
PROGRAM DOCUMENTATION MANUAL

for

THE TEXAS LARGE NETWORK PACKAGE

by

J. D. Benson
Assistant Research Planner

Charles E. Bell
Data Processing Programmer

and

Vergil G. Stover
Study Supervisor

Research Report 167-4

Urban Travel Forecasting
Research Study Number 2-10-71-167

Sponsored by the
Texas Highway Department

in cooperation with
U. S. Department of Transportation

Federal Highway Administration

Texas Transportation Institute
Texas A&M University

College Station, Texas
April 1972

Technical ·Reports canter,
Texas T ransportatlon tnstftute

The opinions, findings, and conclusions expressed in this publication

are those of the authors and are not necessarily those of the Federal

Highway Administration.

TABLE OF CONTENTS

ABSTRACT

SUMMARY.

IMPLEMENTATION STATEMENT

INTRODUCTION • • • • • •

ORGANIZATION OF PACKAGE
OVERLAY STRUCTURE. •
LOGICAL DIVISION STRUCTURE •

LOGICAL DIVISION
INTRODUCTION • • • • • • • • • • • • • • • •
LOGICAL DIVISIONS AND USER PROGRAM OPTION.
DESCRIPTIONS OF LOGICAL DIVISIONS.

LOGICAL DIVISION 1 •
LOGICAL DIVISION 2 • • • • • •
LOGICAL DIVISION 3
LOGICAL DIVISION 4 •
LOGICAL DIVISlON 5 • • • • • •
LOGICAL DIVISION 6 •
LOGICAL DIVISION 7 • • • • • • • • •
LOGICAL DIVISION 8 •
LOGICAL DIVISION 9 • •
LOGICAL DIVISION 10. • • • • •
LOGICAL DIVISION 11 ••
LOGICAL DIVISION 12.
LOGICAL DIVISION 13 ••
LOGICAL DIVISION 14.
LOGICAL DIVISION 15 ••
LOGICAL DIVISION 16.
LOGICAL DIVISION 17 ••
LOGICAL DIVISION 18. <>,.

-
PROGRAM CROSS-REFERENCE AND FLOWCHARTS

CROSS-REFERENCE OF PROGRAMS.
FLOWCHARTS •

ALCP •••
CLOAD. • •

LDSEL.
CMPVH.
CRD. • •
CRDINT ••

Page

i

ii

iv

1

I-1
I-1

II-1
II-2
II-6
II-7

II-11
II-13
II-14
II-16
II-17
II-18
II-19
II-22
II-26
II-28
II-29
II-30
II-32
II-33
II-35
II-39
II-41

III-1
III~4

III-5
III-6
III-6
III-7
III-8
III-9

E35.
FMTLNE •
FRATAR •
GETDAT •
GETRNS
GTLD
GTVL
INITL1
LNKLST
LOAD
MAIN
MERG
MOORE.
MRGREC
NEWNET
OUTLLT
OUTNET
OUTRIP
OUTTRE
OUTWLT
PATHCL
PRPBLD
PRPCTV
PRPNET

ASMNET
REVNET

RTPFL.
RTPLT.
sc
SELECT
SUBFND
SUMEND
SUMRY.
SVLOAD
TRN.
TRNMV.
TRPCKM

TEST
TURNM.
UPDTNT
VREC
WGTLD.
WTSGLN

TABLE OF CONTENTS (Continued)

SIGNIFICANT VARIABLES AND ARRAYS
LABELED COMMON
DESCRIPTIONS OF SIGNIFICANT VARIABLES AND ARRAYS

ALCP

Page

III-10
III-12
III-13
III-15
III-16
III-17
III-21
III-22
III-23
III-24
III-29
iii-35
III-38
III-41
III-48
III-57
III-61
III-63
III-65
III-66
III-69
III-75
III-78
III-81
III-81
III-81
III-82
III-86
III-92
III-93
III-96
III-97
III-98
III-99

III-103
III-106
III-107

• III-107
III-108
III-111
III-114
III~119

III-120

IV-1
IV-3
IV-4

CLOAD
LDSEL

CMPVH •
CRD.
CRDINT.
FRATAR.
GTLD.
INITL1.
LNKLST.
LOAD.
MAIN·
MOORE •
MRGREC.
NEWNET.
OUTLLT.
OUTNET.
OUTTRE.
OUTWLT.
PATHCL.
PRPBLD.
PRPNET.

TABLE OF CONTENTS (Continued)

RTPFL AND RTPLT •
SELECT.
SUMEND.
SUMRY •
SVLOAD.
TRN •
TURNM •
UPDTNT.
VREC.
WTSGLN.

DATA SETS AND DATA SET FORMATS
DATA SETS •
DATA SET FORMATS.

PATHS DATA SETS •
TRIP VOLUMES DATA SET •
FLEXIBLE RECORD DATA SET.
SEPARATION MATRIX DATA SET.
SELECTED INTERCHANGES DATA SET.
ROUTE DATA SET.
TRIP MATRIX DATA SET.
SCRATCH NODE NAMES DATA SET •
SCRATCH PACKED LINKS DATA SET •
SCRATCH MULTIPLE ASSIGNMENTS DATA SETS.

OUTPUT SELECTED LINKS •
SORTED SELECTED INTERCHANGES DATA SET •

. .

Page

IV-5
IV-5
IV-6
IV-7

IV-10
IV-11
IV-12
IV-15
IV-16
IV-17
IV-19
IV-21
IV-23
IV-24
IV-26
IV-28
IV-29
IV-31
IV-32
IV-35
IV-36
IV-38
IV-40
IV-41
IV-42
IV-45
IV-47
IV-49
IV-51
IV-52
IV-53

V-1
V-1
V-5
V-6
V-7

V-10
V-11
V-14
V-16
V-17
V-18
V-20
V-22
V-23

TABLE OF CONTENTS (Continued)

OTHER INFORMATION
PRINTED OUTPUT FROM $ASSIGN AND $ASSIGN SELF-BALANCING. •
TURNING MOVEMENTS • • • • • • •
NETWORK SEGMENTS •

RECENT CHANGES AND MODIFICATIONS

Page

VI-1
VI-4

VI-10

ABSTRACT

The Texas Large Network Package is a collection of computer programs

designed to assign traffic to large transportation networks. The

purpose of this manual is to provide data processing personnel with a

link between the Operating Manual for the Texas Large Network Package

(Research Report 119-2) and the programs contained in the package.

The manual describes the operation of the package and provides flowcharts

of the ·programs in the package. Cross references for significant variables

and arrays used in the package and formats for all data sets and data

cards associated with the package are provided.

Keywords: traffic assignment computer programs, transportation planning
computer programs, Texas Large Network Package, computer
program descriptions, computer program flowcharts.

i

SUMMARY

Traffic assignment is a technique which has been developed to aid

transportation planning in the evaluation of future transportation

system alternatives. Due to the vast quantity of data and the tedious

computations involved, reliance upon computers and automated data processing

is almost imperative.

The Texas Large Network Package is a collection of computer programs

designed to assign traffic to large transpqrtation networks. The package

has been prepared for use with both IBM 360 and IBM 370 computer systems.

Several special features are available in the Texas Large Network

Package in addition to the usual programs regarding the assignment of

traffiic to minimum time paths. A self-balancing assignment program

is included which can improve the agreement of assigned volumes with

counted volumes. The self-balancing assignment program can also be used

to induce a compliance of the assigned volumes with capacity limitations.

Corridor interceptsmay be coded to obtain corridor analysis summaries;

travel routes may be coded to obtain volume profile comparisons and/or

plots; and, selected links may be indicated for a special analysis of all

traversing movements. Under normal operation, each assignment is preserved

and compared with the previous assignments.

The Texas Large Network Package is comprised of seventy-seven control

sections. The control sections perform the sixteen user _program options

available under the package.

ii

The package basically operates in sequential mode. As each control

card specifying a user program option is encountered in the data card

input stream, the card is interpreted to determine the desired program

option and the appropriate program option is executed.

iii

IMPLEMENTATION STATEMENT

The Texas Large Network Package has been operational on the IBM 360

computer installation of the Texas Highway Department since January, 1969.

It has been used extensively by the Texas Highway Department since that

time.

Numerous additions, revisions and improvements have been implemented

since the original transmittal. The cooperative research program between

the Texas Highway Department and the Texas Transportation Institute has

produced many research results which have been converted to a useable form

through the preparation or modification of computer programs, and the

programs have then been inserted into the Texas Large Network Package.

Since.research and development is dynamic in nature, this documentation

will become obsolete as continuing research efforts produce new results

to be implemented in the package.

iv

INTRODUCTION

The purpose of this manual is to provide data processing personnel

with a link between the operating manual for the Texas Large Network

Package and the programs contained in the package. This manual, therefore,

assumes the working knowledge and understanding of the operating manual,

and general familiarity with the terminology associated with both traffic

assignment and computer science. Both the operating manual and the programs

(with their own internal documentation) are each a form of documentation.

The objective of this manual, therefore, is to provide intermediate

levels of documentation between the operating manual and the actual

program listings, thereby providing a logical sequence of levels of

documentation through which one may proceed from the operating manual

to the particular program listing(s) of interest.

This documentation, contained in Sections I - VII of this manual,

is organized as follows:

• Section I, ORGANIZATION OF PACKAGE - This section explains the

organization of the programs. It includes a complete list of

the programs in the Large Package including the date of their

latest revision; a chart of the overlay structure for the package;

and a chart of the logical divisions into which the programs

may be subdivided.

• Section II, LOGICAL DIVISIONS - This portion of the manual describes

the functions and operations performed in each of the logical

divisions. It explains the general organization of the programs

1

within 'that division and gives a brief description of the

functions performed in each of the programs within that logical

division. It is felt that the program descriptions provided

for each of the logical divisions will be sufficient for the

programmer to identify the particular program or programs in

which he is interested while at the same time providing him with

an understanding of how it relates to other programs within the

package.

e Section III, PROGRAM CROSS-REFERENCE AND FLOWCHARTS - This section

contains a cross-reference of calling programs versus programs

called and the flowcharts (or program descriptions) associated

with each individual program in the Small Network Package.

The objective of the flowcharts is to provide the programmer with

an overview of the operation of each individual program within

the package. The level of detail contained in each individual

flowchart is felt to be minimal for an understanding of the

individual programs. It should also be noted that these flowcharts

are intended to be used in conjunction with information contained

in sections IV, V, and VI when reviewing or studying a particular

program listing.

• Section IV, SIGNIFICANT VARIABLES AND ARRAYS -This section

contains the significant variable, arrays, data structures and

control variables used by the various subroutines.

• Section V, DATA SET FORMATS - This section contains formats for

various intermediate data sets formed and/or used during the

operation of the Large Network Package.

2

• Section VI, OTHER INFORMATION - This section contains additional

information which is felt to be pertinent to the understanding

of the programs contained in the Large Network Package. For

example, this section contains an explanation of the procedure

used in saving turning movements during the assignment process.

e Section VII, RECENT CHANGES AND MODIFICATIONS - This section is

provided for information relative to changes which have been

implemented since the original documentation, and therefore,

serves an "update" function for this manual.

3

0 R G A N I Z A T I 0 N 0 F P A C K A G E

OVERLAY STRUCTURE

LOGICAL DIVISION STRUCTURE

OVERLAY STRUCTURE

The Texas Large Network Package is comprised of seventy-s~ven control

sections. These control sections are listed in Table 1 along with the

date of their latest revision. The diagram shown in Figure 1 illustrates

the overlay structure in which all but two of the control sections

operate. The two control sections (i.e., MAIN (Output Selected Links)

and E35) are used to perform the user program option $OUTPUT SELECTED

LINKS which, because of core storage requirements, is run as a separate

JOB.

LOGICAL DIVISION STRUCTURE

In order to explain the relationship between the control sections,

they have been grouped into eighteen logical divisions as shown in

Figure 2 (note that Logical Division 18 contains the control sections

for $OUTPUT SELECTED LINKS). The function (or functions) performed by

each of the logical divisions is described in Section III of this manual.

In addition, the sequence in which the programs are executed along with

a brief description of each of the programs is included for each logical

division. As can be seen from Figure 2, seven of the logical divisions

contain only one control section and two of the divisions contain only

two or three control sections. These small logical divisions were

necessitated either by the highly specialized functions performed within

them which could not readily be related to any of the other logical

divisions or, in some instances because the logical division simply

contains all the control sections needed to perform one of the user program

I-1

TABLE 1: CONTROL SECTIONS COMPRISING THE
TEXAS SMALL . NETWORK PACKAGE

Program Revision Program .
Control Section Date Control Section

ALCP 11-10-71 OUTWLT
BLOCK DATA 11-10-71 PARAM
CLOAD 9~20-71 PATHCL
CLOSE 9-20-71 PRPBLD

·cMPVH 11-10-71 PRPCTV
COPYFT 8-30-71 PRPNET
CRD 3-31-71 PTLNK
CRDINT 3-31-71 REG RES
E35 * RTPFL
FMTLNE 10- 1-70 RTPLT
FRATAR 3-31-71 sc
FWTO 10- 1-70 SELECT
GETDAT 10- 1-70 SUBFND
GETRN 7-26-71 SUMEND
GETRNS 10- 1-70 SUMRY
GETVOL 7-26-71 SVLOAD
GTLD 11-10-71 TIME
GTVL 7-26-71 TREBLD
ITOA 10- 1-70 TRN
INITLl 10- 1-70 TRNMV
LNKLST 7-26-71 TRPCKM
LOAD 9-20-71 TURNM
LOPS 8-30-71 UNPKX
MAIN 7-26-71 UPDTNT
MAIN (for Output

*
VREC

Selected Links) VSORT
MERG 10- 1-70 WGT
MOOR 10- 1-70 WGTA
MRGREC 7-30-71 WGTLD
NEWNET 8-30-71 WRT
OPENFT 8-30-71 WSL
OUTLLT 8-30:...71 WTSGLN
OUT NET 8-30-71 OVerlay
OUTRIP 3-31-71 structure
OUTTRE 10- 1-70

Revision
Date

7-26-71
10- 1-70
10- 1-70

7-26-71
3-31-71
3-31-71

10- 1-70
3-31-71
3-31-71
7-30-71
3-31-71
8-30-71

10- 1-70
3-31-71
3-31-71
7-26-71

10- 1-70
10- 1-70

7-26-71
10- 1-70
10- 1-70
10- 1-70
10- 1-70

3-31-71
8-30-70

10- 1-70
7-26-71
7-26-71
7-26-71
8-30-71

10- 1-70
7-26-71

7-26-71

Labeled Common Control Sections: ALLIGN, ARRAYS, CD, CAPRES, DELETE,
FILES, HEADR, OUTDCB, SDATE, STOP,
VOLTP

Library Subroutines: AXIS, DSQRT, EXP, LINE, LOG, NUMBER, PLOTS, SIN,
SQRT, SYMBOL

*These programs have not been modified since the institution of the
revision date policy on individual subroutines.

I-2

---,

H
I

w

CRD
GETDAT
PARAM
SDATE

RTPLT
sc
LINE
NUMBER
PLOTS
SYMBOL
EXP
LOG

Figure 1: Large Network Package Overlay Structure

MAIN CAP RES
LOPS FILES
TIME HEADR
WRT STOP
OPENFT OUTDCB
TREBLD DELETE

ALLIGN
VOLTP OUT NET ARRAYS

VSORT PRPCTV FMTLNE PATHCL
SUBFND FRATAR
OUTRIP MERG
SUMEND UPDTNT

LNKLST LOAD
UNPKX
SELECT

PRPNET SUMRY
PTLNK CD

INITLl MOOR
PRPBLD FWTO

NEWNET MRGREC ITOA
VREC COPYFT TRPCKM

OUTTRE
WSL

WGTLD RTPFL GTLD
CMPVH
REGRES
CRDINT
ALCP
SQRT
DSQRT

CLOAD
CLOSE

SVLOAD
GETVOL
GTVL

OUTLLT
TURNM
GETRNS
TRNMV

I
I

WTSGLN
OUTWLT
GETRN
TRN
WGT
WGTA

H
I

_.::..

FIGURE 2: LARGE NETWORK PACKAGE LOGICAL DIVISIONS

~
-----, I 2

I
I c R D I
I GETDAT I

PARAM I

L~~~E-J

3 I
I

VSORT I li
-----,

I ____ ...J

--------,
I 1 . 1
I MAIN CAPRES I
I LOPS FILES I

I TIME HEADR I
WRT STOP

II OPENFT OUTDCB I
TREBLD DELETE I

I ALLIGN I
L --------~

r----, ,..------+----, ,.--------· -----,
I 7 il8 PRPNET ;;9 SUMRY
I RTPLT .If PTLNK l_.l· CD

I s c II I 1
I LI~E It . MRGREC II I N I! M B E R I N E W ~- E T C 0 p y F T l.l W G T L D R T P F L G T L D
I PLOTS I VREC

I SYMBOL II II
I EX P 11 1 I
I L (1 G I L I I
L -----------------~ I I

.. -----~
rll 1

I M A I N ;
I E 3 5 1
I I
L_ _____ J

r:-:- -------1
115 ARRAYS
I PATHCL I
I I
I INITLI MOOR I
I PRPBLD FWTO I

IT 0 A I
II TRPCKM I

OUTTRE I
I w s L I
L _________ J

1 i7----~

I WTSGL~i I
I () L' T \.1 L j I
I GETR~ I
I T R N I
I w G T I
I w G T A I
L.:...---_J

r----- --------1
t16 c L 0 AD I
I CLOSE I
I ! DAn ~" L r. ·' n tJ u·' • · · .,. I
I ~·- ,.; ~"- · ·Ll'

'J' ~~~~~T ~~J~,J~ ~~~~;~~I
I T R ll M 'V I . . ,, . I
L __________ .._ ___ ..J

options described in the operating manual. On the other hand, it may

be noted that logical division 16 contains twelve control sections.

It is within this division that the network is loaded, and the loaded

network is printed.

It should also be noted that a number of the programs have multiple

entry points. To avoid possible confusion, these programs along with

the names of their other entry points are listed in Table 2. The

assembly language programs with multiple control sections are also

listed in Table 2.

I-5

PROGRAM

CLOAD

GETVOL*

ITOA*

LOAD*

LOPS*

MOOR*

PRPNET

PTLNK*

WRT*

TABLE 2: PROGRAMS WITH MULTIPLE ENTRY POINTS
OR MULTIPLE CONTROL SECTIONS

OTHER ENTRY POINTS OR CONTROL SECTIONS

LDSEL

WGT**, WGTA**, GTVL**

ITOAB

CLOSE**, OPEN, WRITE, TRDCB

LGLS , LGRS, LANA, LORA, LEX, LANAD , LANAL, NBYTE , LBYTE ,
LANAH, SBYTE, IB16, NULLT

MOORE, MINUS

ASMNET, . REVNET

GTLNK

OPENFT**, CLOSFT

*Assembly language routine
**Control Section

I-6

L 0 G I C A L D I V I S I 0 N S

INTRODUCTION

LOGICAL DIVISIONS AND USER PROGRAM OPTIONS

DESCRIPTIONS OF LOGICAL DIVISIONS

INTRODUCTION

The seventy-seven control sections comprising the Texas Large Network

Package have been grouped for the convenience of discussion, into eighteen

logical divisions. These logical divisions are not independent entities

but are functional units or simply convenient groupings. There are

three or more logical divisions associated with each of the program

options available to the user except the $OUTPUT SELECTED LINKS option.

The documentation functions served by this section are:

• To identify the logical divisions associated with each of the

user program options.

• To describe the relationship (i.e., calling sequence) between

the logical divisions with regard to each of the user program

options.

• To describe the functions performed by each of the logical

divisions.

• To provide the calling sequence of the subprograms within each

logical division.

• To provide sufficient information regarding the operation of

each of the subprograms within a logical division so that the

particular program(s) of interest may be identified.

After having identified the particular program(s) of interest, the

flowcharts (contained in Section IV) used in conjunction with the

information concerning significant variables and arrays (Section VI)

should provide the next level of documentation.

II-1

LOGICAL DIVISIONS AND USER

PROGRAM OPTIONS

A cross-reference of the logical divisions and the user program

options is provided by Table 3. As can be seen from this table, three

or more logical divisions are associated with each of the user program

options (except $OUTPUT SELECTED LINKS). It should likewise be noted

that many of the logical divisions are associated with more than ope

of the user program options.

The relationships between each of the logical divisions under each

of the user program options are illustrated in the following diagrams:

$PREP ARE NETWORK
$ASSEMBLE NETWORK

___..:::J"' Logical Division 2
Logical Division 1 ~

Logical Division

$REVISE NETWORK

Division 3
Division 1

~Logical Division 2
Logical Division 1

~Logical Division 8 -----iii>~ Logical Division 3

$OUTPUT NETWORK

Logical Division 2
Logical Division 1 ~

~Logical Division 10

II-2

H
H

. I w

USER PROGRAM OPTIONS

$PREPARE NETWORK

$ASSEMBLE NETWORK

$REVISE NETWORK
..

$OUTPUT NETWORK

$DELETE ASSIGNMENTS

$PREPARE TRIP VOLUMES

$OUTPUT TRIP VOLUMES

$BUILD TREES

$LOAD NETWORK

$LOAD SELECTED LINKS

$ASSIGN SELF-BALANCING

$OUTPUT SELECTED LINKS

$PLOT ROUTE PROFILES

$FRATAR FORECAST

$SUM TRIP ENDS

$MERGE

TABLE 3: CROSS-REFERENCE OF USER PROGRAM OPTIONS AND
LOGICAL DIVISIONS

LOGICAL DIVISIONS

1 2 3 4 5 6 7 8 9 10 11

X X X X

X X X X

X X X X

X X X

X X

X X X

X X X

X X

X X X X

X X X X

X X X X

X X X X
.

X X X

X X X

X X

12 13 14 15 16 17 18 1

I

X

X

X

X

X X X X

X

I

I
i

X

$DELETE ASSIGNMENTS

1
~ Logical Division 2

Logical Division

~ Logical Division 13 ---:::::>~Logical Division 1

$PREPARE TRIP VOLUMES

1

~ Logical Division 2

Logical Division ~

. Logical Division 4

$OUTPUT TRIP VOLUMES

~Logical Division 2

Logical Division 1~

Logical Division 5

$BUILD TREES

~ Logical Division 2

Logical Division 1 ~

Logical Division 15

$LOAD NETWORK
$LOAD SELECTED LINKS

~Logical Division 2

Logical Division 1 ~Logical Division 16 >Logical Division 1

Logical Division 9 -~>•Logical Division 3

II-4

$ASSIGN SELF-BALANCING

PLogical Division 2

~Logical Division 15

Logical Division 1 ~Logical Division 16----;;. Logical Division 1

~Logical Division 9 >Logical Division 3

Logical Division 17~ Logical Division 1

Logical Division 14

$OUTPUT SELECTED LINKS

Logical Division 18

$PLOT ROUTE PROFILES

~Logical Division 2

Logical Division 1

~Logical Division 7 --..-.:1>~ Logical Division 3

$FRATAR FORECAST

~Logical Division 2

Logical Division 1~

Logical Division 11

$SUM TRIP ENDS

~Logical Division 2

Logical Division 1

~Logical Division 6

$MERGE

~ Logical Division 2

Logical Division 1

~Logical Division 12

II-5

DESCRIPTIONS OF LOGICAL DIVISIONS

The description of each of the logical divisions in the Texas

Large Network Package has been divided into three sections. These

sections describe the logical division's general function, the input/

output requirements, the control sections used, the sequence of subroutines

called, and provide a brief description of each of the subroutines

(or control sections).

The first section, entitled "General", briefly describes the functions

or operations performed by the logical division. It also list$ the input

required, output produced, and the control sections used by the logical

division.

The second section, entitled "Sequence of Subroutines Called", provides

a diagram illustrating the sequence of subroutines called during the

execution of the logical division. This section not only provides a

convenient "trace back" capability but identifies those control sections

which are subroutines executed within the logical division. In addition,

when the given logical division calls another logical division, the diagram

identifies both the logical division and the subroutine called within that

logical division.

The third section is entitled "Descriptions of Individual Control

Sections". This section contains a brief description of the function of

each of the control sections contained in the logical division.

II-6

LOGICAL DIVISION 1

General

This division serves as the control program for the entire package.

It first issues a call to Logical Division 2 (Subroutine GETDAT) to

initialize the date. It also issues calls to Logical Division 2 (Sub-

routine CRD) to read ahd interpret control cards and unit control cards.

The appropriate Logical Divisions are then called to perform the

actions specified by the control cards. Because of the multiple usage of

various logical divisions in the ASSIGN SELF-BALANCING process, the program

MAIN also serves as the control program for this process. For convenience

and efficiency, this division also contains small subroutines and labeled

commons which are used by many of the other logical divisions.

Input: None

Output: Prints the difference in time of day of when each program

specified by a Control card started and when it ended. Also, subroutine

WRT is called from other Logical Divisions to. write unformatted data sets.

Control Sections: MAIN, TIME, CAPRES, FILES, HEADR, LOPS, ALLIGN, STOP,

OUTDCB, DELETE, OPENFT, CLOSFT, TREBLD, WRT

Sequence of Subroutines Called

~Lo.gical Division 2 (GETDAT)

~Logical Division 2 (CRD)

MAIN >TIME

~Gther Logical Division needed)
to perform the functions
specified by control cards

II-7

Descriptions of Individual Control Sections

ALLIGN: This labeled common forces a half word array used by subroutine

MRGREC to a full word boundary.

DELETE: This labeled common contains one word used to sum t.he number of

errors in the programs PREPARE NETWORK, ASSEMBLE NETWORK, and REVISE NETWORK.

OUTDCB: This labeled common has two arrays containing the data control blocks

built by subroutine OPENFT.

STOP: This labeled common is not needed.

TIME: 1 This subroutine returns the time of day in units of 100 of a second.

CAPRES: This is a labeled common which is used by ASSIGN SELF-BALANCING.

FILES: This is a labeled common in which the variable unit numbers

are stored.

HEADR: This is ·a labeled common used to store the date and.the header

from the last $HEADR card read.

LOPS: This is a control section which contains 13 function subroutines

which are used for bit manipulation for packed data by other logical

divisions.

MAIN: This is the main program for the entire package. Initially it

issues calls to GETDAT (in Logical Division 2) and TIME to get the date

and time the program began execution. It then performs the following

steps iteratively (Until a $STOP control card is encountered or an end

of data set is encountered on unit 5):

II-8

• A call is issued to subroutine CRD (in Logical Division 2) to

read and interpret a control card.

• The appropriate subroutine(s) are called to execute the program

specified by the control card.

• A call is issued to subroutine TIME to get the time of day.

• The time used by the execution of the program is calculated and

printed.

OPENFT: This is an assembly language subroutine to open a FORTRAN type

DDname. The DCB is built in one of two areas (specified by either a 1

or a 2 as the first argument) in the control section OUTDCB. The FORTRAN

unit number is specified by the second argument and the DDname used is

FTXXFOOl where the XX is the integer from the second argument. The data

set is opened twice. The first time it is opened the DCB information from

the DD card is obtained and the data set is closed. The spanned code is

then removed from the DCB in core and the data set is reopened. For this

reason the RLSE subparameter should not be used in the SPACE allocation

parameter on data sets which are used as unit NETWORK, unit NEWNET, or

unit ROUTE because the primary extent is all released except for 1 track

when the first CLOSE macro is executed by subroutine OPENFT.

CLOSFT: This subroutine closes the data set whose DCB is in the OUTDCB

control section. The DCB is indexed by either a 1 or a 2 which is the

argument in the call to CLOSFT.

WRT: This subrouting writes one logical record on the unit which is pointed

to by the "opened" DCB in CSECT OUTDCB. The DCB is indexed by either a

II-9

1 or a 2 as the ·first argument in the call to subroutine WRT. The logical

record written may be made up of one or more record segments. This

subroutine uses the PUT macro with the locate mode to get the address

of each new record segment. The rest of the calling sequence of subroutine

WRT is variable and is made up of a variable number of arguments which

are in groups of arguments that correspond to an implied DO loop in a

FORTRAN write. The first item of a group indicates by its sign whether

the variables are half words or full words. If the sign is minus the

arguments are half words. If the sign is positive they are full words.

The absolute value of the first item of each group is the number

of variables or array names in the group. The second item in the group is

the number of implied DO loop iterations M that should be used to transmit

the array(s). The next INI arguments are the arrays or variables. Only

the array or variable items are transmitted. If M is greater than 1,

a loop is set up in which the addresses ·(from which data is being moved)

are incremented by a constant at the bottom of the loop. If N is negative,

the constant is set to 2; and if N is positive, the constant is set to 4.­

The loop is executed M times. There may be as many groups in the call

as are necessary provided that the total number of arguments in a call

to subroutine WRT does not exceed the limits for the FORTRAN compiler

being used for the FORTRAN calling subroutine.

TREBLD: The entry ABEND in this subroutine prints the message ERROR

followed by the integer identification code which is passed to it through

the arguments.

II-10

LOGICAL DIVISION 2

General

This division is called by Logical Division 1. Although it contains

the routine used to initialize the date, its primary purpose is to read

and interpret control cards and unit control cards. When a unit control

card is read, the appropriate variable unit number in labeled common FILES

is changed. When a $HEADR card is encountered, the contents of columns

7 - 80 are placed in .the array in the labeled connnon HEADR. If an invalid

control card or unit control card is read, an error message is printed

and the job is terminated. When a valid control card (other than a

$HEADR card) is read, this division returns an integer which identifies

the control card read.

Input: Control cards and unit control cards on Unit 5.

Output: Prints all valid and invalid control cards and unit control

cards. Variable unit numbers are printed if any were changed by a unit

control card.

Control Sections Used: CRD, PARAM, GETDAT, SDATE

Sequence of Subroutines Called

~GETDAT

Logical Division 1

~CRD ---'>::ll!lo.PARAM

Descriptions of Individual Control Sections

CRD: This subroutine reads control cards and unit control cards and

sets an integer which is returned to the main program indicating the

II-11

control card encountered. When a unit control card is encountered,

the subroutine PARAM is called. After returning from PARAM, another

control card is read. When a $HEADR card is encountered, the information

in columns 7 80 is placed in the HEADR labeled common and another control

card is read. If an invalid control card or unit control card is

encountered, an error message is printed and the job is terminated.

PARAM: This subroutine interprets unit control cards read by CRD and

changes the variable unit numbers specified in the FILES labeled common.

GETDAT: This subroutine gets the date from the operating system with

a TIME macro and converts it to a twelve byte literal in the form:

XXX YY, ZZZZ

where:

XXX = abbreviation of the month (3 bytes)

YY = day of the month (2 bytes)

ZZZZ = year (4 bytes)

This subroutine is called by the program MAIN.

SDATE: This labeled common contains the date of the last modification

to the package and it is printed in a message after every control card

recognized by subroutine CRD.

II-12

LOGICAL DIVISION 3

General

This division contains the subroutine VSORT which performs an in-core

sort. It is used by Logical Divisions 7, 8, and 9.

Input: Unsorted data in core in records of from 1 to 256 bytes/record.

Output: Sorted records in core.

Control Sections Used: VSORT

Sequence of Subroutines Called

Logical Division (7 , 8, or 9) ---:;;;..~· VSORT

Descriptions of Individual Control Sections

VSORT: This subroutine sorts records in core. The first argument in

the calling sequence is the address of the array of records to be

sorted. The second argument is the number of records. The third argument

is the length of each record in bytes (must be between 1 and 256 bytes).

The fourth argument is the length of the sort key in bytes (must be

between 1 and 256 bytes) which can not be longer than the record length.

The sort key starts at the first byte of the record. The sort key is

treated as an unsigned binary number and the records are sorted into

ascending order on the sort keys.

II-13

LOGICAL DIVISION 4

General

This division is called by the program MAIN (in logical Division

1). It inputs the card trip volume records; checks to see that they are

in ascending order on origin and destination zones; and builds a trip

matrix which is outputted on unit CTVOUT.

Input: Parameter card on unit 5, card trip volume records on unit CTV!N.

Output: Trip matrix on unit CTVOUT.

Control Sections Used: PRPCTV, SUBFND, VOLTP

Sequence of Subroutines Called

PRPCTV ---~;>• SUBFND

Descriptions of Individual Control Sections

PRPCTV: This is the main part of the code for this logical division.

It reads the parameter card which specifies the volume field (of the

three available) to be used. This parameter card also specifies the

number of subnets and the first and last zone of each subnet.

After the parameter card is read, the trip volume records are read.

The program checks for records which are out of sort with regard to

the origin and destination zone numbers. It also checks to see that both

zones are in the zone ranges specified for the subnets by calling subroutine

SUBFND, and checks for duplicate origin and destination zone numbers. It

writes a trip matrix on unit CTVOUT of those trips for which there were

no errors.

II-14

SUBFND: This subroutine determines the subnet containing the origin

zone and the subnet containing the destination zone. It then verifies

that both the origin and destination zone numbers are within the zone

ranges specified on the parameter card.

VOLTP: This is a labeled common area used by subroutine PRPCTV.

II-15

LOGICAL DIVISION 5

General

This logical division is called by the program MAIN (in logical

Division 1) and performs the $OUTPUT TRIP VOLUMES program. It essentially

prints the trip matrix contained on Unit CTVOUT.

Input: Unit CTVOUT.

Output: Printed trip matrix.

Control Sections used: OUTRIP

Sequence of Subroutines Called

Logical Division 1 (MAIN) ---~>• OUTRIP

Descriptions of Individual Control Sections

OUTRIP: This subroutine reads a trip matrix from unit CTVOUT and prints

it with each origin zone starting on a new page. It prints 10 destina­

tion volumes per line. The zone numbers printed run from the first zone

number for a subnet to the last zone number for that subnet in groups

of 10. If a group of ten destination volumes are all zero, they are not

printed. The origin zones are considered in sequential order.

