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PREFACE

This report details the analytical study of reflection cracking in overlays.
The thermal activity of the overlay and original material are studied from a
mechanistic viewpoint that gives a theoretical explanation of the observed
behavior of some innovative overlay systems. This report is one of a series of
reports from the study entitled "Environmental Deterioration of Pavement." The
study, sponsored by the State Department of Highways and Public Transportation
in cooperation with the Federal Highway Administration is a comprehensive
program to verify environmental cracking mechanisms and to recommend maintenance

and construction measures to alleviate this pavement cracking problem.

DISCLAIMER

The contents of this report reflect the views of the authors, who are

' responsible for the facts and accuracy of the data presented herein. The

contents do not necessarily reflect the official views or policies of the
Federal Highway Administration. This report does not constitute a standard,

specification or regulation.
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ABSTRACT

Prediction of Thermal Reflection Cracking in West Texas

An economical means of rehabilitating deteriorated pavement is through the
use of an overlay. The performance of overlay systems has, however, been far
from satisfactory as the performance of any one system has varied widely among
different installation sites. This study presents a rational approach for the
prediction of overlay life and gives recommendations which are expected to
extend the life of overlays.

The predictions are made using linear elastic and viscoelastic stress
analysis and viscoelastic fracture mechanics. Initially, a prediction scheme
for viscoelastic thermal stresses in the overlay and old asphalt surface is used
to predict thermal stresses more accurately than any previous attempt. These
stresses are then applied to the crack surface to study the effects of material
properties on crack development. The stress intensity factors necessary for this
analysis are calculated using the finite element technique with the crack tip
elemehts developed by Pian. Predictions of service 1ife are made using the
empirical relationship developed by Paris.

The results show that there are three states of crack growth in an overlay
each of which require different layered arrangements of material properties to
lower the stress intensity factor and thus retard crack growth. The influence
of viscoelasticity and elasticity properties on reduction of crack growth are
presented with the service lives for typical asphaltic concretes.

Computer codes are developed for each calculation step and are fully
documented. The analysis performed using these codes represents an initial
step in a rational design process to produce overlays resistant to environmental

reflection cracking.

vi
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IMPLEMENTATION STATEMENT

At present overlays for badly cracked pavements are designed either from
the design engineer's experience or from empirical results. These designs have
consistently produced an overlay that would perform in one situation but fail
miserably in another. A major reason for such poor performance lies in the lack
of a rational mechanistic approach to overlay design. Only very recently has
the problem of reflection cracking been examined in the light of the relatively
new findings available in the field of viscoelastic fracture mechanics.

The data presented in this report represent a significant step forward in
the prediction of the service 1ife of an overlay based on its elastic and visco-
elastic properties. The relationships, established from a sound theoretical
approach, clearly demonstrate the basic principles responsible for the excellent
performance of certain overlay systems such as the stress relieving interface.
The importance of having a mechanistic description for the behavior is that it
will allow a wide variety of materials to be studied without requiring a field
installation for eaéh material, which even then only shows the behavior of
the overlay under one set of environmental conditions.

The computer codes developed for viscoelastic thermal stress calculations,
stress intensity factor calculations, and service life predictions represent
the best techniques currently available and are much more efficient and
accurate than many numerical techniques currently being used. These techniques
will have a wide range of application in the development of a description for
environmental behavior of pavement systems.

Based on these calculations, recommended ranges of overlay material properties
which are expected to extend the life of overlays considerably are presented and

suggestions for long-lasting overlay layered design are given.

vii
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CHAPTER I
INTRODUCTION

The most visible form of pavement distress is the appearance of cracks on
the asphalt surface. These cracks may be either environmental or tfaffic
induced. In west Texas the predominant cracking pattern is transverse which
may be attributed primarily to environmental influences on the pavement. To
the driving public cracked pavements are merely uncomfortable and may become
an irritation. To the engineer, however, the presence of cracks indicates that
severe problems are present in the existing structure and future problems will
be accelerated due to the cracking. Loss of load transfer ability, weakening
of subgrade strength parameters due to the free access provided for moisture
intrusion, debonding, and accelerated rutting are common results seen after
cracking is first noticed. Cracking may not initially lower the serviceability
of the pavement, thus, the driving public will not complain initially. The
effect of such distress, however, severely reduces the long term serviceability
resulting in a drastically shortened 1ife for the highway.

When cracking has progressed to a stage where rehabilitation is needed
there are two methods available. These are: 1) reconstruction of the entire
pavement structure, and 2) use of an overlay to level the riding surface and
improve vehicle-surface interaction characteristics (1). When the traffic and
environment have not deteriorated the structural properties excessively, the use

of an overlay is by far the most economical means of rehabilitation available.

- Existing methods of overlay design, however, are based primarily on the field

experience of the design engineer and empirical results obtained from studies
of constructed overlays. As a result the designed overlays have varied widely
in their performance. When using an economical design most overlays fall far

short of their predicted 1ife when the existing cracks reflect through the new
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surface. This action, commonly occurring within the first year for west Texas,
lowers the performance of the overlay and produces a pavement in nearly the
same condition as existed prior to the overlay. This reflection cracking
problem often requires repeated costly maintenance much earlier than planned.
Thus, an understanding of the mechanism causing the reflection cracking would
allow énow]edge of material properties to be used in determining the degree
of success to be expected in any rehabilitation project.

The fact that these relatively large amounts of highway cracking could
not be directly attributed to traffic loading spurred a growing concern
for thermally induced cracking of pavements in the last decade (2). The
majority of these studies have been mainly concerned with the fracture
susceptibility of asphalt concrete under extremely low temperatures (3, 4).
The finding of these studies could not provide results satisfactory enough
to explain the same form of cracking found in moderately cold climates.
The most common form of low-temperature cracking that is first visible in a
pavement is typically the transverse crack. Carpenter, Lytton and Epps
(8) have found that transverse cracking in areas similar to west Texas
occurs as a result of thermal activity in the base course material. In
these climatic areas freeze-thaw cycling predominates as the major climatic
variable and typical base course materials commonly used in west Texas
are susceptible to cracking due to excessive tensile stresses induced
by freeze-thaw cycling. The base course is actually more susceptible
than the asphalt to cracking in these areas, and as a consequence could
initiate cracks that would then refiect up through the pavement surface due
to the accumulating damage of freeze-thaw cycling.

The effect of an overlay would be to insulate the base course from the

thermal changes. The effect of the freeze-thaw cycles would be centered

mainly in the cracked original asphaltic concrete surface. The facts indicate that

2
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rather than Tow temperature the effects of thermal cycling are important in the
mechanism of reflection cracking of overlays in the west Texas area. There
exists a need to further examine the development of crack growth due to repeated
cycles of thermal change within the pavement. Such a study should result in
predictions of service life to provide field engineers with guidelines for
more efficient rehabilitation procedures.

Pavement damage associated with repeated loading is often designated as

a fatigue failure. The phenomenologically based Miner's law typically used to
describe fatigue damage does not satisfactorily account for the influence of
geometry and inhomogenieties, nor does it provide a quantitative measure of
the cracking in the pavement. The more complicated mechanism of thermal

cycling should not be expected to follow Miner's Law. Amoresophisticated approach

is necessary to relate thermal activity to the amount of observed cracking.

During recent years the development and application of linear elastic

and viscoelastic fracture mechanics concepts have progressed to a point where
they now provide a rational design and experimental approach to the probiem of
crack propagation. Recent experimental work at Ohio State University (6, 7, 8, 9)
involved sand asphalt beams and slabs resting on elastic foundations. The results
of these experiments verify the applicability of fracture mechanics in predicting
fatigue 1ife of asphalt mixtures. The results indicate that the rate of crack
propagation in asphalt mixtures can be predicted using the empirical power law

relation developed by Paris (10),

de . A(SK) o (1-1)
where AK = stress intensity factor amplitude,
A, n = fatique parameters of the material,
dc/dN = rate of crack growth,
¢ = crack length, and
N = number of stress repetitions
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Techniques presently used in the stress analysis of pavement structures have
been developed from the general theory of stress and strain and displacement 1in
a layered system as first introduced by Burmister (11) based on the theory of :
elasticity in a two layered system. A highway pavement is typically composed
of three or more layers of various soils with rigid or flexible surface course.
The t@o layer analysis, while providing initial values for stress and strain
is only a first approximation.

Improvements have been made and the techniques for stress analysis have
been extended to three and more layers. Recently computer codes such as BISTRO
and CRALAY (12, 13) have been developed that provide a better understanding of
the stress state within the pavement. While these analyses provide descrip-
tions of the stress state, necessary in the fatigue analysis of the pavements
1ife, the use of these analyses to study the 1ife of an overlay is questionable
since most pavements requiring overlay are cracked extensively on the surface.
The imperfections at the interface of the old and new surface courses cause
stress concentrations at the tip of the crack which can result in unexpected
failure of the overlay.

“The problem of crack initiation and growth has resulted in the rapid
development of the theory of fracture mechanics as a separate branch of solid
mechanics. The use of fracture mechanics principles has proceeded most rapidly
in the study Of-pélymér and solid rocket fuel propellant behavior. This
theory proposes that fracture is the process of crack initiation and propagation
where the fractures are all progressive, proceeding by crack extension. Through
the proper application of fracture mechanics a rational approach is available

to predict the conditions under which fracture will occur, thus, allowing a

better selection of materials to be made to resist fracture.

Recently these results have been applied to material combinations which

could be considered similar to a pavement system (9, 17, 34, 35). The use of

4
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these results has been complicated somewhat by the need for suitable numerical
techniques to calculate the stress intensity factor. The more general approach
involves use of the technique of finite elements. Special elements modeling
the crack tip have been developed andused in finite element computer codes
with results being more accurate than previous attempts (48, 49, ég). The
newer crack tip elements do not require extremely fine element sizes near the
crack tip which greatly reduces computation time.
The remainder of this study will address itself to:
a) the prediction of thermal tensile stresses using the theory of
linear viscoelasticity,
b) the application of fracture mechanics principles to an overlay,
c) the development of an efficient and accurate computer code
to utilize the thermal stresses to predict stress intensity
factors, and
d) the prediction of overlay 1ife as a function of material pro-
perties and stress intensity factor. The final result of this

study will be to provide a rational procedure by which overlay

performance may be evaluated under environmental conditions.




CHAPTER I1I
THERMAL STRESS ANALYSIS

The Equivalent Viscoelastic Analysis

The rheological characteristics of asphaltic concrete as a function of
time and temperature, termed viscoelastic properties, have been defined by
various research studieg (27, 28, 29). Although nonlinear in behavior the
linear viscoelastic analysis provides a very good approximation to the actual
behavior of the asphaltic concrete in-situ.

Historically, two different approaches have been used in the development
of the application of stress-strain equations within a viscoelastic medium.

The first approach utilizes mechanical models consisting of linear springs and
dashpots. The second approach has as its basis the hereditary integral and

as such covers a broader class of materials and is often easier to apply. In
general, the current stress and displacement response in viscoelastic media will
depend on the entire history of the applied loads. For a nonaging material the

one-dimensional constitutive equation is:
t

o =[ E (t-1) g—%dr (2-1‘)
0
The inverse of Eq. (2-1) is of the same general form and represents another

useful one-dimensional constitutive equation:

t d
€ =/ D (t-t) a%dr 7 (2-2)
0
where
g = stress
e = strain
E(t) = relaxation modulus, stress response due to unit strain applied at t=0
D(t) = creep compliance; strain response due to unit stress applied at t=0

If the relaxation modulus is known, then Eq. (2-1) enables us to calculate

6




the stress due to general strain histories. In an experiment one usually
applies constant strain in a relaxation test or constant stress in a creep test.
However, since constant strain relaxation tests are rather difficult to perform
with stiff materials, the creep compliance will be the experimental result

most often obtained. The creep compliance and relaxation modulus of asphalt
concreté normally obey a power law representation. Figure 1 shows the creep
compliance derived from Monismith's data (3) which is approximated by the

power law

D(t) = Dy + D]tm (2-3)

where m is the slope of the straight line region and D] is the intercept of
straight line with log t = 0. Both m and D.l are positive constants with

0 <m <1. The product may be expressed as:

E(t)D(t) = sin(mn) (2-4)

mr
and forms the relationship for creep compliance to the power law relaxation
modulus in the power law range of behavior (23).

Nonisothermal Behavior of Asphalt Concrete. The mechanical response of

viscoelastic materials is normally very sensitive to temperature change.
Therefore, nonisothermal behavior is of considerable practical importance.

For asphalt concrete, the modulus increases with a decrease in temperature.

A common type of temperature dependence, the so called thermorheologically
simple behavior, will be assumed to represent the effect of temperature on the
relaxation modulus,E(t, T). With this assumption the data at different
temperatures can be superimposed to form a single continuous master curve by

means of horizontal translation to a reference temperature, T The horizontal

M
distance between a master curve and any one of the curves at temperature T

is independeﬁt of time and is written as 1ogva Thus, the time and temperature

T
dependence of the rheological characteristics can be sufficiently defined by

i . . i g S
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the following equations:

E(t, T) = Ey (€) (2-5)
where
t
£=— - (2-6)
ar

Ey(€) is the master curve of relaxation modulus as shown in Figure 2. The
quantities £ and ap are called the "reduced time" and "horizontal shift factor"
respectively. When temperatures are above the glass transition temperature,

T , of a particular material (i.e., when T>T_), the so called WLF equation

g g
normally applies, as shown in Figure 3. The WLF equation is:
log a; = -F](T-TM)/(F2+T-TM) (2-7)
where

T = the temperature for which ar is determined,
TM = the reference temperature of the master curve, and

F1 and F2 are constants and can be calculated by solving the simultaneous
equations of two proper points on the curve as follows:

(TZ-TM) Tog ar, ' Fs (T2-TM) Tog ag,

Estimation of thermal stresses developed within the pavement has been of
great concern in areas which suffered a large quantity of transverse temperature
cracking. Christison (3) has evaluated several available numerical methods
(31, 32) to determine the viscoelastic thermal stress. The main difficulty
in applying these techniques is that the predicted stress is often very
dependent on the tihe interval used in the numerical integration. The results
calculated may vary up to 50% when using different time increments. Thus,
users may have to find the right answer through several unnecessary trials.

A slightly modified form of the existing theory is described and

recommended in the JANNAF handbook (33). This approach, which is more accurate
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and efficient, is discussed here.
The uniaxial stress o due to an axial strain € and temperature change,

AT = T-To, is t

o = E (e-alT) + aF/. AE (g-g+)dle=aaT) 4 (2-8)
0 ]

dr
where
Jo = temperature at stress free state
o = thermal expansion coefficient
E. = long-time equilibrium modulus; Ee = 0 for asphalt
AE(E) = the transient component of the relaxation modulus;
BE(E) = E(E) - E,
a = temperature dependent coefficient arising from the free energy
change; ap = 1 for thermorheologically simple materials.
Also ¢ and £' are integrated forms of reduced time,

t o T gt
= dL,E': gt_

g
) ar o} aT,

(2-9)

where ars the horizontal shift factor, is a function of temperature. Note that
for a perfectly constrained pavement, € = 0.
If we assume a constant thermal expansion coefficient o and constant rate

of straining and cooling (or heating) starting at time t = 0, then

e = Rt (R = constant rate of strain)
AT = T-To = Rt (RT = constant rate of temperature change) and Eq. (2-8)
becomes
o= (e-aAT)Eef = €r Eef (2-10)
where
t = time for loading

strain due to stress

(2-11)

t
a
- . .r s _F NSRYTY
Eef = effective modulus; Eef Ee + t./: AE(E-£')dt




AE and ay can be expressed as the following power laws.

ME(E) = EqgT" (2-12a)
T, T.8 .
_ /M- "a
ay = (—jrjfﬂﬁ;) (2-12b)

where Ty is the reference temperature for the master curve and E, is the intercept
of a straight line region with log (£) = 0. Both E], m, and B are positive
constants and Ta may be a positive or negative constant. The temperature Ta

is approximately 10 to 20°F below the glass-transition temperature. With these
two power laws, Eq. (2-11) may be analytically integrated. Appendix A and

Figure 4 illustrate the determination of constants B and Ta' The effective

modulus then becomesv

) | (2-12)

Eef - Ee I (Es - E
where
ES = jisothermal constant strain rate secant modulus at temperature T;
a.t
I i A (2-13)

e 1-m ar

For cooling (T < To):

@1 (Er + 1)
_ AT +1 - Ze7 T m-2
Iy = (7._11_';‘_'" (-1 - 7] m/ " (1-x)"M(x) B*! dx  (2-14a)
+ n ]
For heating (T > To): 8+
(4T +1) (Bt me2)
I = (B—L—';‘-]-—m (1+ ZJT—)]’"‘[ (x-1)""x) B dx  (2-14b)
n

These results are expressed in terms of the normalized temperature change,

ATn, defined as:

T - To

My " To-T,

(2-15)

Calculation of Viscoelastic Thermal Stresses .

