PROGRAM DOCUMENTATION MANUAL
for

THE TEXAS LARGE NETWORK PACKAGE

by

J. D. Benson :
Assistant Research Planner

Charles E. Bell
Data Processing Programmer

and

Vergil G. Stover
Study Supervisor

Research Report 167-4

Urban Travel Forecasting
Research Study Number 2-10-71-167

Sponsored by the
Texas Highway Department
in cooperation with
U. S. Department of Transportation
" Federal Highway Administration

Texas Transportation Institute
Texas A&M University
College Station, Texas
April 1972

Technical Reports Centsr .
Texas Transportation Instituts

The opinions, findings, and conclusions expressed in this publication
are those of the authors and are not necessarily those of the Federal

Highway Administration.

ABSTRACT ., ., . .

SUMMARY .

IMPLEMENTATION STATEMENT

INTRODUCTION . .

ORGANIZATION OF PACKAGE
OVERLAY STRUCTURE, . .
LOGICAL DIVISION STRUCTURE

LOGICAL DIVISION
INTRODUCTION ., . . . o e e e .
LOGICAL DIVISIONS AND USER PROGRAM OPTION,
DESCRIPTIONS OF LOGICAL DIVISIONS.,

LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGICAL

'LOGICAL

LOGICAL

DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION

TABLE

. o

oo~V WD
.

10. .
11, .
12, .
13. .
14. .
15. .
16. .
17. .
18.°.

OF CONTENTS

PROGRAM CROSS—-REFERENCE AND FLOWCHARTS

CROSS-REFERENCE OF

FLOWCHARTS .

ALCP . .
CLOAD, .

o o s o

LDSEL., . . .

CMPVH., .
CRD. . L
CRDINT .

. ¢« e e
L) L)

PROGR-AMS - . . L]

Page

ii

iv

II-1

II-2

II-6

I1-7
Ii-11
IT-13
I1-14
II-16
II-17
II-18
II-19
I1-22
II-26
II-28
IT-29
II-30
I1-32
I1-33
I1-35
IT-39
II-41

IT1I-1
I1I-4
I1I-5
ITI-6
I11-6
I11-7
ITI-8
III-9

E35. .
FMTLNE
FRATAR
GETDAT
GETRNS
GTLD .
GIVL .
INITL1
LNKLST
LOAD .
MAIN .
MERG .
MOORE.
MRGREC
NEWNET
OUTLLT
OUTNET

OUTRIP. .

OUTTRE
OUTWLT
PATHCL
PRPBLD
PRPCTV
PRPNET

ASMNET

REVNET

RTPFL,
RTPLT.
SC . .
SELECT
SUBFND
SUMEND
SUMRY .

SVLOAD .

TRN. .
TRNMV .
TRPCKM

TEST

TURNM .
UPDINT
VREC .
WGTLD .
WISGLN

TABLE OF CONTENTS

. . . .
. . .
.

. * e . . .
. . s . . .
. o
. . o e . . .

. o .« . * e & o

SIGNIFICANT VARIABLES AND ARRAYS
LABELED COMMON
DESCRIPTIONS OF SIGNIFICANT VARIABLES AND ARRAYS

ALCP .

e o e e+ o s s o

. o . . s e .

(Continued)

. - . . . L . .

. . L]
« e . .

.

. - L] . .

. . e o e .

e

Page

IT1I-10
III-12
ITI-13
ITI-15
ITI-16
III-17
ITI-21
ITI-22
ITI-23
III-24
III-29
III-35
IIT-38
II1-41
I1I-48
III-57
I11-61
I11I-63
III-65
ITI-66
ITI-69
III-75
ITI-78
ITI-81
ITI-81

III-81 .

11I-82
III-86
I11-92
III-93
III-96
III-97
III-98
I11-99

. III-103
. III-106

I1I-107
I11-107
I1I-108
III-111
I1I-114
II1-119
I1I-120

Iv-1
IV-3
IV-4

TABLE OF CONTENTS (Continued)
Page

CLOAD « « « 4 « o o o o o o o o o o o o o o o o s o s v+ 1Iv-5

IDSEL « « ¢ o o o o o o o o o o o o « o o o o o o o« o+ IV=5
CMPVH + « o o o o o « o o o o o o o o o o« o o o o o o o 1IV-6
CRD .+ o « o o o o o o o o o o o o o o o« o o o o s on o o Iv=7
CRDINT: « ¢ « o o o o o o o o o s o o o o o o o« o+« . IV-10
FRATAR: « ¢ o o o o o o o o o o o o o o o ¢ o o e o o o . Iv-11

GTLD * & 8 & ¢ 2+ & e o e e 2 * & & ¢ ° e e ° s e e o s » Iv-lz -

INITLL: « & ¢ o o o o o o o o o o o o « o o o o o o o o o 1IV=15
LNKLST. o « o s « 1IV-16
LOAD: « ¢ o o o o o o o o o o o o o « o o o o o o o o o o 1V-17
MAIN: & o« 1IV-19
MOORE &« ¢ & o ¢ o o o o o o o o o o o o o o o o & o o o o« 1Iv=21
MRGREC: + « « o « o o o o o o o o o o « o o o o o0 o« o+ 1IV=23
NEWNET: o « o o ¢ o o o o o o o o o o o o o « o o o o « o 1IV=24
OUTLLT. « & « o o o o o o o o &« o s o & o o o o « o « o . 1IV-26
OUTNET:. « « « o o o o o « o o s o o ¢« o o o o o o« o« o« . 1IV-28
OUTTRE: + « « o « o o o o ¢ o o o o o o o o o o oo o« o« « IVv=29
OUTWLT: '+ o « o o o o o o ¢ o o o o o o o o o o o o o o « IV-31
PATHCL: o « ¢ ¢ ¢ o o « o o o o o o o o o o o o o o o & o 1IV=32
PRPBID: v « ¢ o ¢ o o o o o o o o o o o o o s o o « & o« « 1IV=35
PRPNET. &+ &« v o ¢ ¢ o o o « o o o o o o o o« o o o o o « o« 1Iv-36
RTPFL AND RTPLT + + « « « « o o o o o o o o o o « ¢ o+ o IV-38
SELECT. + « & « o o o o o o o o o o o o o o o o s o« o o« 1IV-40
SUMEND: + ¢ « « « o o o o o o o o o o o o s o o o o o oo IV=41

SUMRY « o s o o o & IV=42
SVLOAD: « ¢ « o & o o « o o o o o o o o o o s o o« o o o o 1IV=45
TRN ¢ &+ o o o o o o o o o o o o o o o o o e o o o o v oo IV=47
TURNM ¢ & o ¢ o« o . 1IV-49
UPDTNT: « « o o o o o o o o o o o o o o o o s o o o o o« 1Iv-51
VREC: « « ¢ « « o s o o o o o o o o o o o s o o« o o o o « 1IV-52
WESGLN: &+ 4 o o o ¢ o o o o o o o o o o« o o « s o o o « o 1IV-53

DATA SETS AND DATA SET FORMATS \
DATA SETS « '« o o v ¢ o o o o o o s o o o o o o e o o o o o
DATA SET FORMATS. « « o « ¢ ¢ ¢ o o s o o o o o o o o o o o
PATHS DATA SETS « + « o v o « « ¢ o o o s o o o o s o o s
TRIP VOLUMES DATA SET + « & & v & o o o o o o o o o o «
FLEXIBLE RECORD DATA SET. + & v v o o o o o o o o o o o &
SEPARATION MATRIX DATA SETe « « o « « o s o o o o o o o &
SELECTED INTERCHANGES DATA SET. « & « « « & « « o « o & &
ROUTE DATA SET. « « v « ¢ o o o o s o o o o o o o v o o s
TRIP MATRIX DATA SET. « ¢ « & v « o « o o o o o0 o o o &
SCRATCH NODE NAMES DATA SET « & & & « + ¢ ¢ o o o o o o &
SCRATCH PACKED LINKS DATA SET « « & « v o o + o o o« « o &
SCRATCH MULTIPLE ASSIGNMENTS DATA SETS. . . « « o & o . .
OUTPUT SELECTED LINKS + « & « « « « o o o o o o o o o o o o &
SORTED SELECTED INTERCHANGES DATA SET « + « « « « o « « .

<:'<?:<:<:

1 1
WNhNOO~NORERFRONOOUL

<<<<‘<<<<<
DN N

TABLE OF CONTENTS (Continued)

Page

OTHER INFORMATION
PRINTED OUTPUT FROM $ASSIGN AND $ASSIGN SELF-BALANCING. . . VI-1
TURNING MOVMENTS e & & s s e o e e s+ e o & + e e s s e e e @ VI_4
NETWORK SEGMENTS e ® & & e e 8 & e e e e+ € e e e 5 e & s o o . VI-lO

RECENT CHANGES AND MODIFICATIONS

ABSTRACT

The Texas Large Network Package is a collection of computer programs
designed to assign traffic to large transportation networks. The
purpose of this manual is to provide data processing personnel with a

link between the Operating Manual for the Texas Large Network Package

(Research Report 119-2) and the programs contained in the package.

The manual describes the operation of the package and provides flowcharts
of the programs in the package. Cross references for significant variables
and arrays used in the package and formats for all data sets and data
cards associated with the package are provided.

Keywords: traffic assignmentvcbmputer prdgrams, transpoftation planning

computer programs, Texas Large Network Package, computer
program descriptions, computer program flowcharts.

SUMMARY

Traffic assignment is a technique which has been developed to aid
transportation planning in the eﬁaluation of future transportation
system alternatives. Due to the vast quantity of data and the tedious
computations inﬁolved, reliance upon computers and automated data processing
is almost imperative.

The Texas Large Network Package is a collection of computer programs
designed to assign traffic to large trahsportation networks. The package
has been prepared for use with both IBM 360 and IBM 370 computer systems.

Several special features are available in the Texas Large Network
Package in addition to the usual programs regarding the assignment of
traffic to minimum time paths. A self-balancing assignment program
is included which can improve the agreement of assigned volumes with
coﬁnted volumes. The self-balancing assignment program can also’be used
to induce a compliance of the assigned volumes with capacity limitatioms.
Corridor intercepts may be coded to obtain corridor analysis summaries;
travel routes may be coded to obtain volume profile comparisons and/or
plots; and, selected links may be indicated for a special analysis of all
traversing mo§ement$. Under normal operation, each assignment is preserved
and compared with the previous assignments.

The Texas Large Network Package is comprised of sevenﬁy—seven control
sections. The control sections perform the sixteen user program options

available under the package.

ii

The package basically operates in sequential mode. As each control
card specifying a user program option is encountered in the data card
input stream, the card is interpreted to determine the desired program

option and the appropriate program option is executed.

iii

IMPLEMENTATION STATEMENT

The Texas Large Network Package has been operational on the IBM 360
computer installation of the Texas Highway Department since January, 1969.
It has been used extensively by the Texas Highway Department since that
time.

Numerous additions, revisions and improvements have been implemented
since the originai transmittal. The cooperative research program between
the Texas Highway'Department and the Texas Transportation Institute has
produced many research results which have been converted to a useable form
through the preparation or modification of computer progfams, and the
programs have then been inserted into the Texas Large Network Package.
Since research and development is dynamic in nature, this documentatién
will become obéolete as continuing research efforts produce new results

to be implemented in the package.

INTRODUCTION

The purpose of this manual is to provide data processing personnel
with a 1link between the operating manual for the Texas Large Network
Package and the programs contained in the package. This manual, therefore,
assumes the working knowledge and understanding of the operating manual,
and general familiarity with the terminology associated ﬁith,both traffic
assignment and computer science. Both the operating manual and the programs
(with their own internal documentation) are each a form of documentation.
The objective of this manual, therefore, is to provide intermediate
lévels of documentation between the operating manual and the actual
program listings, thereby providing a logical sequence of levels of
documentation through which one may proceed from the operating manual
to the particular program listing(s) of interest.

This documentation, contained in Sections I - VII of this manual,
is organized as follows: |

" @ Section I, ORGANIZATION OF PACKAGE - This section explains the

organization of the programs. It includes a complete list of

the programs in the Large Package including the date of their
latest revision; a chart of the overlay structure for the package;
and a chart of the logical divisions into which the programs

may be subdivided.

e Section II, LOGICAL DIVISIONS - This portion of the manual describes

‘the functions and operations performed in each of the logical

divisions. It explains the general organization of the programs

withiﬁ that division and gives a brief description of the
functions performed in each of the programs within that logical
division. It is felt that the program descriptions provided

for each of the logical divisions will be sufficient for‘the
programmer to identify the particular program or programs in
which he is interested while at the same time providing him with
an understanding of how it relates to other programs within the
péckage.

Section III, PROGRAM CROSS—REFERENCE AND FLOWCHARTS - This section

contains a cross—reference of calling programé versus programs
called and the flowcharts (or program descriptions) associated
with each individual program in the Small Network Package;

The objective of the flowcharts is to provide the programmer with
an overview of the operation of each individual program within
the package. The level of detail contained in each individual
flowchart is felt to be minimal for an understanding of the
individual programs. It should also be noted that these flowcharts
are inténded to be used in conjunction with information contained
in sections IV, V, and VI when reviewing or studying a particular
program listing.

Section IV, SIGNIFICANT VARIABLES AND ARRAYS - This section

contains the significant variable, arrays, data structures and

control variables used by the various subroutines.

Section V, DATA SET FORMATS - This section contains formats for
various intermediate data sets formed and/or used during the

operation of the Large Network Package.

Section VI, OTHER INFORMATION - This section contains édditional

information which is felt to be pertinent to the understanding
of the programs contained in the Large Network Package. For

example, this section contains an explanation of the procedure
uséd in saving turning moveﬁents during the assignment process.

Section VII, RECENT CHANGES AND MODIFICATIONS - This section is

provided for information relative to changes which have been
implemented since the original documentation, and therefore,

serves an "update'" function for this manual.

ORGANIZATION OF PACKAGE

OVERLAY STRUCTURE

LOGICAL DIVISION STRUCTURE

OVERLAY STRUCTURE

The Texas Large Network Package is comprised of seventy-seven control
sections. These control sections are listed in Table 1 along with the
date of their latest revision. The diagram shown in Figure 1 illustrates
the overlay structure iﬁ which all but two of the control sections
operate. The two control sections (i.e., MAIN (Output Selected Links)
and E35) are used to perform the user program option $OUTPUT SELECTED
LINKS which, because of core storage requirements, is run as a separate

JOB.

LOGICAL DIVISION STRUCTURE

In order to explain the relationship between the control sections,l
they have been grouped into eighteen logical divisions as shdwnvin‘
Figure 2 (note that~Logical Division 18 contains the control sectioné
for $OUTPUT SELECTED LINKS). The function (or functions) performed by
each of the logical divisions is described in Section III of this manual.
In addition, the sequence in which the programs are executed along with
a brief descriptién of each of the programs is included for each 1ogica1
division. As can be seen from Figure 2, seven of the logical divisions
contain only one control section and two of the divisions contain only
two or three control sections. These small logical divisions were
necessitated either by the highly specialized functidns performed within
them which could not readily be related to anyvof the other logical
divisions or, in some instances because the logical division simply

contains all the control sections needed to perform one of the user program

TABLE 1: CONTROL SECTIONS COMPRISING THE
TEXAS SMALL NETWORK PACKAGE

Program Revision ' Program . Revision
Control Section Date : Control Section Date
ALCP 11-10-71 ~ OUTWLT 7~26-71
BLOCK DATA 11-10-71 ' PARAM : 10- 1-70
CLOAD . 9-20-71 - PATHCL 10~ 1-70
CLOSE 9-20-71 PRPBLD : 7-26~71
" CMPVH 11-10-71 - PRPCTV 3-31-71
COPYFT 8-30-71 PRPNET 3-31-71
CRD 3-31-71 PTLNK 10- 1-70
CRDINT v 3-31-71 REGRES 3-31-71
E35 * RTPFL - 3-31-71
FMTLNE 10- 1-70 RTPLT 7-30-71
FRATAR 3-31-71 ’ SC 3-31-71
FWTO 10- 1-70 SELECT 8-30-71
GETDAT 10- 1-70 SUBFND 10- 1-70
GETRN 7-26-71 SUMEND ; 3~-31-71
GETRNS 10- '1-70 SUMRY 4 3-31-71
GETVOL ~7-26-71 SVLOAD 7-26-71
GTLD 11-10-71 TIME 10- 1-70
GTVL 7-26-71 TREBLD 10- 1-70
ITOA 10- 1-70 TRN 7-26-71
INITLL 10- 1-70 TRNMV 10- 1-70
LNKLST 7-26-71 - TRPCKM 10- 1-70
LOAD 9-20-71 TURNM 10~ 1-70
LOPS 8-30-71 UNPKX 10- 1-70
MAIN 7-26-71 UPDTNT 3-31-71
MAIN (for Output * VREC , 8-30-70
Selected Links) VSORT 10- 1-70
MERG . 10- 1-70 WGT 7-26-71
MOOR : 10- 1-70 WGTA 7-26-71
MRGREC , 7-30-71 WGTLD - 7-26-71
NEWNET 8-30-71 WRT - 8-30-71
OPENFT 8-30-71 WSL 10- 1-70
OUTLLT - 8-30-71 WISGLN 7-26-71
OUTNET 8-30-71 Overlay
OUTRIP 3-31-71 structure 7-26-71
" OUTTRE 10- 1-70 '

Labeled Common Control Sections: ALLIGN, ARRAYS, CD, CAPRES, DELETE,
: : FILES, HEADR, OUTDCB, SDATE, STOP,
VOLTP

Library Subroutines: AXIS, DSQRT, EXP, LINE, LOG, NUMBER, PLOTS, SIN,
SQRT, SYMBOL '

*These programs have not been modified since the institution of the
revision date policy on individual subroutines.

€-I

Figure 1:

Large Network Package Overlay Structure

MAIN CAPRES
LOPS FILES
TIME HEADR
WRT ~ STOP
OPENFT OUTDCB
TREBLD DELETE
ALLIGN
CRD VOLTP OUTNET ARRAYS CLOAD
GETDAT VSORT | PrRPCTV FMTLNE PATHCL CLOSE
PARAM SUBFND FRATAR
SDATE OUTRIP MERG
‘ SUMEND UPDTNT . .
LNKLST LOAD SVLOAD | OUTLLT
UNPKX GETVOL | TURNM
SELECT GTVL GETRNS
TRNMV
RTPLT PRPNET SUMRY
SC PTLNK CD
LINE ‘
NUMBER INITLL MOOR
PLOTS i PRPBLD FWTO
SYMBOL NEWNET MRGREC : ITOA
EXP VREC COPYFT TRPCKM
LOG : OUTTRE
WSL
| weTLD RTPFL GTLD
CMPVH
REGRES
CRDINT
ALCP
SQRT
DSQRT

WISGLN
OUTWLT
GETRN
TRN
WGT
WGTA

Vil §

FIGURE 2: LARGE NETWORK PACKAGE LOGICAL DIVISIONS

T A
f{maIn CAPRES | | :
[{LoPS FILES | p AN I
P TIME HEADR | 22 i
1| HRT STOP i I
j{OPENFT OUTDCB | L J
TREBLD DELETE | ——————
| ALLIGN
L i
l— —————— 1 o o e o ey et T & rv-mstantes TN —— —_—t | rrm——————
| 2 1 :3 : , r4 i {IO 15 [arravs | 17 |
i|crp | I{vsorT | t{vorre I jloutner I PATHCL | WiseLy |
{leeTnat | | N J[PRPCTV Il FMTLNE | quTYLT |
| PARAM | i S i SUBFNDJ e | |INITLL {MOOR CETRN |
SoATE | e 4 d [|PRPELD [FHTO TR |
l______! T n i ITTgA WG T |
| 1S | FRATAR | RPCKM WETA |
floutrip | Hrm—— OUTTRE I
r————lr—————F———ﬁ l———-—-——-————-——-—-——--—-l b e e e r.u—.———..q | wSL
I LT SENp———
O EETETU A AN 1 o 17
1 ’S‘EP” l N €D S sumenp P ILoZ_d o
ey I R Sl s T Tr—
Hwewges HNEwIET [REEREC S lwerin [areec foTeD | nk | - close !
I{piaTs l| VREC cMPvH | L UPDTNT I |
Fsympor gl I REGRES | J P LOAD svLoaD JouTiet |
e | i T [oRie S0 i
‘ L , CT |6Tve GETRNS
L_____J ——————————— ~ SQRT | | LngLsT | Taymy |
psert o TT——= - !_ R
L - i e -

options described in the operating manﬁal. On the other haﬁd, it may
be noted that logical diﬁision 16 contains twelve control sections.
It is within this division that the network is loaded, and the loaded
network is printed.

It should also be noted that a number of the programé have multiple
entry points. To avoid possible confusion, these programs along with
the names of their other entry points are listed in Table 2. The
assembly language programs with multiple control sections are also

listed in Tabie 2.

TABLE 2: PROGRAMS WITH MULTIPLE ENTRY POINTS
' OR MULTIPLE CONTROL SECTIONS

PROGRAM OTHER ENTRY POINTS OR CONTROL SECTIONS

CLOAD LDSEL

GETVOL* WGT** , WGTA**, GTVL**

ITOA* ITOAB

LOAD* CLOSE**, OPEN, WRITE, TRDCB

LOPS* LGLS, LGRS, LANA, LORA, LEX, LANAD, LANAL, NBYTE, LBYTE,
LANAH, SBYTE, IB16, NULLT

MOOR* MOORE, MINUS

PRPNET ASMNET, REVNET

PTLNK# GTLNK

WRT* OPENFT**, CLOSFT

*Assembly language routine
**Control Section

I-6

LOGICAL DIVISTIONS

INTRODUCTION
LOGICAL DIVISIONS AND USER PROGRAM OPTIONS

DESCRIPTIONS OF LOGICAL DIVISIONS

INTRODUCTION

The seventy-seven control sections comprising the Texas Large Network
Package have been grouped for the convenience of discussion, into eighteen
logical divisions. These logical divisions are not independent entities
but are functional units or simply‘convenient groupings. There are
three or more logical divisions associated with each of_the'program
options available to the user except the $OUTPUT SELECTED LINKS option.

The documentation functions served by this section are:

e To identify the logical divisions associated with each of the
user program options.

e To describe the relationship (i.e., caliing sequence) between
the logical divisions with regard to each of the user prbgram
options. o

e To describe the functions performed by each of the logical
divisions.

e To providé the calling sequence of the subprograms within each
logical division.

e To provide sufficient information regarding the operation of
each of the subprograms within a logical division so that the
particular program(s) of interest may be identified.

After having identified the particular program(s) of interest, the
flowcharts (contained in Section IV) used in comjunction with the
information concerning signifiéant variables and arrays (Section VI)

should provide the next level of documentation.

II-1

LOGICAL DIVISIONS AND USER
PROGRAM OPTIONS

A cross~reference of the logical divisions and'the user program
options is provided by Table 3. As can‘be seen from this table, three
or more logical divisions are associated with each of the user program
options (except $OUTPUT SELECTED LINKS). It should likewise be noted
that many of the logical divisions are associated with mbre than one
of the user program options.

The relationships between each of the logical divisions under each
of the user program options are illustrated in the following.diagrams:

$PREPARE NETWORK
$ASSEMBLE NETWORK

“”?,Logical Division 2

Logical Division 1 e s
TS Logical Diviston 8 < 105105 DIVINCN)

$REVISE NETWORK

: : Logical Division 2
Logical Division 1:::::: ’ ,
o Logical Division 8 ——=» Logical Division 3

$OUTPUT NETWORK

: Logical Division 2
Logical Division l<:::::
Logical Division 10

II-2

€-TT .

TABLE 3: CROSS-REFERENCE OF USER PROGRAM OPTIONS AND

LOGICAL DIVISIONS

LOGICAL DIVISIONS

USER PROGRAM OPTIONS 123 |ats5|el7{8|9l1of1r)12]s|wa] 15| 16| 17| 18
$PREPARE NETWORK x| x|x X

$ASSEMBLE NETWORK x| x| x X

$REVISE NETWORK x| x| x X

$OUTPUT NETWORK X| X X

$DELETE ASSIGNMENTS x| x X

$PREPARE TRIP VOLUMES x| x X

$OUTPUT TRIP VOLUMES x| x X

$BUILD TREES x| x X
' $LOAD NETWORK x| x|x X X

$LOAD SELECTED LINKS x| x|x X X

$ASSIGN SELF-BALANCING X|x|x X x| x| x| x
$OUTPUT SELECTED LINKS X
'$PLOT ROUTE PROFILES x| x|x X

$FRATAR FORECAST x| x X

$SUM TRIP ENDS x| x X

$MERGE x| x X

$DELETE ASSIGNMENTS

Logical Division

$PREPARE TRIP VOLUMES

Logical Division

$OUTPUT TRIP VOLUMES

Logiéal Division

$BUILD TREES

Logical Division

$LOAD NETWORK
SLOAD SELECTED LINKS

Logical Division

L
™~

Logical
l”’//ar

Logical

Logical

Logical

Logical

/\

Logical

Logical

/\

Logical

Logical
1Z—=> Logical

~~

Logical

II-4

Division

Division

Division

Division

Division

Division

Division

Division

Division
Division

Division

13 ——> Logical Division 1

[\

2 .
16———a>lmgiqal Division 1
9 ——>»Logical Division 3

$ASSIGN SELF-BALANCING

Logical
Logical

Logical Division 1 <:::§:Logica1

$OUTPUT SELECTED LINKS
Logical Division

$PLOT ROUTE PROFILES

Logical Division

SFRATAR FORECAST

Logical Division

$SUM TRIP ENDS

Logical Division

$MERGE

Logical Division

18

1*’//27
T~~~

/\

/\

/\

II-5

Logical
Logical
Logical

Logical

Logical

Logical

Logical

Logical

Logical

Logical

Logical

Division
Division
Division
Division
Division

Division

Division

Division

Division

Division

Division

Division

Division

Division

2

15

. 16—=> Logical Division 1
9 —¥;€B>Iogical Division 3
17 —> Logical Division 1
14

7 ~——= Logical Division 3

11

12

DESCRIPTIONS OF LOGICAL DIVISIONS

The descripfion of each of the logical divisions in the Texas
Large Network Package has‘been divided into three sections. These
sections describe the logical division's general function,.the input/
output fequirements, the control sections used, the seqdence of subroutines
called, and provide a brief description of each of the subroutines
(or control sections).

The first section, entitled "General", briefly describes the functions
or operations performed by the logical division. It also lists the input
required, output produced, and the control sections used by the logical
division.

The second section, entitled "Sequence of Subroutines Called'", provides
a diagram illustrating the sequence of subroutines called during the
execution of the logical division. This section not.only’provides a
convenient '"trace back" capability but identifies those control sections
which are subroutines executed within the logical division. 1In additiqn,
when the given logical division calls another logical division, the diagram
identifies both the logical division and the subroutine called within that
logical division.

The third section is entitled 'Descriptions of Individual Control
Sections". This section contains a brief description of thé function of

each of the control sections contained in the logical division.

I1-6

LOGICAL DIVISION 1

General

This division serves as the control program for the entire package.
It first issues a call to Logical Division 2 (Subroutine GETDAT) to
initialize the date. It also issues calls to Logical Division 2 (Sub-
routine CRD) to read and interpret control cards and unit control cards.
The appropriate Logical Divisions are then called to berform the
actions specified by the control cards. Because of the multiple usage of
various logical divisions in the ASSIGN SELF-BALANCING process, the program
MAIN also serves as the control program for this process. For convenience
and efficiency, this division also contains smali subroutines and labeled
commons which are used by many of the other logical divisions.
Input: None |
Output: Prints the'differenée in time of day of when each program
specified by a Control card started and when it ended. Also, subroutine
WRT is called from other Logical Divisions to write unformatted data sets.
Control Sections: MAIN, TIME, CAPRES, FILES, HEADR, LOPS, ALLIGN, STOP,

OUTDCB, DELETE, OPENFT, CLOSFT, TREBLD, WRT

Sequence of Subroutines Called

Logical Division 2 (GETDAT)

44£:;ZLpgical Division 2 (CRD)

MAIN /= TIME

/Other Logical Division needed
to perform the functions .

pecified by control cards

I1-7

Descriptions of Individual Control Sections

ALLIGN: This labeled common forces a half word array used by subroutine

MRGREC to a full word boundary.

