 76.500		12.13	9.63 10.00		Predic	(Paveme	int remper-	atures			EXIC	the Progra	m				-	
25 76.600		14.88	10.93															
26 76.700	9271	16.48	11.83 -	9.07	7.09	0.20	3.11	1.70	137.0	20.9	0.0	13.1	0.4	123.0				
27 76.800		17.17	12.07	9.90	7.90	6.13	3.72	1.73	119.0	23.0	0.0	13.0		123.7				
28 76.900		11.79	9.26	8.16	6.79 c.os	5.53 5.69	3.60	1.70	291.0	20.0	0.0	14.5		123.8				
29 77.000 30 77.100		11.94 12.90	9.48 9.99	8.37 8.76	6.95 7.23	5.68 5.79	3.66 3.63	1.72 1.74	302.0 248.0	15.0 15.3	0.0 0.0	14.5 14.3	0.3	123.6 131.9				
31 77.200		14.55	10.81	9.17	7.43	5.85	3.60	1.63	240.0 180.0	17.7	0.0	14.0		115.4				
32 77.300		12.28	9.50	8.26	6.89	5.57	3.68	1.69	250.0	31.7	0.0	14.0		114.9				
33 77.400		12.23	9.63	8.38	6.95	5.60	3.60	1.68	275.0	17.1	0.0	14.8		120.7				
34 77.500		12.30	9.62	8.37	6.87	5.56	3.61	1.69	258.0	22.1	0.0	14.5	0.2	120.8				
	11 9674 hutput/	13 33	10 19	8 93	7.28	5.83	3.65	1.68	236.0	15.5		14 6	115	118 7				
Draw + 🔓	G Auto	Shapes 🕶	11		🗎 利 [2 👌	- 🏄 -	A - =	᠄) 🖉 🗸								
Ready																	NUM	

Figure 6. Dialog Box for Specifying the FWD Data File.

Pavement temperatures measured during the FWD survey should be properly recorded into the data file consistent with the FWD operator's manual (TxDOT, 1996). In this way, all temperature data may be read from the file and imported directly into the MTCP spreadsheet without having to manually key in the pavement temperatures. The air, surface, and pavement temperatures taken during the survey may be imported into the spreadsheet by clicking on the *Read FWD Test File & Get Temperatures* button of the main menu given in Figure 2. The dialog box in Figure 6 is then displayed for you to specify the name of the FWD data file. After selecting the FWD file, click on the *Open* button of the dialog box to import the temperature data into the spreadsheet as illustrated in Figure 7.

M	licrosoft Exc	el - 1068	.xls																	_ 8 ×
	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools <u>D</u> a	ata <u>W</u> ind	dow <u>H</u> elp														_ 8 ×
	🖻 🖬 🔒	a	NBC X	h 🔒	s 💅 🕒	0 v Ci	- 😩 :	Σ <i>f</i> * 🛓		100 🚯 🗓	% 🔹 🙎) 🖶 🗸								
	 Security. 	者 🤊	2 📈	00 L A	Arial MT B	lack	- 16	• B	ΙU			5%,	+. 0 .00			& -	<u>A</u>			
. ·	•,-			• []	LIS AN					REPORT)		-	Version 5	· ·		<u> </u>				
	A	 	C	D	F	F	G	н			ĸ		M	N	0	Р	0	R	S	T 🔺
1			TT	I MO	DUL		NAL	VCTC	SYST	EM (SI	JMMA	RVR	EPOR'	T					on 5.1	
2	District	1	111				s Range		5151					<u>1)</u>			(vusi	011.5.1	
2	County	139			Thick (in)		s reange Max	Poisson												
4	coding	100		Surfa Us		-	max	- Classer							x	1				
5				Base			100000000000000000000000000000000000000								_	1				
6				Subb:																
7				Subgr	M	ODU	LUS	5 TE	MPE	RATU	JRE	COR	RECT	10	N		TEMPE		- (
8	Station	Load	R1	R2					PD	OGR/						imit		RATURE	= (F) Pavem∈	Toot tin
10	75,100	9375	6.76	6.0						CGIN	ALVI					min	48.0	53.0	51.0	10:24
11	75,200	9279	6.84	6.0													49.0	56.0	53.0	12:19
12	75.300	9263	7.06	6.1		Read MOI	DUILUS Re	sult ASCII	File		Mo	dulus Tempe	erature Con	rection			52.0	62.0	55.0	14:04
13	75.400	9167	7.14	6.2													55.0	66.0	57.0	15:33
14	75.500	9807	6.46	5.8								Monthly Mo	duluc Drodic	tion			31.0	40.0	37.0	8:25
15	75.600	9879	6.71	6.0	Rei	ad FWD Te	st File &	Get Tempe	eratures			Monthly Mot		don			41.0	59.0	44.0	10:26
16	75.700	9671	7.10	6.3						1		Disk	0		1		54.0	62.0	51.0	9:30
17 18	75.800 75.900	9471 9375	7.87 8.47	6.9 7.2						1		PIOC	Output				51.0 68.0	58.0 81.0	64.0 69.0	7:37
10	76.000	9391	0.47 9.88	8.2		Interp	olate Ter	mperature	s						1		65.0	75.0	83.0	6:46
20	76,100	9383	10.39	8.6						1		Clear Pro	gram Sheet	s			75.0	93.0	82.0	8:59
21	76.200	9407	12.10	9.6						1					_		83.0	104.0	91.0	11:54
22	76.300	9279	14.20	10.4		Predict P	avement "	Temperatu	ires			Exit th	e Program				87.0	128.0	100.0	14:36
23	76.400	9390	12.13	9.6													81.0	79.0	95.0	7:31
24	76.500	9342	12.69	10.0						199.5							85.0	84.0	97.0	9:19
25	76.600	9283	14.88	10.93	9.42	7.65	6.05	3.73	1.71	175.0	19.6	0.0	13.4	0.7	119.6		91.0	96.0	105.0	12:01
26 27	76.700 76.800	9271 9168	16.48 17.17	11.83 12.07	9.87 9.90	7.89 7.90	6.20 6.13	3.77 3.72	1.75 1.73	137.0 119.0	20.9 23.0	0.0 0.0	13.1 13.0	0.4	123.6 123.7		96.0 97.0	104.0 108.0	111.0 114.0	14:20 16:24
27	76.800	9168	11.79	9.26	9.90 8.16	6.79	5.53	3.72	1.73	291.0	23.0 20.0	0.0	14.5	0.5	123.7		97.0 78.0	75.0	92.0	6:40
20	77.000	9561	11.94	9.48	8.37	6.95	5.68	3.66	1.70	302.0	15.0	0.0	14.5	0.3	123.6		82.0	80.0	91.0	8:45
30	77.100	9418	12.90	9.99	8.76	7.23	5.79	3.63	1.74	248.0	15.3	0.0	14.3	0.6	131.9		88.0	89.0	95.0	10:57
31	77.200	9338	14.55	10.81	9.17	7.43	5.85	3.60	1.63	180.0	17.7	0.0	14.1	0.4	115.4		91.0	99.0	103.0	13:03
32	77.300	9597	12.28	9.50	8.26	6.89	5.57	3.68	1.69	250.0	31.7	0.0	14.0	0.3	114.9		77.0	80.0	96.0	6:54
33	77.400	9609	12.23	9.63	8.38	6.95	5.60	3.60	1.68	275.0	17.1	0.0	14.8	0.3	120.7		80.0	81.0	95.0	8:58 🚽
	► ► \outp	ut /																		
Rea	dy																			
18	itart 🛛 🌌 🤅	🦲 🗐 🖡	¥ 🔊 🖻	s »	🔀 Wo	ordPerfect S	9 - [C:\Mto	:p\	Microso	ft Excel - 1	06 🍸	untitled - Pa	aint		₫¥	<u>ي</u>	< @	X () () 🕺 ᡐ	10:18 PM

Figure 7. Temperature Data Imported from the FWD Data File.

PERFORMING THE TEMPERATURE CORRECTION

Before corrections to a reference temperature may be made, the pavement temperatures you are correcting from must first be established. These pavement temperatures are referred to herein as the base temperatures for the modulus correction and refer to the pavement temperatures at which the FWD deflections were taken. There are two functions available in MTCP to establish the base temperatures. One allows you to estimate the pavement temperature at a given FWD station by interpolating between pavement temperatures measured at two neighboring stations that bound it.

In practice, pavement temperatures will not normally be measured at each test location. By clicking on the *Interpolate Temperatures* button in the main menu, you can fill in the missing information by interpolation from the available pavement temperature measurements. As a minimum, pavement temperatures should be measured at the beginning and end of the FWD survey for a given project. The program uses a linear interpolation based on the time of the FWD measurement. This is given in the *Test Time* column of the spreadsheet illustrated in Figure 7. No extrapolation is done for locations that are outside the range of stations where pavement temperatures were measured. Stations preceding the first temperature measurement are assigned that pavement temperature while stations following the last measurement are assigned the last value.

If you did not enter the pavement temperatures at the time of the FWD survey, you may manually key in the data along the *Pavement* column of the spreadsheet inside the cells corresponding to stations where pavement temperatures were taken. After manually entering the data, you may then click on *Interpolate Temperatures* to fill in the rest of the cells along the *Pavement* column with interpolated pavement temperatures.

Alternatively, if pavement temperatures were not measured during the survey, the base temperatures for the correction may be established using one of three options available within MTCP for predicting pavement temperature. All three options require the infrared surface temperatures taken with the FWD and the average of the previous day's minimum and maximum air temperatures at the vicinity of the project. The first two options are the BELLS2 and BELLS3 equations which were developed using data from Seasonal Monitoring Program (SMP) sites located in North America. The development of these equations are documented in a report by Lukanen, Stubstad, and Briggs (1998) and in a paper by Stubstad et al. (1998). BELLS2 is the equation for the FWD testing protocol used in the Long-Term Pavement Performance (LTPP) program. On the other hand, BELLS3 is intended for routine testing and was developed from efforts made to consider the effects of shading on the infrared surface temperatures measured on the SMP sites. The functional form of the BELLS2 and BELLS3 equations is given by:

$$T_{d} = \beta_{0} + \beta_{1} IR + [log_{10}(d) - 1.25] [\beta_{2} IR + \beta_{3} T_{(1-day)} + \beta_{4} sin(hr_{18} - 15.5)] + \beta_{5} IR sin(hr_{18} - 13.5)$$
(1)

where,

 T_d = pavement temperature at depth, d, within the asphalt layer, °C IR = surface temperature measured with the FWD infrared temperature gauge, °C d = depth at which the temperature is to be predicted, mm

Coefficient	BELLS2	BELLS3
βο	+2.780	+0.950
β_1	+0.912	+0.892
β_2	-0.428	-0.448
β_3	+0.553	+0.621
β_4	+2.630	+1.830
β_5	+0.027	+0.042
\mathbb{R}^2	0.977	0.975
SEE	1.8 °C	1.9 °C
N _{obs}	10,304	10,304

 Table 1. Coefficients of the BELLS2 and BELLS3 Equations.