To efficiently use the theoretical relationships just developed a computer code

13
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has been written which can calculate the viscoelastic thermal stresses due to expan-

sion or contraction. The code is explained in Appendix B. It is to be noted

that each of the integrals for the factor IT (Eq. 2-14) have a singularity at .
either the upper or lower limits. To imprové the convergence rate of the

numerical integration these two equations can be reformulated as follows:

(i) For "the cooling process, the integral can be written as,

I, =f] X2 (1-x)Pdx (0 < H < 1) (2-16)
where "

Ho= (a1 +1)B"]

a = TEETY +m- 2

b=-m

which have been defined in Eq. 2-12b. Ifwe let A=a +1and B=Db + 1,

the equation becomes

1
’ =f xA1(1-x)8-14x
H

1 H
=f xA1(1-x)B-Tgx -f X1 (1-x)B Tax (2-17)
. B
: o]

I

or

—
|

y = G(A, B) - G,(A, B)
G(A, B) [(1-P(H))] (2-18)

where G(A, B) and GH(A, B) are compliete and incomplete Beta functions
respectively (38). P(H) is the probability that the random variables follow
the Beta function with the degree of freedom of A and B; and further:

P(H) = GH(A, B)/G(A, B). P(H) may be solved using an IMSL scientific
subroutine MEBETA (39) which is called directly from the IBM 360/65 computer's
local Tlibrary.

(ii) For the heating process the integral is written as follows: R
H
b

- a

dx (H>1) (2-19)
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Since b is a negative constant, the recurrence formula (40) is used to

avoid the singularity at the Tower limit. The equation then becomes
H

-] a+l b+1 a b+1
IH = o1y [X (X-1) - (a-l-b+2‘)/>1 X% (X-1) dX] (2-20)
The above integral is calculated by the trapezoidal integration rule.
Since the upper 1imit, H, is increased exponentially, a step by step integration

is used to achieve accuracy with an acceptable convergence rate. It can be

shown that:
Hi n Hi+]
1, =/ x3(x-1)2*Tax =Z/ x2(x-1)2*lax  (n=1, 2, ..., 10)
i -
] 120 "H, (2-21)
where
. = (aT_+1)B*Y, (aT_. = 0.1(i), i=0, 10) (2-22)
i ni 3 (8T, = 0.1(1), 1=0,

Once the values of IH have been obtained for each increment of T, a curve,
as shown in Figure 5, representing the modulus ratio derived from the test
data given in Figures 1, 2, 3, @1d 4 is incorporated into the computer code for
calculating thermal stresses. For any intermediate value of T, a straight line
interpolation between the calculated points is performed to obtain IT'

A comparison with experimental data for viscoelastic thermal stress,
shown in Figure 6, demonstrates that-this newly developed computer
code is capable of predicting tensile stresses much more accurately than
existing codes (30, 41). A comparison of the computer codes on an individual
basis would show that the proposed method is much more straightforward and

efficient.

16
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CHAPTER III
MECHANISTIC APPROACH TO REFLECTION CRACKING IN PAVEMENTS

Fracture Mechanics Concepts

In 1920, Griffith (14) first developed these concepts by assuming the existence
of a flaw in a thin elastic plate and described the energy terms controlling the
growth of cracks. This elastic body may contain two kinds of potential energy:

(1) surface energy (y) and, (2) elastic strain energy (Ue). The system would become
unstable and the crack would increase in size if the difference in strain

energy released with crack extension is greater than the energy required to form

the new free surface. This criterion leads directly to the expression for the

critical stress, Oeps

1
3

Oep = (ZEY/ﬂCcr) (3-1)

where E = modulus of elasticity,
Ccr = critical half crack size, and
Ocp = critical tensile stress, or the tensile strength of the specimen.

This equation provides a relation between the tensile strength of the specimen
and the size of flaw.

Irwin (15) extended Griffith's theory to include the situation of general
interest. In this extension the surface energy term, y, was replaced by an
experimentally determined quantity, the so-called crack extension force, G.
This is the quantity of stored elastic energy released in a cracking specimen
as the result of the virtual extension of an advancing crack. When this
quantity reaches a critical value, Gc’ the crack will propagate rapidly. For
a crack length of 2C in an infinitely wide plate under uniaxial tension the

critical stress becomes:

- 5
Oup = (EGc/n Ccr) (3-2)

19




Utilizing linear elasticity theory, researchers have only recently approached
the problem of developing mathematical formulations to make practical application
of fracture mechanics. Attention has been focused on the intensity of the
stress field near the crack tip. This stress field possesses a singularity of
the form{l//?}for both linear elastic and viscoelastic materials. The strength
or amplitude of this field is referred to as the "Stress Intensity Factor", K.
Three fundamental modes of relative crack surface displacements (16) are shown
in Figure 7. Any particular problem may be treated as a combination of any
of these displacement modes. For example, in the immediate vicinity of the crack
tip the stress and displacement for a mode I crack,opening mode, using the

coordinate system as defined in Figure 8, may be expressed by the following

equations:
o, = KI(Zmr‘)l/2 cos(%)(]-sing-sin g&
o, = KI(Zm‘)l/2 cos(%)(]+sin%-sin %ﬁ
_ L . (8 S 36
Tay = KI(Zwr)2 s1n<§>cos<§>cos(7é> (3-3)
KI r.% S . 2,8
us= ?ﬂ'(EEJ cos(5)(R - 1 + 2 sin (EO)
KI rvds . [6 2,8
Vs (D)% sin 7)(R +1 - 2 cos?()
Tz © Tyz =0

where U and V = horizontal and vertical displacements respectively,

~
[}

mode I stress intensity factor,

I

r = distance from crack tip,

u = shear modulus, pu = E/2 (1 + v),
v = poisson's ratio,

R =3 - 4v for plane strain, and
R=(3-v)/(1 +v) for plane stress.
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(a) (b) (c)

Figure 7. Three Modes of Crack Opening Displacement (a) Mode I - opening mode, (b) Mode II -
shearing mode, (c) Mode III - tearing mode



: Figure 8. Stress Components on Element of Material and Coordinate
{ System with Crack Front Along Z-axis
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- Note that for 8 = 0° the major stresses become equal, namely:

oy =0, = KI(me')"15 (3-4)

and for 6 = 7 the opening or vertical displacement becomes simply:

- s '
where ﬁe = 4/E for plane stress and
Ce = 4(]-v2)/E for plane strain.

The crack propagation in an elastic body will become unstable when the
stress intensity factor reaches the so called critical stress intensity factor,
KIC’ i.e., failure occurs. The quantity, KIC’ is a material constant related

to the free surface energy, vy, by the following relationship:
Ko = (8Y/C,)% (3-6)
IC Ve

~ Due primarily to the straight forwardness of the assumptions involved in
the stress intensity factor approach and the ability to ignore the little
understood surface energy and plastic work phenomena which accompany fracture
development, the use of the stress intensity factor is now preferred over use

of the free surface energy (17).

Fatique Crack Growth Law

According to the A.S.T.M. definition, fatigue describes the behavior of
materials under repeated cycles of stress or strain which causes deterioration
of the materials and results in a progressive fracture (18). Fatigue behavior
may be distinguished by three main features: 1) loss of strength, 2) loss of
ductility and 3) an increased uncertainty in both strength and service life.
A11 these consequences stem from the inhomogeneity of real materials.

Deterioration resulting from fatigue manifests itself primarily in the

formation of cracks in the material. Most cracks responsible for fatigue

23




1 failures start at visible discontinuities which act as stress raisers. The

| subsequent development of cracks due to fatigue in engineering materials can be

divided into three phases: (1) crack initiation (2) stable crack growth .
(3) castastropic fracture. The material of interest, asphalt concrete, behaves

as a non-crosslinked polymer. It has been demonstrated that crack initiation

occupieé only a small portion of time when compared to the total fatigue life (24).

Thus the prediction of service 1ife can be obtained by knowing the number of

loading cycles required for a crack to grow to a critical size.

ot

: Various factors that affect the fatigue behavior that must be considered
are the environment, stress state, load history and flaw type of the materials.
Paris (19, 20) first suggested that for fatigue crack propagation in metal the

crack growth rate was almost exclusively dependent on the change in the stress

intensity factor during each cycle (AK); and only secondarily dependent on mean
stress and frequency. He proposed the following equation based on these

assumptions, to describe the crack growth rate:

g = agak)" (3-7)
; where
‘ ¢ = crack length,
N = number of cycles,
AK = stress intensity amplitude, AK = Kmax - Kmin’ and
A,n = material constants obtained from experimental tests.

Experimental data collected by Ohio State University (6, 7, 8) from tests on
sand asphalt beams and slabs resting on elastic foundations indicate that
the crack propagation process in an asphalt mixture can be predicted using this

i power law relation. The prediction of total fatigue life Nf can then be obtained

¥ by integrating expression (3-7) to obtain the number of cycles to failure: .
1
c
f
N =[ L dc | (3-8)
c A(AK)
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. where C0 and Cf are, respectively, the initial and final crack size within the

overlay. Once the material constants A, n and KIC have been found a prediction
of fatigue crack propagation can be determined if the history of the stress
intensity factor, K, is known for a particular loading sequence, crack length,
and set of boundary conditions.

;n addition to elastic fracture mechanics, theories alsoexist for predicting
fracture initiation time and crack growth in viscoelastic media (21, 22).
Recently Schapery (23, 24, 25) has developed a general theory of crack growth
in viscoelastic media. This theory of fatigue crack propagation in asphaltic

concrete was derived from the power law relation (2-7), upon integrating:

dc _ 2(141/m) |
v = By (2K) (3-9)
where : t+tp
) m
m
S L WE(1#1/m) o
t T T/m 22
- t Y Om I]

m = slope of the straight line region of the creep compliance curve,
D] = intercept of straight line with log t = 0 in the creep compliance

curve (See Fig. 3)

_ 3(n)%r(mh1)

A
4(m3)T (m3)

m

; ' = Gamma function

W = W(t) which defines the wave shape of the stress intensity factor,
vy = fracture energy density (1b/in per unit area),

o = maximum stress a material can sustain,

I, = a dimensionless integral, 0 < I <2 and

t_ = time of loading for a given stress pulse.

25




Obviously, equality of the empirical Eq. (3-7) and the theoretical Eq. (3-9)

requires that

A= Bt and n = 2(1+1/m) (3-10)

under the conditions for which the extended correspondence principle established
by Graham (26) is applicable. This result enables us to predict the response
in a viscoelastic media using the results of elastic solutions and to relate

thg fatigue constants to material properties.

26
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CHAPTER 1TV
STRESS INTENSITY FACTORS

Stages of Crack Propagation Within the Pavement Structure

Linear fracture mechanics was mainly developed for homogeneous and
isotropic materials. It is only recently that the structural design of composite
material has brought the attention of engineers to fracture at the bond between
dissimilar materials such as an asphaltic concrete. For practical applications
to pavement design, the crack growth within a pavement overlay system may be
categorized into three stages: (1) when the crack tip is within the old layer
growing toward the interface between the old pavement and the new overlay,

(2) when the crack tip is resting on the interface, and (3) when the crack is
within the new overlay. Each stage produces a different stress intensity factor
for the crack tip that gives a new rational insight into material selection.
Stage 1 - Crack Tip Within 01d Pavement Layer

Williams (34, 35) first discussed the stress state around a crack in
dissimilar media and found that the stresses at the crack tip were of the form

gt (A = -3 + iB) (4-1)

where A is a complex number for the solution of bi-material problems and B is
zero if the crack is in a homogeneous medium. The numerical approach by
Leverenz (36) studied the problem of a bi-material plate as shown in Figure 9
subject to uniform displacement, containing a crack perpendicular to the
interface. He concluded that if a plate containing a crack is bonded to a
second material with a higher elastic modulus, the value of the stress
intensity factor will be smaller when compared with that of only one material.
The reverse effect is also true.

Cook and Erdogan (37) solved the problem of two bonded elastic half planes

containing a finite crack fully embedded in one of the half planes. Similar

27
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effects for the modulus of the second material on the stress intensity factor

as shown in Figure 9 were found. In this case, the stress singularity at the
crack tip is in the form of

_— r]-k

O (5-2)
When the crack is perpendicular to the interface, A is real and is the solution
of the following characteristic equation:

2 -
2ajcosmr - (a,)" + az) = 0 (4-3)

where a, = (m + Ry) (1 + mR]),

o1
|}

5 = -4(m + R2) 1 -m,

(1=m) (m+Ry) + (1 +mR) (m+R,) -m(1+R) (1+mRy),

1

m = uz/u.l as defined in Figure 10

u is the shear modulus and R=3-4v for plane strain, R=(3-v)/(1+v) for
plane stréss conditions
Stage 2 - Crack Touching the Interface
For the special case when a semi-infinite crack is touching the interface,

the stress intensity factor is dependent on the bi-material constants, and:

- (2fﬁ%~'xl m(1+R])[(1—2x])(m+R2) + (1423 ) (1+mR, )]
I 0 Zna]sinm1 + 2a2A]

(4-4)

where A] is the root of Eq. (4-3). Figure 10also shows the calculated values
of KI for various material combinations. The same trend for stress intensity
factor under distributed loads has been found to be similar (37). In the case
of a homogeneous medium, A = %3 and Eq. (4-4) reduces to the following known
result.
P2\
Ko = 7 (&) (4-5)
)
It is important to note that Figure 9 and Figure 10show the opposite

effect on stress intensity factor given the same combination of material
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constants. From this it can be concluded that a higher modulus for the overlay
material will reduce the stress intensity factor of those cracks still embedded
in the pavement. However, for the crack already touching the interface, a
lTower modulus layer will serve as a stress relieving medium. The experimental
findings of field tests (57, 58, 59) are consistent with the resu1t§ predicted
using these theoretical approaches.

Although some experiments have produced encouraging results, documentaries
as to the reasons for success or failure are scarce. Roberts (58) reported
that experiments in Iowa showed a substantial difference in reflection cracking
between asphalt mixtures made with 80 and with 115 penetration asphalt. It has
been found that softer asphalt can reduce reflection cracking approximately
50% over that of the stiffer asphalt (80 penetration). Haas (59) in Canada
also reinforced the use of softer material. An NCHRP report (1) recently
recommended a stress relieving layer between the overlay and existing pavement.
From these findings, it may be surmised that the asphalt stiffness can be a
significant factor in the elimination or delay of cracking. The major point
however, is that the theory presented in this chapter clearly illustrates the
basis for the visual findings of the cited research efforts. They represent
perhaps the first theoretical explanation of observed field experience.

Stage 3 - Crack Within the New Overlay

Once the crack tip has reflected through the surface, and the surface has
been overlaid, however, the development of the stress intensity factor is the
most important factor in predicting the thermal fatigue life of the overlay.
The prediction of the stress intensity factor will be discussed in the remainder
of this chapter.

Determination of Stress Intensity Factor

The finite element method is generally accepted because of its ability to

handle very general geometries, a variety of material properties, and
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loading conditions. Early studies on fracture mechanics problems involving the
finite element were conducted by Tuba (42) and Kobayashi (43). They

attempted a straight-forward application of the technique with no special
attention given to the stress singularity at the crack tip. Computational
experiments indicated the need for very large degrees of freedom and raised
serious ﬁuestions about the reliability under the given conditions (44, 45).
New improvements using the energy method approaches such as the energy release
rate method (46) and the J-integral method (47) still require the use of an
extremely fine mesh near thé crack tip and are restricted to only Mode I
analysis (See Figure 2).

Recently Pian and Tong (48) adopted the hybrid-element concept and the
complex variable technique to construct a special element for the tip region
and combined it with the conventional finite element solution scheme. This
technique permits the proper consideration of the stress intensity at the crack
tip and also leads to a very efficient program (49, 50). The use of such an
element has been shown to be very efficient and highly accurate even when a
coarse element mesh is used (50).

