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CHAPTER I 
 

INTRODUCTION 
 

 
 
PROBLEM STATEMENT 
 
Permanent deformation is one of the main distresses in asphalt pavements.  It occurs primarily 
due to shear failure in hot mix asphalt (HMA).  The shear strength of an asphalt mix is a result of 
aggregate interlock and adhesion provided by the asphalt binder.   
 
Careful review of the literature showed that two main approaches have usually been followed in 
modeling permanent deformation: the continuum modeling approach and the micromechanical 
modeling approach.  The advantage of continuum models is that once the material properties are 
known, simulations of material response and performance can be achieved through finite element 
(FE) analysis under different boundary conditions. However, detailed information about the 
initial distribution of the microstructure and its evolution is not explicitly considered in these 
models. In contrast, micromechanical models have the capability to consider the microstructure 
distribution and the interactions among the microstructure constituents.  
 
This approach, however, has been limited in modeling the actual geometry of the microstructure, 
as idealized aggregate shape has typically been used in these models. In addition, simplified 
assumptions have been employed to model the interactions among the HMA constituents. 
An appealing approach that has also been developed for modeling granular materials relies on 
quantifying the microstructure in the form of scalar functions and directional distribution tensors 
that are incorporated in continuum constitutive models.  This is a powerful approach, as it 
inherits the advantages of continuum modeling in terms of the efficiency in numerical simulation 
and at the same time it explicitly captures the influence of the microstructure distribution on the 
macroscopic response of the material.   
 
This report deals with the development of continuum models for HMA that account for key 
features of the microstructure distribution and with FE implementation of these models.  Two 
main advances are registered in this study.  The first is related to enhancing the elastic analysis of 
the HMA response through employing strain gradient theory and effective local material 
properties.  Strain gradient theory employs length scales in the constitutive relationship to 
account for the size variation within the microstructure and its effect on the macroscopic 
response.  Micromechanics analysis is used to obtain the effective local material properties, 
which are in turn used in the FE analysis to obtain macroscopic elastic properties of HMA. 
 
The second advancement registered in this study is the development of an elasto-visco-plastic 
constitutive model for HMA.  This model considers several factors that are known to influence 
HMA permanent deformation such as aggregate structure friction and dilation, confining 
pressure, strain rate, stress path dependency, and microstructure characteristics that reflect 
anisotropy and damage.  
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OBJECTIVES 
 
This study deals with the development of multiscale constitutive models for HMA. In these 
models, key features of the microstructure are measured and incorporated in continuum 
constitutive models of asphalt mixes.  The main objectives of this study are to:  
 

1. Develop a gradient elasticity constitutive relationship that accounts for the microstructure 
characteristics such as different particle size and asphalt film size distributions and strain 
localization. 

 
2. Implement the gradient elasticity constitutive relationship in a FE model for the analysis 

of HMA response.  The model reduces the sensitivity of FE analysis microscopic and 
macroscopic response to mesh resolution. 

 
3. Develop an elasto-visco-plastic continuum model that links the microstructural properties 

in terms of aggregate anisotropy and damage to permanent deformation of the material.  
The model also accounts for the influence of loading rate, confining pressure, stress path 
direction, and dilation under shear loading.  

 
4. Implement the elasto-visco-plastic continuum model into FE analysis to study the 

response of HMA under a variety of boundary conditions to predict permanent 
deformation. 

 
 

 

 

 

 

 

 

 

 

 

 



3 

 

CHAPTER II 

LITERATURE REVIEW 

 

Asphalt pavements are composite materials consisting of interspersed aggregates, asphalt binder, 
and air voids. Their constitutive behavior is defined by the interaction of these constituents. The 
load-carrying behavior and resulting failure of such materials depends on many mechanisms that 
occur at the constituent level. 
 
Traffic loading repetitions and climate condition effects on hot mix asphalt (HMA) cause 
permanent deformation that is considered to be one of the most important pavement distresses. 
This chapter summarizes the causes and mechanisms of permanent deformation in HMA and the 
current approaches found in the literature to model this phenomenon. It also discusses the 
contributions reported in the literature on modeling HMA permanent deformation under the two 
primary approaches; namely the continuum approach and the micromechanical approach. A brief 
review of the basics of plasticity and visco-plasticity theories is also presented.  

 
CAUSES AND MECHANISMS OF PERMANENT DEFORMATION 
 
Permanent deformation in asphalt pavements manifests itself as depressions along the wheel 
paths as shown in Fig. 2.1. According to the National Cooperative Highway Research Program 
(Witczak 1998), permanent deformation was selected as the most serious problem for highways 
and runways in the United States among all the distresses in asphalt pavements. Fatigue cracking 
was rated the second most serious problem, followed by thermal cracking. 
 

 
 
Figure 2.1. Effect of Wheel Loading Repetitions on Permanent Deformation Profile (after 
Eisenmann and Hilmer 1987). 
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Deformation in HMA is a complex phenomenon where aggregate, binder, and aggregate-binder 
interface properties control overall performance. These properties change over time until the mix 
reaches the end of its design life.  
 

Prediction of rutting requires a knowledge of material characteristics that relates HMA strains to 
stresses. Rutting develops gradually as the number of load applications increases. As 
summarized by the Strategic Highway Research Program (SHRP 1991), rutting principally 
occurs due to repetitive shear deformation under a variety of traffic loading. Loading conditions 
in the form of magnitude, tire pressure, and traffic volume; environmental conditions in the form 
of temperature; and HMA properties in the form of aggregate characteristics (shape, texture, and 
structure), and binder type are among the major contributors to rutting resistance. Extensive 
literature of studies that considered rutting as a function of loading and environmental conditions 
can be found in Mclean and Monismith (1974), Brown and Bell (1977), Sousa et al. (1993) and 
Lytton et al. (1993). 
 
The mechanism of permanent deformation is a combination of densification (decrease in 
volume) and shear deformation. Using a wheel-tracking device, Eisenmann and Hilmar (1987) 
concluded that pavement rutting can develop in two stages in HMA. First the initial stage is due 
to the accumulation of the permanent vertical deformation within the pavement layers under 
traffic loads. The increase of irrecoverable deformation below the tires is distinctly greater than 
the increase in the upheaval zones. Second, following the initial stage, the volume decreased 
beneath the tires is approximately equal to the volume increased in the adjacent upheaval zones. 
This indicates that compaction under traffic is completed for the most part and that further 
rutting is caused essentially by the displacement of material. 
 
Based on experimental measurements as well as numerical simulations, Tashman (2003) 
summarized the causes of rutting due to energy dissipation in three internal mechanisms: 

 
• Overcoming the friction between the aggregates coated with binder, 
• Overcoming interlocking between the aggregates, which is responsible for the material 

dilation, and 
• Overcoming the bonding between the binder elements (cohesion) and between the binder 

and aggregates (adhesion). 
 
 
MECHANISTIC APPROACHES FOR MODELING HMA RESPONSE  
 
Most design procedures used in design guides are based on linear elastic multilayer analysis. 
Typically, the elastic response is related to rutting through empricial relationships between the 
elastic strain and plastic strain.  However, it has been shown over the years that the highly nonlinear 
response of HMA is too complex to be captured satisfactorily through the linear elastic analysis of 
HMA response.  Huang (1967) showed that deformation behavior is a function of both the 
hydrostatic and deviatoric stress states.  He also noticed that the mixes dilate under purely deviatoric 
stresses.  Brown and Cooper (1980) concluded that the response of HMA in triaxial tests was a 
function in the deviatoric and confining stresses. Deshpande and Cebon (1999) developed a 
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constitutive model for steady-state deformation of idealized asphalt mixes to predict rutting under a 
moving load using triaxial compression tests. They reported the dilation phenomenon under 
compression load and the dependency of deformation on the hydrostatic pressure and the deviatoric 
stress.  
 
There is overwhelming evidence in the literature that mechanistic models are needed to analyze 
HMA response and performance.  These models have been used to relate microstructure 
distribution and indvidual constituent properties to macroscopic properties and to predict the 
macroscopic response and performance of HMA.  

 
Continuum Approach  
 
Although HMA is essentially a multicomponent interacted discrete composite, the concept of a 
continuum representation has been notionally accepted. This allows one to use the notations of 
deformable mechanics principles such as stresses and strains. The stresses and strains, or their 
derivatives with respect to time, can be linked together in a constitutive equation. Joined with 
equilibrium equations and boundary conditions, constitutive equations permit the evaluation of 
the pavement structure response either analytically or numerically.  
 
Experimental observations made by Perl et al. (1983) and Sides et al. (1985), and others, 
proposed that the total strain of HMA has recoverable and irrecoverable elements, some of which 
are time-dependent and some of which are time-independent. The total strain is separated into 
four components as shown in Fig. 2.2 for the first cycle of a creep test as follows: 
 

vppvee ε+ε+ε+ε=ε        (2-1) 
 
where ε is the total strain and eε  is the elastic strain, which is recoverable and time-independent, 
meaning that the material exhibits no permanent strains in a loading /unloading cycle and this 
state is independent of the rate of loading and unloading. veε  is the visco-elastic strain, which is 
recoverable and time-dependent. pε  is the plastic strain, which is irrecoverable and time-
independent. vpε  is the visco-plastic strain, which is irrecoverable and time-dependent. In 
general, the viscous components depend on the load duration and the rate of loading/unloading. 
No matter what the rate of loading/unloading, the same magnitude of permanent strain is 
obtained for the same loading history. In general, HMA behavior varies from elastic and linear 
visco-elastic at low temperatures and/or fast loading rates to nonlinear visco-elastic, visco-
plastic, and plastic at high temperatures and/or slow loading rate. 
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Figure 2.2. Schematic Representation of the Various Strain Components in an Elasto-Visco-
Plastic Material. 

 
 

The instantaneous response reflects the time-independent component, whereas the viscous 
response reflects the time-dependent component. The relative contribution of each component 
depends on temperature and loading condition. Rutting is due to the visco-plastic deformation, 
and consequently, the discussion herein will focus on models that consider the visco-plastic 
deformation of HMA.   
 
Abdulshafi and Majidzadeh (1985) developed a one-dimensional elasto-visco-plastic constitutive 
model to characterize asphalt mixes and predict rutting as a result of densification of the material 
under static creep loading. They decomposed the total strain into a recoverable part to reflect the 
elastic and visco-elastic component and a nonrecoverable part for the viscous and plastic portion. 
A frictional slider connected to Burger elements was used to account for the plastic deformation 
with the aid of a Drucker-Prager yield criterion. Perl et al. (1983) employed a repeated uniaxial 
creep experiment under constant compression stress and temperature to develop an elasto-visco-
plastic constitutive model for bituminous mixtures. Plastic strain was found to depend on the 
number of load applications, while the visco-elastic component was governed by the power law 
of time. They showed experimentally that visco-elastic and visco-plastic strain components are 
linearly related to stress for a stress level less than 0.4 MPa. 
  
Bonnier and Troost (1991) proposed that strains of asphalt mixtures be resolved into 
instantaneous elasticity, visco-elastic, and visco-plastic components. The model involved a first 
component of an elastic spring to account for the instantaneous response, a second component of 
a Kelvin-Voigt element used in the simulation of visco-elasticity, and a third element of a 
frictional slider and a dashpot in parallel used to symbolize the visco-plastic strain. A 
nonassociated flow rule with the power law yield function defined in the Perzyna formulation 
was employed to model visco-plasticity. They exploited three yield functions of Mohr-Coulomb 
for the three-dimensional presentation of the model. These functions were suitable for 
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compressive stresses where for tension they introduced another three yield surfaces. They 
implemented their model into FE and compared it to experimental measurements.  
 
Lytton et al. (1993) developed a permanent deformation model based on a Vermeer yield surface 
(Vermeer 1984).  This model was incorporated in FE to compute the stresses and permanent 
strains under one wheel.  Lytton et al. (1993) proposed using the slope of the log εp- log N curve 
to compute the permanent strain at any number of load repetitions (N) once the permanent strain 
in the first cycle is calculated from the FE model.  
 
Sousa et al. (1993) developed a nonlinear visco-elastic damage model to predict permanent 
deformation of HMA. The model included macro characteristic observations such as dilatancy 
under shear strain, the hydrostatic pressure effect on shear modulus, and accumulation of plastic 
strain under repetitive loading. They utilized a series of three-dimensional combinations of 
Maxwell elements composed of sets of springs and a dashpot. The springs captured the dilatancy 
and hardening phenomena, while temperature and rate dependency were captured by the dashpot. 
Damage was accounted for by including a damage parameter in the equilibrium equation for the 
dashpot and it was considered as a function on shear strain. A variety of experiments including 
the uniaxial strain, simple shear at constant height, volumetric simple shear frequency, and strain 
sweep tests were used to determine nonlinear elastic, viscous, and damage parameters.  
 
In an attempt to characterize HMA behavior under cyclic loading, Sousa and Weissman (1995) 
improved the nonlinear visco-elastic model developed previously by Sousa et al. (1993) by 
including an elastoplastic component using the associated J2-plasticity (von Mises yield surface) 
with isotropic and kinematic hardening. They assumed that aggregate response is rate 
independent that dilates elastically under shear loading. Their conclusion was to employ a rate-
independent elasto-plastic constitutive law to model HMA. Nonlinear elastic response that 
couples volumetric and deviatoric response was used. Their model accounted also for shear 
hardening under hydrostatic pressure and provided different elastic responses under tensile and 
compressive load applications.  
 
In a different attempt to provide a phenomenological approach for materials that exhibit plastic 
and creep deformation, Scarpas et al. (1997a) decomposed total strain into elastic and visco-
plastic components. Scarpas et al. (1997a) integrated Desai’s yield surface and Perzyna’s visco-
plasticity formulation for simulating and studying the initiation and development of pavement 
distresses under various loading conditions. They used monotonic uniaxial compression and 
tension tests for evaluating model parameters related to path and rate-dependency characteristics 
and incremental creep tests to identify hardening and viscous parameters. They indicated that 
conventional Perzyna’s visco-plasticity can be applied only for simulating the primary creep and 
secondary creep phases. They concluded that degradation of the material under triaxial stresses is 
caused predominantly by the nucleation, localization, and eventual propagation of splitting 
cracks along planes perpendicular to the maximum principal tensile stresses. Their model 
considered the damage evolution associated with material degradation and temperature effects in 
determining ultimate strength. In addition, the model accounted for material dilation under 
deviatoric stress, hardening, and crack evolution by determining the fracture energy. 
 
Lu and Wright (1998) introduced a numerical approach for developing an elasto-visco-plastic 
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constitutive model assuming that material response is decomposed into elasticity, visco-
elasticity, and visco-plasticity. Hooke’s law was used to model the elastic component; a power 
law function of stress and time was used to model the visco-elastic component; and Perzyna’s 
theory of visco-plasticity was utilized to model the visco-plastic component.  Lu and Wright 
(1998) took the hardening parameter to be equal to zero while the viscosity parameter in 
Perzyna’s theory was taken to change with time.  The model parameters were determined using 
repetitive loading. The study also adapted the constitutive model in a numerical formulation to 
be implemented in FE analysis.  
 
Seibi et al. (2001) developed an elasto-visco-plastic constitutive model for HMA under high 
rates of loading using uniaxial and triaxial compression experiments with different temperatures. 
They noticed that yielding stress is increased by increasing both strain rate and temperature. 
They utilized the Drucker-Prager yield surface and Perzyna’s theory of visco-plasticity for 
isotropic work hardening and strain rate sensitive materials to describe the stress-strain behavior 
of HMA. They concluded that rate dependency of the material is governed mainly by visco-
plastic response and is more prominent in the plastic range. 
 
Huang et al. (2002) implemented the visco-plastic constitutive model developed by Desai et al. 
(e.g., Desai et al. 1986; Desai and Zhang 1987), which incorporates temperature and loading rate 
effect into a Hierarchical Single surface (HISS) plasticity-based model. The yield surface of the 
HISS model incorporated the first invariant of stress, 1J , and the second and third invariant of 
deviatoric stress, 2J and 3J , respectively: 
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where Pa is the atmospheric pressure; αps is the hardening of growth function; and αps, β, γ, m 
and n are material parameters defining the yield surface. HISS models are elasto-plastic 
constitutive relationships that share the same yield function. Huang et al. (2002) modified the 
HISS model to account for temperature effects in the form of: 
 

( )θασ= ,,FF ij           (2-4) 
 
where ijσ  is the stress tensor component, α is the hardening function, and θ is the temperature. 
They used Perzyna’s visco-plasticity postulate modified with the temperature effect to model the 
visco-plastic component. Creep tests were conducted to obtain viscous properties, while 
conventional triaxial tests were used to calibrate thermo-plastic parameters. 
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Chehab et al. (2003) proposed a constitutive model by incorporating damage, rate of loading, and 
the temperature effects. They decomposed their model to visco-elastic and visco-plastic 
components and developed a separate model for each component then combined them to develop 
a single elasto-visco-plastic model. All model parameters were determined using different testing 
modes in uniaxial tension tests. Their model was able to detect the material response before the 
localization point, while at the post-localization zone to capture material degradation they used 
fracture process zone strains measured using digital image correlation. The visco-elastic behavior 
was determined based on Shapery’s continuum damage model, while an empirical strain 
hardening model was used to characterize the visco-plastic behavior. They concluded that the 
portion of visco-plastic strain with respect to visco-elastic strain increases as temperature 
increases and strain rate decreases.  
 
Collop et al. (2003) developed an elasto-visco-plastic constitutive model that includes elastic, 
delayed elastic and visco-plastic components. Continuum damage mechanics were introduced to 
account for the damage mechanism during viscous flow. They implemented the model in an 
incremental formulation into a FE program with the aid of a local strain compatibility condition 
to explicitly find the incremental stresses and the incremental strains at each integration point. 
 