II-16

LOGICAL DIVISION 6

General

This division is called by the program MAIN (in Logical Division 1)

and performs the $SUM TRIP ENDS program.

Input: Trip ·matrix on unit CTVOUT.

Output: A printed table.

Control Sections Used: SUMEND

Sequence of Subroutines Called

Logical Division 1 (MAIN) --..,;;;;>~ SUMEND

Descriptions of Individual Control Sections

SUMEND: This subroutine performs a summation of a trip matrix by rows

and columns exclusive of the diagonal elements (i.e., the intrazonal

volumes). The number of non-zero trip volumes are also counted. A

table is then printed containing a summary of the trip volume character­

istics for each zone.

II-17

LOGICAL DIVISION 7

General

This division is called by the program MAIN (in Logical Division 1)

for the $PLOT ROUTE PROFILES program. It prints the route profiles from

a previous run of LOAD NETWORK, LOAD SELECTED LINKS, or ASSIGN SELF-BALANCING.

It also prepares calcomp plots of the routes with assignments, counts or

link capacities specified.

Input: Unit ROUTE, parameter cards to specify routes and assignments.

Output: Printed route profiles of all routes and a calcomp plot tape.

Control Sections Used: RTPLT, SC, and calcornp subroutines.

Sequence of Subroutines Called

· ~Logical Division 3 (VSORT)

RTPLT _...........:-----> SC

~ Calcornp Subroutines
(AXIS, LINE, NUMBER, PLOTS, SYMBOL)

Descriptions of Individual Control Sections

RTPLT: This subroutine reads the route parameter card specifying which

routes are to be plotted. It then reads the parameter card specifying

which assignments, counts or capacities are to be plotted. It then

reads the ROUTE data set and prints the route profiles and plots those

which have been specified.

SC: This subroutine is used to round the scaling factor.

II-18

LOGICAL DIVISION 8

General

This section basically performs the following functions:

e $PREPARE NETWORK

• $ASSEMBLE NETWORK

• $REVISE NETWORK

Input: Link data cards or link data revision cards from the INLNK data set.

Output: New or revised Flexible Record Data Set on the NETWORK data set.

Control Sections Used: PRPNET, PTLNK, NEl'lNET; VREC, MRGREC, and COPYFT.

Sequence of Subroutines Called

$PREP ARE NETWORK

PRPNET (entry point PRPNET) > NEWNET ;> VREC

$ASSEMBLE NETWORK

PRPNET {entry point ASMNET) >NEWNET ::;.. VREC

$REVISE NETWORK

PRPNET (entry point REVNET) :;... NEWNET :> MRGREC > COPYFT

Descriptions of Individual Control Sections

PRPNET: This is the control program for this section and defines storage

for the arrays and variables to be shared by the other programs in this

section.

PTLNK (and GTLNK): Commonly called "Put Link" or "Get Link," this program

has two entry points (i.e., PTLNK and GTLNK). It is a utility program

II-19

which packs and unpacks the 22-byte records used to save the information

from link data cards. This is the format in which the one-way links

are sorted and are written on units 3 and 11.

NEWNET: Basically, this program inputs, sorts, and edits the link data

cards. Due to array limitations, this program will input and sort up

to approximately 6667 link data cards (recall that each link data card

produces 2 link records). This program will handle up to 3 gro~ps of

approximately 6667 link data cards each with the first two sort groups

saved on disks and the last saved in core. These groups are later

merged by VREC. This program also outputs any node names on logical

unit 4. This program also performs some preliminary edit checks to

determine the validity of data. The preliminary edit checks include:

• Node number in range (i.e., 1 ~node number< last Freeway Node

Number)

• Valid time or speed code (i.e., TorS)

• Valid directional code (i.e., 0, 1, +, -)

• Calculates either time or speed and determines if impedance is

less than or equal to 10.23 "minutes."

VREC: This program performs the following functions:

• If there are more than one set of sorted link data records

produced in NEWNET (i.e., more than approximately 6667 link data

cards), the links are then merged.

• Performs various edit checks which includes:

a. Check for duplicate links

II-20

b. Check to determine if each node appears to be properly

connected to network (Note: basically this only checks to

see that each link is connected to another node. It does

not check for network fragmentation since this can presum­

ably be found by building test trees).

• Prepares and outputs "Flexible Record Data Set."

• Also inputs and merges 22-byte link records with link records in

core if there were more than 6667 link data cards.

MRGREC: Essentially this is just a modified version of VREC for the

$REVISE NETWORK. It performs the same functions as VREC except it can

merge up to 4 data sets instead of 3 (the additional data set is the old

Flexible Record Data Set which is being revised).

COPYFT: Again, this program is only used in conjunction with $REVISE

NETWORK and performs the following functions:

• Updates the field in the Flexible Record Data Set which contains

the number of one-way links.

• Copies the Flexible Record Data Set in VB instead of VBS record

format (note: FORTRAN unformatted WRITE requires either VS or VBS).

II-21

LOGICAL DIVISION 9

General

This section reads the Flexible Record Data Set from the unit NEWNET

and produces the following tables:

• Cross Classification of V/C Frequencies
from Last Two Assignments

• Cross Classification of Link Counts by
V/C Ratio from Last Two Assignments

• Jurisdiction Summary

• Jurisdictional/Functional Cross
Classification of Assigned Volumes

• Jurisdictional/Functional Cross
Classification of Counted Volumes

• Jurisdictional/Functional Cross
Classification of Link Capacities

• Comparison of Assigned Volumes with
Counted Volumes

• Comparison of Assigned Volumes with
Link Capacities

• Comparison of Assigned Volumes (from
last assignment) with Assigned
Volumes (from assignment before last)

• Iteration Weighting-Multiple
Regression Analysis

• Link Volumes

• Iteration Weights Applied

• Corridor Intercept Tables

• Route Profiles

• List of Volumes and Impedances for
Updated Links

Some of these tables are printed only when certain conditions are met

(see section on OTHER INFORMATION).

II-22

Input: Unit NEWNET.

Output: The tables listed in the general section above and Unit ROUTE.

Control Sections: SUMRY, CD WGTLD, GTLD, CMPVH, REGRES, CRDINT, ALCP, RTPFL

Sequence of Subroutines Called

$LOAD NETWORK and

$LOAD SELECTED LINKS

GTLD

SUMRY ~ CMPVH --___;;;;>:.. REGRES

~CRDINT
RTPFL

$ASSIGN SELF-BALANCING (iterations 1 - 5, and the calculated weighted
assignment if "WGT" is specified on the *TURN
card)

GTLD

SUMRY<:::E CMPVH

ALCP

$ASSIGN SELF~BALANCING (Weighted assignment made from weighted
impedances if "WGT" is specified on the
*TURN card, otherwise calculated weighted
assignment)

GTLD

SUMRY-~ CMPVH --~>• REGRES

~CRDINT
RTPFL

$ASSIGN SELF-BALANCING (after last iteration)

Logical Division 1---..;;::;>~ WGTLD

II~23

Descriptions of Individual Control Sections

SUMRY: This is the control program for the summaries produced after

an assignment. The subroutines called by SUMRY are determined by three

logical variables. One of the logical variables, SUM, if true causes

GTLD to produce a weighted assignment on unit NETWORK and produce all

tables and comparisons from this weighted assignment. Subroutine ALCP

is only called if logical variable RES is true. If logical variable

RTP is false, then the corridor intercept and route profile tables are

skipped.

GTLD: This subroutine prints the V/C cross classification table if there

are two or more assignments on unit NEWNET. It computes the summations

necessary for the tables printed by subroutine CMPVH and for the curve

fit printed by subroutine ALCP. It saves corridor intercept information

in core in labeled common CD. It writes route profile records on Unit

ROUTE. If logical variable SUM is true, GTLD calculates weighted

directional volumes and updates the flexible data record writing it on

unit NETWORK. All comparisons and tables are made from the weighted

directional volumes if SUM is true.

CMPVH: This subroutine prints the Jurisdiction Summary or the Jurisdic­

tional/FUNCTIONAL Cross Classification Tables and the thre=e Comparison

of Assigned Volumes with link volumes, Counted volumes and Capacities.

REGRES: This subroutine performs a linear regression analysis and prints

the results of this analysis.

II-24

CRDINT: This subroutine calls VSORT·(which sorts the corridor intercept

records) and prints the corridor intercept tables.

ALCP: This subroutine performs a multiple regression analysis to deter­

mine the iteration weighting for the ASSIGN SELF-BALANCING process and

prints the results of this analysis. Only the links with a non-zero

count (or capacity depending on which is specified) are considered and

centroid connectors are ignored. The count (or capacity) is the dependent

variable and the assigned directional volumes from each of the iterations

are the independent variables in the analysis.

RTPFL: This subroutine reads the route profiles from unit ROUTE and

prints the route profile tables.

CD: This is a labeled common area used to save the corridor intercept

records when GTLD is run until subroutine CRDINT runs.

II-25

LOGICAL DIVISION 10

General

This division is called by the program MAIN and performs the

$OUTPUT NETWORK program.

Input: Unit NETWORK.

Output: Printed network description.

Control Sections Used: OUTNET and FMTLNE.

Sequence of Subroutines Called

OUTNET ---...;;;;;;>-. FMTLNE

Descriptions of Individual Control Sections

OUTNET: This subroutine writes the page headings and calls subroutine

FMTLNE to format each line of the network, It reads the link records

from unit NETWORK and calls subroutine FMTLNE to format this data for

from 1 to 4 links per line. This subroutine prints 50 nodes per page.

If a whole page of node numbers to be printed are not included in the

network (i.e., .they have no connecting nodes), the printing of the page

is suppressed. The data for a link that is printed is ANODE, BNODE,

jurisdiction, shaft, arrow, link speed, link distance and link impedance.

The link impedance printed is the link impedance which will be used if

this flexible data record is used as unit NETWORK when the next assignment

or BUILD TREES is run.

II-26

FMTLNE: This subroutine formats the link data of from one to four links

with the same ANODE to be printed on one line. If a link is a dummy

one-way link the literal ONE-WAY is printed for it along with its BNODE

and the other data for this link is not printed.

II-27

LOGICAL DIVISION 11

General

This division is called by the program MAIN (in Logical Division 1)

and performs the $FRATAR FORECAST program.

Input: Parameter card and growth factor cards on unit 5 and trip matrix

on unit CTVOUT.

Output: Unit FRATAR. (Variable unit number CTVOUT is set equal to

unit FRATAR after the program is run.) A table of iteration growth factor

frequencies is also printed for each iteration.

Control Sections· Used: FRATAR

Sequence of Subroutines Called

Logical Division 1 (MAIN)----~a-~FRATAR

Descriptions of Individual Control Sections

FRATAR: This subroutine reads a deck of zonal growth factors and uses

Fratar's method of successive approximations to generate a forecasted

·trip matrix. Each approximation constitutes one iteration; the number

of repetitions is governed by either an iteration limit or a devia.tion

limit.

II-28

LOGICAL DIViSiON 12

General

This division is called by the program MAIN (in Logica1 Divison 1}

and performs the $MERGE program. It can be used to merge from two to

six trip matrices.

Input: Units MERGIN(l} to MERGIN(N)
(where N is between 2 and 6}

Output: Unit MRGOUT

Control Sections Used: MERG

Sequence of Subroutines Called

Logical Division 1 (MAIN} --~>~MERG

Descriptions of Individual Control Sections

MERG: This subroutine reads a merge parameter card which specifies the

number of data sets to merge. The MERGIN and MRGOUT units must have

previously been specified on a unit control card. The pa~ameter records

from these data ~ets are examined and the first zone of each subnet must

be the same. If any are different, an error message is printed and the

program stops. The largest last zone of each subnet is used for the

merged trip matrix which is written on MRGOUT. Then the trip matrices

are summed and written on unit MRGOUT.

II-29

LOGICAL DIVISION 13

General

This division is called by Logical Division 1 and uses theWRT

subroutine in Logical Division 1. It basically performs the $DELETE

ASSIGNMENTS PROGRAM. As may be recalled, the $DELETE ASSIGNMENTS

program can delete up. to 20 assignments from the NETivORK data set and

can also replace the impedances to be used on the next assignment

with the impedances used "n any previous assignment (even if the assign­

ment is being deleted), or it can modify the impedances according to the

impedance adjustment function. The WRT subroutine is used to output

the flexible record data set in the desired record format type (i.e.,

V or VB).

Input: Old flexible data record (unit 12), and DELETE ASSIGNMENTS

parameter cards from unit 5 (i.e., *INPEDANCE, *ADJUST, *DELETE, and

*END cards).

Output: Updated flexible data record (unit NETWORK).

Control Sections: UPDTNT

Sequence of Subroutines Called

UPDTNT >WRT (Logical Division 1)

Descriptions of Individual Subroutines

UPDTNT: This subroutine basically performs the functions of the

$DELETE ASSIGNMENTS program. The specific functions performed are, of

course, determined by the parameter cards supplied by the user (i.e.,

the *IMPEDANCE, *ADJUST, *DELETE, and *END cards). It should be noted

II-30

that the last parameter card must be the *END card. It should further

be noted that if the *END card is the only parameter card provided

then the flexible record data set will simply be copied on unit NETWORK.

The WRT subroutine (in Logical Division!) is used to write the

records (of the flexible record data set) on the unit NETWORK using

the record format type V or VB. The WRT subroutine changes the record

format type specified in the DCB parameter of the DD card for the unit

NE'IWORK as either VS or VBS to V or VB respectively. Effectively,

OPENFT removes the span parameter, S, from the DCB. This was implemented

to avoid problems caused by the FORTRAN Input/Output requirements of

certain versions of the Operating System.

II-31

LOGICAL DIVISION 14

General

This division prints the links which have non-zero count or

capacity fields (whichever has been specified) during the $ASSIGN SELF­

BALANCING program. The directional link volumes and the link impedance

are listed for each iteration and for the calculated weighted assignment

and the optional assignment tnade with the weighted impedances. The

count or capacity field is also listed.

Input: Flexible record data set on unit NEWNET.

Output: Printed list of links with link volumes and impedances for

which the link count or link capacity field, whichever was used, is

non-zero.

Control Sections Used: LNKLST.

Sequence of Subroutines Called

Logical Division 1 (MAIN) ------!:>_. LNKLS T

Descriptions of Individual Control Sections

LNKLST: The function of this subroutine is listed in the general section

above.

II-32

LOGICAL DIVISION 15

General

This_section performs the $BUILD TREES function. It is also used

to perform part of the $ASSIGN SELF-BALANCING function.

Input: *TURN card, *TREE cards, unit NETWORK and possibly unit 49

(the old Paths data set) if the COPY option is on the *TURN card.

Output: Printed trees specified, Paths data set, and unit SEPARAT, the

separation matrix.

Control Sections Used: PATHCL, ARRAYS, INITLl, PRPBLD, MOOR, FWTO,

ITOA, TRPCKM, OUTTRE, WSL, and Logical Division 1.