DELETE: This labeled common contains one word used to sum the number of

errors in the programs PREPARE NETWORK, ASSEMBLE NETWORK, and REVISE NETWORK.

OUTDCB: This labeled common has two arrays containing the data control Blocks

built by subroutine OPENFT.

STOP: This labeled common is not needed.

TIME: This subroutine returns the time of day in units of‘7%6 of a second.
A

CAPRES: This is a labeled common which is used by ASSIGN SELF-BALANCING.

FILES: This is a labeled common in which the variable unit numbers

are stored.

HEADR: This is a labeled common used to store the date and the header

from the last SHEADR card read.

LOPS: This is a control section which'contains 13 function subroutines
which are used for bit manipulation for packed data by other logical

divisions.

MAIN: This is the main program for the entire package. Initially it
issues calls to GETDAT (in Logical Division 2) and TIME to get the date
and time the program began execution. It then performs the following
steps iteratively (Uptil a $STOP control card is encountefed_or an end

of data set is encountered on unit 5):

I1-8

A call is issued to subroutine CRD (in Logical Diﬁision 2) to

read and interpret a control card.

e The appropriate subroutine(s) are called to execute the program
‘SPecified by the control card.

e A call is issued to subroutine TIME to get the time of day.

e The time,used by the execution of the program is calculated and

printed.

OPENFT: This is an assembly language subroutine to open a FORTRAN type
DDname. The DCB is built in one of two areas (specified by either a l

or a 2 as the first argument) in the control section OUTDCB. The FORTRAN
unit number is specified by the second argument and the DDname used is .
FTIXXFOOl where the XX is the integer from the second argument. The daﬁa
set -is opened twice. The first time it is opened the DCB information from
the DD card is obtained and the data set is closed. The spanned code is
then removed from the DCB in core and the data set is reopened. For fhis
reéson the RLSE subparameter should not be used in the SPACE allocation
parameter on data sets which are used as unit NETWORK, unit NEWNET, or
unit ROUTE because the primary extent is all released except for 1 track

when the first CLOSE macro is executed by subroutine OPENFT.

CLOSFT: This'subrbutine closes the data set whose DCB is in the OUTDCB
control section. The DCB is indexed by either a 1 or a 2 which is the

argument in the call to CLOSFT.

WRT: This subrouting writes one logical record on the unit which is pointed

to by the "opened" DCB in CSECT OUTDCB. The DCB is indexed by either a

II-9

1 or a 2 as the first argument in the call to subroutine WRT. The logical
record written may be made up of one or more record segments. This
subroutine uses the PUT macro with the locate mode to get the address

of each new record segment. The rest of the calling sequence of,subrdutine
WRT is variableland is made up of a vériable number of arguments which

are in groups of arguments that correspond to ah implied DO loop in a
FORTRAN write. The first item of a group indicates by its sign whether

the variables are half words or full words. If the sign is minus the
arguments are half words. If the sign is positive they are full words.

- The absolute value of the first item of each group is the number

of variables or array names in the group. The second item in the group is
the number of implied DO loop iterations M that should bevuSed to transmit
the array(s). The next |N] arguments are the arrays 6r variables. Only
the arréy or variable items are transmitted. If M is greater than 1,

a loop is set up in which the addresses'(from which data is being moved)
are incremented by a constant at the bottom of the loop.. if N is negative,
the constant is set to 2; and if N is positive, the constant is set to 4.
The loop is exec@ted M times. There may be as many groups»in the call

as are necessary provided that the total number of arguments in a call

to subroutine WRT does not exceed the limits for the FORTRAN compiler

being used for the FORTRAN calling subroutine.

TREBLD: The entry ABEND in this subroutine prints the message ERROR
followed by the integer identification code which is passed to it through

the arguments.

II-10

" LOGICAL DIVISION 2

General

This division is called by Logical Divisidn 1. Although it contains
the routine used to initialize the‘date, its primary purpose is to read
and interpret control cards and unit control cards. When a unit control
card is read,‘the appropriate variable unit number in labeled common FILES
is changed. When a $HEADR cardvis encountered, the contents of columns
7 - 80 are placed in the érra& in the labeled common HFADR. If an invalid
control card or unit control card is read, an error message is printed
and the job is terminated. When‘a vaiid'control card (other than a
SHEADR card) is read, this division returns an integer which identifies
the control card read.
Input: Control cards and unit éontrdl cards on Unit 5.
Output: Prints all valid and invalid control cards and unit control
cards. Variable unit numbers are printed if any were changed by a unit
control card.

Control Sections Used: CRD, PARAM, GETDAT, SDATE

Sequence of Subroutines Called

'GETDAf
—7
\

Logical Division 1
. TSNCRD——>-PARAM

Descriptions of Individual Control Sections

CRD: This subroutine reads control cards and unit control cards and

sets an integer which is returned to the main program indicating the

II1-11

control card encountered. When a unit control card is encountered,

the subroutine PARAM is called. After returning from PARAM, another
control card is read. When a $HEADR card is encountered, the information
in columns 7 - 80 is placed in the HEADR labeled common and another contr§1
card is réad. If an invalid control card or unit control card is

encountered, an error message is printed and the job is terminated.

PARAM: This subroutine interprets unit control cards read by CRD and

changes the variable unit numbers specified in the FILES labeled common.

GETDAT: This subroutine gets the date from the operating system with

a TIME macro and converts it to a twelve byte literal in the form:

XXX YY, 2ZZZ
where: |
XXX =‘abbreviation of the month (3 bytes)b
YY = day of the monfh (2 bytes)
ZZZZ = year (4 bytes)

This subroutine is called by the program MAIN.

SDATE: This labeled common contains the date of the last modification
to the package and it is printed in a message after every control card

recognized by subroutine CRD.

I1-12

LOGICAL DIVISION 3

General

This division contains the subroutine VSORT which performs an in-core
sort. It is used by Logical Divisions 7, 8, and 9.
Input: Unsorted data in core in records of from 1 to 256 bytes/record.
Output: Sorted records in core.

Control Sections Used: VSORT

Sequence of Subroutines Called

Logical Division (7, 8, or 9) —3> VSORT

Descriptions of Individual Control Sections

VSORT: This subroutiné sorts records in core. The first argumeht in

the célling sequence is the address of the array of records to be

sortéd. The second argument is the number of records. The third argument
is the length of each record in bytes (must be between 1 and 256 bytes).
The fourth argument is the length of the sort key in bytes (must be
between 1 and 256 bytes) which can not be longer than the record length.
The sort key starts at the first byte of the record. The sort key is
treated as an unSigned binary number and the records are sorted into

ascending order on the sort keys.

'IIfl3

LOGICAL DIVISION 4

General

AThis division is called by the program MAIN (in logical Division
l); It inputs the card trip volume records; checks to see that they are
in ascending order on origin and destination zones; and buil&s a trip

matrix which is outputted on unit CTVOUT.

Input: Parameter card on unit 5, card trip volume records on unit CTVIN,
Output: Trip matrix on unit CTVOUT.

Control Sections Used: PRPCIV, SUBFND, VOLTP

Sequence of Subroutines Called

PRPCTV “—————3» SUBFND

Descriptions of Individual Control Sections
PRPCTV: This is the main part of the code for this logical division,
It reads the parameter card which specifies the volume field (of the
three available) to be used. This parameter card also specifies the
number of subnets and the first and last zone of each éubnet.

After the parameter card ié read, the trip volume records are read,
The program checks for records which are out of sort with regard to
the origin and destination zone numbers, It also checks to see that both
zones are in the zone ranges specified for the subnets b& calling subroutine
SUBFND, and checks for duplicate origin and destination sze numbers. It
writes a trip matrix on unit CTVOUT of those trips for which there were

no erxrors.

II-14

SUBFND: This subroutine determines the subnet containing the origin
zone and the subnet containing the destination zone. It then verifies
that both the origin and destination zone numbers are within the zone

ranges specified on the parameter card.

VOLTP: This is a labeled common area used by subroutine PRPCIV.

II-15

LOGICAL DIVISION 5

General
This logical division is called by the program MAIN (in logical
Division 1) and performs the SOUTPUT TRIP VOLUMES program. Lt essentially

prints the trip matrix contained on Unit CTVOUT.

Input: Unit CTVOUT.
Output: Printed trip matrix.

Control Sections used: OUTRIP

Sequence of Subroutines Called

Logical Division 1 (MAIN) ——=> OUTRIP

Descriptions of Individual Control Sections

OUTRIP: This subroutine reads a trip matrix from unif'CTVOﬁT and prints
it with each origin zone starting on é new page., It prinfs 10 destina-
tion volumes per line. The zone nuﬁbers printed run from~;he first zone
number for a subnet to the last zone number for that subnet in groups

of 10, If a group of ten destination volumes are all zero, they are not

printed. The origin zones are considered in sequential order.

II-16

LOGICAL DIVISION 6

General
This division is called by the program MAIN (in Logical Division 1)

and performs the $SUM TRIP ENDS program,

Input: Trip matrix on unit CIVOUT.
Output: A printed table.

Control Sections Used: SUMEND

Sequence of Subroutines Called

Logical Division 1 (MAIN) ———=> SUMEND

Descriptions of Individual Control Sections

SUMEND: This subroufine performs a summation of a frip matfix by rows
gnd columns exclusive of the diagonal elements (i.e., the intrazonal
volumes). The number of non-zero trip volumes are also counted. A
table is then printed containing a summary‘of the trip volume character-

istics for each zone.

II-17

LOGICAL DIVISION 7

General ‘
This division is called by the program MAIN (in Logical Division 1)
for the $PLOT ROUTE PROFILES program. It prints the route profiles from
a previous run of LOAD NETWORK, LOAD SELECTED LINKS, or ASSIGN SELF—BALANCING.
It also prepafes calcomp plots of the rouﬁes with aSSignments, counts ot

link capacities specified.

Input: Unit ROUTE, parameter cards to specify routes and assignments.
Output: Printed route profiles of all routes and a calcomp plot tape.

Control Sections Used: RTPLT, SC, and calcomp subroutines.

Sequence of Subroutines Called

‘//’/”éy-Logical Division 3 (VSORT)
. RTPLT =———3» SC

-\--$;.Calcomp Subroutines

(AXIS, LINE, NUMBER, PLOTS, SYMBOL)

Descriptions of Individual Control Sections

RTPLT: This SubrOutine reads the route parameter card specifying which
routes are to be plotted. It then reads the parameter card specifying
which assignmenté, counts or capacities ére to be plotted., It then

reads the ROUTE data set and prints the route profiles and plots those

which have been specified,

SC: This subroutine is used to round the scaling factor,

II-18

LOGICAL DIVISION 8

General
This séction basically performs the following functions:
e $PREPARE NETWORK
e S$SASSEMBLE NETWORK

e SREVISE NETWORK

Input: Link data cards or link data revision cards from the INLNK data set.
Output: New or revised Flexible Record Data Set on the NETWORK data set.

Control Sections Used: PRPNET, PTLNK, NEWNET, VREC, MRGREC, and COPYFT,

Sequence of Subroutines Called

© $PREPARE NETWORK
PRPNET (entry point PRPNET)—>» NEWNET ——3> VREC
$ASSEMBLE NETWORK o
PRPNET (entry point ASMNET) ———=>NEWNET ——3> VREC
$REVISE NETWORK

PRPNET (entry point REVNET) —>» NEWNET ——3> MRGREC ——3> COPYFT

Descriptions of Individual Control Sections
PRPNET: This is the control program for this section and defines storage
for the arrays and variables to be shared by the other programs in this

section,

PTLNK (and GTLNK): Commonly called "Put Link" or "Get Link,'" this program

has two entry points (i.e., PTLNK and GILNK). It is a utility program

II-19

which packs and unpacks the 22-byte records used to save the information
from link data cards. This is the format in which the one-way links

are sorted and are written on units 3 and 11,

NEWNET: Basically, this program inputs, sorts, and edits the link data
cards. Due to array limitatioms, this program will input and sort up
to approximately 6667 link data cards (recall that eéch link data card
produces 2 link records). This program will handle up to 3 groups of
approximately 6667 link data cards eaéh with the first two sort groups
saved on disks and the last saved in core. These groups are later
merged by VREC, This program also outputs any ﬁode némesvon iogical
unit 4, This programvalso performs some preliminary edit checks to
determine the validity of data. The preliminary edit checks include:

e Node numbér in range (i.e., 1 < node nuﬁber < last Freeway Node

Number)

e Valid time or speed code (i.e., T or S)

e Valid directional code (i.e., 0, 1, +, -)

e Calculates either time or speed and determines if impedance is

less than or equal to 10.23 "minutes."

VREC: This program performs the following functions:

"o If there are more than one set of sorted link data records
producedvin.NEWNET (i.e., mére than approximately 6667 link data
cards), the links are then merged.

bo Performs vafious edit checks which includes:

a, Check for duplicate links

I1-20

b. Check to determine if each node appears to be properly
connected to network (Note: basically this only checks to
see that each link is connected to another node. It does
not check for network fragmentation since thié can presum-
ably be found by building test trees). |

e Prepares and outputs "Flexible Record Data Set.,"
e Also inputs and merges 22-byte link records with link records in

core if there were more than 6667 link data cards,

MRGREC: Essentially this is just a modified version of VREC for the
$REVISE NETWORK., It performs the same functions as VREC except it can
merge up to 4 data sets instead of 3 (the additional data set is the old

Flexible Record Data Set which is being revised).

COPYFT: Again, this program is only used in conjﬁnction with $REVISE
NETWORK and performs the following functions:
e Updates thé field in the Flexible Record Data Set which contains
the number of one-way links.
e Copies the Flexible Record Data Set in VB instead of VBS record

format (note: TFORTRAN unformatted WRITE requires either VS or VBS).

11-21

LOGICAL DIVISION 9

General
This section reads the Flexible Record Data Set from the unit NEWNET
and produces the following tables:

e Cross Classification of V/C Frequencies
from Last Two Assignments

e Cross Classification of Link Counts by
V/C Ratio from Last Two Assignments

e Jurisdiction Summary

o Jurisdictional/Functional Cross
Classification of Assigned Volumes

. Jurisdictional/Functional Cross
Classification of Counted Volumes

e Jurisdictional/Functional Cross
Classification of Link Capacities

Comparison of Assigned Volumes with
Counted Volumes ‘

e Comparison of Assigned Volumes with
Link Capacities

® Comparison of Assigned Volumes (from
last assignment) with Assigned
Volumes (from assignment before last)

e Iteration Weighting-Multiple
Regression Analysis

e Link Volumes

e Iteration Weights Applied
e Corridor Intercept Tables
e Route Profiles

o List of Volumes and Impedances for
Updated Links

Some of these tables are printed only when certain conditions are met

(see section on OTHER INFORMATION).

I1-22

Input: Unit NEWNET,
Output: The tables listed in the general section above and Unit ROUTE.

Control Sections: SUMRY, CD WGTLD, GTLD, CMPVH, REGRES, CRDINT, ALCP, RTPFL

Sequence of Subroutines Called

$LOAD NETWORK and

- SLOAD SELECTED LINKS

$ASSIGN SELF-BALANCING (iterations 1 - 5, and the calculated weighted
: . assignment if "WGT" is specified on the *TURN
card) '

~ GTLD

7
SUMRY == CMPVH
f\\\\\ﬁﬁ‘ALCP

$ASSIGN SELF-BALANCING (Weighted assignment made from weighted
impedances if "WGT" is specified on the
*TURN card, otherwise calculated weighted
assignment)

$ASSIGN SELF-BALANCING (after last iteration)

Logical Division 1 —————=» WGTLD

I1-23

Descriptions of.Individual Control Sections

SUMRY: This is the control program for the summaries produced after

an assignment. The subroutines called by SUMRY are determined by three
logical variables. One of the logical variables, SUM, if true cduses
GTLD to produce a weighted assignment on unit NETWORK énd produce all
tables and comparisons from this weighted assignment.’ Subroutine ALCP
is‘only called if logical variable RES is true. If 1ogicél variable
RTP is false, theh the corridor intercept and route profile tables afe

skipped.

GTLD: 'This subroutine prints the V/C cross classificatipn table if there
are two or more assignments on unit NEWNET. It computes the summations
necessary f@r the tables printed by subrouﬁine CMPVH and for the curve
fit printed by subroutine ALCP. It saves’cbrridor intercept information
in core in labeled common CD, It writes route profile records on Unit
ROUTE., 1If logical variable SUM is true, GTLD calculates weighted
directional voluﬁes and ﬁpdates the flexible data record writing it on
unit NETWORK, All comparisons and tables are ﬁade from the weighted

directional volumes if SUM is true.

CMPVH: This subroutine prints the Jurisdiction Summary or the Jurisdic-
tional /FUNCTIONAL Cross Classification Tables and the three Comparison

of Assigned Volumes with link volumes, Counted volumes and Capacities.

REGRES: This subroutine performs a linear regression analysis and prints

the results of this analysis.

IT1-24

CRDINT: This subroutine calls VSORT (which sorts the corridor intercept

records) and prints the corridor intercept tables.

ALCP: This subroutine performs a multiple regression analysis to deter-
mine the iteration weighting for the ASSIGN SELF-BALANCING process and
prints the results of this analysis. Only the links with a non-zero

count (or capacity depending on which is specified) are considered and
centroid connectors are ignored. The count (or capacity) is the dependént
variable and the assigned directional volumes from each of the iterations

are the independent variables in the analysis,

RTPFL: This subroutine reads the route profiles from unit ROUTE and

prints the route profile tables.

CD: This is a labeled common area used to save the corridor intercept

records when GTLD. is run until subroutine CRDINT runs.

I1-25

LOGICAL DIVISION 10

General
This diviéion is called by the program MAIN and performs the

SOUTPUT NETWORK program.

Input: Unit NETWORK.,
Output: Printed network description.

Control Sections Used: OUINET and FMILNE.

Sequence of Subroutines Called
OUTNET ———>» FMTLNE

Descriptions of Individual Control Sections

OUINET: This subroutine writes the page headings and cails subroutine
FMTLNE to formét each line of the network, It reads the link records

from unit NETWORK and calls subroutine FMILNE to format this data for

from 1 to 4 links per line. This subroutine prints 50 nodes per page.

If a whole page of node numbers to be printed are not included in the
network (i.e., they have no connecting nodes), the printing ofbthe page

is suppressed. The data for a link that is printed is ANODE, BNODE,
jurisdiction, shaft, arrow, link speed, link distance and link impedance,
The link impedance printed is the link impedance which will be ﬁsed if
this flexible data record is used as unit NETWORK when ;Be next assignment

or BUILD TREES is run.

11-26

FMTLNE: This subroutine formats the link data of from one to four links
with the same ANODE to be printed on one line., If a link is a dummy
one-way link the literal ONE-WAY is printed for it along with its BNODE

and the other data for this link is not printed.

I1-27

LOGICAL DIVISION 11

General
This division is called by the program MAIN (in Logical Division 1)

and performs the $FRATAR FORECAST program.

Input: Parameter card and growth factor cards on unit 5 and trip matrix
on unit CTVOUT,

Output: Unit FRATAR., (Variable unit number CIVOUT is set equal to

unit FRATAR after the program is run.) A table of iteration growth factor
frequencies is also printed for each iteration.

Control Sections Used: FRATAR

Sequence of Subroutines Called
Logical Division 1 (MAIN)—=» FRATAR

Descriptioﬁs of Individual Control Sections

FRATAR: This subroutine reads a deck of zonal growth factors and uses
Fratar's method of successive approximations to generate a forecasted
-trip matrix, FEach approximation constitutes one iteration; the number
of repetitions is governed by either an iteration limit or a deviation

limit,

II-28

LOGICAL DIVISION 12

General
This division is called by the program MAIN (in Logicai Divison 1)
and performs the $MERGE program., It can be used to merge from two to

six trip matrices,

Input: Units MERGIN(1) to MERGIN(N)
(where N is between 2 and 6)

Output: Unit MRGOUT

Control Sections Used: MERG

Sequence of Subroutines Called

Logical Division 1 (MAIN) ———»MERG

Descriptions of Individual Control Sections

MERG: This subroutine reads a merge parameter card which specifies the
number of data sets to merge. The MERGIN and MRGOUT units must have
previously been specified on a unit control card. The parameter records
from these data sets are examined and the first zone of each subnet must
be the same, If any ére différent, an error message is printed and the
program stops. The largest last zone of each subnet is used for the
merged trip matri# which is written on MRGOUT. Then the trip matrices

are summed and written on unit MRGOUT,.

I1-29 -

LOGICAL DIVISION 13

‘General

This division is called by Logical Division 1 and'uses thé»WRT
subroutine in Logical Division 1, It basically performs the $DELETE
ASSIGNMENTS PROGRAM. As may be recalled, the $DELE'1‘E ASSIGNMENTS
program can delete up to 20 assignments from the NETWbRK data set and
can also replace fhe impedandes to be used on the next assignment
with the impedances used sn any previous assignment (even if the assign-
ment is being deleted), or it can modify the impedances accor&ing to the
impedance adjustment function. fhe WRT subroutine is used to output
the flexible record data set in the desired record format iypé (i.e.,
V or VB).
Input: O0ld flexible data record (unit 12), and DELETE ASSIGNMENTS
parameter cards from unit 5 (i,e., *IMPEDANCE, *ADJUST, *DELETE, and
*END cards).
Output: Updated flexible data record (unit NETWORK).

Control Sections: TUPDINT

Sequence of Subroutines Called

UPDTNT-———;’WRI (Logical Division 1)

Descriptions of Individual Subroutines

UPDINT: This subroutine basically performs the functions of the
S$DELETE ASSIGNMENTS program. The specific functibns performed are, of
course, determined by the parameter cards supplied by the user (i.e.,

the *IMPEDANCE, *ADJUST, *DELETE, and *END cards). It should be noted

II-30

that the last parameter card must be the *END card. It shouid furthér

be noted that if the *END card is the only parameter card provided

then the flexible record data set will simply be copied oh unit NETWORK.
The WRT sﬁbroutine (in Logical Divisionl) is used to write the

récords (of the flexible record’data set) on the unit NETWOﬁK using

the record format type V or VB, ThevWRT subroutine changes the record

format type specified in the DCB parameter of‘the DD card for the unit

NETWORK as either VS or VBS to V or VB respectively., Effectively,

OPENFT removes‘the span parameter, S, from the DCB., This was.implemented

to avoid problems céused by the FORTRAN Input/Output requirements of

certain versions of the Operating System,

II-31

LOGICAL DIVISION 14

General

‘This division prints the links which have non-zero count or -
capacity fields (whichever has been specified) during the $ASSIGN SELF-
BALANCING program, The directional link volumes and the link impedance
are listed for eaéh iteration and for the calculated weighted assignment
and the optional assignment made with the weighted impedances. The

count or capacity field is also listed.

Input: Flexible record data set on unit NEWNET,

Outpufz Printed list of links withvlinkbvolumes aﬁd impedances for
which the link count of link capacity field, whichever was used, is
hon—zero.

Control Sections Used: LNKLST.

Sequence of Subroutines Called

Logical Division 1 (MAIN) —-——3> LNKLST

Descriptions of Individual Control Sections
LNKLST: The function of this subroutine is listed in the general section

above,

I1-32

LOGICAL DIVISION 15

General

This section performs the $BUILD TREES function. It is also used

to perform part of the $ASSIGN SELF-BALANCING function.

Input: *TURN card; *TREE cards, unit NETWORK and possibly unit 49

(the old Paths data set) if the COPY option is on the *TURN card.
Qutput: Printed trees specified, Paths data set, and unit SEPARAT, the
separation matrix, |

Control Sections Used: PATHCL, ARRAYS, INITL1, PRPBLD, MOOR, FWTO,

" ITOA, TRPCKM, OUTTRE, WSL, and Logical Division 1.

Sequence of Programs Called

PRPBLD ,
//4' —=» Logical Divison 1
\\\\MDORE '
\\\&OUTTRE

TRPCKM

WSL

Logical Division 1 ———»PATHCL

Descriptions of Individual Control Sections

PATHCL: This is the control subroutine for this division. It defines
arrays uéed by subroutines éalled from this division. It reads the
network into core from unit NETWORK and changes it to the form used by
the tree builder subroutine. It controls the building of trees, the
printing of trees, tﬁe packing of the paths, and writes the Paths data

set and the separation matrix data sets.

II-33

ARRAYS: This is a labied common which containsvmost of the storage used
by subroufine PATHCL. |

INITL1l: This subroutine checks to éee that all turn type codes read

are valid and also checks the number of the nodes in the network. This
subroutine is not used.

PRPBLD: This subroutine reads the *TURN card and the *TREE cards which -
specify the turn penalty and the trees to be built and printed. The

COPY parameter is also specified on the *TURN card if it is usedQ

MOOR: This control section builds one minimum path tree‘each time it‘is
called. 1Its entry point is MOORE.

FWTO: This subrouting prints one line on the computer 6perators console
each time it is called. It is called at_approkimately five-minute intervals
during the tfee’building process and identifies the trees built_during that
period. |

ITOA: This subroutine converts a binary interger to EBCDIC format for
printing. |

TRPCKM: This subroutine packs an array of path indices’ffom 16 bit
integers to ten 3 bit integers per word. The control sections also
contains the entry point TEST which checks to see that an array of packed
path indices contains no indices of 6.

OUTTRE: This subroutiné prints one tree each time it is called.

WSL: This subroutine writes a record of separations for one tree for

the centroids only.

II-34

LOGICAL DIVISION 16

General

This section performs the loading of trees and printing of the
loaded network function for the following usér program options:

e $LOAD NETWORK

e SLOAD SELECTED LINKS

e SASSIGN SELF-BALANCING

Input: Flexible Record data set (unit NETWORK), Paths data set (Unit 50),
and parameter cards for LOAD SELECTED LINKS if it is run. The parameter
cards for LOAD SELECTED LINKS are *ALL, *LINKS, *NONE; *SEL, and *END.
Output: New Flexible Record data set (unit NEWNET), printed loaded
network, and Selected Interchanges data4set (DD name SELTRP) if LOAD
SELECTED LINKS is rum.

Control Sections Used: CLOAD, CLOSE, LOAD, UNPKX, SELECT, SVLOAD, GETVOL,

GIVL, OUTLLT, TURNM, GETRNS, and TRNMV.

Sequence of Programs Called

SLOAD NETWORK

”//;,UNPKX,
~ Logical Division 1 —2=» CLOAD ?LOAD ‘
OUTLLT ——=> TURNM —=> GETRNS

E\TRNMV \\TRNMV

II-35

SLOAD SELECTED LINKS '
"’)a'LOAD (entry point OPEN)

SELECT
/

Logical Division 1—>» CLOAD <:i;:UNPKX
\\\N\LOAD
CLOSE

ouLLT——2>TURNM ~—3>GETRNS —2> TRNMV

TRNMV

$ASSIGN SELF-BALANCING

//,2’

Logical Division 1 —» CLOAD =~—=>>LOAD

GETVOL
\\\3NSVLOAD el

OUTLLT ——>> TURNM —>» GETRNS ——=» TRNMV
TRNMV

Descriptions of Individual Control Sections

CLOAD: This subroutine controls the execution of this logical division.
It reads the network from unit NETWORK and modifies this to the format
needed for the LOAD subroutine. It initializes the directional link
volume array and the turn volume array to zero. It calls subroutine
SELECT 4if it is a LOAD SELECTED LINKS run, It readé the trip matrix and
‘the paths data sets., These are assumed to be in sort on the origin 20nes._
It calls subroutine LOAD to load trips in the network if there is both a
tree record and one or more trip records for an origin zone. After the
network is loaded CLOAD calls subroutine SVLOAD to save the loaded network
on unit 3 if an ASSIGN SELF-BALANCING run is in iteration 1 thru 5. CLOAD
then calls subroutine OUTLLT to print the loaded network.

- CLOSE: This subroutine closes data set SELTRP,

II-36

LOAD: This subroutine loads a trip record by adding each trip interchange
volume to all of the directional link volumes in the path connected between
the origin and destination zones of the trip interchange. Some turn
volumes are also summed in this process. This subroutine also writes a
record on unit SELTRP for each selected link crossed in loading each trip
interchange volume.