Gibson et al. (2004) and Schwartz et al. (2004) developed a constitutive model based on an 
extended form of the Schapery continuum damage formulation (Schapery 1999). The model 
considered the visco-elastic (including instantaneous elastic), visco-plastic (including 
instantaneous plastic), and nonlinear visco-elastic damage components in a uniaxial unconfined 
compression tests. Their study focused on the visco-plastic response component at intermediate 
and high temperatures. By using the concept of time-temperature superposition for visco-plastic 
response, they extracted the visco-plastic material parameters from uniform load creep and 
recovery tests.  The approach used to model the visco-plastic component is similar to that of 
Chehab et al. (2003).  Compression tests were conducted by Schwartz et al. (2004) to determine 
the model parameters. They found that confinement suppressed visco-plasticity and increase 
nonlinearity of the hardening behavior while no change in damage was recorded.  
 
Oeser and Moller (2004) presented a study to develop a three-dimensional rheological model. A 
one-dimensional formulation was adopted and it was further extended to three-dimensional using 
an energy hypothesis and a special yield function that consisted of Von Mises in the tension zone 
and Drucker-Prager in the compression zone. A combined Hook-Kelvin-Newton element was 
employed to account for elastic, visco-elastic, and visco-plastic components, respectively. With 
the use of nonmonotonic loading, they adopted a damage-healing element to account for damage 
and healing behavior resulting from dynamic loading. They emphasized that tertiary creep in a 
loading cycle is composed of a positive loading phase, which is considered as a damage stage, 
followed by a healing phase if negative stress is applied, and as the cycle repeats, the damage 
stage is rebound. Their model accounted for temperature effects, but it was applicable only to 
small deformation. They converted the model into a differential form in a numerical algorithm to 
be implemented in a computational model.  
 
Tashman (2003) developed a nonassociated microstructural visco-plastic model for HMA. The 
model accounted for microstructure characteristics like particle orientation, damage evolution as 
a result of air voids, and nucleation of microcracks, work hardening, and dilation in the material 
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response. The study considered anisotropy by modifying the stress formulation with a 
microstructure fabric that is a function of vector magnitude. Damage and work hardening were 
taken as a function of effective visco-plastic strain. The study concluded that a nonassociated 
flow rule is essential to model the dilation response of the material.   
 
The advantage of continuum models is their computational simplicity, and once the material 
properties are known, simulations of material deformation under static or dynamic loading can be 
easily implemented in FE analysis to predict HMA performance. 
 
Bonnier and Troost (1991) employed FE analysis to compare the performance of their elastic-visco-
elastic model with a closed-form semi analytical solution of a two-layered system loaded with a 
constant circular load. Sousa et al. (1993) implemented their constitutive model into a FE program 
to simulate a boundary value problem of a pavement lane. A repetitive haversine load defined in 
plane strain configuration was used to simulate slow moving traffic. Lu and Wright (1998) adapted 
their constitutive model into numerical form to find the response of HMA using FE analysis 
under different loading conditions. Lu and Wright (1998) used a step-by-step time integration 
approach with a Newton-Raphson iteration procedure to determine strain in the constitutive 
equation. As a result, an increment form of stress and strain was obtained in time-step control.  
Papagiannakis et al. (2002) is an example of a study that related the microstructure of HMA to its 
visco-elastic behavior. They used FE analysis to model the material stress-strain relationship in the 
time domain. They employed a user subroutine associated with FE analysis to account for the 
nonlinearity of the material.  
 
Although most analytical methods assume two-dimensional axisymmetric conditions, Zaghloul and 
White (1993), Scarpas et al. (1997a), Seibi et al. (2001), Collop et al. (2003) and Oeser and Moller 
(2004) applied three-dimensional FE analyses to simulate realistic traffic loads. Zaghloul and White 
(1993) used a visco-elastic model for HMA, an extended Drucker-Prager model for the granular 
base course, and a Cam Clay model for clay subgrade soils. Scarpas et al. (1997a) utilized FE 
analysis to investigate the dynamic nonlinear response of HMA. They simulated the pavement 
system by using two different subgrade layers that differed in strength. Seibi et al. (2001) extended 
the uniaxial visco-plastic model to a multiaxial case by using a pavement structure simulation and 
FE to determine material parameters.  
 
Collop et al. (2003) used FE to demonstrate the capability of an elasto-visco-plastic model to 
simulate field conditions. Elastic material properties were used for all pavement layers except the 
HMA. Load simulations were equivalent to dynamic configurations with loading and unloading 
cycles. They demonstrated a numerical algorithm to evaluate stress and strain in their constitutive 
relationship. They used a local strain compatibility condition such that the incremental stresses were 
determined explicitly from the incremental strains at each integration point.  
 
Erkens et al. (2002) developed a constitutive model to account for the strain rate and temperature 
effects on HMA. They utilized the model to simulate the response of a pavement system by 
imposing three-dimensional stress conditions in the FE formulations. The FE model was used also 
to investigate damage development under repeated loading conditions in different pavement 
systems. Erkens et al. (2002) used nonlinear Newton-Raphson methodology to evaluate incremental 
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volumetric and deviatoric plastic strain. The updated stress was computed by means of a trial stress 
and stress correction. 
 
However, in continuum approach, when describing the material response using a single set of 
material properties, only stress-strain at the boundaries is known but not the exact distribution along 
different locations within the material. Detailed information about particular features such as initial 
distribution of the microstructure and evolution of its macroscopic behavior is thus lost. 
Heterogeneous multiphase of HMA is complicated by nature, and classical continuum mechanics 
are not able to address the significance of this nature into macroscopic response.  

 
Micromechanical Approach  
 
In contrast to the continuum approach, the micromechanical approach is being utilized to further 
predict HMA behavior under different loading conditions. Micromechanical models consider the 
microstructure distribution, properties of components, and interactions between aggregates and 
asphalt binder. Therefore, micromechanical models can include most of the important factors that 
govern the performance of HMA. 
 
Careful review of the literature shows that significant progress has been made in laboratory 
investigations of the influence of HMA constituent properties on the macroscopic response.  Morris 
et al. (1974), and Button et al. (1990) are examples of research that relates macroscopic mechanical 
behavior of HMA to its microscopic functions. These studies reflect the influence of a number of 
microscopic factors such as aggregate characteristic (size, shape, type, texture, and orientation), 
properties of binder, and concentration of aggregate, binder, and air voids in HMA.  
 
An approach found in literature was to generate numerical representation of HMA microstructure. 
The representation is used to study interactions between different constituents and their influence on 
macroscopic properties. Two methods were used to simulate microstructure, the discrete element 
method (DEM), and the FE method.  
 
DEM analyzes particulate systems by modeling the translational and rotational response of particles 
by applying Newton’s second law to particle-particle contact forces.  The method is used to 
simulate interactions of individual particles in a matrix medium. Rothenburg et al. (1992) proposed 
a micromechanical discrete model of HMA. In this model, HMA was represented by a set of 
discrete elastic elements bounded by a linearly visco-elastic binder, and the binder within voids was 
treated as a compressible Newtonian fluid. Chang and Meegoda (1997) used DEM to simulate the 
interaction between idealized representations of elastic aggregates and a visco-elastic asphalt binder. 
Buttlar and You (2001) utilized the DEM to study the behavior of HMA in indirect tension test.  
 
On other hand, FE analysis with different constitutive models for the individual constituents has 
been used to analyze HMA microstructure (e.g., Sepehr et al. 1994, Weissman et al. 1999; Kose et 
al. 2000; Masad et al. 2001; Papagiannakis et al. 2002).  In these models, the microstructure was 
either assumed to exhibit some idealized distribution or was captured through photographic and X-
ray computed tomography imaging techniques.  These studies showed that FE analysis is useful in 
providing information on stress and strain distribution within the microstructure. Masad and 
Somadevan (2002) calculated strain distribution within the microstructure and compared it to 
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experimental measurements of strain distribution using image correlation techniques.  
Papagiannakis et al. (2002) used FE analysis in addition to the image processing to simulate HMA 
microstructure visco-elastic stress-strain behavior in the time domain. 
 
In summary, micromechanical models directly consider the characteristics of the microstructure 
geometry, such as aggregate size effect, and nature, such as contact evolution, interlocking, and 
localization in modeling HMA. They also explicitly provide information on the influence of 
changes in the microstructure on material response when the material undergoes deformation. This 
approach, however, has not been able to realistically simulate the actual geometry of material 
microstructure or the interaction among the constituents.  This approach is valuable in relating 
microstructure properties to macroscopic response; however, it consumes tremendous computing 
time, for which it has not been applicable and reliable for performance prediction models.  
 
THEORETICAL BACKGROUND ON PLASTICITY 
 
Theory of plasticity deals with two equally important aspects; first, the general technique used in 
developing stress-strain relationships with work hardening/softening to define real material 
behavior; and second, the general numerical solution for solving a material problem under the 
action of loads and/or displacements. 
 
The first task of the theory is to establish an adequate relationship between stress and strain to 
describe the linear and nonlinear deformation of the material. The second task concerns with the 
development of numerical technique for implementing the relationship between the stress and 
strain. Because of the nonlinear nature of HMA deformation, solutions may inevitably present 
considerable difficulties. However, development of computers and modern techniques of FE 
analysis have provided powerful tools for solving nonlinear problems.  
 
In classical plasticity, models contain three fundamental ingredients (Chen and Han 1988): 
  

• A yield function or yield criterion defines the limit of elastic behavior for a general state 
of stress. In visco-plasticity, the term “flow surface” or “overstress function” is used 
instead of yield surface, 

 
• A flow rule determines the relative magnitudes of the components of the plastic strain 

increment tensor, 
 
• A hardening rule defines the changes in the yield function as a result of plastic straining. 

Each ingredient is discussed briefly in the next section with the focus on the Drucker-
Prager yield function, since it is the basis for developing the visco-plastic model presented in this 
study. 

 
Drucker-Prager Yield Surface 
 
If there is a continuous function ( )κεσ ,,f  such that there is a region that satisfies the condition 

( ) 0,, <κεσf  in the stress space, then this region constitutes the elastic range. On other hand, 
the condition ( ) 0,, =κεσf  defines the yield surface in this stress space, and the orientation of 
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this surface is defined by the elastic range that outlines its interior (Lubliner 1991). The yield 
surface may be written as a function of stress and a hardening parameter. Experimental results 
showed that the plastic yield surface is affected by shear stresses or normal stresses or a 
combination of both. One well-known yield surfaces is the one proposed by Drucker-Prager. A 
three-dimensional yield surface is shown in Fig. 2.3. (Drucker and Prager 1952) 

 
 

Hydrostatic axis
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σb
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Figure 2.3. Three-Dimensional Diagram of the Linear Drucker-Prager Yield Surface. 
 

 
The Drucker-Prager yield surface can be described by the general expression in Eq. (2-5):  
 

κ−αΙ= ),,( 12JFf           (2-5) 
 
where 1Ι and 2J  are the first stress invariant and the second deviatoric stress invariant, 
respectively and α and κ are material parameters: the first reflects the frictional potential of the 
material, while the second reflects the material hardening.  
 
Abdulshafi and Majidzadeh (1985), Seibi et al. (2001), Tashman (2003), and Oeser and Moller 
2004 among others, are examples of work that used the Drucker-Prager yield function or 
modified versions of it to describe visco-plastic behavior in HMA. The advantages of using the 
Drucker-Prager over other models are summarized as follows: 
 

• The yield surface is continuous and smooth, and hence does not have sharp edges; 
 
• The model allows for initiation of dilation in terms of plastic strain before reaching the 

ultimate stress; 
 
• The model expresses the hardening rule as a function of plastic strain; 
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• The model incorporates the main terms to account for the plastic deformation; behavior 
of the material, and the hydrostatic and deviatoric stress; and 

 
• The model incorporates factors to account for nonassociative behavior. 

 
 

Associated and Nonassociated Flow Rules 
 
Experimental evidence from tests on granular materials has clearly indicated that use of the 
associated flow rule overestimates dilation or expansion.  Many studies have shown that a 
nonassociative flow rule should be employed to characterize volume changes (e.g., Zeinkiewicz 
et al. 1975; Oda and Nakayama 1989). In the nonassociated response, another surface is 
associated with the deformation flow, called plastic potential surface. In general, plastic potential 
and yield surfaces can have similar form and hence they coincide, while for nonassociated flow 
the two families of surfaces cross each other.  
 
Work Hardening and Strain Softening 
 
Plastic deformation occurs in the HMA when the applied stress exceeds the yielding point. The 
stress-strain curve resulting from this load application in the plastic range is called the “flow 
curve”. If the specimen is unloaded after some plastic deformation has taken place and then 
reloaded a new and higher yield stress is attained. The material may be regarded as having been 
hardened due to plastic deformation in a process namely work hardening. 
 
In the literature, the work hardening phenomenon is an important factor governing plastic 
deformation of HMA. In simple terms, the phenomenon occurs during plastic deformation of the 
material at a microscopic level due to the generation and changing interaction between 
constituents at the aggregate-aggregate and aggregate-binder interfaces as the degree of 
deformation increases. 
 
Chen and Han (1988) reported two basic approaches that were utilized to develop constitutive 
equations for work hardening materials. First is the deformation theory, which relates the total 
stress to total strain, and can be given in general form: 
 
 ( )ij

e
ijij

p
ij f σεεε =−=          (2-6) 

 
where ijσ  is the state of stress in which the plastic strain occurs. Despite its simplicity, the 
deformation theory could not describe hardening phenomena near the yield surface along the 
neutral loading path associated with loading/unloading. Second is the flow theory, which relates 
the plastic strain increment p

ijdε to the state of stress ijσ  and the stress increment ijdσ . As the 
stress increment increases gradually above the yield limit, a new yield surface is specified, called 
the subsequent yield surface, on which plastic deformation takes place. The hardening rule that 
applies for the post-yield response can be given in the form of: 
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where γ&  is a positive coefficient that is nonzero only when plastic deformation occurs. It 
represents the magnitude of the plastic strain increment due to the applied subsequent stress. The 

vector 
ij

g
σ∂
∂  implies the direction of the plastic potential surface associated with the applied 

stress. g as a function of stress ijσ  defines a plastic potential surface that coincides with the yield 
surface function f, in which the hardening rule is called an associated flow rule. In this case, Eq. 
(2-7) is simplified to: 
 

ij

p
ij

f
σ∂
∂

γ=ε &&            (2-8) 

 
 
Visco-plasticity Formulation 
 
Theories of plasticity and nonlinear elasticity improve the layered elastic solution but still fail to 
capture an important characteristic of pavement materials, which is the time dependency of 
plastic behavior under traffic loading. The theory of visco-plasticity has been chosen by many 
researchers as the most suitable constitutive framework for modeling the time-dependent 
response of HMA. The theory has emerged as an attempt to provide a realistic, unified, and 
phenomenological approach for modeling materials that exhibit both plastic and creep 
deformation.  
 
A widely used visco-plastic formulation is the Perzyna model (Perzyna, 1966). The formulation 
preserves the fundamental of classical plasticity notions of yield surface, decomposition of 
strains, and hardening, and at the same time, it is well-appropriate for FE implementation. 
 
The main feature of this formulation is that it introduces the concept of the “overstress” effect in 
which the yield function used for describing the visco-plastic strain can become larger than zero. 
Perzyna’s original model assumed that visco-plastic strain can occur only when the stress state 
reaches the yield surface and that visco-plastic strain is not significant in the elastic zone below 
the yield surface. The direction of the visco-plastic strain is specified by an associated flow rule. 
The visco-plastic strain rate depends on the amount by which the effective stress exceeds the 
current static yield stress (overstress).  In this model the yield surface does not change with time 
when the visco-plastic strain is held constant. In addition, the visco-plastic strain rate is zero 
when the overstress is zero (Lubliner 1991).   
 
In the small-strain theory, the total strain rate ε&  in an elasto-visco-plastic material may be 
additively decomposed into an elastic component eε&  and a visco-plastic component vpε&  that 
accounts for both irreversible and viscous deformation: 
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vpe ε+ε=ε &&&            (2-9) 
 
when using the elasticity principle it follows: 
 

eD ε=σ &&            (2-10) 
 
where D  is the fourth-order tangent elastic stiffness tensor. In the Perzyna model, evolution of 
the visco-plastic strain rate vpε&  is defined as (Perzyna 1966): 
 

σ∂
∂

⋅>φ<⋅Γ=ε
gfvp )(&          (2-11) 

 

where >φ<⋅Γ )( f  specifies the magnitude of vpε& . The second-order tensor 
σ∂

∂g  determines the 

direction of the visco-plastic strain rate, in which g is the visco-plastic potential function and σ is 
the stress tensor. Γ  is a viscosity parameter, and φ  is the overstress function that depends on the 
rate-independent yield surface ( )κσ,f .  
 
Combining Eq. (2-7) and Eq. (2-11), the consistency parameter can be obtained as: 
 

>φ<⋅Γ=γ )( fvp&           (2-12) 
 
In Eq. (2-12), ”< · >” are McCauley brackets, such that: 
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CHAPTER III 

FINITE ELEMENT ANALYSIS OF HOT MIX ASPHALT 
MICROSTRUCTURE USING EFFECTIVE LOCAL MATERIAL 

PROPERTIES AND STRAIN GRADIENT ELASTICITY * 
 

INTRODUCTION 
 
Asphalt mixes are particulate composite materials that consist of asphalt binder, particles, and air 
voids.  There has been long-term interest in relating the macroscopic response of hot mix asphalt 
(HMA) to the properties of the constituents.  This has been done mainly through laboratory 
investigations that relate mechanical behavior of asphalt mixes to aggregate characteristics, binder 
type and content, and percent of air voids (e.g., Monismith 1992). 
 
Analytical studies based on micromechanics concepts, have been used to estimate HMA effective 
material properties.  The first micromechanics model was proposed by Van der Poel (1954) based 
on the analysis of a concentrated suspension of rigid spheres in an elastic matrix.  Another attempt 
to model the viscous behavior of asphalt mixes was reported by Hills (1973).  He described the 
internal structure of HMA in terms of asphalt film thickness and the evolution of this state variable 
as a function of macroscopic straining of the material. 
_________________________ 
* Material in this chapter is printed with permission from “Finite element analysis of hot mix asphalt microstructure 
using effective local material properties and strain gradient elasticity.” by Dessouky, S., Masad, E., Little, D., and 
Zbib, H. Journal of Engineering Mechanics, by American Society of Civil Engineers (ASCE). Accepted but not yet 
appeared 
 
 
Classical micromechanical models, developed to estimate the effective properties of random 
particulate composites, have been found to underestimate the elastic properties of HMA (Deshpande 
1995).  This underestimation is due to high volume fraction of particulates in HMA; such that the 
interaction among these particulates is an important factor that is not taken into account by these 
micromechanical models.  In addition, effective material properties are not sufficient representation 
of HMA response, as it averages fluctuations in stress and strain distributions caused by the wide 
range of particle sizes and the several orders of magnitude differences in stiffness between the 
constituents (Masad et al. 2001).  The local distribution and spatial fluctuations of these stresses and 
strains are important factors that influence the overall mix response, especially at the microscopic 
level (e.g., Kose et al. 2000; Masad and Somadevan 2002; Masad et al. 2001).  As stated by Graham 
and Baxter (2001), assuming homogeneous response of a composite material represented only by 
effective properties ignores the local microscopic response often associated with failure phenomena.   
 