Sequence of Programs Called

~PRPBLD

~~~'----------~~~ Logical Divison 1 Logical Division 1--.;:::;::s-~PATHCL~MOORE 

~:: 
WSL 

Descriptions of Individual Control Sections 

PATHCL: This is the control subroutine for this division. It defines 

arrays used by subroutines called from this division. It reads the 

network into core from unit NETWORK and changes it to the form used by 

the tree builder subroutine. It controls the building of trees, the 

printing of trees, the packing of the paths, and writes the Paths data 

set and the separation matrix data sets. 

II-33 



ARRAYS: This is a labled common which contains most of the storage used 

by subroutine PATHCL. 

INITLl: This subroutine checks to see that all turn type codes read 

are valid and also checks the number of the nodes in the network. This 

subroutine is not used. 

PRPBLD: This subroutine reads the *TURN card and the *TREE cards which 

specify the turn penalty and the trees to be built and printed. The 

COPY parameter is also specified on the *TURN card if it is used. 

MOOR: This control section builds one minimum path tree each time it is 

called. Its entry point is MOORE. 

FWTO: This subroutine prints one line on the computer operators console 

each time it is called. It is called at approximately five-minute .intervals 

during the tree building process and identifies the trees built during that 

period. 

ITOA: This subroutine converts a binary interger to.EBCDIC format tor 

printing. 

TRPCKM: This subroutine packs an array of path indices from 16 bit 

integers to ten 3 bit integers per word. The control sect.ions also 

contains the entry point TEST which checks to see that an array of packed 

path indices contains no indices of 6. 

OUTTRE: This subroutine prints one tree each time it is called. 

WSL: This subroutine writes a record of separations for one tree for 

the centroids only. 

II-34 



LOGICAL DIVISION 16 

General 

This section performs the loading of trees and printing of the 

loaded network function for the following user program options: 

• $LOAD NETWORK 

• $LOAD SELECTED LINKS 

a $ASSIGN SELF-BALANCING 

Input: Flexible Record data set (unit NET\.JORK), Paths data set (Unit 50), 

and parameter cards for LOAD SELECTED LINKS if it is run. The parameter 

cards for LOAD SELECTED LINKS are *ALL, *LINKS, *NONE, *SEL, and *END. 

Output: New Flexible Record data set (unit NEWNET), printed loaded 

network, and Selected Interchanges data set (DD name SELTRP) if LOAD 

SELECTED LINKS is run. 

Control Sections Used: CLOAD, CLOSE, LOAD, UNPKX, SELECT, SVLOAD, GETVOL, 

GTVL, OUTLLT, TURNM, GETRNS, and TRNMV. 

Sequence of Programs Called 

$LOAD NETWORK 

~UNPKX 

Logical Division 1 ~ CLOAD ~LOAD 

OUTLLT -~>~ TURNM ~ GETRNS 

~TRNMV ~TRNMV 

II-35 



$LOAD SELECTED LINKS 

Logical Division 

~LOAD (entry point OPEN) 
SELECT 

1~ CLOAD~ UNPKX 

~:~E 
"'\ OUTLLT~TURNM ---;;;.GETRNS --;.TRNMV 

~TRNMV 

$ASSIGN SELF-BALANCING 

Logicai Division 
/UNPKX 

1 ~ CLOAD ~LOAD . ~GETVOL 

~SVLOAD ---:.GTVL 

OUTLLT > TURNM ~ GETRNS ~ TRNMV 
~TRNMV 

Descriptions of Individual Control Sections 

CLOAD: This subroutine controls the execution of this logical division. 

It reads the network from unit NETWORK and modifies this to the format 

needed for the LOAD subroutine. It initializes the directional link 

volume array and the turn volume array to zero. It calls subroutine 

SELECT if it is a LOAD SELECTED LINKS run. It reads the trip matrix and 

the paths data sets. These are assumed to be in sort on the origin zones. 

It calls subroutine LOAD to load trips in fue network if. there is both a 

tree record and one or more trip records for an origin zone. After the 

network is loaded CLOAD calls subroutine SVLOAD to save the loaded network 

on unit 3 if an ASSIGN SELF-BALANCING run is in iteration 1 thru 5. CLOAD 

then calls subroutine OUTLLT to print the loaded network. 

CLOSE: This subroutine closes data set SELTRP. 

II-36 



LOAD: This subroutine loads a trip record by adding each trip interchange 

volume to all of the directional link volumes in the path connected between 

the origin and destination zones of the trip interchange. Some turn 

volumes are also summed in this process. This subroutine also writes a 

record on unit SELTRP for each selected link crossed in loading each trip 

interchange volume. 

UNPKX: This subroutine unpacks the path indices and places them in half 

words. 

SELECT: This subroutine reads the parameter cards of LOAD SELECTED LINKS. 

For each *SEL card it writes one record on unit SELTRP and it marks both 

of the one-way directional links as selected. This subroutine also reads 

one of the following parameter cards: *ALL, *LINKS or *NONE. If the 

*LINKS card is read, this subroutine sets all turn codes in core to 28. 

If the *NONE card is read, a logical variable is set to specify that the 

loaded network will not be printed. 

SVLOAD: This subroutine writes the directional link volumes twice on 

unit 3 and the turn volumes also on unit 3. It also sets up segment 

sizes for the network which are small enough so that a segment of the 

loaded network may be summed in core using the weights calculated for 

ASSIGN SELF-BALANCING. The first set of link volumes written for each 

segment are in the same order as the links in the network. Each of the 

second set of the linkvolumes is in the reverse direction of the links 

in the network. 

II-37 



GETVOL: This subroutine gets a group of link volumes between two integer 

indexes and places them in a full word array. 

GTVL: This subroutine gets a group of link volumes which are the reverse 

direction of those obtained for GETVOL. It also places these link 

volumes in a full word array. 

OUTLLT: This subroutine controls the printing of the loaded network. It 

prints page headings, calls subroutine TURNM to get the link volumes and 

turn volumes for a node and formats the directional link volume, non­

directional link volumes, and turn volumes. 

TURNM: This subroutine gets the directional volumes, nondirectional 

volumes, and turn volumessaved. It also calculates the other turn volumes 

and marks which turn volumes should not be printed because of one-way links. 

GETRNS: This subroutine gets the turn volumes which were saved and places 

them in the turn volume matrix. 

TRNMV: This subroutine adds two indices together and gets the assigned 

volumes indexed by the sum from a half word array. If the half word is 

negative, it is a flag and an index and this index is used to get the 

. actual volume from a full word array. 

II-38 



LOGICAL DIVISION 17 

General 

This section is used when ASSIGN SELF-BALANCING is run to calculate 

a weighted assignment. 

Input: Unit NETWORK and unit 3. 

Output: Unit NEWNET and the printed weighted loaded network. 

Control Sections Used: WTSGLN, OUTWLT, GETRN, WGT, and WGTA. 

Sequence of Programs Called: 

Logical Division 1------=!!.,..•WTSGLN > OUTWLT--"""'i>• TRN -~>• GETRN 

~WGT 
WGTA 

Descriptions of Individual Control Sections 

WTSGLN: This subroutine reads unit 3 and using the weights for each 

iteration sums up the weighted directional link volume, reverse directional 

link volumes, and turn volumes for one segment in core. It then rewinds 

unit 3 and calls subroutine OUTWLT to print this segment of the loaded 

network. It repeats the above steps for other segments. The line counter 

used by subroutine OUTWLT to print page headings is only initialized for 

the first call to OUTWLT. 

OUTWLT: This subroutine prints the loaded network for one segment of the 

loaded network. It calles subroutine TRN to calculate the turn volumes 

for one node. It reads the riode numbers and the node names from unit 

NETWORK and it writes the updated Flexible Record with the weighted 

assignment volumes added on unit NEWNET. 

II-39 



TRN: This subroutine gets the weighted directional volumes the weighted 

nondirectional volumes, and the weighted turn volumes saved. It also 

calculates the other weighted turn volumes and marks which turn volumes 

should not be printed because of one-way links. 

GETRN: This subroutine gets the weighted turn volumes which were saved 

and places them in the turn volume matrix. 

WGT: This subroutine multiplies a group of volumes by an integer percent 

and places the results in another array. 

WGTA: This subroutine multiplies a group of volumes by an integer percent 

and adds the results into another array. 

II-40 



LOGICAL DIVISION 18 

General 

This division prints the selected links output (i.e., the output 

from $LOAD SELECTED LINKS). This division is unique in that it must be 

a separate job (or at least 3 job steps) because it uses the IBM sort 

program twice. 

Input: Selected links data set SELTRP. 

Scratch: First and second sorted data sets SORTOUT. 

Output: Printed listing for each selected link of the zone pair trip 

interchanges assigned to the selected link. 

Programs used: The IBM Sort/MERGE program, the exit program E35, and 

a Fortran program to list the selected links and the trip interchanges 

loaded through them (i.e., MAIN). 

Sequence of Program Execution: 

JOB 
STEP 1 

JOB 
STEP 2 

IBM SORT . IBM SORT 

E 35 

Summary of Individual Programs 

JOB 
STEP 3 

MAIN (List Selected Links) 

IBM Sort/Merge Package: Refer to the OS Sort/Merge Programmer's Guide, 

sc 33-4007-1. 

E35: This subroutine is called during JOB STEP 1 by the IBM Sort program. 

It combines the trip interchange records for each zone pair associated 

with a given selected link thereby reducing the number of records to be 

II-41 



sorted during JOB STEP 2. The combined trip interchange record, which 

is outputted for each zone pair interchanging trips through a selected 

link, contains both the directional and nondirectional zone pair trips 

through the selected link. The total nondirectional trip volume assigned 

to a selected link is also computed and outputted as a separate record. 

(During JOB STEP 2, the combined interchange records are sorted using 

the two sort keys: selected link number and nondirectional trip volume.) 

MAIN (List Selected Links): This is a Fortran program which reads the 

combined trip interchange records for the selected links (which were 

sorted during JOB STEP 2 using the keys: Selected link index number and 

nondirectional zone pair volume) and prints the interchanges assigned 

to each selected link (in descending order of magnitude of the nondirec­

tional volumes) until either a limit parameter has been satisfied or 

until all interchanges have been printed. 

II-42 



E 35 

COMBINE TWO DIRECTIONS 
OF TRIP MOVEMENTS 
THRU SAME LIB ARD WRITE 
SUM RECORD 

START PRINT SELECTED 
LINKS JOB 

PRINT SBLBCTED LINKS 
OUTPUT 

II-43 



P R 0 G R A M C R 0 S S - R E F E R E N C E 

AND FLOWCHARTS 

CROSS-REFERENCE OF PROGRAMS 

FLOWCHARTS 



CROSS-REFERENCE 

OF PROGRAMS 

A complete cross-reference of calling programs versus programs 

called is prov.ided in Table 4. This cross-reference serves both to 

identify all programs used by a given calling program and to, conversely, 

identify all calling programs which utilize a given program. 

This cross-reference should prove especially useful when considering 

the modification of a program. For example, if modification is desired 

in OPENFT when used in conjunction with GTLD, a quick reference to Table 

4 indicates that OPENFT is also called by OUTLLT, UPDTNT, and VREC. 

Therefore, any modifications in OPENFT should be compatible with all 

four calling programs. 

III-1 



TABLE 4: 

f.< ... a ~ PROGRAMS ~ "" ~ ~ s: :z; 

~ ~ CALLED u ~ ~ ~ ~ 
,.;~ .:I C3 ... < < u <.> <.:> <.:> 

ABEND X 

ALCP 

ALOGlO 

AMAXl 
--

AMINI 

ASMNET 

CLOAJJ 

CLOSE X 

CLOSFT X 

CMPVH 

COPY~'T 

CRD 

CRD!NT 

DSQKT X 
FMTLNE 

FRATAR 

FRXPl 

FRXPR 

FWTO 

GETIJAT 

GETRN ----
GETRNS 

GETVOL 

GTLD 

GTLNK 

GTVL 

IBCOM X X X X X X X X ---
TBl6 

ITOAB 
--·-·--

LANA X X ---
LANAH 

LANAL X X 
LBYTE X 
LDSEL 

LGLS X 
LGRS X X 
LINE 

LNKLST 

LOAD X 
LORA X X 
MAXO X -
MERG 

MINO X X 
MOORE 

MRGREC 

NBYTE 

NEWNET . X 

NUMBER 

OPEN 

CROSS-REFERENCE OF CALLING PROGRAMS 
VERSUS PROGRAMS CALLED 

CALLING PROGRAM 

@ ~ ... ~ ... 
... ... "" e ~ ,.;~ ::3 -~ ... s; fll ... 

,.;~ ... + ~ :z: <.:> ::i ~ E ~ 101' <.> l~ ~ i 
... 

i I ~ e ~ a ~ ~ s 8 ~ ~- -~ "" tl ~ [::l ~ 5 ::> ::> i1! ::! ~ ·0 0 0 ·I>< .. p.."" "''"' 

X X 

X 

X 

X 

X 

X 

X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X X X X X X X X I X X X X X X X X X X X 

X X X X 

X 

X X X X X X X X 

X X 

X X X X X X X X X X 

X 

X '. 

X X X X X X X 

X X ~ X X X X X ){ X X 

X 

X 

x 
X X X X X X X 

X X X 

X 

X X X X 

X 

X 

X 

X X 

X 

X 

III-2 

~ "' ... 
i ~ I I ~ <.> 

0 

~ ,.;~ 

~ ~ 
0 

~ 
~ 

~ 
p.. !i ~ ... ::> 

X X 

X 

X 

X 

X X 

X 

X 

X 

X 

I X 

X 

X 

X 

X 

X X X X X X X X X 

X X X 
I 

X X X X 

X 

X 

X X 

X X 

X X 

X X 

X X X X 



TABLE 4: (continued) 

CALLING PROGRAM 

£-<, E-o 

~ ~ 
E-o u E-o 1-< 

~·~ ~ !:l d ~ ~ t is ;~ ·~ ;t !:11 

1-< !il "" "" 11 ~I .,jl 
~. ~· ~~ ~ ~ 

z >-l ~ ~ l<l >-l u 

I ~ 
>-l 

~ ~ l<l z <.!> 

~ ~ ~ = "" ~.·~ 
l<l 

.~ "" u t-~~ PROGRAMS 
~. ® ~ E-o iS !i ~ &'l ~ ~ ~ ~ t ~ ~ ~ ga ~ ~· ~· ~; §, l<l E-o ::> ~ ·fil ~ CALLED u ... <.!>· <.!> ,..., ,_, :>: z 0 0 0 0 "' "' P..; !-< :-~ :..:. 

; 

OPENFT X X X X ;, j 

OUTLLT X X ----
OUTNET X 

OUTRIP X 

OUTTRE X 

OUTW!.T \ ---
PARAM X 

PATHCL X 

PLOT X 

PLOTS X 

PRPBLD X 

PRPCTV X 

PRPNET X 

Pl"LNK X 
REGRES X 

REV NET X 

RTPFL X 

RTPLT X 

SBYTE X X X 
sc X 
SELECT X X 
SQRT X . 

SUBFND X I 

SUMEND X : 
SUMHY X ---
SVLOAD X X 
SYMBOL X 
TEST X 

TIME X X X I X ---
TRN K 
TRNMV X X 

TRPCKM X 

TURNM I 

UNPKX X X 
UPDTNT tt 
VREC X X 
VSORT X X X X 
WGT . X --
WGTA X 

WGTLD X 

WRITE X 

WRT X X X X X 

WSL X 

WTSGLN X 

III-3 



FLOWCHARTS 

The following are the flowcharts associated with the significant 

subroutines in the Large Network Package. For convenience, these flowcharts 

are in alphabetical order. 

The objective of the flowcharts is to provide the progrannner with 

an overview of the operation of each individual program. The·level 

of detail contained in each flowchart is felt to be minimal for such 

an understanding. It should also be noted that these flowcharts are 

intended to be used in conjunction with information contained in sections 

V and VI (and, in some instances, section VII) when reviewing or studying 

a particular program listing. 

/ 

III-4 



SUBROUTINE 

ALCP 

CALCULATE REGRESSION 
VALUES FOR A LINEAR CURVE 
FIT OF THE ITERATION 
ASSIGNMENTS TO EITHER 
COUNT OR CAP. 

PRINT RESULTS 
OF REGRESSION 

SET CONVERGENCE . 
VARIABLE TO INDICATE THIS 
IS THE LAST ITERATION 

III-5 

ALCP 



SUBROUTINE 

LDSEL 

SET OPTION FOR SELECTED 
I.INK OUTPUT 

WRITE ERROR MESSAGE 
AND STOP 7 

READ SELECTED LINK 
PARAMETER CARDS, MARK 
SELECTED LINKS IN 
CORE, OUTPUT PARAMETER 
RECORDS ON SELTRP, AND 
LIST PARAMETERS USED. 

WRIU: ERROR MESSAGE AND 
STOP 50 

SUBROUTINE 

CLOAD 

SET OPTION FOR NO 
SELECTED LINK 
OUTPUT 

READ IN NETWORK FROM 
FLEXIBLE RECORD 
AND REARRANGE LINK 
DATA TO SAVE ONLY 
BNODE AND LAST LINK 
FLAG 

READ IN PARAMETER 
RECORDS FROM TRIP 
MATRIX 

READ A PATH RECORD 
AND UNPACK THE PATH. 
READ A TRIP RECORD 

INITIALIZE ARRAYS 
FOR LOADING. PRINT THE 
NUMBER OF TURNING 
MOVEMENTS TO SAVE 

READ ANOTHER PATH 
RECORD AND UNPACK READ ANOTHER TRIP RECORD 

L D S E L 
C L 0 AD 

END OF DATA SET END OF IJA1'A SET 

LOAD 

LOAD THE TRIPS ON 'fHE 
PATH 

REMOVE SELECTED LINKS 
CODES FROM THE 
LINK ARRAY. 

CLOSE SELTRI' llATA 
SET 



CMPVH 

INITIALIZE SUMHATION 
VARIABLES TO ZERO 

SUM UP THE VEHICL!j 
MILES FOR THE JURISDIC­
TIONAL/FUNCTIONAL CROSS 
CLASSIFICATIONS 

CALCULATE AND PRINT 
JURISDICTION SUMMARY 
BY LOCALS, ARTERIALS , 
AND FREEWAYS 

CALCULATE AND PRINT THE 
"JURISDICTIONAL/FUNCTIONAL 
CROSS CLASSIFICATION 
OF ASSIGNED VOLUMES" 
SUMMARY 

CALCULATE AND PRINT THE 
"JURISDICTIONAL/FUNCTIONAL 
CROSS CLASSIFICATION 
OF COUNTED VOLUMES" 
SUMMARY 

III-7 

CALCULATE AND PRINT THE 
"JURISDICTIONAL/FUNCTIONAL . 
CROSS CLASSIFICATION 
OF CAPACITIES" SUMMARY 

PRINT REGRESSION OF 
ASSIGNED VOLUMES VERSUS 
COUNTED VOLUMES BY ROUTE 

PRINT REGRESSION OF 
ASSIGNED VOLUMES 
VERSUS LINK CAPACITIES 
BY ROUTE 

PRINT REGRESSION OF 
ASSIGNED VOLUMES 
VERSUS PREVIOUS 
ASSIGNED VOLUMES BY 
ROUTE 

CMPVH 



END OF DATA SET 

PRINT PACKAGE DATE AND 
NAME, SET I TO INDEX 
OF CONTROL CARD TYPE 

PRINT INVALID CONTROL 
CARD MESSAGE 

SUBROU1'INE 

CRD 

READ A UNIT CONTROL CARD 
OR A . CONTROL CARD 

CHANGE UNIT NUMBERS 
SPECIFIED AND PRINT 
ALL UNIT NUMBER 

PRINT END OF FILE ON 
5 MESSAGE 

III-8 

SAVE HEADER 



RETURN 

CRDINT 

READ H!:Al)!R RECORDS 
POl ALL ASSIGNMENTS 
FROM FLEXIBLE DATA 
RECORD AND PRINT, 

SET UP FORMATS FOR 
NUMBER OF ASSIGNMENTS. 
CALCULATE LENGTH OF 
RECORDS TO SORT • 

PRINT CORRIDOR 
INTERCEPTS BY 
INTERCEPT NUMBER 
WITH PERCENTS AND 
TOTAL BY CORRIDOR 
INTERCEPT 

III-9 



*ASSEMBLY LANGUAGE 

~UBROUT I Nr: 

E35 • 

GET RECORD ADDRESSES 

ADD DIRECTIONAL 
VOLUME TO SUM, 

SUM TWO DIRECTIONAL 
VOLUMES AND PUT IN 
PREVIOUS OUTPUT 
REC. OR DIRECTION FLAGS. 

III-10 

E 3 S 



MOVE VOLUME • FROM LARGE 
XONE NUMBER TO SMALL 
ZONE NUMBER • TO OTHER 
D I RECTI ONAL VOLUME. 

'lOVE l.)IRF.t..:TlONAL VOLUME 
IN AS NON-DIRECTIONAL 
VOLUME 

ADD DIRECTIONAL 
VOLUME TO SUM. 

YES 

PASS INPUT RECORD TO 
OUTPUT AND RETURN • 
RC • 0 

YES 
SET FLAG TO DELETE OUTPUT 
RECORD SEQUENCE CHECK. 

NO 

YES 

BUILD SUM RECORD • PUT 
SUM IN SUM RECORD • SET 
SUM • 0 

III-11 

llEARRANGE SELECT RECORD. 
SET INDEXP • LINK INDEX 
OF SELECT RECORD 

HOVE DIRECTIONAL 
VOLUME IN AS NON­
DIRECTIONAL VOLUME 

E 3 5 



ir ASSEMBLY LANGUAGE 

SUBROUTINE 

FMTLNE * 

SAVE REGISTERS. GET 
ADDRESSES OF ARGUMENTS 

GET ANODE AND NUMBER 
OF LINKS TO PRINT ON 
THIS LINE, NDS. 

MOVE THE F.DIT PATTERN 
INTO THE OUTPUT LINE. 

SET I = 1 

CONVERT THE ANODE TO 
PACKED DECIMAL AND 
EDIT 1 NTO THE OUTPUT 
LlNE 

GET LINK I TO PRINT 
ON THIS LINE 

SEPARATE THE LINK INTO 
SHAFT AND ARROW, LINK 
TIME, AND B NODE 

EDIT IN THE 8 NODE 

III-12 

EDIT IN TIME. MOVE 
EBCDIC SHAFT AND ARROW 
IN 

GET JURISDICTION, 
DISTANCE, AND SPEED FOR 
L:J:NK I. 

EDIT IN SPEED, EDIT 
IN DISTANCE, MOVE 1 N 
JURISDICTiON. 

I: I + 1 

FILL THE REST OF THE 
LINE WITH BLANKS 

FMTLNE 

MOV~: IN LITI•:RAI. 
'loNE WAY)' 



PRlNT MESSAGE: 
IMPROPER GROWTH FACTOR 
FIELD 

NO 

SUBROUTINE 

FRATAR 

INITIALIZE SUMMATION 
VARIABLES TO ZERO. 
INITIALIZE OTHER 
VARIABLES. 

READ PARAMETER CARD AND 
PRINT HUMBER OF ITERA­
TIONS SPECIFIED 

PRINT GROWTH FACTOR 
FIELD TYPE SPECIFIED ON 
PARAMETER CARD 

COPY TRIP MATRIX FROM 
UNIT CTVOUT TO UNIT 
I'RATAR AND SUM TRIP 
ENDS 

READ B-DECK CARDS AND 
EXAMINE FOR ERRORS • 
CORRECTING THOSE WHICH 
ARE CORRECTABLE AND 
PRINT ERRORS 

PRINT "B DECK READ 
COMPLETE" 

III-13 

FRATAR 



STOP YES 

EXAMINE GROWTH FACTORS 
FOR ZEROS OR MISSING 
GROWTH FACTORS AND 
PRINT ERROR MESSAGES IF 
ANY 

,...---------------,.....----~-----

~ i e GROWTH FACTOR 
. FOR ZONE j 

t;,-'= EXISTING INTER­
CHANGE BETWEEN 
ZONE i AND ,j. 

m = NUMBER OF ZONES 

READ LAST TRIP MATRIX 
AND CALCULATE 

m m 
Sf • t tijg . + ~ t .. gj· 

j•l J j•l J?-

wi • ei/si 
where: 

m m 
e.•l: t .. + I:t. 

1- j•l J?- j•l ?-j 

------------. ___ .,..... ___ __,;r.------. 
ALSO SUM 

m m 

E;: *.j~l T,ji+j;l Tij 

READ LAST TRIP MATRIX 
AND CALCULATE NEW 
FORECASTED TRIPS 

wi+wi 
Tij • tij8i 8/ 2 ) 

AND WRITE NEW TRIP MATRIX 

CALCULATE GROWTH FACTORS 
FOR NEXT ITERATION BY: 

g .• 3f. 
'!. ei 

GET DISTRIBUTION OF 
8i IN THE RANGE • 9 
TO 1.1 AND PRINT. 

III-14 

FRATAR 



SUBaOUTlllB 

GETDAT* 

SIT. UP BNnY POINT 
HAKi OF DATE (POll 
BIROll TRACE CALLS) 
SAVE CEHDAL PUil'OS.I 
a.BGtl'l'lllS AND ll 13 . 

EilcuTE ''TIMB" MACID 
TO GBT YIAI. AND MY or 
YIAJ. I'IOK SYSTIK, 

COIIVRT T8l LAST 'NO , 
DIGITS or '1111 YIWl fiCit 
PACDD DICIHAL TO. BBCDIC 

lllVI Till riiJD PAllt or 
Till DAD '1111 DD, 1m' 
TO '1111 nut AIGUMIIJf 
or Gl'l'DAT 

1C)VI Till LAST 'NO 
. DIGITS or Till YIAI. TO 

'1'81 n rosine. or Till 
DATE IR Til AllGUMIIII! WOU 
AlliA. 

IRITUI.IU LOoP "LEAP ft" 
fOll A LEAP YIWl 

DIVIDI Tilt LAST 'NO 
DIGITS or Till YIAI. 1Y 4 

rnm itotrta or YBAJ. • 
. IIJVI.3~ 
· AaBIIVii.TIOR OF l'Dl'l'H 
TO AIG, WRit AlliA, 

III-15 

SUITllACT RUMIIll OF 
DAYS llfOlll !DTil TO 
GBT DAY or MORrH. 
COIIVIllT DAY TO IICDIC 
ARD MOVE TO AIG. WOU 
AlliA 

CLIWl AIG. W0R1t AlliA TO 
ILAIIIS MOVE IICDIC YIWl 
1ftO COLUMRS 1 AND 2, 
A '/' Ill'l'O COLUMR 3, 
COII'IIllT DAY or YEAR TO 
BICDIC ARD IIJVI TO 4-6 

GETDAT 

*ASSEMBLY LAIIGUAGI 



SUillOUTIII 

GET IN 

PUT TIIIIIIIIG IIWIHIIITS 
WICB IIA.YB ... SAVID 
I'OR DIS BODB D1 Till 
TIJIIIDIC IDVIMIIT 
IIATIIX 

III-16 

GETRN 



SUBROUTINE 

GTLD 

INITIALIZE SUMMATION 
VARIABLES TO ZERO. 
OPEN DATA SET ROUTE 
FOR ROUTE PROFILE 

RI!AD · PARAME.TER RECORD 
FROM UNIT NETWORK 

RI!AD HEADER RECORDS AND 
WRITE THESE RECORDS ON 
UNIT PLF ALSO SAVE 
LAST TWO HEADER RECORDS 

INITIALIZE MORE 
SUMMATION VARIABLES 
TO ZERO AND INITIALIZE 
OTHER VARIABLES 

YES 

YES 

III-17 

GTLD 

OPEN. NEWNET UNil' FOR 
OUTPUT 

ADD ONE TO NUMBER 
OF ASSIGNMENTS AND 
WRITE PARAMETER RECORD 
ON UNIT NETWORK 



R~.AU A LINK RECORD 
WI Til NO ASSiGNMENTS 

NO 

NL ~ NUMBER OF 
LINKS FROM THIS NODE 
I = 0 

READ A LINK RECORD 
WITH NONDIRECTIONAL 
ASSIGNED VOLUMES 

CALCULATE WEIGHTED 
IMPEDANCE tUID WEIGHT 
VOLUME FOR· THIS LINK 

WRITE NEW .LINK RECORD 
ON UNIT NEWNET WITH 
WEIGHTED IMPLEANCE AND 
VOLUME AS NEXT 
ASSIGNMENT 

III-18 

GET LINK GROUND COUNT 
. AND PUT IN NCC 

MAKE SUMMATIONS FOR 
GROSS CLASSIFICATIONS 

GET LINK JURISDICTION, 
SPEED, DISTANCE, TIME, 
LAST ASSIGNED NON­
DIRECTIONAL VOLUME, AND 
ROUTE CODE 

MAKE SUMMATIONS FOR 
REGRESSIONS OF 
ASSIGNED VOLUME VERSUS 
LINK COUNTS BY ROUTE 

GTLD 

GF.'l' UNK CAPAC I TV ANU 
PUT IN NCC 



WRITE RECORD FOR THE 
ROUTE PROFILE ON UNIT 
PLF 

YES 

YES 

MAKE SUMMATIONS FOR 
REGRESSION OF ASSIGNED 
VOLUMES VEJI.SUS LINK 
CAPACITIES BY ROUTE 

MAKE SUMMATIONS FOR 
REGRESSION OF ASSIGNED 
VOLUMES VERSUS PREVIOUS 
ASSIGNED VOLUMES BY 
ROUTE 

MAKE SUMMATIONS FOR 
VEHICLE HOURS -
VEHICLE MILES SUMMARY 
CLASSIFIED BY JURIS­
DICTION CODE VERSUS 3 
LINK TYPES 

MAKE SUMMATIONS FOR 
VEHICLE HOURS, VEHICLE 
MILES SUMMARY CLASSIFIED 
BY JURISDICTION VERSUS 
FUNCTIONAL CLASS (ALSO 
FOR CAP. AND COUNT) 

III-19 

YES 

YES 

MAKE SIJMMATIONS FOR 
A REGRESSION OF LINK 
VOLUMES VERSUS NCC, 
COUNT OR CAPACITY. 

SAVE CORRIDOR tNTERCEPT 
RECORD FOR THIS LINI< 
IN CORE, INCREMENT COUNTER 
OF CORR£DOR HIT. RECORDS 

I • I + 1 
(INCREMENT COUNT OF 
LINK RECORDS FOR THIS 
NODE RECORD) 



NO 

LtNK 

COURTS 

PRINT CROSS CLASSIFICATION 
OF LINK COUNTS iY V/C 
IATIO notl LAST TWO 
ASSIGNMBNTS 

CONVU.T SUMMATIONS ON 
VEHICLE HOURS • VEHICLE 
MILU • AND IIETWoRK MILES 
TO CORUcT UNITS 
FOil OUTPUT 

CALCULATE THE NVMIU. 
OF BYTES OF COIRIDOil 
INTERCEPT WOBDS IN 
COlli, 

PRINT V/C CBOSS 
CLASSIFICATION PROM 
LAST TWO ASSIGNMBN'l'S 

CLOSE AND llBWIND ALL 
DATA SETS USED . 

III-20 

LINK 

CAPACITIES 

PRiNT ClOSS CLASSIFICATION 
·OF LINK CAPACITIES 
BY V/C RATIO PROM LAST 
TWO ASSIGNMD'l'S 



*ASSEMBLY LANGUAGE 

SUBROUTINE 

GTVL * 

FIND FIRST NODE OF LINKS 
TO GET "IN" LINK 
VOLUMES FOR. 

NODE FOUND 

SET NKF • THE LINK 
INDEX OF THE FIRST OUT 
LINK FROM NODE TO BE 
USED. 

SET NKL • INDEX 
(NODE + 1) - l. 

GET THE REVERSE 
DIRECTIONAL VOLUMES 
OF LINKS NKJ' TO NKL 
AND MOVE TO ARRAY BUF. 

'No 

III-21 

STOP 11 

NODE • NODE + l, 
NKP • NKL + 1, 
NKL • INDEX(NODE + 
1) - 1 

GTVL 



• 

IN I TL 1 

SUBROUTINE 

INITL 1 

+ 
SUM UP THE NUMBER OF 
TURNING MOVEMENTS 
TO SAVE IN THE LOAD 
PROGRAM CHECK TURN CODES. 

1 
RETURN 

III-22 



SUI&OUTIII 

LNKLST 

JIWDI) UIIT 111W11ET 

11AD PAIAKETBI IICOID 
l'lal VITI liiWRIT t'O 
Gft 11LD • JIUMIIR 
or ASSIGIIIIIT. 

11AD A 110DB IICOiD. 
1L • .JIUMID or LIB 
UC01DS roa THIS HODB 
IICOID. ~ ;. 1 

IJW) A LIK llBCOID. 
SIT C • GIOUliD CCIUIIT 
OR CAPACITY • WHICH 
lVII WAS UIBD 

PUIT ASIIa.IIITI l'lal 
Til AISIGir SILP-IALAIICDII: 
AID l.lll DIPIIWICIS. 

III-23 

LNKLST 

BOD 
lliWilm UIIT IIJTWOil 



SUBROUTINE 

• LOAD 

~ 

SAVE RI!'GISTBR.S AND 
ESTABLISH A NEW 
SAVE AltEA 

~ 

MOVE UNSUBSCRIPTED 
AllCUMBIITS 

~ 

HOVE ADDIISSES or AllllAYS 0 

SUBTIACT 8 FllCil ADD~SS!S 

~ 

SET UP BASE UGISTEllS 
FOll AllllAYS 

j_ 

SET llJW)SW TO 
INDICATE THE LAST TlliP 
MATlllX IICOllD llEAD 
HAS BED USED. 

+ 

I • THE NIJMB!ll or 
ITBMS IN THIS VOLUME 
IICOllD. 

' tvJ 
Ill-24 

*ASSIMBLY LAIIGUAGE 



AIIENil 70, IIUMI' 

G~:T I ''I'H INTI(RCHANG~; 

ITKM FROM TR I P MA'I'R I X 
RECORD AND SEI'ARAn: 
INTO VOLUME, VOLL, 
AND DESTINATION 
NODE, START, 

GJ::'f XR WHICH IS THE 
NEXT NODE BACK IN 
·rHE PATH f'RI»> START 

FIND LINK FROM XR 
TO START AND COUNT 
THE NUMBER OF !.INKS 
IT IS ~'ROM THE FIRST 
LINK FROM NODE XR AND 
PUT IN lOUT 

LINK FOUND 

GET IPR WHICH IS THE 
NEXT NOnE BACK IN THE 
PATH PROM NODE XR, 

~·1 ND Ll NK ~'RUM XII 
TO IPR ANII COUNT '1'111': 
NUHBlo:R llt' Ll NKS IT 
IS FR<»> TilE FIRS'f LINK 
~'ROM NIIIIE XR AND PU'I' 
l'H~: NUMBER IN lN. 

GE'f LINK ADDRESS 01' 
OPPOSI'fl:: ONE-WAY 
SELECTED LlNl<. 

PUT THE LINK INDEX 
OF XR TO STAR'f AS A 
HALF WORK INTEGER 
IN LOCATIONS 0 AND l 
OF THE RECORD. 

D.ISP, LENGTH 
BYTES BYTES CONTENTS 
-2- -2- O'R'i'C'fNT:ENTROID 

4 2 DESTINATION CEN, 
6 4 VOI,UME 

10 4 0· 
14 2 10 

III-25 

I. INK 

NOT IN 

N~:1'WIIRK 

l 0 AD 

AIIENil/1, ll\JHI' 

DlSP. 
BYTES I, CONTENTS 
-2- 2 DESl'JNATiflN r:~:N'IWJIIJ 

4 2 ORIGIN n;NTRcllll 
" 4 U;KO 

10 4 VCJI.UHt: 
14 2 1 



DISP. LENGTH 
BYTES BYTES CONTENTS 
-2- --2- iiEsT'IiiATioN 

CENTROID 
4 2 ORIGIN CEN. 
6 4 ZERO 

10 4 VOLUME 
14 2 5 

AT THIS POINT THE 
SELECTED LINK RECORD 
IS BUILT AND IN ITS 
BUFFER. 

PUT THE LINK INDEX 
OF START TO xa AS A 
HALF WORK INTEGER ·IN 
LOCATIONS 0 A11D 1 
OF THE RECORD, 

DISP. LENGTH 
BYTES BYTES CONTENTS 
-2- -2- ORIGIN CEN. 

4 2 DESTINATION 
CENTllOID 

6 VOLUME 
10 Zl!llO 
14 2 

GET LINK VOWM! Oil 
INDEX TO IT IN 
OV!RPLOW TABLE OF 
LINK xa TO STAIT 

GET LINK VOLUME AND 
ADD INTERCHANGE VOLUME 
AND STOllE IN VOL ARIAY 
IF < 32767, OTlllllWISE 
STORE IN OVJWPLOW ARIAY 

GET IPR • THE PATH 
NODE MCK FllOM NODI xa 

III-26 

GET TUllN CODE, IND, 
FOR NODE xa 

LOAD 



0 10 26 13~ 17. 
22, 23 

27 

LOAD 

21 23, 24 25 

ID • mSP3(1H, lOOT) ID • mSP41 (IH,IOUT) m • IDSP42(IN, iOUT) ID • IDSP44 (IN, lOUT) 

ID • IDSPS (llf, lOUT) 

ID INDICATES WHETHD 
TO SAVE THE TURNING 
MOVI!MENT Fl(J( IPR-
n- START AND IT IS ALSO 
THE UUTIVB INDEX 
OF WHERE TO SAVE IT 

ABEND 102 

ID • IllSP6(IN,IOUT) 

GET INDEX OF 'I."UUNING 
MOVI!MENT VOLUME BY 
ADDING ID TO INDEX 
OF FIRST TURNING 
MOVI!MENT FOR NODE n 

III-27 

m • IDSP43 (IN,IOUT) 



GET TURN VOLUME OR 
INDEX PROM TRNTB 
ADD TRIP INTERCHANGE 
VOLUME 

IJ.i' THE NEW TURN VOLUME 
< 32767 STORE It BACK 
IN THE TRNTB ARRAY 
OTHBRW!SE STORE IN 
OVERP AND BUILD INDBX 
AND StoRE IN TRNTB IP 
HEEDED 

START • XR 

III-28 

LOAD 



PROGRAM 

MAIN 

SKIP TO THE TOP OF A 
PAGE. SET THE EXECUTION 
TIME TO ZERO. TSIJM • 0 