 $T_{(1-day)}$ = the average of the previous day's high and low air temperatures, °C hr₁₈ = time of day in the 24-hour system but calculated using an 18-hour asphalt temperature rise and fall time as explained by Stubstad et al. (1998)

The coefficients of Eq.(1) are given in Table 1 for both the BELLS2 and BELLS3 equations. Also shown are the R^2 , standard error of the estimate (SEE) and the number of observations (N_{obs}) used to develop each equation. Note that the average of the previous day's high and low air temperatures is the only variable not collected during routine FWD testing that the user needs to provide to predict pavement temperatures with BELLS2 or BELLS3. Researchers recommend that pavement temperatures be predicted at half the depth of the surface layer.

The third option available within MTCP to predict pavement temperature uses the same variables as BELLS2 and BELLS3 but has the functional form given by Eq.(2) below:

$$T_{d} = \beta_{0} + \beta_{1} (IR + 2)^{1.5} + \log_{10}(d) * \{ \beta_{2} (IR + 2)^{1.5} + \beta_{3} \sin^{2}(hr_{18} - 15.5) + \beta_{4} \sin^{2}(hr_{18} - 13.5) + \beta_{5} [T_{(1-day)} + 6]^{1.5} \} +$$

$$\beta_{6} \sin^{2}(hr_{18} - 15.5) \sin^{2}(hr_{18} - 13.5)$$
(2)

where the terms are as defined previously and the coefficients are:

$\beta_0 = 6.460$	$\beta_1 = 0.199$	$\beta_2 = -0.083$	$\beta_3 = -0.692$
$\beta_4 = 1.874$	$\beta_5 = 0.059$	$\beta_{6} = -6.783$	

Equation (2) has an R² of 0.931 and a standard error of the estimate of 3.1 °C with 1575 observations. It was developed using data collected from SMP sites in Texas, New Mexico, and Oklahoma and from two flexible pavement sections located at the Texas A&M Riverside Campus. If the pavement temperatures at these sites are predicted using the original BELLS2 and BELLS3 equations, standard errors of the estimate of 4.1 °C and 4.9 °C are obtained, respectively (Fernando and Liu, 2001). To improve the predictive accuracy, researchers undertook to calibrate the BELLS2 and BELLS3 equations using data that are representative of conditions within Texas. These efforts led to the development of Eq.(2) which is referred to as the Texas-LTPP equation.

You may access the available options for predicting pavement temperature by clicking on the *Predict Pavement Temperatures* button of the main menu. This will display the dialog box illustrated in Figure 8 where you will specify:

- 1. the depth, in inches, at which the temperature is to be predicted;
- 2. the average of the previous day's high and low air temperatures in °F; and
- the method for predicting pavement temperature, i.e., BELLS2, BELLS3, or the Texas-LTPP equation given by Eq.(2).

You may select the equation to use by clicking on the down arrow in the *Select Equation* field of the dialog box to display the list of available options (see Figure 9). Select the equation by clicking on it. Note that the surface thickness from the MODULUS output file is displayed in the dialog box for your reference when you specify the depth at which pavement temperatures are to be predicted. It is also important that you specify the depth in inches and the average of the previous day's high and low air temperatures in °F as noted in the dialog box. The program automatically converts these inputs to the corresponding metric units used in the equations.

After entering the required data in Figure 8, click on the *OK* button of the dialog box to proceed with the temperature prediction. The results are written into the spreadsheet immediately to the right of the *Test time* column as shown in Figure 10. This column is labeled *Predicted Temperature*. If you bring the pointer inside the cell for this label, a comment box is displayed (Figure 10) which gives information on the equation selected for predicting pavement temperatures, the depth at which the temperatures were predicted, and

M	licrosoft Exc	el - 1068	.xls																	_ # ×
	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> in	dow <u>H</u> elp														<u>_8×</u>
	🖻 🖬 🔒	i 🖨 🖪	** X	h 🗈 🕻	s 💅 🕒	0 - 0	- 🚷 🗅	Σ f* 💈	I AI	1 🚜 🗓	• %00	2 🔒 🗸								
1	 Security. 	🤊 🤊	2	ø . 17	Arial MT B	lack	- 16	- B	ΙU		= 🖬	\$%	00. 0.+ 0.+ 00.	€≣ €	E	& -	Α			
1 .		- -	= ΠI	MODUL	US AN	IALYSIS	SYSTE	M (SU	MMARY				Version				-			
	A	 	С	D	E	F	G	Ĥ	1	J	́к	L	M	Ň	0	Р	Q	R	S	T
1			TT	т мо	DUL	US A	NALY	ZSIS	SYST	EM (S	SUMA	IARY	REPOR	(T			(Versi	on 5.1)
2	District	1			0.01	Modulu				(*				/						· <u> </u>
3	County	139			Thick (in		Max	Poisson												
4	- í			Surface	10.9	30	1500	0.4												
5				Base	6	15	200	0.35												
6				Subbase		Bells Equ	uation Ar	nalysis						×						
7				Subgrade	118.6												TEMPE	RATUR	= /=>	_
8	Station	Load	R1	R2	R3	Thic	kness of ti	he AC		10.9 (inc	hes)		_ ₽ ₽ ^{₽₩}		DB(in)	Limit			= (F) ∙Pavem∈	Teet tin
10	75,100	9375	6.76	6.09	5.66						· In	ches		0	181.2	Zirnit	48.0	53.0	51.0	10:24
11	75,200	9279	6.84	6.05	5.66	Depl	th from su	rface		5.45	In	ches	1		194.9		49.0	56.0	53.0	12:19
12	75.300	9263	7.06	6.17	5.78	Prev	rious day's	: Average	Air Temp.	75.		F.			181.0		52.0	62.0	55.0	14:04
13	75.400	9167	7.14	6.26	5.78			-		1 /01			OK		233.0		55.0	66.0	57.0	15:33
14	75.500	9807	6.46	5.87	5.57										300.0		31.0	40.0	37.0	8:25
15	75.600	9879	6.71	6.09	5.70	Sele	ct Equatio	n	Texas-L	TPP	-		Exit		226.0		41.0	59.0	44.0	10:26
16	75.700	9671	7.10	6.35	5.91										189.6		54.0	62.0	51.0	9:30
17	75.800	9471	7.87	6.95	6.30										147.1		51.0	58.0	64.0	7:37
18 19	75.900 76.000	9375 9391	8.47 9.88	7.25 8.28	6.55 7.36	14	/arning	The	navementi	temperatur	re predictio	n requires r	avement su	face	141.4		68.0 65.0	81.0 75.0	69.0 83.0	10:18
20	76.000	9383	9.00	0.20 8.66	7.56		ranning	temp	eratures n	neasured w		ated infrare			146.7		75.0	75.0 93.0	63.0 82.0	8:59
20	76,200	9407	12.10	9.65	8.42			temp	ierature ga	auge.					151.6		83.0	104.0	91.0	11:54
22	76.300	9279	14.20	10.42	9.02										158.4		87.0	128.0	100.0	14:36
23	76,400	9390	12.13	9.63	8.39	6.94	5.64	3.68	1.69	280.0	16.4	0.0	14.2	0.2	116.4		81.0	79.0	95.0	7:31
24	76.500	9342	12.69	10.00	8.75	7.18	5.83	3.73	1.72	259.0		0.0		0.2	119.3		85.0	84.0	97.0	9:19
25	76.600	9283	14.88	10.93	9.42	7.65	6.05	3.73	1.71	175.0	19.8	0.0	13.4	0.7	119.6		91.0	96.0	105.0	12:01
26	76.700	9271	16.48	11.83	9.87	7.89	6.20	3.77	1.75	137.0				0.4	123.6		96.0	104.0	111.0	14:20
27	76.800	9168	17.17	12.07	9.90	7.90	6.13	3.72	1.73	119.0				0.5	123.7		97.0	108.0	114.0	16:24
28	76.900	9513	11.79	9.26	8.16	6.79	5.53	3.60	1.70	291.0				0.3	123.8		78.0	75.0	92.0	6:40
29	77.000	9561	11.94	9.48	8.37	6.95	5.68	3.66	1.72	302.0				0.3	123.6		82.0	80.0	91.0	8:45
30 31	77.100 77.200	9418 9338	12.90 14.55	9.99 10.81	8.76 9.17	7.23 7.43	5.79 5.85	3.63 3.60	1.74 1.63	248.0 180.0				0.6	131.9		88.0 91.0	89.0 99.0	95.0 103.0	10:57 13:03
31	77.300	9538	14.55	9.50	9.17	7.43 6.89	5.65	3.60	1.63	250.0				0.4	115.4		91.0 77.0	99.0 80.0	96.0	6:54
33	77.400	9609	12.20	9.63	8.38	6.95	5.60	3.60	1.68	275.0		0.0		0.3	120.7		80.0	81.0	95.0	8:58 -
	▶ N \outp		.2.20	0.00	0.00	0.00	0.00	0.00		2. 0.0		1		0.0	1					• •
Rea																				
-	- 7 - 10	e 🗊	x 🛪 🛛	~ »	l 🕅 Mark	ordParfact (B. ICAMM	~ IR	Niorosa	ft Eugal	100		Paint	1			1.00	N 16 J	<u>م م</u>	10:29 PM
94		ې سې 🥪	a 🎶 🕨	0] <u>M</u> W(nar enect :	s-je, witt	P	HICIUSO	ICEXCEI -	100		1 dine			, 😻 🖓		5 / X X	Ø ₩ 🍫	10.23 FM

Figure 8. Dialog Box to Specify Input Data for Pavement Temperature Prediction.

lls Equation Analy	sis			×
Thickness of the A	кс	10.9 (inches)	Inches	FND
Depth from surfac	e	5.45	Inches	÷
Previous day's Av	erage Air Temp.	75.	F`	ок
Select Equation	Texas-L1 Bells2 Bells3 Texas-L1			Exit
Warning :	The pavement t	emperature predi easured with a ca		s pavement surface ared surface

Figure 9. Equations Available for Predicting Pavement Temperatures.