Numerical simulations of the microstructure response have been used to study interactions between 
different HMA constituents and their influence on localized microstructure response and 
macroscopic properties. Rothenburg at al. (1992), Chang and Meegoda (1997), Deshpande and 
Cebon (1999), and Buttlar and You (2001) are examples of work that used discrete element method 
(DEM) to simulate the microstructure of HMA, while Bahia et al. (1999), Weissman et al. (1999), 
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Kose et al. (2000), Abbas et al. (2001), and Masad and Somadevan (2002) are examples of studies 
that focused on using FE analysis to achieve this approach. 
 
DEM analyzes particulate systems by modeling the translational and rotational behavior of each 
particle by applying Newton’s second law to particle-particle contact forces.  In DEM studies, 
aggregates are represented by a set of discrete elastic particles and their interactions are controlled 
by the mechanical properties of an elastic or visco-elastic asphalt film.  
 
FE analysis with different constitutive models for the individual constituents has been used to 
analyze HMA microstructure (e.g., Weissman et al. 1999; Kose et al. 2000; Masad et al. 2001; 
Papagiannakis et al. 2002).   These studies have shown that FE analysis is appropriate in 
providing information on the stress and strain distribution within the microstructure. However, 
this approach was found, due to experimental and computational limitations, to underestimate the 
effective properties of the HMA and the results can be mesh size dependent (e.g., Abbas et al. 
2001; Masad and Somadevan 2002).    
 
This chapter presents a methodology for the analysis of HMA microstructure using FE analysis.  
This methodology offers two main contributions.  The first is using strain gradient elasticity in 
modeling material behavior.  Strain gradient theories or nonlocal theories have been 
implemented in different constitutive models to introduce an internal length scale in the standard 
equations of continuum mechanics (e.g., Aifantis 1984, 1987; Zbib and Aifantis 1989, and 
1992).  Therefore, it is believed that using a strain gradient theory will assist in capturing the 
differences among mixes due to different particle and asphalt film size distributions, and 
reducing the effect of FE mesh resolution on the microscopic and macroscopic response.  The 
gradient coefficients, which are directly related to the material characteristic length scale, are 
determined by analyzing the microstructure distribution using the autocorrelation function and 
the moving window technique.  
 
The second contribution in this study is using a micromechanical model along with the moving 
window technique to calculate the local effective material properties used in the FE analysis. 
These calculations are supported by experimental measurements of the stiffness of HMA. 

 
 
MICROSTRUCTURE FE ANALYSIS USING EFFECTIVE MATERIAL PROPERTIES 
 
This section discusses the development of a FE analysis of HMA microstructure using effective 
local material properties.  FE implementation of gradient elasticity is presented first, followed by 
the procedures used to determine the effective local material properties using micromechanics 
principles.   
 
 
FE Implementation of Gradient Elasticity 
 
Generalization of elasticity theory by incorporating the effect of higher gradients of the 
displacement field into the strain energy density function was studied by Cosserat and Cosserat 
(1909).  A modern systematic treatment of gradient elasticity was given by Truesdell and Toupin 
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(1960).  Subsequently, it was extended by Toupin (1962), Green and Rivlin (1964), and Mindlin 
(1965).  They implemented the higher gradients of the displacement field to higher order stresses 
instead of directly introducing higher gradients into the constitutive equation.  The gradient 
approach is typically employed to provide the standard equations of solid mechanics with a 
characteristic internal length scale.  In this study, the feature of gradient elasticity (i.e., internal 
length scale) is being utilized to capture the differences in mechanical response among mixes with 
different particle size distributions and to reduce the influence of mesh size on this response. 
 
Assuming that the elastic strain at a position vector x depends linearly on the relative strain with 
respect to an element movement from x to r, which occurs in a small but finite material volume V 
surrounding x. The average strain can be obtained by the volume average of the local strain 
distribution within the representative volume element (RVE) as follows: 

 

∫ −=
fV

dVrx
V

Re

)(1
εε           (3-1) 

 
The Taylor’s series expansion limited to the second-order term of the function )( rx −ε  around x 
gives (Zbib and Aifantis 1989): 

 
εεε 22)( ∇+= clx           (3-2) 

 
where lc is a characteristic length scale of the material microstructure.  The following gradient 
elasticity model is obtained when Eq. (3-2) is substituted in Hooke’s law: 

 
εεσ 22 ∇+= AA cl           (3-3) 

 
where σ  and ε  are the stress and strain tensors, respectively, and A is the fourth-order elasticity 
tensor.  Following standard FE formulation, e.g., the Galerkin’s method, the equation of 
equilibrium can be written in the weak form:  

 
[ ] [ ]( )∫∫ ⋅=

SV
dSn NdV  N grad σσ         (3-4) 

 
where [ ]N  is a matrix containing the shape functions and n  is a unit vector normal to the 
surface.  By substituting Hooke’s formula in Eq. (3-3) into Eq. (3-4) and noting that the right-
hand side of the equation is the surface traction sf , one obtains 

 
[ ] [ ] [ ] s

V

2
c

V

T fdV BludVBB =∇+ ∫∫ εAA 2            (3-5) 

 
where u  is a displacement vector and [ ]B , the strain displacement matrix, is a first derivative of 
[ ]N .   Rearranging the equation and considering the gradient term as a body force, Eq. (3-5) can be 
written as follows: 
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[ ]∫ ε∇−=
V

2
c

s dV BlfuK A2][          (3-6) 

 
where ][K  is the global stiffness matrix and the term includes the strain gradient is defined as body 
force vector bf . 
 
A numerical scheme is used to evaluate the strain gradient at every integration point. The gradient 
quantity depends on the strain values at this point and the neighboring points.  Also it depends 
inversely on the distance between the center point and the neighboring points.  Consider a plane 
strain element that contains the points A, P, B, and Q at distances of ah, ph, bh, and qh from the 
center integration point O, respectively.  h is a fixed distance, and a, p, b, and q are constant 
multipliers.  A and P are in the x-direction and B and Q are in the y-direction.  The expansion of 
strain at points A and P, for example, is given by: 
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By disregarding the odd order terms and the higher terms, the second-order derivatives become: 
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and the gradient is the summation of the second order derivatives in both directions as follows: 

 

⎥
⎦

⎤
⎢
⎣

⎡
ε

+
−

+

ε
+

+

ε
+

+
ε

+
+

ε
=ε∇

∂

ε∂
+

∂

ε∂
=ε∇

o
QpBA

o

oo
o

abpq
bqap

qbbpapqbbpaah

yx

)(
)()()()(

2
2

2

2

2

2

2
2

   (3-10) 

 
For the boundary elements where there are no adjacent elements in the free side, the gradient is 
calculated using only the available values of strain while the other components drop out.  Eq. (3-10) 
is applied to the various strain components in plane strain and is used to calculate the average strain 
gradient ][ 12

2
22

2
11

22 ε∇ε∇ε∇=ε∇        for each integration point within the element.  This 
gradient is used in the second term of the right-hand side of Eq. (3-6) to evaluate the body forces.  
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In FE analysis, the first iteration (indicated by superscript o) does not include the effect of 
the strain gradients (body force = 0).  In the following iteration i, the average strain gradient is 
computed and substituted in Eq. (3-6) to evaluate the body forces after assigning lc.  The body 
forces (strain gradient effects) in the second iteration will provide different displacements ui than the 
ones calculated in the first iteration.  In each iteration, the body forces determined at the integration 
points are averaged and transferred to the nearest nodes.  This iterative procedure is repeated until 
convergence is achieved if the change in displacement becomes less than tolerance value of 1.0E-8.  
A flow chart illustrating the FE implementation of gradient elasticity is given in Fig. 3.1. 
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Figure 3.1. Flow Chart Illustrating the FE Algorithm. 
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The advantages of using strain gradient elasticity is illustrated here with the aid of an idealized 
plane strain model of a binder film between two blocks representing aggregates, as illustrated in 
Fig. 3.2.   The 5-inch square model is subjected to a uniaxial pressure (P = 2.5 MPa) on the top, 
and the bottom is fixed in the horizontal and vertical directions.  The aggregate blocks are 
modeled using Young’s modulus = 25 GPa and Poisson’s ratio = 0.25.  The binder film is 
modeled with Young’s modulus = 30 MPa and Poisson’s ratio = 0.49.  The idealized model is 
used to explore the relationship between element size and computed strain distribution.  This is 
done by using 10×10, 30×30, 50×50. and 100×100 plane strain elements to represent the model 
in Fig. 3.2.  Assuming that the finest mesh converges to the accurate solution, the value of lc as 
shown in Fig. 3.3 is selected according to mesh size resolution. The results in Fig. 3.3 show that 
reducing the number of elements without including the strain gradient terms causes a reduction 
in the strain magnitude.  However, when higher lc values are assigned for finer meshes, all 
models converges to the same strain.  This demonstrates that lc reflects the influence of length 
scale (i.e., the mesh resolution with respect to the microstructure geometry) on the finite element 
results (see Fig. 3.3). It is worth mentioning that the computation time was not influenced by the 
gradient effect and the overall time was extremely small because the FE problem is still two-
dimensional. 
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Figure 3.2. Illustration of the Idealized Model. 
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Figure 3.3. Vertical Strain Distribution for the Idealized Model. 
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Similar to the model in Fig. 3.2, idealized microstructure representations of HMA with different 
particle sizes randomly dispersed in a matrix of asphalt binder at volume concentrations of 30%, 
40%, and 50% with lc values of 1.50 mm for fine and 5.5 mm for coarse, are used to examine the    
sensitivity of strain distribution to particle size and concentration. The values of the lc is taking as a 
fraction of the average length of particles diameters. 50×50 plane strain elements with similar 
material properties of the constituents to those used in Fig. 3.2 are used. By recording vertical 
deformation due to the uniaxial load, results in Fig. 3.4a show that macroscopic (continuum) strains 
are not sensitive to particle size.  However, sensitivity to particle size is significantly increased by 
using different lc and strain gradients as shown in Fig. 3.4b. 
 
The presence of fine particles is expected to produce more uniform strain distribution within the 
microstructure.  Fig. 3.5 shows the strain distribution within the microstructure in which the 
ordinate gives the percent of elements that has a strain value equal to the corresponding magnitude 
on the x-axis.   
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Figure 3.4. Macroscopic Strain for Media with Different Percentages and Sizes of Particles. 
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Figure 3.5. Microscopic Strain Distributions for Media with Different Percentages and Sizes of 
Particles. 
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Figure 3.6. Strain Gradient for Different Media of Fine and Coarse Particles. 
 
 
 
It is interesting to note in Fig. 3.5(a) that the effect of particle size on microstructure distribution is 
very small.  The FE analysis becomes capable of capturing the difference in microstructure strain 
distributions when strain gradients and different lc values are used for the fine and coarse media 
(Fig. 3.5b).  The strain gradient distributions in the coarse and fine media are shown in Fig. 3.6. 
 
An image of the HMA microstructure is usually limited, due to image resolution and experimental 
constraints, in capturing all fine particles present in a mix (e.g., Masad et al. 2001; Papagiannakis et 
al. 2002).   Typically, the stiffening effect of these fine particles is compensated for by using an 
equivalent modulus for the mastic, which includes these fine particles, higher than that of the binder. 
Here the author explores the effect of using the equivalent modulus on microstructure strain 
distribution.  Consider model “A” as shown in Fig. 3.7 that consists of coarse particles, fine 
particles, and binder.  Model “B” represents the captured microstructure with the fine particles 
embedded within the mastic.  FE analysis is conducted using the same material properties for all 
particles in model “A” and coarse particles in model “B” (Young’s modulus = 25 GPa, and 
Poisson’s ratio = 0.25).  The binder in model “A” is represented with Young’s modulus = 30 MPa 
and  Poisson’s ratio = 0.49.  The same Poisson’s ratio is used for the mastic in model “B”, while a 
higher equivalent Young’s modulus of 0.4 GPa is used for the mastic such that the macroscopic 
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strains for both models “A” and “B” are equal.  As shown in Fig. 3.7, the two models have distinct 
microstructure strain distributions indicating that increasing the mastic modulus alone does not 
represent the model response at the microscopic level.  Therefore, an alternative approach is 
followed in which the mastic is modeled using a higher equivalent modulus to reflect the stiffening 
effect of fine particles, and at the same time strain gradients with appropriate lc represents the 
neglected particles are used to capture the influence of these fine particles on the microscopic strain 
distribution (see Fig. 3.7). 
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Figure 3.7. Influence of Strain Gradient on Microscopic Strain Distribution. 
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EFFECTIVE LOCAL MATERIAL PROPERTIES 
 
 
Baxter and Graham (2000) presented an approach for FE analysis of composite material 
microstructure where the effective material properties are averaged within a moving window 
using the Generalized Method of Cells proposed by Paley and Aboudi (1992).  In this study, we 
follow a similar approach; however, the effective material properties are calculated using a 
micromechanics solution that captures the influence of aggregate concentration within the 
moving window on the effective material properties.  This approach is motivated by previous 
findings indicating that using the properties of the individual constituents in FE analysis of HMA 
microstructure significantly underestimates the macroscopic properties due to the experimental 
limitation of capturing all sizes of fine particles present in the microstructure (e.g., Masad and 
Somadevan 2002; Papagiannakis et al. 2002).  
 
Christensen (1979) developed the well-known dilute suspension approximation for effective 
shear and bulk moduli μ and κ, respectively, of a macroscopically isotropic composite as 
follows:  
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       (3-11) 

 
where i and m refer to the inclusion (aggregate) and matrix, respectively, νm is the matrix 
Poisson’s ratio, and c is the volume fraction of the inclusions.   
 
The model in Eq. (3-11) cannot be used for nondilute composites, such as HMA, in which 
interactions between particles influence the composite properties.  Christensen (1990) modified 
the model in Eq. (3-11) using the differential method to better represent nondilute composites. 
The concept of the differential method is to add small percentages of particles (Δc) incrementally 
into the matrix.  New effective properties are obtained for the composite in each increment and 
are subsequently used as matrix material properties in the following increments until c = 100%.  
The differential equations that represent this method are as follows: 
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         (3-12) 

 
Christensen (1990) presented closed-form solutions for the effective properties of an 
incompressible material where κ >>μ and for the case of νm = 0.2.  However, the κ/μ ratio for 
HMA depends on the concentration of aggregates, and consequently, these solutions are not 
representative of asphalt mixes (Kim and Little 2004).  Therefore, motivated by previous 
experimental measurements by Buttlar et al. (1999) and Kim and Little (2004), the following 
relation between κ and μ is proposed to solve Eq. (3-12): 

 

( )[ ]c−αβ=
μ
κ 1exp           (3-13) 

 
where α and β are material constants determined based on experimental measurements and the 
properties of aggregates and binder as discussed later in this chapter.  Eqs. (3-12, and 3-13) are 
solved such that the composite material properties are equal to those of the binder when c = 0.  
Eq. (3-12) is undefined for c = 1.  Therefore, an approximate solution is sought where the 
composite properties are equal to those of aggregates when c = 0.94. A Gaussian quadrature 
numerical scheme is used to solve Eqs. (3-12 and 3-13) due to their implicit form, and the 
following expressions are obtained: 
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    (3-14) 

 
The integration part can be solved numerically, and μ and κ are then found as a function of 
volume fraction.  The Young’s modulus E and Poisson’s ratio ν are calculated using the elastic 
relationship with μ and κ. 

 
 
EXPERIMENTAL CHARACTERIZATION  
 
Description of Asphalt Mixes and Image Acquisition 
 
Asphalt mixes were designed using the Superpave procedure (Roberts et al. 1996) with the 
variables shown in Table 3.1.  The mixes were prepared with different nominal maximum 
aggregate sizes (aggregate size larger than about 90% of particles), two different gradations (fine 
and coarse), and two aggregate types (limestone and uncrushed gravel).  HMA specimens were 
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compacted using the Superpave gyratory compactor.  Each specimen had a diameter of 150 mm 
and a height of about 100 mm.  A diamond saw was used to cut these specimens vertically.   

 
 

Table 3.1. Description of Asphalt Mixes. 
 

Mix Aggregate 
Type Gradation NMAS* Natural 

Sand (%) OAC (%)** 

A 9.5 0 5.3 
B 19 0 4.4 
C 

Coarse 
19 40 4.7 

D 

Limestone 

Fine 9.5 0 6.2 
E 9.5 0 6.3 
F Gravel Coarse 19 0 5.4 

* Nominal maximum aggregate size. 
** Optimum asphalt content. 
 
 
 
Gray scale images were captured using a digital camera connected to a computer.  The original 
image was first reduced to a rectangular image with dimensions of 400×400 pixels and a 
resolution of 0.3 mm/pixel.  A pixel in a gray-scale image has intensity from 0, representing 
black, to 255, representing white.  Examples of images captured from the mixes are shown in 
Fig. 3.8.  An image was thresholded and converted to a black-and-white image, where white 
represented aggregate particles larger than the image resolution of 0.3 mm and black represented 
the matrix, which consisted of asphalt, air voids, and particles smaller than 0.3 mm.   