CLEAR THE HEADER TO 
BLANKS 

T • (IZ • IX)/6000. 
TSUM • TSUM + T. 
PRINT T AND TSUM. 

IX • IZ 

III-29 

MAIN 



I • 2 

OUTNET 

"OUTNET NETWORK" 

r • 4 

OUTRlP 

"OUTPUT TRIP 
VOLUMES" 

III-30 

I • 6 "LOAD NETWORK" 

RES • .FALSE., 
ITER • 1. 

CNVRG • • TRUE. 

PRINT SUMMARIES 
AND CROSS CLASSIFI­
CATIONS. 

MAIN 

I \I 



I ~ 7 

RES • .FALSE., 
ITER • 1 

I • 9 ''LoAD SELECTED LINICS" 

US • .PALSB., 
ITEB. • 1 

I C1IVI.G • , TiuE , 

III-31 

M fl I N 

l " ll 



MAIN 

I • 16 

1 - 12 PRPNET 

USE REVNET ENTRY 
POIMT. "REVISE "PLOT ROUTE PROFlLES" 
NETWORK" 

I • 15 I • 18 ,_ __ _.. ___ "' 
PRPNET UPDTNT 

USE ASMNET ENTRY 
POINT, "ASSEMBLE "DELETE ASSIGMMI!NTS" 
NETWORK" 

III-32 



YES 

RES "' .TRUE., 
CNVRG • .FALSE., 
ITER ~ 1 

MOVE LITERAL 'ITER' 
AND ITER NUMBER TO 
END OF HEADER. 

SWITCH UNIT NUMBERS OF 
UNIT NETWORK AND NEWNET. 
K • ITER. ITER • ITER+ 1. 

III-33 

MOVE LITERAL 'TOTAL' 
TO END OF HEADER. 

RES • .FALSE. 

MAIN 



K • K- 1 
NO 

SWlTCH UNIT NBTWOiK 
AND NBWIIET NUMBERS. 

SWITCH UNIT NETWOiK 
AND NBWNET NUMBERS , 

PRINT MESSAGE WITH UNIT 
NUMBER ON WHICH THE 
FLEXIBLE RECORD WAS LAST 1 
WRITTEN 

III-34 

MAIN 



PRINT UllOll MESSAGE: 
INVALID *RilL CARD, 
EXICUTIOII DELETED, 
ALSO PRINT THE *RilL 
CARD. 

PRINT UROR KEsSAGI 
WITH IIUMB!R OF 
SUBMITS AND IIUMIIIR 
OF DATA SITS TO 
MERGE. 

SUIIIOU'l'IH 

MERG 

SET CTVOUT '1'0 IIIIIT 
MEIGOUT 

IIIITIALIZI FLAGS '1'0 
IIIDICATI tHAT 110 
BOD BAS BIDl UACRID 
AND TIIAT THE LAST 
lDCI zon AND SUIIIBT 
AU 0 POl 6 DATA SitS. 

UAD 'til£ Miacz 
PAUHBTD CA1D ROll 
UIIIT 5. 

III-35 

UAD PAIAMITIR 
UCORD R(l( PIUT 
DATA SET '1'0 MIRCI. 
SIT IOSUB • IIUMID 
OF SUIIIIBTS 011 THIS 
DATA SET. 

I • 2 

UAD t•'til imaGE 
DATA SETS PUAMml 
UCORD 

J- 1 

GET MAXIMUM LAST 
CIIITKOID IIUKIIll FOR 
SUIIIBT J AIID SAVI IN 
LlmD(J) 

J. J + 1 

Sl't FLAG TO INDICATE 
BOD REACHED 011 I 1 TH 
MIRGI DATA SIT. 

PRINT £IUlOit MESSAGE 

STOP 996 



REWIND MRGOUT DATA 
SET. WRITE THE 
PARAMETER RECORD 
FOR THE MRGOUT 
DATA SET. 

GET THE LARGEST 
NUMBER OF CENTROIDS 
IN A SUBNET AND PUT 
IN MAX. 

Isua = 1 

IFST • FIRST CENTROID 
FOR SUBNET !SUB. 
LST • LAST CENTROID 
FOR SUBNET !SUB 

NODE= IFST 

LSUB = 1 

INITIALIZE VOLUME 
SUMMING ARRAY TO 
ZERO FOR MAX WORDS. 

I: 1 

SUM THE VOLUMES IN THIS 
RECORD IN THE VOLUME 
SUMMING ARRAY 

I: I+ 1 

PACK THE SUMMED 
VOLUMES AND WRITE THEM 
IN ONE OR MORE RECORDS 
ON THE MRGOUT DATA 
SET 

III-36 

NO 

READ ANOTHER RECORD 
FROM MERGE DATA SET 
I.· 

MERG 



NODE • NODE + 1 

ISUB • ISUB + 1 

END PILE MRGOUT 
I.EWIIID MRGOUT 

REWIND ALL MERGE 
DATA SETS. 

III-37 

SltT A PLAG TO INDICATE 
THAN AN EOD BAS am 
UACBED OR MERGE MTA 
SET I 

MERG 



SUBROUTINE l 
. INITIALIZE EACH LOCATIOJI 

MOORE OF THE. PATH ARRAY 
TO INDICATE THE 
CO&RESPOIIDDIG 1100£ 
HAS NOT BUI RUCHED 

~ 
(CODE 7). 

1 
SAVE TilE GENERAL 
PURPOSE REGISTERS 

INITIALIZE THE FiRST 
AMD LAST ARIAY LIST 
POIIITElS TO INDICATE 

' 
NULL LISTS 

SET UP A SAVE AREA l 
FOR THIS PROGRAM 
Alii> USE REGISTER 
13 AS THE BASE 

:siT CT • 0 ll!GISTER. 
SIT I • HOME ZONE. 
PUT I IR THE ZERO 

~ 
:riME LIST. 

l 
G!T ARGUMENTS KOMI 
NODI, NUMBi!l OF NODES 
Alii> TURN PIUW.TY , 

SET AlltOWA(I) • 12 
FOR 110 TURN PENAL TV 
ON HOME ZONE. 

~ 
! 

GET ARIAY ADDRESSES 

PUT ZONE I IN TIME 
LIST 0 BY J.AST(O) • 
I, FIRST(O) ~ l. 

~ 
l 

S!T THE CUMULATIVE 
TIME TABLE TO A 
TIME OF 326.77 MIIIUTES 

SET.PRED(I) s 0, 
SUCC(I) s 0, CUM(I) 
• o. R 14 = 1 

~ 
l 

C::J 

III-38 



SET_ I • SUCC(I), 
THIS IS A NODE IN THE 
SEQUENCE TABLE IN 'mE 
SMALLEST TIME LIST. 

A 1060 

SET LASTB • THE 
PREVIOUS NODE TO REACH 
THE PllESEIIT NODE, 

A 106l 

GET THE AUOW FLAG 
OF THE LINK USED TO 
REACH NODE I • 

SET J • INDEX (I) 

A 1100 

GET LINK INDEXED 
BY J 

UNPACk ITEMS IN THE 
LINK. (SHAFT, AUOW, 
LINK TIME, K • 
B NODE) 

YES 

III-39 

ADD roRN PENALTY, 
IF ANY, TO LINK TlME. 

ADD CUMULATIVE TIME 
TO NODE I. 

GET ARROW Ft.AG OF THE 
LINK AND SAVE IN AUOWA(K) 

MOO~E 



NO: 

SAVE NEW TIME TO 
NODE K IN SAVEA. 

SET M • OLD TIME TO 
NODE K MODULUS 1024. 

FIND NODE K IN TIME 
LIST M AND REMOVE 
IT FROM THAT LIST, 

SET CUM(K) • SAVEA. 
SET M • SAVEA MODULUS 
1024 

PUT MODE It IN TIME 
LIST M, AND PUT 
BACK POINTER PB.OK 
NODE K TO THI NODE 
I IN BACJt(K) 

GET NEXT NODE Ill 
SEQUDCE TABLE (THE 
ONE WITH THE S)(ALLEST 
TIME .'fO IT.) PUT 
IN I. 

SEQUENCE TABLE WAS EMPTY 

III-40 

110 

SET CuM(K) • NEW 
CUMULATIVE TIME TO 
CENTROtD K. 

MOORE 



I'K l NT Mi':SSAGE 
IINIT 12 MISSING 

C STOP 12 __ ___, 

I'K I NT "'~::>SI\(:E 

THAT THE MAXIMUM NODE 
NUMBER IS ~:XCEEDEI> 

1-:RII = ~:RK + l 

, 

- ,UNIT 12 

MISSING 

YES 

--

SUBROUTINE 

MRGREC 

~ 
OLDNET = Ll 
NET ~ I J 
REWJNU 12 

l 
MRG • LNKl.GT.O 
(ARE THERE ANY RECORDS 
ON UNIT 3) MRG2 = 
LNK2.GT.O (ARE TH~:KI•: 
ANY RECORDS UN UNIT I 1) 

i 
REWIND NET 

~ 
CALCULATE NUMBER OF 
!,INKS IN NETWORK 
FROM NUMBER OF LINKS 
PROCESSED IN NEWNET 
+ LINKS ON UNIT 12-2* 
DELETES 

rK 

SET NNLNK • O, 
TO SUM ACUTAL # 
OF LINKS. WRITE 
PARAMETER RECORD ON 
UNIT 13. 

IS THE 
LAS'l' NODE 

NUMBER > THE MAXIMUM 
NODE NUMBER? 

NO 

WRin: HEADER RECORD 
AND DATE ON UNIT 13 

SKIP FIRST HEADER 
Rt:CORD ON UNIT 12 

III-41 

-

MRGREC 

ARE TH~:Ki·: 
ANY ASSIGNM~:NTS 

liN TilE OJ.I) 
~'J.KXJ BJ.g llATA 

IU!C. (12)'1 

CUI'Y HEADER RECORDS 
FROM PREVIOUS ASSIGN­
MENTS FROM UNl T 12 
TO UNIT 13 

L 

SET INDEXES FOR NEXT 
LINKS 1N CORE OR 
RECORDS READ FROM 
UNJ.TS 3 OR 11 TO 
FIRST LINK (SET TO 0) 

SET. LINK· IMPEDANC"S 
TO MAX. TIMt:, AND 
PREVIOUS ASSlGNt:ll 
VOJ.UMES TO 0 . FOR 
20 ASSIGNMENTS ~·ow 

20 LINKS. 

··~ 

RI!AD FIRST NOilt: 
RECORD FROM UN f'i' 12 

c:F.T A NODF., GgT 
TURN t:ODE, CmT !.INK 
C:l.ASS 1~· AVAII.AIII.E. 
FORM A SORT Kt:Y t'OR 
THE A NOI>l•:, 

Rlo:AD A I. INK RECOMil 
(WITH 1.1 NK IHPEUANC:F.s 
ANI> VOI.li~J·:S !•'ROM 
PR~;VIOUS ASSJGNM,NTS 
H' ANY) 

GF.T OTHt:K VARlABLP.S 
FllW THE LINK 

NO 



READ A RF.CORD FROM 
UNIT 1 

RKAD A RECORD FRC»> 
UNIT 11 

SKT SC'IR1' Kf.Y POR 
l.lNK I'RUH UNIT l 
110 IT Wll.t. 8£ SKlPPMD. 
SI!T ITS A NUDE Tel 163113 

SI!T SORT KI!Y FOR J.lNit 
Fill_. UNIT 11 SO lT wti.L 
8~ SKlPI'ED. SIT ITS 
A NODE Ttl 16383. 

III-42 

• REWIND UNIT 4 (NODI), 
IWCIS SET NODE OF LAST 
RECORD READ 'ro 0. 

li!AD NEXT CAID FIOII 
LINit DATA IIPUT. 

SIT COOHt' OF LINitS 
raoic A lODE TO 0, 
(L • 0). SIT. COUNT 
or LiillS 'ro DELITI TO 
0, (LD • 0). 

GIT SMALLEST ANODE 
FRill THE POUR AVAILAIU: 
SOURCis. (ACTUAU.Y 2 Til 
4 SOURCIS) 

YV.!I 

SET NODE IIUMiiER OF 
L.\51" JIO!)F. RECORD 

MRGREC 

RIW> TO 16383 1~1 SKTI' 
READiNG NODF. RI!<'.ORDS 



NO 

I.= I.+ j 

SAV~: THE LINK 
·AT !NDF'.X 1 .. 

INCRt:MENT TO (;ET 
THE N"XT LINK 

UNPACK DATA FROM 
NEXT LINK 1 N COR! 

LD~LD+l 

SAVE THE B NOD! OF 
THIS LINK AT INDEX 
w 

READ NEXT RECORD 
FROM UNIT 3 , SET 
LOCATION TO GET NEXT 
LINK TO 0. 

NO 

L • L + 1 
SAVE THE LINK AT INDEX 
L. 

LD • LD + 1, 
SAVE THE B NODE OF 
THIS LINK AT INDEX 
LD. 

INCREMENT ·ro GET 
THE NEXT LINK, 

GTLNK 

UNI'ACK DATA FROM 
LINK FllOM UNlT 3. 

III-43 

L•L+l. 
SAVE THIS LINK AT INDJ!]C 
L. SET ITS CARD COUNT 
• -1. ALSO SAVE LINK 
IMPEDANCE AND VOLUMES 
FROM ASSIGNMENTS 

READ A LINK RECORD 
(WITH LINK IMPEDANCES 
AND VOLUMES IF ANY) 

UNPACK DATA FROM THE 
RECORD, GET LINK 
CLASS IF AVAILABLE AND 
FORM NEW SORT KEY. 

NORMAL U:AD 

SAVE OLD NODE REC. 
READ A NODE RECORD FROM 
UNIT 12. GET A NODE AND 
SET LINK COUNT TO 1. 

EOD 

SET SORT KEY TO 
SKTP AND SET A NODE 
TO 16383 

NO 

LD•LD+l, 
SAVE THE B NODE OF 
THIS LINK AT INDEX 
J.D. 

L a 1. + 1 
SAVE TH~; !.INK AT JtiDEX 
t .. 

lNCRI!llt:NT TO GET 
NEXT !.INK 

a•:AD .NEXT RI'.CORI> 
FROM UNIT 11. SF.T 
LOCATION TO GI!T Nf.X'f 
UNK TO 0. 



REWIND 3 

REWIND NODI NAME 
UNIT (4) 

PRINT MESSAGE TiiAT 
TH1 NUMBER OF LiftS 
IXCIIDS '1111 MAXIMUM 
ERR.• ERR+ 1 

PRINT MESSAGE 
ABOUT MISSING . 
DD CARD FOR UNIT 
NI'N>RK 

END FILl 13 
UWIND 13 

REWIND NETWORK DATA 
SIT 

III-44 

MRGREC 



ONE LINK FROM LINK 
DATA, ONE FllOM 
UNIT 12. ADD THE 
OLD ASSIGNMENTS 
ONTO THE NEW LINK­
DELETE THE OLD LINK 

EXAMINE NEXT LINKS 

YES 

ltEPLACE 

NO 

DELETE FIRST LINK 
WITH THE SAME B NODE 
FROM THIS LINK. IF 
LINK NOT FOUND PRINT 
ERROR MESSAGE, 
ERR • ERR + 1 REPEAT 
LD-1 TIMES 

FIND LINKS WHICH !:lAVE 
NOT BEEN DELETED. 

SUM NUMBER OF LINKS 
IN EACH LINK CLASS 
AND TOTAL NUMBER oF 
LINKS L. 

GET NEW TURN CODE 
FROM NUMBER OF LINKS 
IN EACH LINK CLASS. 

III-45 

YES 

NO 

11RGREC 

EITHER TWO LINKS FR<»f 
LINK DATA ott TWO 
LINI<S FROM UNIT 12 
WITH SAME A NODE AND 
B NODE, PRINT DUPJ.ICATE 
LINK MESSAGE. 
ERR•ERR+l 



PRINT MESSAGE THAT 
THE A NODE IS NOT 
IN THE NETWORK. 
ERR•ERR+l 

SET TU1lN TYPE CODE TO 
28 AND ADD CENTROID 
CODE 

MOVE NEW NODE NAME 
TO NODE RECORD AREA, 
READ NEXT NODE NAME 
RECORD. 

GET COORDINATES 
AND KEEP NON ZERO 
SUB AREA CODE. READ 
NEW A NODE RECORD 

SET NODE NUMBER OF 
A NODE RECORD • 16383 

NO 

YES 

III-46 

ADD CODE FOR FREBWAY 
TO TURN CODE 

DEP OLJ) NODE NAME 

SET COORDINATES TO 
ZERO 

MRGREC 



GET OLD COORDINATES 
IF THE NEW ONES ARE 

!::· co~~T I~~H:u:EW YES 
ONE IS ZERO 

PRINT ERROII MESSAGE 
THAT THERE ARE MORE YES 
THAN 6 LINKS. ERR • 
ERR+ 1 

PRlNT MESSAGE: 
ISOLATED CENTROID 
ERR•ERR.+l 

CENTROID 

.YES 

WRITE NEW NODE RECORD 
ON UNIT 13. SUM NUMBER. 
OF LINKS WRITTEN IN 
NNLNK 

I • ·1 

I • I+ 1 

NODE 

YES 

III-47 

PRINT MESSAGE: 
ISOLATED NODE. 
ERR•Ql+l 

NO 

MRGREC 

SET LINK IMPEDANCES 
TO MAX. TIME, AND 
PREVIOUS ASSIGNED 
VOLUMES TO 0 FOR 20 
ASSIGNMENTS FOR 20 
LINKS 



SUBROUTINE 

NEW NET 

INITIALIZE NUMBER 
OF WORDS WRITTEN ON 
UNIT 3 AND UNIT 11 
TO ZERO, INITIALIZE 
NUMBER OF LINK WORDS 
IN CORE TO ZERO 

INITIALIZE OTHER 
VARIABLES REWIND 4 
IL • -1 (# LINKS IN 
CORE) 

READ SUBNETWORK 
PARAMETER CARD, 
SET NUMBER OF SUBNETS 
• 1 . AND SET SUBNET 
OF PARAMETER CARD • 1. 

SAVE FIRST NODE 
NUMBER, LAST CENTROID 
NUMBER, LAST ARTERIAL 
NUMBER, AND LAST 
FREEWAY NODE NUMBER 
OF THIS SUBNET. 

INITIALIZE VARIABLES 
NOT ON OLD LINK DATA. 
GROUND COUNT • 0, 
CAPACITY • O, FUNC­
TIONAL CLASSIFICATION 
• 0, ROUTE CODE • 0. 

CORRIDOR INTERCEPT • 0, 
SUBAREA CODE • 
SUBNETWORK NUMBER 

.FALSE. 

(OLD LINK 

DATA FORMAT) 

YES 

READ NUMBER OF SUBNETS 
CARD INCLUDING FIELD 
TO GET SPEED AND DISTANCE 
FROM 

PRINT NUMBER OF 
SUBNETS MESSAGE 

READ SUBNETWORK 
PARAMETER CARD. 
CALCULATE NUMBER OF 
NODES IN SUBNETWORK 

PRINT INFORMATION 
FROM SUBNETWORK 
PARAMETER CARD ADD 
1 TO EXPECTED SUB­
NETWORK NUMBER 

III-48 

NEW NET 

SET TO USE THB THIRD 
SPEED AND DISTANCE 
FIELDS ON THE LINK 
DATA CARDS 

PRINT MESSAGE, 
INCORRECT SUBNET 
NUMBER STOP 4 



RtAD A i.INK DATA 
CARD IN OLD FORMAT, 
ADD 1 TO CARD COUNT 

CONVER.T COwMNS 2-6 
FROM EBCDIC to INTEGER 
FOR A NODE NUMBER 

CONVERT FUNCTiONAL 
CLASS FIELD FROM 
EBCDIC TO iiEXADECIHAL 

CONVERT JURISDICTION 
FROM EBCDIC TO 
HEXADECIMAL 

SET CHARACTER READ 
FROM COLUMN 1 TO 
CHARACTER READ FR(I( 
COLUMN 4 

SET DELETE CODE TO 
1 TO INDICATE TillS 
IS A DELETE CARD 

SET FUNCTIONAL 
CLASS TO ZERO 

SET CHAllACTER READ 
PROM COLUMN 1· TO 
CHAllACTEI. READ PR<Il 
COLUMN 4 

III-49 

READ A LINK DATA CAiD 
IN THE NEW FORMAT 

ROUND GROUND COUNT 
TO UNITS OF 100 
TRIPS. ROUND CAPACITY 
TO UNITS OF 100 TRIPS. 
ADD 1 TO CARD COUNT, 

SET DELETE CODE • 0 

SUM NUMBER OF 
DELETE CARDS. SET 
SPEED FOR SECOND LINK 
TO THAT OF THE FIRST 
LINK. 

SET CODE TO INDICATE 
SPEED FIELD 

NEWNET 



SET NTM = 0 TO 
KEEP THE MILEAGE 
IN THE VEHICLE 
MILES SUMMARY 

PH I NT AN ERROR MESSAGE 
rJIAT THERE 1 S AN 
INVALID NODE NUMBER. 
ERROR = ERROR + 1 

SET NTM • 1 
TO ELIMINATE THE 
MILEAGE OF. THIS LINK 
IN THE VEHICLE MILES 
SUMMARY 

LINK TIME • SPEED 
OR TIME FIELD. 
CALCULATE SPEED FROM 
TIME ABD DISTANCE. 

SET SPEED • SPEED OR 
TIME FIELD 

III-50 

CALCULATE LINK TIME 
FROM SPEED AND DISTANCE 

!SHAFT • -1 

NEW ,IE T 

SET UNK TIME c MAX. 
SET SPEED .. 1 m.p.h. 
SET DIST. = 9. 99 HILES, 
SET SHAFT • 0, ARROW ~ 0 

PRINT MESSAGE NO 
TIME OR SPEED INDICATOR 
ERROR a ERROR + 1 

PRINT KESSAGt: THAT 
LINK TIME ~:XCEEDS 

HAXIHUM. f;RROR • ERRO!t 
+ I SET LINK TIME TO 
KAJ(. LINK TIME 



PRINT MESSAGE INVALID 
PARTITION CARD. 
ERROR • ERROR + 1 

NO 

READ A PARTITION CARD 
OR AN ENDNET CARD. 
CRDCNT • CRDCNT + l 

III-51 

IL • lL + 2 

LNK2 •IL+l 
GET TIME OF DAY TO 
T~E SORT. 

GET TIME OF DAY. 
CALCULATE SORT TIME 
AND SUM IN 1T3. 
REWIND LNKTKP 

NEWNET 



I SHAFT • 0 

I SHAFT • 1 

PRINT ERROR MESSAGE 
THAT THE SHAFT CODE 
IS INVALID. 
I SHAFT ~ 0 

SET I ARROW TO 
OPPOSITE OF I SHAFT 

I CLASS • 1 
(TWO-WAY LINK) 

1 CLASS • 1 
(TWO-WAY LINK) 

I AIUlOW • I SHAFT 

SET LINK CLASS 
I CLASS • 0 (ONI!• 
WAY LINK TO B NODE) 

III-52 

INCREMENT COUNT OF 
LINKS IN CORE ( IL • 
IL + 1) 

NEWNET 

WRITE A NODE NAME 
RECORD ON UNIT 4. 
SET LAST NODE WRlTTI\N 
• A NODE 



SET LINK TIME TO 
SECOND TIME OR SPEED 
FIELD CALCUlATE LINK 
SPEED FROM TIME AND 
DISTANCE 

PRINT EUOR MESSAGE 
THAT LINK TIME IS > 
MAX. EIUlOil • DllOR 
+ 1 SET LINK TIME TO 
MAX •. 

PRINT AN DROll MESSAGE I 
INVALID TWO-WAY IIDICA­
'l'Oit I EIUlOll • 11101. + 1 

IL•IL-1 
(THIS uti)VES THE 
l'UVIOUS OHE..;.WAY LIHl} 

SET SPIED • SECOND 
TIME OR SPIED. riBLD 

IL•IL+1 
(ADD ONE TO THE 
NUMBBil OP LIHlS .IN 
COD} 

III-53 

LNK2•IL+1• 
NllMBBil OF LINKS iN 
COlE. GET TIME OF 
DAY TO TIME SORT. 

GET TIME or· DAY AND 
CALCULATE SOI.T TIME 
AND SUN IN IT3. llEWIND 
LHl'l'HP 

CALCULATE THE · NUMBBil 
OF BLOCKS or LINKS. 
IL • IL + 2 1 NBLK • 
(IL + 39)/40 1 (40 
LIMKS/IlECORD). 

NEWNET 

IL • 1 
(SET LINK ClASS TO 
DlHIY ONE-WAY LINK) 



LNK1•LNK2 
LNK2•0 

LNK'l'MP • -1 

LNKTMP • 11 

WRITE THE SORTED 
LINKS IN CORE OR 
LNK'i'MP IN BLOCKS 
OF 40 LINKS/RECORD. 

END FILE LNK'l'MP 
REWIND LNKTMP 

IL • -1 
(SET FOR NO LlNICS 
IN CORE) 

III-54 

NEWNET 



LNKl • LNK2 
LNK2 • 0 

LNn'MP • -1 

LMK'l'MP • 11 

LNK2 • LNK2 + 1 
CALCULATE NUMBER OF 
RECOllDS TO WRITE 
ON LNKTKP. 

WRITE THE SORTED 
LINKS IN COlE ON 
LNKTKP IN BLOCKS 
OF 40 LINKS/RECOllD 

END FILE LNKTMP 
REWIND LNKTMP 

IL • -1 
(SET NUMBER OF 
LINKS IN CORE TO 
ZERO) 

III-55 

ll C. ft It L. I 



PRINT. SUIINET 
14UMBER 

PRINT SUBMIT NUMBEII.. 
END PILE 4 , REWIND 
4 (NODE NAME DA1'A SET) 

IL • IL + 1 
GET TIME or DAY TO 
TIM£ SORT 

GET TIME or DAY, 
CALCULATE SORT TIME 
AND ADD TO IT3 AND 
CONVERT TO MINUTES 

PUNT LINK SORT TIME. 

JL • 11. + 1 

III-56 

NEWNET 



k!:S "' , TRUE. It' THIS 
lS AN ASSIGN Sl:J,.F-
.BI.LANCING RUN, 1 TER 
• ITERATIOII NUMBER , 
OUTN • .TaU£, IF THE 
LOADED NETWORK ts TO 
81 PRINTED 

SliBitOUTINI!: 

OUTLLT 

PRINT • (.NoT. RES 
.01. ITER .EQ. 1) 
.AND. OUTN 

REWIND UNit NETWOIU( 

READ PAIWIETER RECORD 
FROtf UNIT NETWORK, ADD 
ONE TO THE NUMBER 
OF ASS IGNK!NTS. 

NLl • THE NUMBER OF 
ASS IGNH&NTS FROM UNIT 
Nl'l'WOR.It + 1 . 

COI'V NLl HIADER RECORDS 
FROM NETWORK TO NEWNET, 

III-57 

SET NL .5 • NUMBER 
OF WORDS IN LINK 
RECORDS ON UNIT NETWORK • 

I • 1 

SET INUK 2 • THE iiUMBER 
OP LINKS PROM NODE I, 

READ A NOllE ltECOitO 
FROM UNIT NETWORK 
FOR NODE I, 

J • I 

OUfll T 



SET THE NEW LINK 
IMPEDANCE TO 0. 01 

YES 

YES 

• READ A LINK RECORD 
FROM utilT NETWORK 

GET ITP • jTliE LINK 
IMPEDANCE jUSED FOR 
THIS ASSIGNMENT 

GET C • GROUND COUNT 
OR CAPACITY (WHICH 
EVER IS SPECIFIED BY 
THE *TURN CARD) 

UPDATE LINK .IMPEDANCE . 
TO USE ON THE NEXT 
ASSIGNMENT 

III-58 

J. J + l 

PIUNT PAGE HEADER 
FOR THE LOADED 
NETWORK 

SET THE NEW LINK 
IMPEDANCE TO 10.23 

OUTLLT 



SKIP ON£ LilliE ON 
THE PRINTED OutPUT. 

GET 8NODE NUMBERS AND 
SET UP OliiE'-WAY LITERAL 
FOR THESE LINKS 

INITIALIZE N • 2 FOR 
TWO LINES OF OUTPUT FOR 
DIRECTIONAL VOLUMES 

FUiD THE NUMBER OF 
LINKS FROM , NODE I 
WHICH ARE NOT DUMMY 
LINKS (REVERSE OF 
ONE-WAY LINKS) 

GET THE BNODE 
NUMBERS AND DIRECTIONAL 
VOLUMES FOR THESE LINKS. 

INITIALIZE N • 1 FOR • 
ONE .LINE OF OUTPUT FOR 
DIRECTIONAL VOLUMES. 

K • 1 

III-59 

BUILD FORMAT FOR 
DIRECTIONAL VOLUMES 

K•K+l 
SET THE NODE NAME TO 
BLANkS. 

GET THE BNOOE NUMBERS 
AND NON-DIRECTIONAL 
VOLUMES FOR THESE 
LINKS. 

INITIZLIZE N • 1 FOR 
ONE LINE OF PRINTED 
OUTPUT FOR NONDIRECTIONAL 
LINK VOLUMES< 

PRINT DIRECTlONAL 
VOLUMES FOR NODE I 
WITH FORMAT BUILT ABOVE 

INITIALIZE N ~ 2 mH 
TWO LINES OF I'M I NTI·:P 
OUTPUT FOR NON-IliiH:CTI ONAI 

J.INK VOLUMES 

0 lJ I l L I 



PRINT NONDIRECTIONAL 
LINK VOLUMES FOR 
NODE I. 

NO 

K = 1 

GET NODE NUMBER AND 
TURN VOLUMES ORGANIZED 
TO PRINT. COUNT NUMBER 
OF TURN VOLUMES TO 
PRINT. 

PRINT TURN VOLUMES 
FOR NODE I. 

III-60 

I = I + 1 

REWIND THE NETWORK 
DATA SET 

OUTLLT 



SUBIOUTllll 

OUT NET 

UAD TBI. PAlWGrra 
iJCOID rial URIT 
III'11IIOU 

nnrr t111 IIUDD 
or SUIIIIJ'1VIaU· ·AID 
TH8 IUIIID OP 0111-
WA! LIIIS Dt TB1 
lll'1'liOU 

PliiT IIJIIIIR or ..,u. 
rliST RODI, LAST 
I'IUWAY, LAST CIIDOID, 
LAST ARTDUL, LAST 
I'IUWAY Dl lOR UCII 
SUinT. 

11AD TR1 WDBI 
IIBCOIDS 01 UIIT IIIL'NOB 
A1G) PRIIT ~ 011. 

IIAD A RODI UCOID JIGK . 
~. SIT AIODI • 
TO TIIIIIODI IIJMIJR, 

lCA. 1 

SIT IIAL • Til 
SIW.LII IIUMUl or 
IIA + 49 oa TiiJ LAST 
IIODI IIIDIID or till 
IJ'l'WOU, 

Rift PAGI WDD. 
SIT 1UN1D OP LIQS 
Plilft'ID, LliU • 6. 

nnrr ·•SAGI= 
DID 10 cc.ncTIIO 
IKDI 

LIIIS • LIDS + 1 

III-61 

OUTNET 



JL ;. MIHO (4 ,- NLL) 
WHEU RLL • THE NUHBEII. 
or LIBS Fll.oM ABODE 

RLL • NLL- JL 

lEAD JL LDru FII.OH 
UIIT HE'fWOU 

PIIHT THE JL LiftS 
OR ONE LINE. 

READ THE NEXT MODE EOD 
UCOID PIOM UIIT NETWORK. t----------t~ 

IA• IA+l 

SKIP TO THE TOP 
or A_ NEW PAGE. IEWIRD 
UNIT IE'l'WOU. 

III-62 

OUTNE.T 



SUIIOUTIIII 

OUTRIP 

UwiiiD UNIT CTVOUT 

IUWJ PAIAMETD RICORD 
PllOM CTVOUT 

GIT NUJIBD OF CIIITROIDS 
PIR SUIIIT 

ROOIID liiUMBEll OF 
CIIITIOIDS/suUET TO 
NEXT HIGHIR INCUMENT 
OF 10 SO THAT OUTPUT 
WILL 81 COUICT 

PlliJIT NUJIBIR OF SUBIIITS 

PRINT FIRST AIID LAST 
CENTROID NUMIBR FOR 
EACH SUBMIT 

SIT DISPLACEMENT OF 
W111R1 '1'0 PUT THE 
VOLUMES IH THE NTAB 
AllAY FOR SUBNBT ONE 
TO O, {lt(l) • 0). 

( 

SIT DISPLACIHIHT OF 
WllllB TO PUT VOLUMES 
FOil TD O'l'IIBil SUBIIITS 
IH THE lriTAB AllAY. 

IUWJ A TRIP RECORD FRC»l 
UNIT CTVOUT 

CLEAa THE NTAB AlUlAY 
FOR 4050 WORDS TO ZERO. 

PRINT PAGE BIADD WITH 
ORIGIN CENTROID. 

III-63 

OUTRIP 



UBPACl T&IP YOLUIIIS 
PIOM LAST TRIP 
liCOID .IJW). AID PUT 
II COIUCT Pucl tR 
HTAB AllAY. 

SAVI OIIGIR CIIITROID, 
IDIBIIDo Ill tCOH •. 

READ A TRIP UCOID 
JCI) DCM UIIIT C'rVOUT. 

SET llottaD • OIIGU 
CllftOID OF THIS UCOID. 

SET COUJIT OP LIDS 
PIDI'tiD lOR ICOH '1'0 
zao. 

LIST 'ftll VOLUMIS D 'ftll 
IITAB AllAY IR GIDUPS OP 
10/LID WITH. DISTIMTIOII Ql 
IUiCIIISo DOI 1T PIIIIT Lilli 
FOR BICH ALL Till VOLUIIIS 
All 1110. PRINT A DW PAGI 
R~I~ ~~ 50L~ 

OUTRIP 

YIS 

III-64 



SUBROUTINE 

OUTTRE 

PRINT TREE WITH DESTINA­
TION NODE AND ADJACENT 
NODES AND TIME TO EACH NODE 
WHICH WAS REACHED 

III-65 

OUT1RE 



SUBKOUTINE 

OUTWLT 

INDXL • 1, 
INDXT • 1 

· IMIID UNIT III'I'WORK 

RJWl 'l'HI PAIWIITU 
RECORD PROM UIIIT lll'l'WORK. 

ADD 0111 TO THE NUMBER OF 
ASSIGNMENTS IN 'l'HB PW• 
MITD RBCOID RBAD 1 PUT THE 
RESULT IN NL 1, 

III-66 

COPY Tiff. HEADER 
RECORDS t"ROM UNIT 
NETWORlC TO UNIT 
NEWN!T. 

ITl • (in.l - 1 - ITER) 
*2 + 6. 

NL4 • 2*(NL1 - 1) + 4 

Ml.S • NL4 .+ 11 
NL7 • NL5 + 2, 
IPAG! • 100 

&tAD A NODE RECORD 
Flt<ll UNIT NETWOitK 

NORMAL RI!AD 

SET I • THF. ABODE 
NUMBER OF TKB NODE 
RECORD, 

SET INUM2 • THE 
NUNB!R OP LINKS FOR 
ANODF.. 

SET 'nlltJICn • THB 
TURN COD•: FOR ANODE, 

OUTWLT 



RE'nJRN 

J- 1 

IliAD A LINK UCOID 
rtlC»l UNIT Jll'l'W()lU(. 

GET THE WBIGII'nD 
DUBCTIORAL LINK 
VOLUMES POI THIS_ LIB. 

GET TRI BNODI KUMBD 
OP THIS LIB. 

GET THE WBIGII'l'ID HON­
DIIBCTIOlCAL LIB 
VOilutm. SCALE TO UNITS 
AliD . PUT IN THE 
LIIIK . RECOIID. 

CALCULATE THE WEIGHTED 
LIB IMPEIWICE AliD PUT 
INT. 

III-67 

PUT T IN THE LINK 
UCOIID FOR '111! IMPED­
ARCE USED OM THE 
LAST ASSIGNMPT. 

PUT T lN THE LIIIK 
IMPEIWICE TO BE USED 
OR THE lWl'l' ASSIGNMENT. 

PlliNT PAGE IIJW)Ill. 
IPAGE • 5 

OUTWLT 



SCALE THE DIRECTIONAL 
VOLut!ES, NONDIRI!CTIONAL 
VOLUMES, AND TURN 
VOLUMES TO UNITS, 

SKIP ONE LINE ON 
THE OUTPUT. 

PRINT THE DIRECTIONAL 
VOLUMES FOR NODE I 

PRINT THE NONDIREcTIONAL 
LINK VOLUMES FOR NODE I. 

PRINT THE TURN VOLUMES, 

0 U Hll J 

REWIND UNIT NETWORK 

NO 

III-68 



SUBROUTINE 

PATHCL 

INITIALIZE SUMHATION 
VARIABLE, IBLD, FOR 
TREE BUILD TIME TO 
ZERO, 

REWIND UNIT NE'lWOlUC., 
UNIT SBPARAT, AND 
UNIT 50 (lOR TREES), 

READ PAIAMETER FRECORD 
FROM UNIT NETWOIUC. 

GET FIRST AND LAST 
CENTROID NUMBEltS IN 
EACH SUBNET AND C.U... 
CULATE NUKBER OF 
CENTROIDS 

WIUTE SEPARATION MATRIX 
MEADER REOORD 

SET COPY TO TRUE IF 
THE *TUliN CARD SPEC­
IFIES COPY, OtHEII.WISE 
SET IT TO FALSE 

III-69 

P f\ I fl r L 



PRINT MESSAGE THAT AN 
OLD TREE TAPE WILL BE TRUE 
OOPIED AND MISSIMG 
TRIES WILL BE REBUILT 

REWIND UNIT 49 

READ NL LINKS INTO THE 
LINKSl ARRAY STARTING 
AT INDEX LNDX, INCRE­
MENT LNDX ONCE FOR 
EACH LINK READ 

TRUE 

INITIALIZE INDEXl ARRAY 
TO Zl!llOES AND BACK ARRAY 
TO A CONSTANT TO INbi­
CATE ·No TURN KlVEMENTS 

SKIP THE HEADER UOOBDS 
ON UNIT NE'l'WOBK, 

SET LNDlt•l (THIS IS 
THE INDEX USED TO SAVE 
LINK REOORDS} 

READ A NODE RECOBD 
FROM UNIT NETWOBK 

NORMAL READ 

SET INDEX! (NODE) • 
THE NUMBER OF LINKS 
FROM NOllE, 

III-70 

END OF 

REWIND UNIT NETWORX 

SUM NUMBER OF CONNECTED 
NODES IN NETWORX AND 
CHANGE INDEX! ARRAY 
INTO AN INDEX ARRAY INTO 
THE LINKS! ARRA! BY NODE. 

PRINT MESSAGE WITH LAST 
NODE NUMBER; NUMBER OF 
CONNECTED NODES, AND 
NUMBER OF ONE-WAY LINKS. 

FIND FIRST AND I.AST 
CENTROID IN EACH SUBNET 
TO WRITE ON THE SEPARA­
TION MATRIX. 

SET FREEWAY LINK FLAG 
AND BNODE CONTROID FLA.I: 
IN 111E LINKSl ARRAY FOR 
EACH l.INK. 

SET BACK LINK INDEX 
(3 BITS} Ilf EACH LINK. 
(THIS IS THE DISPLACE­
MENT INDEX FROM 0 TO 5 
OF WHERE THE A NODE IS 
IN A LINK STARTING AT 
INDEX l(BNODE) • ) 

DATA SET. '-----...,-----~ 

CALCULATE THE LENGTH 
OF A PACKED TREE RECORD 
IN WOlDS AS LPAClC • 
(NODES! + 9)/10, WHERE 
NODESl • THE LAST NODE 
NUMBER 

PATHCL 



SKIP A RECORD ON UNIT 49 
TRUE 

SET THE WKBEll OF TREES 
BUILT SINCE THE LAST 
MESSAGE WAS PRI"RTED 
TO ZEII.O, ITllC • O. 
SET '111E TIME, ITllT • 0, 
TO BUILD ITllC TREES, 
LHOK • o. 

WRITE THE HEADER 
RECORD ON UNIT so; 

SET K • '111E NUMBER 
OF RANGES OF TllEES TO 
BE"BUILT IN SUBNET L. 

SET J • 1 

III-71 

SET LS • THE FIRST 
CIDI'l'ROIU or A IWIGE OF 
TI.EES TO BUILD IN 
SUBNIT L FOR. THE J 'TH 
·1WfGE Or TREES TO BUILD 

SET "LF. • THE LAST CENTROID 
OF A RANGE OF Tlli!ES 
TO BUILD IN SU8NET L 
FOB. THE J 'TH RANGE OF 
TREES TO BUILD, 

SET HOKEND • LS 

I 'rOAR 

CONVERT HOHEND TO 
EBCDIC AND PUT IT IN 
A MESSA<: I! TO PRINT liN 

PATHCL 

LINE AS THE ~·IHST CENTI\UIIl 
OF A RANGE. 



READ A TREE RECORD 
FROM UNIT 49 

SKIP THE RECORD 
WHICH HAS AN ERROR ON 
IT ON UNIT 49 

ElitOll 

EOD 

. EOD 

WRITE THE TREE 
RECORD ON UNIT 50 

SET COPY • li'ALSE • 
REWIND UNIT 49. 

III-72 

PlliNT MESSAGE l'REE 
iiOMEND MISSING, 
REBUILT. 

PATHCL 



MOVE THE CUMULATIVE 
TIMES TO THE CENTROIDS 
FROM A HALF WORK ARRAY 
1'0 A FULL WORD ARRAY 

WRITE THE CUMULATIVE 
TIMES TO THE CENTROIDS 
ON UNIT Sl. 

IBLD • IBLD + 
ITM 2 - ITM 1 

HOKEND • HOMEND + 1 

J- J + 1 

III-73 

L = L + 1 

CONVERT IBLD TO 
MINUTES AND PRINT AS 
THE TREE BUILD TIME. 

END FILE UNIT 5Q, 
REWIND UNIT 50, 
END FILE UNIT 5l, 
REWIND UNIT 51. 

PATHCL 



SET THE BACK INDEX 
FOR H<»mlm TO 7 • 
ITRC • ITRC + 1 
ITRT • . ITRT + ITM 2 -
ITM 1 

ROUND ITRT TO THE 
MEAREST SECOND 

ITRC • 0 
ITRT • 0 

III-74 

OUTTRE 

PRINT THE TREE 
BUiLT PROM CENTROID 
H<»mm 

PI\THCL 



W • .!RUE. (SET 
W TO PRODUCE SECOND 
WEIGHTED ASSIGNMENT) 

PRINT MESSAGE: 
INVALID TURN PENALTY 
OR TREE CARD READ. 
ERR•ERR+l 

CAPC • • TRUE. (SET 
CAPC TO USE CAPACITY 
FIELD INSTEAD OF GROUND 
COUNTS) 

SUBROUTINE 

PRPBLD 

READ TURN PENALTY 
CARD. .CAPC • .FALSE. 
W • FALSE 

PRINT CARD READ AS 
TURN PENALTY CARD 

SET TURN PENALTY 
ARRAY WITH TURN 
PENALTY AND ZEROS. 

SET I • 1 

READ *TREE CARD FOR 
SUBNET I 

PRINT *TREE CARD READ 

PUT A COMMA IN LAST 
SUBFIBLD B (COLUMN 73) 

(INITIALIZE PAIR 
INCLUSIVE VARIABLE) 
ISKIP • 0 (INITIALIZE 
FIELD COUNT VARIABLE) 
KOUNT • 0 

M • 1 

III-75 

PRPBLD 

PRINT MESSAGE: INVALID 
TURN PENALTY OR TREE 
CARD READ. ERR "' 
ERR+ 1 

· PRINT MESSAGE : THE 
FIRST FIELD OF THE 
TREE CARD IS BLANK. 
ERR•ERR+l 



SET SKIP FLAG TO 
PROCESS NEXT SUBFIELD 
A 

KOUNT • KOUNT + 1 
SET FLAG io"OR NO OUTPUT 
FOR THE TREE FROM 
THE CENTROID OF THE 
SUBFIEI.D A 

IOUIT · • KOUNT + 1 
SET FLAG FOR OUTPUT 
FOR THE TREE FROM 
THE CENTROID or THE 
SUBPIELD A 

PUT THE SUBFIELD A 
AS THE FiltST .A)lJ) LAST 
CENTROm or A IWIGE OF 
TREES TO BUILD, 

KOUNT • KOUNT + 1 
PUT K SUBPIELD A AS 
FIRST CENTROID OF A 
IWIGE OF CENTROIDS 

SET THE LAST CENTROID 
OF THE RANGE AS THE 
K + 1 SUBFIELD A, SKT 
FLAG TO SXIP M + 1 SUB­
FIELD A 

SET FLAG FOR NO OUTPUT 
FROM THE KOUNT RANGE 
OF CENTROID IN THE 
i'TH SUBNET 

III-76 

PRPBLD 

PRINT ERROR MESSAGE: 
IL!.EGAL FIELD 
SEPARATION CHARACTER 
IN TREE CARD. 
IERR • IERR + 1 

SET THE LAST CENTROID 
OF THE RANGE TO 1'HE M 
SU8FIELD A. SET FLAt: 
FOR NO TREE OUTPUT. 

SET FLAG FOR OUTPUT 
FROM THE XOUNT RANGE 
OF CENTROIDS IN THE 
1 1 TH SUBNET 

THIS IS AN INFINITE 
LOOP, BUT IT WILL 
ABEND BECAUSE IT WILL 
STORE OUTSIDE OF AN 
ARRAY! 



SAVE NUMBEl OF RANGES 
Ot CEIIITROIDS, ICOUN'l', 
FOR SUBNET I 

PRINT THE TURN 
P!IW.TY AIID '1'1! lWfG!S 
OF TUBS TO BUILD 
AND WHICH All! TO B! 
OUTPUT!D 

IF THIS All ASSIGN 
SELF-BALANCING RUN 'l'H!N 
PlliNT WKETHEil CAPACITIES 
Ol COUNTS WILL BE USED 

ALSO PRINT A IIBSSAGE 
IF THIS IS All ASSIGN 
SELF-BALANCING ARD 
A SECOND WEIGHTED 
ASSIGNIIBNT IS TO BB USED. 

PRINT NUMBD OF BU.ORS 
DETECTED IN *TURN ARD 
*TUB CARDS. 

III-77 

PRPBLD 

UTURN 



IRD = 1 

IRD = 2 

IRD = 3 

SUBROUTINE 

PRPCTV 

REWIND UNIT CTVOUT 

READ THE PARAMETER 
CARD. SET IRD • 0 

IRD : 1 PRINT A 
MESSAGE THAT 24 HR 
FIELD USED. 

SET NUMBER OF SUBNETS, 
NDSUB : 1 • SET 
FIRST CENTROID OF SUBNET 
1 3 1. SET LAST 
CENTROID OF SUBNET 1 • 7. 

READ A TRIP VOLUME 
RECORD FitOM UNIT INCTV • 

BUILD ONE WORD OF TRIP 
RECORD. SET ORIGIN 
IORG. SET SUBNET OF 
DESTINATIONS • ISUB2 

SET COUNT OF DESTINATIONS 
IN THE TRIP RECORD • KNT • 1. 

III-78 

PRPCTV 

PRINT . ERROR MESSAGE: 
NONE VALID ORIGIN 
XXXXX OR DESTINATION 
xxxxx 



SET A 1'/.Al: TO INDICATE 
THAT THE EOD ON UNJT 
INC'/'V HilS llEEN REACHED 

PRINT I·:RROR MESSAGE: 
NONE VIIL!D ORiGIN XXXXX 
OR nESTlNATlON XXXXX 

WIU n: THE TRIP RECORD 
W l TH KNT DESTINATIONS 
ON UNT'l' CTVOUT 

PRINT ERROR MESSAGE: 
DUPLICATE SET OF DATA 
ENCOUNTERED 

EOD RF.AD A TR 1 P VOI.lJM~: 
RF.CORD FROM UN 1'1' 
INC'l'V. 

·III-79 

KNT•KN'f+l 
PUT THE NEW DESTlNA'flON 
CENTROID AND VOLUME IN 
THE RECORD 

WRITE A .TRIP RECORD 
WITH KNT DESTINATIONS 
ON UNIT CTVOUT 

KN1' • 0 

PRINT ERROR MESSAGE: 
VOLUME DATA OUT OF SORT 

PRPCTV 



DT • 0 

ERD PILE UNIT CTVOUT • 
RIWIIID UNIT · CTVOUT 

III-80 

NO 

WRITE A TlliP RECORD· 
WITH lCNT DESTINATIONS 
ON UNIT CTVOUT 

PRPCTV 



EIITRY 

ASMNET 

FKr •.TRUE. 
REV • .tALSB. 

MBIGB SORTED LIIIU 
AND CHEClt FOI. COIIIIIC­
TION BRI.OI.. 

SUBROUTINE 

PRPNET 

:ncr • .FALSI. 
REV • .tALSB. 

RBTUBlf 

III-81 

ENTRY 

REVNET 