UNPKX: This subroutine unpacks the path indices and pléces them in half
words.

SELECT: This subroutine reads the parémetér cards of LOAD SELECTED LINKS.
For each *SEL card it writes one record on unit SELTRP and it marks both
of the one-way directional links as selected. This subroutine also reads
one of the following parameter cards: *ALL, *LINKS or *NONE. if_the
*LINKS card is read, this subroutine sets all turn codeé in core to 28.

If the *NONE card ié read, a logical vériable'is set to specify that the
loaded network will not be printed. |

SVLOAD: 'This subroutine writes the‘directional link volumes twice on
unit 3 and the tﬁrn volumes also on unit 3. It also sets up segment
sizes for the network which are small enough so that a segment of the
loaded network may be summed in core using the weights calculated for
ASSIGN SELF~BALANCING., The first set of link volumes written for each
segﬁent are in the same order as the 1inks in the network. Each of the
second set of the link volumes is in the reverse direction of the links

in the network,

- II-37

- GETVOL: This subroutine gets a group of link volumes between two integer
indexes and places them in a full word array.

GTVL: - This subroutine gets a group of link volumes which are the reverse
direction of those obtained for GETVOL. It also places these link
volumes in a full word array.

OUTLLT: This subroutine controls the printing of the loaded network. It
~prints page headings, calls subroutine TURNM to gef ﬁhe-link volumes and
turn volumes for a node and formats the directional link volume, non-
directional liﬁk volumes, and turn volumes,

TURNM: This subroutine gets the directional volumes, nondirectional
volumés, and turn volumessaved. It also calculates the other turn volumes
and marks which'fufn volumés should not be printed;because of one-way links.
GETRNS: This subroutine gets the turn voiumes which were saved and places
them in the turn volume matrix.

TRNMV: This subroutine adds two indices together and gets the aséigned
volumes indexed by the sum from a half word afray. If the half word is
negative, it is a flag and an index and this index is used to get the

actual volume from a full word array.

I1-38

LOGICAL DIVISION 17

General
This section is used when ASSIGN SELF-BALANCING is run to calculate

a weighted assignment.

Input: Unit NETWORK and unit 3.
Output: Unit NEWNET and the printed weighted loaded network.

Control Sections Used: WTSGLN, OUTWLT, GETRN, WGT, and WGTA.

Sequence of Programs Called:

Logical Division 1——=» WTSGLN ——3» OUTWLT ~———3» TRN ~———:3>» GETRN
N\wcfr
WGTA

Descriptions of Individual Control Sections

WTSGLN: This subroﬁtine reads unit 3 and using the weights for each
itération sums up the Weighted directional link volume, reverse directional
link volumes, and turn volumes for one segment in core. It then rewinds
unit 3 and calls subroutine OUIWLT to print this segment of the loaded
network., It repeats the above steps for other segments. The line counter
used by subroutine OUTWLT to print page headings is only initialized for
the first call to OUTWLI.

OUIWLT: This subroutine prints the loaded network for one segment of the
loaded network. It calles subroutine TRN to calculate the turn volumes
for one node. It reads the node numbers and the node nameé from unit
NETWORK and it writes the updated Flexible Record with the weighted

assignment volumes added on unit NEWNET.

II-39

TRN: This subroutine gets the weighted directional volumes the weighted
nondirectional volumes, and the wéighted turn volumes saved. It also
calculates the other weighted turn volumes and marks which turn volumes
shbuld not be ﬁrinted because of one-way links.

GETRN: This subfoutine gets thé weighted turn volumes which were saved
and places them in the turn volume matrix,

WGT: This subfoutine multiplies a group of volumes by‘an integer percent
and places the results in another array.

WGTA: This subréutine multiplies a group of volumes by an integer percent

and adds the results into another array.

IT-40

LOGICAL DIVISION 18

General

This divisionrprints the selected links output (i.e., the output
from SLOAD SELECTED LINKS). This division is unique in that it must be
a separate job (or at least 3 job steps) because it uses fhe IBM sort

program twice.

Input: Selected links data set SELTRP.

Scratch: First and secénd sorted data sets SORTOUT.

Output: Printed listing for each selected link of the zone pair trip
interchanges assigned to the selected link.

Programs used: The IBM Sort/MERGE program, the exit program E35, and
a Fortran progrém to list the selected links and the trip intérchanges

loaded through them (i.e., MAIN),

Sequence of Program Execution:

JOB | JoB JOB

STEP 1 STEP 2 STEP 3

IBM SORT - - IBM SORT MAIN (List Selected Links)
E 35

Summary of Individual Programs

IBM Sort/Merge Package: Refer to the 0S Sort/Merge Prograﬁmer's Guide,

SC 33-4007-1,

E35: This subroutine is called during JOB STEP 1 by the IBM Sort program,
It combines the trip interchange records for each zone pair associated

with a given selected link thereby reducing the number of records to be

II-41

sorted during JOB STEP 2, The combined trip interchange record, which
is outpﬁtted fdr each zone pair interchanging trips through a selected'k
link, contains both the directional and nondirectional zone pair ttips
through the selected link, The total nondirectional tfip volume assigned
to a selected link is also computed and outputted as a separate record.
(During JOB STEP 2, the combined interchange records are sorted using
the two sort keys: selected link number and nondirectional trip volume.)
MAIN (List Selected Links): This is a Fortran program which reads the
combined trip interchange records for the selected links (which were
sorted during JOB STEP 2 using the keys: Selgcted link index humber and
‘nondirectional zone pair volume) and priﬁts the interéhanges assigned

to each selected link (in descending order of magnitude of the néndirec—
‘tional volumes)vuntil either a limit parameter has been satisfied or

until all interchanges have been printed.

II-42

START PRINT SELECTED
LINKS JOB

L

COMBINE TWO DIRECTIONS
OF TRIP MOVEMENTS

THRU SAME LINK AND WRITE
SUM RECORD

E 35

SORT
ON KEY

OF LINK
INDEX AND
NON-DIRECTIONAL
VOLUME

INTERMEDIATE
SORTED DATA
SET

PRINT SELECTED LINKS
OUTPUT

END JOB

II-43

PROGRAM CROSS-REFERENCE

AND FLOWCHARTS

CROSS—-REFERENCE OF PROGRAMS

- FLOWCHARTS

CROSS-REFERENCE
OF PROGRAMS

A complete cross-reference of calling programs versus programs
called is provided in Table 4; This cross-reference serves both to
identify all programs used by a given calling program and to, conversely,
identify all calling programs which utilize a given program.

This cross-reference should prove especiallyvusefﬁl when considering
the modification of a program. For example, if modification is desired
in OPENFT when used in conjunction with GTLD, a quick reference to Table
4 indicates that OPENFT is also called by OUTLLT, UPDTNT, and VREC.
Therefore, any modifications in OPENFT should be compatible with all

four calling programs.

III-1

TABLE 4: CROSS-REFERENCE OF CALLING PROGRAMS
VERSUS PROGRAMS CALLED

CALLING PROGRAM

PROGRAMS
CALLED

ABEND
ALCP
ASMNET

CRDINT
FRATAR
GETRNS
GTLD
INITL1
MRGREC
NEWNET
REGRES
REVNET
RTPFL
SVLOAD
UPDTNT
REC
WGTLD
WSL
WTSGLN

CLOAD
CMPVH
CRD
LDSEL
LNKLST
MAIN
MERG
OUTLLT
OUTNET
OUTRIP
OUTTRE
OUTWLT
PATHCL
PRPBLD
PRPCTV
PRPRET
READVL
RTPLT
sC
SELECT
SUMEND
SUMRY
TREBLD
TRN
TREMV

ABEND

>
]
>

ALCP

ALOGLO

AMAX1

AMINL X) X

ASMNET X

CLOAD X

CLOSE X X

CLOSFT X 1 X I x X! x

CMPVH X

COPYFT) X

CRD X

CRDINT

DSQRT X | x

PMTLNE

FRATAR X

FRXPY

FRXPR

FWTO

GETDA ’_ X

GETRN

GETRNS

GETVOL

GILD

GTLNK

GTVL

1BCOM x| x xi x| x[x| x xUx! x| x| x! x| x| x{ x} x| x X

1816

ITOAB

(ad
[
Lol Lol Gl Lo
>
>
tad
>

LANA i X : x| x| X X} X X X

LANAH X

LANAL x| x| | xl xx X x| x| x} x) x|

Ll Ll B B

LBYTE : X X

LDSEL

LGLS . X x|l x X

Lad
tad
Lad
>
£
>

LGRS x| . xi x| x| ¥ x| x{ x{ x| I'x % x
LINE)

LNKLST . : «

III-2

TABLE 4: -(continued)

CALLING PROGRAM

PROGRAMS
CALLED

ASMNET
CLOAD
CRDINT
FRATAR
GETRNS
GTLD
INITLL
LDSEL
LNKLST
MAIN
MERG
MRGREC
NEWNET
OUTLLT
OUTNET
OUTRIP
OUTWLT
PATHCL
PRPBLD
PRPCTV
PRPNET
READVL
RFGRES
REVNET
TPFL
RTPLT
s¢
SELECT
SUMEND
SUMRY
SVLOAD
TREBLD
TRN
TRNMY
TT'RNM
WOTLD

ABEND

VREC

CMPVH
CRD

OPENFT) X

5
=]
>
>

OUTLLT

>

QUTNET X

OUTRIP hd

OUTTRE . X

OUTWLT]) %

PARAM X

PATHCL X

PLOT X

PLOTS | X

PRPBLD } X

PRPCTV X

PRENET X

PTLNK X

REGRES X

REVNET X

RTPFL) X

RTPLT] X

SBYTE X X

sC

SELECT

SQRT X

SUBFND

SUMEND

SUMRY

SVLOAD

SYMBOL

TEST . X

TIME X X X X X

TRN BB : X

TRNMV X

TRPCKM . %

TURNM X

UNPKX X X
UPDTNT . x

VSORT %

WGT
WGTA
WGTLD

WRITE

WSL

WISGLN

- ITI-3

FLOWCHARTS

The following are the fiowcﬁarts associated with the significant
subroufines in the Large Network Package. For cbnvenience, these flowcharts
are in alphaﬁetical order.

The objective of the flowcharts is to provide the programmer with
an overview of thé operation of each individual program. The level
of detail contained in each‘flowchart is felt to be minimal for such
an ﬁnderstanding.v It should also be ﬁoted thaf these fléwcharté are
intended to be used in conjunction with information contained in sections
V and VI (and, in some instances, section VII) when réviewing or studyiﬁg,

a particular’program listing.

I1I~4

ALCP

SUBROUTINE

ALCP

CALCULATE REGRESSION
VALUES FOR A LINEAR CURVE
FIT OF THE ITERATION
ASSIGNMENTS TO EITHER
COUNT OR CAP.

SET CONVERGENCE
VARIABLE TO INDICATE THIS
IS THE LAST ITERATION

PRINT RESULTS
OF REGRESSION

" RETURN

III-5

(el nd
o

SUBROUTINE

LDSEL

SUBROUTINE

CLOAD

SET OPTION FOR SELECTED
LINK OUTPUT

SET OPTION FOR NO
SELECTED LINK
OUTPUT

\

READ IN NETWORK FROM
FLEXIBLE RECORD
AND REARRANGE LINK

WRITE ERROR MESSACE
AND STOP 7

READ SELECTED LINK
PARAMETER CARDS, MARK
SELECTED LINKS IN
CORE, OUTPUT PARAMETER
RECORDS ON SELTRP, AND
LIST PARAMETERS USED.

DATA TO SAVE ONLY
BNODE AND LAST LINK
FLAG

READ IN PARAMETER
RECORDS FROM TRIP
MATRIX

ARE THE
ZONE. RANGES FROI
THE TRIP MATRIX
AND FLEXIBLE
RECORD CONSISTENT

READ A PATH RECORD
AND UNPACK THE PATH.
READ A TRIP RECORD

1S THE
SELECTED LINK
OPTION SET FOR
' OUTPUT?

INITIALIZE ARRAYS
FOR LOADING. PRINT THE

STOP 50

WRITE ERROR MESSAGE AND

NUMBER OF TURNING
MOVEMENTS TQ SAVE

. 1S THE
NUMBER OF
TURNING MOVEMENTS
TO SAVE - 300007

READ ANOTHER PATH
RECORD AND UNPACK

(e N}

READ ANOTHER TRIP RECORD

END OF DATA SET

/ o

—

PATH

LOAD THE TRIPS ON THE

IS THIS
A SELECTED
LINKS LOAD

REMOVE SELECTED LINKS

CLOSE SELTRI' DATA
SET .

CODES FROM THE
LINK ARRAY,

IS THIS
AN ASSIGN
SELF~BALANCING?

]

[OUTLLT \

PRINT THE LOADED
NETWORK AND UPDATE
THE FLEXIBLE DATA
RECORD

RETURN

NO

III-6

SVLOAD . \

SAVE THE DIRECTIONAL
AND NON-DIRECTION
LINK VOLUMES AND TURN
VOLUMES FOR THIS
ETERATION ON UNIT 3.

END OF DATA SET

p-aal

=

CMPVH

INTTIALIZE SUMMATION
VARIABLES TO ZERO

SUM UP THE VEHIC)

MILES FOR THE JURISDIC-
TIONAL/FUNCTIONAL CROSS
CLASSTFICATIONS

ARE THERE
ANY LINK COUNT
OR LINK VOLUME
FIELDS?

CALCULATE AND PRINT
JURISDICTION SUMMARY
BY LOCALS, ARTERIALS,
AND FREEWAYS

DO LESS
THAN 5%
OF THE LINKS HAVE
ZERO FUNCTIONAL
CLASS CODES?

CALCULATE AND PRINT THE
"JURISDICTIONAL/FUNCTIONAL

- CROSS CLASSIFICATION
OF ASSIGNED VOLUMES"
SUMMARY

ARE THERE
'ANY LINK
COUNT FIELDS?

CALCULATE AND PRINT THE

" JURISDICTIONAL/FUNCTIONAL
CROSS CLASSIFICATION

OF COUNTED VOLUMES™

SUMMARY

IS THE

. VEHLICLE MILES
SUM FOR

CAPACITIES = 07

CALCULATE AND PRINT THE
"JURLSDICTTONAL/FUNCTIONAL
CROSS CLASSIFICATION

OF CAPACITIES" SUMMARY

NO

ARE THERE
ANY LINK
COUNT FIELDS?

PRINT REGRESSION OF
ASSIGNED VOLUMES VERSUS
COUNTED VOLUMES BY ROUTE

ARE THERE
ANY NON-ZERO LINK
CAPACITY FIELDS?

PRINT REGRESSION OF
ASSIGNED VOLUMES
VERSUS LINK CAPACITIES
BY ROUTE

1S THERE
A PREVIOUS
ASSIGNMENT ON THE-
NETWORK DATA SET?

PRINT REGRESSION OF
ASSIGNED VOLUMES
VERSUS PREVIOUS

RETURN

“CMPVH

ASSIGNED VOLUMES BY
ROUTE

II1-7

END OF DATA SET

ey T
SUBROUTINE

CRD

OR A CONTROL CARD

READ A UNIT CONTROL CARD

PRINT PACKAGE DATE AND
NAME. SET I TO INDEX
OF CONTROL CARD TYPE

RETURN

PRINT INVALID CONTROL
CARD MESSAGE

Is THIS
UNIT CONTROL
CARD?

NORMAL READ

SAVE HEADER

STOP 9999

CHANGE UNIT NUMBERS
SPECIFIED AND PRINT
ALL UNTT NUMBER .

PRINT END OF FILE ON

5 MESSAGE

STOP 0

II1-8

CRDINT

RETURN

ARE THERE
ANY CORRIDOR
INTERCEPTS?

READ HEADER RECORDS
FOR ALL ASSIGNMENTS
FROM FLEXIBLE DATA
RECORD AND PRINT,

I

SET UP FORMATS FOR
NUMBER OF ASSIGNMENTS.
CALCULATE LENGTH OF
RECORDS TO SORT.

i

r

VSORT

SORT CORRIDOR
INTERCEPT RECORDS,
IN CORE, ON THE
CORRIDOR INTERCEPT

\

PRINT CORRIDOR
INTERCEPTS BY
INTERCEPT NUMBER
WITH PERCENTS AND
TOTAL BY CORRIDOR
INTERCEPT

|

NG

ITI-9

LRI

*ASSEMBLY - LANGUAGE

SUBROUTINE

E3S

GET RECORD ADDRESSES

DOES IT HAVE
THE SAME LINK INDEX
AND ZONE PAIRS AS
THE PREVIOUS
RECORD

ADD DIRECTIONAL
VOLUME TO SUM.

SUM TWO DIRECTIONAL
VOLUMES AND PUT IN
PREVIOUS OUTPUT

REC. OR DIRECTION FLAGS.

DELETE INPUT RECORD
AND RETURN RC = 4

I1I-10

£ 35

ADD DIRECTIONAL
VOLUME TO SUM.

MOVE VOLUME, FROM LARGE
ZONE NUMBER TO SMALL
ZONE NUMBER, TO OTHER
DIRECTIONAL VOLUME.

DOES THIS
RECORD HAVE
A VOLUME FROM THE
SMALL ZONE TO THE
LARGE ZONE

YES

CONT

MOVE DIRECTIQNAL VOLUME
IN A5 NON-DIRECTIONAL
VOLUME

PASS INPUT RECORD TO
OUTPUT AND RETURN,
RC =0

RECORD SEQUENCE CHECK.

SET FLAG TO DELETE OUTPUT .

REARRANGE SELECT RECORD.

SET INDEXP = LINK INDEX
OF SELECT RECORD

OUTPUT SELECT RECORD,
RETURN, RC = 0

MOVE DIRECTIONAL
VOLUME IN AS NON-
DIRECTIONAL VOLUME

BUILD SUM RECORD, PUT

> SUM IN SUM RECORD. SET

DOES THE
OUTPUT RECORD
HAVE A NON-
DIRECTIONAL
VOLUME?

RETURN LAST TIME, END
SORT, RC = 8 -

SUM = 0

INSERT SUM RECORD IN
OUTPUT AND RETURN,
RC = 12

ITI-11

E 35

* ASSEMBLY LANGUAGE

SUBROUTINE

FMTLNE *

SAVE REGISTERS. GET
ADDRESSES OF ARGUMENTS

GET ANODE AND NUMBER
OF LINKS TO PRINT ON
THIS LINE, NDS.

MOVE THE FDIT PATTERN
INTO THE OUTPUT LINE.

SET I =1

CONVERT THE ANODE TO
PACKED DECIMAL AND
EDIT TNTO THE OUTPUT
LINE

GET LINK I TO PRINT
ON THIS LINE

SEPARATE THE LINK INTO
SHAFT AND ARROW, LINK
TIME, AND B NODE

EDIT IN THE B NODE

IS 1T A
ONE-WAY LINK IN
THE OPPOSITE
DIRECTION?

FMTLNE

MOVE IN LITERAL
*CONE WAY) '

EDIT IN TIME. MOVE
EBCDIC SHAFT AND ARROW
N

GET JURISDICTION,
DISTANCE, AND SPEED FOR
LINK I.

EDIT IN SPEED, EDIT
IN DISTANCE, MOVE IN
JURISDICTION.

I=I1+1

FILL THE REST OF THE
LINE WITH BLANKS

RETURN

ITI-12

PRINT MESSAGE:

IMPROPER GROWTH FACTOR

P1ELD

RETURN

SUBROUTINE

FRATAR

INITIALIZE SUMMATION
VARIABLES TO ZERO.
INITIALIZE OTHER
VARIABLES .

READ PARAMETER CARD AND
PRINT NUMBER OF ITERA-
TIONS SPECIFIED

1S B~-DECK
FIELD SPECIFIED
VALID?

PRINT GROWTH FACTOR
FIELD TYPE SPECIFIED ON
PARAMETER CARD

COPY TRIP MATRIX FROM
UNIT CTVOUT TO UNIT
FRATAR AND SUM TRIP
ENDS

READ B-DECK CARDS AND
EXAMINE FOR ERRORS,
CORRECTING THOSE WHICH
ARE CORRECTABLE AND
PRINT ERRORS

PRINT "B DECK READ
COMPLETE" :

FRATAR

EXAMINE GROWTH FACTORS
FOR ZEROS OR MISSING

GROWTH FACTORS AND
PRINT ERROR MESSAGES IF
ANY

ARE THERE
ANY ZERO

GROWTH FACTORS?

4j = GROWTH FACTOR
FOR ZONE

t;4= EXISTING INTER-
CHANGE BETWEEN
ZONE i AND ,j.

m = NUMBER OF ZONES

READ LAST TRIP MATRIX
AND CALCULATE
m m
S;=L8 t..g,+1It,.g
jul W g1 985

HAVE THE
MAXIMUM NUMBER
OF ITERATIONS
BEEN RUN?

DO THE
NEW GROWTH
FACTORS SATISFY
THE CONVERGENCE
TEST

1S THE
OUTPUT OF THE

V. =e./s,
T = e’l«/st

where:

m o
=I t..+ I¢,,
Jel It a1

e.
k3

ALSO SUM

m m
E.=i T, +5% T.,.
Cogml TP ger W

READ LAST TRIP MATRIX

AND CALCULATE NEW

FORECASTED TRIPS
wiw H

Ti,j - tij“igj(_ﬂ'z)

AND WRITE NEW TRIP MATRIX

CALCULATE GROWTH FACTORS
FOR NEXT ITERATION BY:
E

& =

<

‘GET DISTRIBUTION OF
g; IN THE RANGE .9
T6 1.1 AND PRINT.

LAST ‘1TERATION
ON UNIT FRATAR?

RETURN

III-14

SUBROUTINE

GETDAT *

SET_UP ENTRY' POINT
NAME OF DATE (FOR
ERROR TRACE CALLS)
SAVE GENERAL PURPOSE:
REGISTERS AND R 13

EXECUTE "TIME" MACRO -
TO GET YEAR AKD DAY OF
YBAR FROM SYSTEM.

PUT DATR IN "TEMP¥,
RESTORE R 13

MOVE THE LAST TWO

. DIGITS OF THE YEAR TO
THR YY POSITION OF THE
DATE IN THE ARGUMENT WORK
AREA.

INITIALIZE LOOP "LEAP YR"
FOR A LEAP YEAR

DIVIDE THE LAST TWO
DIGITS OF THE YEAR BY 4

, INITIALIZE LOOP
YLEAPYR" FOR A NOK
LEAP YEAR

I8 TRE
> 3667

PIND MONTH OF YEAR.

-MOVE 3 CHARACTER
*ABBREVIATION OF MONTH

TO ARG. WORK AREA.

EBCDIC AND MOVE TO 4-6

III-15

GETDAT

*ASSEMBLY LANGUAGE

GETRN

'GETRN

Y

PUT TURNING MOVEMENTS
WHICH HAVE BEEN SAVED
FOR THIS NODE IN THE
TURNING MOVEMENT
MATRIX

=)

ITI-16

GILD

SUBROUTINE

GTLD

INITIALIZE SUMMATION
VARIABLES TO ZERO.

! OPEN DATA SET ROUTE
FOR ROUTE PROFILE

IS A

A‘s’::g}mmﬂ‘ \ OPEN' NEWNET UNIT FOR
OUTPUT

TO BE CALCULATED?

READ - PARAMETER RECORD
FROM UNIT NETWORK

1S A ADD ONE TO NUMBER
OF ASSIGNMENTS AND

HTED ASSIGNMENT
w&(z)c“ CALCULATED? WRITE PARAMETER RECORD
ON UNIT NETWORK

READ HEADER RECORDS AND
WRITE THESE RECORDS ON .
UNIT PLF ALSO SAVE

LAST TWO HEADER RECORDS

INITIALIZE MORE
SUMMATION VARIABLES
TO ZERO AND INITIALIZE
OTHER VARIABLES

III-17

READ A
NODE RECORD
FROM UNIT NETWORK,
IS THIS EOD?

NL = NUMBER OF
LINKS FROM THIS NODE
1=0

READ A LINK RECORD
WITH NO ASSIGNMENTS

ARE THERE
ANY "ASSIGNMENTS
ON THIS
FLEXIBLE RECORD

READ A LINK RECORD
WITH NONDIRECTIONAL
ASSIGNED VOLUMES

1S A
WEIGHTED
ASSIGNMENT TO
BE CALCULATED?

CALCULATE WEIGHTED
IMPEDANCE AND WEIGHT
VOLUME FOR THIS LINK

WRITE NEW LINK RECORD
ON UNIT NEWNET WITH
WEIGHTED IMPLEANCE AND
VOLUME AS NEXT
ASSIGNMENT

GTLD

ARE. GROUND CAPACITIES
COUNTS OR
CAPACITIES TO

BE USED?

GET LINK CAPACITY AND
PUT IN NCC

COUNTS

GET LINK GROUND COUNT
-AND PUT IN NCC

ARE THE

NUMBER OF
ASSIGNMENTS > 1
AND IS NCC > O

NO

MAKE SUMMATIONS FOR
CROSS CLASSIFICATIONS

GET LINK JURISDICTION,
SPEED, DISTANCE, TIME,
LAST ASSIGNED NON-
DIRECTIONAL VOLUME, AND
ROUTE CODE

IS EITHER
NODE IN THIS
LINK-A
CENTROID?

IS THE
LINK COUNT
FIELD ZERO?

MAKE SUMMATIONS FOR
REGRESSIONS OF

ASSIGNED VOLUME VERSUS

LINK COUNTS BY ROUTE

ITII-18

YES

1S THE
CAPACITY FIELD
OF THIS LINK

2ERO?

MAKE SUMMATIONS FOR
REGRESSION OF ASSIGNED
VOLUMES VERSUS LINK
CAPACITIES BY ROUTE

IS THE

NUMBER OF
ASSIGNMENTS = 17

MAKE. SUMMATIONS FOR
REGRESSION OF ASSIGNED
VOLUMES VERSUS PREVIOUS
ASSIGNED VOLUMES BY
ROUTE

MAKE SUMMATIONS FOR
VEHICLE HOURS -
VEHICLE MILES SUMMARY
CLASSIFIED BY JURIS-
DICTION CODE VERSUS 3
LINK TYPES

MAKE SUMMATIONS FOR
VEHICLE HOURS, VEHICLE
MILES SUMMARY CLASSIFIED
BY JURISDICTION VERSUS
FUNCTIONAL CLASS (ALSO
FOR CAP. AND COUNT)

WRITE RECORD FOR THE
ROUTE PROFILE ON UNIT
PLF

YES

1S THE

ROUTE > 0?
AND A NODE <
B NODE?

ITI-19

"1 ETTHER
NODE OF THE
LINK A CENTROID?
OR IS NCC = 07

MAKE SUMMATIONS FOR
A REGRESSTON OF LINK
VOLUMES VERSUS NCC,
COUNT OR CAPACITY.

IS THE

CORRIDOR
INTERCEPT = 0 OR
A NODE < B NODE?

SAVE CORRIDOR INTERCEPT
RECORD FOR THIS LINK

IN CORE, INCREMENT COUNTER
OF CORRIDOR INT. RECORDS

I=1I+]1

(INCREMENT COUNT OF
LINK RECORDS FOR THIS
NODE RECORD)

CONVERT SUMMATIONS ON
VEHICLE HOURS, VEHICLE
MILES, AND NETWORK MILES
TO CORRECT UNITS

FOR OUTPUT

CALCULATE THE NUMBER
OF BYTES OF CORRIDOR
INTERCEPT WORDS IN
CORE.

PRINT V/C CROSS
CLASSIFICATION FROM
LAST TWO ASSIGNMENTS

PRINT CROSS CLASSIFICATION
OF LINK COUNTS BY V/C
RATIO FROM LAST TWO
ASSTGNMENTS

CAPACITIES

" PRINT CROSS CLASSIFICATION
‘OF LINK CAPACITIES

BY V/C RATIO FROM LAST
TWO ASSIGNMENTS

CLOSE AND REWIND ALL
DATA SETS USED

4

=

III-20

*ASSEMBLY LANGUAGE

SUBROUTINE

GIVL®

FIND FIRST NODE OF LINKS
TO GET "IN" LINK
VOLUMES FOR.