🔀 Mi	crosoft Exc	el - 1068.)	xls															_ 8	_
) 🖳 E	<u>ile E</u> dit <u>V</u> ie	w <u>I</u> nsert	F <u>o</u> rmat <u>T</u> o	ools <u>D</u> ata	a <u>W</u> indo	w <u>H</u> el	lp											_ 8	Ľ
	🛩 🔒 🔒	a 🗟	🏷 🏋 [b 🔒 :	10	* C4	- 🔒	Σf_{*}		🛍 🛷	100%	· 🝳 🔒	•						
	 Security. 	👌 🛠	è⊾ 🖉	Aria	al		- 10) - B				\$ %	.00 •.0 •.0 •.0	t≡ t≡	- 🗞	• <u>A</u> • ,			
	- U9		= Predic	ted Ten	nperatu	re						- 1		1		_			
	A	L	M	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	
1		ARYR	REPOR	(T)			(Versi	on 5.1	D									
2	District																		
	County																		
4																			
5																			- 11
6																			- 11
8							TEMPE	RATUR	E (F)			Mothedu	exas-LTPP	-					
	Station			Err/Sen		Limit				Test tin	Predict	Previous							
10	75.100	0.0	12.6	0.6	181.2		48.0	53.0	51.0	10:24	84.4		00(F) Temp						- 11
11 12	75.200 75.300	0.0 0.0	12.6 12.6	0.6	194.9 181.0		49.0 52.0	56.0 62.0	53.0 55.0	12:19 14:04	84.7 85.5	at Depth:	5.45(inches)						- 11
12	75.300	0.0	12.6	0.4	233.0		52.0 55.0	62.0 66.0	55.0 57.0	14:04	86.1	L							-11
14	75.500	0.0	11.3	1.0	300.0		31.0	40.0	37.0	8:25	83.0								
15	75.600	0.0	12.3	1.1	226.0		41.0	59.0	44.0	10:26	85.1								
16	75.700	0.0	12.4	0.6	189.6		54.0	62.0	51.0	9:30	85.5								
17	75.800	0.0	13.9	1.0	147.1	-	51.0	58.0	64.0	7:37	85.0								_
18 19	75.900 76.000	0.0 0.0	13.1 12.9	0.9	141.4		68.0 65.0	81.0 75.0	69.0 83.0	10:18 6:46	88.5 87.5								
20	76,100	0.0	13.2	0.5	178.0		75.0	93.0	82.0	8:59	90.8								
21	76.200	0.0	13.1	0.6	151.6		83.0	104.0	91.0	11:54	93.0								
22	76.300	0.0	12.5	0.8	158.4		87.0	128.0	100.0	14:36	98.5								
23	76.400	0.0	14.2	0.2	116.4		81.0	79.0	95.0	7:31	88.2								
24	76.500 76.600	0.0 0.0	13.9 13.4	0.2	119.3 119.6		85.0 91.0	84.0 96.0	97.0 105.0	9:19 12:01	89.1 91.4								
25 26	76.600	0.0	13.4	0.7	123.6		91.0 96.0	96.0 104.0	105.0	14:20	91.4								
27	76.800	0.0	13.0	0.5	123.7		97.0	108.0	114.0	16:24	93.9								
28	76.900	0.0	14.5	0.3	123.8		78.0	75.0	92.0	6:40	87.5								
29	77.000	0.0	14.5	0.3	123.6		82.0	80.0	91.0	8:45	88.4								
30 31	77.100 77.200	0.0 0.0	14.3 14.1	0.6	131.9		88.0 91.0	89.0 99.0	95.0 103.0	10:57 13:03	90.0 92.0								
31	77.300	0.0	14.1	0.4	115.4		91.0 77.0	99.0 80.0	103.0 96.0	6:54	92.0 88.4								
33	77.400	0.0	14.8	0.3	120.7		80.0	81.0	95.0	8:58	88.5								-
	> > outp			_								1			j	1			٠Ē
Cell	U9 commen	nted by TT	T																
🚮 S	tart 🛛 🌌	e 🗊 🖬		»	💐 Word	Perfec	t 9 - [C:\M	tep\	Micros	oft Exce	- 106	**)MTCP	Bells3.bmp - P	aint	<u></u>		🍯 🖉 🖓 🐧	10:36 F	РМ

Figure 10. Predicted Pavement Temperatures from MTCP.

the average of the previous day's high and low air temperatures. A red triangular spot at the upper right corner identifies cells with comment boxes. Sometimes there may be more information than can be displayed inside the comment box. In this case, you may resize the box by right clicking on the cell and selecting the *Edit Comment* function (Figure 11) to view all of the information inside the box.

After the base temperatures are established, you can proceed with the modulus correction by clicking on the *Modulus Temperature Correction* button of the main menu illustrated in Figure 2. This will display the dialog box shown in Figure 12 which provides the following three options for temperature correction of backcalculated AC moduli:

- 1. the existing TxDOT equation used in the Flexible Pavement System (FPS) and load zoning analysis programs,
- 2. the Chen equation (Chen at al., 2000), and
- 3. Witczak's dynamic modulus equation.

3)	<u>File E</u> dit <u>V</u> ie	ew <u>I</u> nsert I	F <u>o</u> rmat <u>T</u> o	ools <u>D</u> at	a <u>W</u> indo	ow <u>H</u> el	p											_ 8	×١
Ľ	🖻 🔒 🔒	🖨 🖪 '	vec ∦ I	la 🛍	10) + Ci	- 😫	Σf_{s}	A ↓ Z ↓	🛍 🚜	100%	- 🛛 🔒	•						
Þ	 Security. 	👌 🛠	• 🔛 🖉	🤉 🖕 🛛 Ari	al		- 1	0 • E				\$ %	•.0 .0 • 00 •	8 🛊 🛊	📃 - 🕭	• <u>A</u> • .			
	U9		= Predic	cted Ter	nperatu	re						- 1		1		_			
	A	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	
1		ARY R	EPOF	RT)				(Versi	ion 5.1	1)									
2	District									Ĺ I									-
3	County																		
4																			
5																			_
6 7						-													-
8							TEMPE	RATUR	E (E)										-
_	Station	E(sb) B	E(sg)	Err/Sen	DB(in)	Limit				Test tim	Predict								-
10	75.100	0.0	12.6	0.6	181.2		48.0	53.0	51.0	10:24	84 🐰								
1	75.200	0.0	12.6	0.6	194.9		49.0	56.0	53.0	12:19	84 Be	⊆ору							
2	75.300	0.0	12.6	0.4	181.0		52.0	62.0	55.0	14:04	85 💼	Paste							_
3 4	75.400 75.500	0.0 0.0	12.7 11.3	0.7	233.0 300.0		55.0 31.0	66.0 40.0	57.0 37.0	15:33 8:25	86 83	Paste <u>S</u> pec	ial						-
14	75.600	0.0	12.3	1.1	226.0		41.0	40.0 59.0	37.0 44.0	0.25 10:26	85	Incort							
16	75.700	0.0	12.3	0.6	189.6		54.0	62.0	51.0	9:30	85	Insert Delete							
17	75.800	0.0	13.9	1.0	147.1		51.0	58.0	64.0	7:37	85	Clear Conte	ente						-
18	75.900	0.0	13.1	0.9	141.4		68.0	81.0	69.0	10:18	- 38								
19	76.000	0.0	12.9	0.5	146.7		65.0	75.0	83.0	6:46		<u>E</u> dit Comme							
20	76.100	0.0	13.2	0.4	178.0		75.0	93.0	82.0	8:59	90 🏷	Delete Com	ment						
21 22	76.200 76.300	0.0 0.0	13.1 12.5	0.6 0.8	151.6 158.4		83.0 87.0	104.0 128.0	91.0 100.0	11:54 14:36	93 98 -	Show Comr	nent						_
22 23	76.300	0.0	14.2	0.0	150.4		81.0	79.0	95.0	7:31		Format Cel	ls						
24	76,500	0.0	13.9	0.2	119.3		85.0	84.0	97.0	9:19	89	Pick From L							
25	76.600	0.0	13.4	0.7	119.6		91.0	96.0	105.0	12:01		Hyperlink	.serri						
26	76.700	0.0	13.1	0.4	123.6	i	96.0	104.0	111.0	14:20	93.0								
27	76.800	0.0	13.0	0.5	123.7		97.0	108.0	114.0	16:24	93.9								
28	76.900	0.0	14.5	0.3	123.8		78.0	75.0	92.0	6:40	87.5								
29	77.000	0.0	14.5 14.3	0.3	123.6 131.9		82.0	80.0	91.0 95.0	8:45 10:57	88.4 90.0								
30 31	77.100 77.200	0.0 0.0	14.3	0.6	131.9		88.0 91.0	89.0 99.0	95.0 103.0	10:57 13:03	90.0 92.0								-
32	77.300	0.0	14.1	0.4	114.9		77.0	80.0	96.0	6:54	88.4								
33	77.400	0.0	14.8	0.3			80.0	81.0	95.0	8:58	88.5								
•	▶ ► \outp	ut /										1						Þ	۱
Rea	dy																		
6 9	itart 🛛 🌌 (🖉 🟫 🕅		»	🐹 Word	Perfect	9 - [C:\M	Itep\	Micros	oft Excel	- 106	谢 untitled	d - Paint		<u>av.</u>	∢@@>	🍯 🕼 😓 🖧 🍯	10:401	P١

Figure 11. Resizing the Comment Box Using the *Edit Comment* Function in Excel.

	licrosoft Exc	el - 1068.:	xls											_ & ×
	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert	F <u>o</u> rmat <u>T</u> oo	ols <u>D</u> ata <u>W</u> indow	<u>H</u> elp									_ 8 ×
	🚔 🔒 🔒	<i>a</i> .	🌮 🐰 🖻	a 🛍 ダ 🗠 -	/ CH 🖌 🍓 🗄	$\Sigma f_* \stackrel{A}{\underset{Z}{\downarrow}} \stackrel{Z}{\underset{A}{\downarrow}}$	🛍 🚜 100%	- 🛛 🔒	•					
1	 Security. 	🎘 🕺	° 🖌 🛷	+ Arial MT Black	• 16	• B / U		⊡ \$%			- 🕭 -	A		
1 .	· ·			DULUS ANAL					(Versio			—		
	A		M		P Q	R S	TU	V	W	X	Y	Z	AA	AB 🔺
1		ARY F	REPOR	T)	(Version 5.1	l)		1					
2	District								0					
	County													
4														
5				Modu	lus Temperati	ure Correction				×				
7				TxDo	t Equation Dyr	namic Modulus Equ	ation Chen Equ	ation						
8														
	Station	E(sb)	E(sg) E	rr/Sen DB										
10	75.100	0.0	12.6	0.6 1	Γ	$= E_T$	$(T^{2.8})$	1 \ / 1	85000	n I I				
11	75.200	0.0	12.6	0.6 1	L 75	$- L_T$	(1)/1	03000					
12	75.300	0.0	12.6	0.4 1										
13	75.400	0.0	12.7	0.7 2										
14	75.500	0.0	11.3	1.0 3										_
15	75.600	0.0	12.3	1.1 2 Refer	ence Temperatu	ure 75 F			FAD					
16	75.700 75.800	0.0	12.4	0.6 1						<u> </u>				
17	75.000	0.0 0.0	13.9 13.1	1.0 1 0.9 1	lect Temperatu	re			*					
19	76.000	0.0	12.9		lse Tested Pave	ment Temp.								
20	76,100	0.0	13.2	0.4 4	Les Dus distant Ta			1		1				
21	76.200	0.0	13.1	0.6 1	lse Predicted Te	mperature		Exit	Ru	n				
22	76.300	0.0	12.5	0.8 1										
23	76.400	0.0	14.2	0.2 1	01.0	10.0 00.0		۷.						
24	76.500	0.0	13.9	0.2 119.3	85.0	84.0 97.0	9:19 89.							
25 26	76.600	0.0	13.4	0.7 119.6	91.0	96.0 105.0	12:01 91.							
26	76.700	0.0	13.1	0.4 123.6	96.0	104.0 111.0	14:20 93.							
27 28	76.800	0.0	13.0 14.5	0.5 123.7	97.0	108.0 114.0	16:24 93. 6:40 87.							
28	76.900 77.000	0.0 0.0	14.5	0.3 123.8	78.0 82.0	75.0 92.0 80.0 91.0	6:40 87. 8:45 88.							
30	77.000	0.0	14.5	0.6 131.9	88.0	89.0 95.0	10:57 90.							
31	77.200	0.0	14.0	0.4 115.4	91.0	99.0 103.0	13:03 92							
32	77.300	0.0	14.0	0.3 114.9	77.0	80.0 96.0	6:54 88.							
33	77.400	0.0	14.8	0.3 120.7	80.0	81.0 95.0	8:58 88.							•
4 4	▶ ▶ \outp	ut /						•	1					
Rea	dy													
	Start 🛛 🌌 (<i>(</i>) 🔅	K 🔊 🔀	» 🛛 🔀 WordPo	erfect 9 - [C:\Mto	op\ Micros	oft Excel - 106	🍸 untitle	ed - Paint		.	< <u>@@</u> >	(🌔 👌 🔕 📢	> 10:56 PM

Figure 12. Dialog Box Showing TxDOT's Equation for Modulus Temperature Correction.