PMT • .TRUE. 
REV • .TRUE. 

MERGE SORTED LiNKS 
AND OLD FLEXIRT.E 
DATA RECORD DEJ.ETE 
OR CHAliCE SPECJFJEll 
LINKS. 

COPY THE INTERHEIHAn: 
FLEXIBLE RECORil '1'0 
CORRECT THE NUMBER o~· 

LINKS PARAMETER AND 
REMOVE SPANNt:l> CODE 

PRPNfT 
ASMNFT 
REV~FT 



REWIND ROUTE DATA 
SET. 

SUBROUTINE 

RTPFL 

INITIALIZE WORD COUNTEltS 
FOR ROUTES 1 - 3l TO 
ZERO AND SET FLAGS 
TO SKIP RECORDS 

INITIALIZE WORD COUNTERS 
FOR FIRST ll) ROUTES . 
TO SAVE IN c!ORE, TO ZEltO. 
SET FLAGS FOR FIRST TEN 
ROUTES TO SAVE. THE 
RECORDS IN CORE 

REWIND THE ROUTE DATA 
SET. READ NUMBER OF 
~SSIGNMENTS FROM. FIRST 
RECORD 

SKIP HEADING RECORDS 
ON ROUTE DATA SET 

REWIND ROUTE DATA 
SET. READ NUMBER OF 
ASSIGNMENTS 

READ HEADER RECORDS 
AND PRINT. 

CALCULATE LENGTH 
OF EACH ROUTE RECORD 
IN WORDS AND INITIALIZi 
VARIABLES TO READ IN 
ROUTE RECORDS INTO AN 
ARRAY 

III-82 

INCREMENT COUNT 
. OF WORDS FOR THIS 

ROUTE 

RTPFL 

READ A ROUTE RECORD 
INTO THE NEXT LOCATlONS 
IN THE ARRAY 

INCREMENT COUNT OF WORDS 
FOR THIS ROUTE RECORD. 
INCREMENT TOTAL NUMBER 
OF WORDS IN CORE. 

INCRBHENT THE NUMBER 
OF RECORDS AND iNCREMENT 
THE INDEXES OF WHER~: 
THE NEXT RECORD IS TO 
BE READ 

HOVE THE WORll COUNT t'OR 
ROUTES 1 - 10 SAVED 
IN CORE TO THE WORil 
COUNT FOR THESE ROUT liS. 
SET FLAGS ON ROUTES 
1 '- 10 SO THESE RECORilS 
ARE NOT SAVED 

RESET THE INDEXES SO 
THAT THE. NEXT RECOIW 
WILL BE RF.AD INTO 
THE FIRST LOCATION m· 
THE ARRAY. 

SET THE NUMBER OF 
RECORDS SAVED IN CORE 
TO ZERO. SET A FLAG 
TO SKIP THE SORT. 

EOD 



IIWliiD ROUTI DATA Sl1' 

Gl1' IOOTI CODI or 
I'DST SORTID llOUTI 
IICOID AID A IIODI AID 
I WOOl ~ 'I'll LIJ& 

IIITULIZI JlOUTI. 
OIDDDG MUYS "I 1" 
AID ''I 2" 'fO ZIIOS 

UVI 'I'll. LIJ& 1Y PUTTIIC TBB 
I IIODI II I 1 (AIIIiODI) AID All 
IIDII 'fO 'l'BI LIIIt IICOID II 
a 1 (AIIODI) II' I 1 (AIIODI) 
IS ZDO 01 OTIIIIIJISI IY PUTTIRG 
Til IIODI IUICIII Ill I i (AIIODI) 
AID All IIDII 'fO Til LI. II 
IX 2 (AIIODI) II' • 2 (AHCDI) IS 
ZIIO Oil O'l'IIIIWISI WRITE All IIICR 
ltiSSACI AID SliP 'I'll LIJ&. 

UVI Til LIIIt II Til OPPOSITE Dn­
ICTIOH 1Y PUTIRG Til AIIQDI Ill I l 
(IIODI) AIID AK IIDil TO Til LIJIIt 
II a 1 (UODI) Il B 1 (UODI) IS 
ZIIO OR OTIU!IlWISI 1Y PUTTIIC 'l'BI 
AIIODI II I 2 (111001) AID All DDII' 
'fO Til LIR II IX 2 . (BRODB) II' 
I 2 (IIODI) IS ZIRO Oil 
OTIIDWISI WRITE AK IUOR 
IIISUGI. AIID SltiP THI LIR 

SIT IHD • • tiDB. 

110 

III-83 

GIT tal IIOtJTB HUMBER 
OJ' tal HUT LIIOC. RBCOID 
AID ITS AlfODI AIID BRODE 

YES 

RTPFL 



STOP 8 

SAVE A POINTD TO THE 
NEXT tm UCORD TO 
PROCESS 

WIITI Ali iiiOI. Misrw:K 
tHAT TRB IOUTI liAS ID 
BIDS, 

'l'HB AUAYS I 1 AJ1D B 2 ROW JODI A 
BmtUCTIOIW. LIST SftUCTUII Of 
LDIS WITH TIIB DATA IIDIDD BY 
AUAYS Ill 1 AJ1D Ill 2 ~ . 'l'HB X.Dit 
UCOIDS AU ROW LISTBD IH 'l'HB 
OIDIIl D WBICB 'l'BBY AU COIIIICTID 
AJ1D T11B LIST STaUC!UII IS DUftOYID 
AS BACil tnat IS PRDITID BY Sft"l'Illl 
IITBIIl TIIB B 1 · (I) Clll I 2 (I) 
B1.IHBirr WBICB WAS USID TO IBACH 
ILIMIIIT I TO ZDO '1'0 1'IIVIII'1' TIIB 
PROGaAH nml GODIG 'TIIJlOUGII 'l'HB 
LIST ltOU TIWI OBCB, 

SIT 'l'HB IIOOTI CODI TO 
THAT OP T11B 111T llOUTI 
SAVID IH CCII& 

III-84 

RTPFL 



lfO 

PIID HOW MAllY J«)J.B 
IOUTB CODES CAB BB 1tJW) 
DITO COli AT TBB SAJIB 
TDIE A1IID SBT nAGS lOll 
TIIIK. 

RIP 'iiiE BJW)II 
IICOIDS 011 Till 10UTB 
DATA SBT. SBT _, 
• .PALSB. 

llBAD A &CIU'rB LIB .,_JOD _ _. .. 
QCORD 

I1tCIIIIIIIT LOCAnOII 
'1'0 l'U'1' .IIIXT LIB IICOID 

III-85 

RTPFL 



SET PaT AllAY 'fO 
PLOT ·ALL ROU'1'IS. PIIIT 
MESSAGE: ALL IClUTIS WILl. 
BE PLOTTID. 

RTPLT 

iiiiT IOUrl rL0'1' CAU. 

IDIIDIB. CA1D COLUIIIS 
AID BIT· PaT MIA! 'fO 
·rLOT c:oua.8 WBICB All 
-..aLAR ALSO nur 
WBICB AU 'fO U PLO'l'TID 

nr- • .r.ALBJ. 

DIITIALIZI WOlD 
CCIUliiiiS lOR IOUTII 
1 - ~1 'fO 1110 AID 1ft 
1'LAGI 'fO I&If IICOIDS 
J0a 'IIIII IOUTII 

III-86 

DIITIALIZE WORD COUIITEIS 
fOR PIRST 10 IOUTIS TO 
SAVE Ill COli, 'fO 
ZUO. SIT PLACS TO 
SA'il IBCOIDS P1C11 
PIUT 10 aouTIS IB CORE. 

IBWIRD TB1 ROUTE 
DATA SIT. DAD 
lUMBER 01 ASSIGHMBIITS 
II.D PICII TB1 FIRST 
IBCOID. 

DAD TBI· ASSIGBMIR'l' 
rLOT CAitJ) ..... 5. 

nur 'I'D ·ASSICIHIIIT 
'PLO'l' CAll). 

BIT lUGS· 'fO 'PLO'l' TBI 
ASSIGIDIIIITS • COU1ft'S, oR 
CAPACITIIS SPECIPIID 1 

ALSO RIIT WBICB AU 'fO 
n PLOTTID. 

PLOT BUDD UCOIDS 
WUII IDIITIPICATI. OP 
ASSICIIIIllr IUHID1 

COUIT 1 01. CAPACITY VD11 
1'111101. 'fO •• PLOftiD 
10& IT. . . 

ALSO PRilft ALL BUDD 
IICOID8 PICII Till lOUD 
DATA SIT. 

Pall'r MESSAGE: ALL 
ASSIGHIITS. LINK COUNTS, 
AID LIMIC CAPACITIES WlLL 
·11 PLOTTED. SET fll.At>S '1'0 
PLOT THE ABOVE. 

RTPLT 



DfCUMIIIT COtJRT OP 
WOlDS lOll THIS IOUTB 

IHCUIIIIT TBI IIUNBIIl 
or IBCOIDS AID IICUMBIT 
Till IIDIX or WIIIIB 
THE lllrr UC01D II TO 
IJWD 

SBT 'i'BI IIUK8IIl or 
UCOIDS SAVID Ill COU 
'1'0 ZDO. SBT A PLAG '1'0 
SI.IP TBB SOllT. 

SliP 14. 2 INCHES DOWN 
rim PLOT TO SKIP THE 
IIJW)BIS. 

CALCULATE LIHGTH OP 
ROUTE IBCORDS IN 
WilDS AND INITIALIZE 
VAI.WLIS TO READ THE 
IOlJTi IBCOilDS Ifto AH 
AllAY. 

JWD A RouTE IBCOID. INTO 
THE NBX'1' WOilDS IN THE 
AllAY. 

IICilliciHT COUNT or 
. WOlDS POll THIS .llOVTB 
Iii COU •. · IRCIUIMIHT 
TOTAL HUMiD or WOlDS 
Ill THE AllAY. 

II)YB THE WOilD COUII'1' POll 
IOUTBS 1 ..;. 10 SAVED IH. 
COU 'fO TBI .WOilD COUIIT 
lOR THOSE IOOTBS. SIT 
fLAGS 011 IOUTBS 1 - 10 
liO tHAT 'l'IIESB IBCOIDS 
AU JiO'r SAVID. 

USBT. TBI I11DU SO tHAT 
TIE NBX'l' IBCOitD . WILL 
IE 11AD 111'1'0 TIIB PilST 
LOCATIOH or THE AUAY 

III-87 

BOD 

UWD1D ·ROUTE DATA 
SBT. 

CIT. 1lOUTE CODE OF TRB 
rtuT SOI.TBD llECOltD 
1M cou. 

R lP l T 



END· •• TRUE. 

INITIALIZE IOUTE 
ORDEiliNG AUAYS 
B 1 AND B 2 TO ZEROS. 

SAVE THE LIHK BY PUTTING THE BRODE 
IN B 1 (BRoDE) AND AN INDEX TO THE 
LINK RECORD iN Nlt 1 (ANODE) IF 
B 1 (ANODE) IS ZERO OR OTHEllWISE 
BY PUTTING THE B NODE NUMB!lt IN 
B 2 (ANODE) AND AN INDEX . TO TB! 
LIHK IN NX 2 (ANODE) IP B 2 (ANODE) 
IS ZERO OR OTHERWISE WRITE AN 
ERROR MESSAGE AND SIUP THE LIHK 

SAVE THE LIHK IN THE OPPOSITE DIREC­
TION BY PUTTING THE ANODE IN B 1 
(BNODE) AND AN INDEX TO THE LIHIC. 
IN NX 1 (BN'ODE) IF B 1 (BNODE) IS 
ZERO OR OTHERWISE BY PUTTING THE 
ANODE IN 8 2 (8NODE) AND AN INDEX 
TO THE LIHIC IN NX 2 (BNODE) IF 
B 2 (BNODE) IS ZERO OR OTHERWISE 
WRITE AN ERIOI. MESSAGE AND SKIP 
THE LIHIC. 

GET THE IOUTE JltJMBER 
OF THE NEXT LIHK RECORD 
AND ITS ANODE AND BNODE 

III-88 

YES 

R 1 P l T 



STOP 8 

SAVE THE POINTER TO 
THE NEXT ROUTE RECORD 
IN CORE TO PROCESS. 

PRINT AN ERROR MESSAGE 
TIIAT THE ROUTE HAS 
NO I!)IJ)S 

THE ARRAYS B 1 AND B . 2 NOW FORM A 
BIDIRECTIONAL LIST STRUCTURE OF 
LINKS WITH THE DATA INDEXED BY ARRAYS 
NX 1 AND NX 2. THE LINK . RECORDS 
ARE NOW LISTED IN THE ORDER IN 
WHICH THEY ARE CONNEC.TED AND THE 
LIST STRUCTURE IS DESTROYED AS 
EACH. LINK IS PRINTED BY SETTING 
EITHER B 1 (I) OR B 2 (I) ELEMENT 
WHICH WAS USED TO REACH ELEMENT 
I TO ZERO TO PREVENT THE PROGRAM 
FROM GOING THROUGH THE LIST MORE 
THAN ONCE. THE INDEXES TO THE 
LINKS LISTED ARE SAVED IN ARRAY 
NX 2 SO THAT THE ROUTE CAN BE PLOTTED. 

GET THE MAXIMUM VOLUME 
TO BE PLOTTED FOR THIS 
ROUTE, MAX 

III-89 

RTPLT 



DRAW NUMBERS FOR THE 
TIC HARXS ON THE Y 
AXIS. 

DRAW NODE NUMBERS ALONG 
THE X AXIS IN ASCENDING 
ORDER OF DISTANCE WITH 
CONNECTING LINES 

YES 

PLOT THE VOLUMES 
CORRESPONDING .TO XIC 
IN AN ORDER WHICH IS 
ASCENDING FOR THE X 
AXIS VALUES, 

XIC • XIC + 1. 

III-90 

ICK • 1 , CORRESPOIIDS TO · 
GROUND COUNTS ICK • 2 • 
CORRESPONDS TO CAPACITIES 
lK > 2 • CORRESPONDS TO 
ASSIGNMENT ICK - 2 

RTP.LT 



PLOT THE VOLUMES 
CORltESPONDING TO KK 
IN AN ORDER WHICH IS 
DESCENDING FOR THE X 
AXIS VALUES·. 

KK=KK+l 

·YES 

SET THE ROUTE CODE 
TO THAT OF THE NEXT 
ROUTE· SAVED IN CORE 

FINb HOW MANY MORE 
ROUTES CAN BE READ INTO 
'CORE AT THE SAME TIME AND 
SET FLAGS FOR THEM TO 
BE READ IN. 

SKIP THE HEADER RECORDS 
ON THE ROUTE .DATA SET • 

. SET END= .FALSE. 

READ A ROUTE LINK RECORD 

III-91 

EOD 

RTPLT 

RETURN 

INCREMENT LOCATION 1'0 
READ NEXT LINK RECORD 
INTO. 



THIS EPPECTIV.ELY 
ROUNDS DXS TO THE 
NEXT LARGEST NUMSD OF 
THE TYPE a*O.S- WHiilE 
n IS AM lNTEGU 

llOUND 2*DXS TO THE 
HUT LAIGIST Ill'l'IGD 
AND PUT IN IX. 

SC • (ft.OAT (IX) /2.0) 
*FlO 

sc 

BREAK NUKBD TO BE SCALED 
INTO TWO PAllTS DXS I A 
NUMBER BBTWBEN · 1. 0 AID 
10.0 AID F 10 A MI,ILnPLID 
WHICH IS A POWD OF 10 

lOUND DXS UP TO THB 
Nlxr LAI.GBST IftBGDo IX 

sc • IX*r 10 

III-92 

s c 



ftii"i' aaoa MISUGI: 
SILICTID LIIU OUTPUT 
Ol'TIOI IIIYALID, Ol'TIOI 
DAD • *lXXX lUI DILITID 

110 

SUIIIOUTIII 

SELECT 

SET PLAC SO TIIAT LOADID 
IIITilOU WILL II 
raniTID 

DAD OUTPUT SPBC:IPICATlOII 
CAlli 

SET TUUuC IIOVIIIIII'f 
CODES TO SAVI 110111 AID 
OUTPUT 11011. 

SET PLAC TO SUPPIISS 
ftllft'IIIC or LOADID 
IIBTIIOIIt. 

III-93 

YD 

WliTI JIUDil. AID DATI· 
01 SILTII' DATA SIT 

SELECT 



PRINT ERROR MESSAGE: 
SELECTED LINK XXXXX 
XXXXX NOT IN NETWORK, 
CARD IGNORED 

NOT IN 

NETWORK 

READ A *SELECT OR AN 
*END CARD. 

IF THE ANODE > BNODE 
EXCHANGE THE ANODE AND 
BNODE NUMBERS • 

.FIND THE LINK INDEX OF 
THE LINK ANODE, BNODE. 

SELECTED LINK FOUND 

FLAG ONE-WAY LINK FROM 
ANODE TO BNODE IN THE 
NETWORK AS A SELECTED 
LINK. 

III-94 

SELECT 

SET PERCENT FIELD 
TOO 100% 

SET NUMBER OF ZONE 
PAIRS TO PRINT • 
32767 . 



PB.IHT EIJ.OB. MESSAGE: 
SELECTED LINK XXXXX 
XXXXX HOT IN NETWORK, 
CARD IGNORED 

NOT IN 

NETWOIUt 

FIND THE ONE-WAY LINK 
INDEX OF THE LINK 
BNODE, ANODE 

SELECTED LINK POUND 

FLAG ONE-WAY LINK FROM 
BNODE TO ANODE IN THE 
NETWORK AS A SELECTED 
LINK. 

PRINT CUT-OFF 
PARAMETERS PO'R. THIS 
SELECTED LINK 

IIT-95 

SELECT 



SIT A coo• TO iiDICA1'i: 
IT IS 101' II '1'111 lii'NOillt •. 

NOT IN 

lll'l'WOIJC 

SUBIOUTIIB 

SUBFND 

PDID WIIAT SUim 'DIE 
OltiGII CJII'tiOIJ) IS II. 

FIIID. WHAT SUiNET . THE 
DBSTDIATIOI CIIITIOID 
IS II. 

III':'96. 

SUBFND 



SUMEND 

SUillOUTINE 

~ 
SUMEND PRINT THE StiMKATIORS 

HADE BY ORIGIN !'OR 
ALL CENTROIDS IN SBQUEN-

~· 
T:W. OlDER. BY CINTIOIDS 

~ 
IEWIJ.m UNIT CTVOUT 

I'I.INT TOTALS !'OR ALL or 
ABOVE ITEMS. SUP TO THE 
TOP or A NEW PAGE 

! 
+ 

lEAD PAIWIETU RECORD 
PllOH UNIT CTVOUT. 

IEWtND UNIT CTVOUT 

! 
SUM HUMBD. or CENTROIDS, ' NZONES. SET THE DISPLACE-
MINT !'01 Bi.cH SUBNIT UTUltH. 

OF WHIR! TO SUM ITBMS. 

+ 
INITIALlZE AillAYS !'OR 
HUMBER. OF ORIGINS, 
DESTINATIONS, VOLUMES 
IN, VOLUMES. OUT, AND 
INTRAZONAL VOLUME TO 
ZEROS 

' lEAD A TRIP RECORD FROM EOD 
UNIT CTVOUT 

l 
MAl(E SUMMATIONS OF 
HUMBER or ORIGiNS, DESTI-
NATIONS, VOLUMES IH, -- VOLUMES OUT, AND 
INTRAZONAL VOLUMES BY 
CENTROID !'OR THIS TRIP 
RECORD 

III-97 



ALCP 

CALCULATE THE WEIGHT 
OF EACH ITERAT·ION 
TO LOAD. 

SUMRY 

SUBROUTINE 

SUMRY 

RETURN 

III-98 



DETEBMINI FIRST AND 
LAST NODE NUMBER. OF 
EACH SEGMENT. DETER-
MINE NUMBER OF LINKS &· 
TURN VOLUMES IN EACH 
SEGMENT. 

NO 

SUBROUTINE 

SVLOAD 

INITIALlZE NUMBER OF 
SEQIENTS, NUMBER OF 
B~S, I OF L1NK 
VOLUMES, I OF TURN 
VOLUMES 

INITIALIZE FlRST NODE 
. NlntBER TO 1, 

FIND NUMBER OF BLOCICS 
OF 4000 WOimS, NUMBER. 
OF SEGMENTS .IN WHIQI 
THE LOADED NE'l'WORl< MUST 
BE SUMMED 

REWIND 3, WRITE 
PARAMETER RECORD OF 
SEGMENT PARAMETERS 
ON UNIT 3 

1 • 1 

III-99. 

SET NF ,. FIRST NODE 
NUMBER OF SEGMENT 1 , 
SET NL • LASE NODE 
NUMBER. OF SEGMENT I. 

SET NLKF • LINK INDEX 
OF FIRST LINK FR.(»! 

NODE NF 

SET NLKL • LINK INDEX 
OF LAST LINK FR.(»! NODE NL 

J • NLKF 

K "' THE MINIMUM OF 
J+3999 AND NLkL 

JJ • K-J+l 

SVLOAD 



WRITE J.J WORDS OF 
BUF ON UNIT 3 

NO 

WRITE THE ARRAY . BUF 
ON UNIT 3 

J•J+4000 

I • 1 

III-100 

SET NF • FIRST NODE 
NUMBER OF SEGMENT I, 
SET NL * LAST NoDE 
NlJ!oiBER OF SEGMENT I. 

SET NLKF .; LINK INDEX 
OF FIRST LINK FROM 
NODE NF 

NET NLKL • LINK INDEX 
OF LAST LINK PROM NODE 
NF. J • NLKF 

I( " THE MINIMUM OF 
J + 3999 AND NLKL 

JJ • K- J + 1 

WRITE ARRAY BUF ON 
UNIT 3, 

SVLOAO 

WR1 TJ·: J.l WORil:; Ill' 
BUF ON UNIT ·1 



I • I+ 1 

1 - 1 

SET NF • FIRST NODE 
NUMBER OF SEGMI!NT I, 
SET NL • LAST NODE 
NUMBER OF SEGMENT I. 

SET NTF • INDEX OF 
FIRST TUltN VOLUME SAVED 
FOR NODE NF. 

SET NTL • INDEX OF LAST 
TURN VOLUME SAVED FOR 
NODE NL. 

J • NTF 

K • THE · MINIHIJM OF 
J + 3999. AND NTF. 

JJ • K- J + 1 

WRITE ARRAY BUF 
ON UNIT 3. 

J•.J+4000 

III-101 

NO. 

WRITE JJ WORDS OF 
BUF ON UNIT 3. 

SVLOAD 



SVLOAD 

I • I + 1 

NO 

III-102 



SUBROUTINE . 

TRN 

INITIALIZE FLAGS TO IN­
DICA'tt OUTPUT fOR ALL 
POSSIBLE TURN. VOLUMES 
ALSO SET ALL TURN VOLUMES 
TO -1 TO INDICATE ALL ARE 
UNXNOiNS 

SET FLAGS FOR NO OUTPUT 
O:t tJ-oTURNS AND SET 
VALUES OF '111BSE TO 
ZEROES 

GET IND • THE TURN 
CODE FOR THE NODE 

GET H • THE NUMBER 
OF LIHitS PROM 
NODE I 

Z!IO OUT TUIH VOLUIIBS 
WHICH AI! KNOWif TO BE 
ZIJlO BECAuSE ar ONE­
WAY LIHitS AID PUG 
P'OR HO OUTPUT 

T R N 

YES Pltl!IT MESSAGE: 
TliKv Eit:ROR 

YBS Pltl!IT MESSAGE: 
ERIOR X 

III-103 



13, 17, 18. 

20 22 

GETRN 

GET TURNING 
MOVEMENTS WHIQI 
WERE SAVED 

21 

CB'l'ltN 

GET TVBNING 
MOVBHENTS WHICH 
WERE SAVED 

23. 24 

GET TURNING 
II>VEJIENTS WHial 
WERE SAVED 

GETRN 

GET TURNING 
!1JVEH1NTS WHial 
WERE SAVBD 

GB'l'ltN 

GET TURNING·· 
MOVEMENTS WHICH 
WERE SAVED 

III-104 

27 

GETRN 

GET TURNING 
MOVEMENTS WHial 
WERE SAVED 

MARK TURNS WHICH 
.ARE ZOO BECAUSE 
OF ONE-WAY LINKS 
POR NO PRINTED 
OUTPUT 

PRINT MESSAGE: 
ElU\OJl X 

10 

GETRN 

GET TURNING 
MOVEMENTS WHICH 
WERE SAVED 

1-9. 
19 

T R N 



NO 

GET DIRECTIONAL VOLUMES 
FOR BOTH DIRECTIONS AND 
SUM FOR NON-DIRECTIONAL 
LINK VOLUMES 

1 • 1 

CHECK EACH· OOLUMN 
OF THE TURNING 
ltJVEMENT MATRIX AND 
IP ONE HAS A SINGLE 
UNKNOWN, CALCULATE 
IT 

CHECK EACH ROW OF THE 
TURNING J«>VEMENT MATRIX 
AND IF ONE HAS A SINGLE 
UNKNOWN, CALCULATE IT 

YES 

YES 

III-105 

SET FLAGS SO THAT 
NO TURNIN<: MOVEMENTS 
WILL liE PRINTED 

RETURN 

PRlNT MESSAGE: 
ERROR X 

TRN 



FUNCTION 

TRNMV 

GET IIIDD + 
DISPLACIHBHT -1 

GET VOLUME Oll 
D1DD FlUII HALF­
WOJD ADAY 

USE THE SECOND 
INDBJ: TO GET THE 
VOLUME PROM THE 
OV!RI'LOW AlllAY 

· III~l06 

TRNMV 



NO 

*ASSEMBLY LANGUAGE 

SUBROUTINE 

TRPCKM* 

NODES • 10* ({NODES + 
9)/10) 

I • 1 

GET 10 PATH INDICES 
STARTING IN IPA'l.'H(l) 

PACK THE TEN PATH 
INDICES IN ONE 
WORD USII!IG 3 BITS 
FOR EACH. THE FIRST 
TWO BITS OF THE WORD 
All! UNUSED. 

STORE THE PACICED ·PATH 
ITEMS IN BUF (I/10 + 1), 
I • I + 10 

RETURN 

III-107 

ENTRY 

TEST* 

LPACIC • THE NUMBER 
OF PACKED PATH WORDS. 
I • 0 

GETTREE(I) 

I • I+ 1 

NO 

IERR • IERR + 1 

CHECK EACH OF Tilt: 
10 PATH INIHC:J·:s 
INDIVIDUALLY ANI! Allll 
TWO TO I ~:RR ~·oR F.ACll 
ONE WHICH J S EOUAJ. Tl> r,. 

T R PC I< I"' 

T E· S T 



SUBROUTINE 

TURNM 

INITiALiZE FLAGS TO IN­
DICATE OUTPUT FOR AU 
POSSIBLE TUJNiNG liJVE­
MENTS, ALSO SET ALL TO 
-1 TO INDICATE llNICNOWNS 

SET 'FLAGS FOR NO OUT­
PUT .OF u-'l'UBNS AND 
SET VALUES OF THES! 
TO ZEROES 

GET IND · • THE TtJIN 
CODE FOR THE NODE 

GET N • THE NUMBER. 
OF LINICS FROM THE 
NODE 

ZBRO OUT TUBN VOLUMES 
WHICH ARE KNOWN TO BE 
ZERO BECAUSE OF ONE­
WAY LINICS AND 'FLAG 
FOR NO OUTPUT 

YES 

III-108 

PRINT MESSAGE: 
'TliHHV EBR' 

PRINT MESSAGE: 
ERROR X 

TURNM 



13. 17. 18. 
20. 22 

GITRMS 

GET TURNING 
MOVEMENTs WHICil 
WERE SAVED 

21 

GETIMS 

GET 'lUBNING 
!I>VBMBNTS Willal 
WEI! .SAVED 

23, 24 

GETINS 

GBt TUIHIMG 
IIWBMBNTS WHICH 
WBII SAVED 

25 

GBTitHS 

GET TUBNIHG 
lll'IBMDTs WBIQI 
WBU SAVID 

·III-109 

26 27 

) 

GITRMS 

GEt 'l'UBNING 
MOVEMENTS WHICH 
WERE SAVED 

GEtiNS 

GET TURNING 
!I>VBMBNTS WHICH 
WERE SAVED 

MAiuc. 'lUBNS WHICH AilE 
ZERO BECAUSE OF ONE­
WAY LDIICS FOR NO 

. PRINTED OUTPUT 

PRINT MESSAGE: 
ElliOR X 

TURNM 

10 l-9, 
:.9 

GETBNS 

GET TURNING 
MOVEMENTS WHICH 
WERE SAVED 



NO 

la·:'l' Ill Rl(CT)()NAJ, 
VOLIIMY.S FOR 60TH 
DIRE<.'TlONS AND SUM 
FOil NON-DIRfo:C..'TlllNAI. 
LINK VllLUMt:~: 

I • J 

a!F.CIC EACll COLUMN OF 
l'HF. TURNiNG l«lVEMENT 
MATRIX AND JF ONE HAS 
A SINCU: UNICN<MI, 
CALCULATE rr 

CIIECK EACH ROW OF ntE 
TURNING MOVEMENT MATRiX 
AND IF ONE HAS A SINGLE 
UNKNOWN, CALCUI.ATE IT 

r. I + 1 

YI~S 

YES 

III-110 

Sl-:1' ~·1,1\I:S !:O 111A'I' 
NO 'I'IIRNINI: MOVt:roi~:N'I'S 
Wll.l. IIV. I'RIN1'l•:ll 

PRINT MF.SSAI:F.: 
ERROR X 

TURNM 



SUBROtJTINB 

UPDTNT 

DLT • .FALSE. 
(NO BllBOBS DETBCTBD 
IN PAlWIBTD CARDS) 

SET ITR(I) • I FOR 
I • 1, 20. 'l'Hi:S 
SPECIFIES NO AsSIGN­
MENTS ABE DELETED 

ItEWIND 12. 

'-BEAD THE PAlWIBTEll 
R!COID FIOH 1lHIT. 12 
OF THE OLD PLBXIBLE 
UCOID 

IMPD • .FALSE. 
('l'RE LINK IMPEDANcE 
OF AN OLD ASSIGNMENT 
IS NOT TO BE USED) 

SLF • .FALSE. 
(THE LINK IMPEDANCES 
ABE NO'l' TO BE CALCU­
LATED BY THE LINK 
IMPBDANCI FURCTION) 

III-lll 

UPDTNT 



SI.F • ,TRUE, 
NMPD • NTR 

PRlNT ERROR MESSAGE: 
*IMPIDANCE AND *ADJUST 
I'AIAMETBR CARDS MlmiALLY 
UCLUSIYE . 
DLT • ,TRUP. 

READ A PARAMETER 
CAllD PIOM UNIT 5 

PRINT THE PAIWIETD. 
CARD 

PRINT EUOll 
MF.SSAGE: INVAI.lD 
DEI.ETE ASSIGNMENT 
PAIW4ETER CAID 
DI.T • ,TJlUE, 

NO 

III-112 

PRINT MESSAGE: 
ASSir.NMENT X lS INVALID, 
IIECUTION Wli.L liND WITII 
A 8'1'01' 3, DLT • ,1'Rllt:. 

NTR • '1'111-: Mi!>II:NHI·:N'I 
TU tn:I.F'I'E, 
ITR(N1'R) ~ u 

IHPII u .TilliE, 
NHI'IJ,. N'l'll 

ll P D 1 NT 



STOP a 

PRINT M~:SSAGE: SELF-
II IVF.R'I' lNl: IKPEbAMCES 
CALCULATIID FllOM 
ASSIGNtmNT XX 

I'R LN'l' MESSAGE: NEW 
lMl'EIJANCJ'.S TAKEN FROM 
ASS tc:NHEN'r XX 

RIWl TilE rtRST HEADER 
ltECOlD ROM UNIT 12 

READ TilE OTIIER PARAMETER 
RECOID FROM UliiT 12 
COPYIIIG THE ONJ!S FUR A 
ASS lGIIMENTS WHICH ARE 
NOT TO BE DELETED TO 
UNIT lfl'l'WOIJt, 

PACK Till lfON ZERO 
ITEMS l1f AllAY ITR. 

III-113 

IKAII A NODI! KEC:Ili<U l'MOH 
IINI'J' I~ 

NL • NUMBEit OF LINK 
RECORDS FOR THIS NOliE 
RECORD. 1 • 1 

READ A LIB RECORD .'ROM 
UNIT 12 

UPDATE THE LINK 
IKPEDAMCE IF SPECIFTEb 
BY SU' OR IKPD. 

DELETE ASSIGIIMI!!NT 
SPECIFIED BY TilE 
ITR ARRAY. I • I + 1 

UPIJIN1 

Rf.WlNII 12 



PR l NT MESSAGE THAT 
TH~: NUMBER OF LINKS 
F.XC~:~:os THE MAXIMUM. 
llRR~RRR.O.l 

PRINT MESSAGE THAT THE 
MAXIMUM NODE NUMBER IS 
EXCEEDED. 
ERR~ERR+l 

SUBROUTINE 

VREC 

MRG • LNK 1. GT. 0 
(ARE THERE RECORDS ON 
UNIT 3) 
MRG 2 • LNK 2. GT. 0 
(ARE RECORDS ON UNIT ll) 

CALCULATE TOTAL NUMBER 
OF ONE-WAY LINKS 

SET INDEXES FOR NEXT 
LINK FROM LINKS IN 
CORE OR FROM RECORDS READ 
FROM UNITS 3 OR ll TO 
FIRST LINK 

REWIND UNIT 4 (NODE 
NAMES) 

III-114 

READ A RECORD FROM 
UNIT 3 

READ A RECORD FROM 
UNIT ll 

VREC 

SET SORT KEY FOR 
LINK FROM UNIT :1 SO 
IT WILL BE SKIPPEU. 
SET ANODE ~ l bl8'l 

SET SORT KEY FOR THE 
FIRST LINK FROM UNIT 
ll SO THAT IT WILL 8E 
SKIPPED. SET ANODF. = 
16181 



READ NEXT CARD FROM 
LiNK DATA INPUT 

SET NODE NUMBER 
OF LAST NODE RECORD 
READ TO 16383 

L = L + 1, SAVE 
THIS LINK AT INDEX L. 
INCREMENT TO GET NEXT 
LINK 

YES 

GTLNK 

UNPACK DATA FROM NEXT 
LINK FROM UNIT 3 

READ NEXT RECORD FROM 
UNIT 3, SET LOCATION 
TO GET NEXT LINK TO 0 

SET COUN'l' OF LINKS FROM 
ANODE TO 0. (L = 0). 
PUT NEXT SMALLEST 
ANODE IN ANODE 

NO 

L : L + 1 SAVE THIS 
LINK AT INDEX L. 
INCREMENT TO GET 
NEXT LINK 

YES READ NEXT RECORD 
FROM UNIT ll. SET 
LOCATION TO· GET NEXT 
LINK FROM TO 0 

III-115 

VREC 

L: t + 1 
SAVE THIS LlNK AT INUEX 
L. INCREMENT TO GET 
NEXT LINK 



PRINT MESSAGE THAT THE 
ANODE IS NOT IN THE 
NETWORK 
ERR • EIUl + 1 

SET TURN TYPE CODE TO 
28 AND ADD CDTROm 
CODE 

MOVE NODE NAME TO 
Ali.EA lOB. THIS ANODE. 
1.EAD NEXT NODE NAME 
llECORD. 

GET. COORDINATES AND 
KEEP NON ZERO SUB AllU. 
CODE. UAD 1IBW ANODE 
UCORD 

PI.IIT .U IUUlOR MBSSAGB 
POl. BACH DUPLICATE LIB 
AND .ADD NUMBD OF 
DUPLtCATIOHS liTO BlUL 

NO 

CEHTB.om 

YES 

YIS 

CONVDT NtiMBEB. OF 
LIRS IN EACH LDIIC 
CLASS TO THE T1JU 
!IWIHlNt TYPE CODE 

ADD CODE. lOR FllE~Y 
TO TURN CODE 

JI)VE BLARS TO THE 
HODB NAME FOR THIS 
NOOE 

SET COORDINATES TO 
ZERO 

V R E C 



RIMT IUOl IIISSAQI 
THA.T TIIBU All 
I«JU TIWI SU LIBS .• 
IU.•BU+l 

Rift IIISSAGI: 
ISOU.TBD CBITROID. 
II&•BU+l 

I • 1 

III-117 

Rift MiSSAGI: 
ISOLATED mDB. 
11&•11&+1 

V R E C 



UW1IID 3 

IIWIIID 11 

UWDID lfOI)B IWtl DATA 
SIT (tllm 4) 

III-118 

VREC 



n• SMlLLIST 'T' 
VALUI lOR 1iiiOU 
PIRCIII'l'Ma IS > 
100 ~ liS -

ADD 100 - IS 'fO 
TH1 PIIK:IIUGI 
rouJID AIOVI 

SUDOUTIIIE 

WGTLD 

SUM COIISTAIITS ft<ll 
CUUB liT 

SCALa (:OIISTAMTS TO 
100 PIICD'l' AID 
COJIVDt BACH TO IIITIGD 
A11D suK RS • TOTAL 
PDCDT . 

Cli.CIJLATI Til WIIGBT 
roa UCil ITIUTIOJI 
1Y DIVIDilC TBI 
PIICIIIrAGI It 100. 0 

III-119 

miD Till LAIIGIST "T" 
YAUJI 

ADD 100 - JIS TO THE 
PBICBITAGI COIUSPOIDIJIG 
TO THE LARGBST "T" 
YALUI 

WGTLD 



WTSGLN 

SUBROUTINE 
FIND NSAL, tHE NUMBER 
OF LINK RECORDS TO 
SKIP TO REACH Tll~ 

WTSGLN END OF EITHER THE 
DIRECTIONAL IN OR OUT 
LINK RECORDS 

~ ~ 
I 
I FIND NSPT, THE NUMBER 

I OF TURN VOLUME RECORDS 
REWIND 3 TO SKIP TO REACH THE 

'i'U1$ VOLUMES FOR 
SEGMENT ISG. 

~ • 
READ THE .PARAMETER FIND NSAr, TRE NUMBER 

RECORD. SET NSG • OF TURN VOLUME RECORDS 

THE NUMBER OF SEGMENTS , TO SKIP TO REACH THE 

ISG • 1 Rtc:ORDS lOR THE NEXT 
SUBNET. 

~ l 

c SET IN • 1, "IN'' 
IS THE INDEX IN ARRAY 
VOLS WHERE ·THE NT • 1 

~ DIRECTIONAL VOLUMES 
OUT FROM NODES START I 
FOR SEGMENT ISG 

~ ! 
SET IO • THE INDEX IN 

D ARRAY VOLS WHERE THE 
DIRECTIONAL VOLUMES INTO SKIP NSAL RECORDS 

NODES START FOR SEGMENT ON UNIT 3. 

ISG 

~ ~ 
SET IT • THE INDEX IN SET NW • THE NUMl!ER 
AIUAY VOLS WHERE THE OF OUT DIRECTIONAL 
TURN VOLUMES FOR SEGMENT LINK VOLUMES TO READ 
ISG START, FOR SEGMENT ISG. 

! 

~ 1 
FIND NSPL, THE SET IWT • tHE PERCENT 

' NUMBER OF LINK VOLUME TO WEIGHT ITERATION 
RECORDS ·TO SKIP TO NT. I • 1 
REACH SEGMENT ISG. 

i 
I 

t l v 
Ill-120 



WGTA 

MULTIPLY JJ WORDS 
IN ARRAY BUF BY IWT 
AND ADD INTO ARRAY 
VOLS BETWEEN INDICES 
IANDJ. 

NO 

j • THE MINIMUM OF 
I + 3999 AND NW. 

JJ - J - l + 1 

READ A lECORD FRCif 
UNIT 3 WITH JJ WORDS 
INTO ARRAY BUF 

I • I + 4000 

III-121 

NS • NSAL + NSPL 

SKIP NS RECORDS ON 
UNIT 3 

NW • IO + (THE NUMBEN 
OF IN DilECTIONAL INK 
LINK VOLUMES FOR 
SEGMENT ISG) - 1 

I • 10 

W 1 S G L rl 



NO 

J • TilE MINIMUM OF 
I + 3999 AND NW. 

UAD A RECORD hOM 
UNIT 3 WITH JJ WORDS 
INTO ARRAY BUF 

I ~ I + 4000 

III-122 

NS • NSAL + NSPT 

SKIP NS RECORDS 
ON UNIT 3. 

NW • IT+ (THE 
NUMBEll OF TORN 
VO.WMES IN SEGMEN'f 
ISG) - 1 

I "'.IT 

\~TSGLN 



I«<TA 

MULTIPLY JJ WORDS 
IN ARRAY BUF BY IWT 
AND ADD INTO ARRAY 
VOLS BETWEEN INDICES 
I AND J 

NO 

J • THE MINIMUM OF 
I + 3999 AND NW, 

JJ " J - I+ 1 

READ A RitCORD FROM 
UNIT 3 WITH JJ WORDS 
INTO ARRAY BUF 

I • I + 4000 

RETURN 

III-123 

SKIP NSAT RECORDS 
ON UNIT 3. 

REWIND UNIT 3 

SKIP THE PARAMETER 
RECORD ON UN IT 3. 
ISG • ISG + 1 

WTSGLN 

YES 



S I G N I F I C A N T V A R I A B L E. S 

AND ARRAYS 

LABELED COMMON 

DESCRIPTIONS OF SIGNIFICANT 
VARIABLES AND ARRAYS 



LABELED COMMON 

Eleven labeled common control sections are contained in the Texas 

Large Network Package. These labeled commons serve several important 

functions. Their primary function is, of course, to provide a convenient 

media for passing various variables and arrays between subroutines. 

They are also used to save certain variables and arrays as various sub­

routines are overlayed. They have also been used in a few instances to 

aiign half-word arrays on full-word boundaries. TAble 5 provides a 

cross reference of the labeled common control sections and the program 

control sections with which they are associated. 

IV-1 



TABLE 5: CROSS REFERENCE OF LABELED COMMON CONTROL 

SECTIONS AND PROGRAM CONTROL SECTIONS 

LABELED COMMON 

t§ en en ~ ., r::Q 

; ~ E-..r en 
~ 

u 
PROGRAMS H ~ ~ ~ 

~ ~ 
...:l E-4 

~ ~ H ~ :::::> u ~ ~ lJ:I 0 

ALCP X X 
BLOCK DATA X X X 
CLOAD X X 
CRD X X 
CRDINT X X X 
FRATAR X 
GTLD X X X X 
LNKLST X X X 
MAIN X X X 
MERG X 
MRGREC X X X X 
NEWNET X X 
OPENFr .. X 
OUTLLT X X X 
OUTNET X X 
OUTRIP X X 
OUTTRE X 
OUTWLT X X X 
PATHCL X X X 
PRPBLD X 
PRPCTV X 
RTPFL X 
RTPLT X 
SELECT X 
SUBFND 
SUMEND X X 
SUMRY X X 
UPDTNT X X 
VREC X X X 
WGTLD X X 
WRT - X 

IV-2 

~ ~ ~ P-1 
0 ...:l 

~ E-4 0 
en en > 

X 

X 

X 

X 

X 

X 

X 



DESCRIPTIONS OF 

VARIABLES AND ARRAYS 

The purpose of the section is to provide information concerning 

the significant variables and arrays used in the package. For conven­

ience, this information has been stnnmarized in tables by subroutine. 

The programmer may, therefore, when reviewing the flowc9arts and program 

listings of a given subroutine, refer to the table(s) summarizing the 

significant variables and/or arrays used in the subroutine. The tables 

summarizing the significant variables and arrays used in various sub­

routines, arranged in alphabetical order by the subroutine name, are as 

follows: 

IV-3 



SUBROUTINE ALCP 

In the following description the C field will be used to represent 

either the link COUNT- field when it is used or the link CAPACITY field 

when it is used in ASSIGN SELF-BALANCING. 

Variable 

FN 

M 

SY 

SYY 

Contents 

The number of links used in the curve fit (the number of 
links with a nonzero C field which are not centroid 
connectors). 

The number of iterations run in ASSIGN SELF-BALANCING 
at this point. 

The sum of the C fields except for centroid connectors. 

The sum of the C fields squared except for the centroid 
connectors. 

Control Variable Value Meaning 

CNVRG 

CNVRG 

sx 

SY 

XX 

False 

True 

The ASSIGN SELF-BALANCING run should con­
tinue unless it has run the maximum number 
of iterations. 

The ASSIGN SELF-BALANCING run should not 
run another iteration if it has run the 
minimum iterations. 

Contents 

The sum of the nondirectional assigned link volumes for 
links with nonzero C fields except for centroid connectors 
for iterations 1 through M. 

The sum of the products of the nondirectional assigned 
link volumes wit~ the C fields except for centroid con­
nectors for iterations 1 through M. 

The sum of the nondirectional assigned link volumes squared 
for the links with nonzero C field.s except for centroid 
connectors for iterations 1 through M. 

IV-4 



SUBROUTINE CLOAD AND LDSEL 

Control Variable Contents Meaning 

SEL 

SEL 

OUT 

OUT 

RES 

RES 

Variable 

NOVER 

ITRE 

NETD 

Array 

INDEX(!) 

LINKS(!) 

VOL(!) 

XRTRN(J) 

False 

True 

False 

True 

False 

True 

This is either a LOAD NETWORK run or an 
ASSIGN SELF-BALANCING run. 

This is a LOAD SELECTED LINKS run. 

Don't print loaded network. 

Print loaded network. 

This is either a LOAD NETWORK or a LOAD 
SELECTED LINKS run. 

This is an ASSIGN SELF-BALANCING run. 

Contents 

Number of assigned directional volumes plus.turn movements 
saved which are greater than 32767. 

Tree data set unit number. 

The unit number NETWORK. 

Contents 

The index into array LINKS where the out direction links for 
node I start. The values in this half-word array are 16 bit 
unsigned integers. 

This is the links array, each half-word is a link which 
contains three data items. Bit 0 of a link is the last link 
flag, bit 1 is the selected link flag, and bits 2 thru 15 are 
the Bnode number of the link. 

VOL(!) is the assigned directional volume for LINKS(!) if the 
volume is less than 32767. If the volume is greater than 
32767 then VOL(!) bits 1 thru 15 are an index into array 
OVERF where the volume is stored and bit 0 of VOL(!) is a one. 