A Fortran computer program (Appendix C), which incorporates Desai's (51)
constant strain finite element program with Pian's tip element, has been
modified into double precision on the IBM 360/65 for the analysis of pavement
reflection cracking problems. This program calculates both Mode I and Mode II
stress intensity factors and also provides an option which calculates the
strain energy of the plane structure for an alternate solution by the energy
method.

When dealing with boundary values over an infinite region such as a pave-
ment structure, the problem can be analyzed as the superposition of two

problems (52) as shown in Figure 11. The solution for problem (a) is trivial

32




ikt b it = e s oml

Figure 11.

T

}
|

The SuEerpqs1tion Principal of an Infinite Body Containing

a Crac

33




; as the stress is the same everywhere. The magnitude of the stress intensity
. factor for problem (b) is the same as for the overall problem. Thus the
; analytical approach can be simplified by applying the tensile forces as -
compression forces over the finite region of the crack surface. 7

Figure 12 shows the finite element representation of a pavement structure
and two Eypes of tip elements. The cracks, assumed to be propagating upward,
were studied in incremental lengths. Since the crack is assumed perpendicular
; to the interface, only the mode I stress intensity factor will be considered
in this study. Thus the five node crack tip elements are used because of the
4 nature of symmetry. As a rule of thumb, the size of the tip element is chosen
’ as r < ¢/10 where ¢ is the half crack length. The distances of the crack from

the remote boundaries are determined such that the solutions will not be

affected by the presence of the boundaries.
A proper choice of the crack tip length, z, where the forces cannot be

applied directly is a major consideration. In this region, a solution for the

stress intensity correction factor, CK, following Barenblatt (53) is used,

in which: .

.%A.z Ue(i)di

C, =2V ——
o &

K (4‘6)

where £ is the distance away from crack tip and ce(g) is the surface stress
inside the crack tip element, i.e., -Og is the thermal stress at the depth

near the tip region.

If z is sufficiently small, ce(g) can be assumed as a constant, ce(g) = 0g-
The correction factor CK, for this case then becomes
= §;i . . ;5 -
Ce= ()72 0p - (D) (4-7)
and the resultant mode I stress intensity factor will be: .
KI = K + CK (4-8)
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where K is the computed solution obtained when forces are applied at the crack
surface. |

Figure 13 is a schematic diagram of pavement temperature, thermal stresses,
stiffness and stress intensity factor history during a single cycle. As can be
seen from the figure, the stiffness and thermal stress of the pavement material
will increase as its temperature decreases. At the same time the stress
intensity factor, which depends upon both the stress and the stiffness, increases
to a maximum when the temperature reaches its minimum value. In the computer
program written to predict crack growth, it is assumed that the instantaneously
stable crack growth occurs when the pavement reaches its minimum temperature.

Consequently, the calculated maximum stress intensity factor Kmax’ is used for

the prediction of fatigue 1ife which is done in the following Chapter.
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CHAPTER V
PREDICTION OF OVERLAY LIFE

Prediction Scheme

The problem to be analyzed is a four layer flexible pavement which is overlaid
by a relatively thin asphalt concrete surface. A crack is assumed to be existing

in the base course and old surface layer as shown in Figure 14. Each layer is

- characterized by an elastic modulus and:Poisson's ratio, which are reported else-

where (11, 54, 55). A plane strain condition is assumed for the pavement structure.
Pavement temperature profiles calculated from West Texas climatic variables
were calculated by Carpenter (56) using Dempsey's heat-transfer computer program (57).
A preliminary thermal stress analysis was performed for the asphalt concrete
specified in the previous chapter using the viscoelastic thermal stress computer
code. The results, shown in Figure 15, indicate that due to the viscoelastic
nature of the asphalt, thermal stresses may be negligible when pavement temperatures
are above the freezing temperature (32°F). Therefore it seems reasonable to assume
that cracks will propagate during the more severe weather conditions present in
winter.
Figure 16 shows a typical temperature profile when pavement temperatures are
below freezing. Thermal stresses were computed by assuming the maximum temperature

of each layer to be the stress free state temperature. Since the viscoelastic

properties of the base course layer are not known at this time, only the elastic

thermal stress (i.e., o = a + E « (AT))is calculated for the base course. The

resultant thermal stresses versus depth are shown in Figure 17. The type of
thermal stresses exhibited are rather unusual. Because of the different therma1.
activity possessed by each layer, however, and the creep effect of the asphalt
concrete, these data are realistic.

For the prediction of service 1ife, the important factors to be considered
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are as follows:
| 1. The stress intensity factor history during the stable crack growth (e.g.
Kp = KI(C)), where C is the crack length within the overlay. -
2. The fatigue parameters A and n. |

3. The critical stress intensity factor KIC'

Using the finite element method with the crack tip elements previously
discussed, stress intensity factors were calculated by increasing the crack
Tength within the overlay. Figure 18 shows that the stress intensity factor
increases with increasing crack length. Figure 18 also éhows that an increase
in the overlay modulus will decrease the stress intensity factor. It is to be
noted that the basic assumptions of the fracture mechanics computer code are only

valid for the crack tip nearly h]/15 away from either boundary (i.e., either the

interface or the pavement surface). Therefore extrapolation was used to extend
those values to the boundary.

The Fortran computer code developed for the estimation of service life is
shown in Appendix D. A second order polynominal developed within the program
is used to fit the function K = KI(C)’ shown in Figure 18. Integration was
performed using Simpson's rule. The criterion for overlay failure is defined
as the time when either, (1) the stress intensity factor reaches the critical level
for a specified material or, (2) the crack tip reaches the surface plane of an
overlay.

As discussed previously n is related to the viscoelastic property m, the

slope of the creep compliance curve, as given by Equation (3-10).

5 (3-10)

n=2(1+
Normally m varies as 0.5 <m < 1 for the asphalt concrete, therefore a variation
of n, 4 < n <6 can be anticipated. A value of m=1 indicates a soft asphalt.

The experimental results have also shown that for beams and plates resting on
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foundations with sufficient rigidity, a typical value of n will be 4 at 77°F.
Probably due to strain effects (e.g. crack tip blunting), values of n somewhat
less than 4 have been reported for the unsupported specimens (Z, 8). Also, it is -
noted that n increases with decreasing temperature (6).
It is important to recall from the viscoelastic fracture mechanics approach
that A caﬁ be related to Bt as was shown in equations (3-9) and (3-10). Values
of A are direct function of D1 and an inverse function of the fracture properties
(v, om). A decrease of D] indicates a higher modulus and a lower value for A.
Also, an increase of either y, the fracture energy, or op, the maximum stress a

material can sustain, will result in a decrease in A which results in a decrease

St il e oot

in the rate of crack growth.
It is important to note that an increase in the overlay modulus will have
two major effects on the crack growth equation. These are:

a. It will decrease A, thus decreasing the rate of crack growth, and

b. It will decrease K for a fixed stress level.

In order to examine the net effects of the variation of these material
properties on the service life of the overlay, the following typical range or of
the fatigue parameters for asphalt concrete was utilized in the computer code

developed in Appendix D.

14 10

1. 1007 <A<10
2. 3<n<éb
The results, shown in Figure 19, demonstrate the wide range of calculated service
1ife for the wide range of matefia] properties.
The calculations for service life show that changes in the modulus of the

overlay had a small effect on the stress intensity factor. This result proVides a .

basis for use of equation (3-8) to predict service life.

! B *
i N, = d 3-8
f _[ A" 3
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The stress intensity factors being used are the result of calculations which assume
that pavement moduli fall within a fairly broad range of values.

Common Values of A and n

The values for A and n necessary for this study are not reported together
frequently in the literature. Christison reported stiffness modulus data which
converted to an n value of 5.0 with a standard deviation of 0.24 for seven asphalts
in Canada (3). Shahin and McCullough (41) report that for the stiffest asphalt

concrete mixture an A value of 8x10']3

would be approximately correct. These values

are not for the same material; therefore they cannot be used together to predict a

service life of 1000 cycles. This is not an unreasonable 1ife span, however.
Monismith (30) reports an n value of 5.1 for the asphaltic concrete used in

his study, however no value of A is given as the fatigue problem was not addressed.

Ramsamooj, et al. (7) gave values for A and n for sand asphalt slabs in various

configurations. They reported data for unbonded slabs, top surface slabs, beams

on an elastic solid and slabs. The values for n were all 4.0. The values for A

-12 12

varied from 3.5x10 to 5x10°'“. It becomes apparent that asphaltic concrete may

possess a rather narrow range of material properties, however, a variation in these

properties changes the results appreciably.
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CHAPTER VI
CONCLUSIONS AND DISCUSSION

Conclusions

The design of pavement overlays to resist reflection cracking involves many
complex and interrelated variables. In this study, the principles and concepts
of liﬁear elastic and viscoelastic fracture mechanics were used to study the
crack propagation in flexible pavement due to thermal contraction and expansion.

A successful overlay should eliminate or at least delay the reflection
cracking. Many experiments have been done on reducing the reflection cracking,
however, most of the efforts have only been empirical field trials. Treatments
that worked in one area failed in another (58). This study has examined the
effects of mechanical properties on the service 1ife expectancy of an overlay
and has proposed a rational approach to estimate the service life of the
overlay. The procedure is quite general and permits evaluation of general
temperature effects on the growth of pavement cracking.

The crack propagation law for the asphalt concrete dc/dN = A(aK)", which
was verified by the experiments at Ohio State University, was used as the
basis of the mechanistic approach. Viscoelastic fracture mechanics was used
to relate the fracture phenomena to the material properties.

It was shown in Figures 18 and 19 that an overlay with a higher modulus
tends to reduce the stress intensity factor within the pavement. The fatigue
parameter, A, which is a function of the elastic modulus, can be controlled by
the asphalt content, aggregate gradation and fracture properties of the
mixture. The other parameter, n, is related to the asphalt penetration or
hardness. These two parameters are the significant factors in determining the
service life expectancy. Therefore, Figure 19 provides a valuable guide for

choosing the appropriate overlay material which may increase its service life.

48




i

e fakoe et ARt L ste Tt s b MR SRR T T AR AR AR T T A At AT s SR AT S S s s 2 T ey edals A e B AT S e B ss AR s m e e e e Y

The following conclusions may be drawn ffom this study:
1. The best overlay design to reduce the appearance of cracking is, as
shown in Figure 20, namely: '
a) a thin layer with soft asphalt (low n) and low modulus of elasticity
to serve as a stress relieving medium overlaid by,
b) a layer with soft asphalt (low n) and a high modulus of elasticity.
Although this arrangement will hasten the propagation of unseen cracks through
thé surface of the old pavement, it will slow them down considerably when they
reach the surface and contact the underside of the stress-relieving layer.
2. The use of the finite element analysis in conjunction with the crack
tip element is an accurate and simple method for the determination
of stress intensity factors.
3. The stress intensity factor is a measure of crack opening force and
is proportional to the applied stresses. Therefore the reduction
of the pavement thermal activity i.e., the value of thermal expansion

coefficient, a, would reduce the reflection cracking substantially.

4. The fatigue parameter A can be related to, and is some function of
1
Ey
properties (v, cm). The other fatigue parameter, the exponent, n,

material properties such as elastic modulus (= or D]) and fracture
is inversely related to the slope, m, of the creep compliance curve.
These parameters can be controlled by the choice of asphalt content
and mixture properties.
5. A pavement overlay with soft asphalt (low n) and higher asphalt concrete
modulus tends to reduce the stress intensity factor. However, a
stress relieving layer is needed for those cracks touching the interface.
6. Both A and n play an important role in determining the expected service

1ife. Smaller values of A and n will extend the expected life.
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Discussion

Although this report clearly shows that a rational design procedure for
overlays is obtainable there are several areas that require further work before
the process could be considered a complete procedure.

First, the thermal stresses predicted from the viscoelastic approach are
more accurate than those predicted by previous viscoelastic techniques.
Equations (3-9) and (3-10) however, assumed a linear change in the pavement
temperature from maximum to minimum during the daily cycle. Further development
of the theory and laboratory testing will be necessary before the non-linear
temperature change and its effect on the residual modulus can be accounted
for accurately. The shift produced by this consideration will move predicted
stresses closer to measured values.

Secondly, the study of traffic induced cracking conducted at Ohio State
University should be combined with the results of this study. This would
produce a general prediction scheme that would combine traffic and environmental
influences into a system that would logically analyze overlay systems and
predict service life.

Finally, this study examined only one overlay thickness in developing the
prediction scheme. This thickness, 1% inches, is typical of the most commonly
used overlay, but the effect of thickness on the behavior and service 1ife of
the overlay should be studied. This would be merely an extension of the work
presented in this study.

This study is an analytical study that applies concepts which have been
developed and validated in other industries, namely the polymer and solid rocket
fuel industries. The application of these concepts is logically done and initial
research, as cited, clearly shows that these concepts are proper for the study
of asphalt concrete. The results developed in this study will be verified by

laboratory testing in an overlay testing device currently under construction as
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an integral part of this research study. This verification of the performance

of actual overlay systems in the laboratory, coupled with a proven analytical
technique to predict performance will provide the basis for a comprehensive study
of reflection cracking due to environmental effects and later even allow the

inclusion of traffic effects to formulate a complete design system for overlays.
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APPENDIX A

Determination of Constants 8 and Ta in Eq. 2-12b

The determination of constants g and Ta in Eq. (2-12b) can be
accomplished from experimental data as follows:
1. Estimate a value of Ta = TM - x, and substitute it into

Eq. (2-12b), then plot the data in the form log a. vs log

T
(T-Ta).

2. If the points fall approximately on a straight line, the es-
timate of Ta is the correct value and 8 is the slope of the
log-10g curve. If not, estimate another value of Ta and
repeat the process.

The following computer program was developed by assuming that F]

and F2 in Eq. (2-7 ) are known. The subroutine Plot 1 provides a
graph, as shown in the example print out, which could narrow the

range of searching values of x.

Guide for Data Input

Card 1 (F10.0)

cc 1-10 TM Reference temperature for master curve
Card 2 (F10.0) (See Eq. 2-12b and Figure 5)

cc 1-10 F1 A WLF shifting factor

11-20 F2 A WLF shifting factor

Card 3 (F10.0) (A set of cards)

cc 1-10 X Trial value for Ta = TM - X
Card 4 (blank) One blank card allows normal termination of the computer

program
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APPENDIX B

Computer Program for Prediction of Viscoelastic Thermal Stress

This appendix contains a computer program for calculating thermal
stress of a restrained bar subject to a linear temperature change

with time between maxfmum and minimum temperature.

et s o s e cah v+ s e i <
»

The program consists of a main program and five subroutines:
MAIN - Calls the subroutines and calculates modulus ratio and

resultant thermal stress. A flow chart of the main program

IRTVNURITR PR
:

is shown in Figure B-1.

1 DATAIN - Reads in parameters required for the numerical computations
| of the viscoelastic stress equation. These parameters will
be defined in the input data guide.
INTGRT - Provides numerical integrations using the trapezoidal rule.
This subroutine is called by subroutine HEAT.
CURVE - Establishes the modulus ratio curve within this program.
) cooL - Calculates the cooling process.
HEAT - Calculates the heating process.
MDBETA - Calculates incomplete Beta function. This subroutine is

provided by the IBM IMSL local computer program library.
Input Data Guide

Card 1 (10A8) Title of the problem
Card 2 (15, 5X, 2F10.0) (See Figure 3 and Figure 4)
i_ cc 1-5 INDEX 0= data read from master creep compliance curve

1= data read from master relaxation curve.

5t b o e savns ok
N
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-~ Read in Parameters

Establishes Modulus Ratio IT

Curve Within the Program

i 4
Compute Intermediate Values of
Modulus Ratio

Compute Thermal Strain and Stress

1
Print Out

Yes Any more problem ?

Fig. B-1. Flow Chart for Viscoelastic Thermal Stress Analysis
Computer Program
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cc
cc
Card 3
cc

cc

cc
cc
cc
cc
cc
cc
Card 4
cc
Card 5

cc

cc

cc

cc

cc

11-20
21-30

(8F10.

1-10
11-20

(15, 5X, 4F10.

1-5

11-20

21-30

31-40
41-50

D1
DF

CN
CM

ALPHA
™

R

TA

F1

F2

NPR

IX

TMIN

PERIOD

STEP
UNU

Value of interception with log t=0.