You can select the equation to use for temperature correction by clicking on the appropriate folder tab of the dialog box in Figure 12, where TxDOT's equation for modulus temperature correction is shown. This equation is based on a reference temperature of 75 °F. The independent variables of the equation are the FWD test temperature T in °F and the backcalculated asphalt concrete modulus E_T that is read from the MODULUS summary output file. The FWD test temperatures correspond to the base pavement temperatures established in the previous step. As shown in Figure 12, you have two options for specifying the base pavement temperatures. If pavement temperatures were measured during the FWD survey, you can use the measured temperatures at specific stations and the interpolated values at the other stations by clicking on the *Use Tested Pavement Temp.* option in the dialog box. If no pavement temperatures were measured during the survey, you can use the predicted temperatures from BELLS2, BELLS3, or the Texas-LTPP equation presented previously.

	licrosoft Exc	el - 1068.;	xls														_ & ×
	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert	F <u>o</u> rmat <u>T</u> o	ols <u>D</u> ata	<u>W</u> indow <u>H</u> e	elp											_ 8 ×
	🖻 🖬 🔒	a	🌮 🐰 🛙	b 🛍 🚿	\$ K) + C	a 🗸 🍓	Σ <i>f</i> *		🛍 🚜 🛛	100% -	2 🔒 .	-					
	 Security. 			1										🔄 + 🔕	• A • _		
	•			-	ANALYS							(Versio					
	A		M	N	0 P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB 🔺
1		ARY F	REPOR	.T)		(Versi	on 5.1	.)								
2	District										3						
3	County																
4														4			
6						Temperat							×				
7					TxDot Eq	juation Dy	namic Mo	idulus Equa	ation Che	n Equatio	n						
8													- I				
9				rr/Sen Di		-				T	、 2 A	1462					
10	75.100 75.200	0.0 0.0	12.6 12.6	0.6	1	E_{τ}	=	E	τ (-) ^{2.4}						
12	75.300	0.0	12.6	0.0	1	1	r		2 1	Τ,							
13	75.400	0.0	12.7		2 L					/							
14	75.500	0.0	11.3	1.0													
15	75.600	0.0	12.3	1.1	- Kererend	e Temperat	ure 80	1.0 F				FND_					
16 17	75.700 75.800	0.0 0.0	12.4 13.9	0.6	-							C	<u> </u>				
18	75.900	0.0	13.5	0.9		Temperatu	Jre —					*					
19	76.000	0.0	12.9	0.5		Tested Pave	ement Ter	np.									
20	76.100	0.0	13.2	0.4		Predicted Te	emperatur	re		Exit	1	Rur					
21	76.200	0.0	13.1	0.6	1				_	LAIC			<u></u>				
22 23	76.300 76.400	0.0 0.0	12.5 14.2	0.8	1 1												
24	76,500	0.0	13.9		119.3	85.0	84.0	97.0	9:19	89.1							
25	76.600	0.0	13.4	0.7	119.6	91.0	96.0	105.0	12:01	91.4							
26	76.700	0.0	13.1		123.6	96.0	104.0	111.0	14:20	93.0							
27	76.800	0.0	13.0		123.7	97.0	108.0	114.0	16:24	93.9							
28 29	76.900 77.000	0.0 0.0	14.5 14.5		123.8 123.6	78.0 82.0	75.0 80.0	92.0 91.0	6:40 8:45	87.5 88.4							
30	77.100	0.0	14.3		131.9	88.0	89.0	95.0	10:57	90.0							
31	77.200	0.0	14.1		115.4	91.0	99.0	103.0	13:03	92.0							
32	77.300	0.0	14.0		114.9	77.0	80.0	96.0	6:54	88.4							
33	77.400		14.8	0.3	120.7	80.0	81.0	95.0	8:58	88.5							
	▶ ► outp	ut /									1						
Rea				N 1 1							100 or		1)) X (0) 2 -	
	Start 🗍 🌌 (C 🗐 🕅												,	_Q_M M 2	8 li 🖓 🖉	🖓 10:58 PM

You may then perform the modulus temperature correction by clicking the *Run* button of the dialog box. Alternatively, you may click the *Exit* button to go back to the main menu without performing the temperature corrections.

Figure 13 shows the Chen equation. This equation was developed using FWD and pavement temperature data taken from three test sections established as part of TxDOT's Mobile Load Simulator (MLS) project (Chen et al., 2000). The equation is therefore applicable for pavements that are similar to the sections tested. Nevertheless, modulus temperature correction factors from this equation were found to agree reasonably well with corresponding factors from TxDOT's equation even though the two were developed from different studies.

The Chen equation permits the correction to be made for any user-specified reference temperature T_r . The reference temperature (in °F) is specified in the dialog box of Figure 13. Note that both the Chen and existing TxDOT equations do not require AC mixture properties

for modulus temperature correction and are thus easy to use in practice. These equations were developed for the typical mixtures used in the state. However, there may be occasions where the user may want to evaluate the temperature dependency for the specific asphalt mix used in a given project. Consequently, a third option (Figure 14) was incorporated into MTCP that is based on the prediction equation for dynamic modulus developed by Witczak and Fonseca (1996). This option requires data on the aggregate gradation and the binder viscosity-temperature relationship for the asphalt concrete mixture. The equation for modulus temperature correction is given by:

$$\log_{10} E_{R} = \log_{10} E_{T} + A \left[\frac{1}{1 + e^{-(B_{R} + 0.7425 \log_{10} \eta_{R})}} - \frac{1}{1 + e^{-(B_{T} + 0.7425 \log_{10} \eta_{T})}} \right]$$
(3)

$$R^2 = 0.93$$
 SEE = 0.12 (log scale)

where,

$$A = 1.87 + 0.003 p_4 + 0.00004 p_{3/8} - 0.00018 (p_{3/8})^2 + 0.0164 p_{3/4}$$
(4)

$$B_R = 0.716 \log_{10} f_R \tag{5}$$

$$B_T = 0.716 \log_{10} f_T \tag{6}$$

 E_R = AC modulus corrected for the selected reference temperature, 10⁵ psi

$$E_T$$
 = backcalculated asphalt concrete modulus, 10⁵ psi

 η_R = binder viscosity corresponding to the reference temperature, 10⁶ Poises

$$\eta_T$$
 = binder viscosity corresponding to the FWD test temperature, 10⁶ Poises

$$p_4$$
 = cumulative percent retained on #4 sieve by total aggregate weight

 $p_{3/8}$ = cumulative percent retained on 3/8-inch sieve by total aggregate weight

 $p_{3/4}$ = cumulative percent retained on 3/4-inch sieve by total aggregate weight

 f_R = reference loading frequency, Hz

 f_T = test frequency, Hz

For the impulse loading of the FWD, the test frequency may be approximated from the following relationship proposed by Lytton et al. (1990):

$$f_T = \frac{1}{2t} \tag{7}$$

	licrosoft Exc	el - 1068.;	kls														_8	×
	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert I	F <u>o</u> rmat <u>T</u> oo	ols <u>D</u> ata	a <u>W</u> indow	<u>H</u> elp											_8>	×
	🖻 🖬 🔒	<i>a</i> .	🌮 🐰 🗎	b 🔒 :	ダ 🖾 -	ा - 🍓	Σf_{*}		🛍 🚯	100% -	2 🔒	•						
- •	 Security. 	👌 🛠	• 🔟 🦔	- Ari	al MT Black	- 1	6 - B		[] []		\$ %	∟ ۱.♦ 00. و	8 🛊 🛊	📃 • 🔕 •	<u>A</u> - ,			
	A1					SIS SYST						(Versio						
	A		M	N	0	P Q	R	S	T	U	V	W	X	Y	Z	AA	AB _	•
1		ARYR	EPOR	.T)			(Versi	ion 5.1	1)									
	District																	
3	County																	
4					_		-							4				
6						us Tempera							×					
7					TxDot	Equation D	ynamic Mo	dulus Equ	iation Chi	en Equatio	n]							
8							_											
9	Station	E(sb) B	E(sg) E	rr/Sen	DB A	11.077	P4	52.0										
10	75.100	0.0	12.6	0.6	1 UTC	-3.710	P38	36.0	AC-10	•	nc-II	<mark>58</mark> 2	<u>.</u>					
11	75.200	0.0	12.6	0.6	-				AC-10	<u> </u>	PG	30 2						
12	75.300	0.0	12.6	0.4		10.00	P34	14.0						L				
13	75.400 75.500	0.0 0.0	12.7 11.3	0.7										L				
14	75.600	0.0	12.3	1.1	2	_	ture 75					- EWD		-				
16	75,700	0.0	12.3	0.6	Refer	ence Tempera	ture /-	5.0 F				- Real						
17	75.800	0.0	13.9	1.0		ect Temperal	ure					4		L				
18	75.900	0.0	13.1	0.9	1													-
19	76.000	0.0	12.9	0.5		se Tested Pav	ement Ter	mp.										
20	76.100	0.0	13.2	0.4		se Predicted 1	emperatu	re		Exit		Rur	. 1					
21	76.200	0.0	13.1	0.6	1					LAIC								
22	76.300	0.0	12.5	0.8										L				
23 24	76.400 76.500	0.0 0.0	14.2 13.9	0.2	1 119.3	85.0	84.0	97.0	9:19	91.7				-				
24	76.600	0.0	13.9	0.2	119.3	85.0 91.0	84.0 96.0	97.0 105.0	9:19 12:01	91.7								
26	76,700	0.0	13.4	0.7	123.6	96.0	104.0	1111.0	14:20	95.6								
27	76.800	0.0	13.0	0.5	123.7	97.0	104.0	114.0	16:24	96.5								
28	76.900	0.0	14.5	0.3	123.8	78.0	75.0	92.0	6:40	90.1								
29	77.000	0.0	14.5	0.3	123.6	82.0	80.0	91.0	8:45	91.0								
30	77.100	0.0	14.3	0.6	131.9	88.0	89.0	95.0	10:57	92.6								
31	77.200	0.0	14.1	0.4	115.4	91.0	99.0	103.0	13:03	94.6								
32	77.300	0.0	14.0	0.3	114.9	77.0	80.0	96.0	6:54	91.0								
33	77.400		14.8	0.3	120.7	80.0	81.0	95.0	8:58	91.2								•
	Noutp										•							
Rea													1					
	Start 🛛 🌌 (@ 🗐 🕅	E 🔊 🔀 -	*]]	🔍 WordPe	rfect 9 - [C:\M	ITCP	Micros	oft Excel	- 106	* untitle	d - Paint		a ta] ~ {{\} 6	9 🕅 💥 🔍 🕈	🤌 12:58 AM	1

Figure 14. Dialog Box for Temperature Correction Based on Witczak's Dynamic Modulus Equation.

where *t* is the duration of the impulse load in seconds. The duration of the impulse load for the FWD is about 30 msecs which gives a test frequency of about 16.7 Hz, the value used in MTCP for modulus correction On the other hand, f_R should correspond to the frequency of loading used in pavement design. This typically ranges from 8 to 10 Hz for the standard 18-kip single axle load traveling at typical highway speeds. The reference frequency is entered in the f_r field of the dialog box shown in Figure 14. Note that if you enter a value equal to the FWD load frequency (16.7 Hz), no correction for the effect of load duration on the AC modulus will be made.