NODE | FOUND

SET NKF = THE LINK
INDEX OF THE FIRST OUT
LINK FROM NODE TO BE
USED.

SET NKL = INDEX
(NODE + 1) -~ 1.

STOP 11

NODE = NODE + 1,
NKF = NKL + 1,
NKL = INDEX(NODE +
1) -1

GET THE REVERSE
DIRECTIONAL VOLUMES
OF LINKS NKF TO NKL
AND MOVE TO ARRAY BUF.

ITI-21

GTVL

INTTLL

SUBROUTINE

INITLY

SUM UP THE NUMBER OF
TURNING MOVEMENTS

TO SAVE 1N THE LOAD
PROGRAM CHECK TURN CODES.

1

=D

III-22

SUBROUTINE

LNKLST

REVIND UNIT NEWWET

REWIND UNIT NETWORK

" PRINT ASSIGIMENTS FROM
THE ASSIGH SELY-BALANCING
AND LINK THPEDANCES.

I=1+1

III-23

LNKLST

*ASSEMBLY LANGUAGE

SUBROUTINE

LOAD

SAVE REGISTERS AND
ESTABLISH A NEW
SAVE AREA

MOVE UNSUBSCRIPTED
ARGUMENTS

MOVE ADDRESSES OF ARRAYS,
SUBTRACT 8 FROM ADDRESSES

SET UP BASE REGISTERS -
FOR ARRAYS -

SET READSW TO

INDICATE THE LAST TRIP
MATRIX RECORD READ
HAS BEEN USED.

I = THE NUMBER OF
ITEMS IN THIS VOLUME

IIT-24

non

GET 1"FH INTERCHANGE
ITEM FROM TRIP MATRIX
RECURD AND SEPARATE
INTO VOLUME, VOLL,
AND DESTINATTON

NUDE, START.

YES

GET XR WHICH IS THE
NEXT NODE BACK IN
‘THE PATH FROM START

ABEND 70, DUMP
LINK
NOT IN
NETWORK

FIND LINK FROM XR

TO START AND COUNT
THE NUMBER OF LINKS
IT IS FROM THE FIRST
LINK FROM NODE XR AND
PUT [N lOUT

LINK FOUND

GET [PR WHICH 1S THE
NEXT NODE BACK IN THE
PATH FROM NODE XR.

FIND LINK FROM XR .
TO IPR AND COUNT FHE LINK

NUMBER OF LINKS [¥ NOT IN
S FROM THE FIRST LINK

FROM NODE XR AND PUT NETWORK
THE NUMBER IN IN.

1S THE
LINK FROM XR NO
TO START A

SELECTED LINK?

/ PUT (MACRO) \

GET ADDRESS OF BUFFER
T0 BUILD SELECTED LINK
RECORD IN.

GET LINK ADDRESS OF
OPPOSITE ONE-WAY
SELECTED LINK.

WHICH IS
THE SMALLEST
ONE -WAY SELECTED
LINK INDEX?

START TO XR

LINK XR
TO START

PUT THE LINK INDEX
OF XR TO START AS A
HALF WORK INTEGER
IN LOCATIONS O AND 1
OF THE RECORD.

LOAD

ABEND. 71, DUMP

IS THE
ORIGIN CENTROID

5
NATION CENTRUGID

OF THE TRIP
INTERCHANGE >] 4 2 ORIGIN CENTROID
DESTINATION h- & ZERO
CENTROID 10 . 4 VOLUNE
. 14 21
DISP. LENGTH
BYTES BYTES CONTENTS
2 2 OR1GIN CENTROID
4 2 DESTINATION CEN.
6 4 VOLUME
10 4 o
14 2 10
3 V
RST

III-25

LOAD

YES
Al
PUT THE LINK INDEX
OF START TO XR AS A
HALF WORK INTEGER IN
LOCATIONS 0 AND 1 NO
OF THE RECORD.
GET TURN CODE, IND,
FOR NODE XR
DISP. LENGTH
BYTES BYTES CONTENTS 1S THE
2 2 DESTINATION ORIGIN CENTROID
CENTROID OF THE TRIP
4 . 2 ORIGIN CEN. INTERCHANGE > DES—
6 4 ZERO TINATION CENTROID
10 4 VOLUME
1% 2 5
A9000
DISP. LENGTH
BYTES BYTES CONTENTS
2 2 ORIGIN CEN.
4 2 DESTINATION
CENTROID
6 4 VOLUME
10 4 ZERO
14 2 2
RST -
—]
AT THIS POINT THE
SELECTED LINK RECORD B'S L
IS BUILT AND IN ITS
BUFFER.
4

GET. LINK VOLUME OR
INDEX TO IT IN
OVERFLOW TABLE OF
LINK XR TO START

GET LINK VOLUME AND
ADD INTERCHANGE VOLUME
AND STORE IN VOL ARRAY
IF < 32767, OTHERWISE

STORE IN OVERFLOW ARRAY

GET IPR = THE PATH
NODE BACK FROM NODE XR 4

ITI-26

LOAD

1-9, | 1112 10 26 13, 17,] 18, B X
. , 21 23,] 24 2
14-16, & 19 AND 28 22, 23 ' ' ’
A6
4 [{
ID = IDSP3(IN, IOUT) - t
’ ID = IDSP4L (IN,100T) i = IDSP42(TN, I0UT) ID = IDSP44 (IN, TOUT)
D = IDSP5(IN,IOUT) D = IDSP6(IN, 10UT) ID = IDSP43 (IN,IOUT)
4)
ID INDICATES WHETHER
TO SAVE THE TURNING
MOVEMENT FROM IPR-
A9000 XR- START AND IT IS ALSO
THE RELATIVE INDEX
OF WHERE TO SAVE IT .
IS YES
ID = X'FO'? AG

ABEND 101

GET INDEX OF TURNING
MOVEMENT VOLUME BY
ADDING ID TO INDEX
OF PIRST TURNING
MOVEMENT FOR NODE XR

111-27

GET TURN VOLUME OR
INDEX FROM TRNTB
ADD TRIP INTERCHANGE
VOLUME

IF THE NEW TURN VOLUME
< 32767 STORE IT BACK
IN THE TRNTB ARRAY
OTHERWISE STORE IN
OVERF AND BUILD INDEX
AND STORE IN TRNTB IF
NEEDED

START = XR

A2

Al

I=I-1

i DOl

LOAD

¥1

PROGRAM

MAIN

SKIP TO THE TOP OF A
PAGE. SET THE EXECUTION
TIME TO ZERO. TSUM = 0

CLEAR THE HEADER TO
BLANKS ’

GETDAT

L _\
) Q gg %‘;?-mﬂ! FOR))

TIME

SET IX TO TIME OF
DAY POR TIMING.

/ TIME

Lo

~—

SET 1Z TO TIME OF
DAY FOR TIMING.

T = (IZ = IX)/6000.
TSUM = TSUM + T,
PRINT T AND TSUM,

IX = 12

GET INDEX I WHICH
INDICATES CONTROL CARD
READ.

III-29

MALN

MATN

=1 1«39 I =5
!
PRECTV UMEND
[PRPNET \ / \ [5 A I.= 69 thru 11 I =179
M3 L]
’ " ""PREPARE TRIP "
'PREPARE NETWORK' VOLUMES" "SUM '!'RI{ ENDS ‘
I =12 |thru tb,
" ¢ 18 und 19y
\ 1 1
M4
M1 M1 M1

I = 2

/ OUTNET

"OUTNET NETWORK"

M1

L= 4

I= 69 "LOAD NETWORK"

QUTRIP S
RES = _FALSE,
"QUTPUT TRIP ,
VOLUMES" ITER = 1.
Y.
CLOAD S
M1 l

III-30

LOAD THE TREES AND
PRINT THE LOADED
NETWORK

CNVRG = .TRUE.

r

\

PRINT SUMMARIES
AND CROSS CLASSIFI-
CATIONS,

M1

¥3

RES = ,FALSE.,
ITER = 1

PATHCL

“BUILD TREES"

M1l

1-69.

STOP

\ I = 9 ¥ "LOAD SELECTED LINKS"

I=10

[

FRATAR

RES = .FALSE.,
ITER = 1

/AT —

USE LDSEL ENTRY POINT
T0 LOAD SELECTED LINKS.

ICNVRG = .TRUE.

/] \

FRINT SUMMARIES AND
CROSS CLASSIFICATIONS.

ITI-31

"FRATAR FORECAST"

'iL.

1= 11

MERG

PMERGE"

a\

M4
i
!
i
i

I=16 1= 19
1=12 1= 139 =140 / PRPNET \ / RTPLT
1 USE REVNET ENTRY

POINT. “REVISE

NETWORK"

“PLOT ROUTE PROFILES"

I=15

PRPNET

USE ASMNET ENTRY
POINT. "ASSEMBLE
NETWORK"

i

1= 18 9

UPDTNT

"DELETE ASSIGNMENTS"

M1

III1-32

MATN

RES = ,TRUE.,
CNVRG = .FALSE.,
ITER = 1

MOVE LITERAL 'ITER'
AND ITER NUMBER TO
END OF HEADER.

[PATHCL

BUILD TREES FOR
ITERATION ITER.

/ CLOAD

LOAD THE NETWORK.
- PRINT THE LOADED :
NETWORK IF ITER = 1.

yi Sy \

PRINT SOME OF THE
SUMMARIES .

SWITCH UNIT NUMBERS OF
.UNIT NETWORK AND NEWNET.
K = ITER. ITER = ITER + 1.

MOVE LITERAL 'TOTAL'
TO END OF HEADER.

WGTLD \

CALCULATE PERCENT TO
WEIGHT EACH ITERATION

[. wrsew \

CALCULATE AND PRINT A -
WEIGHTED ASSIGNMENT.

RES = .FALSE.

MAIN

K=K=-1

Is AN
ASSIGNMENT .USING
WEIGHTED IMPEDANCES
TO BE RUN?

SWITCH UNIT NETWORK
AND NEWNET NUMBERS.

T
[micm

BUILD TREES USING
WEIGHTED IMPEDANCES

)

CLOAD \

A
tmm THE TREES AND
< {PRINT LOADED NETWORK,

[SUMRY \

PRINT ALL SUMMARIES,
ROUTE PROFILES AND
CORRIDOR INT.

SWITCH UNIT NETWORK
AND NEWNET NUMBERS.

i

[ome T\

LIST THE IMPEDANCES

AND NONDIRECTIONAL

LINK VOLUMES FOR LINKS
WITH CHANGED IMPEDANCES.

PRINT MESSAGE WITH UNIT
NUMBER ON WHICH THE

FLEXIBLE. RECORD WAS LAST ,
WRITTEN

I1I-34

M1

MATN

SUBROUTINE

MERG

SET CTVOUT TO UNIT
MERGOUT

IRITIALIZE FLAGS TO
INDICATE THAT WO
EOD HAS BEEN REACHED

PRINT ERROR MESSAGE:
INVALID *REEL CARD,
EXECUTION DELETED.
ALSO PRINT THE #REEL
CARD.

STOP 998

PRINT ERROR MESSAGE
WITH NUMBER OF
SUBKETS AND NUMBER
OF DATA SETS TO
MERGE.,

SToP 997

READ PARAMETER
RECORD FROM FIRST
DATA SET TO MERCE.
SET MOSUB = NUMBER
OF SUBKETS ON THIS
DATA SET.

READ 1'TH MERGE
DATA SETS PARAMETER
RECORD

SET FLAG T0 ENDICATE
EOD REACHED ON I'TH
MERGE DATA SET.

III-35

/7 18 THE
FIRST CENTROID
OF SUBNET J THE SAME ON
THE FIRST AMD

1'TH DATA
sers

PRINT ERROR MESSAGE

GET MAXTMUM LAST

LSTHO(J)

JeJ+1

I=1+1

is
1 > THE NUMBER
OF DATA SETS TO
MERGE

REWIND MRGOUT DATA
SET. WRITE THE
PARAMETER RECORD
FOR THE MRGOUT
DATA SET.

GET THE LARGEST
NUMBER OF CENTROIDS
IN A SUBNET AND PUT
IN MAX.

ISUB= 1

IFST = FIRST CENTROID
FOR SUBNET ISUB. .
LST = LAST CENTROID
FOR SUBNET ISUB

NODE = IFST

LSUB = 1

INITIALIZE VOLUME
SUMMING ARRAY TO

ZERO FOR MAX WORDS. .

MERG

COMPARE
CENTROLD NUMBER
READ LAST FROM

DATA SET I:
NODE

HAS AN
EOD BEEN
REACHED ON MERGE
DATA SET 1?7

1S THE
SUBNET NUMBER
OF THE RECORD

READ ANOTHER RECORD
FROM MERGE DATA SET
L .

55

FROM DATA SET I
= LSUB

SUM THE VOLUMES IN THIS
RECORD IN THE VOLUME

SUMMING ARRAY

I=1I+1 -+

IS 1>

No
. THE NUMBER

OF DATA SETS
TO MERGE

PACK THE SUMMED
VOLUMES AND WRITE THEM
IN ONE OR MORE RECORDS
ON THE MRGOUT DATA
SET

LSUB = LSUB + 1

1s
LSUB > NOSUB?

ITT-36

NO

MR 5

NODE = NODE + 1

Is
NODE > LST

ISUB = ISUB + 1

18
ISUB > NOSUB?

END FILE MRGOUT
REWIND MRGOUT

REWIND ALL MERGE
DATA SETS.

=)

III-37

SET A FLAG TO INDICATE
THAN AN EOD HAS BEBN
REACHED ON MERGE DATA
SET I

MR 7

MERG

SUBROUTINE

MOORE

SAVE THE GENERAL
PURPOSE REGISTERS

SET UP A SAVE AREA
POR THIS PROGRAM
AND USE REGISTER
13 AS THE BASE
REGISTER.

. INITIALIZE EACH LOCATION
OF THE PATH ARRAY

TO INDICATE THE
CORRESPONDING NODE

HAS NOT BEEN REACHED
(CODE 7).

INITIALIZE THE FIRST
AND LAST ARRAY LIST

[POINTERS TO INDICATE
NULL LISTS

‘SET CT = 0
SET I = HOME ZONE.
PUT I IN THE ZERO
iTIME LIST.

GET ARGUMENTS HOME
NODE, NUMBER OF NODES
AND TURN PENALTY.

SET ARROWA(I) =.12
FOR NO- TURN PENALTY

- ON HOME ZONE.

GET ARRAY ADDRESSES

PUT ZONE 1 IN TIME
LIST O BY LAST(0) =
I, FIRST(0) = 1.

SET THE CUMULATIVE
TIME TABLE TO A

TIME OF 326.77 MINUTES

SET PRED(I) = O,
SUCC(I) = 0, CUM(I)
=0, R114 =1

MﬂORf

MOORE

Y

M2

. A
A 1050

ADD TURN PENALTY,

SET 1 = SUCE(D), IF ANY, T0.LINK TIME.

THIS IS A NODE IN THE
SEQUENCE TABLE IN THE
SMALLEST TIME LIST.

A 1060
ADD CUMULATIVE TIME
TO NODE I.
SET LASTB = THE
PREVIOUS NODE TO REACH i
THE PRESENT NODE.
1
— IS THIS
A 1063 YES . A SRORTER O
TIME TO NODE K?
L GET THE ARROW FLAG
OF THE LINK USED T0

1 REACH NODE I. . -

18 1T y
A FREEWAY JES -
LINK
SET J = INDEX (I)
No
A
A 1100 .
GET ARROW FLAG OF THE
LINK AND SAVE IN ARROWA(K)
M6 : GET LINK INDEXED
e | BY J

IS NODE
K A CENTROID?

IS THE
B NODE OF THE
LINK = LASTB? -

YESE,

UNPACK ITEMS IN THE
LINK. (SHAFT, ARROW,
LINK TIME, K = [}
B NODE) .

ITI-39

1S NODE
K IN THE
SEQUENCE TABLE?

- SAVE NEW TIME TO
NODE K IN SAVEA.

SET M = OLD TIME TO
NODE K MODULUS 1024.

FIND NODE K IN TIME
LIST M AND REMOVE
IT FROM THAT LIST.

SET CUM(K) = SAVEA.
SET M = SAVEA MODULUS
1024

PUT NODE K IN TIME
LIST M, AND PUT
BACK POINTER FROM
NODE K TO THE KODE
I IN BACK(K)

M3

¥5

SET CUM(K) = NEW

GET NEXT NODE IN
SEQUENCE TABLE (THE
ONE WITH THE SMALLEST
TIME TO IT.) BUT

IN I. ‘

CUMDLATIVE TIME TO
CENTROID K.

Ja=J+1

M6

SEQUENCE

ITT-40

TABLE WAS | EMPTY

RETURN

MOORE

SUBROUTINE

MRGREC

MRGREC

OLDNET = 12
NET = 13
REWIND 12

- ARE THERE
ANY ASSIGNMENTS
ON THE OLD
FLEXTBLE DATA
REC. (12)?

MRG = LNK1.GT.C

(ARE THERE ANY RECORDS
ON-UNIT 3) MRG2 =
LNK2.GT.0 (ARE THERE
ANY RECORDS ON UNIT 11)

COPY HEADER RECORDS
FROM PREVIOUS ASSIGN-
MENTS FROM UNLT 12
TO UNIT 13

REWIND NET

SET INDEXES FOR NEXT
LINKS IN CORE OR
RECORDS READ FROM
UNITS 3 OR 11 TO
FIRST LINK (SET T0 0)

PRINT MESSAGE
HNET (2 MISSING

CALCULATE NUMBER OF
LINKS IN NETWORK

STOP 12

SET LINK IMPEDANCES
TO MAX. TIME, AND
PREVIOUS ASSIGNED
VOLUMES TO 0 FOR

20 ASSIGNMENTS FOR
20 LINKS.

UNIT 12 |- FROM NUMBER OF LINKS
T PROCESSED IN NEWNET
MISSING | . + LINKS ON UNIT 12-2%
DELETES
0K

SET NNLNK = 0,

TO SUM ACUTAL #

OF LINKS. WRITE
PARAMETER RECORD ON
UNIT 13.

READ FIRST NODE
RECORD FROM UNFT 12

PRINT MESSAGE

1S THE

GET A NODE, GET
TURN CODE, GFT LINK
CLASS ¥ AVAILABLE,
FORM A SORT KEY FOR
THE A NODE.

1 LAST NODE
THAT THI: MAXIMUM NODE
NUMBER 1§ EXCEEDED NUMBER > THE MAXTHUM
ERR = ERR + 1 NODE \IUHBEM.
\ WRITE HEADER RECORD

AND DATE ON UNIT 13

READ A LINK RECORD
(WITH LINK IMPEDANCES
AND VOLUMES FROM
PREVIOUS ASSIGNMENTS
iF ANY)

SKIP FIRST HEADER
RECORD ON UNTT 12

GFT OTHER VARIABLES
FOR THE LINK

ITI-41

MRGREC

REWIND UNIT & (NODE),
KAMES SET NODE OF LAST

RECORD READ TO 0.

ARE THERE
ANY RECORDS
ON UNIT 3?

READ A RECORD FROM
UNIT 3

READ NEXT CARD FROM
LINK DATA INPUT.

READ A RECORD FROM
UNIT 11

ON UNIT 11?

SET NODE NUMBER OF
LAST NODE RECORD
READ TO 16383 T0 SKIP
READING NODE RECORDS

FIRST LINK IN CORE

<
{ A [)

GET SMALLEST ANODE
FROM THE FOUR AVA!LAII.!-
SOURCES - (ACTUALLY 2 ny
\ 4 SOURCES)

UNPACK DATA FROM
PIRST LINK FRON UNIT
1

1S.THE
ANODE = 163837

SET SORT KEY POR

LINK FROM UNIT 3

SO IT WILL BE SKIPPED.
SET JTS A NODE TO 16383

SET SORT KEY FOR LINK
FROM UNIT 11 SO 1T WILL |
BE SKIPPED. SET ITS
A NODE TO 16383,

oN UNIT 117

III-42

CORE

UNIT 3

MRGEREC

WHICH SORT
KEY IS
SMALLEST?

OLD FLEXIBLE RECORD
UNIT 12

UNIT 11

1S THE ANODE
OF THIS LINK =
A NODE?

IS THIS
A DFLETE
L.INK?

LD

Lk

SAVE THE B NODE OF
THIS LINK AT INDEX

= LD +1

L=L+1
SAVE THE LINK
*AT INDEX L.

1S THE

18 THIS
A DELETE
LINK?

ANODE OF THIS
LINK = A NODE?

18 THE
ANODE OF
THIS LINK
= A NODE?

YES

L=L+1.
SAVE THIS LINK AT INDEX
L. SET ITS CARD COUNT
= -1. ALSO SAVE LINK
IMPEDANCE AND VOLUMES
FROM ASSIGNMENTS

YES

L=L+1
SAVE THE LINK AT INDEX
L.

1S THE
ANODE OF THIS
LINK = A NODE?

IS THIS
A DELETE
LiNK?

b =1D+1,

SAVE THE B NODE OF
THIS LINK AT INDEX
1.

ID=1LDb+1,

SAVE THE B NODE OF
THIS LINK AT INDEX

LD.

ARE THERE
ANY MORE LINKS
FROM THIS NODE?

INCREMENT TO GET
‘THE NEXT LINK

GTLNK

INCREMENT TO GET 1
THE NEXT LINK.

READ A& LINK RECORD
(WITH LINK IMPEDANCES
AND VOLUMES IF ANY)

L=1L+1
SAVE THE LINK AT INDEX
L.

!

UNPACK DATA FROM
NEXT LINK IN CORE

UNPACK DATA FROM THE

INCREMENT TO GET
NEXT LINK

RECORD.. GET LINK
CLASS IF AVAILABLE AND |
FORM NEW SORT KEY.
J 1 . 1S THE
NEXT LINK IN
THE
nzx;sum(m THE LAST RECORD
THE ZAST. RECORD READ?
READ? NORMAL READ
y SAVE OLD. NODE REC.
YES READ A NODE RECORD FROM
*1 UNIT 12. GET A NODE AND
SET LINK COUNT 70 1.
READ NEXT RECORD READ“HEXT RECORD
FROM UNIT 3. - SET FROM UNIT 11. SET -
4 LOCATTON T0 GET NEXT E0D LOCATION TO GET NEXT
LINK TO O.) LINK TO 0.
SET SORT KEY TO .
. SKIP AND SET A NODE)
I GTLNK 1 T0 16383 ‘
GTLNK \
UNPACK DATA FROM
LINK FROM UNIT 3. UNPACK. DATA FROM LINK
FROM UNLT 11
l ‘ s Y

ITI-43°

REWIND 3

M4

END FILE 13
REWIND 13

REWIND NODE NAME
UNIT (4)

PRINT MESSAGE THAT
THE NUMBER OF LINKS
EXCEEDS THE MAXIMUM
ERR.= ERR + 1

18

NNLNK > THAN
THE MAXIMUM

NUMBER OF LINKS

YES

L

REWIND NETWORK DATA
SET

PRINT MESSAGE
ABOUT MISSING .
DD CARD FOR UNIT
NETWORK .

[/ COPYFT \

COPY THE FLEXIBLE

- ERROR . RECORD DATA SET FROM
UNIT 13 TO UNIT
NETWORK REPLACING #
OF LINKS.

STOP 13

COPY | COMPLETED

D

III-44

MRGREC

MRGREC

IS b = 07
(ARE THERE ANY

LINKS TO DELETE?)

DELETE FIRST LINK
WITH THE SAME B NODE
FROM THIS LINK. IF
LINK NOT FOUND PRINT
ERROR MESSAGE,

ERR = ERR + 1 REPEAT
1D-1 TIMES

ONE LINK FROM LINK
DATA, ONE FROM
UNIT 12. ADD THE
OLD ASSIGNMENTS
ONTO THE NEW LINK,
DELETE THE OLD LINK

REPLACE

t

EITHER TWO LINKS FROM
LINK DATA OR TWO

LINKS FROM UNIT 12
WITH SAME A NODE AND

B NODE, PRINT DUPLICATE
LINK MESSAGE.

ERR = ERR + 1

Y

ARE THERE
ANY DUPLICATE
LINKS NOW?

DUPLICATE

EXAMINE NEXT LINKS

HAVE ALL
LINKS FROM
THIS A NODE

BEEN EXAMINED

FIND LINKS WHICH HAVE

NOT BEEN DELETED.

SUM NUMBER OF LINKS
IN EACH LINK CLASS
AND TOTAL NUMBER OF
LINKS L.

IS L = 0?
(ARE THERE ANY
LINKS LEFT?)

NO

GET NEW TURN CODE
FROM NUMBER OF LINKS M6
IN EACH LINK CLASS. :

ITI-45

PRINT MESSAGE THAT
THE A NODE IS NOT
IN THE NETWORK.
ERR = ERR + 1

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

ADD CODE FOR FREEWAY

TO TURN CODE

MOVE NEW NODE NAME

TO NODE RECORD AREA.
READ NEXT NODE NAME
RECORD.

IS THERE
A NODE NAME
RECORD FOR

THIS A NODE?

KEEP OLD NODE NAME

GET COORDINATES
AND KEEP NON ZERO
SUB AREA CODE. READ
NEW A NODE RECORD

IS THE
NEW RECORD
AN ENDNET OR
N CARD?

SET COORDINATES TO -

SET NODE NUMBER OF
A NODE RECORD = 16383

¥ 8

ITII-46

MRGREC

GET OLD COORDINATES
IF THE NEW ONES ARE
ZERO. GET OLD SUB
AREA CODE IF THE NEW
ONE IS ZERO

IS THERE
AN OLD NODE
RECORD FOR
THIS ANODE

WRITE NEW NODE RECORD
ON UNIT 13. SUM NUMBER

PRINT ERROR MESSAGE
THAT THERE ARE MORE
THAN 6 LINKS. ERR =
ERR + 1

—§—

OF LINKS WRITTEN IN
NNLNK

ARE THERE
MORE THAN 6 LINKS
FOR THIS NODE?

CENTROID

IS THIS

1S THERE AT
LEAST ONE-WAY TO
THE CENTROID AND
NNE-WAY FROM .IT?

ANODE A CENTROID?

NODE

MRGREC

PRINT MESSAGE:
1SOLATED CENTROID
ERR = ERR + 1

PRINT MESSAGE:
ISOLATED NODE.
ERR = ERR + 1

[T \

WRITE A LINK RECORD
FOR SAVED LINK NX(I)

I=1I+41

I1I-47

SET LINK IMPEDANCES
TO MAX. TIME, AND
PREVIOUS ASSIGNED
VOLUMES TO O FOR 20
ASSIGNMENTS FOR 20
LINKS

SUBROUTINE

NEWNET

INITIALIZE NUMBER
OF WORDS WRITTEN -ON
UNIT 3 AND UNIT 11
TO ZERO. INITIALIZE
NUMBER OF LINK WORDS
IN CORE TO ZERO

INITIALIZE OTHER
VARIABLES REWIND 4
IL = -1 (# LINKS IN
CORE)

PMT?
_ (WHAT TYPE
“OF LINK

DATA)

.TRUE."

“.FALSE.

(OLD LINK
DATA FORMAT)

READ SUBNETWORK
PARAMETER CARD.

SET NUMBER OF SUBNETS -
= 1 AND SET SUBNET

OF PARAMETER CARD = 1,

(NEW LINK DATA FORMAT)

SAVE FIRST NODE
NUMBER, LAST CENTROID
NUMBER, LAST ARTERIAL
NUMBER, AND LAST
FREEWAY NODE NUMBER
OF THIS SUBNET.

INITIALIZE VARIABLES
NOT ON OLD LINK DATA.
GROUND COUNT = 0,
CAPACITY =~ 0, FUNC-
TIONAL CLASSIFICATION
= 0, ROUTE CODE = 0.