XRTRN(J) is the index into array TRNTB of where the turn 
volumes saved for node J start. XRTRN(J) is an unsigned 16 
bit positive integer. 

IV-5 



Array 

TRNTB(J) 

PATH 

OVERF 

BUF 

Contents 

TRNTB(J) is either a turn volume or a flag in bit 0 of the 
half-word of one and an index in bits 1 thru 15 into array 
OVERF where the turn volume is saved. 

This is the array into which the packed path records are 
read. The path indices are also unpacked in this array and 
each index is placed in a separate byte by subroutine UNPKX. 
In the unpacked format PATH(!) contains path indices 4(1-1)+1 
thru 4(!-1)+4. 

This is a full word array which contains both directional 
link volumes greater than 32767 and turn volumes saves which 
are greater than 32767. 

This array is used to read the trip interchange items for 
one path record. Each interchange item has a volume in bits 
0 thru 17 of the word and a destination zone in bits 18 thru 
31 of the word. 

IV-6 



SUBROUTINE CMPVH 

Variable Contents 

LSTJ . The largest jurisdiction number in the network. 

NLD The number of assignments on unit NEWNET. 

Control Variable Value Meaning 

NLD 

NLD 

Array 

VMI (J,L) 

VHR (J,L) 

MI (J,L) 

VM (J,F) 

M (J,F) 

VMC (J,F) 

MC (J,F) 

VMCC (J,F) 

MCC (J,F) 

1 

2 or 
greater 

Do~'t print the comparison of the last two 
assignments. 

Print the comparison of the last two 
assignments. 

Contents 

Vehicle miles cross classified by jurisdiction + 1 used as 
the first index and three link classes used as the second 
index. The three link classes are cent.;t;oid connectors, 
arterials, and freeway links. 

Vehicle hours cross classified the same as VMI. 

Network miles cross classified the same as VMI. 

Vehicle miles cross classified by jurisdiction + 1 used as 
the first index and functional class + 1 used as the second 
index. 

Network miles cross classified the same as ~. 

Vehicle miles for links with a nonzero count field eros& 
classified the same as VM. 

Network miles for the links with a nonzero count field cross 
classified the same as VM. 

Vehicle miles for links with a nonzero capacity field cross 
classified the same as VM. 

Network miles for the links with a nonzero capacity field 
cross classified the same as VM. 

IV-7 



Array 

FC (F) 

FN (R,J) 

SY (R,J) 

SYY (R,J) 

SX (R,J) 

SXX (R,J) 

SXY (R,J) 

Hl 

H2 

HN 

Contents 

The number of links with functional class + 1 used as index F 
in the network. 

J = 1: 
J = 2: 
J = 3: 

Number of links with nonzero link counts by route; 
Number of links with nonzero link capacities by route; 
Number of links in the network by route. 

J = 1: Sum of link counts by route code; 
J = 2: Sum of link capacities by route code; 
J = 3: .Stun of nondirectional link volt.nne from the previous 

assignment by route. 

J = 1: 
J = 2: 
J = 3: 

J = 1: 

Sum of link counts squared by route code; 
Sum of link capacities squared by route code; 
Sum of nondirectional link volumes from the previous 
assignment squared by route code. 

Sum of rtondirectional link volumes for this assign­
ment for those links which have a nonzero count by 
route; 

·J = 2: Sum of nondirectional link volumes for this assign­
ment for those links which have a nonzero link 
capacity by route; 

J = 3: Sum of nondirectional link volumes for this assign-
ment by route. 

J = 1: Sum of nondirectional link volumes squared for this 
assignment for those links which have a nonzero 
count by route; 

J = 2: Sum of nondirectional link volumes squared for this 
assignment for those links which have a nonzero 
link capacity by route; 

J = 3: Sum of nondirectional link volumes squared for this 
assignment by route code. 

J = 1: Sum of nondirectional link volUmes from this assign­
ment multiplied by link count by route; 

J - 2: Sum of nondirectional link volumes from this assign­
ment multiplied by link capacity by routes; 

J = 3: Sum of nondirectionallink volumes from this assign­
ment multiplied by nondirectional link volunes from 
the previous assignment by route. 

The header record and date from the previous assignment. 

The header record and date from the last assignment. 

The header record and date of- when .the network was built. 

IV-8 



Control Variable 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Variable 

INLNK 

INCTV 

!VOL 

I FRAT 

MRGOUT 

NET 

NNET 

MSEP 

IRTPFL 

MERGIN 

HEADER 

DATE 

RNAME 

SUBROUTINE CRD 

Value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

15 

16 

17 

18 

19 

Meaning 

$PREPARE NETWORK control card read. 

$OUTPUT NETWORK control card read. 

$PREPARE TRIP VOLUMES control card read. 

$OUTPUT TRIP VOLUMES control card read. 

$SUM TRIP ENDS control card read. 

$LOAD NETWORK control card read. 

$BUILD TR.EES control card read. 

$STOP control card read. 

$LOAD SELECTED LINKS control card read. 

$FRATAR FORECAST control card read. 

$MERGE control card read. 

$ASSEMBLE NETWORK control card read. 

$REVISE NETWORK control card read. 

$ASSIGN SELF-DIVERTING or $ASSIGN SELF­
BALANCING control card read. 

$DELETE ASSIGNMENTS control card read. 

$PLOT ROUTE PROFILES control card read. 

Contents 

Variable unit number INLNK 

Variable unit number CTVIN 

Variable unit number CTVOUT 

Variable unit number FRATAR 

Variable unit number MRGOUT 

Variable unit number NETWORK 

Variable unit number NEWNET 

· Variable unit number SEPARAT 

Variable unit number ROUTE 

Variable unit numbers for the six MERGIN units. 

The header which is printed on output. 

The date that the program started executing. 

The 16 control card names. 

IV-9 



SUBROUTINE CRDINT 

Control Variable Value Meaning 

SUM 

SUM 

Variable 

NLD 

Array 

LINK 

LK 

False Print header records from unit NETWORK. 

True Print header records from unit NEWNET. 

Contents 

The number of assignments which are oti unit NETWORK if SUM 
is false or on unit NEWNET if SUM is true. 

Contents 

A structure w::i.th a length of 16 + 4NLD bytes per record, 
the records are corridor intercept links. 

The same array as LINK except this is in half \'lords. 

Corridor Intercept Record 

Bytes 
Displacement 

0 

2 

4 

6 

8 

10 

12 

14 

16 

12+4NLD 

Bytes 
Length 

2 

2 

2 

2 

2 

2 

2 

2 

4 

4 

Contents 

Corridor intercept 

Anode.of the link 

Bnode of the link 

Route code of the link 

Functional class code of the link 

Link speed 

Count field of the link in units of 100 trips. 

Capacity field of the link in units of 100 trips. 

Nondirectional assigned volume for the first 
assignment. 

Nondirectional assigned volume for the last 
assignment. 

IV-10 



Variable 

ITER 

Al 

A2 

AO 

NOSUB 

Array 

TSUM (I,J) 

ESUM (I,J) 

GFAC (T,J) 

LFAC (I,J) 

!TEST 

VOL 

FCEN 

LCEN 

SUBROUTINE FRATAR 

Contents 

Number of Fratar iterations that have been run 

Input trip matrix unit number 

Output trip matrix unit number (Al and A2 are switched at 
the end of each iteration) 

Unit CTVOUT 

Number of subnets 

Contents 

I = subnet number, J = the relative zone in the subnet, 
TSUM is the trip generations or the production volume plus 

the attraction volume for each zone for the input trip matrix. 

TSUM (I,J)* GFAC (I,J)/100 = the ·expected production + 
attraction volume. 

Growth factor, the factor multiplied by the trip generations 
which is the desired future trip generations. 

Is the trip generations produced by the last growth factors. 

Growth factor frequency table for the last iteration run. 

Used to read the trip volumes from the input trip matrix and 
write them on the output trip matrix. 

' 
First centroid in each subnet. 

Last centroid in each subnet. 

IV-11 



SUBROUTINE GTLD 

Control Variable Value Meaning 

SUM 

SUM 

Variable 

NLD 

ITER 

JMAX 

Array 

VMI (J,L) 

VHR (J,L) 

MI (J ,L) 

VM (J ,F) 

M (J,F) 

VMC (J ,F) 

MC (J,F) 

VMCC (J,F) 

MCC (J,F) 

False 

True 

Don't produce a weighted assignment. 

Produce a weighted assignment from weighted 
impedances and w-rite a new flexible record 
data set for it. 

Contents 

The number of assignments which are on unit NETWORK. 

The number of iterations run for ASSIGN SELF-BALANCING. 

The maximum jurisdiction number in the network. 

Contents 

Vehicle miles cross classified by jurisdiction + 1 used as 
the first index and three link classes second index. The 
three link classes are c~ntroid connectors, arterials, and 
freeway links. 

Vehicle hours cross classified the same as VMI. 

Network miles cross classified the same as VMI. 

Vehicle miles cross classified by jurisdiction + 1 used as 
the first index and functional class + 1 used as the second 
index. 

Network miles cross classified the same as VM. 

Vehicle miles for links with a nonzero count field cross 
classified the same as VM. 

Network miles for the links with a nonzero count field cross 
classified the same as VM. 

Vehicle miles for links with a nonzero capacity field cross 
classified the same as VM. 

Network miles for the links with a nonzero capacity field 
cross classified the same as VM. 

IV-12 



Array 

FC (F) 

FN (R,J) 

SY (R,J) 

SYY (R,J) 

SX (R,J) 

SXX (R,J) 

SXY (R,J) 

Hl 

H2 

HN 

WGT(J) 

Contents 

The number of links with functional class + 1 used as index F 
in the network. 

J = 1: 
J = 2: 
J = 3: 

J = 1: 
J = 2: 
J = 3: 

J = 1: 
J = 2: 
J = 3: 

Number of links with nonzero link counts by route; 
Number of links with nonzero link capacities by route; 
Number of links in the network by route. 

Sum of link counts by route code; 
Sum of lirik capacities by route code; 
Sum of nondirectional link volume from the previous 
assignment by route. 

Sum of link counts squared by route code; 
Sum of link capacities squared by route code; 
Sum of nondirectional link volumes from the previous 
assignment squared by route code. 

J = 1: Sum of nondirectional link volumes for this assign­
ment for those links which have a nonzero count by 
route; 

J = 2: Sum of nondirectional link volumes for this assign­
ment for those links which have a nonzero link 
capacity by route; 

J = "3: Sum of nondirectional link volumes for this assign­
ment by route. 

J = 1: Sum of nondirectional link volumes squared for this 
assignment for those links which have a nonzero 
count by route; 

J = 2: Sum of nondirectional link volumes squared for this 
assignment for those links which have a nonzero link 
capacity by route; 

J = 3: Sum of nondirectional link volumes squared for this 
assignment by route code. 

J = 1: Sum of nondirectional link volumes from this assign­
ment multiplied by link county by route; 

J = 2: Sum of nondirectional link volumes from this assign­
ment multiplied by link capacity by routes; 

J = 3: Sum of nondirectional link volumes from this assign­
ment multiplied by nondirectional link volumes from 
the. previous assignment by route. 

The header record and date from the previous assignment. 

The header record and date from the last assignment. 

The header record and date of when the network was built. 

This array contains the weights in percentages to use on 
each iteration when SUM is true. 

IV-13 



The following arrays and variables are summed for links with a 

nonzero count (or capacity)·field. The *TURN card is used to specify 

whether the count or capacity field is used. It should also be noted 

that the follow~ng arrays and variables are not summed for centroid 

connectors. 

Array 

SX2(J) 

XY(J) 

XX(J,K) 

Variable 

SY2 

SYY2 

FN2 

Contents 

Sum of the nondirectional link volumes for iteration J. 

Sum of the nondirectional link volumes multiplied by the 
count (or capacity) field for iteration J. 

Sum of the nondirectiona1 link volumes fo~ iteration J 
multiplied by the nondirectional link volume for iteration K. 

Contents 

The sum of the count (or capacity) fields. 

The sum of the count (or capacity) fields squared. 

The number of nonzero count (or capacity) fields for links 
which are not centroid connectors. 

IV-14 



Variable 

NODES 

Array 

PATH (I) 

SUBROUTINE INITLl 

Contents 

Last node number 

Contents 

The turn code is contained in bits 3 thru 7 of 
PATH (I) for node I. 

IV-15 



Variable 

NA 

NET 

SUBROUTINE LNKLST 

Contents 

The number of iterations, in an ASS!GN SEtF-BALANC!NG run, 
plus one if a weighted assignment has been produced. 

The FORTRAN unit on which the last assigned Flexible Record 
is ·written. 

IV-16 



Control 
Variables 

READSW 

READSW 

Variable 

IV 

IFACT 

NOVER 

Array 

INDEX (I) 

LINKS 

BUF 

VOL (I) 

SUBROUTINES LOAD 

Value Meaning 

False The last record of trip volumes read has been loaded. 

True The last record of trip volumes read has not been 
loaded. 

Contents 

Number of volume items in the last trip record read. 

First zone number minus 1~ 

The number of assigned directional link volumes and saved 
turn volumes greater than 32767. 

Contents 

This array contains the Fortran type index for node I of 
where the links from node I start in array links. The indices 
are unsigned 16 bit binary numbers. 

This is the links array. Bit 0 is the last link flag, bit 1 
is the selected link flag, and bits 2 thru 15 are the Bnode 
number. 

This array is a structure where each word of the array is an 
item containing the trip movement volume in the first 18 
bits as an unsigned binary integer, artd the destination zone 
number in the last 14 bits as an unsigned binary integer. 

This is a half word array which has the same dimension as 
array LINKS and element I contains either the assigned 
directional-link volume for link LINKS (I) or the index of 
where it is in array OVERF. The first bit of a VOL element 
is a flag bit, if it is zero, then the next 15 bits are on 
unsigned binary integer which is a link volume. If the flag 
bit is 1, then the next 15 bits are an unsigned binary 
integer which is an index into array OVERF where the link 
volume is stored. 

IV-17 



Array 

TRNTB (I) 

XRTRN (J) 

. PATH (I) 

OVERF 

Contents 

This is a half word array which is either.used to store turn 
volumes or indexes to where they are stored. The flag bit 
is the same as for array VOL and the next 15 bits are also 
treated the same as for array VOL. 

This is a half word array which contains ~nsigned 16 bit 
integers which are indexes into array TRNTB where the turn 
volumes for node J are stored. 

PATH (I) is the path index for node I. INDEX (I) + PATH (I) 
is the index into array LINKS for the link whose Bnode is the 
back node in the path to node·r. 

This- is a full word array used to store link volumes greater 
than 32767 and turn volumes greater than 32767. 

IV-18 



Control 
Variable 

I 

RES 

CNVRG 

CNVRG 

CNT 

CNT 

w 

w 

Variable 

INLNK 

INCTV 

IVOL 

I FRAT 

MRGOUT 

NET 

NNET 

MSEP 

IRTPFL 

Contents 

Between 
1 and 19 

True 

False 

True 

False 

True 

False 

True 

SUBROUTINE MAIN 

Meaning 

Indicates the last control card read. (See 
variable I in subroutine CRD). 

An ASSIGN SELF-BALANCING run is in iterations 
1 thru 5. 

If RES is true the "T" value of the last iteration 
.run on ASSIGN SELF-BAlANCING is greater than or 
equal 1.96. 

If RES is true the "T" value of the last iteration 
run on ASSIGN SELF-BALANCING is less than 1.96. 

The count field is to be used by ASSIGN SELF­
BALANCING. 

The capacity field is to b~ usedby ASSIGN SELF­
BALANCING. 

A weighted assignment using weighted link impedance 
in ASSIGN SELF-BALANCING is not to be run. 

A weighted assignment using weighted link impedances 
is to be run in ASSIGN SELF-BALANCING. 

Contents 

Variable unit number INLNK 

Variable unit number CTVIN 

Variable unit number CTVOUT 

Variable unit number FRATAR 

Variable unit number MRGOUT 

Variable unit number·NETWORK 

Variable unit ntunber NEWNET 

Variable unit number SEPARAT 

Variable unit number ROUTE 

IV-19 



Variable 

s 

Q 

J 

IMIN 

IMAX 

N 

Contents 

The constant 0.75 in the impedance update function. 

A constant used in the impedance update function. 

Is the iteration number in an ASSIGN SELF-BALANCING run. 

Is the minimum number of iterations to run in ASSIGN SELF­
BALANCING. 

Is the ~ximum number of iterations to run in ASSIGN SELF­
BALANCING. 

A constant used in the impedance update function. 

IV-20 



SUBROUTINE MOORE (Control Section MOOR) 

Variable Contents 

H Home zone number.to build a tree from. 

NODES Last node number in the network. 

Array Contents 

TP This array contains 4 words whose contents are O, turn penalty, 
turn penalty, 0. 

LINK Each word of this array contains one directional link. The 
structure of a link word is described in a table which follows. 

INDEX (I) The index into array LINKwhere the out direction links for 
node I start. The values in this half word array are used as 
16 bit unsigned integers. 

BACK (J) Contalns the index of the out link from node J whose Bnode is 
the previous ·node in the path to node J. 

CUM (I) Cununulative time to reach node I stored in half words. ·If 
node I is not reached the time is set to 327.67 minutes. 

PRED A list of the nodes in the tree in descending time order •. This 
list is part of the sequence strticture used in building a tree. 

SUCC A ·list of the nodes in the tree in ascending time order. This 
list is part of the sequence structure used in building a tree. 

FIRST (I) For time I, which has been taken modules 1024, FIRST (I) 
points to array SUCC where the nodes in the sequence table for 
time I begin. 

LAST (I) For time I, which has been taken modules 1024, LAST (I) 
points to array PRED where the nodes in the sequence table 
for time I end. 

ARROWA (I) Each element of this array is one byte long. ARROWA (I) 
contains the arrow flag of the last link which caused node I 
to be entered into the sequence table. ARROWA for the home 
zone contains 12 which keeps·a turn penalty from being added 
to the nodes connected to the home zone. 

IV-21 



LINK Word Data Structure 

Displacement Length 
Bits. Bits 

0 1 

1 1 

2 1 

3 3 

6 1 

7 1 

8 10 

18 14 

Contents 

Last link fromAnode Flag (1 if last link or 
dummy link). 

shaft flag 

arrow flag 

Back index for Bnode (this is the number which 
must be added to INDEX (Bnode) to index the 
link which contains the Anode number of this 
link as its Bnode) 

~node Centroid Flag (the Bnode is a centroid if· 
this bit is 1). 

Freeway link Flag. 

Link impedance in units of 1/100 minutes 
(maximum link impedance = 10.23 minutes). 

· Bnode of Link 
,·. 

IV-22 



SUBROUTINE MRGREC 

Variable Contents 

IL This :i.s the number of link records in array LINKS. 

NX This is the number of links written on unit 3. 

LNK2 This is the number of links written on unit 11. 

MAXTIM This is the maximum link tfme in 0.01 minute units. 

MAXLNK This is the maximum number of one-way links for a network. 

MAXNDS This is the maximum number of nodes for a network. 

NO SUB This is the number of subnets the network is in. 

Arrays 

Art a I Length Contents 

FSTN 4 First node of each subnet. 

LSTC 4 Last centroid of each subnet. 

LSTF 4 Last freeway of each subnet. 

LSTA 4 Last arterial node of each subnet. 

ARRAY 73343 Contains· the sorted packed links array 
described in NEWNET. 

IV-23 



Control 
Variables 

FMT 

FMT 

LNKTMP 

LNKTMP 

LNKTMP 

ERROR 

Array LINKS 

Value 

False 

True 

3 

11 

-1 

SUBROUTINE NEWNET 

Action Implied 

Use old link data 
format 

Use new link data 
format 

Write first sorted 
links on unit 3 

Write second sorted 
links on unit 11 

If the sorted links 
area is filled up 
three times there 
are too many links 
and an attempt to 
write on unit -1 
will.be made 

Number of 
Errors·detect6d 
in subroutines 
NEWNET, VREC, 
and MR.GREC 

Location Where Set 

PRPNET, ASMNET, or 
REVNET 

PRPNET, ASMNET, or 
REVNET 

Initialization of NEWNET 

Set to 11 after sorted 
links are written on 3 

Set to -1 after sorted 
links are written on 
unit 11 

Array LINKS is the array in which one-way internal link records are 

accumulated and sorted. These records are 22 bytes long and are stored 

by subroutine PTLNK and referenced by subroutine GTLNK. The format 

for these 22 byte records is as follows: 

IV-24 



Displacement. 
Bytes Bits 

0 

1 

2 

3 

4 

5 

7 

8 

8 

9 

11 

12 

13 

14 

14 

14 

15 

16 

16 

16 

0 

6 

0 

7 

0 

6 

4 

0 

4 

3 

1 

0 

2 

1 

6 

7 

0 

0 

6 

7 

Length. 
Bytes Bits 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

4 

IV-25 

14 

2 

15 

1 

14 
14 

4. 

4 

7 

14 
7 

10 

7 

5 

1 

1 

0 

6 

1 

1 

Contents 

Anode number 

Link class code 
0 = two-way 
1 = one-way out 
2&3 = dummy link 

Link data card count 

Not mileage code 
0 = Use in Vehicle Mile Summary 
1 = Do not use in Vehicle Mile 

Summary 

Bnode number 

Count field in units of 100 trips 

Jurisdiction code in hexadecimal 

Functional class code in 
hexadecil'ilal 

Subarea code 

Link Capacity in units of 100 trips 

Speed in units of tenths of 
a mile per hour 

Link distance in units of 
of a mile 

Corridor intersect code 

Route number 

1 
100 

Shaft code, 0 = one direction 
1 = other direction 

Arrow code, 0 = one direction 
1 = other direction 

Unused 

Link Impedance field, in units 
1 . . 

of· 100 minutes 

Link delete code 
0 = keep link 
1 = delete link from updated 

Flexible Data Record 

Unused 



Control Variable 

PRINT 

PRINT 

OUT 

OUT 

RES 

RES 

CAP 

CAP 

Array 

I OVER 

IPATH(I) 

INDEX( I) 

NODE 

SUBROUTINE OUTLLT 

Contents 

False 

True 

False 

True 

False 

True 

False 

True 

Meaning 

Don't print the loaded network. 

Print the loaded network. 

Don't print the loaded network. 

Print the loaded.network if variable 
RES is false or ITR is equal to 1. 

This is not an ASSIGN SELF-BALANCING 
iteration. 

This is an ASSIGN SELF-BALANCING 
iteration. 

The COUNT field is used in an ASSIGN 
SELF-BALANCING run. 

The Capacity·field is used in an ASSIGN 
SELF-BALANCING run. 

Contents 

This is a full word array used to store link volumes 
greater than 32767 and tur.n volumes greater than 32767. 

This array is a structure, element r·contains.the next 
node in the path back from node I, the turn code, and 
a flag which indicates whether the node is in the 
sequence table or is a centroid. 

This array contains the FORTRAN type index indicating 
the location where the links from node I begin in 
NODE. The half words in this array are used as 16 
bit unsigned integers. 

This array contains a lirik in each half word, the links 
are structures which contain 3 data items. Bit 0 is 
the last link flag, bit 1 is the selected link flag and 
bits 2 thru 15 are the Bnode. 

IV-26 



Array 

ITR(I) 

IXR(J) 

VOL(I) 

Contents 

This is a half word array which is either used to store 
turn volumes or indexes to where they are stored. 
The flag bit is the same as for array VOL and the next 
15 bits are also treated the same as for array VOL. 

This is a half word array which contains unsigned 
16 bit integers which are indexes into array ITR 
where the turn volumes for node J are stored. 

This is a half word array which has the same length 
as array NODE and element I contains either the 
assigned directional link volume for link NODE(!) 
or the index of where it is in array lOVER. The 
first bit of a VOL element is a flag bit, if it is 
zero, then the next 15 bits are on unsigned binary 
integer which is a link volume. If the flag bit is 
1, then the next 15 bits are an unsigned binary integer 
which is an inde:x into array !OVER where the link 
volume is stored. 

IV-27 



Variable 

L 

LINES 

SUBROUTINE OUTNET 

Contents 

The FORTRAN unit number of the Flexible Data Record unit 
NETWORK. 

The number of lines printed on the page being printed. 

IV-28 



Variable 

HOMEND 

NODES 

LNE 

LINES 

PAGES 

Array 

PATH(J) 

LAMBDA(!) 

INDEX(!) 

LINKS 

SUBROUTINE OUTTRE 

Contents 

The home zone of the tree. 

The last node number in the network. 

Number of lines of tree data to be printed per page. 

Total number of lines of tree data to print for tree HOMEND. 

Number of pages to print for tree HOMEND. 

Contents 

Contains the index of the out link from node J whose Bnode 
is the previous node in the path to node J. 

Cumulative time to reach node I store'd in half words. If 
node I is not reached the time is set to 327~7 minutes. 

The index into array LINKS where the out direction links for 
node I start. The value in this array are used as 16 bit 
unsigned integers. 

Each word of this array contains one directional link. The 
structure of a link word is described in a table which 
follows. 

Link Word Data Structure 

Displacement 
Bits 

0 

·1 

2 

3 

Length 
Bits 

1 

1 

1 

3 

Contents 

Last link from Anode flag (1 if last link or 
dummy link). 

Shaft flag 

Arrow flag 

.Back index for Bnode (This is the number which must 
be added to INDEX (Bnode) to index the link which 
contains the Anode number of this link as its Bnode). 

IV-29 



Link Word.Data Structure (continued) 

Displacement L~angth 
Bits Bits Contents 

6 1 Bnode Centroid Flag (the Bnode is a centroid if this-
bit is 1). 

7 1 Freeway link Flag. 

8 10 Link impedance in units f 1 . o 100 m1.nutes (maximum 

link impedance = 10.23 minutes). 

18 14 Bnode-of link 

IV-30 



Variable 

WL 

WT 

FS 

LS 

I 

NET 

NNET 

Array 

OVOL(I) 

!VOL(!) 

TVOL(I) 

SUBROUTINE OUTWLT 

Contents 

The dimension size of arrays OVOL and !VOL. 

The dimension size of array TVOL. 

The first node (or zone) of the segment of the loaded weighted 
network to be printed. 

The last node of the segment. 

The last Anode number read from the NETWORK data set. 

The NETWORK unit number. 

The NEWNET unit number. 

Contents 

The out link volume array. The link volumes out from node 
FS start at index 1. All-volumes in this array are 
multiplied by 100. 

The in link volume array. The link volumes into node FS 
start at index 1. All volumes in this array are multiplied 
by 100. 

The turn volumes multiplied by 100. The turn volumes for 
riode FS start at index 1. 

IV-31 



Control 
Variable 

COPY 

COPY 

OUT(I,J) 

OUT(I,J) 

Variable 

NTREE 

ITRE 

ISKM 

NETD 

LPACK 

Array 

TRNPTY 

T(I) 

Contents 

False 

True 

False 

True 

SUBROUTINE PATHCL 

Meaning 

All trees specified on the *TREE cards are to 
be built. 

An old trees data set (unit 49) is to be 
read and each logical record is to be checked 
for errors. Trees on unit 49 which have valid 
data are to be copied and trees specified 
on the *TREE cards which are missing or have 
invalid data are to be rebuilt. 

The trees built with origins between INDXl(I,J) 
and INDX2(I,J) are not to be printed. 

The trees built with origins between INDXl(I,J) 
and INDX2(I,J) are to be printed. 

Contents 

The unit number (49) from which old packed tree records which 
are to be copied are read. 

The unit number (50) on which packed tree records are 
written. 

Unit SEPARAT number. 

Unit NETWORK number. 

The number of words of packed path indices in a packed 
tree record. 

Contents 

This array contains 4 words whose contents are 0, turn penalty, 
turn penalty, 0. 

A full work array into which the cumulative time to.reach node 