Initial value of creep curve.

Slope of creep compliance curve

Slope of power law curve for shift factor (Figure
6 and Appendix A)

Thermal expansion coefficient,a

Reference temperature of master curve

Stress free state temperature

Power law constant for shift factor (Figure 6)
Constants for WLF shift factor (Figure 5)

Constants for WLF shift factor (Figure 5)

Number of problems

0) A set of NPR cards

0= Plane stress

1= plane strain

Minimum (for cooling) or maximum (for heating)
temperature

Total thermal loading time (hours)

The intermediate time step (hours)

Poisson's ratio
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VISCOFLASYIC THERMAL STUESS ANALYSIS FOR CONSTANT PATE COOLING OR
HEATING IN A RESTRAINEC BEAM 0R SLAB

IMPLICIT REAL®E (8-H,0-17)
DIMENSION TH{11),TCILLD
COMMON/IN/ZCN oCP o ALPHA TM TR TAF1,F2,E1,ES
DIMENSION HC(3}
CATA HC/'COCLING * *HEATINT *,*ISOTHERNK'/
CALL DATAIN
CALL CURVE(TH,TC)
REAND(S, 1) APR
1 FORMAT(IS)
DO 2 T=1,NPR
READ(S,3) IX,TMIN,PERICD,STEP,UNU
3 FORMATII5,5X,4F10.0)
IX = 0 --PLANE STRESS
IX = 1| ~-PLANE STRAIN
DELY = TMIN -~ TR
HOUR = (.CO
WRITE(6,200)
200 FORMAT(O1® ,4X o' PROESS? ySX o * TEMPL * 42X o P (AT ) 42Xy *NGRHALTZED® 14X,
1 '“ODULOS'.5!.'SEC‘NT'.bX"EFFECTlVE"QX"S'RA[N'.OX.'SYQESS"
2 6X,*TIME®',8), Je% 94322X,°L0Ge "¢ LX, *TEMP, CHANGE',
34X, 'RATIO® 46Xy  MODULUS * 45Xy YMOOULUS®)
1000 CONTINuUE
HOUR = HCUR + STEP
IF{HNUR .GT.PERICD) HOUR = PERICC
RR = DELY/PERICD
DY = RR#*HCUR
TIME = HOUR*3600.
TIN = TIME #e(-CN}
T = TR ¢+ DT
ATL = -FL1o(T-TM)/(F2+¢T-TM)
AT = 10.00%* AT1
ATN = AT*» CN
OTN = DY/(TR-TA)
DTR = 0ABS(DIN*10.)
NN = IDINTI(DTIR)
OIF = DIR - NN
N = NN ¢}
IFf (CELYI90,100,110
90 RATIO = (TC(N¢1)-TCINDI*DIF ¢TC(N)
J =1
GO TO 120
100 RATIO = 1.00

12¢

150
2

140

J o= 2
o T2 120

RATIC = (TH{N#1)-TH(N))&DIF & THIN)
J =2

CONTINUE

£S5 = ATNEEISTIA/L]1,D0 ~CN)
EEF = EE + QATIN®(ESS - €E)
SYSAIN = ALPHA » (T

Gl = DFLOAT(IX)/{Lle~ UNU)
IFIIX.EC.0) GI = 1.

STPESS = GI ® STRAIN * EEF
WRITECG6,150) 1,HCEI),T
1 STRESS,HOLR

FORMAT (00,13 ,88,3F8,2,2X,F12.242X44G12.4+F8.2,201X,Gl1.4))
1F (HOLR LT, PERICOY GO 11 1000

CONT INUF

WRITE(E,140)

FOPMAT( 1)

sToP

END

ATL,DTN,RATIOESS,EEF,STRAIN,




1]

11
12
13

14

15
17

41
42
43
19

SUBROUTINE DATAIN

IMPLICTT REAL®8 (A-H,0-1)
COMMGN/EN/CNsCH  ALPHA, TM, TR TA,FL,F2,E1,EE
OIMFASICN TITLE(L1O)

READIS,11ITITLE

READ(S5,12) INCEX,Dl,DF

OF = 10.D0**DF

01 = 10.Dp0** D1

READ(S413) CN,CMyALPHA,TM TR, TA,FL,F2

FORMAT(10A8)

FOPMATII5,5Xe2F1060)

FORMAT( EF10.0)

WRITE(6y14) TITLE

FORMAT(®1°,10X,°%% * & 3,]10A8,% » & =)
IFUINDEX.EQ.1) GO T0 17

PI = 3.141592¢

PIN = PI * CN

El = 1.00/D1 *(OSIN(PIN)/PIN)

IF(DF4EQe le) GO TO 15

EE = 1.00/DF

GO 10 18

EE = 0,00

GO T0 18

El = D1

EE = OF

CONT INUE

WRITE(E 41} TP

WRITELE,42) TR

WRITELE,43) ALPHA

WRITE(6919) EL EECN,CM

FORMAT{*0",5X, '"REFERENCF TEMP, FCR MASTER CURVE.',T4B8,G13.4)
FORMAT(*0° ,5X,*REFERENCE TEMP, FOR ZERC STRESS STVATEL',T48,G13.4)
FORMATL'0*,5%,*COEFF. NF THERMAL EXPANSION ,°*,748,G13.4,77/)
FORMAT('0® ,5X,0% & % Fl= ¢,GLl2.4¢2X,%EE= *4G13a4,/y
I SXo%® & & CN=%,Gl3.442X,'CM="yG13.4,/)
WRITEL6,1C0)

100 FORMAT('0"¢2X,"CURVE FOR EFFECTIVE MODULUS RATIO®)

RETURN
END

[aEaXal
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SUBROUTINE HEAT(A,BsHyINT,F,AREAHS)
IMPLICIT REAL®*A(A-H,0-2)
CIMENSICN F(INT)
CCMMON HHIL1},22
COIMMON/KK/ T
DA = HY®({A+1, )8 (1. ¢H)**(B#1. )/ (B¢l )
bR = ~(A4B+2.)/(B+1s)
DO 10 J=1,INT
XX = HH{1)} & HSe(J-1)
10 FEJ) = XXesa®(~]oeXX)®»{B4]s)
CALL INTGRTUINT,F,HS,AR)
11 = 21 + AR
AREA = DA ¢ 27%DB
RETURN
END

SUBROUTINE COOLUA,B.H,AREA)
IMPLICTT REAL #8{8-H,0-1)
REAL®4 SH,SAL.SB2.SP
CCMMCN/GT/ GARL
Al = A ¢ 1.DO
81l = B ¢+ 1.C0
P = 0.
SH = SNGL(H)}
SAL = SNGLEAL)D
€B2 = SAGL(BI}
SP = SNGLIP)
CALL MDBFYA(SH,SALl,.SB2,SP.IER)
tF(IER.EC.O0) GO TO ;0 sa1, 82
EP,SPySHy . :
20 :3;;557:59'.55:.5 f « ERROR TER?®,6X,°P? 10X, *H*, 10X, "A", 10X, *B',
1 74'0%, SBX,15,4G12.4)
10 CONTINVE
P = DBLELSP)
H = OBLE(SH)
Al = DBLE(SAL)
B2 = DBLE(SRZ)
AREA = GABL * (1.DO0 - P)
RE TURN
FND
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SUBRDUTINE CURVEITH,TC)
IMPLICIT REAL®B (A-F+,0-1)
DIMENSION TH{LL),TCHLLL)
COMMON/IN/CNsCMo ALPHA, TM, TR TA,FL,F2,EL,EE
DIMENSION HCU2)

DATA HC/'COCLING *,'HEATING */
CCPMON/GY/ GaBL

DIMENSION F(50)

CCMMON HH(11),22

COMMCN/KK /7 |

CONT INUE

INT = 40

A = CM/ICMel,) ¢ CN - 2,

8 = -CN

DM = (L.~CNI/ICNK ¢+ 1.}#*+{]1.-CN)
WRITE(6,12)

FOPMATIO-? o 13X, *DTN® y 10X "CONS® ¢ 10X, *AREA® L 10X, *RATIOD® )

CA = CGAMMALA+]L,)

GB1 = DGAMMA(B+1)

GABl = GA*GBl/ DGAMMA(A+8+2.00)
TH{1) = 1.D0

CiL) = 1.00

C(11) = 0.DO

00 40 INDEX =1,2
WRITE(6,14)

FORMAT(® ')

HH(L) = 1,

AREA = 0.

I1 = O

DTN = 0,

00 10 I=1,10

DIN = NTH + Q0.1

OTR = DABRSIDTN)
IF(INCEX.EQ.1) GO TC 21

* & & FOR HEATING PROCFSS » ¢ »

H = (DINe 1 )08 (CMel,)

HHIT+l) = H

HS = (HHUT¢1)-HHLT) I/ CINT-L)
CALL HEATU(A,ByH,INT,F,ARFA,HS)
CONS = DM*{1le41e/DTNI®S(Lo-(N)
Y11 = CONS ¢ AREA

TH(L¢1) = 711

G0 70 25

® & & FCR CGCLING PRNCESS ¢ ¢ ¢

25

20
10
40

10

CONTINUE

IF(1.EQ.10) GO TO 10

RR = -DTR

H = (1,¢RR |2 (CHel,)

HH{T+¢3) = H

HS = (HH{T) - HH(T¢1))/CINT-])
CALL COCLUAWB,HyAREA)

CONS = [CM3(-]1,-14/RR Je&(]~CN)
TIT = CCMS * AREA

TCi{I+1) = TII

CONTINUE .
WRITELE,30IHCLINDEXD) 4DIN,CONSAREA,TII
FORMAT(°0°,2x,A8,4G1244)

CONY INUF

CONTINUF

RE TYRN

END

SUBROUT ENE INTGRTIN,F,H,AREA)
IMPLICIT REAL®3(A-H,0-1)
DIMEASTON F(ND

AREA = C.

S = 0.5 H

DO 1C [=2,N

AREA = ARFA ¢ S#(F{I-1)¢ FLI})
CONTINUE

RE TURN

END
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APPENDIX C

Finite Element Computer Program with Crack Tip Element

This plane stress/strain finite element computer code is written in
FORTRAN IV language with double precision on IBM 360/65. The elements
used are 4-CST quadrilaterals and/or constant strain triangles with
optional crack tip element. The code has sufficient storage‘for 300
nodes, 250 elements and 10 different materials. It requires the ma-
chine with a core storage of 430K and five additional temporary disk
spaces. The maximum semi-bandwidth of the stiffness matrix is 64.

It is possible to change the capacity by modifying the COMMON,
DIMENSION and DATA statements.

The present code contains a number of checks of input data. When
errors are located they are described and execution is stopped. How-
ever, the checks in the code do not cover all possibilities. One
method of checking input is to compare with the original drawing.

Most of the computational steps are carried out in the various
subroutines of the code. Following is a 1ist of subroutines with an
explanation of their functions:

DATAIN Reads and echo prints all input data. Performs checks for
data.

ASEMBL Initializes and assembles overall stiffness matrix and load
vector. Introduces geometric boundary condtitions.

QUAD Computes stress-strain matrix, stiffness matrix, body force

vector, and strain-displacement matrix of either a 4-CST

. quadrilateral element or a triangular element.




- et 1

s hein e aate N ks

CST

CRACK

HYBRID

LOC

STFAC

GEOMBC

BANSOL

STRESS

Computes strain-displacement matrix, stiffness matrix, and
body force vector of constant strain triangle (CST) element.
Reads the input data and prints the stiffness matrix for
tip element.

Computes the stiffness matrix, displacement-stress inten-
sity factor vector for the tip element.

Computes vector subscript for a specific storage mode.
Computes and prints the stress intensity factor.

Applies prescribed displacement boundary conditions at a
single node.

Triangularizes the overall banded stiffness by symmetric
Gauss-Doolittle decomposition or solves for displacement
vector corresponding to a particular load vector.

Computes the strains, stresses, and principal stresses.
Prints the stresses and principal stresses at element

centroids.

Temporary Disk Track Utilization

Unit 1

Unit 2

Unit 3
Unit 4

Unit 8

Stores multipliers, pivots, condensed loads, strain, displace-
ment, and stress-strain matrix (to be used to compute strain
and stress).

Stores crack tip element stiffness matrix, displacement-stress
intensity factor vector and nodal data.

Stores element stiffness matrix.

Stores input node number, node identification and concentrated
load or displacement.

Stores surface traction information.
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Guide for Input Data

Identification card (15, 3X, 9A8) One card per problem.

cc

cc

1-5 Problem number

9-80 Title of the problem

Basic parameters (6I5) One card per problem.

ccC

ccC

cc

cc

cc

cc

cc

1-5 NNP
6-10 NEL
11-15 NMAT
16-20 NSLC
21-25 NOPT

26-30 NBODY

31-35 NCKEL

Material properties (4F10.

cc

cc

cc

cC

1-10 E
11-20 PR
21-30 RO
31-40 TH

Number of nodal points

Number of elements (for 4-CST only)
Number of different materials

Number of surface tractions

Option for stress state, 1=plain strain,
2=plain stress

Option for body force, 0=no weight, 1=weight
in the negative y direction

Number of crack tip elements.

0) NMAT cards per problem.

Modulus of elasticity

Poisson's ratio

Density of material

Thickness of material

Nodal point data (215, 4F10.0) (See Note 3 below)

cc

cc

cc

cc

1-5 Nodal point number

6-10 KODE(I)
conditi

11-20 X

21-30 Y

Index of displacement and concentrated load
ons at node I
Horizontal coordinate of node I

Vertical coordinate of node I
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cc 31-40 ULX Concentrated load or displacement in X and Y
directions at node I
cc 41-50 ULY Concentrated load or displacement in X and Y
directions at node I
-E1ement Data (6I5) (See note 5 & 6 below)

c¢c 1-5 ET1. No. Element number

cc 6-10 I Index of the first node in quadrilateral

cc 11-15 J ~Indexiof the second node in quadfi]atera1

cc 16-20 K Index of thé third-node in quadrilateral
] cc 21-25 L Index of the forth node in-quadrilateral

cc 25-30 MTYP Material type number
Surface tractions (215, 4F10.0) (See note 7 below)
cc 1-5 N.P.I
cc 6-10 N.P.J
cc 11-20 SURTRX(I)
cc 21-30 SURTRX(J)
: cc 31-40 SURTRY(I)
i cc 41-50 SURTRY(J)
Crack tip element data NCKEL cards per problem (see note 8 and Figure C)
Card 1 (215, 2F10.0, 15)
cc 1-5  KEY Type of crack tip element, 1=five node case,
2=nine node case
i cc 6-10 MATYP Type of material where crack tip is embedded
cc 11-20 XC Horizontal coordinate of crack tip

cc 21-30 YC Vertical coordinate of crack tip
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cc 31-35 NCOT Special case of tip element. Only need for
the five node case is when nodal data has to
be counted clockwise, 1=yes, 0=no.
Card 2 (10I5) (See note 9)
Indices for 5 nodes 1 2 3 4 5 MAXDIF
(or Indices for 9 nodes 1 2 34 56 7 8 9 MAXDIF)
One blank card allows normal EXIT from computer.

Note on Input Data

1. Data cards must be in proper sequence.

2. Units must be consistent.

3. Usually one card is needed for each node. However, if
some nodes fall on a straight 1ine and are equidistant, data for only
the first and the last points of this group are needed. Intermediate
nodal point data are automatically generated by linear interpolation.

4. Forces and/or displacements prescribed at a node are

identified by KODE as explained below:

KODE Force/Displacement Boundary Condition
0 ULX = Prescribed Load in x direction
VLY = Prescribed Load in y direction
1 ULX = Prescribed Disp in x direction
VLY = Prescribed Load in y direction
2 ULX = Prescribed Load in x direction
VLY = Prescribed Disp in y direction
3 ULX = Prescribed Disp in x direction
VLY = Prescribed Bisp in y direction

7




The sign of an applied force or displacement follows the sign of
the coordinate directions. For instance, a force in the positive X
direction is positive, and so on. For the nodes automatically gen- .
erated as in Note 3, KODE=0, ULX=0 and VLY=0 are assigned for the
generated nodes.