CORRIDOR INTERCEPT = 0,
SUBAREA CODE =
SUBNETWORK NUMBER

READ NUMBER OF SUBNETS
CARD INCLUDING FIELD

TO GET SPEED AND DISTANCE
FROM

NEWNET

IS THE FIELD
_FOR SPEED AND
DISTANCE
SPECIFIED = 0

SET TO USE THE THIRD
SPEED AND DISTANCE
F1ELDS ON THE LINK
DATA CARDS

PRINT NUMBER OF

SUBNETS MESSAGE

READ SUBNETWORK
PARAMETER CARD.

CALCULATE NUMBER OF Bd
NODES IN SUBNETWORK

PRINT INFORMATION

1 TO EXPECTED SUB~
NETWORK NUMBER

IS THIS
CORRECT
SUBNETWORK?

PRINT MESSAGE,
INCORRECT SUBNET
NUMBER

ITI-48

READ A LINK DATA
CARD IN OLD FORMAT.
_ADD L TO CARD COUNT

ARE COLUMNS
1~ 3 EQUAL
“END"?

CONVERT COLUH!;S 2-6

FALSE
(OLD LINK DATA

PMT?
(WHAT TYPE
OF LINK DATA?)
TRUE

(NEW LINK DATA

READ A LINK DATA CARD
IN THE NEW FORMAT

FORMAT) FORMAT)

SET CHARACTER READ
FROM COLUMN 1 TO
CHARACTER READ FROM
COLUMN 4

_TRIPS. ROUND CAPACITY

ROUND GROUND COUNT
TO UNITS OF 100

TO UNITS OF 100 TRIPS.
ADD 1 TO CARD COUNT.

FROM EBCDIC TO INTEGER
FOR A NODE NUMBER

CONVERT FUNCTIONAL
CLASS FIELD FROM .
‘EBCDIC TO HEXADECIMAL

DOES THE
FUNCTIONAL CLASS FIELD
CONTAIN A CODE D-9
OR A-F?

YES

SET DELETE CODE = 0

SET DELETE CODE TO
1 TO INDICATE THIS
1S A DELETE CARD

SET FUNCTIONAL
CLASS TO ZERO

SUM NUMBER OF

DELETE CARDS. SET
SPEED FOR SECOND LINK .
TO THAT OF THE FIRST
LINK.

CONVERT JURISDICTION
FROM EBCDIC TO
HEXADECIMAL

SET CODE TO INDICATE
SPEED FIELD

FROM COLUMN 1 TO YES

ARE

COLUMNS 1-~3
EQUAL TO

"Em"?

NO

N2

ITII-49

NEWNET

SET NTM = 0 TO
KEEP THE MILEAGE
IN THE VEHICLE
MILES SUMMARY

1S THE
DUPLICATE MILEAGE
ELIMINATOR = 17

SET NTM = 1

TO ELIMINATE THE
MILEAGE OF. THIS LINK
IN THE VEHICLE MILES
SUMMARY

IS COLUMN

1 (0R 4)

EQUAL TO -
ot

Is
THE BNODE

NO < THE LAST NODE

~ OF THIS
SUBNET
?

Is

THE ANODE

< THE LAST NODE OF
THIS SUBNET

?

IS THE
B NODE > THE

FIRST NODE OF
THIS SUBNET?

PRINT AN ERROR MESSAGE
THAT THERE IS AN
INVALID NODE NUMBER.
ERROR = ERROR + 1

IS THE
A NODE > THE
FIRST NODE OF
THIS SUBNET?

NEWNET

NTM = 1?
(IS THE DELETE
~ MILEAGE ELIMINATOR
. =17)

SET LINK TIME = MAX.

SET SPEED = 1 m.p.h.

SET DIST. = 9.99 MILES,
SET SHAFT = 0, ARROW = 0

WHAT IS
THE TIME SPEED
FLAG = ?

SOR 1

PRINT MESSAGE NO
TIME OR SPEED INDICATOR
ERROR = ERROR + 1

LINK TIME = SPEED
OR TIME FIELD.
CALCULATE SPEED FROM
TIME AND DISTANCE.

SET SPEED = SPEED OR
TIME FIELD

IS LINK
TIME = 0?

CALCULATE LINK TIME
FROM SPEED AND DISTANCE

IS LINK
TIME > MAX-
IMUM LINK

TIME?

PRINT MESSAGFK THAT
LINK TIME EXCEEDS
MAXIMUM. ERROR = ERROR
+ 1 SET LINK TIME TO
MAX. LINK TIME

ISHAFT = -1

I1I-50

NEWNET

N 12 |

HAS THE
LAST SUBNET
LINK DATA
BEEN PROCESSED?

‘ READ A PARTITION CARD
OR AN ENDNET CARD.
CRDCNT = CRDCNT + 1

PRINT MESSAGE INVALID
PARTITION CARD.

ERROR = ERROR + 1 PROHIBIT CARD?

. IsiIr
A PARTITION
CARD

LEFT PAR-
TITION NODE
> O AND RIGHT
PARTITION NODE
>0 y

RIGHT
PARTITION NODE

[PTLNK A
PUT A LINK IN CORE WITH
THE LEFT PARTITION
NODE, RIGHT PART.

NODES LINK DIST, = @,

\ SPEED = 33.3 MPH, TIME
=0

PUT A LINK IN CORE
WITH TRE RIGHT
PARTITION NODE,
LEFT PART. NODE,
LINK DIST. = O,
SPEED = 33.3,

TIME = 0, LINK C = 2

IL = IL + 2

Is IL
> THE MAX.
NUMBER OF LINKS

> 0 SAVED IN
9 CORE?

INKZ = IL 41
GET TIME OF DAY TO
TIME SORT.

4
VSORT \

.

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF A NODE,
LINK CLASS, CARD
COUNT

GET TIME OF DAY,
CALCULATE SORT TIME
AND SUM IN IT3.
REWIND LNKTMP

> LEFT PARTITION
NODE?

1 SHAFT = 0

1 SHAFT = 1

PRINT ERROR MESSAGE
THAT THE SHAFT CODE
1S [NVALID.
I SHAFT = 0

1 ARROW » I SHAFT

SET I ARROW TO
OPPOSITE OF I SHAFT

IS THE
- ARROW CODE
EQUAL 1 OR -7

SET LINK CLASS

I CLASS = 0 (ONE-
WAY LINK TO B NODE)

I CLASS = 1
{TWO-WAY LINK)

™T
.. AND TWO-WAY
INDICATOR .NE.
17

1 CLASS = 1
(TWO~WAY LINK)

NOT. PMT
AND TWO-WAY
INDICATOR NOT

3
¥ES
!
TRUE
\
YES
v
N7
¥ES
i
N8
> o
N 10

INCREMENT COUNT OF
LINKS IN CORE (IL =
IL + 1)

/ PTLNK \

PACK THE LINK
INFORMATION INTO
A 22 BYTE RECORD +
PUT IN LINUS (IL)

1S THIS
A DELETE
LINK?

18 THE
A NODE OF
THIS LINK > THE
LAST NODE NAME
RECORD?

NO

NEWNET

WRITE A NODE NAME
RECORD ON UNIT &,

SET LAST NODE WRLITTEN

= A NODE

]

FMT AND
TWO-WAY
INDICATOR
«NE. 17

FALSE

AND TWO=WAY
INDICATOR
\EQ.1?

FALSE

18
THE TWO-WAY
INDICATOR
BLANK?

Is
THE TWO-WAY
INDICATOR
A "2

NO

is
THE . TWO-WAY
INDICATOR
A "s"7

TRUE

YES

SET LINK TIME TO
SECOND TIME OR SPEED
FIELD CALCULATE LINK
SPEED FROM TIME AND
DISTANCE

Is
THE TWO-WAY
INDICATOR = 1?

~ 18
THE TWO-WAY
INDICATOR = 2?

YES

PRINT AN ERROR MESSAGE,
INVALID TWO-WAY INDICA-
TOR, ERROR = ERROR + 1

IL = IL - 1
(THIS REMOVES THE
PREVIOUS ONE-WAY LINK)

N1l

SET SPEED = SECOND
TIME OR SPEED. FIELD -

PRINT ERROR MESSAGE
THAT LINK TIME IS >
MAX. ERROR = ERROR
+ 1 SET LINK TIME TO
MAX.

IL=IL+1
(ADD-ONE TO THE

NUMBER OF LINKS IN
o CORE)

III-53

NEWNET

IL=3
(SET LINK CLASS TO
DUMMY ONE-WAY LINK)

PACK THE LINK INFOR~
MATION INTO A 22 BYTE
RECORD AND PUT IN
LINKS (IL)

INK2 = IL + 1 =
NUMBER OF LINKS IN
CORE. GET TIME OF
DAY TO TIME SORT.

v

[vsonf \

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF A NODE,
LINK CLASS, CARD COUNT

!

GET TIME OF DAY AND -
CALCULATE SORT TIME
AND SUM IN IT3. REWIND
LNKTMP

) 4

[mmum .ﬂ

ADD A TRAILER LINK
VITH AN A NODE OF
16383 TO MARK THE
END OF THE LINKS.

CALCULATE THE NUMBER
OF BLOCKS OF LINKS.
IL = IL + 2, NBLK =
(IL + 39)/40, (40
LINKS/RECORD) .

WRITE THE SORTED
LINKS IN CORE OR
LNKTMP IN BLOCKS

OF 40 LINKS/RECORD.

END FILE LNKTMP
REWIND LNKTMP

LNK 1 = LNK 2
LK 2 =0

LNKTMP = 11

IL = -1
(SET POR NO LINKS
IN CORE)

III-54

NEWNET

\
PTLNK

_—
L

ADD A TRAILER LINK
WITH AN ANODE

OF 16383 TO MARK
THE END OF THE
LINKS

LNK2 = LNK2 + 1
CALCULATE NUMBER OF
RECORDS TO WRITE
ON LNKTMP.

WRITE THE SORTED
LINKS' IN CORE ON
LNKTMP IN BLOCKS
OF 40 LINKS/RECORD

END FILE LNKTMP
REWIND LNKTMP

LNK1 = LNK2
LNK2 = 0

LERTIP = -1
l
LNKDMP = 11
l

IL = -1
(SET NUMBER OF

LINKS IN CORE TO
ZERO)

III-55

noLwwe s

PRINT SUBNET
NUMBER

HAVE
ALL SUBNETS
BEEN PROCESSED?

PRINT SUBNET NUMBER.

NEWNET

END FILE 4, REWIND -

4 (NODE NAME DATA SET)

N 12

IL=IL +1 .
GET TIME OF DAY TO
TIME SORT

\ &
[VSORT \

SORT 22 BYTE LINK
RECORDS IN CORE ON
THE KEY OF ANODE,
LINK CLASS, CARD COUNT

GET TIME OF DAY,
CALCULATE SORT TIME
AND ADD TO IT3 AND
CONVERT TO MINUTES

PRINT LINK SORT TIME.

/ PTLNK \

ADD A TRAILER LINK
WITH AN ANODE OF -
16383 TO MARK THE
END OF THE LINKS

IL= IL +1

RETURN

III-56

ourtLT

SUBROUTINE

OUTLLTY

\ SET NL 5 » NUMBER
OF WORDS IN LINK
RECORDS ON UNIT NETWORK.

RES = .TRUE. [F THIS A
IS AN ASSIGN SELF- PRINT = (.NOT. RES

BALANCING RUN. ITER .OR. ITER .EQ. 1)

= ITERATION NUMBER. .AND. QUTN

OUTN = .TRUE. IF THE
LOADED NETWORK IS TO
BE PRINTED . R

REWIND UNIT NETWORK

SET INUM 2 = TRE NUMBER
OF LINKS FROM NODE I. L1

! .

[opENFT |

OPEN DATA SET NEWNET
AS THE FIRST DCB.

READ PARAMETER RECORD
FROM. UNIT NETWORK, ADD : L TURNM
ONE TO THE NUMBER
OF ASSIGNMENTS.

L

4 GET ONE-WAY AND TWO-
WAY LINK VOLUMES,

CALCULATE TURN VOLUMES

AND FLAG WHICH TO PRINT.

¥y

[\

WRITE NEW PARAMETER
RECORD ON UNIT NEWNET

READ A NODE.RECORD
FROM UNIT NETWORK.
FOR NODE 1.

NLL = THE NUMBER OF
ASSIGNMENTS FROM UNIT
NETWORK + 1.

WRT

™
L~

WRITE NUDE RECORD
FOR NODE 1 ON UNIT

NEWNET.
!
)
COPY NLL HRADER RECORDS
FROM NETWORK TO NEWNET.
)
: I=1
i
/ AT A
. WRITE HFADER RECORD L3

FOR THIS ASS1CNMENT.

III-57

"READ A LINK RECORD
FROM UNIT NETWORK

GET ITP ={THE LINK
IMPEDANCE [USED FOR
THIS. ASSIGNMENT

GET C = GROUND COUNT
OR CAPACITY (WHICH
EVER IS SPECIFIED BY
THE *TURN CARD)

IS THIS
_NOT AN ASSIGN
SELF-BALANCING
JOR. C = 07

IF
CAPACITY FIELD
AND LINK VOLUME
> €?

UPDATE LINK IMPEDANCE
* -TO USE ON THE NEXT
ASSIGNMENT

SET THE NEW LINK
IMPEDANCE TO 0,01

1S.THE

SET THE NEW LINK
IMPEDANCE TO 10.23

o’

WRITE THE NEW LINK
RECORD WITH ITS ITP
AND TWO-WAY LINK VOLUME
FOR THIS ASSIGNMENT.

J=J4+1]

WILL THE
PRINTED OUTPUT

FROM NODE I
FIT ON THIS PAGE?

I1I-58

NEW LINK
IMPEDANCE = 0
AND ITP £ 07
PRINT PAGE HEADER
FOR THE LOADED
NETWORK :
NO
 /
i
L6

SKIP ONE LINE ON
THE PRINTED OUTPUT.

‘TRUE

PRINT?

FALSE

GET BNODE NUMBERS AND
SET UP ONE~WAY LITERAL
FOR THESE LINKS

FIND THE NUMBER OF
LINKS FROM .NODE I
WHICH ARE NOT DUMMY
LINKS (REVERSE OF
ONE-WAY LINKS)

GET THE BNODE
NUMBERS AND DIRECTIONAL
VOLUMES FOR THESE LINKS.

INITIALIZE N = 2 FOR
TWO LINES OF OUTPUT FOR
DIRECTIONAL VOLUMES

1S NODE
1 CONNECTED TO
MORE THAN

4 NODES?

INITIALIZE N'= 1 FOR .
ONE LINE OF OUTPUT FOR
DIRECTIONAL VOLUMES.

I1I-59

BUILD FORMAT FOR <

ouriLl

DIRECTIONAL VOLUMES

K=K+1

PRINT DIRECT1ONAL
VOLUMES FOR NODE [

. WITH FORMAT BUILT ABOVE’

SET THE NODE NAME TO
BLANKS .

GET THE BNODE NUMBERS
. AND NON-DIRECTIONAL
VOLUMES FOR THESE
LINKS.

IS NODE
1 CONNECTED TO
MORE THAN 4
LINKS?

INITIZLIZE N = 1 FOR

ONE LINE OF PRINTED
OUTPUT FOR NONDIRECTIONAL
LINK VOLUMES.

INITIALLZE N = 2 FOR
TWO LINES OF PRINTED
OUTPUT FOR NON-DIRKCTIONAI
LINK VOLUMES

PRINT NONDIRECTIONAL
LINK VOLUMES FOR
NODE I.

ol K=K+1

PRINT?

GET NODE NUMBER AND
TURN VOLUMES ORGANIZED
TO PRINT, COUNT NUMBER
OF TURN VOLUMES TO
PRINT,

PRINT?

PRINT TURN VOLUMES

I=1+1

REWIND THE NETWORK
DATA SET

1

l CLOSFT A

FOR NODE I.

III-60

CLOSE THE NEWNET
DATA SET AND RELEASE
THE BUFFERS

QUTLLI

SUBROUTINE

OUTNET

,,.
i

b

C Y

PRINT PAGE HEADER.
SET WUMBER OF LINES
PRINTED, LINES = 6.

IA=M

READ A WODE RECORD RO -
* NETWORK, SET ANODE =

. TO THE NODE MRMBER.

LINES = LINES + 1

N =1

ITI-61

NT S

QUTNET

NT 2

JL = MINO (4, NLL)
WHERE NLL = THE NUMBER
OF LINKS FROM ANODE

READ JL LINKS FROM
UNIT NETWORK

FORMAT THE JL
LINKS FOR PRINTING

PRINT THE JL LINKS
ON ONE LINE.

READ THE NEXT NODE
RECORD FROM UNIT NETWORK.

IA=IA+1

NA = NA + 50

4

J

SKIP TO THE TOP
OF A NEW PAGE. REVIND
UNIT NETWORK.

1

&

5

&

&

i

D)

III-62

OUTNET

SUBROUTINE

OUTRIP

o)
REVIND UNIT CTVOUT

READ PARAMETER RECORD
FROM CTVOUT

GET NUMBER OF CENTROIDS
PER SUBNET :

ROUND NUMBER OF
CENTROIDS/SUBNET TO
NEXT HIGHER INCREMENT
OF 10 SO THAT OUTPUT
WILL BE CORRECT

PRINT NUMBER OF SUBNETS

PRINT FIRST AND LAST
CENTROID NUMBER FOR
EACH SUBNET

SET DISPLACEMENT OF
WHERE 10 PUT THE
VOLUMES IN THE NTAB
ARRAY FOR SUBNET ONE
T0 0, (K(1) = 0).

SET DISPLACEMENT OF
WHERE TO PUT VOLUMES
FOR THE OTHER SUBNETS
IN THE NTAB ARRAY,

READ A TRIP RECORD FROM
URIT CTVOUT :

CLEAR THE NTAB ARRAY

FOR 4050 WORDS TO ZERO.

PRINT PAGE HEADER WITH
ORIGIN CENTROID.

oT 2

III-63

OUTRIP

OUTRIP

oT 2

SAVE ORIGIN CENTROID,
HOMEND, IN ICOM.

200 1 yRoM UNIT CTIVOUT.
SET HOMEWD = ORIG
CENTROID OF TRIS RECOSD.

LIST THR VOLUMES IN THE
NTAB ARRAY IN GROUPS OF
10/LINE WITH DESTINATION NODE
WUMBERS, DON'T PRIMT LINES !
FOR WHICH ALL TEN VOLUMES
ARE ZERO. PRINT A NEW PAGE
HEADING EVERY SO LINES

1]
aj
3

IIT-64

QUTTRE

SUBROUTINE

OUTTRE

PRINT TREE WITH DESTINA-
TION NODE AND ADJACENT L
NODES AND TIME TO EACH NODE
WHICH WAS REACHED

RETURN

IIT-65

SUBROUTINE

OUTWLT

INDXL = 1,
INDXT = 1

IS THE
FIRST NODE IN
THIS SEGMENT, F$,
ONE?

- REWIND UNIT NETWORK

OPENFT

L~

OPEN UNIT NEWNET.

READ THE PARAMETER

RECORD FROM UNIT NETWORK.

ADD ONE TO THE NUMBER OF
ASSIGNMENTS IN THE PARA-

METER RECORD READ, PUT THE
RESULT IN NL 1.

B

/’ . WRT

A

WRITE THE MODIFIED

PARAMETER RECORD ON

UNIT NEWNET.

NEWNET.

COPY THE HEADER
RECORDS FROM UNIT
NETWORK TO UNIT

1

L WRT

\

WRITE THE HEADER AND
DATE 'IN CORE ON UNIT

NEWNET .

ITL = (NL1 - 1 - ITER)
"2+ 6,
NL4 = 2%(NLL - 1) + 4

NLS = NL4 + 1,
NL7? % NLS + 2,
IPAGE = 100

READ A NODE RECORD
FROM UNIT NETWORK

EOD

NORMAL | READ

RECORD,

SET 1 = THE ANODE
NUMBER OF THE NODE

ANODF..

SET INUM2 = THE
NUMBER OF LINKS FOR

SET TURNCD = THE
TURN CODE FOR ANODE.

QUTWLT

IS I > THE
LAST NODE IN
THIS SEGMENT?

/——

WRITE THE NODE RECORD
FOR ANODE ON NEWNET.

READ A LINK RECORD
FROM UNIT NETWORK.

PUT T IN THE LINK
RECORD POR THE IMPED-

GET THE WEIGHTED
DIRECTIONAL LINK
VOLUMES POR THIS LINK.

GET THE BNODE NUMBER
OF THIS LINK.

CALCULATE THE WEIGHTED

LINK IMPEDANCE AND PUT
INT.

II1-67

ARCE USED ON THE
LAST ASSIGNMENT,

PUT T IN THE LINK
TIMPEDANCE TO BE USED
ON THE NEXT ASSIGNMENT.

L e \

WRITE THE UPDATED
LINK RECORD ON URIT
NEWNET. .

JeJ+1

WILL THE
OUTPUT FOR
NODE I FIT

ON THIS PAGE?

PRINT PAGE HEADER,
"IPAGE = 5

OUTWLT

WS

SCALE THE DIRECTIONAL
VOLUMES, NONDIRECTIONAL
VOLUMES, AND TURN
VOLUMES TO UNITS.

REWIND UNIT NETWORK

/ CLOSFT \

SKIP ONE LINE ON :
THE OUTPUT. CLOSE UNIT NEWNET

RETURN

PRINT THE DIRECTIONAL
VOLUMES FOR NODE 1

PRINT THE NONDIRECTIONAL
LINK VOLUMES FOR NODE I.

ARE
THERE ANY
TURN VOLUMES?

PRINT THE TURN VOLUMES. w2

III-68

GUTWLI

SUBROUTINE

PATHCL

INITIALIZE SUMMATION

VARIABLE, IBLD, FOR
TREE BUILD TIME TO
ZERO.

REWIND UNIT NETWORK,
UNIT SEPARAT, AND
UNIT 50 (FOR TREES).

READ PARAMETER FRECORD

FROM UNIT NETWORK

1s
THIS AN
ASSIGN SELF-
BALANCING RUN,
AND ITER. NOT
1?

GET FIRST AND LAST
CENTROID NUMBERS -IN
EACH SUBNET AND CAL-
CULATE NUMBER OF
CENTROIDS

WRITE SEPARATION MATRIX
HEADER RECORD

SET COPY TO TRUE IF
THE *TURN CARD SPEC-
IFIES COPY, OTHERWISE
SET IT TO FALSE

ITI-69

PATHCL

PRINT MESSAGE THAT AN
OLD TREE TAPE WILL BE
COPIED AND MISSING

TREES WILL BE REBUILT

.

REWIND UNIT 49

FALSE

INITIALIZE INDEX1 ARRAY
TO ZEROES AND BACK ARRAY
TO A CONSTANT TO INDI-
CATE NO TURN MOVEMENTS

SKIP THE HEADER RECORDS
ON UNIT NETWORK.

SET LNDX=1 (THIS IS
THE INDEX USED TO SAVE
LINK RECORDS)

READ A NODE RECORD
FROM UNIT NETWORK

NORMAL READ

|

- READ NL LINKS INTO THE
LINKS1 ARRAY STARTING
AT INDEX LNDX, INCRE-
MENT LNDX ONCE FOR
EACH LINK READ

SET INDEX1 (NODE) =
THE NUMBER OF LINKS
FROM NODE.

ITI-70

END OF
DATA SET

REWIND UNIT NETWORK

SUM NUMBER OF CONNECTED
NODES IN NETWORK AND
CHANGE INDEX1 ARRAY

INTO AN INDEX ARRAY INTO
THE LINKS1 ARRAY BY NODE.

PRINT MESSAGE WITH LAST
NODE NUMBER, NUMBER OF
CONNECTED NODES, AND
NUMBER OF ONE-WAY LINKS.

FIND FIRST AND LAST
CENTROID IN EACH SUBNET
TO WRITE ON THE SEPARA-
TION MATRIX.

SET FREEWAY LINK FLAG
AND BNODE CONTROID FLAG
IN THE LINKS1 ARRAY FOR
EACH LINK. - .

SET BACK LINK INDEX

(3 BITS) IN EACH LINK.
(THIS IS TRE DISPLACE-
MENT INDEX FROM O TO 5
OF WHERE THE A NODE 1S
IN A LINK STARTING AT
INDEX 1(BNODE).)

CALCULATE THE LENGTH
OF A PACKED TREE RECORD
IN WORDS AS LPACK = .
(NODES1 + 9)/10, WHERE

. NODES1 ‘= THE LAST NODE

NUMBER

PATHCL

SKIP A RECORD ON UNIT 49

TRUE

A2

1

SET THE NUMBER OF TREES
BUILT SINCE THE LAST
MESSAGE WAS. PRINTED

TO ZERO, ITRC = 0.

SET THE TIME, ITRT = O,

TO BUILD ITRC TREES,
LHOM = 0.

COPY?

FALSE

WRITE THE HEADER
RECORD ON UNIT 50

SET L = 1

SET K = THE NUMBER
OF RANGES OF TREES T0
BE ‘BUILT IN SUBNET L.

SETJ =1

ITI-71

SET LS = THE FIRST
CENTROID OF A RANGE OF
TREES TO BUILD IN
SUBNET L FOR THE J'TH
‘RANGE OF TREES TO BUILD

SET LF.= THE LAST CENTROID
OF A RANGE OF TREES

TO BUILD IN SUBNET L

FOR THE J'TH RANGE OF
TREES TO BUILD,

SET HOMEND = LS

Ad

PATHCL

CONVERT HOMEND T0
EBCDIC AND PUT iT IN
A MESSAGE TO PRIN

LINE AS THE FIRST CENTROID

OF A RANGE.

READ A TREE RECORD
FROM UNIT 49

NORMAL READ!

[TEST \

ARE ALL OF THE BACK
INDEXES IN THIS TREE
VALID

DOES THIS
TREE RECORD HAVE
AN ERROR
IN IT?

SKIP THE RECORD _EOD

WRITE THE TREE
RECORD ON UNIT 50

A 10

SET COPY = FALSE.

WHICH HAS AN ERROR ON
IT ON UNIT 49

REWIND UNIT 49.

PRINT MESSAGE TREE
HOMEND MISSING,
REBUILY.

P

.\

GET TIME OF DAY
IN 0.01 SEC. UNITS
AND PUT IN ITM1.

ITI-72

PATHCL

FALSE

MOVE THE CUMULATIVE
TIMES TO THE CENTROIDS
FROM A HALF WORK ARRAY
T0O A FULL WORD ARRAY

WRITE THE CUMULATIVE
TIMES TO THE CENTROIDS
ON UNIT 51. .

IBLD = IBLD +
I™M 2 - ITM 1

'HOMEND = HOMEND + 1

I=J+1

ITI-73

L=L+1

Is
L > THE NUMBER

OF SUBNETS?

NO

CONVERT IBLD TO
MINUTES AND PRINT AS
THE TREE BUILD TIME.

END FILE UNIT 50,
REVIND UNIT 50,
END FILE UNIT 51,
REWIND UNIT 51.

RETURN

PATHCL

Al

[HOORE \

BUILD TREE FOR CENTROID
HOMEND

/ TIE \

GET TIME OF DAY
IN 0.01 SEC UNITS AND
PUT IN ITM 2

SET THE BACK INDEX
" FOR HOMEND 10 7.
ITRC = ITRC + 1
ITRT = ITRT + IT™M 2 -
I™ 1 .

1s
-ITRT < 30,000
? (S MINUTES)

i _LToAB \

CONVERT HOMEND TO
EBCDIC AND PLACE IT
IN THE MESSAGE TO BE
PRINTED ON LINE

ROUND ITRT TO THE
NEAREST SECOND

[

1T0AB \

CONVERT THE TIME,
ITRT IN SECONDS,

TO EBCDIC AND PUT IN
THE MESSAGE

ITRC = 0
ITRT = 0

[mw A\

PRINT A MESSAGE ON
LINE WITH THE TREE
BUILD TIME AND FIRST
AND LAST CENTROIDS FOR

THIS TIME.
! ()

S
THIS TREE
TO BE PRINTED?