The gradation information for the mix is entered in the fields labeled *P4*, *P38*, and *P34* corresponding, respectively, to p_4 , $p_{3/8}$, and $p_{3/4}$. The binder viscosity corresponding to the reference and base pavement temperatures are determined using the ASTM D-2493 viscosity-temperature relationship given by:

$$\log_{10} \log_{10} \eta = A + VTS \log_{10} T_{\circ_R}$$
(8)

where η is the binder viscosity, $T_{\mathcal{R}}$ is the temperature in degrees Rankine, and *A* and *VTS* are model coefficients determined from testing. In practice, *A* and *VTS* may be determined by conducting dynamic shear rheometer (DSR) tests at a range of temperatures on the binder extracted from a core taken at the project site. This extraction will also provide the gradation data needed to use the dynamic modulus equation for temperature correction.

DSR tests may be conducted at an angular frequency of 10 rad/sec and for a temperature range of 40 to 130 °F. From the binder complex shear modulus G^* and phase angle δ determined at a given temperature, the corresponding binder viscosity may be estimated from the equation:

$$\eta = \frac{G^*}{10} \left(\frac{1}{\sin \delta} \right)^{4.8628} \tag{9}$$

The binder viscosities determined at the different test temperatures may be used in a regression analysis to get the *A* and *VTS* coefficients of Eq.(8). These coefficients are then entered in the corresponding fields of the dialog box given in Figure 14.

In the absence of actual test data to determine the coefficients, researchers have incorporated default values into MTCP to permit you to conduct an approximate analysis. The default coefficients are based on the asphalt grade and are applicable for unmodified binders. Table 2 shows the coefficients for AC-graded binders while Table 3 shows the coefficients for performance-graded (PG) asphalts. The coefficients in Table 2 are based on research conducted by Mirza (1993) and are representative of asphalts that have undergone field aging. Those in Table 3 are from unpublished data taken from the AASHTO 2002 development work. The predicted binder viscosities from these coefficients are representative of mix/laydown conditions.

If the binder on the project is AC-graded, you may specify the asphalt type by clicking on the down arrow in Figure 14 to display the list of asphalt grades for which default coefficients are available (see Figure 15). From this list, you may click on the applicable binder type to select it. The coefficients corresponding to this binder are then displayed in the *A* and *VTS* fields of the dialog box.

Viscosity Grade (Original Conditions)	Viscosity Range at 140 °F (Poises)	Α	VTS
AC - 2.5	100 - 350	11.8408	-3.9974
AC - 5	350 - 700	11.4711	-3.8557
AC - 10	700 - 1400	11.0770	-3.7097
AC - 20	1400 - 2800	10.9168	-3.6469
AC - 40	2800 - 5200	10.6528	-3.5477

 Table 2. Default A and VTS Coefficients for AC-Graded Asphalts¹.

¹ Representative of asphalts that have undergone field aging.

High							w Tempe		ade	r				
High Temp.	-]	10	-1	6	-2	22	-2	28	-3	34	-4	40	_2	46
Grade	A	VTS	A	VTS	Α	VTS	A	VTS	Α	VTS	A	VTS	A	VTS
46									11.504	-3.901	10.101	-3.393	8.755	-2.905
52	13.38 6	-4.570	13.305	-4.541	12.755	-4.342	11.840	-4.012	10.707	-3.602	9.496	-3.164	8.310	-2.736
58	12.31 6	-4.172	12.248	-4.147	11.787	-3.981	11.010	-3.701	10.035	-3.350	8.976	-2.968		
64	11.43 2	-3.842	11.375	-3.822	10.980	-3.680	10.312	-3.440	9.461	-3.134	8.524	-2.798		
70	10.69 0	-3.566	10.641	-3.548	10.299	-3.426	9.715	-3.217	8.965	-2.948	8.129	-2.648		
76	10.05 9	-3.331	10.015	-3.315	9.715	-3.208	9.200	-3.024	8.532	-2.785				
82	9.514	-3.128	9.475	-3.114	9.209	-3.019	8.750	-2.856	8.151	-2.642				

Table 3. Default A and VTS Coefficients for PG-Graded Asphalts¹.

¹ Coefficients representative of mix/laydown conditions (unpublished data from AASHTO 2002 development work).

Figure 15. Drop-Down List of AC-Graded Asphalts with Default Coefficients.

If the binder on the project is PG-graded, you simply click on the up and down arrows of the PG fields in the dialog box until you get the number designations you want. The *A* and *VTS* coefficients for that PG grade are then displayed. Note that coefficients are only available for the PG grades shown in Table 3. It is also noted that the *A* and *VTS* coefficients displayed in the dialog box always correspond to those specified for the last run made. Default values for these coefficients may have been used, or alternatively, coefficients from laboratory test data may have been entered in the *A* and *VTS* fields of the dialog box shown in Figure 15. Thus, these fields will not necessarily display coefficients that correspond to the current AC and/or PG grades displayed in the dialog box.

The results from the temperature corrections are written into the worksheet along the column labeled *Corrected Modulus*. As shown in Figure 16, the column label has a comment box which gives information about the method used to perform the temperature correction. Specifically, the comment box identifies the method, as well as the reference and base pavement temperatures used for the corrections. In addition, if the dynamic modulus equation is selected, the *A* and *VTS* coefficients, reference loading frequency, and aggregate gradation are displayed in the comment box.

2)	<u>File E</u> dit <u>V</u> i	ew <u>I</u> nsert	F <u>o</u> rmat <u>T</u>	ools <u>D</u> at	a <u>W</u> indo	w <u>H</u> el	lp															_ 8
D	🖻 🖬 🔮	5 🖪 🖤	<u>ж</u> 🗈	6	к) +	Σf	× <u></u> ≵↓	100%	• • 🛛	Arial		×	10 - F	3 I	U	≣ 3		₽ 00	00. 0.	-	ð - <u>/</u>	A -
-	Х9	•	=							1.1				_							_	_
	A	L	M	N	0	Р	Q	R	S	Т	U	V	W		Х		Y	Z		AA		AB
1		ARYF	REPOI	RT)				(Versi	ion 5	D D												
2	District							(·/						_					_	
3	County																				_	
4														-								
5																						
6																						
7																						
8								ERATURI				Corrected	USC.		namic	-						
9 10	Station 75.100		E(sg) 12.6	Err/Sen 0.6	UB(in) 181.2	Limit	Air 48.0	Surface 53.0	Paveme 51.0	Test tim 10:24	Predicte 87.0	Modulus 481.9	Modulus	Equa	tion						_	
10 11	75.100	0.0	12.6	0.6	194.9		48.0 49.0	53.U 56.0	51.0	10:24	87.3	481.9	Correct	ed to 8	30.0'F	-						
12	75.300	0.0	12.6	0.0	181.0		52.0	62.0	55.0	14:04	88.2	412.8	A=11	.077							_	
13	75,400	0.0	12.0	0.7	233.0		55.0	66.0	57.0	15:33	88.7	397.8	VTS-=-3 fr=10								_	
14	75.500	0.0	11.3	1.0	300.0		31.0	40.0	37.0	8:25	85.6	504.3	P.4-=52									
15	75.600	0.0	12.3	1.1	226.0		41.0	59.0	44.0	10:26	87.7	524.6	P.38=3	5.0%								
16	75.700	0.0	12.4	0.6	189.6		54.0	62.0	51.0	9:30	88.1	433.2	P.34=1 You use									
17	75.800	0.0	13.9	1.0	147.1		51.0	58.0	64.0	7:37	87.6	429.1	tempera									
18	75.900	0.0	13.1	0.9	141.4		68.0	81.0	69.0	10:18	91.2	350.4										
19	76.000	0.0	12.9	0.5	146.7		65.0 75.0	75.0	83.0	6:46	90.1	404.2		_								
20 21	76.100 76.200	0.0	13.2 13.1	0.4	178.0 151.6		75.0 83.0	93.0 104.0	82.0 91.0	8:59 11:54	93.4 95.6	399.3 373.4		_		_						
21 22	76.200	0.0	12.5	0.8	158.4		87.0	128.0	100.0	14:36	101.1	373.4										
23	76.400	0.0	14.2	0.2	116.4		81.0	79.0	95.0	7:31	90.8	426.2									_	
24	76.500	0.0	13.9	0.2			85.0	84.0	97.0	9:19	91.7	426.4										
25	76.600	0.0	13.4	0.7	119.6		91.0	96.0	105.0	12:01	94.0	396.3										
26	76.700	0.0	13.1	0.4	123.6		96.0	104.0	111.0	14:20	95.6	393.8										
27	76.800	0.0	13.0	0.5			97.0	108.0	114.0	16:24	96.5	384.6										
28	76.900	0.0	14.5	0.3	123.8		78.0	75.0	92.0	6:40	90.1	394.6										
29	77.000	0.0	14.5	0.3	123.6		82.0	80.0	91.0	8:45	91.0	394.3		_		_						
30 31	77.100 77.200	0.0 0.0	14.3 14.1	0.6	131.9		88.0 91.0	89.0 99.0	95.0 103.0	10:57 13:03	92.6 94.6	377.5 376.2										
51 32	77.200	0.0	14.1	0.4	115.4		77.0	99.0 80.0	96.0	6:54	94.6 91.0	376.2				_						
52 33	77.300	0.0	14.0	0.3	114.9		80.0	81.0	96.0 95.0	6.54 8:58	91.0	418.6				_					_	
34	77.500	0.0	14.5	0.2			80.0	81.0	97.5	10:47	91.2	432.3		-								
35	77 600		14.6	0.5			88.0	91 N	100.2	12.47	93.0	441 1										
j 	► ► \out																					•
Dra	w + 🗟 🌀	AutoShap	ies 🕶 🔨	\mathbf{X}		4	2 👌	- 🏒 - 1	▲ - 〓	≡ ₽	🗖 💭	-										

Figure 16. Temperature Corrected Moduli from the Analysis.

MONTHLY MODULUS PREDICTION

In certain instances, it may be necessary to model the seasonal variation in material properties. MTCP permits the user to estimate the monthly variation in asphalt concrete modulus given the mean monthly pavement temperatures for a given project. In the program, the mean monthly pavement temperatures are estimated from the mean monthly air temperatures using the following equation (Asphalt Institute, 1982):

$$MMPT = MMAT \left[1 + \frac{1}{(z+4)} \right] - \frac{34}{(z+4)} + 6$$
(10)

where,

MMPT = mean monthly pavement temperature, °F MMAT = mean monthly air temperature, °F

z = depth at which pavement temperature is to be predicted, inches
As an aid in using this feature, a database of mean monthly air temperatures has been compiled that covers all counties in the state. This database is built in to MTCP and is used to estimate the mean monthly pavement temperatures. The reference modulus corresponding to the reference temperature is then adjusted to the predicted mean monthly pavement temperatures.

By default, the reference modulus is taken as the average of the corrected moduli for the different stations. Thus, in performing the temperature correction for the backcalculated asphalt concrete moduli, the user may specify a reference temperature that he or she considers representative of the year-round pavement temperatures at the project surveyed. In this instance, the corrected moduli will correspond to average yearly conditions at the site. To evaluate monthly variations, the average of the corrected moduli is adjusted to the predicted mean monthly pavement temperatures in MTCP.