5. 1IE(M,1), IE(M,2), IE(M,3), IE(M,4) denote four corner
nodes, I, J, K, L, of a quadrilateral element, M. The program also
permits use of triangular elements, which are indicated by repeating
the third node; that is, IE(M,3) = IE(M,4), or K=L. For a right-
handed coordinate system the nodes must be inpuf counter-clockwise
around the element. IE(M,5) denotes the type of material in the
element.

The maximum difference between numbers of any two nodes for a
given element must be Tess than MAXBW/2.

6. Usually one card is needed for each element. However, if
some elements are on a line in such a way that their corner node in-
dices each increase by one compared to the previous element, only the
data for the first element on the 1ine need be input. However, note
that data for the last element of the assemblage must be input. The
omitted e]ement'data is generated internally by the computer. The
same material type as the previously input element is assigned to all
generated elements.

7. Surface tractions must be specified between two adjacent
nodes only. The three possible cases are shown in Figure C-1. For
case (a) only SURTRX(I) and (J) are input, and columns 31-50 are left
blank. For case (b) only SURTRY (I) and (J) are input and columns
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A SURTRX (J)
| J
SURTRY (J
SURTRY(I{:I::[:I::E )
| I
| SURTRX (1) :
| (a) Tractions in x direction (b) Tractions in y direction
o
|
i
-
SURTRY(1)=p sina
P
I
+
5 a " SURTRY(J)=p jsina
; J Py SURTRX(J)=p jcos0t

(c) Tractions in both x and y direction

Figure C-1. Three Possible Cases of Surface Tractions on
Element Side I-J
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, NCONT =0
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i

Figure C-2. Possible Cases for Crack Element Nodal Data
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11-30 are left blank. For both tractions all columns from 1 to 50
are input. Moreover, the user must multiply all surface intensities
by the thickness of the element before the intensities are input in
the computer.

The signs of tractions follow the directions of coordinate axes.
A traction in the negative y direction is negative, and so on.

8. Two cards are in sequence for each crack element. More than
one crack element can be generated. Tip element nodal data are
usually counted counterclockwise. Possible cases for the nodal data
are shown in Figure C-2.

9. MAXDIF alway follows the last one of node numbers.

10. Omit tip element data if NCKEL=0.
11. One blank card at end of each run allows normal exit from
computer.

Additional Note

JCL to execute the Finite Element Computer Program “FINITE" stored in.
TAMU DPC disk.

1 JOB card

/*PASSWORD

/*CLASS G

/160 EXEC PGM=FINITE, REGION=430K

//GO.STEPLIB DD DISP=SHR,DSN=USER.CE.CHANG.JOBLIB

//GO.FTO1FO01 DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(CYL,(1,1))
//GO.FTO2F00T DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(CYL,(1,1))

0 ~N O o W N

//GO.FTO3F001 DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(CYL,(1,1))
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78, .

i 9 //GO.FTO4FO0T DD UNIT=SYSDA,DISP=(NEN,DELE'TE),SPACE=(CYL,(1,]))

10 //GO.FTO8FOO1 DD UNIT=SYSDA,DISP=(NEW, DELETE),SPACE=(CYL,(1,1)) .
11 //GO.FTO7F001 DD SYSOUT=B ‘

12 //G0.FTOSFO0T DD SYSOUT=A

13 //60.FTOSFO0T DD *

-- data cards ---

14 /*END

PP VNP PR
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IMPLICIT REAL#*8 (A-H,0-1)

NIMENSION TITLE(9)

COMMON E(10)4PR(10),RIL1D),THI10),X(300),Y(300)

COPMON/CNNS/ KNP, NEL NMAT,NSLC »NOPT ,NBODY ,MTYP, NCKEL
COMMON/ONE/ OK(10,10),0Q010)¢813,10),C13,3),BT(3,604XQ(5),YQL5)
COMMAN/TWO/ TBAND JNEQ,R(600),AK{600,€4)

COMMON/TL/ T1E(250,5)

DATA MAXEL., MAXNP, MAXMAT, MAXEW

1 /7 250, 300, 10, 64 /

’

C
C PROBLEM TIDENTIFICAVICN ANU DESCRIPTICN

C
9969 READ(S, LOOINPRNB, (TITLE(I),121,9)
IF{NPROB.LE.O) GO TD 999
1020 WRITE(6,200) NPROB, ({TITLE(I)s1=]1,9)
CALL DATAIN (MAXEL JMAXNP ,MAXMAT ,MAXSLC,ISTOP)
MAXDOF = 2*MAXNP

C
C CCMPUTE MaX, NOCAL DIFFERENCE AND SEMI-BANDWIDTE, FQ. (6-1)
MAXDIF = O
DO 1 I=1,NEL
DO 1 Jd=l,4
00 1 K=1,4
LL= FABSEIE(LJ)~ TECE,K))
IFILL.GT . MAXDIF) MAXDIF = LL
1 CCNTINUE
IBAND = 2% {MAXDIF + 1)
NEQ = 2*NNP
1F{ IRAND.GT . MAXBW) GO TO 900
IF(ISTOP.GT.0) GO TO 959
CALL ASEMBLEISTOP)
IFLISTOP.GT.0) GO YO 999

LL

TRIANGULARIZE STIFFNESS MATPIX, €Cy (2~20, KKK=1

SOLVE FOR CISPLACEMENTS CNRRESP, TN LOAL VECTRR R, EC.(2-3), KKK=2
CALL BANSQOUU(AK,R,NEQ, [BAND,MAXDOF,MAXBW)
WRITEC(E,300) LT, RE26I-1D,R(2%1 ) 41=1,NNP)

CALL STRESS(WORK)

WRITE(6,605)
605 FORMAT(®1¢)
1otaL = 0.
SUM = 0.
IFINCKEL.EQ.0) GO TO &45
REWIND 2
WRITE(6,37) NCKEL

37 FORMAT('0® ,SX,*NCKEL =*,13)
CO 3¢ [=1,NCKEL
CALL SIFACIL, TRYAL)
SUM = SUM + TOTAL
36 CONTINUE
645 CONTINUF
ENERGY = SUM + WORK
WRITEL6,400) ENFRGY
400 FORMAT('-*,5X,%, » o TOTAL STRAIN ENERGY = *,G20.8,* o« o « *)
GO 10 9999
S00 WRITE(6,901) IBAND,MAXBM
GO TO 9999
100 FORMAT(]5,3X%,548})
200 FORMAT{/BHLPRABLEM,15,3Hee +9A8/) -
300 FORMAT(I7HIOUTPUT TABLE 1l.. NODAL DISPLACEMENTS 7/

1 13X, 4HNODE, 99Xy 1RIHL = X-DISP.,9X,11HV = Y-DISP,./
2 (5X,11242620.8))
901 FORMAY(///712F BANDWIDTH =,14,25H EXCEEDS MAX, ALLOWABLE =,14//
1 304 GO ON TO NEXT PROBLENM }
999 STOP
END



8L

SUBROUTINE CAVAIN{MAXEL ,MAXNP ,FAXMAT,MAXSLC,ISTOP)
INPLICIT REAL®B 4-H,0-2)

CCMMCNZCONS/ NNP o NEL yNMA T NSLC +NOPT ,NBDDY . NT YP , NCKEL
COMMGN E{10),PRULO),ROCLIO0),THLLODX(3000),Y(300)
CCMMCN/TL/ 1E1250,5)

1sToP = 0

REWIND 4

REWIND ¢

READISy 1) NNP NEL,N™AT,NSLC,NOPT,NBQDY, NCKEL
C

WRITE(6,100) NNP,NEL,NNAT,NSLC,NOQRT ,NBODY

WRITEL6,200) NCKEL
C

€ CHECKS TC BE SURE INPUT DATA DOES NOT EXCEED STORAGE CAPACITY
IF{NNP.LE.NAXNP) GO 10 201
ISTOP = ISTOP ¢ |
WRITE(6,251) MAXNP
201 IF(NEL. LE.MAXEL) GO TO 202
ISTOP = 1STOP « |
WRITE(6,252) MAXEL
202 TFINMAT.LE.MAXNAT) GC TG 204
1STOP = ISTOP + )
WRITE(6¢252) NAXMAT
204 IF(1STOP.EQ.0) GO YO 205
WRITE(6,255) ISTOP
sTop
<
205 READ(S,2) (ECT)4PREII,RACTY, THIE) »E=1 JAMAT)
WRITEL6,101)

[ X ol

READ AND PRINT NODAL DATA (REF. 1)
WRITE(6,SLICTLECTN,PRITN,ROUT), TH(ID, TI=1,NMAT}
WRIYE(E(10])

N=}
5 READ(S5,3) M,KODE e X(M),Y{M),ULX yVLY
UULX = UL X
vyLY = WY
KKODE = KODE
IFUM-N} 4,442,7
4 WRITE(E,105) M
WRITEL6,52) MyKODE v X(M) Y (W}, ULX P VLY
1STOP= [STOP +1
GC 10 5

? DF = ¥ ¢ ) - N
RX={X{(M}~-X{N-1})/DF
RY=(Y{M)-Y{N-1))/DF

8 KODE = 0

X{N) =X {N-1D)¢RX

YIN}=V{N=-1)¢RY
ULx = 0,
VLY = 0,
€0 10 6
442 ULX = UULX
VLY = VVLY
KCDE = KKODE
6 WRITE(6,52) NoKBDE  (XIND V(NI JULX VLY
WRITEL4) NyKODE,ULX,VLY '

N=N¢ |
IFIM-N) 9.,442,8

9 IFIN.LE.NNP) GO TD S
REAC AND PRINT ELEMENT PROPERTIES, TABLE 6-4

®RITE(6,106)
13 L=0
14 READ(5,15) M, LEE(M,T),1*1,5%5)
16 L=L+}

TF(M-LILLT,27,18
117 WRITF(¢,108) M
WRETE(6453) My UIEIM,T), I=1,5)
ISTOP=1STOP+}
€0 T0 14
18 [ECL )= TE(L=-1,1)¢1
TE(Le2)= TE(L-1,20¢])
TE(Le3)=1E(L-1,3)¢]
TECLo4I=TE(L~1,4)¢1
TE(L¢5)=1E(L-1,5)
17 WRITE(G,53) L lTECL,10,1=1,5)
TFUM-1020,20,16
20 IFINEL-LIZL, 21,14
21 CCNTINUE

C
C READ AND PRINT SURFACE LOADING(TRACTION) CARDS

IFINSLC.EQ.0) GO TO 3)
20 WRITE(6,108)
DO 40 L=1,NSLC
READ(S,41) I1SC,J5C, SURXL, SURX2,SURYL,SURY2
WRITE(B) 1SC,JSC,SURXE,SURX2,SURYL,SURY2
40 WRITE(€+42)1SC,ISCoSURXE,SURX2,SURYL,SURY2
ED IFEISTOP.EQ.0) GO TO 999
WRITE(6,900) LISTOP

1 FOPMATLILS)
100 FORMAT(3SHOINPUT TABLE 1.. BASIC PARAMETERS 177

1 5Ky 40H NUMBER OF NOOAL POINTSe o o o o o o o 0,157/
2 5Xe 40H NUMBER OF ELEMENTS. « 2 « o o o o o o 91577
3 5Xy 40H NUMBFR GF DIFFERENT MATERIALS o o o o o015/7
»



I 4 5X, 40 NUMBER OF SURFACE LOAC CARDSe o« o o o 9157/ SUBROUTINE ASEMBLIISTCP)
i

5 SX, 40H 1 = PLANE STRAIN, 2 = PLANE STRESS. o «.15// IMPLICIY REAL#8 (5-H,0-2)
6 5X, 40H BODY FORCESEL = IN ~Y DIREC4, O = NONE}, 15,/ COMMCN/CONS/ MNP RFLoAFAT,NSLC (NOPT (NBODY MY YP, NCKEL
‘ 200 FOSMATI0%,6X, "NUNBER OF CRACK ELEMENTS . o o « o o o' +I5) COMMON E{10),PP(10) ,RCI10),TH{10),X(300),Y(300)}
; 251 FORMAT(////334 TIO MANY NODAL POINTS, MAXIMUM =, 15) CCMMCN/GNE 7 QKE10,10),0010),813,103,C13,31,8T(3,61,X0t5),YQ(5)
252 FORMAT(//7/30H TOO MANY FLEVENTS, MAXI®UM = ,15) CEMMEN/TL/ TE(250,5)
' 253 FOMAT(//7/30H TCO ANY MATERIALS, WAXINUM =,15) COMMON/Tw0/ 1BAND yNEQ,R(600),AK (600,64 )
; 255 FORMATU//7/28% EXECLTICN WALTED BECAUSE OF,15,13H FATAL ERRORS/) DIMEASICN LP{8)
2 FORMAT(4F10.0) c
101 FORMAT(26HOINPUT TABLE 2.0 MATERIAL PRCPERTIES // REWIND 1
1 10H MATERIAL,5X, LOHNODULUS CF,6X,9HPOTISSON®S, TX, PEWIND 2
2BHMATERIAL, 7X, 8HMATERIAL / REWIND . 3
34X, 6HNUMBER , 53, LOHELASTICTTY,8X,7H RATIO, 8X, THDENSITY, 6K, REWIND 4
49HTHICKNESS ) QERIND B
51 FORMAT(I1044E15.4) C INITIALIZE
103 FORMAT(34HITNPUT TABLE 3., NOCAL POINT CATA /// 1ST0P = 0
1 5Xy SHNODAL (48X, THX-DISP. 8X, THY-DISP./ C INITIALIZE PARTS OF MATRICFS C AND BT
25X, SHPOINT  6X o 4HTYPE 4 14X ¢ 1HX o 14X 4 LHY  BX, THOR LOAC8Xs THOR LOAD) BYT(1,4) = 0.0
3 FORMAT(215,4F10.0) BYI1,5) = 0,0
105 FORMAT(SX, ) THERROR IN CARD NO.,15/) BT(1,6) = 0.0
~ 52 FORMAT(2110,4€15.4) BY(2,1) = 0.0
o 106 FORMAT(24HITNPUT TABLE 4. ELEMENT DATA 1 8T(2,2) = 0.0
1 11X,31HGLOBAL INDICES CF ELEMENT NODES/3X,THELEMENT, BT(2,3) = 0.0
27Ky 1HY 7Ky LH2 o TX o LH3 4 TX, 1H4 02X, BHMATERTAL ) _ Clly3) = 0,0
118 FORMATIEX, 2SHERROR IN ELEMENT CAR) NO.,15/) Cl2,2) = 0.0
15 FORMATU6IS) Ct2,1) = 0.0
£3 FORMAT(I10,41€,110} €(3,2) = 0.0
108 FORMAT(37HIINPUT TABLE Se. SURFACE LOADING DATA // : c
‘ 117X, 23HSURFACE LCAD INTENSITIES AT NODES/ : € INITIALIZE OVEPALL SYIFFNESS MATRIX AK AND OVERALL LCAC VECTOR R
24X 6HNODE To4Xy 6HNQDE Jo 10X, 2HXT 020X ¢ 2ZHX 14 10X+ 2HY 14 10X, 2HYS) 60 2 1=1,NFQ
4) FORMAT(21%,4E10,3) R(1)=0.0
42 FORMAT(2110,4E12.4) £0 2 4 =1,18AND
900 FORMAT(//745H ASSEMBLY AND SOLUTION WILL NOT BE PERFORMED 15, 2 AK(T,30=0,0
1214 FATAL CARD ERRORS ) c
956 RE TURN C COMPUTE ELEMENT STIFFNESSES AND LOADS OME BY CNF
C

END
€0 10 M=],NEL

IF(IEIM,5).6T.,0) GO TO 11
1ST0P = ISTOP + |
GO 1D 10
11 CALL QUAD(M,AREA)
IFUAREA.GTY.0.0) GO0 TO 16
ISTOP = ISTOP + 1
WRITELE,20) M

[aXal

STORE ELEMENT STIFFNESS MATVRIX TC CCMPUTE STCRED ENERCY
16 IF(IEIM,3).EC.TIFIM,4)) GO TG 20}
Lin = 10

e, i ol b bt e £k At e i s n e
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[aRalal

C
C
[
[

G0 TC 2¢S C
201 LIM = &
205 WRITEC(I) LIM ((QKIT o d) o=t ot TM) 1=, LTIM)

CONDENSE ELEMENT STIFF, FROM® 10X10 YO BXx8, EQ.(5-64), ANC ELEMENT
LOADS FROM LOX1 TN @xl, £C.(5-€40), (REF.2)
IFCTE(M,2).EQ.IEIN,4)) GO TO 26
£€C 31 J = 1.2
1J= 10-J
1k= [J+d
PIVOT = QN(IK,Ik)
D0 32 K= 1,14
F = OK{IK,X)/PIVOTY
QRETIK,K) =F
DO 23 1I=k,14
QKT oK I=CKET oKV~ FOQK(T,1K)
33 QK1) = OK(I,K)
32 QUK} =QUK)-QK(IK,X)*Q{IK)}
n QUIK) =Q(Ik)/PIVOY

[aXaNal

STORE MULTIPLIERS,PIVOTS,CONDENSEC LOADS, STRAIN-DISP, AND STRESS-STPAL
MATRICES ON SCRATCH TAPE NO. 1 (YO BE USED LATER TC CCMPUTE STRAINS ANC
STRESSES )
26 WRITE (1) €(QK(T+4)0921,100,129,100, Q(9), Ql10),
LEEBET o) d=1 s 2O ol=103 0y L0CHT o dDod=2s3)oI=1,3),XQU5),YQLS5)

ASSEMBLE STIFF, AND LOADS , DIRECT STIFF, METHOD, SEC, 6-S.