[

P

PRINT THE TREE
BUILT FROM CENTROID
HOMEND -

PACK THE BACK NODE
INDEXES OF THE TREE

— I~

WSL

|~

WRITE THE TREE ON.
UNIT 50

NN

III-74

PATHCL

W= .TRUE. (SET
W TO PRODUCE SECOND
WEIGHTED ASSIGNMENT)

SUBROUTINE

PRPBLD

READ TURN PENALTY
CARD. CAPC = .FALSE.
W = FALSE

PRINT MESSAGE:
INVALID TURN PENALTY
OR TREE CARD READ.
ERR = ERR + 1

PRINT CARD READ AS
TURN PENALTY CARD

. ARE COLUMNS
NO 1 - 4 OF THE
*TURN CARD
- 'WTUR'?

YES

CAPC = .TRUE. (SET
CAPC TO USE CAPACITY
FIELD INSTEAD OF GROUND
COUNTS)

SET TURN PENALTY
ARRAY WITH TURN
PENALTY AND ZEROS.

SET I =1

READ *TREE CARD FOR

SUBNET 1

PRINT *TREE CARD READ

PUT A COMMA IN LAST
SUBFIELD B (COLUMN 73)

ARE COLUMNS
1 -4 = 'ATRE'?

(INITIALIZE PAIR
INCLUSIVE VARIABLE)
ISKIP = 0 (INITIALIZE -

PRPBLD

PRINT MESSAGE: INVALID
TURN PENALTY OR TREE
CARD READ. ERR =

ERR + 1

FIELD COUNT VARIABLE)
KOUNT = 0

IS THE
CENTROID NUMBER
- OF THE FIRST
SUBFIELD = 07

- PRINT MESSAGE: THE
FIRST FIELD OF THE
TREE CARD IS BLANK.
ERR = ERR + 1

Y

M=1

B1l

ITI-75

PRPBLD

PRINT ERROR MISSAGE:
ILLECAL PIELD

SEPARATION CHARACTER
IN TREE CARD.)
IERR = TERR + 1

IS THE
M SUBFIELD
B A BLANK?

KOUNT = KOUNT + 1
PUT M SUBFIELD A AS \
FIRST CENTROID OF A
RANGE OF CENTROIDS

HAS THE
M'TH SUBFIELD
A ALREADY BEEN
USED - IN AN
INCLUSIVE PAIR?

SET SKIP FLAG TO
(g PROCESS NEXT SUBFIELD
A .

KOUNT = KOUNT + L

SET FLAG FOR NO OUTPUT
FOR TRE TREE FROM

THE CENTROID OF THE
SUBFIELD A

SET THE LAST CENTROID
OF THE RANGE TO THE M
SUBFIELD A. SET FLAG
FOR NO TREE OUTPUT.

I8 THE
M + 1 SUBFIELD
A =07

IS THE
M SUBFIELD
B A PERIOD?

SET THE LAST CENTROID
OF THE RANGE AS THE

M + 1 SUBFIELD A. SET
FLAG TO SKIP M + 1 SUB-
FIELD A

v EOUNT.= KOUNT + 1
’ SET FLAG FOR OUTPUT
FOR THE TREE FROM
THE CENTROID OF THE

SUBFIELD A
4 YES 1S THE
M + 1 SUBFIELD
B A COMMA?

PUT THE SUBFIELD A

[AS THE FIRST AND LAST
CENTROID OF A RANGE OF
TREES TO BUILD.

SET FLAG FOR OUTPUT
FROM THE XOUNT RANGE
OF CENTROIDS IN THE
I'TR SUBNET

IS THE
M + 1 SUBFIELD
B A PERIOD?

M=M+1

IS THE
M + 1 SUBFIELD

B A BLANK?

THIS 1S AN INFINITE
LOOP, BUT IT WILL
ABEND BECAUSE IT WILL
STORE OUTSIDE OF AN
ARRAY! :

SET FLAG FOR NO OUTPUT
FROM THE KOUNT RANGE
OF CENTROID IN THE
1'TH SUBNET

ITI-76

PRPBLD

SAVE NUMBER OF RANGES
OF CENTROIDS, KOUNT,
FOR SUBNET I

I=I41

1s
1 > NUMBER
OF SUBNETS?

PRINT THE TURN
PENALTY AND THE RANGES
OF TREES TO BUILD

AND WHICH ARE TO BE
OUTPUTED

IP THIS AN ASSIGN
SELF-BALANCING RUN THEN
PRINT WHETHER CAPACITIES
OR COUNTS WILL BE USED

!

ALSO PRINT A MESSAGE

IF THIS IS AN ASSIGN
SELP=BALANCING AND

A SECOND WEIGHTED
ASSIGNMENT IS TO BE USED.

PRINT NUMBER OF ERRORS
DETECTED IN #TURN AND
*TREE CARDS.

STOP

- ITI-77

IRD = 1

IRD = 2

IRD = 3

SUBROUTINE

PRPCTV

REWIND UNIT CTVOUT

READ THE PARAMETER
CARD. SET IRD = O

ARE
COLUMNS 1 - 5
= %24 HR

ARE
COLUMNS 1 - 5
= *AMPK

YES

ARE
COLUMNS 1 - 5
= *PMPK

IRD = 1 PRINT A
MESSAGE THAT 24 HR
FIELD USED.

|

SET NUMBER OF SUBNEIS,
NDSUB = 1. SET

FIRST CENTROID OF SUBNET
1 = 1. SET LAST
CENTROID OF SUBNET 1 = 7.

PRPCTV

READ A TRIP VOLUME
RECORD FROM UNIT INCTV.

EOD

Y

) / SUBFND A

FIND WHAT SUBNET THE
ORIGIN- AND DESTINATION
CENTROIDS ARE IN,

ARE BOTH
THE ORIGIN AND
DESTINATION IN
THE NETWORK?

BUILD ONE WORD OF TRIP
RECORD. SET ORIGIN
IORG. SET SUBNET OF
b DESTINATIONS = ISUB2

SET COUNT OF DESTINATIONS
IN THE TRIP RECORD, KNT = 1.

PR 2

I111-78

PRINT ERROR MESSAGE:
NONE VALID ORIGIN

XXXXX OR DESTINATION =
XXXXX

.

SET A FLAG TO INDICATE
THAT THE, EOD ON UNTT
INCI'V HAS BEEN REACHED

EOD

PRINT ERROR MESSAGE:
NONE VALID ORLIGIN XXXXX
OR DESTINATLON XXXXX

WRITE THE TRIP RECORD
WITH KNT DESTINATIONS
ON UNTT CTVOUT

KNT = 0

READ A TRIP VOLUME
RECORD FROM UNIT
INCTV,

PRINT ERROR MESSAGE:
DUPLICATE SET OF DATA
ENCOUNTERED

IS THE
FIRST CHARACTER
OF THIS RECORD
= 'y'?

FIND WHAT SUBNET THE
ORIGIN AND DESTINATION
CENTROIDS ARE IN.

ARE -
THEY BOTH
IN THE NETWORK?

COMPARE SUBNET
OF ORIGIN OF THE PREV.
RECORD TO SUBNET OF
ORIGIN OF THE
LAST RECORD

THE SUBNET
OF THE PREVIOUS
DESTINATION TO THE

SUBNET OF THE
LAST DESTINATION,

‘COMPARE PREVIOUS
ORIGIN GENTROID

KNT = RNT #+ 1

PUT THE NEW DESTINATION
CENTROID AND VOLUME IN
THE RECORD

WRITE A TRIP RECORD
WITH. KNT DESTINATIONS
ON UNIT CTVOUT

A PRINT ERROR MESSAGE:

TO PRESENT
ORIGIN CENTROID?

‘COMPARE PREVIOUS
DESTINATION TO
PRESENT DESTINATION?

I1I-79

VOLUME DATA OUT OF SORT

PRPCTV

PRPCTV

WRITE A TRIP RECORD-
WITH KNT DESTINATIONS
ON UNIT CTVOUT

END FILE UNIT CTVOUT,
REWIND UNIT CTVOUT PR 1

=)

III-80

ENTRY

ASMNET

FMT =.TRUE.
REV = .FALSE.

SUBROUTINE

PRPNET

P™T « .FALSE.
REV = .FALSE.

PRPNET
ASMNET
REVNET

ENTRY

REVNET

/ —

{

READ NETWORK PABAMETER

A

ORTED LINKS
F L > 2727)
UNIT 3

/

MERGE SORTED LINKS
AND CHECK FOR CONNEC-
TION ERROR.

CARD. . READ LINK DATA,
EDIT AND SORT.

Y

s

III-81

PMT = .TRUE.

REV = ,TRUE. .

NODE NAMES

(UNIT 4)
OLD FLEX1BLE
DATA RECORD
CUNIT 12)
MRGREC

MERGE SORTED LINKS

_ AND OLD FLEXIBLE
DATA RECORD DELETE
OR CHANGE SPECIFIED
LINKS.

COPYFT \

COPY THE INTERMEDIATE

"FLEXIBLE RECORD TO

CORRECT THE NUMBER OF
LINKS PARAMETER AND
REMOVE SPANNED CODE

RETURN j

4

SUBROUTINE

RTPFL

INITIALIZE WORD COUNTERS

. FOR ROUTES 1 - 31 TO

ZERO AND SET FLAGS
TO SKIP RECORDS

INITIALIZE WORD COUNTERS
FOR FIRST 10 ROUTES

TO SAVE IN CORE, TO ZERO.

SET FLAGS FOR FIRST TEN
ROUTES TO SAVE THE
RECORDS IN CORE

REWIND THE ROUTE DATA
SET. READ NUMBER OF
ASSIGNMENTS FROM FIRST
RECORD

SKIP- HEADING RECORDS '
ON ROUTE DATA SET

REWIND ROUTE DATA

SET.

RETURN

. CHECK TO
SEE IF THERE
ARE ANY ROUTE
RECORDS?

REWIND ROUTE DATA
SET. READ NUMBER OF
. ASSIGNMENTS

READ HEADER RECORDS
AND PRINT.

CALCULATE LENGTH

OF EACH ROUTE RECORD

IN WORDS AND INITIALIZE
VARIABLES TO READ IN
ROUTE RECORDS INTO AN .
ARRAY

RTPFL

READ A ROUTE RECORD ‘
- INTO THE NEXT LOCATIONS

INCREMENT COUNT
OF WORDS FOR THIS
ROUTE

IN THE ARRAY Fob

IS THIS
A ROUTE.RECORD

TO SAVE IN
CORE?

INCREMENT COUNT OF WORDS
FOR THIS ROUTE RECORD.
INCREMENT TOTAL NUMBER
OF WORDS IN CORE.

WILL THE
NEXT ROUTE
RECORD EXCEED THE
CAPACITY OF THE
ARRAY?

YES

INCREMENT THE NUMBER
OF RECORDS AND iNCREMENT
THE INDEXES OF WHERE |

THE NEXT RECORD [S TO
BE READ .

MOVE THE WORD ‘COUNT FOR
ROUTES 1 - 10 SAVED :
IN CORE TO THE WORD
COUNT FOR THESE ROUTES. g—
SET FLAGS ON ROUTES

1 - 10 SO THESE RECORBS
ARE NOT SAVED

RESET THE INDEXES S0
THAT THE NEXT RECORD
WILL BE READ INTO
THE FIRST LOCATION OF
THE ARRAY.

SET THE NUMBER OF

ITI~-82

RECORDS SAVED IN CORE
TO ZERO. SET A FLAG
TO SKIP THE SORT.

RTPFL

OF THE NEXT LINK RECORD

GET THE ROUTE NUMBER
AND ITS ANODE AND BNODE

IS THE
ROUTE NUMBER
OF THIS LINK THE
© SAME AS THE
LAST LINK?

YES

SET END = .TRUE.

|

REWIND ROUTE DATA SET

)

R2

RECORDS IN CORE BY
ROUTE CODE

SORT THE ROUTE

E) IF B 1 (ANOGDE)

OR OTHERWISE BY PUTTING

E WUMBER IN B 2 (ANGDE)

OR OTHERWISE WRITE AN ERROR
msmnmmrmr.m.

INITIALIZE ROUTE
m L

\

-)mm
mm n..

HIsL

R4

IIT-83

SAVE A POINTER TO THE
NEXT LINK RECORD TO
PROCESS

STOP 8

CHOOSE AS
A STARTING POINY

THE FIRST '
Bl(1) # 0

sin Ao |

R3

RTPFL

RTPFL

SKIP THE HEADER
RECORDS OM THE ROUTE
DATA SET. SET END
= .FALSE.

READ A ROUTE LINK BOD
25C0RD o 21

INCREMENT LOCATION
T0 PUT MEXT LINK RECORD

III-85

SUBROUTINE

RTPLY

INITIALIZE WORD CQUNTERS
FOR FIRST 10 ROUTES TO
SAVE IN CORE, TO

ZERO. SET FLAGS TO
SAVE RECORDS FROM

FIRST 10 ROUTES IN CORE.

\

OPEN PLOTTAPE

(CALCOMP OUTPUT)

FROM UNIT 5.

READ ROUTE PLOT CARD

PRINT ROUTE PLOT CARD.

SET PRT ARRAY TO
PLOT ‘ALL ROUTES. PRINT

MESSAGE: ALL ROUTES WILL |

BE PLOTTED.

|
B

[
[
-
3y
!B

III-86

PRINT MESSAGE: ALL
ASSIGHMENTS, LINK COUNTS,
AND LINK CAPACITIES WILL

‘BE PLOTTED. SET FLAGS 10

PLOT THE ABOVE.

ALSO PRINT WHICH ARE TO
BE PLOTTED.

PLOT HEADER RECORDS
VITH IDENTIFICATION OF

RTPLT

RP 1

RTPLT

SKIP 14.2 INCHES DOWN
THE PLOT TO SKIP THE
HEADERS .

:gfm ‘ROUTE DATA R i1

CALCULATE LENGTH OF
ROUTE RECORDS IN

" WORDS AND INITIALIZE
VARIABLES TO READ THE
ROUTE RECORDS INTO AN
ARRAY.

READ A ROUTE RECORD INTO
THE NEXT WORDS IN THE
ARRAY .

INCREMENT COUNT OF
WORDS FOR THIS ROUTE ~

SORT THE ROUTE RECORDS
_IN CORE ON THE ROUTE
CODE.

GET ROUTE CODE OF THE
PIRST SORTED RECORD
IN CORE. :

INCREMENT COUNT OF
WORDS FOR THIS ROUTE

INCREMENT THE WUMBER
OP RECORDS AMD IMCREMENT
THE INDEX OF WHERE

THE WEXT RECORD 1§ TO
BE READ

MOVE THE WORD COUNT -FOR

SET THE NUMBER OF
RECORDS SAVED IN CORE
T0 ZERO. SET A FLAG TO
SKIP THE SORT.

TOCATION OF THE ARRAY

III-87

RP 3

INITIALIZE ROUTE
ORDERING ARRAYS
B 1 AND B 2 TO ZEROS.

SAVE THE LINK BY PUTTING THE BNODE
IN B 1 (BNODE) AND AN INDEX TO THE
LINK RECORD IN NX 1(ANODE) IF

B 1 (ANODE) IS ZERO OR OTHERWISE
BY PUTTING THE B NODE NUMBER IN

B 2 (ANODE) AND AN INDEX TO THE
LINK IN NX 2 (ANODE) IF B 2 (ANODE)
IS ZERO OR OTHERWISE WRITE AN
ERROR MESSAGE AND SKIP THE LINK

\

SAVE THE LINK IN THE OPPOSITE DIREC-
TION BY PUTTING THE ANODE IN B 1
(BNODE) AND AN INDEX TO THE LINK.

IN NX 1 (BNODE) IF B 1 (BNODE) IS
ZERO OR OTHERWISE BY PUTTING THE
ANODE IN B 2 (BNODE) AND AN INDEX
TO THE LINK IN NX 2 (BNODE) IF

B 2 (BNODE) IS ZERO OR OTHERWISE
WRITE AN ERROR MESSAGE AND SKIP

THE LINK.

END = ,TRUE.

RP 4

GET THE ROUTE NUMBER
OF THE NEXT LINK RECORD
AND ITS ANODE AND BNODE

IS THE
ROUTE NUMBER OF
" THIS LINK THE
SAME AS THE

LAST LINK?

II1-88

RIPLT

RTPLT

SAVE THE POINTER TO
THE NEXT ROUTE RECORD
IN CORE TO PROCESS.

FIND AN END
" OF THE ROUTE IN
ARRAYS B 1 AND B 2 BY
FINDING Al 1 SUCH THAT
B 1(I) # 0 AND
B 2(I) = 0

END FOUND

PRINT AN ERROR MESSAGE
THAT THE ROUTE HAS
NO ENDS

CHOOSE AS
A STARTING
POINT THE FIRST
B 1(I).2 0

. B1(I) # 0

THE ARRAYS B 1 AND B 2 NOW FORM A
BIDIRECTIONAL LIST STRUCTURE OF

© LINKS WITH THE DATA INDEXED BY ARRAYS
NX 1 AND NX 2. THE LINK RECORDS
ARE NOW LISTED IN THE ORDER IN
WHICH THEY ARE CONNECTED AND THE
LIST STRUCTURE IS DESTROYED AS
EACH LINK IS PRINTED BY SETTING
EITHER B 1 (I) OR B 2 (I) ELEMENT
WHICH WAS USED TO REACH ELEMENT
I TO ZERO TO PREVENT THE PROGRAM
FROM GOING THROUGH THE LIST MORE
THAN ONCE. THE INDEXES TO THE
LINKS LISTED ARE SAVED IN ARRAY
NX 2 SO THAT THE ROUTE CAN BE PLOTTED.

)

GET THE MAXIMUM VOLUME
TO BE PLOTTED FOR THIS
ROUTE, MAX

/ se \

SCALE ‘THE Y AXKIS TO PLOT
MAX IN 9 INCHES.

RP 5

I1I-89

RP 5

Y

/ LINE A

DRAW THE Y AXIS WITH
TIC MARKS AT 1 INCH
INTERVALS

\i

/ SYMBOL \

PUT THE WORD 'VOLUME'

ON THE Y AXIS A

DRAW NUMBERS FOR THE
TIC MARKS ON THE Y
AXIS.

\

/ sc

SCALE THE X AXIS FOR
AN AVERAGE OF 3
NODE NUMBER PER INCH.

L’

DRAW NODE NUMBERS ALONG
THE X AXIS IN ASCENDING
ORDER OF DISTANCE WITH

CONNECTING LINES

Lve -\

DRAW X AXIS FROM
LARGEST X VALUE TO THE
ORIGIN

— I~

\ A
SYMBOL

[\ |
K Q::::ﬁ'&m“) |
| I 3

K= NLD + 2
KK =1

KK = 1, CORRESPONDS TO-
GROUND COUNTS KK = 2,
CORRESPONDS TO CAPACITIES
KK > 2, CORRESPONDS TO
ASSIGNMENT KK - 2

ARE THE
VOLUMES
CORRESPONDING TO
THIS KK TO BE
PLOTTED?

ARE THERE
ANY GROUND
COUNTS FOR THIS
ROUTE?

ARE THERE
ANY ‘LINK
CAPACITIES FOR
THIS ROUTE?

\ &

PLOT THE VOLUMES

CORRESPONDING TO KK -

IN AN ORDER WHICH IS
ASCENDING FOR THE X
AXIS VALUES. ’

KK = KK + 1.

RTPLT

KK = KK + 1

ARE THE
VOLUMES CORRES-
PONDING TO THIS
KK TO BE

PLOTTED?

ARE THERE
ANY GROUND

ROUTE?

COUNTS FOR THIS

ARE:
THERE ANY
LINK CAPACITIES
FOR-THIS ROUTE?

PLOT THE VOLUMES
-CORRESPONDING TO KK
IN AN ORDER WHICH IS
DESCENDING FOR THE X
AXIS VALUES.

KK= KK +1

[PLOT \

) SKIP PAST THE PLOTS

FOR THIS ROUTE

SET THE ROUTE CODE
TO THAT OF THE NEXT
ROUTE - SAVED IN CORE

FIND HOW MANY MORE

ROUTES CAN BE READ INTO
‘CORE AT THE SAME TIME AND
SET FLAGS. FOR THEM TO

BE READ IN.

RTPLT

" HAVE ALL
ROUTES BEEN
PROCESSED?

SKIP THE HEADER RECORDS
ON THE ROUTE DATA SET.
. SET END = .FALSE.

READ A ROUTE LINK RECORD

EOD

=1 RP 11

1S THIS
A ROUTE TO
SAVE IN CORE

INCREMENT LOCATION TO
READ NEXT LINK RECORD
INTO.

III-91

FUNCTION

sC

THIS EFFECTIVELY
ROUNDS DXS TO THE
NEXT LARGEST NUMBER OF
THE TYPE o*0.5 WHERE
n 1S AN INTEGER

BREAK NUMBER TO BE SCALED
INTO TWO PARTS DXS, A
NUMBER BETWEEN 1.0 AND
10.0 AND P 10 A MULTIPLIER
WHICH IS A POWER OF 10

ROUND 2%DXS TO THE
NEXT LARGEST INTEGER
AND PUT IN IX.

Is
DXS < 4.07

SC = (FLOAT (IX) /2.0)
*F10

ROUND DXS UP TO THE
NEXT LARGEST INTEGER, IX

SC = IX*F 10

II1-92

SC

SELECT

OPEN

; L \
(m SELTRP DATA SET)
FOR OUTPUT,

YRS

THE OUTRUT
SPECIFICATION CARD
e ALINKS?

SET FLAG TO SUPPRESS
PRINTING OF LOADED
KETWORK.

PRINT ERROR MESSAGE:
SELECTED LINKS OUTPUT
OPTION INVALID, OPTION
READ = #XAXX RUN DELETED

III-93

WRITE HEADER AMD DATE
ON SELTRF DATA SET

READ A *SELECT OR AN
*END CARD.

SELECT

1s THIS
AN *SELECT
CARD?

IS THE
PERCENT FIELD
= 0 OR
> 100?

RETURN

SET PERCENT FIELD
T0O 100% :

IS THE
ZONE PAIRS
FIELD = 0?

SET NUMBER OF ZONE
PAIRS TO PRINT =
32767

IF THE ANODE > BNODE
EXCHANGE THE ANODE AND
BNODE NUMBERS.

PRINT ERROR MESSAGE:
SELECTED LINK XXXXX
XXXXX NOT IN NETWORK,
CARD IGNORED

NOT IN

NETWORK

'FIND THE LINK INDEX OF
THE LINK ANODE, BNODE.

SELECTED |- LINK FOUND

FLAG ONE-WAY LINK FROM
ANODE TO BNODE IN THE

NETWORK AS A SELECTED
LINK.

III-94

PRINT ERROR MESSAGE:
SELECTED LINK XXXXX
XXXXX. NOT IN NETWORK,
CARD IGNORED

NOT IN
NETWORK

FIND THE ONE-WAY LINK
INDEX OF THE LINK
BNODE, ANODE

SELECTED § LINK FOUND

FLAG ONE-WAY LINK FROM
BNODE TO ANODE IN THE
NETWORK AS A SELECTED
LINK,

WRITE —l

WRITE A RECORD OF
CUT~OFF PARAMETERS AND
LINK INDEX ON SELTRP

PRINT CUT-OFF
PARAMETERS FOR THIS
SELECTED LINK

IIT-95

SELECT

SUBFND

SUBROUTINE

~ SUBFND

SET A CODE T0 INDICATE fegmpeCnhd PIND WHAT SUBNET THE
IT IS MOT IN THE NETWORK. “ NETWORK ORIGIN CENTROID IS IN.

D ey DESTINATION CENTROID
s IN, :

. \ . . ‘
(.) . - ‘
— NOT IN FIND WHAT SUBNET THE

Y

=D

ITI-g¢

SUBROUTINE

SUMEND

REWIND UNIT CTVOUT

READ PARAMETER RECORD
FROM UNIT CTVOUT.

. SUM NUMBER OF CENTROIDS, °
NZONES. SET THE DISPLACE-
MENT FOR EACH SUBNET

OF WHERE TO SUM ITEMS.

INITIALIZE ARRAYS FOR
NUMBER OF ORIGINS,
DESTINATIONS, VOLUMES
1IN, VOLUMES OUT, AND
INTRAZONAL VOLUME TO
ZEROS

READ A TRIP RECORD FROM
UNIT CTVOUT

EOD

PRINT THE SUMMATIONS
MADE BY ORIGIN FOR

ALL CENTROIDS IN SEQUEN-
TIAL ORDER BY CENTROIDS

PRINT TOTALS FOR ALL OF
ABOVE ITEMS. SKIP TO THE
TOP OF A NEW PAGE

REWIND UNIT CTVOUT

|

MAKE SUMMATIONS OF

' NUMBER OF ORIGINS, DESTI-
NATIONS, VOLUMES IN,
VOLUMES OUT, AND
INTRAZONAL VOLUMES BY
CENTROID FOR THIS TRIP

" RECORD

III-97

=N

SUMEND

SUMRY

SUBROUTINE

SUMRY

i GTLD \
GET SUMMATIONS OF
VEHICLE HOURS AND VEHICLE

- MILES BY DIFFERENT
CLASSIFICATIONS _

[v \

PRINT SEVERAL TABLES
OF VERICLE HOURS AND
VEHICLE MILES

[

ALCP

CALCULATE THE WEIGHT
OF EACH ITERATION
TO. LOAD.

IS THIS
AN ASSIGN
‘SELP-BALANCING
ITERATION OR A
WEIGHTED ITERATION

CRDINT

PRINT THE CORRIDOR
INTERCEPT TABLES

[RTerL \

i

PRINT THE ROUTE
PROFILE TABLES

RETURN

ITI-98

SUBROUTINE

SVLOAD

SET NF = FIRST NODE
NUMBER OF SEGMENT 1,

SET NL = LASE NODE
NUMBER OF SEGMENT I.

INITIALIZE NUMBER OF
SEGMENTS, NUMBER OF
BLOCKS, # OF LINK
VOLUMES, # OF TURN
VOLUMES

SET ‘NLKF = LINK INDEX
OF FIRST LINK FROM
NODE NF

INITIALIZE FIRST NODE'

'NUMBER TO 1.

SET NLKL = LINK INDEX
OF LAST LINK FROM NODE NL

DETERMINE FIRST AND
LAST NODE NUMBER OF
EACH SEGMENT, DETER-
MINE NUMBER OF LINKS &
TURN VOLUMES IN EACH
SEGMENT,

FIND NUMBER OF BLOCKS
OF 4000 WORDS, NUMBER
OF SEGMENTS IN WHICH
THE LOADED NETWORK MUST
BE SUMMED

18
THIS ITERATION
- 1?

J = NLKF

K = THE MINIMUM OF
J+3999 AND NLKL

REWIND 3, WRITE
PARAMETER RECORD OF
SEGMENT PARAMETERS
ON UNIT 3

JJ = K-J+1

1

’ r GETVOL j

GET THE DIRECTIONAL LINK
VOLUMES WITH LINK INDEXES
FROM J TO K AND STURE IN
BUF B

IIT-99

SVLOAD

WRITE J.J WORDS OF
BUF ON UNIT 3

WRITE THE ARRAY BUF
ON UNIT 3

3 = 3+ 4000

I=1I+1

Is

. I > THE NUMBER

" OF SEGMENTS
?

SET NF = FIRST NODE
NUMBER OF SEGMENT I,
SET NL = LAST NODE

NUMBER OF SEGMENT I.

SET NLKF = LINK INDEX
OF FIRST LINK ¥ROM
NODE NF

NET NLKL = LINK INDEX
OF LAST LINK FROM NODE
NF. J = NLKF

K = THE MINIMUM OF
J + 3999 AND NLKL

SVLOAD

Iy =K-J+1

1

GTVL \

GET THE REVEESE DIREC~
TION OF THE DIRECTIONAL
LINK VOLUMES WITH LINK
INDEXES J TO K AND
STORE IN BUF

WRITE JJ WORDS o
BUF ON UNIT 3

III-100

WRITE ARRAY BUF ON
UNIT 3,

"

86

J = J + 4000

I=I+1

S4

SET NF = FIRST NODE
NUMBER OF SEGMENT I,
SET NL = LAST NODE
NUMBER OF SEGMENT I, ’

SET NTF = INDEX OF
PIRST TURN VOLUME SAVED
FOR NODE NF,

" NODE NL.