Alternatively, the user may correct the backcalculated moduli to a reference temperature that he or she considers to be representative of the pavement temperatures at the time of the FWD survey. In this instance, the program will predict how the reference modulus, corresponding to conditions at the date of testing, varies with the predicted monthly changes in pavement temperatures at the site surveyed.

While the program uses the average of the corrected moduli as the default reference for evaluating monthly variations, the user may specify an alternative reference value for the analysis. This option is described later. At this point, a few guidelines about the selection of the reference modulus are in order.

The user should examine the variation in the corrected moduli for the different stations tested. If the coefficient of variation exceeds 15 percent, the user should ask whether the variability suggests possible differences in pavement materials and layer thicknesses along the route surveyed. He or she should check the measured deflections, backcalculated moduli, predicted depths to bedrock, the average absolute errors per sensor, and whether any of the prescribed limits were reached in the backcalculation. Depending on the results, there may be a need to subsection the FWD data to create homogeneous segments for the MODULUS backcalculation. For this purpose, the MODULUS program may be used to delineate segments of a specified minimum length based on the cumulative difference method. Michalak and Scullion (1995) describe how this option is used in MODULUS.

27

The user may have to collect additional information on the route to better characterize the pavements for the segments identified. The MODULUS and temperature correction programs are then run on each segment. Results from these runs should be reviewed to establish the need for further analyses.

To predict how the asphalt concrete modulus at the site will vary with temperature changes over the year, click on the *Monthly Modulus Prediction* button of the MTCP main menu. The dialog box shown in Figure 17 is then displayed. This dialog box shows the averages of the daily minimum and daily maximum air temperatures for each month, as determined from the weather station in the county where the project surveyed is located. The average monthly air temperatures are also shown as well as the name, elevation, and location of the weather station. The county ID displayed in the dialog box is read directly from the FWD data file. If for some reason, the county ID in the file is wrong, you may simply type the correct ID in the dialog box or use the up and down buttons beside the *County ID* field to scroll through the weather data for the different counties in Texas. A list of the counties is given in Figure 18 for your reference.

After establishing the county ID for the project, click on the folder tab labeled *Input* in the dialog box. The screen shown in Figure 19 is then displayed where you may specify:

- 1. the depth at which the mean monthly pavement temperatures will be predicted,
- 2. the reference temperature, and
- 3. the reference modulus.

For consistency, the depth and the reference temperature are the same as that specified in the correction of the backcalculated asphalt concrete moduli. For your reference, the thickness of the surface layer is also provided. The reference modulus shown is the average of the corrected moduli, as explained earlier. You may change any of these default values, but you need to make sure that the values you input are consistent with each other.

When you are through specifying the input parameters for this dialog box, click on the *Next* button to continue. The screen shown in Figure 20 is then displayed. You will notice that the mean monthly pavement temperatures are calculated and written into a new worksheet labeled *Month*. In addition, the average monthly air temperatures and the reference modulus are reported in the worksheet. There is also a dialog box where you can specify the equation you want to use for correcting the reference modulus to the predicted mean monthly pavement temperatures. The two choices available are the dynamic modulus and Chen equations. To

28

Monthly Analysis					X
Input County					
County ID		Day Max	Day Min.	Month	
	Jan	51	30	41	
County Name LAMAR	Feb	56	34	45	
	Mar	64	42	53	
Weather Station PARIS	Apr	74	53	63	
	May	82	61	71	
Weather Division NORTH CENTRAL	Jun	89	69	79	
	Jul	94	73	84	
	Aug	94	71	83	
Station Level 542	Sep	87	65	76	
Station Latitude 33' 40"	Oct	78	53	65	
	Nov	64	42	53	
Longtitude 95' 34"	Dec	55	34	45	
	Anually	74	52	63	
Texas Department of Transportat	ion	Exit		Next	
-					

Figure 17. Dialog Box of Monthly Air Temperatures for Specified County.

	RICT 1
(Paris 60	i) Delta
75	Fannin
81	Franklin
92	Grayson
113	Hopkins
117	Hunt
139	Lamar
190 194	Rains Red River
	31000 101 101
DIST	RICT 2
	Worth)
73 112	Erath Hood
120	Jack
127	Johnson
182	Palo Pinto
184	Parker
213 220	Somervell Tarrant
249	Wise
	RICT 3
	nita Falls)
5 12	Archer Baylor
39	Clay
49	Cook
169	Montague
224	Throckmorton
243 244	Wichita Wilbarger
252	Young
	RICT 4
(Ama: 6	Armstrong
33	Carson
56	Dallam
59	Deaf Smith
91	Gray
99 104	Hansford
107	Hartley Hemphill
118	Hutchinson
148	Lipscomb
171	Moore
179	Ochiltree
180 188	Oldham Potter
191	Randall
197	Roberts
211	Sherman
nist	RICT 5
(Lubb	
9	Bailey
35	Castro
40 54	Cochran Crosby
58	Dawson
78	Floyd
84	Gaines
86	Garza
96 111	Hale Hockley
140	Lamb
152	Lubbock
153	Lynn
185	Parmer
219 223	Swisher Terry
251	Yoakum

DIST (Odes	RICT 6 sa)
2	Andrews
52	Crane
69	Ector
151	Loving
156	Martin
165	Midland
186	Pecos
195	Reeves
222	Terreil
231	Upton
238	Ward
248	Winkler
DIST	RICT 7
(San A	Angelo)
41	Coke
48	Concho
53	Crockett
70	Edwards
88	Glasscock
119	Irioa
134	Kimble
164	Menard
192	Reagan
193	Real
200	Runnels
207	Schleicher
216	Sterling
218	Sutton
226	Tom Green
	RICT 8
(Abile 17	Borden
30	Callahan
77	Fisher
105	Haskell
115	Howard
128	Jones
132	Kent
168	Mitchell
177	Nolan
208	Scurry
209	Shackelford
217	Stonewall
221	Taylor
UISTI (Waco	<u>RICT 9</u>)
14	Bell
18	Bosque
50	Coryell
74	Falls
98	Hamilton
110	Hill
147	Limestone
161	McLennan
DISTI (Tyler	RICT 10
1	Anderson
37	Cherokee
93	Gregg
108	Henderson
201	Rusk
212	Smith
234	Van Zandt
250	Wood

	The a stated in a
	RICT 11
(Lufk	
3	Angelina
114 174	Houston Nacogdoches
187	Polk
202	Sabine
203	San Augustine
204	San Jacinto
210	Shelhy
228	Trinity
DIST	RICT 12
(Hous	
20	Brazoria
80	Fort Bend
85	Galveston
102 170	Harris Montgomery
237	Waller
	RICT 13
(Yoak	
8 29	Austin Calhoun
259 45	Colorado
62	DeWitt
76	Fayette
90	Gonzales
121	Jackson
143	Lavaca
158	Matagorda Victoria
235 241	Wharton
DIST	RICT 14
(Austi	n)
11	Bastrop
16	Blanco
27 28	Burnett Caldwell
87	Gillespie
106	Hays
144	Lee
150	Llano
157	Mason
227 246	Travis Williamson
240	
	44 131301110/01
DIST	
	RICT 15 Antonio)
(San / 7	RICT 15 Antonio) Ata <i>s</i> cosa
(San / 7 10	RICT 15 Antonio) Atascosa Bandera
(San / 7 10 15	RICT 15 Antonio) Atascosa Bandera Bexar
(San / 7 10 15 46	RICT 15 Antonio) Ataseosa Bandera Bexar Comal
(San / 7 10 15	RICT 15 Antonio) Atascosa Bandera Bexar
(San 7 7 10 15 46 83 95 131	RICT 15 Antonio) Atascosa Bandera Bexar Comal Frio Guadalupe Kendall
(San 7 7 10 15 46 83 95 131 133	RICT 15 Antonio} Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr
(San 7 7 10 15 46 83 95 131 133 162	RICT 15 Intonio) Atascosa Bandera Bexar Comal Frio Guadalupe Kendalu Kerr McMulien
(San 7 7 10 15 46 83 95 131 133 162 163	RICT 15 Intonio) Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMulien Mcdula
(San 7 7 10 15 46 83 95 131 133 162	RICT 15 Intonio) Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMullen Medina Uvalde
(San / 7 10 15 46 83 95 131 133 162 163 232 247	RICT 15 Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMullen Medina Uvalde Wilson
(San / 7 10) 15 46 83 95 131 133 162 163 232 247 DIST	RICT 15 Intonio) Atascosa Bandera Bexar Comal Frio Giuadalupe Kendal) Kerr McMulien McMulien McMulien McMulien Wilson RICT 16
(San / 7 10 15 46 83 95 131 133 162 163 232 247 DIST (Corp	RICT 15 Intonio) Atasecosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMulien Medina Uvalde Wilson RICT 16 us Christij
(San / 7 10 15 46 83 95 131 133 162 163 232 247 DIST (Corp 4	RICT 15 Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMullen Medina Uvalde Wilson RICT 16 us Christi) Aransas
(San / 7 10 15 46 83 95 131 133 162 163 232 247 DIST (Corp) 4 13	RICT 15 Atascosa Bandera Bexar Comal Frio Guadalupe Kendali Kerr McMullen Medina Uvalde Wilson RICT 16 us Christi) Aransas Bee
(San / 7 10 15 46 83 95 131 133 162 163 232 247 DIST (Corp 4	RICT 15 Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMullen Medina Uvalde Wilson RICT 16 us Christi) Aransas
(San / 7 10 15 46 83 95 131 133 162 163 232 247 DIST (Corp 4 13 89	RICT 15 Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMulien Medulien Medulien Medulien Wilson RICT 16 us Christi) Aransas Bee Goliad
(San A 7 10 15 46 83 95 131 133 162 247 247 DIST (Corp 4 13 89 126 129 137	RICT 15 Atascosa Bandera Bexar Comal Frio Guadalupe Kendall Kerr McMullen Medina Uvalde Wilson RICT 16 us Christii) Aransas Bee Goliad Jim Wells Karres Kleberg
(San / 7 10 15 46 83 95 131 133 162 247 247 2247 DIST (Corp) 4 13 89 126 129 137 149	RICT 15 Atascosa Bandera Bexar Comal Frio Ginadahipe Kendahi Kerr McMulien Medina Uvalde Wilson RICT 16 Is Christi) Aransas Bee Goliad Jim Wells Karnes Kleberg Live Oak
(San A 7 10 15 46 83 95 131 133 162 163 232 247 DIST (Corp 4 13 89 126 129 137 149	RICT 15 Intonio Atascosa Bandera Bexar Comal Frio Guadalupe Kerr McMullen Medina Uvalde Wilson RICT 16 us Christi) Aransas Bee Goliad Jim Wells Karries Kleberg Live Oak Nueces
(San / 7 10 15 46 83 95 131 133 162 163 232 247 DIST (Corp) 4 13 89 126 129 137 149	RICT 15 Atascosa Bandera Bexar Comal Frio Ginadahipe Kendahi Kerr McMulien Medina Uvalde Wilson RICT 16 Is Christi) Aransas Bee Goliad Jim Wells Karnes Kleberg Live Oak

nier	D1/77 17
(Bryat	RICT 17
-21	Brazos
26	Burleson
82	Freestone
94	Grimes
145	Leon
154	Madison
166	Milam
198 236	Robertson Walker
239	Washington
	RICT 18
(Dalla 43	s) Collin
40 57	Dailas
61	Denton
71	Ellis
130	Kaufman
175	Navarro
199	Rockwall
DISTI	RICT 19
(Atlan	
19	Bowie
32	Camp
34 103	Cass
105	Harrison Marion
172	Morris
183	Panola
225	Titus
230	Upshur
	<u>UCT 20</u>
(Beaur	
36 101	Chambers Hardin
122	Jasper
124	Jefferson
146	Liberty
176	Newton
181	Orange
229	Tyler
DISTI	<u>UCT 21</u>
(Pharr)	
24	Brooks
31	Cameron
109	Hildago
125 66	Jim Hogg Kenedy
214	Starr
245	Willacy
253	Zapata
	UCT 22
(Lared	
64	Dimmit
67 136	Duval Kinney
130	La Salle
159	Maverick
233	Val Verde
240	Webb
254	Zavala