LIN=8
IFCTIELM,3D.EQ.IEIM,4)) LIN = &
DO 40 I=2,L1M,2
14 = 172
LPUT-1) = 2%1E(M,1J) - ) [
40 LPIT) = 2s%[E(N,1J} c
00 50 LL=1,LIN c
T o= LPLL) 4
RII) = REI) + QELL)
00 SO MM=z=],LIM
J = LPIMM} - 1 ¢ }
IF{J.LE.0) GC TO 50
AK(T4J)= AXET,J)¢ QKULL,MM)
50 CONTINUE
10 CONTINUE
IFINCKEL.EQ.G) GO TO 35
DO 14 [=1,NCKEL
14 CALL CRACK
35 CONTINUF

ACO EXTERNALLY APPL, CONC, NODAL LOACS TO R
DO £5 N=],NNP
READ{4) ¥ oXCDE,ULX, VLY
If {XODE +EQ.3) GO T2 55
K=2%N
IF{ «ODE «EC.1) GO TO 57
RiX=-1) = RIX-1) ¢ ULX
IF{xODE «NE. O} GO YO 55
57 R{K) = RIK) ¢ VLY
55 CONTINUF

CONVERT LINFARLY VARYING SURFACE TRACTICNS TO STATIC EQUIVALENTS,
AND ADO TG OVERALL LOAC VECTCR R, EQ,(5-61A).
IF(NSLC.FQ.0} GC TP 60
CO €1 L = 1,NSLC
REAC(8) 1SC,JSC,SURXL, SURX2,SURY]1,SURY2
= ISC
J = JscC
12201
Jy=2+4
ox = xtJ} - x(I)
oy = v{J) - v{I)
EL = DSQRTIOX*DX+DY*DY)
PXI = SURXL * EL
PXy = SURX2 * EL
PYI = SURYL * Et
PYJ) = SURYZ2 = EL
RITI-1D=RITI-1)4PXI/3,0 ¢ PXJ/6.,0
RUJJ-1)=RUSI-1) ¢ PXI/6.0 + PXJ/I.0
RETI)=R(IL)¢ PYI/3.0 ¢+ PYJ/6.0
REJJI= RUIJ) ¢ PYI/6.0 ¢ PYJI/3.0
61 CONTINUE

INTRODUCE KINEMAYIC CONSTRAINTS {(GECMETRIC BCUNDARY COCNDITIONS ),
€EQ.(6-18), PEF, 1.

€60 CONTINUE
REWIND &
DO 70 M=1,NNP
READ{4) NoXCDE,ULX,VLY
IF(KODE «GE.0.ANC.KOOE «LE.3) GO VC 72
ISTOP = ISTOP ¢ )
GO 10 70
12 tF{XDDE «EQ.0) GO TO 70
IF(XODE .€Q.2) GC TO N
CALL GEOMBC(ULX e2%M-1)
1F {KOOE «EQ.1) GC D 70
71 CALL GEOMBCHVLY v2%N)




|
]
i 10
t
I

CCNTINUF
ENDFILE 1
ENDF ILE 2
ENDF [LE 2
ENCFILE 4
ENDF ILE 8
IF(ISTOP.EC.0) GO 10 81
WRITE(6,100) ISTOP

20 FNPMAT(/5X, LT+ AREA CF ELEMENT ,15,14H IS NEGATIVE /)

100

81

[aXaXu¥al

FORMAT(///1/42¢ SOLUTION WILL NOT BE FERFORMED RECAUSE OF LIS,
1 154 DATA ERRORS /)

RETURN

END

SUBROUTINE QUAD (M, TOTALA)

IMOLICIT REAL*B {A-H,C~2)

CCMMCN/CONS/ NNP o NEL JNMAT,NSLC/NOPT ,NBODY 4NT ¥YP, NCKEL

COMMCN E(10),PRIL1O),RO(20),TH(10),X(3003,Y(300)

CCMMCN/ONE/ QK(10,10),0010),8(2,100+C13,2),87(3,6),XQ(5),YQ(5)
COMMCN/TY/ 1E(250,5)

COMMCN/TWO/ TBAND,NEQ,R(600),AK{600,64)

= 1E(W,1)

J= TE(M,Z)

K= TE(M, 3}

L= 1E(N,4)
MIYP = [E(M,5)
TOTALA = 0.0

CCNSTRUCT STRESS-STRAIN MATRIX C,EQ.(3-16C). FCR PLANE STRAIN
NOPT=1, AND FOR PLANE STRESS NOPT=2, PRESENT CNDE IS FOR
ISGTRNP JC ™ATER]ALS

IF(N4AT,EQe lo AND MoGTol) GC T 5
IF(NOPY.£Q.2) GO YO 2

CF = E(MIYP)I/(().O¢PR(NTYP)I*(1.0-2.0%PRIMTYP)))

Cll,1)= CF*{1,0-PR{NMTYP))

Cl1l,2)i= CFe PR(MTYP)

Ct2.11= CL1,2)

Cl2,2)= Cl1,1)

Cl343)= CFe{l,0-2.0%PRI{MTYP)) /2,0
GO 70 5

CF = E(MTYP)/LL1.0-PRINTYP)*PR(NTYP)}

Cll,1)= CF

Cll,2)= Pa(MTYP)OCF

Ct2,1)= C(1,2}

Ct2,2)= CF

Cl3,3) = CFe{]1.0-PR(MTYP})}/2.0

10

C
€ INITIALIZE QUAD, STIFFNESS, LOAD VECTCR AND STRAIN-CISPLACEMENT VECTOR

12
13

15

999

LIM = &4
IFIK,EQel) LIM = 3
XQ{5) = 0.0
YQts) = 0.0
00 10 N=t,LIM
NN = JE{M,N)
XQ{N} = X{(AN)
YQUN) Y{NN)
xQ(5)
¥Qi5)

nohon ol

00 13 11 =1,10
Qtf1)=0.0
0C 12 44 = 1,10

Qx(11,J4)20.0
D0 13 JJ=1,3
BlJJsI1) = V.0
[FIK.NE.L) GC TC 15
CALL CST(1,243,TCTALA}
GO T3 999
CALL CST(14+2,5,ARFA)
TGTALA = TOTALSR
CALL €ST(2,3,5,AREA)
TOTALA = TOTALA
CALL CST3,4,5,AREA)
TOTALA = TOTALA
CALL CST(4,1,5,4REA)
TOTALA = TOTALA
RETURN
END

XQU5) + X(NNI/FLOAT{LIM)
YG(5) ¢ Y(AND/FLOAT(LIM)

AREA
BREA
AREA

ARE A
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SLBROUTINE CST(IsJeK,AREAD

IMPLICTT REAL®S (A-H,0-1)

CCPMMCN/CONS/ ANP JAEL yNYAT ,NSLC e NOPT ¢ NBODY ,MT VP, NCKEL

COMYCN E110),PRU10),RO(10),TH{10),X(300),V{300)

COMMECN/ONE/ OK(lOolOllelOluG(!plO)'C(3'3'v8Tl3.6'.X0(5l-v0(5!
COMMON/TWE/ TBAND JNEQ,R{600) s AKL6004E4)

DIMENSINN CBU246) 4LCL6) L TL2D,TKU6,6)

LT(1d= 1
LTi2i= J
LTL2)= X

STRAIN-DISPLACENENT WATRIX B FOR TRIANGLE, EQs (5-354)
BTIL.10= YCUII-YGIK)

BT(1,2)= YQIK)I-YCLI)

BT(1,3} = YOU1)-YQUJ)

BT1244)2XC(K)-XCLI)

BT(2,5) = XQ (1)-XQ{x}

a1(2,6) = XQtJ) ~XG(I)

BT(2,1)=BT(2,4)

8T13,2) = 8V(2,5})

8T(3,3) = B87(2,6)

BT(3,4) = BT(1,1)

B8T(3,5)= BTIL,2)

BT(3,6)= BT(1,3} ,
AREA ={BTU2,4)4BY(1,3) = BT12,6)*AT(1:10)/2.0

COMPLTE

COMPUTE C+8
DO 10 11=1,3
EC 1043 = 146
CB(I1,0J) = 0.0
DO 10 KK = 1,32
10 CBIT1,0d) = CBILILJJ4) ¢ C (11 ,KK)*BTIKK S}

COMPUTF (Be=T)*C*B, EC,(5-458)
DO 12 11 = 1,¢
00 12 39 = 1.8
TK(IT14J043=0e0
DC 12 KK=1,3
12 TRUIT,Jd)= TKAIT o JJ¢BTIKK, TT)*CBIKK, JI)
ACD TRIANGLEF STYIFNESS TO QUADRILATERAL STIFFNESS, EXy06-2)0
ADD TRIANGLE STRATN-DISPLACEMENT ¥ATRIX TO CUADRILATERAL STRAIN-
DISPLACEMENT MATRIX
0Q 15 11=1,3
LCUItd = 2eLT(1I) - ]
15 LCtITe3) = 2°LTLIT)
00 30 I1=1,6

C
c

co

20
co
30

DEVELNP
1F
0o
25

999 RETURN
ENP

L= teerp

FX = 1.0/(4.0%AREA)

FB = 2,0%FK
20 JJ=1,¢

MM = LCHLIND

QKILL PM) = CKILL¥M) ¢ TRKUTT 2 JII*THIMTYP)OFK
20 JJ = 143

BCJJeLL) = BEIILL) ¢ BT(JIS,F1)WFR

AIDY FCICE VECTOR,
(NBOOY.EQ.O} GO 'O 999

£Q,(5-618)

TBODYF = AREA* RO(MTYP)s THIMTYP)
80DYF = -TpODYF/3.0
35 11=1,3

Jd= 2% LTUIN
QlJJr= QI+ BODYF
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SUBROUTINE CRACK
IMPLICIT RFAL*B {(A-h,0-1)

CCMMCN/CONS/ MNP, AELyNMAT,NSLC +NOPY ¢ NBODY»MTYP, NCKEL
COMMCN EL103,PRE10),ROL10),THLLO0),X(300),Y(300)
COMMCN/7THO/ TEAND NEQ,R(600), AK(600,64)
COMMON/TI/BCR{2+18) ,EXK{LT1),XXY(13),KCRK(D),LPI18)

READ(S,12) KEY,MATYP,XC,YC,NCCNT
FORMAT(215,2F10.0,15)
IFI(KEY.EQ.1) GO TC 10
NODE = §
NOE = )€
G0 Ta 20
NODE = §
NOE = 10
READ(S42) (KCRK(I},T=1,NODE) 4FAXDIF
FORMAT(1015)
K x 2 & (MAXDIF+l)
IF{KJLE.TBAND) GO TD 91
L = [BAND + )
00 100 I=1,NEO
DO 100 J=L,K
AKLT 4J} = 0o
IBAND = MAXO( I8AND,K)
CONT INUE
00 30 f=},NODE
XXY{2¢1-1) = XUKCRX{I))
Xxy{2s1) » YIKCRKII})
on 2] I=1,NOE
WRITEL6,32) T.XXYLD)
FORMATE 0% SN * XXYL*13,)=",G20.6)
SMU = E(MATYP)/(2% (1. +PRIMATYPY) )
IFINOPT.EQ.1) GO TC 40
ETA = (3, - PRIMATYPI) /(1. ¢PRIMATYP))
G YC SO
ETA = 3. = 4,*PR{VMATYP)
CONTINUE
WRITE(€,35) SNULETA
FORMAT('0',5X,*SMU ETA =°,2G20456)
CALL HYARID(KEY, SMU,ETA, XCoYC,ACONT}
00 60 [=1,NODE
LP(2¢] - 1) = 2sXCRK(T) - 1
LPI2¢1) = 20KCRK(T)
00 36 1=1,NCE
WRITE(E,33) 1,LP(T)
FORMAT(®0® ¢SXo*LP (*y13,")=9,15)
e0 70 LL=1,NOE
I = LPLLL)
OC 7C MM = | ,NOE

oA O ™

84
70

34

1

J = LPIPM) - | ¢ 1

IF(J.LE.O) GC YO 70

CALL LCCOLL MM, TI,NOQE,NOE, L)

AKLT,J) = AKIT,J) ¢+ SKU1J)

WRITEC(E,B4) TUIEKCTUN o0 do KL, )

FORMAT(*0% ySX ) EKL 3140° )= ,62006, AK(*413,%,%,13,%)=1,G2046)

CONTINLE

WRITF(€424) NODE,NOE,MATYP,XC,YC

FORMAT(20%,5X%, *NJDE NOE MATYP XC,YC =9,314,2G15.5)

KKz (NCE+1)#*NCE/2

WRITEL2) KN yNODEZNDEKEY, (LPUI )y I=1,NOE), (EX(T), I21,KK),
CCRCRUT Iy I=L ) KEY) , J=1oNOE) ¢ XCo YC o MATYP, (KCRK (L), §=1,NODE)

RETURN

END

SUBROUTINE LOC(T,J,IR,N,M,MS)
COMPUTE A VECTOR SUBSCRIPT FOR AN ELEMENT [N & MATRIX NF
SPECIFIEC STORAGE MODE

1 = RCw NUMBER OF ELEVMENT

J ~ CCLUMN KUMBER CF ELEMENT

IR - RESULTANT VECTOR SULBSCRIPY

N ~ NUMBER CF ROWS IN MATRIX

L] = NUMBER CE COLUMNS IN MATRIX

MS - ONF DIGIT AUMBFR FOR STORAGE MODE OF MATRIX
0 - GEMERAL

1 - SYMMETRIC
2 - DIAGONAL

IX=1

JX=9

TF(MS-1) 10,20,30
IRX=N® (X1 D¢ IX

GO T0 3¢

IFOIX=-JX) 22,24,424
IRXzIXe QSN IX-0X) /2
GO Y0 136

IRX= Jx¢ (I X®IX-1X) /2
GO 70 3¢

IRX=C

IFEIX-JX) 36,32,36
IRX=X

IR=]RX

RETURK

END
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SUARGUTINE HYBRIDIKEY, SMU,FYA, XCyYCoNCONT)
IMPLICIT REAL®G(A,B,0-H,0-Y} ,COMPLEX®16(2,C)
COMPLEX SEINT,SUNT

CCMOLEX®LS 2ET,Z,0CMFLX)OCONIGFLoF2,F3,FF2(32),FF3032),XY
COMPLEX®)6 ZETK CIK ZETY,CIZ,2ET4,2E,2D,2C,28,28,C1,COSQRT
COMMON/T3/8CR12418) EXIITIIXXY(18) ,KCRKII),LPILE)
DIMEASTCN V622,341 ,%XU50,Y15),0(5)

1 +9%032,340,VAL136)¢VEL32:34), VB(LI6) . WI5)
EQUIVALENCE (2,2E7T), (UX,UxXX)
EQUIVALENCFIVI(L,1)oVGLLE, 1) )

DATA 5/e22692¢5,04T862E7,,5688889, ,4786287,,2369269/
DATA Y/~450€1755¢-e53B4693,046+453846%3, .9061799/
DATA ANT/G/

Cl = DCYPLX{0.D0,1.D0)

IF (KEY .FQG. 1) NOPZ = }O

IF (XEY .EC. 2) NCPE = 18

E=l,

NT=KEYSANT

NNPE =NDPE /2

. IF(NCCNT.EQ.0} GC TO 5

DO 6 1=],NNPE

[2=149%2

XXY{I2) = -xXx¥(12)

CONT INUE

NNN=(NNPE-~1)/2

NTT=(NNTENNTENNT) /2

pn 1 I=1,NTTY

va(l }=0.

vetl =0,

NN 4 F=1,NT

D0 4 J=]1,NDPE

VG(l,d0=0.