SET NTL = INDEX OF LAST
TURN VOLUME SAVED FOR

J = NTF

THE -MINIMUM OF -

K=
J + 3999 AND NTF, s

JJ=K=-J+1

,GET THE TURN VOLUMES
FOR INDEXES J TO K
AND STORE IN BUF

WRITE ARRAY BUF
ON UNIT 3.

WRITE JJ WORDS OF
BUF ON UNIT 3.

J = J + 4000

ITI~-101

SVLOAD

SVLOAD

I=I+1

III-102

TRN

SUBROUTINE '

TRN

INITIALIZE FLAGS TO IN-
DICATE OUTPUT FOR ALL
POSSIBLE TURN.VOLUMES
ALSO SET ALL TURN VOLUMES
TO ~1 TO INDICATE ALL ARE
UNKNOWNS

SET FLAGS FOR NO OUTPUT
OF U-TURNS AND SET
VALUES OF THESE TO
ZEROES

GET IND = THE TURN
CODE FOR THE NODE

PRINT MESSAGE:
TRMV ERROR

GET N = THE NWBER

OF LINKS FRON -

NODE 1
PRINT MESSAGE:
ERROR X

a 1

1

ZERO OUT. TURN VOLUMES
WHICH ARE KNOWN TO BE
ZERO BECAUSE OF ONE-
WAY LINKS AND FLAG -
FOR NO OUTPUT

k1 C v III—]_03

13, 17,]18, 21 23, 27 10 1-9,
20] 22 1 19
) K i \
[GETRN -\ [GETRN \ [GETRN \ / GETRN
GET TURNING GET TURNING GET TURNING~ GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH 'MOVEMENTS WHICH MOVEMENTS WHICK
WERE SAVED WERE SAVED WERE SAVED WERE SAVED

) J

GETRN

e

GET TUBNING -
MOVEMENTS WHICH
WERE SAVED

GETRN \ I CETRN \
GET TURNING GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED

MARK TURNS WHICH
ARE ZERO BECAUSE
OF ONE-WAY LINKS
FOR NO PRINTED
OUTPUT

PRINT MESSAGE:
ERROR X

R3 .

II1-104

GET DIRECTIONAL VOLUMES
FOR BOTH DIRECTIONS AND

SUM FOR NON-DIRECTIONAL il
LINK VOLUMES

SET FLAGS SO THAT
NO TURNING MOVEMENTS
WILL BE PRINTED

CHECK EACH: COLUMN
OF THE TURNING
MOVEMENT MATRIX AND
IF ONE HAS A SINCLE
UNKNOWN, CALCULATE
IT

CHECK EACH ROW OF THE
" TURNING MOVEMENT MATRIX
AND IF ONE HAS A SINGLE
UNKNOWN, CALCULATE IT

WERE
ANY TURNING
MOVEMENTS CAL~-
CULATED FOR
THIS ITER.
?

I=I+1

PRINT MESSAGE:
ERROR X

III-105

TRNMY

FUNCTION

TRNMV

GET INDEX + -
DISPLACEMENT ~1

USE THE SECOND
INDEX TO GET THE
VOLUME FROM THE
OVERFLOW ARRAY

-

- III-106

TRPCKM
TEST

© SUBROUTINE o

TRPCKM™ | TEST®

NODES = 10%({NODES + RR = 0
9)/10) 1E

IERR = IERR + 1

LPACK = THE NUMBER R

. .GBT 10 PATH INDICES
STARTING IN IPATH(I)

OF PACKED PATH WORDS.
I=0

PACK THE TEN PATH
INDICES IN ONE
WORD USING 3 BITS)
FOR FACH. THE FIRST GET' TREE(T) -
TVO BITS OF THE WORD
ARE UNUSED,

ARE ANY
OF THE 10
PATH INDICES
> 3?

STORE THE PACKED PATH
ITEMS IN BUF (I/10 + 1).
I=I+10

CHECK EACH OF THE

10 PATH INDICES
INDIVIDUALLY AND ADD
TWO TO IFRR FOR EACH
ONE WHICH IS EOUAL TO 6,

. ARE ALL
10 OF THE
PATH. INDICES = 77

1s
I > NODES?

I=1I+1

IS NO

I > LPACK?

*ASSEMBLY LANGUAGE

III-107

SUBROUTINE

TURNM

INITIALIZE FLAGS TO IN~-
DICATE OUTPUT FOR ALL
POSSIBLE TURNING MOVE-
MENTS, ALSO SET ALL TO
-1 TO INDICATE UNKNOWNS

SET YLAGS FOR NO OUT-
PUT OF U~TURNS AND
SET VALUES OF THESE
TO ZEROES

GET IND = THE TURN
CODE FOR THE NODE

GET N = THE NUMBER
OF LINKS FROM THE
NODE

PRINT MESSAGE:
'TRNMV ERR'

PRINT MESSAGE:
ERROR X

ZERO OUT TURN VOLUMES
WHICH ARE KNOWN TO BE
ZERQO BECAUSE OF ONE-
WAY LINKS AND FLAG
FOR NO OUTPUT

ITI-108

TURNM

TURNM

13, 17, |18, 21 23, 27 10 1-9, | 11-16,]2
20, |22 4 .
T2
B
 d
/ GETRNS \ I GETRNS \ [- GETRNS \ { GETRNS
GET TURNING GRT TURNING GET TURNING GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED WERE SAVED
L A \
[GETRNS \ f GETRNS \ / GETRNS -\
GET TURNING GET TURNING GET TURNING
MOVEMENTS WHICH MOVEMENTS WHICH MOVEMENTS WHICH
WERE SAVED WERE SAVED WERE SAVED

MARK TURNS WHICH ARE
Lo ZERO BECAUSE OF ONE-
: WAY LINKS FOR NO
_PRINTED OUTPUT

PRINT MESSAGE:
ERROR X

‘TII-109

GET DERECTIONAL
VOLUMES FOR BOTH
DIRECTIONS AND SUM
FOR NON-DIRECTLONAL
LINK VOLUMES

SET FLAGS S0 THAT
- NO TURNING MOVEMENTS
Wil BE PRINTED

CHFCK EACH COLUMN OF
THE TURNING MOVEMENT
MATRIX AND TF ONE HAS
A SINGLE UNKNOWN,
CALCULATE 1T

CHECK EACH ROW OF THE
TURNING MOVEMENT MATRIX
AND IF ONE HAS A SINGLE
UNKNOWN, CALCULATE IT

WERE
ANY TURNING
MOVEMENTS CALCULATED

FOR THIS ITER.
. -1

Te141

PRINT MESSAGE:
ERROR X

ITI-110

TURNM

SUBROUTINE

UPDTNT

DLT = ,PALSE.

SET ITR(I) = I FOR
I =1, 20. THIS
SPECIFIES NO ASSIGN-
MENTS ARE DELETED

REWIND 12 .

e,

o

OPENFT

OPEN UNIT
NETWORK FOR
OUTPUT

“READ THE PARAMETER

RECORD FROM UNIT.12
OF THE OLD FLEXIBLE
RECORD

IMPD = ,FALSE.

(THE LINK IMPEDANCE
OF AN OLD ASSIGNMENT
1S NOT TO BE USED)

SLF = .FALSE.

(THE LINK IMPEDANCES
ARE NOT TO BE CALCU-
LATED BY THE LINK

IMPEDANCE FUNCTION)

ul

I1I-111

UPDTNT

18
THE ASSIGNMENT
TO USK N THE IMPEDANCE
UPDATE FUNCTION 1IN
THE RANGE OF 1 TO
THE LAST ASSIGN-
MENT

" PRINT MESSAGE:

ASSIGNMENT X 1S INVALID,
- EXECUTION WILL END WITH
A STOP 3, DLT = ,TRUE.

READ A PARAMETER

UPDINT

CARD FROM UNIT 5

PRINT THE PARAMETER
CARD

SLF = ,TRUE,
NMPD = NTR

15
"IT A *DELETE
CARD?

PRINT ERROR
MESSAGE: INVALID
DELETE ASSIGNMENT
PARAMETER CARD
DLT = .TRUE.

PRINT ERROR MESSACE:
*IMPEDANCE AND *ADJUST
PARAMETER ‘CARDS MUTUALLY
EXCLUSIVE

OLT = ,TRUE

18
THE FIRST COLUMN

s
THE ASSIGNMENT
SPECIFLED IN THE
RANGE OF 1 TO THE
LAST ASSIGNMENT

15

THE ASSIGNMENT

TO USE THE OLD IMPEDANCE

FROM TN THE RANGE OF

L TO THE LAST

ASSIGNMENT
?

NTR =
TO DELF
TTRINTR) = 0

4 ALK TONMEN')

IMPD = JTRUE,
NMPD = NTR

OF THES CARD = NO
'$r?

III-112

- UPDINT

L CLOSET j

e READ A NODE KECORD FROM
UNIT 12

CLOSE UNET NETWORK

[WRT \

WRLTE THE NODE RECORD REWIND 12
UN UNIT METWORK

[T 2

WRITE THE PARAMETER

RECORD WITH THE)
CORRECT # ASSIGNMENTS 1
ON NETWORK
“ . RETURN
NL = NUMBER OF LINK
RECORDS FOR THIS NODE
) KECORD, I = 1

RIEAD THE FIRST HEADER
RECORD FROM UNIT 12 \

READ A LINK RECORD FROM
UNIT 12

[w1\

WRITE THE HEADER 1
RECORD ON UNIT NETWORK

UPDATE THE LINK O
b . IMPEDANCE IF. SPECIFTED
BY SLF OR IMPD,

READ THE OTHER PARAMETER
RECORD FROM UNIT 12
COPYING THE ONES FOR A .

- ASSIGNMENTS WHICH ARE):
NOT TO BE DELETED TO -
UNIT NETWORK,

DELETE ASSIGMMENT
v SPECIFIED BY THE
i - ITR ARRAY. I = +1

PACK THE NON ZERO
» ITEMS IN ARRAY ITR.

I , K
L W A

WRITE THE UPDATED LINK
RECORD ON UNIT NETWORK

PRINT MESSAGE: SELF-
DIVERTING IMPEDANCES
CALCULATED FROM
ASSIGNMENT XX

PRINT MESSAGE: NEW
IMPEDANCES TAKEN FROM
ASS LGNMENT XX

I11-113

SUBROUTINE

VREC

MRG = LNK 1. GT. O

(ARE THERE RECORDS ON
UNIT 3)

MRG 2 = LNK 2. -GT. 0
(ARE RECORDS ON UNIT 11)

[OPENFT |

OPEN UNIT NETWORK
AS OUTPUT (REWIND
Im)

CALCULATE TOTAL NUMBER
OF ONE-WAY LINKS

PRINT MESSAGE THAT
‘THE. NUMBER OF LINKS
EXCEEDS THE MAXIMUM.
ERR = ERR + L

-

WRITE PARAMETER RECORD
ON UNIT NETWORK

PRINT MESSAGE THAT THE
MAXIMUM NODE NUMBER IS
EXCEEDED.

FRR = ERR + 1

/ WRT

|

WRITE HEADER RECORD
AND DATE ON- UNIT NETWORK

SET INDEXES FOR NEXT
LINK FROM LINKS IN
CORE OR. FROM RECORDS READ >

FROM UNITS 3 OR 11 TO
- FIRST LINK

VREC

ARE THERE
RECORDS ON
UNIT 37

READ A RECORD FROM
UNIT 3

ARE THERE
RECORDS ON
UNIT 117

READ A RECORD FROM
UNIT 1}

S T
l GTLNK

UNPACK DATA FROM FIRST
LINK FROM UNIT 3 .

- GTLNK

B

UNPACK DATA FROM
FIRST LINK IN CORE

S~

) J

GTLNK

[y

UNPACK DATA FROM
FIRST LINK FROM
UNIT 11

3

SET SORT KEY FOR
LINK FROM UNIT 3 50
IT WILL BE SKIPPED.
SET ANODE = 16383

SET SORT KEY FOR THE
FIRST LINK FROM UNIT
11 SO THAT IT WILL BE
SKIPPED. SET ANODE =
16383

ARE THERE
RECORDS ON
UNIT 117

T

YES

REWIND UNIT 4 (NODE
NAMES)

ITI-114

VREC

SET COUNT OF LINKS FROM
READ NEXT CARD FROM ANODE TO 0. (L = 0).
LINK DATA INPUT PUT NEXT SMALLEST
ANODE IN ANODE

1S IT
AN N OR AN 1S THE
ENDNET CARD? ANODE = 163837 V5

SET NODE NUMBER

OF LAST NODE RECORD >
READ TO 16383
IS THE
. :HICB CORE - ANODE OF
o SORT KEY 15 THIS LINK
NIT 3 SMALLEST? Z ANODE?
L=L+1
migngu gv NO 1S THE SAVE THIS LINK AT [NDEX
THIS LINK = V3 ANODE OF THIS L. INCREMENT TO GET
ANODE? \/ LINK = ANODE? NEXT LINK
YES
\
l ' GTLNK \
L= L+ 1, SAVE } L =L + 1 SAVE THIS]
THIS LINK AT INDEX L. : LINK AT INDEX L.)
INCREMENT TO GET NEXT : INCREMENT TO GET UNPACK DATA FROM NEXT
LINK . NEXT LINK LINK FROM CORE
IS THE
NEXT LINK IN No
THE LAST
RECORD READ?
) J
YES YES READ NEXT RECORD

READ NEXT RECORD FROM
UNIT 3. SET LOCATION
TO GET NEXT LINK TO 0

FROM UNIT 11. SET
LOCATION TO-GET NEXT
LINK FROM 70 O

Y : :)

I GTLNK \) L GTLNK \ » . . : 4

UNPACK DATA FROM NEXT : UNPACK DATA FROM NEXT
LINK FROM UNIT 3 LINK FROM UNIT 1l.

III-115

v3

CONVERT NUMBER OF
LINKS IN EACH LINK
CLASS TO THE TURN
MOVEMENT TYPE CODE

PRINT MESSAGE THAT THE
ANODE IS NOT IN THE
NETWORK

ERR = ERR + 1

SET TURN TYPE CODE TO
28 AND ADD CENTROID
CODE

ADD CODE POR FREEWAY
TO TURN CODE

MOVE NODE NAME TO
AREA FOR THIS ANODE.
READ NEXT NODE NAME
RECORD.

MOVE BLANKS TO THE
NODE NAME FOR THIS
NODE

GET COORDINATES AND
KEEP NON ZERO SUB AREA
CODE. READ NEW ANODE
RECORD

SET COORDINATES TO
ZERO

PRINT AN ERROR MESSAGE
FOR EACH DUPLICATE LINK
AND ADD NUMBER OF
DUPLICATIONS INTO ERR

VREC

PRINT MESSAGE:
ISOLATED NODE.
ERR = ERR + 1

PRINT MESSAGE: :
1SOLATED CENTROID. -
BR ~ BR + 1 :
l
1=1
i i
{ WRT

IeIs+]

ITI-117

VREC

o

CLOSE NETWORK DATA
SET

REWIND NODE MAME DATA
SKT (UNIT 4)

REWIND 11

III-118

VREC

SUBROUTINE

- WGTLD

SUM CONSTANTS FROM
CURVE FIT

SCALE COMSTANTS TO
100 PERCENT AND
COMVERT EACH TO INTEGER
AND SUM NS = TOTAL
PERCENT '

FIND SMALLEST "T"
VALUE YOR WHOSE
PERCENTAGE IS >

FIND THE LARGEST "T"
VALUR

100 - W8

ADD 100 - NS 70 CALCULATE THE WEIGHT ADD 100 - NS TO THE
THE PRRCENTAGE YOR RACH ITERATION PERCENTAGE

FOUND ABOVE BY DIVIDING THE TO THE LARGEST “"

PERCENTAGE BY 100.0

VALUE

III-119

WGTLD

Wl

SUBROUTINE

WTSGLN

FIND NSAL, THE NUMBER
OF LINK RECORDS TO
SKIP TO REACH THE

END OF EITHER THE
DIRECTIONAL IN OR OUT
LINK RECORDS

REWIND 3

FIND NSPT, THE NUMBER
OF TURN VOLUME RECORDS
TO SKIP TO REACH THE
TURN VOLUMES FOR
SEGMENT ISG.

READ THE PARAMETER
RECORD, SET NSG =

THE NUMBER OF SEGMENTS.
ISG = 1

FIND NSAT, THE NUMBER
OF TURN VOLUME RECORDS
TO SKIP TO REACH THE
RECORDS FOR THE NEXT
SUBNET. ’

1

SET IN = 1, "IN"

1S THE INDEX IN ARRAY
VOLS WHERE -THE
DIRECTIONAL VOLUMES
OUT FROM NODES START ,
POR SEGMENT ISG

b!T-l

\

SET 10 = THE INDEX IN
ARRAY VOLS WHERE THE
DIRECTIONAL VOLUMES INTO
NODES START FOR SEGMENT
1S6

SKIP NSAL RECORDS
ON UNIT 3.

SET IT = THE INDEX IN
ARRAY VOLS WHERE THE
TURN VOLUMES FOR SEGMENT
ISG START.

SET NW = THE NUMBER
OF OUT DIRECTIONAL
LINK VOLUMES TO READ
FOR SEGMENT ISG.

| FIND NSPL, THE

! NUMBER OF LINK VOLUME
' RECORDS ‘TO SKIP TO

. REACH SEGMENT ISG.

i

I

SET IWT = THE PERCENT
TO WEIGHT ITERATION
NT., I =1

WTSGLN

WISGLN

J = THE MINIMUM OF

I + 3999 AND NW.

NS = NSAL + NSPL

JW=J-1+1

"SKIP NS RECORDS ON
UNIT 3

READ A RECORD FROM
UNIT 3 WITH JJ WORDS
INTO ARRAY BUF. MW = I0 + (THE NUMBER
OF IN DIRECTIONAL INK
LINK VOLUMES FOR
SEGMENT ISG) - 1

WCT

MULTIPLY JJ WORDS IN
ARRAY BUF BY IWT AND
MOVE TO ARRAY VOLS
BETWEEN INDICES I AND

3 I=1I0
WGTA A
MULTIPLY JJ WORDS wé

IN ARRAY BUF BY INWT
AND ADD INTO ARRAY
VOLS BETWEEN INDICES ~
I AND J.

I =1+ 4000

NO I > NW? YES

II1-121

NTSGLN

J = THE MINIMUM OF

1 + 3999 AND NW.

NS = NSAL + NSPT

JI=J-I+1

“ SKIP NS RECORDS
ON UNIT 3.

READ A RECORD FROM
UNIT 3 WITH JJ WORDS
ARRAY BUF

o . NW = IT + (THE
NUMBER OF TURN
VOLUMES IN SEGMENT

156) - 1
[‘ wer
MULTIPLY JJ WORDS IN
ARRAY BUF BY INT AND
MOVE TO ARRAY VOLS -
. BETWEEN INDICES I AND
Sy I=IT
[)
MULTIPLY JJ WORDS IN WS

ARRAY BUF BY IWT AND
ADD INTO ARRAY VOLS
BETWEEN INDICES I AND J

I =1+ 4000

ITI-122

L]

WGT

-

MULTIPLY JJ WRODS

IN ARRAY BUF BY IWT
AND MOVE TO ARRAY
VOLS BETWEEN INDICES I
AND J

L

J « THE MINIMUM OF
I+ 3999 AND NW.

JI=J-1I+1

READ A RECORD FROM
UNIT 3 WITH JJ WORDS
INTO ARRAY BUF

[VGTA

MULTIPLY JJ WORDS

YES 1s
IN ARRAY BUF BY IWT
AND ADD INTO ARRAY NT & 17
VOLS BETWEEN INDICES
1 AND J

L No

I = I+ 4000
NO 1s YES -
1> MW

III-123

Is
NSAT = O
OR NT = ITER?

: SKIP NSAT RECORDS
[} ON UNIT 3.

NT = NT + 1

REWIND UNIT 3

OUTWLT

' PRINT THE WELGHTED
LOADED NETWORK FOR
SEGMENT 1SG.

SKIP THE PARAMETER

RECORD ON UNIT 3.
ISG = ISGC + 1

WTISGLN

SIGNIFICANT VARTIA BLES

_AND ARRAYS

LABELED COMMON

DESCRIPTIONS OF SIGNIFICANT
VARIABLES AND ARRAYS

LABELED COMMON -

Eleven labeled common control sectioné are contained in the Texas
Large Network fackage. These labeled commons serve several importaﬁt
functions. Their primary function is, of course, to provide a convenient
media for passing various variables and arrays between subroutines.

They are also used to save ceftain variables and arrays as various sub-
routines are overlayed. They have also been used in a few instances to
align half—Word'arrayS'on full-word boundaries. TAble 5 provides é

cross reference of the labeled common control sections and the program

control sections with which’they are associated,

IV-1

TABLE 5: CROSS REFERENCE OF LABELED COMMON CONTROL
SECTIONS AND PROGRAM CONTROL SECTIONS

PROGRAMS

LABELED COMMON

ALLIGN
ARRAYS
CAPRES
Cch
DELETE
FILES

HEADR

OUTDCB

SDATE

STOP

VOLTP

ALCP

BLOCK DATA

ol

>

CLOAD

PRbd e

CRD

CRDINT

bl b

FRATAR

GTLD

LNKLST

MAIN

Pap bl

Ll kel lel

MERG

MRGREC

>

NEWNET

s
Bt B b bt Eat bl Bl Ead b

OPENFT

OUTLLT

OUTINET

OUTRIP

bl b g

OUTTRE

OUTWLT

bl Eatial lad ol

PATHCL

PRPBLD

b
bl kel o
bl bal

T PRPCIV

RTPFL

1>

RTPLT

ol tallel

SELECT

SUBFND

SUMEND

SUMRY

UPDTNT

VREC

WGTLD

WRT

Iv-2

DESCRIPTIONS OF

VARIABLES AND ARRAYS
The purpose of the section is to provide information concerningA
" the significant variables and arrays used in the package. qubconven—
ience, this information has been summarized in tables by subroutine,
The programmer may, therefore, when féviewiﬁg ﬁhe flowcharts and program
listings of a given subroutine, refer to the table(s) summarizing the
‘significant variables and/or arrays used in the subroutine. ‘The tables
summarizing the significant variables and érrays used in Qarious sub-
routines, arranged in alphabetical ordef by the subroutine name, are as

follows:

Iv-3

SUBROUTINE ALCP

In the follow1ng descriptlon the C field Will be used to represent

either the link COUNT. field when it is used or the llnk CAPACITY field

when it is used in ASSIGN SELF-BALANCING.

Variable Contents
FN ‘The’number of links used in the curve fit (the number of
links with a nonzero C field which are not centroid
connectors).
M The number of iterations run in ASSIGN SELF-BALANCING
at this point.
SY The sum of the C fields except for centroid connectors.
SYY The sum of the C fields squared except for the centr01d
connectors.
Control Variable = Value ’ : Meaning
CNVRG False The ASSIGN SELF-BALANCING run should con-
tinue unless it has run the maximum number
‘of iterations.
CNVRG o Truei ' The ASSIGN SELF-BALANCING run should not
' run another iteration if it has run the
minimum iterations.
Array Contents
SX The sum of the nondirectional aésigned'llnk volumes for
links with nonzero C fields except for centroid connectors
for iterations 1 through M,
SsY The sum of the products of the nondirectional assigned
link volumes with the C fields except for centr01d con~
nectors for iterations 1 through M.
XX The sum of the nondirectional assigned linksﬁolumes squared

for the links with nonzero C fields except for centroid
connectors for iterations 1 through M,

V-4

SUBROUTINE CLOAD AND LDSEL

Control Variable Contents v MEaﬁing
SEL False This is either a LOAD NETWORK run or an
ASSIGN SELF-BALANCING run.
SEL True This is a LOAD SELECTED LINKS run.
ouUT False Don't print loaded network.,
ouT True Print loaded network.
‘RES False This is either a LOAD NETWORK or a LOAD
SELECTED LINKS run.
RES True This is an ASSIGN SELF-BALANCING run.
Variable Contents
NOVER Number of assigned directional volumes plus turn movements
saved which are greater than 32767,
ITRE Tree data set unit number.
NETD The unit number NETWORK.
Array Contents
INDEX(I) The index into array LINKS where the out direction links for
node I start. The values in this half-word array are 16 bit
unsigned integers.
LINKS(I) This is the links array, each half-word is a link which
: contains three data items. Bit O of a link is the last link
flag, bit 1 is the selected link flag, and bits 2 thru 15 are
the Bnode number of the link. ’
VOL(I) VOL(I) is the assigned directional volume for LINKS(I) if the
volume is less than 32767, If the volume is greater than
32767 then VOL(I) bits 1 thru 15 are an index into array
OVERF where the volume is stored and bit 0 of VOL(I) is a one.
XRTRN (J) XRTRN(J) is the index into array TRNTB of where the turn

volumes saved for node J start. XRTRN(J) is an unsigned 16
bit positive integer. ' :

IV-5

Arraz
TRNTB(J)

PATH

OVERF

BUF

Contents

TRNTB(J) 1is either a turn volume or a flag in bit 0 of the
half-word of one and an index in bits 1 thru 15 into array
OVERF where the turn volume is saved.

‘This is the array into which the packed path records are

read, The path indices are also unpacked in this array and

each index is placed in a separate byte by subroutine UNPKX.

In the unpacked format PATH(I) contains path 1ndices 4(I-1)+1
thru 4(I-1)+4.

ThlS is a full word array which contains both directional
link volumes greater than 32767 and turn volumes saves which
are greater than 32767.

This array is used to read the trip interchange items for
one path record. Each interchange item has a volume in bits
0 thru 17 of the word and a destination zone in bits 18 thru
31 of the word,

IV-6

SUBROUTINE CMPVH

- Contents

Variable
LSTJ . The largest jurisdiction number in the network.
NLD The number of assignments on unit NEWNET.
Control Variable Value Meaning
NLD 1 Don't print the comparlson of the last two
a531gnments.
NLD 2 or Print the comparison of the last two
greater assignments,
Array Contents
VMI (J,L) Vehicle miles cross classified by jurisdiction + 1 used as
the first index and three link classes used as the second
index. ‘The three link classes are centroid conmectors,
arterials, and freeway links.
VHR (J,L) Vehicle hours cross classified the same as VMI.
MI (J,L) Network miles cross classified the same as VMI.
VM (J,F) Vehicle miles cross classified by jurisdiction + 1 used as
‘ the first index and functional class + 1 used as the second
index. ‘
M (J,F) Network miles cross classified the same as VM,
wMC (J,F) Vehicle miles for links with a nonzero count field cross
classified the same as VM.
MC (J,F) Network miles for the links with a nonzero count field cross
classified the same as VM.
VMCC (J,F) Vehicle miles for links with a nonzero capacity field cross
classified the same as VM.
McC (J,F) Network miles for the links with a nonzero capacity field

cross classified the same as VM,

Iv-7

Array

Contents

FC (F)

FN (R,J)

SY (R,J)
SYY (R,J)

SX (R,J)

SXX (R,J)

SXY (R,J)

H1

H2

HN -

The number of links with functional claes 4+ 1 used as index F
in the network.

Number of links with nonzero link counts by route;

J=1:
J = 2: Number of links with nonzero link capacities by route;
J = 3: Number of links in the network by route.
J = 1: Sum of link counts by route code;
J = 2: Sum of link capacities by route code;
J = 3: Sum of nondirectional link volume from the prev1ous
' assigmment by route.
J =1: Sum of link counts squared by route code;
J = 2: Sum of link capacities squared by route code;
J = 3: Sum of nondirectional link volumes from the previous

assignment squared by route code.

J =1: Sum of nondlreetional link volumes for this assign-
: ment for those links which have a nonzero count by
route;

‘J = 2: Sum of nondirectional link volumes for this assign-~

ment for those links which have a nonzero link
capacity by route; '

J = 3: Sum of nondirectional link volumes for this assign-
ment by route.

J = 1: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count - by routej;

J = 2: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
link capacity by route;

J .= 3: Sum of nondirectional link volumes squared for this
assignment by route code.

J=1: Sum of nondirectional link volumes from this a531gn—
ment multiplied by link count by route;

J = 2: Sum of nondirectional link volumes from this assign-
ment multiplied by link capacity by routes;

'J = 3: Sum of nondirectionallink volumes from this assign-

ment multiplied by nondirectional link volumes from
the previous assignment by route.