(Brov	vnwood)
25	Brown
42	Coleman
	Comanche
68	Eastland
141	Lampasas
160	McCulloch
167	Mills
206	San Saba
215	Stephens
DIST	RICT 24
(El Pa	180)
22	Brewster
55	Culberson
72	El Paso
116	Hudspeth
123	Jeff Davis
189	Presidio
DIST	RICT 25
(Chile	lress)
23	Briscoe
38	Childress
44	Collingsworth
51	Cottle
63	Dickens
65	Donley
79	Foard

DISTRICT 23

189	Presidio
DISTE (Childr	<u>UCT 25</u> ess)
23	Briscoe
38	Childress
44	Collingswo
51	Cottle
63	Dickens
65	Donley
79	Foard
97	Hall
100	Hardeman
135	King

Knox Motley

242 Wheeler

138

173

Figure 18. List of Texas Counties by District (TxDOT, 1998).

Figure 19. Dialog Box of Input Parameters for the Monthly Modulus Prediction.

<u>] Eile E</u> dit		F <u>o</u> rmat <u>T</u> oo															[- 8 - 8
) 🖻 🖶	a 🕻 🖗	👗 🖻 f	3 🝼 ×	0 •	Σ ƒ*) 🛍 1	00% 👻 🕻	🔾 🙄 🕹 Arial		• 18 •	B	ΙU	: ≣	₩ 3		•.0 •.00 ···	- 🕭 - 🗛	• •
A1	T	= Monthl	y Modulu	us Pre	ediction													
Α	В	С	D		E	F	G	Н		J		K	L		M	N	0	
Mon	thly M	lodulus	s Pre	dic	tion													
											_							-
Month	Ave, Tem	p Pave. Ten	AC Mo	duli C	orrected													-
	(F)	(F)	(ksi)		lodulus (k	si)												
Jan	41.0	47.3	411.7															
Feb	45.0	51.7	UserF	orm1										×				
Mar	53.0	60.6																_
Apr May	63.0 71.0	71.6 80.5																_
May Jun	71.0	ou.s 89.3	Þ	lodul	us Monthl	y Correctio	on						×				-	+
Jul	84.0	94.9		Dypa	mic Modulu	s Equation	Chen Equa	tion]										+
Jul Aug	83.0	93.8		Dyne	inite modulu	sequeion	J Chen Equa						1					-
Sep	76.0	86.0			L 44 077	- P4	52.0											
Oct	65.0	73.9		A	11.077													
Nov	53.0	60.6		VT	5 -3.710	P38	36.0	AC-10	-	PG 🗄 5	8 - 2	22 ÷						
Dec	45.0	51.7		fr	10.00	 P34 [14.0		_									_
Average :						'	1110											_
Std. Dev.				-		0												+
Var Coeff				$-\pi$		- i												
					وليتظر					Exit		Run		1				
						`			L		1							
			_															
_					Predict Pav	ement Temp	beratures			Exit the I	Progra	m					-	_
			+											-				
																	-	+
																		+
1											_							_
			-								_							_
																		-
	onth / outpu									•								►
aw + 😽 (AutoSha	ipes 🕶 🔨 👌) 🗎	4 🧕	🕭 + 🏒	• <mark>A</mark> • =	∎≓⊑]									
adv									_							NU	м	_

Figure 20. Dialog Box to Specify Equation for Monthly Modulus Prediction. specify which equation to use, simply click on its folder tab. Note that if you used the dynamic modulus equation to correct the backcalculated AC moduli, the *A* and *VTS* coefficients you previously specified are displayed in the dialog box as well as the reference loading frequency and the gradation of the asphalt mix. While you may change these variables in the dialog box, it is important that the values you enter are consistent with the method employed to correct the backcalculated AC moduli. In most applications, it is likely that you would only have to click on the *Run* button of the dialog box to perform the monthly modulus predictions based on the dynamic modulus equation without having to change any of the data shown. To select the Chen equation, click on its folder tab and then on the *Run* button of the dialog box to perform the analysis.

Figure 21 illustrates the output from the evaluation of monthly modulus variation. The predicted modulus for each month is written in the last column of the worksheet. The label for this column also has a comment box that reports the parameters used in correcting the reference

4		xcel - 1068.													_	. 🗗 ×
			Format <u>T</u> ool													. 8 ×
ľ	🖻 🚽	🖨 🖪 🚏	🐰 🖻 🛍	l 🝼 🗠	• Σ f* 💈	10	D% 🖣 🚺	Arial		• 10 •	BI	u 🖻 🖻		•.0 •00 ···	• 🕭 • <u>A</u>	
	E2	•	= Dynami		Equation											
	A	В	С	D	E	F	G	Н		J	K	L	М	N	0	-
1	Mon	thly M	odulus	Pred	iction			_								17
2					Dynamic N	Use: Modulus B	Dynamic Guation									
3	Month	Ave, Tem	p Pave. Tem		Corrected											
4		(F)	(F)	(ksi)	Modulus (k	si Corrected	from 80.0'F									
5	Jan	41.0	47.3	411.7	914.5	A=11.0 VTS-=-3.1										
6	Feb	45.0	51.7	411.7	857.6	f=10.0		_								
7	Mar	53.0 63.0	60.6 71.6	411.7 411.7	725.2 542.8	P.4-=52.0 P.38=36.										+-
9	Apr May	63.0 71.0	71.6 80.5	411.7	542.8 404.5	P.36=36. P.34=14.										+-
10	Jun	79.0	89.3	411.7	288.7											
11	Jul	84.0	94.9	411.7	230.6			_				-				+
12	Aug	83.0	93.8	411.7	241.3											
13	Sep	76.0	86.0	411.7	328.9											
14		65.0	73.9	411.7	506.7											
15	Nov	53.0	60.6	411.7	725.2											
16	Dec	45.0	51.7	411.7	857.6											
17	Average	63.17	7 71.83	411.70	551.97											
	Std. Dev.			0.00												
20				0.00												
21																
22																
23																
24																
25 26	-															
20	-															+-
28																+
29																+
30																
31																
32	-											-				
33 34																+
35																
	(onth / outpu	-							•		_				
Dr	aw 🕶 🔓 (🗿 AutoSha	pes 🕶 🔨 🔌		¥ 📣 🧕	🕭 - 🏄 -	A - = :	■ 🖬 🗖	-							
Се	ll E2 comm	nented by T1	TI							Γ				NUM	1	

Figure 21. Illustration of Output from Monthly Modulus Prediction.

modulus to the predicted mean monthly pavement temperatures. You may resize the box as necessary using Excel's *Edit Comment* function to view the information.

CHAPTER III MTCP OUTPUT

GETTING OUTPUT OF ANALYSIS RESULTS

As presented in Chapter II, there are two worksheets created by MTCP which have the input data used in the analyses as well as the results. The *output* worksheet contains the summary output from the MODULUS backcalculation; the measured air, surface, and pavement temperatures from the FWD survey; the predicted pavement temperatures; and the corrected asphalt concrete moduli. The other worksheet, labeled *Month*, has the monthly average air temperatures, the predicted mean monthly pavement temperatures, and the predicted monthly variation in asphalt concrete modulus for the material tested. You may print each of these worksheets using the *Print* function available in Excel. You may also produce charts of the results by clicking the *Plot Output* button of the MTCP main menu. This will bring up the chart selection menu illustrated in Figure 22.

Table 4 describes the chart options available from the menu. The default worksheet names shown in the table are reserved for program use. You may not use any of these names to label worksheets that you manually create in the Excel spreadsheet. Note that the charts which may be produced depend on the main menu functions that have already been executed. For example, neither the FWD nor MODULUS summary output data may be plotted until the data files have been read by MTCP. Similarly, the corrected asphalt concrete moduli and the predicted monthly variations in the AC modulus cannot be plotted until the temperature corrections and the monthly modulus predictions have been made.

To select a chart from the menu, simply click on its checkbox. You may select all charts at once by clicking on the *Select All* button of the menu. If you wish to undo any selection, click again on the chart's checkbox. To undo all selections at once, click the *Clear* button of the menu. The button labeled *Reverse Select* will undo previous selections you have made while at the same time checking the boxes of charts not previously selected. Thus, *Reverse Select* has the same effect as *Clear* if all of the available charts were previously selected.

35

Figure 22. MTCP Plot Menu.

Chart Group	Chart Label	Description	Default Worksheet Name		
	Load vs Station	Plot of measured FWD load for stations tested	Load		
Basic Plot	R1 ~ R7	FWD sensor deflections plotted for each station	Deflec-1		
	R1 & R7	Plot of FWD sensor 1 and sensor 7 deflections by station	Deflec-2		
	Modulus vs Station	Plot of backcalculated layer moduli for each station	Modu		
Modulus Result Plot	Err/Sens vs Station	Plot of the average absolute errors per sensor for the different stations tested	Err		
	Depth to Bedrock vs Station	Plot of the depths to bedrock predicted from the sensor displacements measured at the different stations	DB		
Monthly Analysis Plot	Monthly Ave. Air & Pave. Temp.	Mean monthly average air temperatures and predicted mean monthly pavement temperatures at the project surveyed	Month-1		
Analysis Plot	Monthly Modulus vs Month	Bar chart of predicted monthly variations in AC modulus	Month-2		
	Air, Surface, & Pavement Temp. vs Station	Plot of air, surface, and pavement temperatures by station	Temp-1		
Temperature Plot	Tested & Calculated Pavement Temperature vs Station	Plot of measured vs predicted pavement temperatures by station	Temp-2		
	Pavement Temp. vs Modulus (before correction)	Plot of backcalculated AC modulus versus pavement temperature	Mod-Temp-1		
Temperature with Modulus	Corrected & Un- corrected Modulus (station)	Plot of corrected and backcalculated AC moduli by station	Mod-Temp-3		
	Corrected & Un- corrected Modulus (temperature)	Mod-Temp-4			

Table 4. Available Charts in MTCP.

Once you have made your selections, click on the *PLOT* button. Each chart selected gets drawn on a separate worksheet. Table 4 identifies the worksheets assigned to the different charts. To view the charts, first leave the plot menu by clicking on its *Exit* button. This brings you back to the program main menu. From here, click on *Exit the Program*. You may then view a particular chart by clicking on its worksheet tab which you may identify from Table 4. Figures 23 and 24 illustrate two of the charts that you may produce from MTCP. To print a given chart, simply bring that chart into view by clicking on its worksheet tab. Then use Excel's *Print* function to get a hardcopy.