I in hundredths of a minute are stored to write a separation 
record from. 

IV-32 



Array 

B(I) 

BACK(J) 

CUM(!) 

PRED(I) 

SUCC(I) 

ARROW(!) 

INDEXl(I) 

LINKS! 

COUNT(!) 

INDXl(I,J) 

INDX2(I,J) 

Packed Path Word 

Contents 

B(I) contains the index of the out link from node I whose 
Bnode is the previous node in the path to node I. This 
array is equivalenced to array BACK and the array name 
BACK is actually used in all calling sequences. After 
subroutine TRPCKM is called the indices are packed into 
10 per word (see packed path word Data Structure below). 

This array is equivalenced to array·B, but it is a full 
word array. 

Cumulative time to reach node I stored in half words after 
subroutine MOORE is called, If node I has not been reached 
the time is 327.67 minutes. 

A scratch array used by subroutine MOORE. 

A scratch array used by subroutine MOORE. 

A scratch array used by subroutine MOORE. 

The index into array LINKS! where the out direction links 
for node I start. The values in this half word array are 

-used as 16 bit unsigned integers. This allows the array 
to index up to _65534 one-way links in a network. 

Each word of this array contains one directional link 
(see LINKS! word Data Structure below). 

The number of ranges of trees· to be built for subnet I. 

The first zone number of the J'th range of trees to build 
for subnet I. 

The last zone number of the J'th range of trees to. build 
for subnet I. 

Data Structure. 

Displacement Length 
Bits Bits Contents 

0 2 Not used 

2 3 Path index for node lO(J-1) + 1 

5 3 Path index for node lO(J - 1) + 2 

8 3 Path index for node lO(J - 1) + 3 

IV-33 



Displacement Length 
Bits Bits Contents 

11 3 Path index for node ib(J ... 1) +4 

14 3 Path index for node lO(J - 1) + 5 

17 3 Path index for node lO(J - 1) + 6 

20 3 Path index for node lO(J - 1) + 7 

23 3 Path index for node lO(J - 1) + 8 

26 3. Path index for node lO(J - 1) + 9 

29 3 Path index for node 10(~ - 1) + 10 

LINKS! Word Data Structure 

Displacement Length 
Bits Bits 

0 1 

1 1 

2 1 

3 3 

6 1· 

7 1 

8 10 

18 14 

Contents 

Last Link from Anode Flag (1 if last link or dummy 
link) 

Shaft flag 

Arrow flag 

Back index for Bnode (This is the number which 
must be added to INDEX (BNODE) to index t.he link 
which contains the Anode number as its BNODE.) 

Bnode Centroid Flag (the Bnode is a centroid if 
this bit is 1). 

Freeway link Flag. 
1 . 

(maximum Link impedance in units of !OO minutes 
link impedance = 10.23 minu es). 

Bnode of Link 

IV-34 



Control 
Variable 

RES 

RES 

CAPC 

w 

w 

OUT(I,J) 

OUT(I,J) 

TYPE 

Variable 

NO SUB 

Array 

INDXl(I,J) 

INDX2(I,J) 

COUNT(!) 

TRNPTY 

Contents 

. False 

True 

False 

False 

['rue 

False 

True 

'COPY' 

SUBROUTINE PRPBLD 

Meaning 

This is a $BUILD TREES run • 

This is a $ASSIGN SELF-BALANCING run. 

The Link Count field is to be used in 
ASSIGN SELF-BALANCING. 

A weighted assignment using weighted link 
impedances should not be run. 

A weighted assignment should be run 
from weighted link impedances. 

The trees built with origins between INDXl(I,J) 
and INDX2(I,J) are not to be printed. 

The trees built with origins between 
INDXl(I~J) and INDX2(I,J) are to be printed. 

An old path data set is to be read, checked 
for errors, and paths with no errors are 
to be copied. Missing paths and those with 
errors are to be rebuilt. 

Contents 

Number of subnets. 

Contents 

The first zone number of the J'th range of .trees to build for 
subnet I. 

The last zone number of the J'th range of trees to build for 
subnet I. 

The number of ranges of trees to be built for subnet I. 

This array contains 4 words whose contents are 0, turn penalty, 
turn penalty, 0. 

IV-35 



SUBROUTINE PRPNET 

Logical Variables 

Variable Name Set 

FMT False 

REV False 

Action Implied 

Use old link data format 

This is not a REVISE 
NETWORK run 

Where Tested 

NEWNET, VREC 

PRPNET 

Maximum Value Variables 

Variable Name 

MAXLK2 

MAXNDS 

MAXLNK 

MAXTIM 

Arrays 

Name 

FSTN 

LSTC 

LSTF 

LSTA 

ARRAY 

Value Meaning 

13335 This is the maximum number of one-way links in core. 

16000 This is the maximum last node number. 

40000 This is the maximum numb~r of one-way links for 
the network. 

1023 This is the maximum link time in hundredths of a 
. minute (i.e., 10.23 minutes) •. 

Length Contents 

4 First node of each subnet 

4 Last centroid of each subnet 

4 Last freeway node of each subnet 

4 Last arterial node of each subnet 

73343 Contains the packed links array described as 
array LINKS in subroutine NEWNET. 

IV-36 



When entry point ASMNET is used, the logical variables FMT and REV are 

set as follows: 

Variable Value 
Name Set Action Implied Where Tested 

FMT True Use new link data format NEWNET, VREC 

REV False This is not a REVISE 
NETWORK run PRPNET 

When entry point REVNET is used, the logical variables FMT and REV 

are set as follows: 

Variable Value 
Name Set Action Implied Where Tested 

FMT True Use new link data format NEWNET ~ MRGREC 

REV True This is a REVISE NETWORK 
run PRPNET 

IV-37 



SUBROUTINES RTPFL AND RTPLT 

Control Variable Contents Meaning 

END 

END 

RTS(I) 

RTS(I) 

Variable 

NRD 

NWORDS 

NLD 

Array 

Bl(I) 

B2(I) 

NXl(I) 

NX2(I) 

F(I) 

H(I) 

False 

True 

False 

True 

There was enough room in array F for 
the first 10 routes. 

There was not enough room in array 
F for the first 10 routes. 

Don't save the records read for route 
I in array F. 

Save the records read for route I 
in array F. 

Contents 

The number of words in array F used by one route record. 

The length of array F in words. 

The number of assignments on the NEWNET data set. 

Contents 

If Bl(I) is not zero, then there is a link for route 
RT2 between node I and node Bl(I). 

If B2(I) is not zero, then there is a link for route 
RT2 between node I and node B2(I). 

NXl(I) is the index into array F of where the record 
for the link represented by Bl(I) is stored. 

NX2(I) is the index into array F of where the record for 
the link represented by B2(I) is stored. 

This is a full word array used to·store a group of words 
and half.words which are a single record for a link. 

This is a half word array equivalenced to array F. 

IV-38 



Array 

RTT(I) 

RTlO(I) 

Contents 

Contains either the number of route records for route I 
or zero if the records are irt array F or have been printed. 

Contains the number of route records for route I for the 
first ten routes. 

A route record has the following order of items and is stored in 

array F in the same order: 

Displacement 
in bytes 

0 

-2 

4 

6 

8 

10 

12 

14 

16 

12 + 4NLD 

Length 
in bytes 

2 

2 

2 

2 

2 

2 

2 

2 

4 

4 

4 

Contents 

Route code 

Anode number 

Bnode number 

link functional classification 

link distance in 1/100 miles 

link speed in tenths of a mile/hour 

link count/100 

link capacity/100 

link nondirectional ·assigned volume 
for first assignment 

link nondirectional assigned volume for the 
last assignment 

IV-39 



SUBROUTINE SELECT 

Control Variable Contents Meaning 

OUT 

OUT 

Array 

INDEX(!) 

LINKS 

True no errors found in SELECT cards. 

False errors found in SELECT cards. 

Contents _ 

This array contains the FORTRAN type index indicating the 
location where the links from node I begirt in array LINKS. 
The indices are used as 16 bit positive integers. 

This array contains a link in each word, the links a.re 
structures which contain 5 data items._ 

Links Structure 

Displacement Bits Length Bits 

0 1 

1 1 

2 1 

3 3 

6 1 

7 1 

8 10 

18 14 

IV-40 

Contents 

Last link flag (0 if not last. 
link, 1 if last link or dummy 
one-way link) • 

Shaft code 

Arrow code 

Back index for Bnode 

Bnode Centroid Flag 

Freeway link flag 

Link impedance in units of 0.01 
minutes. 

Bnode of the link-



Array 

IORG(I) 

IDEST(I) 

I!N(I) 

IOUT(I) 

INTRA(I) 

ISUB(I) 

IFSTND(I) 

LSTND(I) 

Variable 

NO SUB 

SUBROUTINE SUMEND 

Contents 

The sum. of all trip volumes with the origin I except for 
the intrazonal volume for I. 

The sum of all trip volumes with the destination I except 
for the intrazonal volume for I. 

The number of nonzero trip volumes with destination i. 

The number of nonzero trip volumes with origin I. 

Intrazonal volume for zone I. 

Number of zones in subnet I. 

The first zone in subnet I. 

Last zone in subnet I. 

.contents 

· Number of subnets 

IV-41 



Control 
Variable 

RES 

RES 

CNVRG 

CNVRG 

SUM 

SUM 

Variable 

ITER 

LASTJ 

L 

Array 

VMI(J,L) 

VHR(J,L) 

MI(J,L) 

·Contents 

False 

True 

False 

True 

False 

True 

SUBROUTINE SUMRY 

Meaning 

· This is either a LOAD NETWORK run or a LOAD 
SELECTED LINKS run or the weighted assignment 
of an ASSIGN SELF-BALANCING run. 

This is an ASSIGN SELF-BALANCING run in 
iteration 1 thru 5, call subroutine ALCP 

The "T" test value for iteration ITER is 
greater than or equal to 1.96. 

The "T" test value for iteration ITER is 
less than 1.96. 

A weighted assignment is not to be calculated 
by subroutine GTLD. 

A weighted assignment is to be calculated 
by subroutine GTLD and written on unit 
NEWNET. 

Contents 

The ·iteration n~mber if art ASSIGN SELF-BALANCING is being 
run, otherwise 1. 

The largest jurisdiction code in the network 

The number of assignments which are on unit NETWORK. 

Contents 

Vehicle miles cross classified by jurisdiction + 1 used as 
the first index and three link classes used as the second 
index. The three link classes are centroid connectors, 
arterials, and freeway links. 

Vehicle hours cross classified the same as VMI. 

Network miles cross classified the same as VMI. 

IV-42. 



Array 

VM(J,F) 

M(J,F) 

VMC(J,F) 

MC(J,F) 

VMCC{J,F) 

MCC(J,F) 

FC(F) 

FN(R,J) 

SY(R,J) 

SYY(R,J) 

SX(R,J) 

SXX(R,J) 

Contents 

Vehicle miles cross classifie~ by jurisdiction + 1 used as 
the first index arid functional class + 1 used as the second 
index. 

Network miles cross classified the same as VM. 

Vehicle miles for links with nonzero count field 
cross classified the same as VM. 

Network miles for the links with a nonzero count field cross 
classified the same as VM. 

Vehicle miles for links with a nonzero capacity field 
cross classified the same as VM. 

Network miles for links with a nonzero capacity field cross 
classified the same as VM. 

The number of links, with functional class + 1 used as 
index F, in the network. 

J = 1: 
J = 2: 
J = 3: 

J = 1: 
J = 2: 
J = 3: 

J = 1: 
J = 2: 
J = 3: 

J = 1: 

J- 2: 

J = 3: 

J = 1: 

J = 2: 

Number of links with nonzero link counts by route; 
Number of links with nonzero link capacity by route; 
Number of links·in the network by route. 

Sum of link counts by route code; 
Sum of link capacities by route code; 
Sum .of nondirectiortal link volumes from the previous 
assighment by route. 

Sum of link counts squared by route code: 
Sum of link capacities squared by route code; 
Sum of nondirectional link volumes from the previous 
assignment squared by route c·ode • 

Sum of nondirectional link volumes for this assignment 
for those links which have a nonzero count by route; 
Sum of nondirectional link volumes for this 
assignment for those links which have a nonzero link 
capacity by route; 
Sum of nondirectional link volumes for this assignment 
by route. 

Sum of nondirectional link volumes squared for this 
assignment for those links which have a nonzero 
count by route; 
Sum of nondirectional link.volumes squared· for this 
assignment for those links which have a nonzero link 
capacity by route; 

IV-43 



Array Contents 

Hl 

HZ 

HN 

WGT(J) 

J = 3: Sum of nondirectional link volumes from this assignment 
multiplied by nondirectional link volumes from the 
previous assignment by route. 

The header record and date from the previous assignment 

The header record and date from the last assignment 

The header record and date of when the network was built. 

This array contains the weights in percentages to use on 
each iteration when sum is true. 

The following arrays and variables are summed for links with a nonzero 

count (or capacity) field. The *TURN card is used to specify whether 

the count or capacity field is .used. It should also be noted that the 

following arrays and variables are not summed for centroid connectors. 

Array 

SX2(J) 

XX(J) 

XX(J,K) 

Variable 

SY2 

SYY2 

FN2 

Contents 

Sum of the nondirectional link volumes for iteration J. 

Sum of the nondirectional link volumes multiplied by the 
count (or capacity) for iteration J. 

Sum of the nondirectional link volume for iteJ;ation J 
multiplied by the nondirectional link volume for iteration K. 

Contents 

The.sum of the·count (or capacity) fields. 

The sum of the squared count or (squared capacity) fields. 

The number of nonzero count (or capacity) fields for links 
which are not centroid connectors. 

IV-44 



Variabie 

NSG 

NLKF 

ITER 

NODES 

Array 

BL(I) 

WL(I) 

BT(I) 

WT(I) 

FS{I) 

LS(I) 

INDEX(!) 

!PATH(!) 

LINKS{!) 

VOL·(I) 

SUBROUTINE SVLOAD 

Contents 

This is the number of segments that the loaded network 
must be summed in. 

The index of the first link volume or turn volume of a 
group of 4000 volumes or less for one record. 

The iteration number. 

The last node number in the network. 

Contents 

The number of blocks of links (or records) for segment I. 

The number of link volumes for segment I. 

The number of blocks of. turn volumes {or records) for segment 
I. 

The number of turn volumes for segment I. 

The first node number of segment I. 

The last node number ·of segment I. 

The sixteen bit unsigned integer at INDEX{!) is the index 
into array LINKS where the links out from node I start. 

The eight bit byte at index I contains in bit 0 a centroid 
flag, in bit 1 a freeway flag, and in bits 2 thru 7 the 
turn code for node I. 

This array contains links. Bit 0 of a link is the last link 
flag, bit 1 is ·the selected link flag, and bits 2 thru 15 
are the Bnode of the link. The Anode of the link is the . 
index used to index array INDEX. 

· VOL(!) is the assigned directional volume for link LINKS (I) 
if the volume is less than 32767. If .the volume is greater than 
32767 the VOL(!) bits 1 thru 15 are an index into array !OVER 
where the volume is stored and bit 0 of VOL(!) is a one. 

IV-45 



Array 

XRTRN(J) 

ITR(J) 

!OVER 

BUF 

Contents 

_XRTRN(J) is the index into array ITR where the turnvolumes 
saved for node J start. XRTRN(J) is an unsigned 16 bit 
positive integer. 

ITR(J) is either a turn volume or a flag in bit 0 of the 
haif word of 1 and an index in bits 1 thru 15 into array 
!OVER where the turn volume is saved. 

This is a full word array which c9ntains both directional 
link volumes greater than 32767 and turn volumes saved 
which are greater than 32767. 

This is an array of 4000 words used to group volumes to 
write in one record. 

IV-46 



Control Array 

TL(I,J) 

TL(I,J) 

TM(I,J) 

.TM(I,J) 

Variable 

TRNCD. 

NODE 

IND 

N 

INDXT 

Array 

1M(I,J) 

NDIR(I) 

IDIR(I) 

CH(I) 

TVOL 

SUBROUTINE TRN 

Contents Meaning 

False Don't print turn movement TM(I,J). 

True Print turn movement TM(I,J) 

-1 The turning movement TM(I,J) is unknown. 

>0 TM(I,J) is a turning movement volume. 

Contents 

Contains the turn code for NODE. 

Node number to get directional volumes for and calculate 
turn movements for. 

Turn code for NODE (the turn codes are explained in the 
Other Information section). 

Number of nodes connected to NODE. 

This is the index into array TVOL where the turn volumes for 
NODE start. 

Contents 

Turn movement between the Ith node and the Jth node 
connected to NODE. 

Nondirectional link volumes for the links connected to 
NODE. 

Directional link volumes for the links connected to NODE. 

Directional link volumes for the links going in the 
direction of the nodes connected to NODE. 

This array contains the turn volumes saved, they are indexed 
by variable INDXT. 

IV-47 



Array 

KC(IND) 

KR(IND} 

Contents 

A table indexed by the turn code which has the number of 
one-way links out from NODE. 

A table indexed by the turn code which has the number of 
one-way links into NODE. 

The following arrays are used to place the turning movements which 

have been ·saved in ARRAY TM before the other turning movements are calculated. 

When a location in the following tables is not negative, the following 

action is taken: TM(I,J) = TRNTB(XRTRN(NODE) + IDSPXX(I,J)). If the 

IDSPXX(I,J) position is negative, a zero is placed in TM(I,J). The XX 

part of the IDSPXX array above varies. 

Array Used for turn code 

IDSP3 10 

IDSP41 13, 17' 18' 20' 22 

IDSP42 21 

IDSP43 23,24 

IDSP44 25 

ISDPS 26 

IDSP6 27 

IV-48 



Control Arral 

TL(I,J) 

TL(I,J) 

TM(I,J) 

TM(I,J) 

Variable 

NODE 

IND 

N 

Array 

TM(I,J) 

NDIR(I) 

IDIR(I) 

CH(I) 

KC(IND) 

KR(IND) 

IPATH(I) 

SUBROUTINE TURNM 

Contents 

False 

True 

-1 

>0 

Meaning 

Don't print turn movement TM(I,J). 

Print turn movement TM(I,J). 

The turning movement TM(I,J) is 
unknown. 

TM(I,J) is a turning movement volume. 

Content:s 

Node number to get directional volumes for and calculate 
turn movements for. 

Turn code for NODE (the turn codes are explained in the 
Other Information section). 

Number of nodes connected to NODE. 

Contents 

Turn movement between the Ith node and the Jth node 
connected to NODE. 

Nondirectional link volumes for the links connected to 
NODE. 

Directional link volumes for the links connected to NODE. 

Directional link volumes for the links going in the 
direction of the nodes connected to NODE. 

A table indexed by the turn code which has the number of 
one-way links out from NODE. 

A table indexed by the turn code which has the number of 
one-way links into NODE. 

This a path index for node I. 

IV-49 



Array 

INDEX(!) 

LINKS 

VOL(I) 

TRNTB(I) 

XRTRN(J) 

OVERF 

Contents 

This array contains the FORTRAN type index indicating 
the location where the links from node t begin in array 
liNKS. The half words are used as 16 bit unsigned integers. 

This array contains a link in each half word. Bit 0 is the 
last link flag, bit 1 is the selected link flag, and bits 
2 through 15 are the Bnode number. 

This is a half word array which has the same dimension 
as array LINKS and element I contains either the assigned 
directional link volumes for link LINKS(!) or the index 
of where it is in array OVERF. The first bit of a VOL 
element is a flag bit, if it is zero, then the next 15 
bits are an unsigned binary integer which is a link volume. 
If the flag bit is 1, then the next 15 bits are an unsigned 
binary integer which is an index into array OVERF where the 
link volume is stored. 

This is a half word array which is either used to store 
turn voiumes or indexes to where they are stored. The 
flag bit is the same as for array VOL and the next 15 
bits are also treated the same as for array VOL. 

This is a half word array which contains unsigned 16 bit 
integers which are indexes into array TRNTB where the 
turn volumes for node J are stored. 

This is a full word array used to store linkvolumes 
greater than 32767 and turn volumes greater than 32767. 

IV-50 



SUBROUTINE UPDTNT 

Control Variable Contents Meaning 

DLT 

DLT 

IMPD 

SLF 

SLF 

Variable 

NMPD 

False 

True 

False 

False 

True 

There are no errors in the parameter 
cards read. 

There are one or more errors in the 
parameter cards read for DELETE 
ASSIGNMENTS. The program will continue 
reading control cards but it will 
end execution with a STOP 3 when the 

.next card with a $ character is column 
1 or an *END card .is read. 

An *IMPEDANCE parameter card has not 
been read. 

An *ADJUST parameter card has not been 
read. 

An *ADJUST parameter card has been read. 

Contents 

The assignment number of the assignment which is to be the 
new.link impedance if IMPD is true or from which the 
impedance update function using the count field is to be 
used to calculate a new set of link impedances. 

IV-51 



Variable 

IL This is 

LNKl This is 

LNK2 This is 

MAXTIM This is 

MAXLNK This is 

MAXNDS This is 

NO SUB This is 

ERR This is 

Array Length 

FSTND 4 

LSTCEN 4 

LSTFWY 4 

LSTART 4 

LINKS 73343 

ARRAY 220 

ARRAY2 220 

SUBROUTINE VREC 

Conten~s 

the number of link records irt array LINKS. 

the number of links written on unit 3. 

the number of links written on unit 11. 

the maximum link time in 0.01 minute units. 

the maximum number of one-way links for a network. 

the 

the 

the 

maximum number of nodes for a network. 

number of subnets the network is in. 

number of errors found in processing the link data 

Arrays 

Contents 

First node of each subnet. , 

Last centroid of each subnet. 

Last freeway of each subnet. 

Last arterial node of each subnet. 

Contains the sorted packed links array 
described in NEWNET. 

Contains one record front unit 3 of 40 packed 
links. 

Contains one record from unit 11 of 40 
packed links. 

IV-52 



Variable 

ITER 

ISG 

NSG 

IN 

IO 

IT 

NSPL 

NSAL 

NSPT 

NSAT 

IWT 

NS 

Array 

WTG(I) 

VOLS(I) 

SUBROUTINE WTSGLN 

Contents 

Number of iteration runsin an ASSIGN SELF-BALANCING 
runwhich are to be used to produce a weighted assignment. 

The segment number of the network which is being summed in 
core. 

The number of segments the network is broken in.to. 

The index into array VOLS where the out link volumes are 
to be sunnned. 

The index into array VOLS where the in link volumes are to 
be summed. 

The index into array VOLS where the turn volumes are to be 
summed. 

The number of link volume records to skip to reach the 
linkvolume records for segment ~SG for both the out link 
volumes and the in link volumes. 

The number of link volume records which must be skipped to 
reach the end of either type of link volume records after 
the link volume records for segment ISG have been read. 

The number of turn volume records which must be skipped to 
reach the turn volume records for segment ISG. 

The number of turn volume records to skip after reading 
the turn volume records for segment ISG to reach the end of 
the records written for one assignment on unit 3. 

The percent weight for iteration ISG. 

The number of records to skip on unit 3 at various places 
in subroutine WTSGLN. 

Contents 

The weight to use for iteration I expressed as a number 
between 0 and 1.0. 

The full word array in which all weighted_ volumes for a 
segment are summed. 

IV-53 



Array 

BL{I) 

WL{I) 

BT(I) 

WT(I) 

FS(I) 

LS{I) 

BUF 

Contents 

The number of blocks of links (or records) for segment I. 

The number of link volumes for segment I. 

The number of blocks of turn volumes (or records). for 
segment I. 

The number of turn volumes for segment I. 

The first node number of segment I. 

The last node number of segment I. 

This is an array of 4000 words which is used to read link 
volume records and turn volume records. 

IV-54 



DATA SETS AND 

DATA SET FORMATS 

DATA SETS 

DATA SET FORMATS 

OUTPUT SELECTED LINKS 



DATA SETS 

Two categories of data sets are associated with the Texas Large 

Network Package: relocatable data sets artd fixed data sets. The unit 

numbers associated with relocatable data sets may be changed either by 

the use of unit control cards or, in some instances, by the execution 

of some programs such as ASSIGN SELF-BALANCING. A cross reference of 

the data sets with associated programs is giv.en in Table 6. 

DATA SET FORMATS 

There are eleven basic formats associated with data sets used by 

the package. These eleven format types are: 

FORMAT 
TYPE· 

Trip Volumes Data Set 

Flexible Record Data Set 

Separation Matrix Data Set 

Selected Interchanges Data Set 

Paths Data Set 

Calcomp Plot Tape 

Route Data Set 

Trip Matrix Data Set 

Scratch Node Names Data Set 

Scratch Packed Links Data Set 

Scratch Multiple Assignments Data Set 

FORMAT. 
TYPE CODE 

B 

F 

I 

L 

A 

p 

R 

T 

X 

y 

z 

The format type codes (indicated above) are used in the cross reference 

contained in Table 7 to indicate the format types used .with each data set 

V-1 



TABLE 6: CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS 

Data Set 
Identification 

(Default) Unit Number 

PREPARE NETWORK 

ASSEMBLE NETWORK 

REVISE NETWORK 

OUTPUT NETWORK 

DELETE ASSIGNMENTS 

PREPARE TRIP VOLUMES 

OUTPUT TRIP VOLUMES 

BUILD TREES 

LOAD NETWORK 

ASSIGN SELF~BALANCING 

LOAD SELECTED LINKS 

PLOT ROUTE PROFILES 

FRATAR FORECAST*** 

SUM TRIP ENDS 

MERGE 

I = Input Data Set 

0 = Output Data Set 

~ 
$ 
H 

5 

I 

I 

I 

Relocatable Data Sets 

~ 
~ 

E-1 
E-1 l:) z E-1 z g ~ 

H 0 ~ ~ 
H 

~ ~ E-1 

~ ~ ~ ~ ~ ~ rx:l 
u u ~ z z 

10 8 16 * * 1 25 9 

0 

0 

0 

I 

0 

I 0 

I 

I 

I I I/O 0 

I T/0 I/O J/0 

I I I/O 0 

I 

I I/0 

I 

0 I 

Fixed Data Sets 
~ 

~ 
.c .c ..s:: .c ~ ..s:: ea (.J (;.) (.J (.J $-I (.J 

~ ~ ~ ~ ~ i ~ E-1 
(1j (1j (1j (1j (1j E-1 E-1 

Po. $-I $-I ~ $-I ~ $-I ~ 0 
J;1:l (.J (.J (.J (.J (I) t) ...:I 
tf.l tf.l tf.l .tf.l tf.l z tf.l tf.l P-t 

20 3 4 17 11 12 13 ** ** 

I/O T}O J/0 

I/O I/0 T/0 

I/O I/O I/J I I/0 

I 

0 

0 T}O 

0 

0 

I/C 

{J) {J) 

.c ..s:: .w .w 
(1j (1j 

P-t P-1 

49 so 

~c'-

I 0 

I 

rJo 

I 

* No default option exists for the MERGE program.. Appropriate Unit Designation 
Cards must be provided by the user. 

** Assembly language program reference. 

*** The FRATAR FORECAST program sets the CTVOUT unit to the same unit as FRATAR. 

Note: Some of the output data sets may be suppressed by use of the DD DUMMY 
option in the JCL. 

V-2 



TABLE 7: CROSS REFERENCE OV DATA SETS WITH ASSOCIATED PROGRAMS 
INDICATING THE DATA SET FORMAT TYPES 

Relocatable Data Sets Fixed Data Sets 

Data Set E-1 ~ .a .a .a ~ 
E-1 .a ~ .a ~ 

Identification l2i 
E-t ~ t:> z E-1 ;1 u u u u ~ c:J ~- ~ t=> 0 1-1 

~ 
~ r:t:l .j.J .j.J +J .j.J 

~ 
.j.J 

H 0 

~ ~ ~ E-1 

~ < cti (lj C'CS cti cd E-1 E-1 
~ ~ t=> ~ ~ 1-1 1-1 1-1 +J 1-1 ....:l 8 ~ ~ l7:tl ~ ~ u u u u Q.l u ~ u u ~ z z til til til Cf.) til z Cf.) til ~ 

(Default) Uni·t Number 10 8 16 ** ** 1 25 9 20 3 4 17 11 12 13 *I« *** 
PREPARE NETWORK F y X y 

ASSEMBLE NETWORK F y X y 

REVISE NETWORK F y X y F F 

OUTPUT NETWORK F 

DELETE ASSIGNMENTS F F 

PREPARE TRIP VOLUMES B T 

OUTPUT TRIP VOLUMES T 

BUILD TREES F I 

LOAD NETWORK T F R F I 

ASSIGN SELF-BALANCING T F R F I z 

LOAD SELECTED LINKS T F R F L 

PLOT ROUTE PROFILES R p 

FRATAR FORECAST**** T T T 

· SUM .TRIP ENDS T 

MERGE T T 

tl.l til .a .a 
+J +J 
C'CS C'CS 
~ ~ 

49 50 

A A 

A 

A 

A 

** No default option exists for the MERGE program. Appropriate Unit Desig­
nation Cards must be provided by the ~ser. 

*** Assembly language program reference 

**** The FRATAR FORECAST program sets the CTVOUT unit to the same unit as FRATAR~ 

Note: Some of the output data sets may be suppressed by use of the DD DllMMY option 
in the JCL. 

V-3 



and its associated programs. As can be seen from Table 7, some of the 

data sets have two different formats associated with them depending on 

the user program option being executed. Likewise, several of the data 