32 

 

 

 

 

 

       
 
 

 
  

       
 
 
 

Figure 3.8. Examples of Images with Different Aggregate Sizes. 
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Moving Window Technique 
 
The moving window technique was used to calculate the effective elastic material properties in 
Eq. (3-14) and the characteristic length scale, lc, in Eqs. (3-2, 3-4, 3-5 and 3-6).  In this method, 
an image that represents the RVE of a mix is divided into cells or windows of equal sizes.  Each 
window is shifted from the adjacent window by one pixel in the horizontal direction.  A 
parametric analysis is first conducted to determine the appropriate window size to calculate the 
effective material properties.  The percent of particles in windows of different sizes that included 
10×10 pixels (3×3 mm), 20×20 pixels (6×6 mm), 40×40 pixels (12×12 mm), and 80×80 pixels 
(24×24 mm) were calculated for mixes A and B.  
 
Small variations in percentage of particles between windows indicate more uniform distribution 
of particle sizes, while high variations indicate that a wide range of particle sizes is present 
within the microstructure.  Fig. 3.9 shows that window sizes of 10×10 and 20×20 pixels 
produced high variations in percent aggregates for both mixes, which made it difficult to capture 
the differences between these two mixes in terms of percentage of particles and size distribution.  
Using a window size of 80×80 pixels was also not effective in capturing the difference between 
the two mixes, as it showed almost the same percentage of particles in windows for both mixes.  
However, the intermediate window size of 40×40 pixels captured the differences between mixes 
A and B (Fig. 3.9).  Therefore, a window size of 40×40 pixels was employed in calculating the 
effective local material properties according to Eq. (3-14). 

 
Effective material properties are calculated in three steps.  First, the volume fraction of 
aggregates is determined within the moving window.  Second, Eq. (3-14) is used to calculate the 
effective shear and bulk moduli.  Finally, the corresponding Young’s modulus and Poisson’s 
ratio are calculated using elasticity theory.  These effective properties are assigned to the element 
in the center of the moving window. The coefficients α and β in Eq. (3-13) are calculated using 
the material properties for aggregate and binder used earlier in the idealized microstructure. 
Consequently, the coefficients α and β are found to be 3.40 and 1.67, respectively. 
 
Fig. 3.10 depicts the field of Young’s moduli within the microstructure using both the properties 
of the individual constituents and the effective local properties, respectively.  It is evident that a 
more uniform field of material properties is obtained using the effective material properties.  
This distribution is less affected by small changes that might occur in the microstructure 
distribution during image capturing and processing.   
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Figure 3.9. Volume Fraction of Particles for Different Window Sizes. 
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(a) Individual Constituent Properties 

 

 
(b) Effective Properties 

 
 
Figure 3.10. Young’s Modulus Distribution for Microstructures with Individual Constituent 
Properties and Effective Properties. 
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FE analysis using the effective properties also has a numerical advantage over using the 
individual constituent properties.  The several orders of magnitude difference in the moduli of 
the aggregate and binder can cause a numerical instability in the FE solution (Somadevan 2000).  
Using the effective material properties reduces the difference in material properties between 
adjacent elements, and consequently, eliminates this numerical limitation.   
 
As discussed in the derivation of the constitutive model in Eqs. (3-2, 3-3, 3-4, 3-5 and 3-6), the 
value of the characteristic length scale, lc depends on the microstructure distribution.  The 
moving window technique is used to analyze the microstructure distribution and calculate lc.  
Fig. 3.11 presents a schematic diagram of the application of the moving window technique.  The 
method starts by converting an image to a two-dimensional text array where 1 indicates a pixel 
that belongs to the aggregate phase and 0 refers to a pixel that belongs to the matrix.  The 
average volume fraction over the RVE domain at position vector x is given as: 

 

∫ −=
fV

dVrxg
V

g
Re

)(1           (3-15) 

 
where g is the percentage of particles within the moving window and g  is the average 
percentage of particles in the whole microstructure represented by an image. The Taylor’s series 
expansion around x gives: 

 
glxgg c

22)( ∇+=           (3-16) 
 
where )(xg  is found by averaging the volume fraction within each window in the RVE.  g2∇  is 
found by applying the central difference procedure between three adjacent windows in the 
horizontal direction. lc is calculated for every moving window, and then an average value is 
calculated to represent the microstructure.   
 
lc for the different mixes is shown in Table 3.2.  As the range of aggregate sizes becomes 
smaller, the probability for the moving windows to have more uniform percentages of particles 
increases, and consequently, lc becomes smaller.  However, variation in the concentration of 
aggregates among windows increases as the aggregate size distribution becomes wider.  
Consequently, lc increases as the particle size distribution becomes wider.  This can be seen in 
Table 3.2, where lc for the 19 mm NMAS mixes is higher than that for the 9.5 mm NMAS mixes.  
The wide range of lc values in Table 3.2 indicates the sensitivity of this parameter to 
microstructure distribution.  However, more mixes with different microstructure distributions are 
needed to establish a conclusive relationship between particle size distribution and lc. 
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Figure 3.11. Schematic Diagram of the Application of the Moving Window. 
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Table 3.2. Results of Microstructure Analysis of Asphalt Mixes. 
 

Mix NMAS 
(mm) 

Characteristic 
Length Scale 

lc  
(mm) 

Specific 
Surface 
area “s” 
(1/mm) 

Mean 
Free 
Path 
“rc” 
(mm) 

Effective 
Particle 

Size 
“rg” 

(mm) 

Average 
Percentage 

of 
Particles 

“ f ” 

 

 
*

f
2

 

Measured 
 

 
**

f
2

 

A 9.5 4.11 0.60 1.51 5.40 0.660 0.436 0.433 
B 19 5.19 0.50 1.69 9.90 0.670 0.450 0.450 
C 19 5.28 0.47 1.97 8.40 0.611 0.373 0.365 
D 9.5 3.19 0.67 1.41 3.90 0.625 0.391 0.383 
E 9.5 2.79 0.61 1.54 4.80 0.672 0.452 0.454 
F 19 4.72 0.55 1.59 9.00 0.718 0.516 0.509 

* Using direct measurement of percentage of particles. 
** Evaluated using graphical analysis of Figure 3.12. 
 
 
 
Autocorrelation Function 
 
The autocorrelation function (ACF) describes the relative arrangement of different phases in a 
composite material.  It evaluates the probability of locating two points of the same material, 
whether aggregate or matrix, separated by a certain vector.  It is assumed that the microstructure 
of asphalt mixes is statistically homogeneous, and consequently, ACF depends on the average 
difference in the coordinate values between two points rather than the locations of these points.  
In addition, the directional distribution of particles is not of interest in this study, and the ACF is 
taken as a function of the magnitude of the vector rather than its direction.  Consequently, the 
two-point ACF is given as (Berryman and Blair 1986): 

 

∑ ∑
−

=

−

= −−
++×

=
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x
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1 1 ))((
),(),(),(        (3-17) 

 
where ( ) 1, =yxf  if a pixel at point ( )yx,  is located within the aggregate phase, and ( ) 0, =yxf  
otherwise. i and j are the distances between any two pixels in two orthogonal coordinate axes.  M 
and N are the number of pixels in the HMA microstructure image in two orthogonal coordinate 
axes.  
 
The ACF carries important information about the microstructure distribution.  Debye et al. 
(1957) and Berryman and Blair (1986) have shown that the following microstructure features can 
be estimated from the ACF (Fig. 3.12): 
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where f  is the average volume fraction of aggregate particles, 22 jir +=  is the distance 
between two points in the microstructure, s is the specific surface area, and rc is the effective 
distance between particles (mean free path).  The effective particle size, rg, can also be 
determined from the ACF as shown in Fig. 3.12. 
 
 

 
 
 

Figure 3.12. Illustration of the Autocorrelation Function. 
 
 

 
Fig. 3.13 shows the trend of the correlation function for all mixes. A three-dimensional plot of 
the ACF distribution for two mixes assuming periodic microstructure is given in Fig. 3.14.  
According to the results in Table 3.2 and Figs. 3.13 and 3.14, mixes with 19 mm NMAS have 
higher rg values than the 9.5 mm NMAS mixes (A vs. B) and (E vs. F).  In addition, coarse-
graded mixes have higher rg values than the fine-graded mixes (A vs. D).  There are also 
differences between gravel and limestone mixes with similar particle size distributions.  
Limestone mixes have higher values for rc and rg and lower values for s than gravel mixes.  
These results can be interpreted by the fact that limestone aggregate are more elongated (or less 
spherical) and the particles tend to be oriented more toward the horizontal in a mix than gravel 
aggregates.  Therefore, the ACF measured in the horizontal direction gives larger effective 
length for limestone aggregates.  This shows that the parameters from the ACF can be used to 
reflect the length scales associated not only with the size of particles but with their shape as well. 
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Figure 3.13. Autocorrelation Function for Different Mixes. 
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b) Mix “C” 

 
 
 

Figure 3.14. Three-Dimensional Representation for the Autocorrelation Function. 
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Fig. 3.15 shows the relationship for the length scale parameters computed by the moving window 
and ACF methods.  The results of the two methods have good agreement and either method can 
be applied to determine lc for strain gradient theory.  

 
HMA Microstructure FE Analysis and Results 
 
The analyses of HMA microstructure are conducted using three approaches: (1) each element is 
assigned the elastic properties of the constituent that the element belongs to (conventional 
model), (2) each element is assigned effective local properties without strain gradients and 
characteristic length scales, and (3) each element is assigned effective local properties with the 
strain gradients and characteristic length scales.  The FE model is subjected to uniaxial 
displacement at the top, and is fixed at the bottom from translation and rotation displacement.   It 
is worth mentioning that FE analysis with strain gradients did not experience any convergence 
problems, and a maximum of three iterations were needed for the solution to converge using the 
procedure in Fig. 3.1. 
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Figure 3.15. Correlations Between the Characteristic Length Scale (lc), Effective Distance 
Between Particles (rc), and Effective Particle Size (rg). 
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Fig. 3.16 shows vertical strain distributions using approaches 1 and 2 described above for mix A.  
The conventional model (approach 1) produces high strain values in the thin film binder 
elements and low strain values in the elements occupied by aggregate particles.  On the other 
hand, the model with effective material properties (approach 2) yields more uniform strain 
distribution.  
 
Young’s moduli are determined using the three approaches.  These values are compared to 
experimental measurements of dynamic modulus at 10 Hz (Dessouky et al. 2004) and a 
temperature of 40°C.  This comparison is not intended to evaluate the equality between FE 
results and measurements since the measurements are frequency dependent, but rather to 
determine how the analysis and experiments rank these mixes.  The comparison is shown in Fig. 
3.17 in terms of the ratio of the modulus of each mix to that of mix B.  Measurements show that 
approaches 1 and 2 do not rank the Young’s moduli of the mixes in the same order as the 
experimental measurements.  However, approach 3, which combines the use of effective 
properties and strain gradients, ranks the mixes similar to the experimental measurements.  
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Figure 3.16. Vertical Strain Contours for Microstructure Using Individual Properties of 
Constituent and Effective Material Properties. 
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Figure 3.17. Moduli for Models with Different Microstructure Material Properties (Each Point 
Represents the Ratio of the Modulus of Mix A to the Modulus of Mix B)   
 
 
SUMMARY 
 
A methodology for microstructure analysis of HMA is presented in this chapter.  The methodology 
is based on using effective material properties that capture the influence of percentage of particles 
on the local microscopic response.   Strain gradient elasticity is employed in the FE analysis to 
capture the influence of the material length scale on material response.  Experimental procedures are 
developed to determine the material characteristic length scale using the moving window technique 
and the ACF. 
 
The results show that the developed methodology is successful in overcoming some of the 
limitations of using the individual properties of the constituents in the FE analysis of HMA 
microstructure. For example, this new methodology reduces mesh size dependency and reduces 
sensitivity of the response to small changes in microstructure caused by image capturing and 
processing.  It also reduces the risk of numerical instability that can be caused by the several 
orders of magnitude difference in stiffness between adjacent elements of the microstructure.  In 
addition, the methodology captures the influence of HMA length scales on the microscopic and 
macroscopic responses.  The results show that the developed methodology yields HMA effective 
properties that are more consistent with experimental measurements. 
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CHAPTER IV 

MICROSTRUCTURAL ELASTO-VISCO-PLASTIC CONTINUUM 
MODEL FOR HOT MIX ASPHALT 

 

INTRODUCTION 

As discussed in Chapter II of this report, rutting in hot mix asphalt (HMA) develops gradually as the 
number of load applications increases. It is caused by a combination of densification (decrease in 
volume and hence increase in density) and shear deformation. The visco-plastic continuum models 
available in the literature do not explicitly consider the influence of microstructure distribution on 
material response. The main objective of this chapter is to develop an elasto-visco-plastic 
microstructure model that accounts for important microstructure properties such as anisotropy and 
damage.  
 
The new model builds upon the formulation developed by Tashman (2003), but it is expanded to 
include the elastic response of the material and to account for the influence of stress path direction.  
In addition, the procedure to account for anisotropy in the constitutive relationship is more 
simplified.  Therefore in summary, the new model accounts for the following phenomena: 

• Elastic response prior to reaching the yielding stress threshold; 
• Shear as the dominant stress causing permanent deformation; 
• Dilation and hydrostatic pressure dependency of the material; 
• Stress path dependency of the visco-plastic response; 
• Work hardening/softening of the material; 
• Aggregate directional distribution in the microstructure; and 
• Damage in terms of cracks and air voids. 

 
 
DEVELOPMENT OF ELASTO-VISCO-PLASTIC MODEL 
 
Abdulshafi and Majidzadeh (1985), Scarpas et al. (1997a) Lu and Wright (1998), Seibi et al. 
(2001), and Collop et al. (2003), among others, are examples of research that related HMA 
response to the presence of elastic, visco-elastic, visco-plastic, and plastic components under 
load application, where the presence of each is mainly affected by temperature and loading rate. 
In the new model, material response is assumed to have an elastic recoverable component and a 
visco-plastic irrecoverable component at the high temperatures associated with permanent 
deformation.  The total strain rate ε&  is decomposed into  

 
vp
ij

e
ijij ε+ε=ε &&&            (4-1) 

 
where the superscript (e) refers to the elastic part and (vp) refers to the visco-plastic part.  A 
simple approach has been followed by many researchers in which constitutive relationship is 
developed for each strain component without coupling between the elastic and visco-plastic 
components. The elastic strain component can be defined according to Hook’s law as follows: 
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e
klijklij D ε=σ &&            (4-2) 

 
where σ&  is the stress rate tensor and ijklD  is the fourth-order elastic stiffness tensor.  
 
By inserting Eq. (4-1) into Eq. (4-2) one may obtain the rate form of the constitutive equation as 
follows: 

 
( )vp

klklijklij D ε−ε=σ &&&           (4-3) 
 
 For axisymmetric configuration, the stiffness matrix reduces to the following expression: 
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where E is Young’s modulus and ν is Poisson’s ratio.  
 
The visco-plastic component dominates the response for the material at higher magnitudes of 
stress and higher temperatures.  The visco-plastic strain rate component is defined through the 
following flow rule:  

 

ij

vpvp
ij

g
σ∂
∂

γ=ε &&            (4-5) 

 
where vpγ&  is a visco-plastic multiplier that is nonzero only when plastic deformation occurs, and 
g is a visco-plastic potential function. The potential surface is a surface in stress space containing 
the actual stress state and in case of the associated flow rule it coincides with the yield surface f: 

 
)()( ''

ijij fg σ=σ           (4-6) 
 
Hence, the associated flow rule becomes 

 

ij

vpvp
ij

f
σ∂
∂

γ=ε &&            (4-7) 
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The gradient 
ij

f
σ∂
∂ indicates the direction of the visco-plastic strain increment normal to the yield 

surface in the associated flow rule, while the magnitude of the strain vector is determined by the 
loading multiplier vpγ& .  
 
Perzyna’s theory replaces the classical plastic flow rule by incorporating an overstress function 
and a viscosity parameter that relate the rate of visco-plastic strain to the current stresses and 
loading history. Analogous to the classical theory of incremental plasticity, the visco-plastic 
strain rate is computed by means of a postulated flow rule as follows (Perzyna 1966): 

 

ij

vp
ij

gf
σ∂
∂

⋅>φ<⋅Γ=ε )(&          (4-8) 

 
where >φ<⋅Γ )( f  specifies the magnitude of the vector vpε& , Γ  is a viscosity parameter that can 
be a constant or time-dependent, and φ  is an overstress function that is typically taken as a power 
function of f. The visco-plastic potential and yield surfaces are assumed in this study to take the 
same form but with different material properties, as explained subsequently. In the above 
expressions, “< · >”, McCauley brackets, imply that: 
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fff

f
f N        (4-9) 

 
where N is a rate sensitivity parameter to be determined experimentally.  
 
Eqs. (4-8 and 4-9) indicate that visco-plastic strain will take place only if the overstress function 
exceeds zero. The flow rule given by Perzyna is the necessary kinematic assumption postulated 
for visco-plastic deformation or plastic flow. Since it may be represented by a vector in strain 
space, the flow rule in Eq. (4-8) therefore also defines the direction of the visco-plastic strain 
increment.  
 
Extended Drucker-Prager Yield Surface 
 
The yield function determines a surface in stress space defined as follows: 

 
0)( =κ−σ= ijFf           (4-10) 

 
The yield surface f  is defined as the geometric locus of states of stress corresponding to the same 
level of viscous flow. )( ijF σ  is a stress-dependent function. To account for the effect of 
confinement, shear stress and dilative behavior in HMA, an extended Drucker-Prager yield function 
with hardening is proposed in this study. The conventional Drucker-Prager yield function has been 
used by a number of researchers to describe the viscous flow behavior of HMA (e.g., Abdulshafi 
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and Majidzadeh 1985; Seibi et al. 2001; Oeser and Moller 2004).  The extended Drucker-Prager 
model is presented in the τ−Ι1  space as shown in Fig. 4.1 (ABAQUS 2004, Park et al. 2001) 

 
κ−Ια−τ= 1f           (4-11) 

 
where τ is the deviatoric shear stress, I1 is the hydrostatic stress, and α and κ are material properties. 
α is a parameter that reflects the material frictional properties of the material and κ is a hardening 
parameter that reflects the combined effect of the cohesion and frictional properties of the material. 
 
 

α

Κ

τ

Ι1  
 

Figure 4.1. Schematic Diagram of the Extended Drucker-Prager Yield Surface . 
 