The plots that you generate in the spreadsheet are automatically updated as data get changed. This situation occurs, for example, when you do another analysis using a temperature correction equation that is different from that used to generate the charts initially. In this instance, you do not have to rerun the plot function to get the same charts using the new analysis results. However, you have the option to generate additional charts that were not selected in the previous analysis.

You may also rename the chart worksheets in Excel. To use a name different from the default value given in Table 4, simply double click the tab of the worksheet you wish to rename. Then type in the label that you want that worksheet to have and press the *Enter* key. Alternatively, you may right click on the worksheet tab and select the *Rename* function in Excel to re-label the selected worksheet.

SAVING THE ANALYSIS RESULTS

Once you finish with your analysis, you may save your results by using Excel's *Save* or *Save As* function. To do this, you must first exit the MTCP main menu by clicking on *Exit the Program*. Then you may click on the *Save* icon in the top toolbar to save your results using the default file name assigned by the program. The Excel spreadsheet, with all the accompanying data and charts, is saved in a file with the same name as the MODULUS summary output file but with the extension *XLS*.

If you do not wish to use the default file name, you may save the spreadsheet using the *Save As* function in Excel's *File* menu. Click on *File* at the top of the spreadsheet, then on *Save As*. A dialog box will then be displayed where you can specify the name of the file where the results will be saved. In addition, you may specify the drive and subdirectory

Figure 23. Example Plot of Corrected and Backcalculated AC Moduli vs Pavement Temperature.

After saving your results, you may exit Excel by clicking on *File*, then on *Exit* or by clicking on the X button at the top right corner of the spreadsheet. Alternatively, you may conduct a new analysis with a different set of input data. To perform a new analysis, reload the main menu by pressing Ctrl+Shift+M. Then clear the results of the previous analysis by clicking on the *Clear Program Sheets* button of the main menu. The dialog box shown in Figure 25 will be displayed to confirm that you wish to delete the worksheets created by the program. If you have saved the results, you may click on *Yes* in the dialog box. Otherwise, click *No* for an opportunity to save the existing spreadsheet as described previously.

Second Second	licrosoft Ex																			X
	<u>File E</u> dit <u>V</u> i									- (r.										X
D	🖻 🖬 🕯	3 🖪 🖑	_X €) 🛍 ≶	K) v	Σf_{π}	2 🛍	100%	- 🍳	* Arial M	r Black	• 16	• B	ΙÜ	≣≣		희 [100	•08	- 👌 -	<u>A</u>
	A1	-						<u> </u>	MMARY	REPORT	,,		(Versior	<u> </u>		,				
	A	В	C	D	E	F	G	H		J	K	L	M	N	0	Р	Q	R	S	<u> </u>
1			TT	I MO	DULI	JS A	NALY	ISIS (SYST	EM (S	SUMM	ARY R	EPOI	RT)			(Versi	on 5.1	1)
2	District	1				Modulu	ıs Range	(ksi)												
3	County	139			Thick (in)		Max	Poisson												
4				Surface	10.9	30	1500	0.4												
5 6				Base	6	<u>15</u> 0	200	0.35												
ь 7				Subbase Subgrade		_	Form1	0.3						×						
8				Subgraue	110.0	User	FUTIIT										TEMPE	RATURE	E (E)	
9	Station	Load	R1	R2	R3	R War	rnina: T	he followin	ng sheets	will be perm	anently			Sen	DB(in)	Limit		Surface		Test tin
10	75.100	9375	6.76	6.09	5.66					nt to continu				0.6	181.2		48.0	53.0	51.0	10:24
11	75.200	9279	6.84	6.05	5.66									0.6	194.9		49.0	56.0	53.0	12:19
12	75.300	9263	7.06	6.17	5.78		👝 List of	Sheets to	be Delete	d				0.4	181.0		52.0	62.0	55.0	14:04
13	75.400	9167	7.14	6.26	5.78		1. 00	tout	9. Te	mn-1		Yes	.	0.7	233.0		55.0	66.0	57.0	15:33
14 15	75.500	9807	6.46 6.71	5.87 6.09	5.57 5.70									1.0	300.0		31.0 41.0	40.0 59.0	37.0 44.0	8:25
15	75.600 75.700	9679	7.10	6.35	5.70 5.91		2. Mo	nth	10. 1	emp-2				0.6	226.0 189.6		41.0 54.0	62.0	44.0 51.0	10:26 9:30
17	75.800		7.87	6.95	6.30		3. Lo	ad	11. N	1od-Temp-1		No		1.0	147.1		51.0	58.0	64.0	7:37
18	75,900	9375	8.47	7.25	6.55		4. De	flec-1	12. M	1od-Temp-2				0.9	141.4		68.0	81.0	69.0	10:18
19	76.000	9391	9.88	8.28	7.36		5. De	flag 2	12.6	1od-Temp-3				0.5	146.7		65.0	75.0	83.0	6:46
20	76.100	9383	10.39	8.66	7.74									0.4	178.0		75.0	93.0	82.0	8:59
21	76.200	9407	12.10	9.65	8.42		6. Mo	idu	14. N	1od-Temp-4		_		0.6	151.6		83.0	104.0	91.0	11:54
22	76.300	9279	14.20	10.42	9.02		7. Er		15. N	1onth-1				0.8	158.4		87.0	128.0	100.0	14:36
23	76.400	9390	12.13	9.63	8.39		8. DE		16. N	1onth-2		- - -		0.2	116.4		81.0	79.0	95.0	7:31
24 25	76.500 76.600	9342 9283	12.69 14.88	10.00 10.93	8.75 9.42									0.2	119.3		85.0 91.0	84.0 96.0	97.0 105.0	9:19
25 26	76.600	9283	16.48	10.93	9.42 9.87									0.7	119.6 123.6		91.0 96.0	96.0 104.0	105.0	12:01 14:20
27	76.800		17.17	12.07	9.90	7.90	6.13	3.72	1.73	119.0	23.0	0.0	13.0	0.5	123.0		97.0	104.0	114.0	16:24
28	76.900		11.79	9.26	8.16	6.79	5.53	3.60	1.70	291.0	20.0	0.0	14.5	0.3	123.8		78.0	75.0	92.0	6:40
29	77.000	9561	11.94	9.48	8.37	6.95	5.68	3.66	1.72	302.0	15.0	0.0	14.5	0.3	123.6		82.0	80.0	91.0	8:45
30	77.100	9418	12.90	9.99	8.76	7.23	5.79	3.63	1.74	248.0	15.3	0.0	14.3	0.6	131.9		88.0	89.0	95.0	10:57
31	77.200	9338	14.55	10.81	9.17	7.43	5.85	3.60	1.63	180.0	17.7	0.0	14.1	0.4	115.4		91.0	99.0	103.0	13:03
32	77.300		12.28	9.50	8.26	6.89	5.57	3.68	1.69	250.0	31.7	0.0	14.0	0.3	114.9		77.0	80.0	96.0	6:54
33 34	77.400	9609	12.23	9.63	8.38	6.95	5.60	3.60	1.68	275.0	17.1	0.0	14.8	0.3	120.7		80.0	81.0	95.0 97.5	8:58
34	77.500 77.600	9549	12.30	9.62 10.19	8.37 8.93	6.87 7.28	5.56 5.83	3.61 3.65	1.69 1.68	258.0 236.0	22.1 15.5	0.0 0	14.5 14.6	0.2	120.8 118.7		80.0 88.0	81.0 91.0	97.5 100.2	10:47 12:47 🗾
4		DB / Ten								od-Temp-4) output		in h		1017					
Dra	w • 🗟 🌀	AutoSh	apes 🔹 🚿	× 🗆] 🔿 🔮	4 🧕	- 🔕	<u>⊿</u> - <u>A</u>	• =	■ ≓ ■	1 🗊 🗸									
Rea	dy																	NU	M	

Figure 25. Dialog Box to Delete Program Worksheets Prior to a New Analysis.

After the existing program worksheets have been deleted, the main menu is again displayed. From here, the user may read another MODULUS output file and conduct a new analysis as described in this user's guide. It is noted that the *Clear Program Sheets* function will only delete the worksheets created by the program (identified in the dialog box shown in Figure 25). Worksheets that were manually created by the user during the previous analysis are not deleted.

REFERENCES

Asphalt Institute. *Research and Development of the Asphalt Institute's Thickness Design Manual (MS-1) Ninth Edition*. Research Report No. 82-2, Asphalt Institute, Ky., 1982.

Chen, D., J. Bilyeu, H. Lin, and M. Murphy. *Temperature Correction on FWD Measurements*. Paper presented at the 79th Annual Meeting of the Transportation Research Board (accepted for publication), Washington, D. C., 2000.

Fernando, E. G., and W. Liu. *Development of a Procedure for Temperature Correction of Backcalculated AC Modulus*. Research Report 1863-1, Texas Transportation Institute, Texas A&M University, College Station, Tex., 2001.

Fernando, E. G., and W. Liu. *Program for Load-Zoning Analysis (PLZA): User's Guide*. Research Report 2123-1, Texas Transportation Institute, Texas A&M University, College Station, Tex., 1999.

Fernando, E. G. *PALS 2.0 User's Guide*. Research Report 3923-1, Texas Transportation Institute, Texas A&M University, College Station, Tex., 1997.

Jooste, F. J., and E. G. Fernando. *Development of a Procedure for the Structural Evaluation of Superheavy Load Routes*. Research Report 1335-3F, Texas Transportation Institute, Texas A&M University, College Station, Tex., 1995.

Lukanen, E. O., R. N. Stubstad, and R. C. Briggs. *Temperature Predictions and Adjustment Factors for Asphalt Pavements*. Research Report FHWA-RD-98-085, Federal Highway Administration, McLean, Va., 1998.

Lytton, R. L., F. P. Germann, Y. J. Chou, and S. M. Stoffels. *Determining Asphaltic Concrete Pavement Structural Properties by Nondestructive Testing*. National Cooperative Highway Research Program Report 327, Transportation Research Board, Washington, D. C., 1990.

Michalak, C. H., and T. Scullion. *MODULUS 5.0: User's Manual*. Research Report 1987-1, Texas Transportation Institute, Texas A&M University, College Station, Tex., 1995.

Mirza, M. W. Development of a Global Aging System for Short and Long Term Aging of Asphalt Cements. Ph.D. Dissertation, University of Maryland, College Park, Md., 1993.

Stubstad, R. N., E. O. Lukanen, C. A. Richter, and S. Baltzer. *Calculation of AC Layer Temperatures From FWD Field Data*. <u>Proceedings</u>, Fifth International Conference on the Bearing Capacity of Roads and Airfields, Vol. 2, Trondheim, Norway, 1998, pp. 919 – 928.

Texas Department of Transportation. *Pavement Management Information System Rater's Manual for Fiscal Year 1999.* Texas Department of Transportation, Austin, Tex., 1998.

Texas Department of Transportation. *Falling Weight Deflectometer Operator's Manual*. Texas Department of Transportation, Austin, Tex., 1996.

Witczak, M. W. and O. A. Fonseca. *Revised Predictive Model for Dynamic (Complex) Modulus of Asphalt Mixtures*. Transportation Research Record 1540, Transportation Research Board, Washington, D. C., 1996, pp. 15 – 23.

APPENDIX: FLOW CHART OF MODULUS TEMPERATURE CORRECTION PROGRAM