INTEGRATICN CCEFFICIENTS

DN 1l 1=1,5

X(I)=(1l.eV(1)D/2,

Otl)=wtt)/2.

ISIDE=NNPE/KEY+KEY/2

ESDSQRT(E (XXYILI~XC)**2e(XXY{2)~YC)Pe2)
LXX=0XXY(2)~-¥YC) /ES

LY={XXY{1)-XC)/ES

CO 440 1=1,1SIDE

11=1¢]}

AXYCTI-1)=(XxXvC1I~10-XCH/ZES

XXY(t1 d=(XXY(I}) -YCI/ES

XT= XXY(TE-108UY oXXY(I])®UXX
XXY(IT)==XXYLII—-L3sUXXe XXY(II)sUY

XXY{IT~-1)=xT

ISIDE=NNPE /KEY-L/KEY

1009

1010
1011

1014

00 41 1S1=1,IS!0E

JIE=1STe1SI

UXX=XXY(TE+2)-XXY (1€}

Uy =XXY{IE-1) -xXY{IEe 1D

00 41} 11=1,%

AN=XXVYATE-L)@flo=XCET) ) oXXV(IECLI®X(IY
YY=XXYUIE  2®{1.~X(I1) ) #XXY(IEs2)ox{]]
I = DCMPLXEXX ,YY)

LEY =(DSQRTLIETT)

2EV4 = ZETTOZETT

CIZ = DCONJG(ZETT)

LETK = 1./1ET4

KK = }

IF {KEY o€Q. 2) GC '™ 011

00 1010 K = 1,NNTY

FF2(K) = 0O,

ZETK = JETKe*ZEY

CIK = DCONJG(2ETK)

KK = -KK

IF (UY LEQe 0.) GC TO 1009

I0 = CIXKaC27~KK®2EYK*2ETT

IC = ZEIX®(C22Z-2ETT)

FF2(K) = 0, 5S¢k (K-2)%2C+K¥*2D

FF2(K) = FF2{x)syy=,5

ZE = CIK*CI2#(CI2-1ETT)

FF3IK) = ETASZFTKAZETLA¢XKK*CIKODCONIGLZETS) ¢, S5an ]t
FF3(K) = FF3(K}*,25

IF (UX ECe Ceo) GC TO 1010

I8 = K#2¢KK+KK

IA = (K-2)}*2ETK-2,%(CIK

FR2(K) = —K${CZI%7A-TRSZETXK®ZETTI®CI®,25%UXeFF2( ¢ 8
CINTINUE

GO TC 2000

DO 1012 X = 1 ,NNT

FF2(K} = Qe

FF2{ KeNNT) = 0,

IETK = ZETK®ZET

CIK = DCONJGIZETK)

KK = -KK

IF LUy .EQ. 0.) GC TO 1014

10 = CIK*CZL-KK*ZETK*IETT

C = JETK®{CZI-2ETT)

FF2UK) = ,S8K8{K-2)%ICeK*]ID

FF2(K) = FF2{K)*lUYe,5

FF2(K¢NNT) = (FF2(K)-KeZ0%UY)*(C]

ZE = CIKSCI2*(CIZ-LETT)

FF3(K) = ETASZETK®ZET4+KKSCIKOCCONIGIZFTL) ¢, 5aK e [T
FEI(K) = FF3(K)*, 25



S8

1012
2000

40

41

455
500

501

FFI(NANNT) = (FFIIK)I-.25%K*2E)*C]

tF {ux .EQ. 0.3 GO TO 1012

18 = K+2¢KK#KK

A = (K-2)%2ETK~2,%C2K

FF2(KY = ~Ke(CZI*ZIP-IB*2ETKOZETTIOC IS 25%UX+FF2LIK])
IB = K42-KK-KK

IA = (K-2)*TETK42.2CIK

FE2UKNNT) = K*(CLZ%ZA-TB*2ETKSZETT 1o, 25%UX+FF2(K#NNT)
CCNTINUE

K$=0

DO 4l K=l MNMT

L=2¢151-1

DN 40 J=1,KEY

1=J*NNT-NNT+K

STNY=FF211)*Xx(I1)

SINT=FF2¢11-SINT

VGIToL) = VGIIsL) + O(TL)*AIMAGE{SINT)
VGUT,Lel) = VGIT,L+1) ¢ OQCIT)*REALISINT)
VGLI,L¢2) = VGU1,L42) ¢ CLITIPAIMAGISINT)
VGEl,L#¢3) = VGIT,L¢3) ¢ QUITI*REALISINT)
DO 41 J=1,K

SINT= FF2UKISFFI{J)¢FF2(II*FFI(K}
KJ=KJj+1

VAIKJ) = VALKJI)Y ¢ DITTI®ATMAGLSINTI/SMUY
IF (KEY .€EQe 1) GC TC 41

f=K+NNT

L=J#NNT

SINT= FF2CIISFFICLICFF2LLISFFALT)

VBIKJ) = VRIKJI) ¢ OUIT)*ATMAG(SINTY/SMU
CONT INUE

IF {KEY .EQ. 1) GC T0 64

DO 5C0 111=1,KNT

vG(l1ll,2)=0.

VGIITT o0)=2#VG(LI1,1)

f1=1TI¢NNT

VG(TT, 2)=2.%VG(I1,2)

vGiil ,1)=0,

DO 4%E J=1,4NNN

JusJel

JUSNNPE+ -
VGIETT2%dL-10=VGIlTL,2%3U-1)
VGLTITTl,2%0L J=-VG({I111,2¢0Uu )
VGITT,2%0L-1)=-VGLI1,2*0U-1)

VGITT 2%0L )= VGUEL,2*00

CONTINUE

00 S01 1=1.XDPE

VGINAT+2,1)=0,

D7 63 T=1,NTT

63

62
64

110

121
111

112

VALL )=VA(l )e2,

VB(1 )=VBI1 )*2,

vBl{2)=0.

VB(3)=l,

00 62 I=3,NNT

Vel (I*1-1)/72¢2)=0.

CONT INUE

CALL STAV (VA,NNT, .1D-05,1ER)

IF (KEY oEQe 2) CALL SINV (VB ,NNT,41C~05,IEE)

DO 111 J=1,NDPE
N0 110 I=1,KNNT
1= 41 1 ~1}/2
AKLT ,J) =0,
DN 110 k=], NNT
Ik=11+K
IF { K .GTa I ) IK=(K®K-K)/2¢]
BKAT »JV=BK{T o) ¢VALIK JoVIIK,J)
IF ( KEY .EQ. 1) GO 70 111
T1=NNT+]
DO 121 E=11,NT
TJ=1-ANY
1d=0 1Jeld-10072
BK(I,J)=0.
DN 121 x=1,ANT
IK=T JeK
IF ( K .GV. T-NNV) [K={K®K-K)/2¢1-NNT
BT +J1=RK{1,3) ¢ VBIIK
CONT INUE
14=0
CO 112 1=1,NDPE
00 112 J4=1,1
14=1441
EX{1J =0,
N0 112 K=1,NT
EX{TJ I=EK(IJ D¢ BRIK,JIOVIIK,T)
E =DSQRT(2./ES)
D7 113 J = 1,ANDPE
BCR(2,4) = O.
TF (KEY o€Qs 2) BCR(2,J) = E*BK(10,J)
8CPL1,J) = E*BKIL, 1)
RETURN
END

IeVI(KeNAT I}
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SLBROLTINE SIFACIN,TCTAL)
IMPLICIT PEALSS (8-H,0-1)
COMMCA /Tw0/ 18AND JNEQ,RL600),AK(600, 4D
COMMGN/13/BCR12,18) LEX(LTED XXY (1B yKCRK{II,LP(18)
REAL®*8 Xl,K2
WRITELG6435) ¥
35 FORMATI®0*ySXo"CKEL =*,15,/)
READ (2) KK.\ODE.NOE.KEY;(LP(l’vl’lcNOE’o(EK(llul‘ltKKlu
1 Iletkll.Jl.l-l.KEV).J=l'NDEl.XC.VC.PATVP.(KCRKGID.l=l.NODE)
T107TAL = 0.
Kl = 0.
K2 = Q.
D0 20 ¥I=1,NOE
KL = K1 + BCR{L.,1) ¢ RULPUIN)
IF{KEV.EQ.1) GO ¥0 20
K2 = K2 ¢ BCR{2,1) » RILPLIN)
20 CONTINUE
Pl = 2.141852¢
Kl = X1 ® DSQRY(PI}
K2 = K2 * DEORV(PI)
WRITELG6,1) ¥ oKL, K2
1 FORMAT(*-*,5Xs'cee STRESS INTENSITY FACTOP coe'e 1247y
1 *0',SX,*OPENING MODE K1 = *4G20.647
2 %0%,5X,*SHEARING ™MODE K2 = *,620.6)
WRITEL6,100) XC,YC,FATYP
100 FORMAT('0%,5X,"CRACK TIP XC =9 ,61606¢* YC =*9Glbeby
1 ¢ AT MATERIAL® ,I4)
WRITE(6,200) NODE, (KCRK(I) ,1=1,NOOE)
200 FORMAT(20%,5X,* THE® + 144 *NODES =¢,1014}
W= 0o
DO 30 1=1,NCE
xxv(g) = G.
DO 30 J=1,NOE
CALL LOCET,JdsTJ,NCEINCE, LD
20 XXY{[) = XXY{I) & RILPUJI} * EXLIJ) * o5
DC 40 1=],NOE
40 W = W ¢ XXY{L)*R(LPLIN)
WRITE(692) W
2 FORMAY({*0°,5X,*STRAIN ENERGY =t ,Gl6s6)
TOTAL = TOTVAL + &
WRITE(6,3C0)
300 FORHAT‘.O.'lol'. * & 9 € 5 % 5 K &K & % S %S - * & % 0. /7)
RETURN
END

[a¥a}

SUBROLYINE GECMBCIL,N)
IMPLICIT REAL®E (A-H,0-2)
COMMCN/TWC/ T1BAND ,NEQ,R(600),AK({600,64)
;:ézcz?gzgtgzsz:gglzlis THE ASSEMBLAGE STIFFNESS ANLC LOADS FOR THE
3 MENT U 2T DEGRFE OF FRE L] -
RS A ECCM N, EC.(6-18P),. (REF.1}
K=& - ¥% ¢}
IF(X.LE.0) GO TO S0
R{K} = RUK) - AK(K.,M)sy
AKEK M) = 0.0
50 K= h +M-~-1
IFIK.GT4,NEQ) GO TO 100
RIK)} = RIK} - AK{A,M)ey
AK{N,M) = 0,0

100 CCNTINUE
AK(N,1} = 1.0
RIN) = U
RETURN
END



(8

[aXaNal

[aXal

[a¥ 2

B T S R

¢ v ' .

SUBROUTINE STRESS {WORK)

IMPLICIT REAL®B (A-H,C-Z)

COMMCN/CONS/ NNPoNELoANMAT NSLC,NOPT , NBODY 4MTYP,NCKEL

COMMCN E(10),PR(10),RC(10),TH(10),X(300),Y{300)

COMMCN/T1/ TE1250,5)

CCMMCN/ONE/ QK{10510),Q010)48(3,100,C83,3).8T(3,6),%XQ(5),YQLS)
CCMMUN/THO/ [BAND JNEC,RI600),AK(600,64)

DIMEANSICN SIG(E)

REWIANC )
REWIND 23
WRITE(E,3C0)
wOPK = 0.
ANOLINE = 417

RETRIEVE MULTIPLIERS, PIVOTS, PATRICES B AND C, AND CENTROICAL CNORD,
FOR ELEMENT
CC 5 F=L,NEL
READ (L) CIQK(T,J),J=1,100,1=1,2), Q(9), C(1O),
1 (BT ,3)4d=1,100,1=1,31, CICULsJ) 0Jd=1,30,1=1,3), XC,¥C

SELECT NODAL DISPLACEMFNTS FOR THL ELEMENT
LIR = &
TFUIE(Me3) . EQ.IEIM,4)) LIM = 3
CO 10 I=1,LI™
1T = 2+%
JJ = 2%1E(M, T}
CUIY=-1) = REJI-1)
10 QIII) = ReJJ)

RECOVER CONDENSED OI SPLACEMENTS FOR THE QUADRILATEP AL, EQ. (5-€4G)
IFILIM,EQ.3) GO TO 16
DO 15 K=1,2
JK = K + 8
IXx = JK - 1
GO 15 L=1,IK
15 Qiux) = QUIK) - CKIK,LI®QLL)

CCMPUTE ELEMENY STRAINS, EQ,(5-354)
LM = 10
FAC=C. 25
GO ¥0 17
16 LIM = &
FAC=1.0
17 DD 20 I=1,3
E(I) = 0.0
DC 20 J=1, LIM
20 E(I) = ELT) ¢ BUI,J0*Q(JI*FAC

§ e et a6 AL T mipael Bt e st s s o b

J « ¢ . -y

C
€ CCMPUTFE SYRAIN ENERGY STORED IN EACH ELEMENT
REANCEI) KKy CCQKET,d) od=1 oKK) oT=1,KK}
00 40 I=1,KK
ROLT) = 0,
£0 40 J=],KK
40 RO(TY = ROCT) ¢ oS*QUII*QKI{T,J)
W= Q,
NG SO0 1=x]1,KK
50 W = W ¢ ROLIN®QITY
WORK = WARK + W -
[
C COMPUTE ELEMENT STRESSES , EQ.(5-358)
DO 30 I=1,3
SIG(I) = 0,0
DO 30 J=1,3 i
30 SEGUT) = SIGUIY ¢ CUl,4)¢E(Y)

€ CCMPUTE PRINCIPAL STRESSES AND THE ANGLE WITH YTHE PCSITIVE X AXIS
SP = (SIGUL)+51G(2001/72.0
SM = (STG(1)-STIG(2)13/2.0
CS =DSQRY(SM*SM+SIG(3)*SIG(3))
S1G(4) = SP + DS
SIG(5) = SP - DS
SIG(E) = 0,0

IFUSIGI3).NE.0.0.ANDLSH.NEL0.O) SIGLE) = 28.€4B%DATAN2(SIG(3),

1 M
€ PRINT STRESSES, 50 LINES PER PAGE s
IF(AOLINE.GT.0) GO TO 54
WRITEL6,1000)
NOLINE = 4§
54 NOLINE = NOLINE —- 1
S WRITE(&,1000) MyXC,YC, (SIGLT)o1=1,6)
WRITELE 210 WORK
21 FORMATE®-*,5X,' . o . STRAIN ENERGY W/0 CKEL =9,G20.6¢° o o o)
ENNFILE
300 SOPMAT(4THLOUTPUT TABLE 2.. STRESSES AT ELEMENT CENTROIGS //
11Xy THELEMENT (IX o LHX,9X 1HY 14X ¢ BHSIGMA LX) 44X, BHSTCMALY ), 4X,
2AHTALEX Y Do 4X BHSTGFALL) 4X,8HS1GMA(2), TX,5HANGLE )
1000 FORMAT{]HL,
L4Xo BHTALEX, ¥) o4 X, BHSTIGMALL) 44X ,8HSTGMA(2), T7X,SHANGLE )
1010 FORMAT(IB, 2F10.2,1P6E12,4)
RETURN
END

THELEMENTy 9X o THX y9X s LHY s 4 XBHSTGMA( X ) 4X , BHSIGMALY) ,

B LY VU SNSRI S U

»
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APPENDIX D

Calculation of Service Life by Numerical Integration

This program integrates the following equation

c
No=[ T de
o A(aK)
The function AK = aK(c) is approximated using the polynominal curve

fit by least square method. The integration is performed by Simpson's

rule. The program is limited to the polynominal curve fit and also

computes the correlation coefficient of the estimated curve fitting.
Following are the main program and subroutines in the program:

MAIN Reads and prints data. Calls the subroutine

FUNC Calculates the value of an assumed polynominal equation

(function subroutine)