 

In the extended model the hydrostatic stress and deviatoric shear stresses are defined as (ABAQUS 
2004) 
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Sij is defined as the deviatoric stress tensor and is expressed as  
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ijkkijijS δσ−σ=
3
1

          (4-14) 

 
ijδ  is the Kronecker delta, where its components are 1 if ji =  and 0 if ji ≠ . I1, J2 and J3 are the 

first stress invariant, second deviatoric stress invariant, and third deviatoric stress invariant, 
respectively. These invariants account for the effect of confinement, the dominant shear stress 
causing the visco-plastic deformation, and the direction of stress path, respectively. d is a 
material parameter representing the sensitivity of yield behavior to the hydrostatic pressure I1. In 

uniaxial compression, Eq. (4-12b) indicates that 12/3
2

3 =
J
J

 and 2J=τ , where 
d
J 2=τ   in 

uniaxial tension. To ensure convexity of the yield surface d ranges between 0.778 and 1. d value 
less than 1 indicates that the strength of the material in tension is lower than that in compression, 
as shown in Fig. 4.2.  When d = 1, the dependence on the third deviatoric stress invariant 
vanishes and the Mises circle is recovered in the deviatoric plane. 
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Figure 4.2. Shape of the Yield Surface at the Deviatoric Plane as a Function of d (ABAQUS 2004; 
Park et al. 2001). 

 
 

The influence of the d parameter on the model response is illustrated in Fig. 4.3.  Consider a point 
that is under confining pressure and is represented by point A.  Once the point is subjected to an 
increase in axial stress, both the first stress invariant and the second deviatoric stress invariant will 
increase with stress path until it starts to yield at point B. Conversely, if the specimen is subjected to 
a decrease in the axial stress (extension test), the stress path will be represented by the path AC and 
the point will yield under the stress state represented by point C.  Even under the conventional 
Drucker-Prager yield function, the yield stress in compression will be higher than the yield stress in 
tension simply because the confinement at points B and C are different.   In the modified model 
represented by Eq. (4-11), the yield stress under tension is further reduced as the slope ( 'α ) and the 
intercept ( 'κ ) of the yield surface in the 21 J−Ι  plane are multiplied by d.  
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Figure 4.3. Illustration of the Influence of Stress Path on the Yielding Point. 

 
 

 
An important factor governing the viscous behavior of a material is the phenomenon of work 
hardening. In simple terms, the phenomenon occurs during plastic deformation of the material at 
a microscopic level due to changing interactions in the aggregate-aggregate and aggregate-binder 
interfaces as the degree of deformation increases. Basically, the larger the number of particle 
contacts produced, the larger their interaction and hence the larger the stresses required for 
material yielding. When the stress level approaches the yield point, the yield surface is pushed 
outward and causes increasing in surface volume. This growing mechanism can be defined by a 
hardening evolution law.   
 
Material hardening can be captured by the evolution of α, κ or both, Tan et al. (1994) concluded 
that α remains almost constant as the material undergoes permanent deformation, while κ value 
evolves.  This conclusion is supported by the analyses conducted on experimental measurements 
used in this study and presented in Chapter VI.  The general form for the evolution of κ  is a 
function of effective visco-plastic strain.  The specific form determined in this study and based on 
experimental measurements is presented in Chapter VI. 
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MICROSTRUCTURE CHARACTERIZATION 
 
Anisotropy 
 
It is well documented in the literature that unbound granular materials display significant 
anisotropic behavior because of the preferred distribution of particles (e.g., Oda and Nakayama 
1989; Li and Dafalias 2000). Tobita and Yanagisawa (1988) stated that a constitutive model with 
anisotropic dependency can account for more aspects of deformation features of geomaterials 
than conventional plasticity theory because it represents information about anisotropic internal 
structure. Oda and Nakayama (1989) summarized the three sources of anisotropy in granular 
materials: anisotropic distribution of contact normals, which is due to particle interactions; 
preferred orientation of void spaces; and preferred orientation of nonspherical particles. Oda et 
al. (1985) observed that the first two sources can be significantly effective during low levels of 
deformation, while the last source dominates the behavior at later stages of deformation.  
 
HMA microstructure distribution can be measured using an image analysis technique (IAT), which 
is the process of converting an image into a digital form and applying various mathematical 
procedures to extract significant information from the image. Masad et al. (1998, 1999a, and 1999b) 
developed automated computer image analysis techniques to analyze the internal structure of HMA. 
The techniques were successfully implemented to evaluate different laboratory compaction 
procedures. Tashman et al. (2001) developed an IAT to quantify the microstructure of HMA based 
on aggregate orientation, aggregate gradation, aggregate contacts, aggregate segregation, and air 
void distribution. 
 
In this study, microstructure directional distribution is formulated based on particle orientation 
distribution.  This choice is motivated by a number of factors discussed by Masad et al. (2003).  
First, particle orientation resists reorientation under loading, and consequently, inherent 
anisotropy is better preserved in a formulation that accounts for particle orientation (e.g., Oda et 
al. 1985; Tobita 1989).  This phenomenon has been captured experimentally by Tashman (2003) 
as shown in Fig. 4.4.  Second, previous experimental measurements of directional quantities 
have shown that it is easier and more practical to measure particle orientation than particle 
contacts (Masad et al. 2002).  Third, particle preferred orientation is directly related to the 
deviation of particle shape from a spherical reference.  Such a relationship offers the opportunity 
to predict the anisotropy level based on measurements of particle shape without the need to 
conduct microstructure measurements (Masad et al. 2003).   
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Figure 4.4.   Effect of Deformation on the Vector Magnitude (after Tashman 2003). 

 
 

Tashman et al. (2001) measured aggregate directional distribution in HMA, where the orientation 
of an aggregate particle is defined by the angle between its major axis and a horizontal line on 
the scanned image. The major axis length is defined by the greatest distance between two edge 
points of the boundary contour.  Masad et al. (1998) reported that aggregate orientation in HMA 
exhibits inherent transverse anisotropy with respect to the horizontal direction.  The major axes 
of particles tend to be oriented in the horizontal direction, and consequently, the horizontal plane 
represents the major principal direction and the vertical plane represents the minor principal 
direction.   
 
The directional distribution of particles has been quantified on images of  vertical sections of 
HMA by using the vector magnitude, Δ  (e.g., Masad et al. 1998; Tashman et al. 2001):  

 

( ) ( ) (%)2cos2sin100)( MagnitudeVector 22
kkn

 θ∑+θ∑=Δ     (4-15) 

 
where θk is the orientation of the major axis of an individual aggregate on an image from     -90o to 
+90o measured from the horizontal direction (the positive sign indicates that the angle is measured 
counterclockwise from the horizontal direction, as shown in Fig. 4.5) and n is the number of 
aggregates on that image.  Theoretically, the value of Δ ranges between 0 and 1, and practically it 
varies from 0 to 0.5 for HMA. A value of 0 indicates the aggregates are completely randomly 
distributed, which reflects an isotropic distribution, and a value of 1 indicates the aggregates are all 
oriented in the same direction.  
 
Oda et al. (1985) and Tobita (1989) introduced a microstructure tensor that aimed to describe the 
particle orientation in the material response.  
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∫
Ω

Ω= dmEmmF jiij )(   (i, j = 1, 2)       (4-16) 

 
where mi (i = 1, 2) are components of a unit vector m projected on the orthogonal reference axes 
xi (i = 1, 2); Ω is a solid angle corresponding to the two-dimensional plane (Ω = 2π); and E(m) is 
a probability density function that describes the spatial distribution of the vector m. Given the 
transverse anisotropic distribution of particles in HMA, the ijF  tensor can be presented in 
diagonal form by three principal values: F1, F2, and F3, as follows (Oda and Nakayama 1989):  
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Figure 4.5. Schematic Diagram of Anisotropy in a Conventional HMA Microstructure.  

 
  

 
Microstructure directional distribution is accounted for within the framework of the representation 
theorem of isotropic functions such that the principle of material objectivity or frame indifference is 
satisfied (Tobita 1989).  An effective stress tensor is introduced that combines the stress tensor and 
the microstructure distribution tensor as follows:   

 

[ ]kjikkjikij FF σ+σ=σ
2
3          (4-18) 

 
where ijσ  is the modified stress tensor that considers the material anisotropy. The formulation 
for the effective stress tensor can involve higher-order microstructure tensors. However, for 
simplicity, only the second-order microstructure tensor is considered.    
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Damage 
 
Damage models describe material weakening caused by formation of air voids and propagation 
of cracks that consequently may lead to material failure. A new discipline has been developed 
recently to investigate the growth of microcracks and the mechanical behavior of damaged 
materials by representing the effect of distributed cracks in terms of certain mechanical variables 
(Murakami 1983). This method is called continuum damage mechanics (CDM), in which 
damage is defined as a microstructural change that induces some deterioration in the material.  
Kachanov (1958) introduced the concept of the effective stress theory, which has been 
successfully implemented to describe damage in terms of crack nucleation and growth within the 
framework of CDM.  
 
The effective stress theory indicates that material damage can be characterized mainly by the 
decrease in the load-carrying effective area caused by the development of microscopic cracks 
and cavities (Murakami 1988). The theory postulates that a damaged material subjected to a state 
of stress can be represented by a perfect material subjected to a fictitious stress. The fictitious 
stress is equal to the stress applied to the damaged material magnified by the decrease in the 
load-carrying effective area as shown in Eq. (4-19). This magnification factor is referred to as the 
damage parameter and is an indication of the material state of damage.  
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where ξ is an internal variable that accounts for the effect of damage in terms of cracks and air voids 
that varies from 0 for presently undamaged material to 1 for a completely damaged phase. 
Pioneering work by Desai (1998) proposed to adopt the notion that damage is a function of 
confining pressure and effective visco-plastic strain as follows: 

 
),( 1 vpεΙξ=ξ            (4-20) 

 
Implementing the modified stress tensor using Eq. (4-18) and the effective stress theory in Eq. (4-
19) into the extended Drucker-Prager yield function Eq. (4-11), the invariants ee JI 21 ,  and eJ 3  
become as follows: 
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and the extended Drucker-Prager yield function is modified to the form 
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κ−Ια−τ= eef 1           (4-22) 
 
Assuming a power law function for the viscous flow, Eq. (4-22) and Eq. (4-8) lead to 
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The modified stress tensor modified for anisotropy and damage is used instead of the stress 
tensor in the constitutive relationship shown in Eq. (4-3).  Therefore, the influences of anisotropy 
and damage are reflected in the elastic and visco-plastic deformation of the material. 
 
 
PLASTIC POTENTIAL FUNCTION 
 
It is well documented in the literature that granular materials exhibit nonassociative behavior in 
which the yield surface and the potential surface do not coincide. Experimental observations 
indicate that the associated flow rule produces more dilation than experimental measurements 
(e.g., Zeinkiewicz et al. 1975; Oda and Nakayama 1989). It follows that a dilation parameter of a 
value less than α should be incorporated in the model. It is assumed as shown in Fig. 4.6 that the 
potential surface takes the same linear form of the yield surface but with smaller slope β which 
influences the proportions of the volumetric and deviatoric strains. 

 
 
 

 
 
 

Figure 4.6. Relationship Between Slopes of the Yield Surface and the Potential Surface. 
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In order to evaluate the gradient operator for the potential function 
ij

g
σ∂
∂  in the constitutive Eq. 

(4-8), a triaxial state of stress is utilized. According to Eqs. (4-17 and 4-18), the principal state of 
stresses for the triaxial setup is expressed as 
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and the modified invariants as defined by Eq. (4-21) are given in the form 
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Substituting Eq. (4-25) into Eq. (4-12b) one obtains 
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The gradient of the potential surface can be expressed with respect to the stress dependent 
variables to become 
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Considering β and κ as stress-independent parameters, the derivatives of the invariants with 
respect to the stress can be expressed as follows: 
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Substituting Eq. (4-28) into Eq. (4-27) the derivative of the yield function becomes 
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By decomposing Eq. (4-29) the components of the gradient 
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EFFECTIVE STRESS AND EFFECTIVE VISCO-PLASTIC STRAIN 
 
In order to evaluate the hardening and damage parameters explained previously, an expression for 
effective stress and effective visco-plastic strain is required. Chen and Han (1988) indicated that to 
evaluate effective stress the stress function )( ijF σ  defined in Eq. (4-10) is employed. For a uniaxial 
compression state of stress effective stress is reduced to the uniaxial stress σ1. Chen and Han (1988) 
showed that )( ijF σ  can be defined as a power law function in terms of effective stress 
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where C and m are constant coefficients. Following similar manipulation using a uniaxial state in 
Eq. (4-18) and the modified invariants in Eq. (4-21) one can obtain  
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By inserting Eq. (4-32) into Eq. (4-31) one can solve for the constants  
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and effective stress is found to be 
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Chen and Han (1988) also emphasized a methodology for finding the effective visco-plastic strain 
by using the principle of visco-plastic work per unit volume assuming a homogeneous stress 
function in the form of  
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and from Eq. (4-8) 
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Substituting Eqs. (4-27, 4-30, 4-31, 4-33, 4-34, and 4-36) into (4-35) yields:  
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It can be shown that for the triaxial state of stresses, Eq. (4-37) is reduced to uniaxial visco-plastic 
strain rate vp

11ε& , and effective visco-plastic strain obtained by integrating Eq. (4-37) over time.  
 
 
EFFECT OF ANISOTROPY ON MATERIAL DILATION  
 
The anisotropic distribution of particles affects the relative sliding of particles, and hence it 
influences the dilation of granular materials.  The relationship between anisotropy and dilation 
has been studied experimentally by several researchers (e.g., Oda 1972; Wan and Guo 2004).  
This section offers an analytical derivation of the relationship between the level of anisotropy 
and dilation.   
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The slope of the potential function for an isotropic material (Δ = 0, d = 1) is defined by the slope 
β. In the modified stress space τ−Ι1 , the slope of the plastic potential function is *β , which is 
defined as the ratio of the volumetric strain rate vp

vε& to the deviatoric strain rate vp
dε& as follows: 
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after manipulations using Eqs. (4-8, 4-30, and 4-39) and substituting into Eq. (4-38) it follows  
that 
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where for an isotropic material Eq. (4-40) reduces to β .  
 
Fig. 4.7 shows the relationship between *β  and β.  It can be seen that dilation increases with an 
increase in anisotropy represented by the Δ value.  This is an important finding, as it captures the 
experimental measurements made by other researchers on granular materials.  For example, Oda 
(1972) found that maximum dilation was obtained when particles were oriented in the horizontal 
direction while the major principal stress was imposed in the vertical direction.  It is found in 
recent experimental measurements that Wan and Guo (2004) agreed with Oda’s results.   
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Figure 4.7. Relationship Between Dilation Parameters at Different Anisotropy Levels. 
 
 

 
The dilation parameter β can be determined experimentally for the triaxial case using the ratio of 
lateral and uniaxial visco-plastic strain rate. Using Eqs. (4-8, and 4-30) the visco-plastic strain 
rate ratio can be given as: 
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SUMMARY 
 
This chapter includes the development of a microstructure elasto-visco-plastic nonassociated 
continuum model that links microstructure properties in terms of aggregate orientation and 
nucleation of voids to visco-plastic deformation of a material. The model was developed within the 
continuum framework and it has elastic and visco-plastic components.  Hook’s law is used to 
evaluate the elastic strain, while an extended Drucker-Prager yield surface is implemented to 
account for the visco-plastic component. The model has a damage parameter to account for the 
effect of void growth in softening the material and also has an anisotropy parameter to account for 
the aggregate distribution within the microstructure. The model also accounts for the dependency of 
HMA response on stress path direction by using the yield stress ratio parameter d.  
 
The aggregate distribution is described by the vector magnitude (Δ), which quantifies the material 
anisotropy. Nucleation of air voids and microcracks is accounted for by a damage parameter based 
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on the effective stress theory. The damage parameter is found to be a function in effective visco-
plastic strain and hydrostatic pressure. Material hardening as a result of microstructure constituent 
interaction is modeled using a hardening parameter that depends on effective visco-plastic strain.  
The effect of anisotropy is included in the elastic and visco-plastic components of the model, while 
damage is considered only in the visco-plastic phase. 
 
The visco-plastic model was used to develop an analytical relationship between dilation and 
anisotropy.  It was found that material dilation increases as the level of anisotropy increases.   
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CHAPTER V 

FINITE ELEMENT IMPLEMENTATION AND PARAMETRIC ANALYSIS OF THE 
ELASTO-VISCO-PLASTIC CONTINUUM MODEL 

 

INTRODUCTION 
 
The advantage of using continuum modeling is the feasibility of its implementation in finite element 
(FE) analysis. The model is expressed in a time-step framework, and thus the concept of the viscous 
phenomenon is implemented through an incremental step.  

 
Numerical integration including explicit and implicit methods of time integration for rate-dependent 
materials like hot mix asphalt (HMA) has been presented in many studies. Hughes and Taylor 
(1978), Peirce et al. (1984), Yoshimura et al. (1987), Szabo (1990), Auricchio and Taylor (1995), 
Marin and Mcdowel (1997), and Alfano et al. (2001) are examples of work that developed an 
integration algorithm for elasto-visco-plasticity problems.  
 
Hughes and Taylor (1978) proposed an application for implicit methods that requires inversion of a 
compliance matrix.  Peirce et al. (1984) proposed a one-step forward gradient time integration 
scheme that leads to a tangent stiffness type method for rate-dependent materials. Yoshimura et al. 
(1987) presented two alternate tangent modulus FE methods using a midpoint radial return implicit 
algorithm for rate-dependent visco-plastic material. Szabo (1990) compared different time 
integration algorithms and proposed a new method for calculating effective visco-plastic strain 
increments. Auricchio and Taylor (1995) proposed what is socalled a generalized visco-plastic 
model that has a visco rate-dependent behavior bounded by two rate-independent plasticity models. 
Marin and Mcdowel (1997) presented kinetic equation and dynamic yield surface approaches for a 
semi-implicit constitutive integration procedure for rate-dependent materials. Alfano et al. (2001) 
developed a general solution for solving elasto-visco-plastic problems by replacing the consistency 
condition with a relation between the visco-plastic multiplier and the viscous flow. 
 