sets may have the same format as in the case of the, trip matrix data set 

format. In order to determine the format for a given data set, the 

programmer should: 

• Reference Table 7 to determine which of the eleven formats 

is associated with the data set of interest. 

• Refer to the detailed description of the format. 

The detailed descriptions of ten* of the eleven formats are as follows: 

*The format for the Calcomp plot tape (format type code: P) has not 
been included. 

V-4 



Parameter Record 

Displacement Bytes 

0 

4-

8 

12 

16 

Path Record 

Displacement Bytes 

0 

4 

8 

12 

16 

PATHS DATA SET 

(Format Type Code: A) 

Length Bytes 

4 

4 

4 

4 

4 

Length Bytes 

4 

4 

4 

.4 

4 

4 

Contents 

The number of subnets in the 
network. 

The last node number. in the 
network. 

The number of words of path 
indices in a path record. 

The first zone number in 
subnet 1.* 

The last zone- number in subnet 
1.* 

Contents 

Home zone of the tree. 

Path indices for -nodes 1 
thru 10.** 

Path indices for nodes 11 thru 

Path indices for nodes 21 thru 
30.** 

Path indices for nodes 31 
thru 40.** 

20.** 

Path indices for nodes lO(K - 1) 
+ 1 thru lO{K - 1) + 10.** 

*These two items are repeated for each subnet. 
**The first two bits of each word containing ten path indices are not used. 

V-5 



Trip Volume Record 

Displacement Bytes 

0 

6 

12 

18 

24 

TRIP VOLUMES DATA SET 

(Format Type Code: B) 

Length Bytes 

6 

6 

6 

6 

6 

Contents 

Zone of Origin 

Zone of Destination 

24-hour volume 

AM-peak volume 

PM-peak volume 

Each field in the record is in EBCDIC and these records must be 

sorted into ascending order on a key of the first 12 bytes. The records 

should be in Fixed length or Fixed Blocked format. The minimum length 

of the records is 18 bytes if the 24-hour volume is used, 24.bytes if the 

AM-peak volume is used, or 30 bytes if the PM-peak volume is used. 

End of Data Set Indicator Record 

Displacement Bytes 

0 

1 

Length Bytes 

1 

N- 1 

Contents 

"V" 

blanks 

N is the.minimum length for a trip voltnne record. This record is 

only required if this data set is on cards and is read from unit 5 and 

it must follow the last Trip Volume record. 

V-6 



FLEXIBLE RECORD DATA SET 

(Format Type Code: F) 

Parameter Record (One record) 

Bytes Displacement Length 

0 4 

-4 4 

8 4 

12 4 

16 4 

20 4 

24 4 

Contents 

Number of Subnetworks 
in the Network 

Number of Assignments 

Number of directional 
links in the Network 

First Centroid in 
Subnetwork 1 

Last Centroid in 
Subnetwork 1 

Last Arterial node in 
Subnetwork 1 

Last Freeway node in 
Subnetwork 1 

·(The last four iteins are repeated once for each subnetwork) 

Heading record (One from network preparation and one from each assignment) 

Bytes Displacement Length Contents 

0 80 Heading record in EBCDIC 

80 12 Processing date 

V-7 



Anode record (One for each Anode; the records are insorted order on the 

Anode .number; each Anode record is followed by the Link records 

which are connected to it). 

Displacement Length 
Bytes Bits Bytes · Bits Contents 

0 0 2 0 Anode number 

2 0 2 0 Number of iinks connected 
to this node 

4 0 0 1 Centroid flag (One if it 
is a centroid) 

4 1 0 1 Freeway flag (One if it 
is_a Freeway) 

4 2 0 6 Turning movement type 
code 

5 0 3 0 Not used 
-1 

8 0 2 0 X coordinate of Anode 

10 0 2 0 y coordinate of Anode 

12 0 2 0 Subarea code of Anode 

14 0 20 0 Anode name in EBCDIC 

Link Record (There is one link record for each link connected to a node; 

the link records follow the Anode to which they are connected) 

Displacement Length 
Bytes ~ Bytes Bits Contents 

0 0 0 1 Last Link from Anode flag 

0 1 0 1 Shaft flag 
0 = 'one direction 
1 = other direction. 

0 2 0 1 Arrow flag 
0 = one direction 
1 = other direction 

V-8 



Displacement 
Bytes Bits 

0 3 

0 4 

0 18 

4 0 

4 4 

4 18 

8 0 

10 0 

12 0 

14· 0 

16 0 

18 0 

20 0 

24 0 

Length 
Bytes Bits 

0 

0 14 

0 14 

0 4 

0 14 

0 14 

2 0 

2 0 

2 0 

2 0 

2 0 

2 0 

4 0 

4 0 

Contents 

Not used 

Link time in hundredths 
of a minute 

Bnode of Link 

Jurisdiction code of 
Anode 

Distance of Link in 
hundredths of a mile 

Speed in tenths of a · 
mile/hour 

Functional class · 
(Codes 0 thru 15) 

Route number 
(Codes 0 thru 99) 

Corridor intercept 

Duplicate Mileage 
Elitninaotr flag 
(One if link is to be 
eliminated-from mileage 
summaries) 

Link Volume 

Link Capacity 

Link impedance used on 
first assignment 

Nondirectional Link 
volume from first assignment 

(The last two items are repeated for each assignment, the above two 
are not present on a Fiexible Record with no assignments). 

V-9 



Parameter Record 

Byte Displacement 

0 

4 

SEPARATION MATRIX DATA SET 

(Format Type Code: I) 

Length in Bytes 

4 

4 

4 (number of zones)-4 4 

Separation Record 

Bytes Displacement 

0 

4 

4 (number of zones)-4 

Length in Bytes 

4 

4 

4 

Contents 

Number of zones 

Zero· 

Zero 

Contents 

Time to Zone 1 

Time to Zone 2 

. Time to . the last zone 

The time is in hundredths of a minute. If a zone is not reached, its 

time field will be 32,767 hundredths of a minute. The separation 

records will b.e in the same order as the trees that are built. 

V-10 



Header Records 

Bytes Displacement 

0 

2 

4 

SELECTED INTERCHANGES DATA SET 

(Format Type Code: L) 

Length in Bytes 

2 

2 

8 

Contents 

Zeros 

·2I + 1 

Columns 8I + 1 to 
8I + 7 of the Header 
Line 

There are 12 header records (I= 0, 11); each header record has eight 

bytes of the header line except the last record which has four bytes 

of the header line. 

Select Record 

Bytes Displacement 

0 

2 

4 

6 

8 

10 

12 

Length in Bytes 

2 

2 

2 

2 

2 

2 

2 

Contents 

Link Index of the 
Selected Link* 

Zeros 

Percent of Trip Volumes 
to Print for this Selected 
Link 

Smallest Node of Selected 
Link 

Largest Node of Selected 
Link 

Cut of Volume for Printing 

Number of Trip Interchanges 
to print 

*This is the index of the directional link from the smallest node 
of this selected link to the largest node of this selected link. 

V-11 



Interchange Record 

Bytes Displacement 

0 

2 

4 

6 

10 

14 

Trip Direction Code 

10 

2 

Interchange Record 

Bytes Displacement 

0 

2 

4 

6 

10 

14 

Length in Bytes 

2 

2 

2 

4 

4 

2 

Direction of 
Interchange 

First Zone to 
Second Zone 

First Zone to 
Second Zone 

Length of Bytes 

2 

2 

2 

4 

4 

2 

V-12 

Contents 

Link Index of Selected Link* 

First Zone of the Interchange 

Second Zone of the Interchange 

Number of Trips in the 
Interchange 

Zeros 

Trip Direction Code 

Direction of Trip 
Through Selected Link 

Small Node number to Large 
Node number 

Large Node number to Small 
Node number 

Contents 

Link Index of Selected Link* 

First Zone of the Interchange 

Second Zone of the Interchange 

Zeros 

Number of Trips in the 
Interchange 

Trip Direction Code 



Direction of Direction of Trip 
Trip Direction Code Interchange Selected Link 

1 Second Zone to Small Node number 
First Zone Node number 

5 Second Zone to Large Node number 
First Zone Small Node number 

*These records are written fixed blocked·l8 bytes long. They are 
18 bytes long so that they can be sorted. 

V-13 

Through 

to Large 

to 



Parameter Record 

Displacement Bytes 

0 

4 

Header Records 

Displacement Bytes 

0 

4 

16 

ROUTE.DATA SET 

<rormat Type Code: R) 

.Length Bytes 

4 

4* (NLS + 3) 

Length Bytes 

4 

12 

4* NLS 

Contents 

NLS = the Number of 
Assignments 

Unused 

Contents 

Sort Key = 100* (Assignment 
number + 1) + J 

Twelve bytes of the header 

Unused 

There are 8 of the Header records for each Header that is on a 

Flexible Record. The J in the Sort Key of the above records is 1, 4, 7, 

10, 13, 16, 19, 22 and is the index of where the three words should be 

read into the header array in core when they are read. The record where 

J = 22 contains only two words of the header. The location that would 

be the third word is filled by 4 bytes of a 0 integer. The assignment 

number for the header record when the Flexible Record was built is set to 

0. The above records are repeated for each assignment. 

V-14 



Route Records 

Displacement Bytes 

0 

2 

4 

6 

8 

10 

12 

14 

16 

12 + NLS.*4 

Length Bytes 

2 

2 

2 

2 

2 

2 

2 

2 

4 

4 

4 

Contents 

Route Code 

Anode of the Link 

Bnode of the Link 

Functional Class Code 

Distance of the link in 
0.01 mile units 

Speed of the link in 0.1 
mile/hour units 

Count field in units of 
100 trips 

Capacity in units of 100 
trips 

Nondirectional Assigned 
volume for the first 
assignment 

Nondirectional Assigned 
volume for the NLS assignment 

One Route record is written for each link that· has a route code 

where the Anode is less than the Bnode. 

V-15 



Header Record 

Displacement 

0 

4 

8 

TRIP MATRIX DATA SET 

(Format Type Code: T) 

length 

4 

4 

4 

Contents 

Number of Subnetworks 

First centroid in Subnet I 

Last centroid in Subnet I 

The last two items are repeated for the number of subnets where I = l,N. 

Trip Record 

Displacement Length 

0 4 

4 4 

8 4 

12 4 

8+4N 4 

Contents 

Origin zone of all inter­
chang~s in this record 

Subnet of the 'origin zone 

N=Number of interchanges 
in this record (from 1 to 100) 

Interchange item 

Interchange item 

The interchange item is an 18 bit interchange volume followed by a 14-blt 
destination zone number. 

The trip records are in sort on the or1g1n zone and the interchange items 
for each origin are in sort on the destination zone. 

V-16 



Node Name Record 

Displacement Bytes 

0 

4 

SCRATCH NODE NAMES DATA SET 

(Format Type Code: X) 

Length Bytes 

4 

20 

Contents 

Anode number as a 4 byte 
integer 

Node name 

The node name records· are written in ascending order of node numbers. 

V-17 



SCRATCH PACKED LINKS DATA SET 

(Format Type Code: Y) 

This data set is made up of records which contain 40 link records. 

These 40 link records are in the 22 byte format used in the LINKS array 

in Logical Division 1. The link records are sorted on the key of Anode, 

Link class, and Link data card count in ascending order for both Unit 3 

and Unit 11 separately. The format for the 22 byte link records is as 

follows: 

Displacement 
Bytes Bits 

0 0 

1 6 

2 0 

3 7 

4 0 

5 6 

7 4 

8 0 

8 4 

9 3 

11 1 

Length 
Bytes ~ 

0 14 

0 2 

0 15 

0 1 

0 14 

0 14 

0 4 

0 4 

0 7 

0 14 

0 7 

Contents 

. · Anode number 

V-18 

Link class code 
0 = twoway 
1 = oneway out 
2 & 3 = dummy link 

Link data card count 

Mileage code 
0 = Use in Vehicle Mileage Summary 
1 = Do not use in Vehicle Mileage 

Summary · 

Bnode nUinber 

Count field in units .of 100 trips 

Jurisdiction code in hexadecimal 

Functional class code in hexadecimal 

Subarea code 

Link Capacity in units of 100 trips 

Speed in units of tenths of a mile 
per hout 



Link Record Format (continued) 

Displacement 
Bytes Bits 

12 0 

13 2 

14 1 

14 6 

14 7 

15 0 

16' 0 

16 6 

16 7 

Length 
Bytes ~ 

0 10 

0 7 

0 5 

0 1 

0 1 

1 0 

0 6 

0 1 

4 1 

V-19 

Contents 

Link distance in units of 1/100 of a 
mile 

Corridor intersect code 

Route number 

Shaft code, 0 = one direction 
1 = other direction 

Arrow code, 0 = one direction 
1 = other direction 

Unused 

Link Impedance field, in units of 
1/100 minutes 

Link delete code 
0·= keep link 
1 = delete link from updated 

Flexible Data Record 

Unused 



SCRATCH MULTIPLE ASSIGNMENTS DATA SET 

(Format Type Code: Z) 

Parameter Record 

Displacement Bytes Length Bytes Contents 

·0 4 The number of segments that 
the network is divided into. 

4 4 The number of link records 
for segment 1. 

8 4 The number of link volumes 
for segment 1. 

12 4 ·The number of turn volume 
records for segment 1. 

16 4 The number of turn volumes 
for segment 1. 

20. 4 The first node in segment 1. 

24 4 The last node in segment 1. 

The last six items are repeated in the above order for the other segments. 

Volumes Record** 

Displacement Bytes Length Bytes Contents 

0 4 A volume 

• 

4 (K-1) 4 A volume 

** The volume records contain from one to 4000 volumes. 

V-20 



All of the volume records for one assignment are grouped together. 

Within the volume records written for one subnet, the records are in the 

order of out volume records, in volume records• and turn volume records • 

. Each type of volume records is further divided by segment. Each record 

for each type is 4000 words long unless it must be shorter because of 

either a segment boundary or the end of the network. 

V-21 



OUTPUT SELECTED LINKS 

The OUTPUT SELECTED LINKS program must be run as a separate job 

(or as separate job steps). It uses the SELTRP data set built by 

ASSIGN SELECTED LINKS as input. The program performs two sorts and, 

thereby, produces two data sets. Both data sets have the same format. 

The format for these data sets is as follaws: 

V-22 



SORTED SELECTED INTERCHANGES DATA SET 

This is the data set which comes from the first sort in the OUTPUT 

SELECTED LINKS job as it is modified by the E35 exit in the IBM sort 

using the E35 assembly language subroutine. It is also the format of 

the data set which results from the second sort performed in the OUTPUT 

SELECTED LINKS job. 

Header Records 

Bytes Displacement Length in Bytes Contents 

0 2 Zeros 

2 2 2I + 1 

4 8 Columns 8I + 1 to 
8I + 7 of the Header Line 

There are 12 header records (I= 0, 11); each header record has 

eight bytes of the header line except the last record which has four 

bytes of the header line •. 

Select Record 

Bytes Displacement 

0 

2 

4 

6 

Length in Bytes 

2 

2 

2 

2 

Contents 

Link Index of Selected Link* 

Smallest node number of the 
selected link 

Largest node number of the 
selected link 

32767. 

* This is the index of the directional link from the smallest node of this 
selected link to the largest node of this selected link. 

V-23 



Select Record (continued) 

Bytes Displacement Length in Bytes 

8 2 

10 2 

12 2 

Sum Record 

Displacement Bytes Length in Bytes· 

0 2 

2 4 

6 2 

8 2 

10 4 

Interchange Record 

Displacement Bytes Length in Bytes 

0 2 

2 2 

4 2 

.6 4 

10 4 

14 2 

V-24 

Contents 

Percent of Trip Volumes 
to print for this selected 
Link 

Cut of Volume for Printing 

Number of Trip Interchanges 
to print 

Contents 

Link Index of Selected Link 

Zero 

32766 

-1 

Sum of Trip interchangevolumes 
loaded through the Selected · 
Link 

Contents 

Link Index of Selected Link 

First Zone of the Interchange 

Second Zone of the Interchange 

Nondirectional link volume 
between the or1g1n and 
destination zones 

Directonal link volume 
(direction specified by Trip 
Direction Code) 

Trip Direction Code (see table 
on next page) . 



First Zone to Second Zone Second Zone to First Zone 
· Interchange Interchange 

Trip Direction Direction of trip Direction of trip 
Code through link is small through link is 

node number to large small node number 
Decimal Binary Present node number Present to large node number 

1 0001 No - Yes Yes 

2 0010 Yes Yes No -

3 0011 Yes Yes Yes Yes 

5 0101 No - Yes No 

7 0111 Yes Yes Yes No 

10 1010 Yes No No -

11 1011 Yes No Yes Yes 

15 1111 Yes No Yes No 

V-25 



0 THE R INFORMATION 

PRINTED OUTPUT FROM $LOAD NETWORK AND 
$ASSIGN SELF-BALANCING 

TURNING MOVEMENTS 



PRINTED OUTPUT FROM $LOAD NETWORK AND 

$ASSIGN SELF-BALANCING 

Nineteen different types of tables may be produced during the 

execution of $ASSIGN SELF-BALANCING and sixteen different types during 

the execution of $LOAD NETWORK. However; many of these tables are pro­

duced only under certain conditions. In addition, during the $ASSIGN SELF-

BALANCING process, many of these tables are produced multiple times: some 

after each iteration, some after certain iterations, and some only after 

the last iteration. The following two tables, therefore, provide a summary 

of the output produced by these two programs under the various conditions: 

VI-1 



SUMMARY OF OUTPUT FOR $ASSIGN SELF-BALANCING AND $LOAD.NETWORK 

$ASSIGN SELF-BALANCING $LOAD NETWORK 

ell 
~ 
0 QJ til 

"M og QJ 
~ m CJ 
«S ~ og~ 

.... «S QJ ~ 
~ QJ ~., CJ QJ 
~"-- ~ QJ = s QJI-I QJ 0.. "C..C:: 

til a = a~ 0 bO 
~ ~ $-i "M 
0 0 d bOO bO ~til 

oM oM 0 "M fo.l -M"C "-~~ ~- ~ oM till+-! til QJ 
j.'U tU ~ ~"ti 

Cl)4oJ ::S .... ,.., Cd <..c:.,..... 0..~ 
QJ Q) ,.., Q) bOr-1 ~ til 
~ ~ Q) "C-IJ "0-M«S = tU 1-1 1-1 ~ QJ "' QJ~~ OH 

1-1 ~r-1 ~ 0 
~ ,.., ..c:: ::::2 ..c:: oM ~ ~ til Q) ~ bOCJ bO ..c:: +J ,.., ,.,c:: til "M t-1 "M +J 0.. ,.C:+J 
'M +J "' QJ "' 

QJ •M 0 .I-J4-1 

OUTPUT ~ 0 H ~u ~::::-- o< 

1. Selected Tables and 
X Sunnnaries* 

X x. X X X 

2. Iteration Weighting-
Multiple Regression X X X 
Analysis 

3. Link Volumes X X X X 

41 Iteration Weights 
Applied X 

5. Corridor Intercept 
Tables X X 

6. Route Profiles X X 

7. List of Volumes and 
Impedances for X 
Updated Links 

*See tabl~ titled "Tables and Sunnnaries Produced with Each Assignment" 
on next page. 

VI-2 



· TABLES AND SUMMARIES PRODUCED WITH EACH ASSIGNMENT 

Tables and Summaries 

1. Cross Classification of V/C Frequencies 
from Last Two Assignments 

2. Cross Classification of Link Counts by 
V/C Ratio from Last Two Assignments 

3. Jurisdiction Sunnnary 

4. Jurisdictional/Functional Cross Classi-
fication of Assigned Volumes 

5. Jurisdictional/Functional Cross Classi-. 
fication of Counted Volumes .. 

6. Jurisdictional/Functional Cross Classi-
fication of Link Capacities 

7. Comparison of Assigned Volumes with 
Counted Volumes 

8. Comparison of Assigned Volumes with 
Link Capacities 

9. Comparison of Assigned Volumes (from 
last assignment) with Assigned 
Volumes (from assignment before last) 

VI-3 

X 

X 

X 

CONDITIONS UNDER WHICH 
TABLE OR SUMMARY IS PRODUCED 

(/} 

~ 
!=: 

•r-1 ,.. tJ) ....... 
0~ "'d 

4-4 = r-i Q) 
•r-1 .Q) ..c 

"d...-f •r-1 4-J tJ) 
t-1 ~ ;j 
Q) Q) 4-4 0 

•r-1 ~ 1>-.0 •r-1 
~4-J 4-J ~ •r-1 Q) 
4-J~ C) ,.. fo.4 

= 0 ctS 0 Il-l 
:::s ~a 0 Q) Q) tJ) 

u ,.... u,.. . ,.... 4-J 

~ 0 0 = 0 0 s <1.1 ,.. ,.... Q) ,.. a Q) ,.... Q) !=: 
N 0 N 0 0 bO 
I I · . .-~ 
= Q) = 

,.... Q) tJ) 

0 !=: 0 0 = tJ) z 0 Z4-f o< 

X 

X X 

X 

X 

X 

X 

X 

X 



TURNING MOVEMENTS 

Turning movements are.directional volumes which are loaded through 

a specific triplet of nodes. Turning movements are logically associated 

with the intersec.tion node. For a node connected to three other nodes 

the following equations can be written:. 

Where R. = the directional link volume from the intersection 
:1. 

node to the node of the ith link. 

Where D. = the directional link volume from the node of the 
J 

jth link to the intersection node. 

Where Tij= the turning movement between the node in the ith 

link and the node in the jth link which are connected 

to the intersection node. 

These equations can also be represented by a matrix with two vectors: 

Tl 1 , Tl 2 , Tl 3 , Dl 

T2 1 , T2 2 , T2 3 , D2 

T3 1 , T3 2 , T3 3 , D3 

Rl R . 
2 R3 

VI-4 



Because of the way in which trees are built and in which paths are 

represented in the Texas Large Network Package the turning movements 

on the diagonal of the matrix which are U-turns are all zero. Also the 

turning movements in some rows and columns will be zero because of the 

one-way links. To limit the possible number of cases with one-way 

links, the links which are connected to each node are connected in the 

following order: one-way links into the node, two~way links, one-way 

links out from node. 

Putting in zeros for the diagonal elements for a case of three 

two-way links there are six equations with six unknowns: 

0 Tl 2 Tl 3 Dl 
' ' 

T2 1 0 T2 3 D2 
' ' 

T3 1 T3 2 0 D3 
' ' 

Rl R2 R3 

Each equation has two variables in it and one constant. Six equations 

with six unknowns can be solved if the equations are independent, however 

these equations are not. If any one of the six turning movements is known 

the other five can be calculated. The known turning movement will make 

two equations with only one unknown each which can be calculated and the 

turning movements which are calculated from these equations will allow 

other turning movements to be calculated. 

The following method is used in· calculating turning movements: 

(1) All locations in the turning movements matrix are set to -1 to 

represent unknowns; (2) The diagonal elements are set to zeros; 

VI-5 



(3) If there are any one-way links into the node then the corresponding 
ro 
row of the matrix is set to zero; (4) If there are any one-way links 

out the corresponding column of the matrix is set to zero; (5) Turning 

movements which have been saved are placed in the matrix; (6) The 

directional link volumes are found and become two vectors of constants; 

(7) The matrix is searched by rows and if a row has only one unknown, 

it is calculated; (8) The matrix is searched by columns and if a column 

has only one unknown, it is calculated; (9) If there are any unknown 

turning movements left then steps 7 and 8 are repeated for up to N times 

where N is the number of nodes connected .. to the intersection node. 

The process for calculating unknown turning movements can be used 

for a node connected to any number of nodes but the number of turning 

movements to save if all links are two-way goes up rapidly with the number 

of links to which a node is connected. Also the number of combinations 

of one-way links out, two-way links and one-way links in goes up rapidly 

with the number of links even when these links are sorted into the three 

link classes and arranged in the above order. For N, the number of nodes 

to which an int·ersection node is connected, where the links are all two-

2 way M = N - 3N + 1 for N > 2 where M is the number of turning movements 

to save. 2 If U-turns were allowed then M = N .... 2N + 1. 

In the Texas Large Network Package turn codes are set up for· all 

combinations of two-way and one-way links for a node connected to either 

three or four nodes. Also there is a turn code for a node connected to 

either five or sixnodes. These turn codes are set up in either the 

Prepare Network, Assembly Network, or the Revise Network program and 

they are written on the Flexible Data Record data set. The turn code 

are described in a table. The turn codes for a no.de connected to five or 

VI-6 



six nodes cause enough turning movem·ents to be saved to calculate the 

other turning movements when all of the links are two-way. This is also 

more than enough for. these cases with one or more one-way links. 

A method for determining which turning movements to save and which 

to calculate will be outlined here. The easiest way to work with this 

problem is to represent the turning movements in a matrix form as was 

done earlier for the case of a node connected to three other nodes. 

It is convenient to let the row and column positions within the matrix 

represent the links which contain the node numbers instead of writing 

subscripts on the variables. Also a "s" will be written if the turning 

movement is saved, a "c" will be written if it is calcuiated and a zero 

will be written in the matr~x position if the turning movement is known 

to be zero either because it is a U-turn or because of a one-way link. 

Also the two vectors which represent directional link volumes will not 

be written since these are always saved. To identify each case three 

one digit integers will be written over each matrix which are the number of 

two~way links, the number of one-way links in and the number of one-way 

links out which are connected to the intersection node. The following 

examples are all of the cases for a node. connected to four other nodes 

for which one or more turning movements must be saved: 

VI-7 



0 2 2 1 1 2 l 2 1 

0 ·o 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 c 0 0 0 

c c 0 0 c c 0 0 c c 0 0 

s c 0 0 s c c 0 s c 0 0 

2 0 2 2 1 1 2 2 0 

0 0 0 0 o· 0 0 0 0 c 0 0 

0 0 0 0 c 0 c 0 c 0 0 0 

c c 0 c c s 0 0 c c 0 0 

s c c 0 s c c 0 s c 0 0 

3 1 0 3 0 1 4 0 0 

0 c c 0 0 0 0 0 0 c c c 

c 0 c 0 c 0 c c c 0 s c 

s c 0 0 s c 0 c s s 0 c 

s s c 0 s s c 0 s s c 0 

VI-8 



TURN CODES 

Total Number of 
Turn Number Turning Move-
Code of Links T I 0 ments to.Save Turn Movements to Save* 

1 3 0 0 3 0 

2 3 0 1 2 0 

3 3 0 2 1 0 

4 3 0 3 0 0 

5 3 1 0 2 0 

.6 3 1 1 1 0 

7 3 1 2 0 0 

8 3 2 0 1 0 

9 3 2 1 0 0 

10 3 3 0 0 1 3-1 

11 4 0 0 4 0 

12 4 0 1 3 0 

13 4 0 2 2 1 4-1 

14 4 0 3 1 0 

15 4 0 4 0 0 

16 4 1 0 3 0 

17 4 1 1 2 1 4-1 

18 4 1 2 1 1 4-1 

19 4 1 3 0 0 

20 4 2 0 2 1 4-1 

21 4 2 1 1 2 4-1,3-2 

22 4 2 2 0 1 4-1 

23 4 3 0 1 3 4....:.1,4-2,3-1 

24 4 3 1 0 3 4-1,4-2,3-1 

25 4 4 0 0 5 4-1,4-2,3-1,3-2,2-3 

26 5 - - - 11 5-1,5-2,5-3,4-1,4-2,4-3, 
3-1,3-2,3-4,2-3,2-4 

27 6 - - - 19 6-1, 6-2 , 6-3 ' 6-4 ' 5-1 , 5-2 
5-3,5-4,5-1,4-2,4-3,4-5 
3-1,3-2,3~4,3-5,2-3,2-5, 
1-4 

28 ... - - - b ** 

T = ntnnber of two-way links connected to the intersection node 
I ~ number of one-way links connected into the intersection node 
0 = nmnber of one-way links connected out from the intersection node 

*The turning movements to save are listed by the subscript· pair in the form i-j which 
indicate the position of the turning movement in the turning movement matrix. 

**Save no turning movements for this node (or centroid) and print no turning movements. 

VI-9 



NETWORK SEGMENTS 

When the ASSIGN SELF-BALANCING process is run the loaded network 

is broken into from 1 to 4 ·segments by the. subroutine SVLOAD when it 

is written on unit 3. The purpose of the segmentation is so that the 

weighted loaded network may be summed in 75~000 full words. There is 

no indication of where the segments are in the· output of the weighted 

loaded network. 

VI-10 



·RECENT CHANGES 

AND MODIFICATIONS 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset -0.33, -1.16 Width 39.11 Height 793.16 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     -0.3342 -1.1623 39.1066 793.1624 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

        
     0
     281
     280
     281
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 0.00, -1.16 Width 613.34 Height 3.01 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         AllDoc
              

       CurrentAVDoc
          

     0 -1.1623 613.3388 3.0082 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

        
     0
     281
     280
     281
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (-0.67 791.00) Right top (613.34 793.34) points
      

        
     0
     -0.6685 790.9973 613.3388 793.337 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

        
     2
     281
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Left bottom (313.86 22.90) Right top (313.86 23.57) points
      

        
     0
     313.8557 22.9033 313.8557 23.5718 
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

        
     2
     281
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