INGRT Provides numerical integrations by Simpson's rule

LSCF Performs least square curve fitting

STATIC Computes the correlation coefficient

CHOLES Solves the simultaneous equation by Cholesky's method

Guides for Data- Input

Card 1 (215)
cc 1-5 N Number of data points
cc 6-10 M The degree of the polynominal
Card 2 (4F10.0)
cc 1-10 XI Initial value of crack length within overlay

cc 11-20 XF Final value of crack length within overlay

88



1 cc 21-30 CA Fatigue experiment constant
cc 31-40 CN Fatigue experiment constant
Card 3 (2F10.0) A set of N cards

cc 1-10 Xx(I) crack length within overlay

cc 11-20 Y(I) calculated stress intensity factor
Card 4 (I5, 5X, F10.0)

cc 1-10 NSTEP Number of integration steps

cc 11-20 SKC Critical stress intensity factor




21

100
113

2c0

Aan

50

ITMPLECEY REAL®BLA-+.0-2)
DIMENSION XL12D.Y€12).,A012)
D IMENS ION RX{20))

D IMENS ION F (200}

WRITECG, )

FORMAT (% 1%, 2X. *CURVE FITTING AY LEAST SQUARE MEYHOD*)

READIS 1 1) No ™
FORVMAT(215)
IFI{NLEQ.31GDO YO 99

20 21 I=1eN
READ(S,12) X(I)eVLli)
FORMAY (2F13 49}
WRITEL€oBL1D} M

FORMAT (*)°*.1aX,°THF DEGREE IF
CALL LSCFUX W sNeMA)
CONT INUE

READIS ¢SO0} XTI, XFeCACN
Xi-= ENTUTIAL VALUE
XF-= FINAL VALUE

CA CN =~ FATIGUE EXPERIMENT CONSTANTS

FORMAT {4F10.0)
WRITE(6470) X1 oXFoCAs CN

THE POLYNOMIALS IS ™

DO SU3 I =1 NSTER

SCY FUIY = 1.D0/(0x(1)esCN)

602

603

= ,13) 504

s¢2

0

99

20
30

TC FORMAT(®O0® s 14X, * THE INITIAL VALUE OF CRACK LENGTH® ,T735:G15,%,

10

06

60

5¢1

601

M)l = Me]

CONTINWE

READ(3.60) NSTEP, SKC
FCRMAT{IS.S5XFIC.0)
TFINSTEP EQeC) GO YO 90
H = (XF=-X1)/(NSTEP=-1,)
DO 5 1 =1.NSTEP

XX=X1 & (E-1)%n

XX x ] ¢ He({1-11Y

RKCIY = FUNC(M] o XXoA)
IFIRK( 1) oGE 4SKC)Y GO YO 501
CONTI NWE

CONT INUE

NSTEP=z 1§

SKC = ax{l)

XF = XX

NC 502 X=1 .6

CN = DFLOAYIX)
WRITE(6.,601) CN. XF

FORMAT(®1°® (10X o°CN=® ¢G1548+5X ' XF =¢,G15.4)

1 7418X,*THE FINAL VALUE OF CRACK LENGTH® ,T75,G155.
2 /+14%,* THE FATIGUE CONSTANY CA*T75,61%5.8.
3 Ze3AX*THE FATIGUE CONSTANT CN°® oT75,G15.5)

20

CALL IATGRY(NSTEP,F,H,AREA)
WRITE( &, 602)
FCRMAT (*0° 48X, *CA *, 15X, *CYC_E *)
SR = 1.9-15%

DCQ 504 11=}1,5

SINC = SRe10.00¢+ ]

PO Sua y=1.10

CA=SINC *

S = 1.DC/CA®AREA
WRITE{6.603) CA, S
FORMAT (*0°* . 15X +2G1Sa% )
CONTINWE

CONT INUE

GO ™) 10

CONTINUE

GC Y0 1

WRITE(6,20)

WRITE( 6. 20)

FORMAT (*G* . 6X+ "END OF PROBLEM®)
FORMAT(*1°)

stTor

END

FUNCTICN FUNCIML sXX,A)
IMPLICIT REAL®B(A-H,0-2)
O IMENS ION A(12)

SUM = 0,

DO 26 la2.m1

SUM 3 SUM ¢ A(I)SxXER(I-§)
FUNC = SLM ¢ A(1)

RETURN

€ ND

R IR T SN
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12
10

22

29
28

23
26

3

37

a2

.1

LY 4

Q9

SUAROUTEINT LSCFid, v N,V A)
IV IO 1Y REALSR{A-1,"N=7)
PIMENSEOIN CELS) V12D 2a€1cdoSlh1 o120, D001 345K ({12),F2RNC112Y
DIMENS 1IN “RRL12)

"] =we]

D0 1 J=1.%)

SUM=C, 0

EF(J.59.1)0GC T &

DO 35 K=}N

SUMzZSUMSYLIK )

CONTI NLE

GO YO 3

DC 2 Xzl oM

SUMEISUM YIKISK(K)sS( )~ )
CONT INUE

DUJI=SUV

20 1C I=),v)

DO 10 J=1.M1}

SLM=0. 0

IF(1eaTo1GO ™ 16
IFLJeGT1IG0 TO 16 .
SuUM=N

GO YO 10

00 12 Kx] N

SUMaISUNMEX(X sel]+9-2)
CCNTINUE

Cell o) sSLM

tP=0

CALL CHNOLESIMI «CeDoAs IND)
15U IND EQaL IGO YO 29
WRIVE(6,.,22)

FORMAT(® 0% 42X ¢*NO CURVE FITTEING®)
G0 YO 99

WEITE(6.28) AllL)
FORMATL®*C?,15%X,S11.8)

DO 24 132,41}

L=i-1

WRITE(6.25) AtT).L

FORMAT (* ®oI3X,61]48,2%,°0X%8 ¢, [2)
CONTI NWE

WRITE(E, 31)

FORMAT (C® 025X X ? o35 Xe®Y? 315X, *FX T, 15X, *ERRORS, 1S X, *R$02°)
DO 59 K=L1«N

SUM=C .0

30 37 J=2,M}
SUMzSUMIA( S IEXIK) oS J-1)
CONT INUE

EX(K) T ALL) ¢ 5UM
ERROR{ K=V X)~-F X{K}

ERREIK) =ERROR(K ) #¢2

CONYINLE

SUM = Oe

DC At x=1.N

ARTITE L 6482) X{K) s YIK) FALK) ERROFRIA) LERR(K)
SUM = SUMSERR(X)

FORMAT (" * 1SN 9(OXKsELT1,.4))
CIONTINLF

ASME = DSORT(>Uw/N])

WAL TE(H.40) RSMF
FORMAT (-2, 0%, °ve QSME 8¢ =¢,G20,6)
CALL STATICINGY FR,R2)
RETURN

ENR

T4

103

100 FCAMAT(® -* 10X ,* THIS FROB. CAN NOT BE SOLVFD BECAUSE NON-ZERG

20

30

ac
500
ie

13

SWBROUTINE CHOLESIN.A Cox,1ND)
IMPLICIT DPEALSBIA~H,D~T)
REALSS A(11612)0COL M aXC1De (U141 2)oKEbEI.SAVECLI2),TC( 10,120
INTEGER TEMmO

IND = ©

20 82 (=1.N

Al IN+LII=C(I)

CONT I NUF

=)

I1F(N,EQeIGO O 81

1FLAIT sl )eNELDL)IGO TO &
§FE1.5QusNIGO T 103

I=1e}

GC 70 S

CONTINUE

LI A |

WRITVE(¢,100}

Ga YO 2ud)

1AC)+1) CAN NOT SE FINDY
1F(1.€0.41G0 YO 10

J=1

SAVEAXAL 1.4}
Atledd=ALT.J)

A(T o 4)=SAVEA
EF(JeEQe(N®I}IGO TO A
=0t

G0 YO 20

1=1

CONTEI NG
LElsL)=ACE, 8D

Tl )=

IF{l.EQ.NIGC TO 30
I=leg

GC TO N

1=2

I=2

TCLe IV =ALL oSV /7A0L 1)
IFLJeEQeiN+1))GN TO 40
J=zJe}
GO TO 12

IK=2

422
=i

SumML=C
SUMLESLMLILEL 2 MIST (M, J)
IF(M,EQ.(J-1))GD TO S2
MaMe)

L L v - ot £ PR T AT A— =



79
18

15

oc

6C

17

200
21

A

300

23

22

13¢o
14}

r2

ac

32

30 Y0 13

LETod) =AL1 . J)-SUML
1FLI.FE061)GO TO 79

FER 3]

GO TO Qe

IFILIT J)eECe0.3G0 TN A0
FES 3

KK=}

SuUMT=Q

SLMT=SLUMTe LIS KK TIKX,J)
IF(KKsNES( 1-1))GO YO SO
TCL o) =C AL o -SUMT)I/ZLLE.1)
GO YO €0

KK=KK #1

GO Y0 15
IFLJEQatN+12IGN TO 17
GC 70 18

IFL1.EQ.NIGC TO 200
1x1+1

Ix=§

GO T3 s00

1=1

KEED=T(] +UN+I})
IF({T1.€EQ.NIGO TO 30C
=14}

GO D 21

XAND=X (N}

1 =N—)

SuUw=x=0

J=1e}

SUM=SUMS T(1 s Jpe X 4
IFLJEQ.NIGO TN 22

FENTS]

GO YO 23

X1 =K (1 )-Sum

IF(1.EQ. I)GC TO 1000
1=1-1

GC TO 2a

WRITE( €, 7Y)

CORMAT (* =, ISX ,"ANSWFR?)
WRITEL6.72) {1 XYl =2 0V

FORMAT {40°, 15K +*X{ *e12:%)-*,F18,

3C TN 2000

TEMP=|

IF(IKCEQ.NIGO T2 15C)
J=1

SAVE(J)=AL1.2)
IFCJ.EQeiN+1)IGI YO 3}

n

33

‘AL

E 117
51

660

1300
1510

a1

2000

”y

FENTY
GC YO0 22

SAVEL=L( 1,1}

4=1

A(T.IYI=AL(1+1),J)
LFCJeECL(N®1))IGO TO a4y
NENTS

GC TOo 23
Lelel b=t (lEedd,ly
IFUI.€EQ.(N-12)GO TO 550
[£.3 83

GO TO 34

J=1

A{Ns S TSAVELY)

IFLJeEQe IN*1))GO TO 660
J=Jed

GC 0 =1

LN )=SAVEL

IK={e]

1 = TENMP

GO Yo =0¢

WRITEC6.1510)

FCRMAT(*~*, 2X,*PRDB., MUST BE STOPPED BECAUSE NO ARRANGEMENY (OF
1R0WS CAN BE ACCOMPLISHED*)
InD = )

GO Y2 20c0
XEII=ClE D/ ACL )
WRITECOG.72) R x(1)

RETURN

END

2
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TO INTEGRATE ANY ARBITRARY FUNCTION BEVWEEN CERVAIN LIMITS,
THE FUNCTION TOU INTEGRATED I35 DEFINED BY A FUNCYIIN SUAPRDGRAM,

.-.“"0....‘....0‘.‘...‘.l....i“"....".“. TIZIITI SRS L AN L2 02
SUBROUTIAF INT GRY (Ne® .4y AREA)

IMPLICITY RFALES(A-¥,0-2)
DIMENS 19K F(20C)
FFIN/2€2,FQeNIGD YL 8
1FINGGTLIGD TO L
AREATH/I Lo (F L1404 0F (2)¢F(3))
QE TURN

SUMEz3 W0

SUM3I=0 40

Ni=N-3

NZsN=-?

NC 2 1=2.N1,.2

SLMi=SUMISF ()

CONT INUF

SUML =4 ¢#H/ 3, 05UML

DO 3 1334N2s2

SUMIz=GUM3+F (1)
SUMI=2,6H/3.865Uv)

AQEAZH/ 3. %CFI11eF(N))$SUNLESUMS
RE TURN

IF(N.GT.2)GO TN 17

AREAZH/2 S (FULIEF(2))4H/ IS (F(2HI4A,0F(IVOF(4))
RE TURN

N1=N-}

N2=N-2

SUMI=,0

SuUM3I=,0

NO 18 I=34N1e2
SUMLI=SUMIeF (1)

SUML =4 (*H/3 ,6SUNY

DO 19 §=4.,N2,2
SLM3I=SUM3esF (L)
SLMI=2,#H/ 3, *SUM3
AREA=N/Z-‘(F(I)H’—'(ZDlOHli.‘l=(2)0F(Nll'SUM\tSUM!
QFTHRN
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n

MOEEE ST IERNPIEPELERESSRSOCEENES SNTIVE R SENEIE AIISA RSSO RIS RSO(W
TC COMFUTE THE CORELATICN CCEFF ICIENT AND R SQUARF
SOSSENAE OB AOUSEETTEELNIPICEREITEAEESIREGRRNOS $SEO SRR
SUBROUT AL STATIC(NeX.¥,92)
TVPLICIY QFaALEB{A~h, -2
D IMENS JON X(N) YN
X== NBSFRVED VALUE
V== ESTIWATED VALUF
S = ~,
SY = %,
S Xy Ce
s$x2 Co
sv2 0é
00 1 1=1.N
SX = SX ¢ x([)
SY = SY ¢ v{}1)
SXY = SXY ¢ X(I)ev(l)
SX2 = SX2 & X{1)¢»2
SY2 = SYZ ¢ ¥Y{1}ne2
1 CONTENUE
XMEAN = SX/N
YMEAN = SY/ N
DE = DSARTICABS{ (SN2 ~XMEANSS2 AN IS (SY2-YMEANSS 2N} ) )
CORELA = (SXY - XMEANS®YMEAN®N)/DE
RZ2 = COREL A2
WRITE(6,40) CNPELAR2
A0 FORMAT (*~9, 8K *THE CORELATION COEEFe =% 4G20:s6¢/¢°0°,
1 SX,% Fee2 = *,G20.6)
RE TURN
END

[ T
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CURVE FITTING BY LEAST SOUARE METHOO
g THE DEGREE OF THE POLYNOMIALS (S M s 2
; ¢ ANSWER
; Xt 1)= 0421493610 02
' X( 2)s 0.157%50160 02
', ' X¢ 312 J,1832930 03
{ 021090 02
: _ 0.15730 02 woxes
B 0418330 03 swxes 2
i x v x eRROR wae2
: 0410006 00 Ge24000 02 0.28990 n2 -0.901an 00 0.812AD 00
0.5500D 00 0.,89000 02 0.8560D 02 6.33980 ui O L1540 02
- 2.10800 01 0. 23000 03 0s26010 03 ~Ge10110 €2 o.56220 01
’ 0412500 O1 C.36250 03 0.32760 03 Ootaam u2 0.2CAOD 03
ns13%00 o1 0. 37000 03 0.37680 03 ~UebB0AD 1 0.463%0 02
s RSME se = 8 .59083
THE CORELATION COEEF, = 0998007
' Ase2 = 7 «9960 18
: . THE INITIAL VALUE CF CRACK LENGTh 6.0
' THE FINAL VALUE OF CRACK LENGTH 1e80CC
s THE FATIGUE CONSTANT CA 0.0
{ THE ©ATIGUE COASTANT CN . ano0n
: b cNs 4e000 X = teaa?
_; . cA CYCLE
! 0010000083 0.622550 08
i . Ve 200000~12 04311270 98
- 1,300000-13 0.207520 o8
00400000 ~13 0.15544D 08
: 0.500000~12 Ce124%10 08
\ 0.600000-13 0.10376n 08
0760000~12 0.889360 07
0.80000D-13 C.77819D 07
B 04 90000D~12 0.69172D 07
04190000-12 0+622880 07
| 0e100000-12 0.622550 07
0.200000-12 0.311270 07
04300000~12 ©.207520 )7
- 0.400000~12 00155640 07
® 0450000D~12 0.124810 07
0+600000-12 Ge10376D 07
I N ©+700000-12 0.889360 06
048000001 2 0.778190 Co
¥ 0490000012 04691720 06
0410000D-11 0.622%5n 06
. 0417000D~=11 0.6225%0 06
042000¢D~11 04311270 08
0.300000-11 0.,207520 ne
0400000-11 Ceissean 06
04500000-11 Cel24510 06
: 006000¢D=11 04163760 us
1 Ce700000~11 88936,
: 0480000011 7819,
€+90n0000~11 69172,
e
N

94
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