Elasto-visco-plasticity problems have made significant progress in the computational treatment of 
the relevant boundary value problem. Numerical algorithms for constitutive models have been 
mainly derived using plasticity theory and rely on classical operator methodology based on elastic 
prediction and plastic correction phases. One of the main tasks of computational plasticity is to 
integrate the rate equations ensuing from elasto-plasticity and visco-plasticity in a consistent, 
accurate, and efficient fashion (Heeres 2001). Simo and Hughes (1998) indicated that the numerical 
solution of elastic-visco-plastic boundary value problems is based on an iterative solution of the 
discretized momentum balance equations. They summarized the load/time-step solution into three 
main steps if the converged configuration at step n is given: 
 

1. compute a new configuration for step (n+1) via an incremental motion that is used to 
compute incremental strains εΔ  at every stress point using the discretized momentum 
equations, 
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2. Update the state variables such as stress and internal paramters ( 11, ++ φσ nn ) and the 

visco-plastic strain component vp
n 1+ε  by integration of the local constitutive equations for 

the given incremental strains εΔ , and 
3. Check the balance of momentum using the new computed stresses and, if violated, 

iterations are performed by returning to step 1. 
 

Step 2 is considered the central problem of computational plasticity, since it plays the main role of 
the constitutive equations in the computations. In FE analysis the elasto-visco-plastic constitutive 
equations are usually incorporated through a separate set of constitutive subroutines. The purpose of 
these subroutines at given a deformation history is to integrate the elastic-visco-plastic constitutive 
equations to return the corresponding stress history at every stress point. 

 
This chapter includes implementation of the elasto-visco-plastic constitutive model in FE analysis 
using an implicit numerical integration algorithm, called Euler backward predictor, carried out in a 
time-step control. The equations that govern the evolution of stress, internal variables, inelastic 
deformation, and nonlinear parameters are discretized in an incremental format. The algorithm is an 
elaborating of the elasto-visco-plastic constitutive model presented previously in Chapter IV.  The 
model is implemented in FE ABAQUS software to establish material behavior under a variety of 
loading and boundary conditions. Furthermore, the FE program is used to conduct a parametric 
analysis of the developed model to investigate the effect of model parameters, such as anisotropy, 
damage, hardening, stress path direction, and loading conditions, such as confinement, and loading 
rate, on the macroscopic visco-plastic deformation of HMA. 

 
Currently the FE method is being utilized in several engineering problems for the purpose of 
understanding the role and contribution of engineering properties (e.g., material stiffness, material 
strength, and fracture energy) of the constituent materials of the composite in macroscopic response 
(e.g., deflections, load carrying, capacity, etc.).  

 
A number of studies related to pavement analysis have been conducted using FE codes. 
ABAQUS is one of the most versatile FE programs and has been successfully implemented by 
Zaghloul and White (1993), Seibi et al. (2001), Papagiannakis et al. (2002), and others. 
ABAQUS is a general-purpose, two and three-dimensional, dynamic, production-oriented FE 
code designed to address linear and nonlinear structural problems. It provides a powerful and 
efficient way to analyze the nonlinear response of pavements to various loading patterns and 
allows for the following which can be used to simulate pavements: 

 
• Complex and simple geometries; 
• Various boundary conditions and interactions among constituents; 
• Various loading conditions (static, dynamic, uniform and non-uniform contact pressure); 

and 
• Various linear and nonlinear material properties for HMA.  

 
 

The subroutine to define the material constitutive equation used by ABAQUS is called the user-
defined material subroutine (UMAT). This subroutine facilitates incorporating of different models 
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without affecting the main code of the program. The advantage of using UMAT is to define the 
material’s mechanical behavior. 
 
 
DISCRETE FORMULATION OF THE CONTINUUM MODEL 
  
This section describes the development of a numerical scheme for the constitutive model. The 
scheme relies on the classical operator split methodology based on elastic predictor and plastic 
correction phases. A fully implicit integration scheme is adopted to ensure accuracy and stability; 
thus, a backward Euler scheme for the time integration of the elasto-visco-plastic model is used. In 
the case of fully coupled elasto-visco-plastic behavior, the Newton-Raphson iterative scheme is 
associated to define available initial solutions. The proposed constitutive model is decomposed into 
elastic and visco-plastic strain components in incremental form as presented in Chapter IV:  

 
vpe εΔ+εΔ=εΔ           (5-1) 

 
where the elastic strain increment component can be defined according to Hooke’s law and the 
visco-plastic strain rate is defined using Perzyna’s visco-plastic model and a nonassociative flow 
rule as follows: 

 
eD εΔ=σΔ :            (5-2) 

 

tgfvp Δ⋅
σ∂

∂
⋅>φ<⋅Γ=εΔ )(          (5-3) 

and hence the stress increment is given by 

⎟
⎠
⎞

⎜
⎝
⎛ Δ⋅

σ∂
∂

⋅>φ<⋅Γ−εΔ=σΔ tgfD )(:         (5-4) 

 
The numerical algorithm associated with the elasto-visco-plastic computation is based on the return 
mapping algorithm, which leads to an elastic predictor-visco-plastic corrector sequence. In elasto-
visco-plasticity, the problem is solved by subdividing the time frame interval into a finite number of 
time steps.  Let t be a fictitious time quantity. At time nt  it is assumed that the total nε and visco-

plastic strain vp
nε , the stress fields nσ , and the state variables nκ , are converged and known at the 

initial time; that is, 
 
{ }nn

vp
nn κσεε ,,,  Given parameters at time nt       (5-5) 

 
Assuming the incremental displacement field 1+nu – nu  is known, the basic problem is to update the 
fields described in Eq. (5-5) to 1+nt  in a manner consistent with the elasto-visco-plastic constitutive 
equations. To integrate these equations over time, the general methodology of a return mapping 
algorithm for a time-dependent problems is integrated. At the initial time step, the trial elastic stress 
is computed using the elastic predictor problem that elaborates initial conditions known from the 
preceding time step. If the trial stress is located inside the yield surface then an elastic response 
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occurs, whereas a stress state outside the yield surface implies development of visco-plasticity. At 
this stage the visco-plastic corrector problem is solved by mapping the trial stress to the yield 
surface to maintain consistency.  

 
The algorithmic value of a visco-plastic strain increment over a time interval nn ttt −=Δ +1  can be 
defined as  
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where vpε&  is the driven strain and θ  is a coefficient that determines the integration scheme state. θ  
ranges between 0, for an explicit integration scheme, and 1, for fully implicit or backward Euler 
integration scheme. A mid-point rule is recovered if θ  = 0.5, but it holds only for small strain 
increments. Rather the fully implicit scheme also ensures stability and accuracy for large strain 
increments. Therefore, throughout this chapter, the backward Euler scheme is adopted for the 
integration algorithm.  

 
By using Eqs. (5-3, 5-4, and 5-6) the continuum model of evolution may be written in the following 
discrete form: 
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where D is the elastic stiffness matrix, and f and g are the yield and potential functions, respectively. 

vpε  is the effective visco-plastic strain, which is necessary to update the internal state variable of the 
model evolutions.  

 
A time-step-dependent visco-plastic consistency parameter is introduced that, according to the 
viscous flow in Eq. (5-3) it takes the form: 
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where the trial stress can be given by: 
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Before the model evolution can be established, it is necessary to define the initiation of the viscous 
flow by introducing the following condition: 
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01 ≤+

t
nf  implies that elastic response occurs; hence, all the unknowns at 1+nt  are set equal to the 

initial conditions. The trial value 01 >+
t

nf , which is nonadmissible during the visco-plastic flow, 

leads to a positive value for vpγ& ; hence, a visco-plastic correction is required (e.g., Ristinmaa and 
ottosen 2000; Alfano et al. 2001). 

 
Analogous to the work by Alfano et al. (2001), who established an equivalent to the consistency 
condition in the plasticity problem, the following condition is introduced to evaluate the visco-
plastic multiplier 
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Substituting Eqs. (5-9, and 5-13) into Eq. (5-12) one gets 
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Eq. (5-12) replaces the condition of 1+nf = 0 in plasticity, and the Newton-Raphson iteration scheme 
is applied to solve the nonlinear form of this condition. The  Newton scheme requires the derivative 

vpγ∂
χ∂
&

 to be determined, so by applying the chain rule in Eq. (5-14) one can obtain 
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Using Eqs. (5-13, and 5-14), the following functions are obtained: 
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The derivatives 
vpε∂
ξ∂  and 

vpε∂
κ∂  can be obtained from the evolution law of damage and hardening 

formulation described later in Chapter VI. By substituting Eq. (5-16) into Eq. (5-15) the derivative 
function becomes: 
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Once the visco-plastic multiplier has been determined, the values of the unknowns are updated at 
time 1+nt  according to the following: 
 

( )

( ) ( ) vp
nvpnvp

n
vpvp

n
vp
n

vp
nnn

n

D

γλ+ε=ε

γ+ε=ε

ε−ε=σ

+

++

+++

&

&

1

11

111 :

         (5-18) 

where λ is a scalar quantity that can be determined by using the equality 
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ALGORITHMIC ELASTO-VISCO-PLASTIC TANGENT MODULI 
 
Nagtegaal (1982) pointed out that using the algorithmic tangent moduli in the integration algorithm, 
as opposed to the continuum moduli, is essential to preserve the quadratic rate of asymptotic 
convergence that characterizes the iteration procedures in FE analysis. Pioneering work by Alfano 
et al. (2001) determined that the formulation of the algorithmic tangent moduli is expressed by 
using linearization of the elastic stress-strain relationship in Eq. (5-4), which yields: 
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In view of Eqs. (5-19, and 5-20) it follows that 
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where  
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To evaluate the quantity vpdγ& , Eq. (5-12) is linearized so that one can obtain the visco-plastic 
consistency condition:  
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Inserting Eq. (5-23) into Eq. (5-21), vpdγ&  can be expressed as: 
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Inserting Eq. (5-24) into Eq. (5-21), and differentiating with respect to 1+εn  yields 
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Defining 
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and noting that the algorithmic tangent moduli is defined as
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 it follows that 
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A summary of the integration algorithm for the evolution of the constitutive model is summarized in 
Figs. 5.1 and 5.2. 
 
 

1- Assume internal state of strain and compute trial elastic stress  
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ELSE 
3- Compute the visco-plastic multiplier using Fig. 5.2. 
4- Update visco-plastic strain, effective strain and stress 
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5- Compute algorithmic elasto-visco-plastic tangent moduli 
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ENDIF 
 
 
 
 
 

Figure 5.1. Numerical Integration Scheme for Elasto-Visco-plastic Continuum Model. 
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1- Initialize 
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2.2 Update effective visco-plastic strain 
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Figure 5.2. Newton-Raphson Numerical Scheme to Evaluate the Visco-plastic Consistency 
Parameter. 
 
 
 
FINITE ELEMENT IMPLEMENTATION 
 
  
ABAQUS was used to develop a quadrilateral two-dimensional four-node axisymmetric FE model. 
The algorithm described previously was programmed using the FORTRAN language in a user-
defined material subroutine in the ABAQUS/Standard FE library, named UMAT. For the purpose 
of conducting a parametric analysis to study model parameter sensitivity, the FE model geometry 
with loading and constrained condition is presented in Fig. 5.3. Model constraint is applied on the 
lower and lateral sides to prevent deformation in the vertical and radial directions, respectively. The 
upper and opposite sides are left free for applying loading conditions. The model is loaded at a 
uniform vertical strain rate in addition to a confining pressure. The analysis is conducted in 
perturbation mode with a time increment. Stress and strain components are recorded at each time 
step. 
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Figure 5.3. FE Geometric Model and Prescribed Boundary Conditions.  

 
 
 
Parametric Analysis 
 
Parametric analysis of the constitutive relationship is conducted using the FE model.  Parametric 
analysis is useful to illustrate the efficiency of the constitutive relationship in capturing key features 
of the behavior of HMA.   The parametric analysis illustrates the effects of yield function 
parameters α, β, d, and κ; microstructure parameters, Δ, and ξ; flow function parameters Γ and N; 
and loading conditions, such as confinement pressure I1 and strain rate ε& , on the model response. In 
this section the role of each parameter is explained briefly and its influence on the model behavior is 
discussed. The values of the parameters used in this analysis represent the range of values obtained 
in Chapter VI based on experimental measurements. 
 
Yield Function Parameters 
 
When a material undergoes viscous deformation the yield surface geometry changes according to 
the hardening rule that governs this phenomenon.  Several hardening rules such as isotropic, 
kinematic, and mixed hardening can describe the growth of the yield surface. In this study, the 
model parameter κ describes the isotropic hardening of the material. The parameter controls the size 
of the yield surface, which increases with increasing κ. κ is a stress-independent parameter, but it is 
generally defined as a function of the deformation history. Throughout the loading if the material 
continues to harden the yield surface continues to grow. In a typical stress-strain relationship, the 
parameter remains constant during the elastic range, in which it reduces to initial hardening (κ = κo). 
However, as soon as the material initiates viscous flow, the hardening increases until the material 
reaches its ultimate strength (κ = κn) as implied in Fig. 5.4(a). In the degradation (softening) phase, 
once the material starts to soften the hardening stabilizes and the evolution of damage is responsible 
for the softening of the material. In this study, softening is due to multiplying the κ value by ( )ξ−1  
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where ξ is the damage parameter.  As shown in Fig. 5.4(b), this parameter controls both the 
magnitude and location of the ultimate strength.  

 
Fig. 5.5(a) implies that the model parameter α determines the slope of the yield surface, which 
increases with increasing α. α is a stress-independent parameter, that could be a function of visco-
plastic strain and strain rate. α is a parameter that reflects the frictional properties of the material, 
which increase with increasing α. The evolution of α is the result of changes in the aggregate 
structure associated with friction and dilation when the material is under confinement. An increase 
in α causes an increase in the material yielding stress and ultimate strength as shown in Fig. 5.5(b). 
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b) Influence on Stress-Strain Relationship 

 
 

Figure 5.4. Effect of Hardening / Softening Parameter.  
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Figure 5.5. Effect of Frictional Parameter . 

 
 

The parameter β is the slope of the visco-plastic potential surface that is associated with viscous 
flow. Granular materials in general develop dilation when they are subjected to deviatoric stresses. 
Experimental observations indicate that the associated flow rule is not applicable for granular 
materials (e.g., Zeinkiewicz et al., 1975; Oda and Nakayama 1989). Therefore, a potential surface 
exists and the slope of this surface is determined by the parameter β, which is consequently lower 
than the slope of the yield surface α. β reflects the dilative potential of the material and therefore, 
influences the proportions of the volumetric and deviatoric strains. As expected, Fig. 5.6 indicates 
that as β increases the material exhibits more volumetric change.  Recall from Chapter IV, that the 
dilation parameter in the new model *β  becomes higher than β as the material becomes more 
anisotropic. 
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Figure 5.6. Influence of Dilation Parameter on Proportion of Deviatoric and Volumetric Strain. 
 
 
Microstructure Parameters 
 
Vector magnitude Δ is an internal material parameter that reflects the directional distribution of the 
microstructure. Δ is a measure of the preferred orientation of particles. Increasing anisotropy 
increases the percentage of particles oriented in the horizontal direction, leading to more contacts in 
the vertical direction. Development of contacts increases resistance to deformation in vertical 
direction. Therefore, Fig. 5.7 illustrates that anisotropy tends to increase the stability of the material 
in the uniaxial direction.   
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Figure 5.7. Influence of Anisotropy on Stress-Strain Relationship. 

 
 
 

The damage parameter ξ accounts for softening of the material due to formation of cracks and air 
voids associated with viscous flow. ξ is defined based on the effective stress theory as the ratio of 
the area of voids to the total cross-sectional area of a specimen. The shape of the stress-strain curve 
in the softening phase reflects the level of damage. Materials with no damage create a stable 
response represented by an asymptotic response, while those with damage produce a reduction in 
the stresses; the percentage of the reduction depends on the damage level as illustrated by Fig. 5.8.  
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Figure 5.8. Stress-Strain Relationship at Different Damage Levels. 
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Flow Function Parameters 
 
The viscosity parameter Γ controls the growing rate of the yield surface. It can be seen from Fig. 
5.9(a) that a slight change in the viscosity parameter Γ could produce a significant change in the 
stress-strain relationship. As the parameter decreases, the yield surface size increases and the 
ultimate strength is reached at a higher strain level. This parameter operates only when the material 

exhibits visco-plastic flow, and when the condition 01
⇒

Γ
, the rate-independent elastoplastic 

model is recovered as shown in Fig. 5.9(b). Γ is associated with the overstress function to account 
for stresses outside the elastic domain. Fig. 5.9(b) illustrated the influence of the parameter on 
viscous flow of the material. Visco-plastic strain is found to increase as the viscosity parameter 
increases. This observation is true as indicated by Eq. (5-3). 
 
The model parameter N controls the shape of the overstress function and the level of the non-
linearity of the Perzyna model. Fig. 5.10(a) implies that for N = 1 Perzyna model reduces to the 
linear viscous flow formulation while for N > 1 viscous flow becomes non-linear. By definition N is 
a material constant which accounts for the rate sensitivity of the material. In general, for plastic 
materials the parameter N ranges from 1 to 10 (Khaleel et al. 2001). A value less than one is not 
applicable as indicated by Fig. 5.10(b) where no visco-plastic strain is detected in uniaxial and 
lateral directions.  
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Figure 5.9. Effect of Viscosity Parameter. 
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Figure 5.10. Effect of Rate Sensitivity Parameter. 
 
 
Loading Conditions Effect 
  
The model parameter d determines the shape of the yield surface in the deviatoric plane. When d = 
1 the yield surface is a complete circle analogous to the Von Mises yield surface, and as d decreases 
the surface results in a triangular surface. d is a material parameter representing the sensitivity of 
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yield behavior to the hydrostatic pressure I1. The parameter d is the ratio of yield stress in uniaxial 
tension to that in uniaxial compression. The parameter controls the material behavior according to 
the state of stress. Material under compression or tension shows equal response when d = 1 (circular 
yield surface), while different response is detected at d = 0.778, as shown in Fig. 5.11(a). Changes 
in the value of d may also produce unrealistic shapes for the yield surface. For example, at d = 0.5 
the surface loses its convexity geometry. Fig. 5.11(b) shows that changes in the anisotropy level 
control the response in the uniaxial axis σ1, leaving the lateral axes with minor changes. Appropriate 
values of the yield stress ratio d alter the compression stress response (if θ = 0°) so that compressive 
stress is higher than that in tension stress.  

 
The Drucker-Prager yield surface is projected in the deviatoric plane as shown in Fig. 5.11 where ρ 
is the radius from the origin to the yield surface and θ is the measured angle from the radius to the 
σ1-axis. According to the microstructure tensor, anisotropy exhibits directional dependency for all 
ranges of the angle θ. It also provides yield stress dependency under the same loading condition 
according to the imposed plane. For example, the tension yield stress at plane θ = 60° is different 
from that corresponding to plane θ = 180°.  Fig. 5.11(b) shows the projection of the yield surface on 
the deviatoric plane at d = 0.778. The yield stress in the axial direction (direction 1) increases as the 
material anisotropy increases, while no change in stress is recorded for the radial direction 
(directions 2 and 3). 
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a) Influence of Yield Stress Ratio 

 

 
b) Influence of Anisotropy  

 
Figure 5.11. Effect of Yield Stress Ratio and Anisotropy on Yield Surface Geometry at the 
Deviatoric Plane. 

 
 

 
HMA is a rate-dependent material. Its properties such as Young’s modulus and ultimate strength are 
highly dependent on loading rate. Fig. 5.12 shows the dependency of the material on the rate of 
loading. Increasing the loading rate increases the material strength. The proposed model indicates 
that the material strength is analogous to the behavior of granular materials. Fig. 5.12 shows the 
axial stress versus the axial strain and radial strain for different strain rates and indicates that the 
material is sensitive to the stress path captured by the strength in compression versus tension. 
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Stresses in general are sustained by aggregate-aggregate and binder-aggregate interactions. Each 
interaction contributes to the ultimate strength according to the stress path. Aggregate-aggregate 
interaction carries most of the stress in compression while its contribution against tensile load is 
minimal.  Binder-aggregate contributes to sustain tensile load, but its contribution is relatively 
small. This observation is noticed in the hardening evolution zone in compression versus tension.  

 
Lateral strain consequently expresses similar behavior to uniaxial strain, as shown in Fig. 5.12(b). 
Higher strength and relatively more stable response are obtained with compressive loads. Fig. 5.12 
indicates that material deterioration starts early in the lateral direction as can be shown in the strain 
level corresponding to the ultimate strength. This observation can be explained by material 
anisotropy, as anisotropy increased the stiffness in the uniaxial direction. 
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a) Influence on Axial Stress- Axial Strain Relationship 
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b) Influence on Axial Stress- Lateral Strain Relationship 

 
 
 
Figure 5.12. Effect of Strain Rate . 
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a) Influence on Axial Stress- Axial Strain Relationship 
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b) Influence on Axial Stress- Lateral Strain Relationship 

 
 

 
 
 
Figure 5.13. Effect of Confining Pressure . 
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The material generates different responses under a variety of confining pressures. Confining 
pressure provides stability to the material to sustain an applied load. On the contrary, when the 
material undergoes extension stresses the minimum strength is attained when the material is 
subjected to a high level of confinement as shown by Fig. 5.13. The confining pressure improves 
the stability of the material during compaction but this stability declines in tension. Lateral strain, on 
the other hand, behaves similar to uniaxial response. Analogous to the behavior with respect to the 
rate of loading and recognizing the existence of material anisotropy, the material exhibits more 
stability in the uniaxial direction.  

 
 
SUMMARY 
 
The developed elasto-visco-plastic model is incorporated in the UMAT subroutine available in 
ABAQUS.  Implementation of the model in this routine is in the form of a fully implicit 
algorithm with time-step control for numerical integration of the internal state variables. Implicit 
integration in the form of the backward Euler scheme provides an efficient local solution to the 
internal state. The Newton-Raphson iterative scheme is utilized to define available initial 
solutions. The numerical algorithm associated with the elasto-visco-plastic treatment is based on 
the return mapping concept, which leads to an elastic predictor-plastic corrector algorithm. The 
algorithm includes a consistency condition analogous to plasticity to evaluate the visco-plastic 
multiplier. As a result of the implicit numerical integration, algorithmic tangent moduli are made 
available to the global ABAQUS solution which results in a quadratic rate of convergence in the 
global iteration to reduce the computational time in FE analysis.  

 
A parametric analysis was conducted to investigate the effect of key parameters in the model on 
material response. The results clearly show that the model is sensitive to material hardening (κ), 
dilation (β), anisotropy (Δ), void nucleation and growth (ξ), and stress path direction (d). The study 
also shows that increasing loading rate and confinement causes increasing in yield stress.  

 
An increase in the anisotropy level causes an increase in the yield stress of the material (increases its 
strength) in the axial direction normal to the preferred orientation of particles.  The yield strength in 
the direction parallel to the orientation of particles decreases slightly with an increase in anisotropy.  
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CHAPTER VI 

EXPERIMENTAL EVALUATION OF MODEL PARAMETERS 

 
INTRODUCTION 

 
This chapter discusses the experimental and analytical methodologies used to determine the 

model parameters for the yield function, flow rule, and damage function.  The parameters were 
determined for three mixes prepared using different aggregates compression and extension triaxial 
tests at different confining pressures and strain rates were used to evaluate model parameters.  The 
parameters were used in the finite element (FE) analysis, and the results of FE simulations were 
compared with experimental measurements. FE also is used to simulate pavement section and 
predict rutting profile due to wheel loads.  

 
 
SPECIMEN PREPARATION AND TESTING PROGRAM 

 
Twenty four HMA specimens of granite, limestone, and gravel mixes were fabricated using the 
Servopac gyratory compactor to a target air void content of 7.0 %. All three mixes were prepared 
according to the Superpave specifications for high traffic roads (10 - 30 million Equivalent Single 
Axial Loads (ESALs)).  Mix volumetrics laboratory data for these mixes are tabulated in Table 6.1, 
while Fig. 6.1 shows the gradation of the three aggregates used in the mixes. 
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Table 6.1.   Mix Design Factors for the Three Asphalt Mixes (after Masad et al. 2003). 
 

Mix Gravel Limestone Granite
Avg. Measured Air void, % 7.04 6.7 6.89
SD of AV 0.48 0.25 0.30
Binder Type PG 64-22 PG 64-22 PG 64-22 
Binder Content, % 3.6 4.85 4.86
Maximum Specific Gravity 2.484 2.47 2.471
Specimen Height, mm 155 157.5 157.5

Sieve Size, mm
12.5 100 98.8 98.8
9.5 91.748 79.5 79.5

4.75 48.22 46.2 46.2
2.36 32.71 31.6 31.6
1.18 27.96 24.5 24.5
0.6 22.26 17.8 17.8
0.3 9.75 11.2 11.2

0.15 3.94 6.3 6.3
0.075 2.95 1.5 1.5
Pan 0 0 0

Percent Passing
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Figure 6.1.  0.45 Power Gradation Charts of the Three Mixes (after Masad et al. 2003). 
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Laboratory experiments conducted in this study were strain-controlled triaxial compressive strength 
tests at five displacement rates and three confining pressures and triaxial tensile strength tests at 
three displacement rates and three confining pressures. One of the main advantages of using the 
triaxial test is that the axial and radial (or volumetric and shear) strains can be determined relatively 
easily. Radial ring-type LVDTs were attached to a specimen at mid-height, while axial strains were 
measured by vertical LVDTs along a specimen side.  Axial LVDTs were 120o apart from each 
other. For the compressive strength test, the specimens were deformed at strain rates of 
0.0660%/min, 0.318%/min, 1.60%/min, 8.03%/min, and 46.4%/min and at confining pressures of 0, 
15, and 30 psi. For the tensile strength tests, the same confining pressures and three axial loading 
rates of 0.0660%/min, 0.318%/min, and 1.60%/min were used. All specimens were loaded up to an 
axial strain of 8 % or until failure, whichever occurred first. All tests were conducted at a 
temperature of 130o F. Two replicates of each mix were tested for each loading condition, and axial 
and radial stresses and strains were recorded throughout testing. 
 
 
EVOLUTION LAWS FOR THE MODEL PARAMETERS 
 
Damage 
 
The physical mechanisms of interaction between damage and viscous deformation are complicated 
in nature and may not be modeled through one phenomenological constitutive model due to the 
nature of the material. Asphalt pavement materials usually fail because of nucleation, growth, and 
coalescence of damage following work hardening and stiffening of the microstructure. Experimental 
observations show that accumulation of microdamage has a tendency to form macroscopically 
localized damage, which is a precursor to failure. This progressive physical process of degradation 
of the material mechanical properties up to complete failure is commonly referred to as damage.  

 
Ductile damage is basically characterized by three mechanisms (Thomason 1990; Hertzberg 1996): 

• Nucleation of microscopic voids that initiates at the particle-particle and particle-matrix 
interfaces; 

• Growth of microcracks when the material undergoes viscous deformation, and 
hydrostatic pressure; and 

• Connectivity of the growing microvoids with neighboring ones leading to decreased 
intact area and causing reduction in material load-carrying capacity. 

 
 
This study proposed to model the phenomenon of strain softening primarily due to the damage 
effect.  In this chapter, similar to the work of Perzyna’s analysis, damage was assumed to be a 
function of the confining pressure and effective visco-plastic strain as follows: 

 
),( 1 vpf εΙ=ξ            (6-1) 

 
where ξ is the damage parameter, I1 is the first invariant of stresses to account for the confining 
pressure, and vpε  is the effective visco-plastic strain. It is implied from the triaxial test results from 
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this study that confining pressure minimizes the growth of air voids and cracks, and hence reduces 
damage as illustrated in Fig. 6.2. 

 
The model parameter ξ  is an indicator of the damage percent in the material. The parameter is 
incorporated in the model through the effective stress theory presented by Kachanov (1958), who 
introduced for the isotropic case a one-dimensional damage variable.  In this theory, damage is 
interpreted as the effective surface density of microdamage per unit volume. This concept is based 
on considering a fictitious undamaged configuration of a body and comparing it with the actual 
damaged configuration.  
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Figure 6.2. Influence of Confining Pressure on Material Softening. 
 
 
 

Therefore, a damaged material exposed to a stress σ  exhibits the same deformation behavior as an 
undamaged material exposed to an effective stress eσ  

 

ξ−
σ

=σ
1

e            (6-2) 

 
where according to the definition above, damage models can be implemented in deformation 
models by replacing stress with effective stress.  

 
Desai (1998) adopted an evolution form for the disturbance or damage of the material under 
monotonic loading. The study proposed that damage evolution is a function of the ultimate damage 
at high strain level and plastic deviatoric strain. An exponential form has been used to simulate the 
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degradation response as the material passes the ultimate stresses. The function in Eq. (6-3) used in 
this study is similar to the one proposed by Desai (1998): 
 

⎥⎦
⎤

⎢⎣
⎡ Ι

⋅+⋅−⋅
Ι

⋅= )
3

exp(1)
3

exp( 1
32

1
1 ξεξξξ vp        (6-3) 

 
where 1ξ , 2ξ , and 3ξ  are coefficients to be determined experimentally. The first exponential term 
controls the asymptotic limit of the function. The last term, which includes the confining pressure, 
controls the damage rate of growth.  

 
Sousa and Weissman (1995) emphasized that HMA exhibits different response under tension and 
compression. Under compression, the material goes through strain hardening due to the newly 
formulated microstructure with more aggregate contacts trying to resist the applied load.  On the 
other hand, work softening occurs when the aggregate rotation and sliding become high enough to 
cause cohesive and/or adhesive failure within the microstructure, resulting in microcracks (Masad et 
al. 2003).  The situation is different in tensile tests, where the formation of aggregate contacts, and 
consequently hardening, is much lower than with compressive loading. Opening of cracks and voids 
is promoted by the applied tensile stresses even before excessive sliding of particles.  In other 
words, softening in tension occurs earlier and at a faster rate than in compression.  Therefore, it is 
proposed to introduce two sets of parameters to account for damage evolution in compression and in 
tension.   
 
Anisotropy 
 
The initial value of the vector magnitude depends on aggregate characteristics, aggregate 
gradation, and the compaction method used to prepare the specimen. Dessouky et al. (2003) 
presented experimental results showing that the initial value and the evolution of the vector 
magnitude during compaction are functions of aggregate shape and gradation.  The vector 
magnitude Δ describes the aggregate orientation distribution measured on two-dimensional 
images and is a function of aggregate shape properties and distribution. Δ quantifies the level of 
anisotropy measured on two-dimensional vertical of asphalt pavement section using the imaging 
analysis. The vector magnitude was determined using Image Analysis Techniques (IAT) 
developed by Tashman et al. (2001) on four images of cut sections of two HMA specimens 
selected randomly. 

 
Tobita (1989) concluded that preferred orientation of sand particles exhibits minor change when the 
material undergoes inelastic deformation. This observation was later verified by Tashman (2003), 
who showed that aggregate orientations in HMA specimens did not change significantly when the 
material experienced inelastic deformation. Thus, it is proposed to utilize the initial vector 
magnitude only to describe the HMA inherent anisotropy. 
 
Work Hardening and Frictional Parameters 

 
The evolution laws for α and κ are postulated based on experimental measurements. α is a 
parameter that reflects the material frictional properties, whereas κ is a hardening parameter that 
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reflects the combined effect of the cohesion and frictional properties of the material. To illustrate the 
evolution of the hardening parameters, the yield surface is plotted in the  τ−Ι1  plane as shown in 
Fig. 6.3.  The results show that α tends to change only at small strain levels, while the evolution of κ 
is more pronounced. This finding is consistent with the findings of Τan et al. (1994). Therefore, α is 
assumed to be constant.   

 
The evolution of κ is associated with hardening resulting from deformation in the binder, which 
causes changes in the aggregate contact interface and aggregate frictional properties due to the strain 
driven in the material. Hence, it is proposed to account for the evolution of the hardening parameter 
κ, based on the experimental measurements and motivated by the work of Dafalias (1990) as shown 
in Eq. (6-4): 

 
{ })exp(1 210 vpε⋅κ−−κ+κ=κ         (6-4) 

 
where 0κ  defines the initial yield surface and κ1 and κ2 are material coefficients that account for the 
effect of effective visco-plastic strain on the material work hardening. The exponential form by 
itself provides an asymptotic response in the stress-strain relationship once the strain level passes 
the peak stresses. 
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Figure 6.3. Changes in α and κ During Deformation at Different Deformation Levels. 
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DETERMINATION OF THE MODEL PARAMETERS 
 
A systematic procedure was developed to determine the model parameters. As shown in Fig. 6.4, 
a typical stress-strain response obtained in the experiment is divided into three zones. The first 
zone is the linear response, where initiation of the visco-plastic flow has not taken place. The 
linear zone represents the visco-elastic behavior of the material where the modulus, E, and 
Poisson’s ratio, ν, as a function of time can be determined.  
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Figure 6.4. Stress-Strain Relationship Zones for Model Parameters Identification. 
 
 
Experimental measurements indicated that elastic modulus varies with respect to loading rate. 
Material that undergoes a small rate of loading exhibited a small elastic modulus. Fig. 6.5 indicates 
that granite had the largest modulus, while gravel had the smallest modulus.  



 

98 

1.00E+03

1.00E+04

1.00E+05

1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01

Time (sec)

S
tif

fn
es

s 
M

od
ul

us
 E

 (p
si

Granite 30-psi

Granite 15-psi

Granite 0-psi

Limestone 30-psi

Limestone 15-psi

Limestone 0-psi

Gravel 30-psi

Gravel 15-psi

Gravel 0-psi

Limestone

Gravel

Granite

 
Figure 6.5. Stiffness Modulus Evolution as a Function of Time. 
 
 
 
The moduli values agree with the nature of the aggregate characteristics, in which granite particles 
are stiffer than those of limestone and gravel. It is noticed also that, the moduli had a negligible 
dependency on the confinement pressure for all mixes. Therefore, it is concluded that the initial 
modulus is a function of only the loading rate. A power law function for the modulus as a function 
of time has been used by many researchers to find such a relation Daniel et al. (2002). The 
viscoelastic response is represented by Eq. (6-5): 
 

( ) ( )∫ τ
τ
ε

τ−=σ
t

d
d
dtEt

0

~           (6-5) 

 
where ( )τ−tE~  is the relaxation modulus as a function of time, τ  is a time-dependent variable, and 
ε  is the axial strain. For a strain rate-controlled strength test, Eq. (6-5) reduces to the following: 
 

( ) ( ) ( )∫ ττ−ε=σ
t

dtEtt
0

~
&           (6-6) 

 
Assuming a power law for the relaxation modulus and solving the convolution integral in the form: 
 

( )[ ] ( ) ( ) ( )[ ] ( )[ ]tQLtPLdtQPLthL
t

=⎥
⎦

⎤
⎢
⎣

⎡
ττ−τ= ∫

0
      (6-7) 
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where L is the Laplace operator and solving Eq. (6-6), the stiffness modulus can be expressed as 
follows: 

 
( )
( )

2
1

EtE
t
tE −=

ε
σ

=           (6-8) 

 
where E1 and E2 are material parameters to be determined experimentally using the relationship 
between the stiffness modulus and time as presented in Fig. 6.5. 

 
Following the linear zone in Fig. 6.4 is the stress level (flow stress) at which the material exceeds 
the visco-elastic limit and starts to initiate visco-plastic deformation. At the flow stress, the initial 
Drucker-Prager yield surface parameters α and κο are evaluated. The flow stress is determined 
for each combination of strain rate and confining pressure, and the initial yield surfaces are 
determined as shown in Fig. 6.6.   
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Figure 6.6. Initial Yield Surfaces for Different HMA Types in Compression Triaxial Testing. 

 
 

The slope of the yield surface represents the frictional properties of the aggregates within the 
material microstructure. The intercept reflects the cohesive and adhesive properties of the binder 
within the microstructure. Fig. 6.6 indicates that granite and limestone mixes had the same slopes 
of yield surfaces indicating that they have similar aggregate friction potential. On the other hand, 
the intercept, which is the measure of initial hardening, was found higher in the granite mix, and 
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comparable values were found for the limestone and gravel mixes. It seems that the strength of 
the limestone mix is produced mainly from its aggregate frictional properties. The granite mix 
combines both aggregate frictional and binder cohesive and adhesive properties to develop its 
strength, which could possibly be the reason for its relatively high strength. 
 
The second zone in stress-strain relationship is the work hardening phase, starting from the flow 
stress to the ultimate response where the parameters Γ and N and the hardening parameters κ1 
and κ2 are determined simultaneously, as shown in Fig. 6.4. The last zone of the curve is the 
softening phase, where the damage parameters are evaluated.  

 
Finally, another constraint is applied to the material response to find the dilation potential by 
using the ratio of axial and radial strain measurements. The plastic potential function, g, is 
assumed to have the same form as the yield function but with a slope of *β , which influences the 
proportions of the volumetric and deviatoric strains. The parameter is determined by the visco-
plastic strain rate ratio (VSRR) as shown in Eq. (6-9) and Eq. (6-10): 
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The derivation for Eq. (6-10) is provided in Chapter IV. Experimental measurements indicate that 
the evolution of β with respect to the effective visco-plastic strain was minimal, especially at high 
strain levels, and thus for simplicity it could be assumed to be constant. It is indicated that, the 
dilation parameter was the lowest for the gravel mix and highest for the limestone. 

 
 Table 6.2 summarizes the material parameters for all mixes. The limestone mix had the highest 
vector magnitude among the three mixes, while granite and gravel had comparable vector 
magnitudes. In terms of the yield function parameters, the gravel mix had the highest N values 
indicating a higher potential to develop permanent deformation. On the other hand, the limestone 
and granite mixes had comparable values of N, which were smaller than that of the gravel. Fig. 6.7 
shows the evolution of hardening parameters with respect to the effective visco-plastic strain. The 
figure indicated that granite has the highest work-hardening potential where limestone has the 
lowest. 
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Table 6.2. Summary of Model Parameters. 
  

Parameter Granite Gravel Limestone Notes
Δ 2.860E-01 2.610E-01 4.360E-01 Measured by IAT
d
E1 1.833E+04 7.583E+03 3.798E+04

E2 1.236E-01 6.010E-02 1.158E-01

υ 1.800E-01 3.610E-01 2.180E-01
α 5.862E-01 2.462E-01 5.345E-01
κο 1.468E+01 3.025E+00 1.739E+00
Γ 5.000E-07 1.000E-07 9.000E-07
Ν 2.160E+00 2.993E+00 2.200E+00
β 3.332E-01 3.000E-01 3.570E-01 Dilation parameter

Static parameters

Linear material properties

Perzyna's parameters

7.780E-01
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Figure 6.7. Evolution of κ with Respect to Effective Visco-plastic Strain. 

 
 

 
FINITE ELEMENT SIMULATIONS OF LABORATORY EXPERIMENTS 
  
As discussed in Chapter V, ABAQUS was used to develop a quadrilateral two-dimensional four-
node axisymmetric FE model. This model as presented in Fig. 6.8 was used to simulate a laboratory 
specimen subjected to uniform vertical strain rates and confining pressure similar to those used in 
the experiments. The material properties were obtained from the experiments, as discussed in the 
previous section. The boundary conditions were applied such that there was no vertical 
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displacement at the bottom of the model and no lateral displacement at the left side of the model to 
represent symmetry.  The model was for a specimen with 4 in diameter and 6.2 in height. The 
analysis was conducted in perturbation mode with a time increment.  Load was applied in two steps.  
Confining pressure was applied in the first step, and constant strain rate in the vertical direction was 
applied in the second step.  Stress and strain values were recorded at each time step and compared 
with the experimental measurements.   
 

STEP (1)

 

STEP (2)

 

Confining Pressure
“P” (psi)

P P

Strain rate
(in/in/sec)

+

 
 
Figure 6.8. FE Geometric Model and Loading Step Procedure . 

 
 
 

Fig. 6.9 show the triaxial compressive and extension strength test data for the three mixes. Each 
curve represents an average of two replicates. Fig. 6.9 show the effect of the strain rate and 
confining pressure. Higher strengths were associated with higher strain rates and/or confining 
pressures. It can be seen that gravel mix is the weakest and granite mix is the strongest among the 
three tested mixes.  

 
The model has showed good simulation to the experiments, the model parameters are able to 
distinguish between the three mixes in terms of their response to different strain rates and 
confining pressures.  It is interesting to note that although limestone and granite mixes had 
relatively close material parameters, the significant difference in the anisotropy highly governed 
the response of each mix.  

 
For triaxial extension strength test, the simulation was conducted using damage parameters 
different than those used in the compression test, while other parameters were kept the same.  
The extension results were much less influenced by confining pressure and strain rate compared 
with the compression test results. As expected, the extension tests experienced softening 
behavior much earlier than the compression tests. As discussed earlier, extension loading 
promotes opening of cracks and softening behavior, while damage in compression tests is 
associated with sliding particles that occurs after some hardening behavior.   
FE simulation results showed that tensile strength is much lower than compressive strength for all 
confining pressures and strain rates.  However, the FE results overestimated the tensile strength 
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compared with the experimental measurements.  This overestimation is not expected to have a 
significant impact on the ability of the model to simulate permanent deformation under traffic 
loading, since the tensile strength results are still considered small values. 
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Figure 6.9. Matching Compression and Extension Strength Tests. 



 

104 

-50

0

50

100

150

200

250

300

-4.00 -2.00 0.00 2.00 4.00 6.00 8.00
Axial Strain (%)

St
re

ss
 (p

si
)

Exp. 46.42 %/min
Exp. 8.03 %/min
Exp. 1.60 %/min
Exp. 0.318 %/min
Exp. 0.066 %/min
Model 46.42 %/min
Model 8.03 %/min
Model 1.60 %/min
Model 0.318 %/min
Model 0.066 %/min

a) 0-psi Confinement

 

-50

50

150

250

350

450

-4.00 -2.00 0.00 2.00 4.00 6.00 8.00
Axial Strain (%)

St
re

ss
 (p

si)

b) 15-psi Confinement

 

-50

50

150

250

350

450

-4.00 -2.00 0.00 2.00 4.00 6.00 8.00
Axial Strain (%)

St
re

ss
 (p

si)

c) 30-psi Confinement

 
b) Granite Mixes 

 
Figure 6.9. Continued 
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Figure 6.9. Continued  
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Figure 6.10. Matching Extension Strength Test (Using Different Damage Parameters) 
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Figure 6.10. Continued 
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Figure 6.10. Continued 
 
 

As shown in Fig. 6.9, it is noticed that the material showed independency of the confining pressure 
under tensile stresses. Therefore, another approach is presented to simulate extension data by using 
the same evolution law for damage parameter in Eq. (6-3) with no confining pressure effect. Results 
indicate, as shown in Fig. 6.10 that much improved simulation with the experiment is obtained.  
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FE simulations of lateral deformation are compared with experimental measurements as shown in 
Fig. 6.11. Radial deformation was measured for all mixes at strain rates of 1.60%/min and 
46.4%/min and at confining pressures of 0 and 30 psi.  It is evident that the FE simulations were 
able to capture the lateral deformations, especially at lower strain levels. As the deformation 
increases, the simulation model tends to underestimate the experimental measurements. The region 
where the model deviates from the experiment is where the material starts to soften, passing the 
ultimate stress.  
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Figure 6.11. Lateral Strain Simulation. 
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Figure 6.11. Continued  
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Figure 6.11. Continued 
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AN EXAMPLE OF FINITE ELEMENT SIMULATION OF ASPHALT PAVEMENTS 
 
A one-lane HMA layer with 15 in thickness and 80 in width, is simulated with axisymmetric 
elements as shown in Fig. 6.12. a static distributed pressure of 100 psi is applied at the top layer 
to simulate tire pressure. Fixed boundary condition in the horizontal direction only is maintained. 
Assuming that permanent deformation to occur in the HMA layer only, the subbase layer is 
considered very stiff and hence, the bottom layer of HMA is not allowed to deform in the vertical 
direction. The analysis is conducted by applying pressure in the initial time step, and permanent 
deformation is recorded as a function of time. The analysis is conducted to emphasize the 
influence of anisotropy on permanent deformation. HMA is defined with two different cases, Δ = 
0, for isotropic, and Δ = 30%, for anisotropic case, the remaining model parameters represent the 
limestone mix described earlier in this chapter. 
 

Tire Pressure=
100 psi

15 in

80 in

25 in

 
Figure 6.12. FE Geometric Model for Pavement Lane 

 
 
 

 
Fig. 6.13 indicates that anisotropy increased the shear stress by about 30 % under the wheel loads. 
Although the anisotropic HMA layer developed more shear stress, permanent deformation was 
found to be less in magnitude when anisotropy is considered as shown in Fig. 6.14. The material 
also exhibited more dilation between the tires as a result of anisotropy. This is consistent with the 
findings in Eq. (4-40) that the angle of dilation increases with anisotropy. 
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a) Isotropic layer (Δ =0) 

 
 
 

 
b) Anisotropic layer (Δ =30%) 

 
 
Figure 6.13. Shear Stress Distribution in HMA Layer due to Tire Pressure. 
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Figure 6.14. Permanent Deformation Profile in HMA Layer due to Tire Pressure. 

 
 

 
SUMMARY 

 
A procedure for the determination of the evolutions of model parameters was established using 
triaxial compression and extension strength tests. Model parameters were calculated using a 
systematic approach by dividing the stress-strain relationship. FE implementation of the model 
showed that model parameters were able to distinguish between three HMA specimens with 
different aggregate type and characteristics. Experimental results and FE simulations showed that 
gravel mix had the highest potential for permanent deformation while granite had the lowest 
potential. Granite mix also had the highest κ and α values reflecting the adhesion between binder 
and aggregates, and aggregate friction, respectively.  This finding is resulting from the coarse 
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texture of granite as indicated by Masad et al. (2003). The influence of aggregate angularity was 
manifested in dilation where the experimental results and model parameters showed limestone to 
have the highest dilation followed by granite.   

 
The FE simulations had very good agreement with experimental measurements under 
compression loading at almost all strain rates and confining pressures. The simulation results 
also showed that tensile strength of all mixes was much lower than compressive strength.  The 
damage parameters used in simulating the extension tests were different than those used in the 
compression tests.  This is justified by the fact that damage is promoted by tensile stresses much 
earlier than under compressive stresses.  Tensile stresses cause an increase in cracks and void 
sizes, leading to softening, while damage in compression occurs due to particle sliding after 
some hardening behavior. 

 
Field conditions for a pavement surface subjected to wheel loads were simulated using FE. 
Results indicated that anisotropy increases shear stresses underneath wheel loads, decreases 
permanent deformation in the axial direction, and increase the dilation in the lateral direction. 
Although more shear stress is expressed due to anisotropy, HMA exhibited more stiffness in the 
axial direction and hence, less permanent deformation is achieved. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 
 
 
SUMMARY AND MAIN CONCLUSIONS 
 
This study focused on the development of continuum models for hot mix asphalt (HMA) that 
account for the influence of microstructure distribution into macroscopic behavior. The first 
advancement in this study was the development of an elasticity gradient model that employs the 
strain gradient concept and effective material properties. The use of strain gradient introduces a 
length scale parameter to the elasticity constitutive model which allows the model to capture the 
influence of particle size distribution on HMA response. Analytical procedures were developed in 
this study to obtain microstructure characteristic length scales to be used in the constitutive 
relationship.  These analytical procedures are the moving window technique and the autocorrelation 
function.   

 
The elasticity gradient model was implemented in finite element (FE) analysis and used to analyze 
microstructure response and predict the macroscopic properties for HMA with different aggregate 
characteristics and structures.  In FE analysis, each point was assigned effective local material 
properties, which capture the influence of the material in the vicinity of a point on the mechanical 
response of that point.  FE results showed that the developed model was successful in overcoming 
some limitations of using the individual properties of the constituents in FE analysis of HMA 
microstructure. For example the model reduced mesh size dependency, reduced sensitivity of the 
response to small changes in the microstructure caused by image capturing and processing, and 
reduced the numerical instability caused by several orders of magnitude indifference in stiffness 
between adjacent elements of the microstructure.  In addition, the model captured the influence of 
HMA length scales on microscopic and macroscopic responses.  The results showed that the 
determined HMA effective properties using the model were more consistent with the experimental 
measurements. 

 
The second advancement in this study was the development of an elasto-visco-plastic continuum 
model to predict HMA response and performance under wheel loadings. The model included 
microstructure parameters that captured the directional distribution of aggregates and density of 
cracks.  In addition, the model was capable to account for the factors affecting the mechanisms of 
permanent deformation such as shear stress, aggregate structure friction and dilation, confining 
pressure, strain rate, and stress path direction.  

 
The elasto-visco-plastic model was implemented in FE analysis. The implementation of the 
model was in the form of a fully implicit algorithm using the backward Euler scheme in time-
step control. The Newton-Raphson iterative scheme was used to define available initial solutions. 
The numerical scheme is based on the return mapping algorithm, which leads to elastic 
predictor-plastic corrector steps. The algorithm included a consistency condition analogous to the 
time-independent plasticity theory to evaluate the visco-plastic multiplier. Quadratic 
convergence was achieved in the analysis by using algorithmic elasto-visco-plastic tangent 
moduli in the algorithm. 
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A parametric analysis was conducted to investigate the effect of key parameters in the model on the 
material response. The results showed clearly that the model is sensitive to particle friction (α), 
material hardening (κ), dilation (β), anisotropy (Δ), void nucleation and growth (ξ), and stress path 
direction (d). d affects the geometry of the yield surface in the deviatoric plane. d = 0.778 is the 
minimum value to achieve the convexity of the yield surface. An increase in the anisotropy level 
causes an increase in the material strength in the axial direction normal to the preferred orientation 
of particles.  The yield strength in the direction parallel to the orientation of particles decreases 
slightly with an increase in anisotropy level. The study also showed that loading rate and 
confinement affected the model response. Increasing loading rate and confinement caused an 
increase in the ultimate stress. 
 
Triaxial compression and extension strength tests on granite, gravel, and limestone mixes were 
used in this study to determine model parameters and evolution formulation for each mix type. 
Strength tests were conducted at different loading rates and confining pressures. Model 
parameters were determined using a systematic approach by using the stress-strain relationship. 
Experimental results showed that granite had the lowest potential for permanent deformation, the 
highest work hardening capability. Gravel had the highest potential for permanent deformation, 
and limestone had the highest dilation.  

 
FE analysis was conducted to simulate experimental measurements under compression and 
extension loading with different strain rates and confining pressures.  The FE results indicated that 
the elasto-visco-plastic model parameters were able to distinguish between HMA mixtures with 
different aggregate characteristics.  The simulation results showed that tensile strength of the mixes 
is much lower than compressive strength. The damage parameters used in simulating the extension 
tests are different than those used in the compression tests, because softening in extension test 
occurs earlier and at a faster rate than in compression.   

 
FE analysis was also utilized to simulate permanent deformation in a pavement section. 
Anisotropy is found to influence shear stress distribution, permanent deformation underneath the 
tires, and dilation in the lateral direction and beneath the tires. 

 
 
IMPLEMENTATIONS AND RECOMMENDATIONS 

 
The advantage of continuum models is their computational simplicity, and once the material 
properties are known, simulations of material deformation under static or dynamic loading can 
be implemented in FE analysis to predict HMA performance.  Moreover, the developed model 
provides a powerful tool to understand the role and contribution of fundamental properties of the 
constituent materials in composite structure into the overall response. The model can also be 
used to directly examine the influence of changes in mix design and material properties on 
microstructure distribution and performance. 

 
The developed continuum model contains the elements needed to account for all the characteristics 
that influence permanent deformation including loading rate, confining pressure, dilation under 
shear loading, and stress path direction. The model also accounts for microstructure distribution in 
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terms of damage and anisotropy due to the aggregate preferred orientation. Therefore, the model can 
be used to optimize mix design based on performance predictions of the model.   

 
The use of axisymmetric presentation of the continuum model in FE analysis is an acceptable 
approach to simulate field conditions. However, it is recommended that the model be improved to 
three-dimensional representation to account for more realistic boundary and loading conditions. 
This representation will improve simulation of field conditions and hence will lead to improved 
predictions of performance.  

 
The model needs to further development to account for the effects of temperature and aging on 
permanent deformation. This can be accomplished by developing relationships between the 
evolution of model parameters and temperature. 

 
In this study, damage is assumed to have an isotropic distribution.  However, damage can be easily 
expressed using directional distribution functions to account for the anisotropic distribution of 
damage.  Recent advances in imaging techniques and nondestructive evaluation make it possible to 
characterize the directional distribution of damage. 

 
The model needs to be verified by simulating boundary conditions different than those used to 
determine the model parameters.  These boundary conditions could include static creep and 
repeated loading with different rest periods.   Finally, the model needs to be implemented for 
predicting HMA performance under full-scale accelerated loading and actual field conditions.  
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APPENDIX A 
RELATIONSHIP BETWEEN THE DEVELOPED MODEL AND MOHR-COLOUMB 

PARAMETERS (c & φ) 
 
 
Extended Drucker-Prager yield surface, assuming no damage, is giving in the form: 

κ−Ια−τ= 1f         (A-1) 
where for extension triaxial state condition 
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Substituting Eq. (A-2) and the values of the effective stress in Eqs. (4-17 and 4-18) into Eq. (A-
1) yields: 
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For the sign convention that compression is positive, the Mohr-Coloumb yield surface is given as 
(Chen and Han 1988):  

( ) ( ) 0os 2sin1sin1 31 =φ−σφ+−σφ− cc      (A-4) 
by comparing Eqs. (A-3) and (A-4) it follows: 
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For compression triaxial condition, d is dropped out from Eq. (A-2). In isotropic case, Eq. (A-5) 
reduces to  
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Eq. (A-6) is found equivalent to the relationships introduced by Chen and Han (1988) for 
matching Drucker-Prager to Mohr-Coulomb yield surface parameters. 
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