The header record and date from the previous assignment,
The header record and date from the 1aSt'assignment.

The header record and date of when the network was built.

IV-8

SUBROUTINE CRD

Control Variable Value ‘ Meaning
I 1 ' $PREPARE NETWORK control card read.
I 2 $OUTPUT NETWORK controi card read.
I 3 $PREPARE TRIP VOLUMES control card read.
I 4 $OUTPUT TRIP VOLUMES control card read.
I 5 $SUM TRIP ENDS control card read.
T 6 $LOAD NETWORK control card read.
I 7 $BUILD TREES control card read.
i 8 $STOP control card read.
I 9 SLOAD SELECTED LINKS control card read.
I 10 $FRATAR FORECAST control card read.
I 11 $MERGE control card read.
I 15 $ASSEMBLE NETWORK control card read.
I 16 $REVISE NETWORK control card read. _
I 17 $ASSIGN SELF-DIVERTING or $ASSIGN SELF-
BALANCING control card ‘read.
I 18 $DELETEAASSIGNMENTS_control ‘card read.
I , 19 $PLOT ROUTE PROFILES control card read.
Vafiable _ : Contents
INLNK _ © Variable unit ﬁumber INLNK
INCTV Variable unit number CTVIN
IvoL Variable unit number CTVOUT
TFRAT | | Variable unit number FRATAR
MRGOUT Variable unit number MRGOUT
NET : Variable unit number NETWORK
NNET v -Variable unit number NEWNET
MSEP » " Variable unit number SEPARAT
IRTPFL Variable unit number ROUTE
MERGIN - ‘ Variable unit numbers for the six MERGIN units.
HEADER ' . The header which is printed on output.
DATE - 'The date that the program started executing.

RNAME The 16 control card names.

Iv-9

‘Control Variable

SUBROUTINE CRDINT

Valué A » | Meaning
- SUM Faléé Print header records from unit NETWORK.
SuM True .Prinﬁ header records from unit NEWNET,
Variable Contents
NLD The number of assignments which are on unit NETWORK if SUM
is false or on unit NEWNET if SUM is true.
Array Conténts
LINK A structure with a length of 16 + 4NLD bytes per record,
the records are corridor intercept links.
LK’

The same array as LINK except this is in half words.

Corridor Intercept Record

12+4NLD

Bytes Bytes
Displacement Length Contents
0 2 Corridor intercept
2 2 Anode 'of the link
4 2 Bnode of the link
6 2 Route code of the link
8 2 Functional class code of the link
10 2 Link speed
12 2 Count field of the link in units of 100 trips.
14 2 Capacity field of the link in units of 100 trips.
16 4 Nondirectional assigned volume for the first
assignment. '
4 Nondirectional assigned volume for the last

assignment,

IV-10

Variable
ITER
Al

A2

A0

NOSUB
Array

TSUM (I,J)
“ESUM (I,J)
GFAC (I,J)

LFAC (I1,J)
ITEST

VOL

FCEN

LCEN

SUBROUTINE FRATAR

'Contents

Number of Fratar iterations that have been run
Input trip matrix unit number

Output trip matrix unit number (Al and A2 are switched at
the end of each iteration) '

Unit CTVOUT

Number of subnets

Contents

I = subnet number, J = the relative zone in the subnet,
TSUM is the trip generations or the production volume plus
the attraction volume for each zone for the‘input trip matrix.

TSUM (I,J)* GFAC (I,J)/100 = the expected production +

attraction volume,

Growth factor, the factor multiplied by the trip generatlons
which is the desired future trip generatlons.

Is the trip generations produced by the last growth factors.
Growth factor frequency table for the last iteration run.

Used to read the trip volumes from the input trip matrix and
write them on the output trip matrix,

First centroid in each subnet.

Last centroid in each subnet.

IvV-11

SUBROUTINE GTLD

Control Variable Value Meaning
SUM False Don't produce a weighted assignment.
SUM - True Produce a weighted assignment from Weighted
' impedances and write a new flexible record
data set for it. :

Variable Contents

NLD The number of assignments which are on unit NETWORK.

ITER The number of iterations run for ASSIGN SELF-BALANCING.

JMAX The maximum jurisdiction number in the network.

Array Contents

VMI (J,L) Vehicle miles cross classified by jurisdiction + 1 used as
the first index and three link classes second index. The
three link classes are centroid connectors, arterials, and
freeway links,

VHR (J,L) Vehicle hours éross classified the same as VMI.

MI (J,L) Network miles cross classified the same as VMI.

W™ (J,F) Vehicle miles cross classified by jurisdiction + 1 used as
the first index and functional class + 1 used as the second
index. '

M (J,F) Network miles cross classified the same as VM.

vMC (J,F) Vehicle miles for links with a nonzero count field cross
classified the same as VM.

MC (J,F) Network miles for the links with a nonzero count field cross
classified the same as VM. ' :

VMCC (J,F) Vehicle miles for links with a nonzero capacity field cross
classified the same as VM,

MCC (J,F) Network miles for the links with a nonzero capacity field

cross classified the same as VM.

Iv-12

Array

Contents

FC (F)

FN (R,J)

SY (R,J)
SYY (R,J)

SX (R,J)

SXX (R,J)

SXY (R,J)

H1

H2

WGT(J)

The number of links with functlonal class + 1 used as index F

in the
J = 1:
J = 2:
J = 3:
J = 1:
J = 23

= 3:
J = 1:
J=2:
J = 3:
J = 1:
J = 2:
J = 3:
J = 1:
J = 2:
J = 3:
J = 1:
J = 2
J = 3:

network,

Number of links with nonzero link counts by route;
Number of links with nonzero link capacities by route;
Number of links in the network by route.

Sum of link counts by route code;

Sum of link capacities by route code;

Sum of nondirectional link volume from the previous
assignment by route.

Sum of link counts squared by route code;

Sum of link capacities squared by route code;

Sum of nondirectional link volumes from the previous
assignment squared by route code,

Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero count by
route;

Sum of nondirectional link volumes for this assign-
ment for those links which have a nonzero link
capacity by route;

Sum of nondirectional link volumes for this assign-
ment by route,

Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count by route;

Sum of nondirectional link volumes squared for thls
assignment for those links which have a nonzero link
capacity by route; '

Sum of nondirectional link volumes squared for this
assignment by route code.

Sum of nondirectional link wvolumes from this assign-
ment multiplied by link county by route;

Sum of nondirectional link volumes from this assign-
ment multiplied by link capacity by routes;

Sum of nondirectional link volumes from this assign-

ment multiplied by nondirectional link volumes from
the previous assignment by route.

The header record and date from the previous assignment.

The header record andydate.frbm the last assignment.

The header record and date of when the network was built.

This array contéins the weights in percentages to use on
each iteration when SUM is true. :

Iv-13

The following arrays and variables are summed for links with a
nonzero count (or capacity)~field. The *TURN card is used to specify:
whether the count or capacity field is used. It should also be noted

that the following arrays and variables are not summed for centroid

connectors.

‘Arfay Contents

SX2(J) ‘ Sum of the nondirgctional link voiumes for‘iteration J.

XY(J) Sum of the nondirectional link volumes multiplied by the
count (or capacity) field for iteration J.

XX(J,K) Sum of the nondiréctional link volumes for iteration J _
multiplied by the nondirectional link volume for iteration K.

Variable g Contents

SY2 » The sum of the count (or capacity) fields.

sYy2 The sum of the count (or capacity).fields squared.

FN2 » The number of nonzero count (or capacity) fields for links

which are not centroid connectors.

’IV—14

SUBROUTINE INITL1

Variable Contents
NODES ‘ Last node number
Array . Contents

PATH (I) The turn code is contained in bits 3 thru 7 of
: PATH (I) for node I.

IV-15

SUBROUTINE LNKLST

Variable , Contents

NA The number of iterations, in an ASSIGN SELF-BALANCING run,
: plus one if a weighted assignment has been produced.

NET , The'FORTRAN’unit on which the last assigned Flexible Record
) is written. ‘ : :

IV-16

SUBROUTINES LOAD

Control

Variables Value Meaning

READSW False The last record of trip volumes read has been loaded.

READSW “ True The last record of trip volumes read has not been

loaded.

Variable Contents

v Number of volume items in the last trip record read.

IFACT First zone number minus 1.

NOVER The number of assigned directional link volumes and saved

. turn volumes greater than 32767.

Array Contents

INDEX (I) This array contains the Fortran type index for node I of
where the links from node I start in array links. The indices
are uns1gned 16 bit blnary numbers, '

LINKS This is the links array. Bit O is the last link flag, bit 1
is the selected link flag, and bits 2 thru 15 are the Bnode
number.

BUF This array is a structure where each word of the array is an

' item containing the trip movement volume in the first 18

bits as an unsigned binary integer, and the destination zone
number in the last 14 bits as an unsigned binary integer.

VOL (I) This is a half word array which has the same dimension as

array LINKS and element I contains either the assigned
directional link volume for link LINKS (I) or the index of
where it is in array OVERF, The first bit of a VOL element
is a flag bit, if it is zero, then the next 15 bits are on
unsigned binary integer which is a link volume, If the flag
bit is. 1, then the next 15 bits are an unsigned binary
integer whlch is an index into array OVERF where the link
volume is stored.

Iv-17

Array

Contents

TRNTB (I)

- XRTRN (J)

'PATH (I)

OVERF

This is a half word array which is either used to store turn
volumes or indexes to where they are stored., The flag bit
is the same as for array VOL and the next 15 bits are also
treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the turn
volumes for node J are stored, :

PATH (I) is the path index for node I. INDEX (I) + PATH (I)
is -the index into array LINKS for the 11nk whose Bnode is the
back node in the path to node I.

This is a full word array used to store link volumes greater
than 32767 and turn volumes greater than 32767,

Iv-18

SUBROUTINE MAIN

Control o .

Variable Contents Meaning

I Between Indicates the last control card read. (See

1 and 19 variable I in subroutine CRD),

RES - True An ASSIGN SELF-BALANCING run is in iterations
1 thru 5. '

CNVRG False If RES is true the "T" value of the last iteration
run on ASSIGN SELF-~BALANCING is greater than or
equal 1,96, ,

CNVRG True If RES is true the "T" value of the last iteration

: run on ASSIGN SELF-BALANCING is less than 1.96.

CNT False The count field is to be used by ASSIGN SELF-
BALANCING,

CNT True The capacity field is to be used by ASSIGN SELF-

' BALANCING.

W False A weighted assignment using weighted link impedance
in ASSIGN SELF-BALANCING is not to be run.

W True - A weighted assignment using weighted link impedances

: is to be run in ASSIGN SELF-BALANCING.

Variable Contents

INLNK Variable unit number INLNK

INCTV Variable unit number CTVIN

IVOL Variable unit number CTVOUT

IFRAT Variable unit number FRATAR

MRGOUT _ Variable unit number MRGOUT

NET Variable unit number NETWORK

NNET Variable unit number NEWNET

MSEP Variable unit number SEPARAT

IRTPFL . Variable unit number ROUTE

IV-19

Variable Contents

S _ The constant 0,75 in the impedance update function.
Q A constant used in the impedance update function.

A Is the iteration number in an ASSIGN SELF-BALANCING run.
IMIN Is the minimum number of iterations to run in ASSIGN SELF-
BALANCING. . o
IMAX Is the maximum number of iterations to run in ASSIGN SELF-

BALANCING,
N A constant used in the impedance update function, |

Iv-20

SUBROUTINE- MOORE (Control Section MOOR)

Variable Contents

H Home zone number to build a tree from,

NODES Last node number in the network.

Array Contents

TP This array contains 4 words whose contents are 0, turn penalty,

' turn penalty, O.

LINK Each word of this array contains one directional link. The
structure of a link word is described in a table which follows.

INDEX (I) The index into array LINK where the out direction links for
node I start, The values in this half word array are used as

_ 16 bit unsigned integers.

BACK (J) Contains the index of the out link from node J whose Bnodé is
the prev1ous -node in the path to node J.

CUM (I) Cummulative time to reach node I stored in half words. If
node I is not reached the time is set to 327.67 minutes.

PRED A list of the nodes in the tree in descending time b:der.:,This
list is part of the sequence structure used in building a tree.

SuUCC A list of the nodes in the tree in ascending time order. This
list is part of the sequence structure used in building a tree.

FIRST (I) For time I, which has been taken modules 1024, FIRST (I)
points to array SUCC where the nodes in the sequence table for
time I begin.

LAST (I) For time I, which has been taken modules 1024, LAST (I)
points -to array PRED where the nodes in the sequence table
for time I end.

ARROWA (I) Each element of this array is one byte long. = ARROWA (I)

contains the arrow flag of the last link which caused node I
to be entered into the sequence table. ARROWA for the home
zone contains 12 which keeps a turn penalty from being added

to the nodes connected to the home zone,

Iv-21

LINK Word Data Structure

Displécement iength

Bits . ‘ Bits Contents
0 1 Last link from Anode Flag (l if lést link or
: dummy link).
1 1 shaft flag
',2 | 1 5 afrow flag
3 3 - Back index for Bnode (this is the number which

must be added to INDEX (Bnode) to index the
1ink which contains the Anode number of this
link as its Bnode)

6 . 1 Bnode Centroid Fiag (the Bnode is a centroid if
this bit is 1), .
7 1 Freeway link Flag.
8 _ 10 Link impedance in units of 1/100 minutes

(maximum link impedance = 10.23 minutes).

18 14 " Bnode of Link

v-22

Variable

L
NX
LNK2
MAXTIM
MAXLNK
MAXNDS

NOSUB

LSTC
LSTF
LSTA

ARRAY

SUBROUTINE MRGREC

This

This

This

This

This

This

This

&~ ES

73343

is
is
is
is
is
is

is

-Lehgth

the
the
the
the
tﬁe
the

the

Contents
humber of 1ink_records in arfay LINKS.
number of links written on unit 3.
number of links written on unit 11.
maximum lipk time in 0.0l minute units.
maximum number of one-way 1inks for a netWork.
maximum number of nodes for a netwbrk.

number of subnets the network is in.

Arrays

Contents

FirStknode of eéch sﬁﬁnet. L
Laét centroid of each subnet.
Lasf freeway of éach subnet;
Last arterial'node of each subnet;

Contains the sorted packed 1inks array
described in NEWNET.

Iv-23

SUBROUTINE NEWNET

Action Impliéd

Use old link data
format

Use new link data
format

Write first sorted
links on unit 3

Write second sorted
links on unit 11

If the sorted links
area is filled up
three times there
are too many links
and an attempt to

“write on unit -1

will be made

Control .
Variables Value
FMT False
FMT True
LNKTMP 3
LNKTMP 11
LNKTMP -1
ERROR ‘Number of
: Errors detected
in subroutines
NEWNET, VREC,
and MRGREC
Array LINKS

Location Where Set

PRPNET, ASMNET, or
REVNET

PRPNET, ASMNET, or
REVNET

Initialization of NEWNET

Set to 11 after sorted
links are written on 3

~ Set to -1 after sorted

links are written on
unit 11 '

Array LINKS is the array in which one-way internal link records are

accumulated and sorted. These records are 22 bytes long and are stored

by subroutine PTLNK and referenced by subroutine GTLNK. The format

for these 22 byte records is as follows:

IV-24

Displacement. . _ Length. -

Bytes Bits ' Bytes Bits Contents
14 ' Anode number
6 0 2 Link class code
0 = two-way

1 = one-way out
2&3 = dummy link

o 0 15 Link data card count

3 7 0 1 Not mileage code
0 = Use in Vehicle Mile Summary

1 = Do not use in Vehicle Mile
; Summary
4 0 0 14 Bnode number
5 6 0 14 Count field in units of 100 trips
7 4 0 4 ‘Jurisdiction code in hexadecimal
8 0 0 4 Functional class code in
: hexadecimal
7 Subarea code
N ’14 Link Capacity in units of 100 trips
1 1 0 7 Speed in units of tenths of
a mile per hour
12 0 0 10 Link distance in units of ==~
100
of a mile ,
13 2 : 0 7 Corridor intersect code
14 1 : 0 5 Route number
14 6 - 0 1 Shaft code, 0 = one direction
-~ 1 = other direction
14 7 : 0 1 Arrow code, 0 = one direction
' "1 = other direction
15 0 - 1 0 -~ Unused
16 0 , 0 6 ~ Link Impedance field, in units
1 . . :
of Iaa-mlnutes
16 6 ' o 1 Link delete code
' - 0 = keep link
1 = delete link from updated
Flexible Data Record

16 7 , 4 1 Unused

Iv-25

" Control Variable

PRINT
;PRINT
ouT

ouT
RES
- RES
CAP
CAP
Array
IOVER

IPATH(T)

INDEX(I)

NODE

SUBROUTINE OUTLLT

Contents Meaning

False Don't print the loaded network. H
True Print the loaded network.
False Don't print the loaded network.
True Print the loaded.network if variable

RES is false or ITR is equal to 1.

False This is not an ASSIGN SELF—BALANCING
: iteration.
True - This is an ASSIGN SELF-BALANCING
.- iteration.
False The COUNT field is used in an ASSIGN

SELF-BALANCING run.

True The Capacity field is used in an ASSIGN
SELF-BALANCING run.

Conteﬁts.

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.

This array is a structure, element I contains the next -
node in the path back from node I, the turn code, and

a flag which indicates whether the node is in the
sequence table or is a centroid. '

This array contains the FORTRAN type index indicating
the location where the links from node I begin in
NODE. The half words in this array are used as 16
bit unsigned integers.

This array contains a link in each half word, the links
are structures which contain 3 data items. Bit 0 is
the last link flag, bit 1 is the selected link flag and

bits 2 thru 15 are the Bnode.

IV-26

Array
ITR(I)

IXR(J)

VOL(I)

Contents

This is a half word array which is either used to store
turn volumes or indexes to where they are stored.

The flag bit is the same as for array VOL and the next
15 bits are also treated the same as for array VOL.

This is a half word array which contains unsigned
16 bit integers which are indexes into array ITR
where the turn volumes for node J are stored.

This is a half word array which has the same length
as array NODE and element I contains either the
assigned directional link volume for link NODE(I)
or the index of where it is in array IOVER. The

- first bit of a VOL element is a flag bit, if it is

zero, then the next 15 bits are on unsigned binary
integer which is a link volume. If the flag bit is

1, then the next 15 bits are an unsigned binary integer
which 1is an index into array IOVER where the link
volume is stored. '

Iv-27

SUBROUTINE OUTNET

Variable . Contents

L '~ The FORTRAN unit number of the Flexible Data Record unit
LINES The number of lines printed on the page'beiﬁg printed.

Iv-28

Variable
HOMEND
NODES
LNE
‘LINES

PAGES

A;raz
PATH(J)

LAMBDA(I)

INDEX(I)

LINKS

Link Word Data

SUBROUTINE OUTTRE

Contents

The home zone of the tree.

The last node number in the network.
Number of lines of tree data to be printed per page.

Total number of lines of tree data to print for tree HOMEND.

' Number of pages to print for tree HOMEND.

Coritents

Contains the index of the out link from node J whose Bnode
is the previous node in the path to node J.

Cumulative time to reach node I stored in half words. If
node I is not reached the time is set to 32767 minutes.

The_index iﬁto array LINKS where the out direction links for
node I start. The value in this array are used as 16 bit
unsigned integers.

Each word of this arréy contains one directional link. The

structure of a link word is described in a table which
follows. '

Structure

Displacement Length
Bits Bits Contents
0 1 Last link from Anode flag (1 if last link or
: : dummy link).
1 Shaft flag
Arrow flag

- .Back index for Bnode (This is the number which must
be added to INDEX (Bnode) to index the link which
contains the Anode number of this link as its Bnode).

Iv-29

Link Word Data Structure (continued)

Displacement Length

_Bits Bits - ____ Contents
6 . 1 Bnode Centroid Flag (the Bnode is a centroid if thié’
~ bit is 1. . '
1 . Freeway link Flag.
8 10 Link impedance in units of I%afminutes (maximum
o link impedance = 10.23 minutes). '
18 14 Bnode of link |

IV-30

-SUBROUTINE OUTWLT

Variable | | Contents
" WL - The dimension size of arrays OVOL and IVOL.
WT The dimension size of array TVOL. »
FS ' - The first node (or zone) of the segment of the loaded weighted
' network to be printed. .
LS ’ The last node of the segment.
I The lest Anode number read frem the NEfWORK data set.
NET The NETWORK unit number.
NNET ‘The NEWNET unit numﬁer.
Array | Contents
OVOL(I) The out link volume array. .The link volumes out from node

FS start at index 1. All volumes in this array are
multiplied by 100. '

IVOL(I) - The in link volume array. The link volumes into node FS
start at index 1. All volumes in this array are multiplied
by 100.

TVOL(I) . The turn volumes multiplied by 100. The turn volumes for

node FS start at index 1.

IV-31

Control

Variable

COPY

COPY

OUT(I,J)

oUT(I,J)

Variable

NTREE
ITRE

- ISKM
NETD

LPACK

Arraz
'TRNPTY

T(T)

Contents

False

True

False

True

SUBROUTINE PATHCL

Meaning

All trees specified on the *TREE cards are to
be built. '

An old trees data set (unit 49) is to be

read and each logical record is to be checked
for errors. Trees on unit 49 which have valid
data are to be copied and trees specified

on the *TREE cards which are missing or have
invalid data are to be rebuilt.

The trees built with origins between INDX1(I,J)
and INDX2(I1,J) are not to be printed.

The treesbbuilt with origins between INDX1(I,J)
and INDX2(I,J) are to be printed.

Contents

The unit number (49) from which old packed tree records which -
are to be copied are read.

The unit number (50) on which packed tree records are

written.

ﬁnit SEPARAT number.

Unit NETWORK number.

The number of words of packed path indices in a packed

tree record.

Contents

This array contalns 4 words whose contents are 0, turn penalty,
turn penalty, O.

A full work array into which the cumulative ‘time to. reach node

-1 in hundredths of a minute are stored to write a separation
record from.

Iv-32

~Array . ' : ‘ Contents

B(I) _ B(I) contains the index of the out link from node I whose
' Bnode is the previous node in the path to node I. This
array is equivalenced to array BACK and the array name
BACK is actually used in all calling sequences. After
subroutine TRPCKM is called the indices are packed into
10 per word (see packed path word Data Structure below).

BACK(J) This array is equivalenced to array B, but it is a full
word array.

CUM(I) .-Cﬁmulative time to reach node I stored in half words after
' subroutine MOORE is called, If node I has not been reached
the time is 327.67 minutes.

PRED(I) A scratch array used by subroutine MOORE,
SUCC(I) A scratch array used by subroutine MOORE.
* ARROW(I) A scratcﬁ array ﬁsed'bj subroutine MOORE.
INDEX1(I) The index into array LINKS1 where the out direction links

for node I start. The values in this half word array are
‘used as 16 bit unsigned integers. This allows the array
to index up to 65534 one~way links in a network.

'LINKS1 ' Each word of this array contains one_direétional link
(see LINKS1 word Data Structure below).

COUNT (I) The number of ranges of trees to be built for subnet I.

INDX1(1,J) The first zone number of the J'th range of trees to build
S for subnet I. ' :

INDXZ(I,J) ~ The last zone number of the J'th range of trees to.build
: : for subnet I. ' : :

Packed Path Word Data Structure4

Displacement Length

Bits Bits - ___Contents
0 2 Not used ‘
2 3 Path index for node 10(J-1) + 1
5 . 3 Path index for node 10(J - 1) + 2
8 3 Path index for node 10(J - 1) + 3

v-33

Length

Displacement ;

Bits Bits Comntents

11 3 ~ Path index for node 10(J - 1) + 4
14 '3, Path index for node 10(J - 1) + 5
17 3 Path index for node 10(J - 1) + 6
20 3 Path index for node 10(J - 1) + 7
23 3 Path index for node 10(J - 1) + 8
26 3 Path index for node 10(J -'1) + 9
29 3 Path index for mode 10(J - 1) + 10

LINKS1 Word Data Structure

Displacement Length
Bits Bits Contents
0 1 Last Link from Anode Flag (1 if last link or dummy
1link) : v ‘
1 1 Shaft flag
2 1 Arrow flag
3 3 Back index for Bnode (This is the number which
must be added to INDEX (BNODE) to index the link
which contains the Anode number as'its BNODE.)
6 1 Bnode Centroid Flag (the Bnode is a centroid if
this bit is 1).
7 1 Freeway link Flag.
8 10 Link impedance in units of ———-minutes (maximum
link impedance = 10.23 minu%es)
18 Bnode of Link

14

IV-34

~ SUBROUTINE PRPBLD

Control
Variable Contents , Meaning
RES False This is a $BUILD TREES run.
RES True . This is a $ASSIGN SELF-BALANCING run.
CAPC False . : The Link Count field is to be used in
, ASSIGN SELF-BALANCING.
W False A weighted assignment using weighted link
impedances should not be run.
W True A weighted assignment should be run
from weighted link impedances.
OUT(1,J) False The trees built with origins between INDX1(I,J)
o and INDX2(I,J) are not to be printed.
OUT(I,J) True’ The trees built with origins between
' ' INDX1(I,J) and INDX2(I,J) are to be printed.
TYPE 'CoPY' An old path data set is to be read, checked
S for errors, and paths with no errors are
to be copied. Missing paths and those with
errors are to be rebuilt. '
Variable _ : Contents
NOSUB Number of subnets.
Array | ' Contents
INDX1(I,J) The first zone numbef of the J'th rénge of trees to build for
subnet I.
INDX2(I1,J) The last zone number of the J'th range of trees to build for
subnet I. g
COUNT (I) The number of ranges of trees to be built for subnet I.
* TRNPTY This array contains 4 words whose contents are 0, turn penalty,

turn penalty, 0.

Iv-35

SUBROUTINE PRPNET

Logical Variables

Variable Name ,. Set Action Implied | Where Tested
FMT False Use old link data format - NEWNET, VREC
REV =~ False This is not a REVISE N PRPNET

NETWORK run

Maximum Value Variables

Variable Name = Value v , Meaning

MAXLK2 13335 This is the maximum number of one-way links in core.
MAXNDS 16000 This is the maximum last node number.

MAXLNK - 40000 This is thé maximum number of ohe?way links for

the network.

MAXTIM ‘ 1023 This is the maximum link time in hundredths of a
: ' : ~minute (i.e., 10.23 minutes).

Arrays
Name Length ' Contents
FSTN | 4 First node of each subnet
LSTC | 4 Last centroid ofvéaéh subnet
LSTF: . _ 4 Lasf freeway node of each sﬁbnet
LSTA : 4 Lést arterial node.of eaéh subnet
 ARRAY 73343 Contains the packed links arrayvde5cribed as

array LINKS in subroutine NEWNET.

Iv-36

When entry point ASMNET is

set as follows:

Variable - Vdalue
~ Name ‘Set

FMT True

REV False

When entry point REVNET is

are set as follows:

Variable - Value

Name Set
FMT True
REV : True

used, the logical variables FMT and REV are

Action Implied Where Tested

Use new link data format NEWNET, VREC
This is not a REVISE 7
NETWORK run PRPNET

used, the logical variables FMT and REV

Action Implied Where Tested

Use new link data format NEWNET, MRGREC

This is a REVISE NEIWORK
run : - PRPNET

V=37

SUBROUTINES RTPFLiAND RTPLT

Control Variable Contents Meaning
END False | There was enough room in array F for
the first 10 routes.
END True There.was not enough room in array
F for the first 10 routes.
RTS(I) False Don't save the records read for route
I in array F.
RTS(I) True “Save the records read for route I
in array F.
Variable Contents
NRD ‘The number of words in array F used by one route record.
NWORDS The length of array F in words. :
NLD The number of assignments on the NEWNET data set.
Array Contents
B1(I) If B1(I) is not zero, then there is a link for route
RT2 between node I and node B1(I).
B2(I) If B2(I) is not zero, then there is.a link for route
RT2 between node I and node B2(I).
NX1(I) NX1(I) is the index into array F of where the record
~ for the link represented by B1(I) is stored.
NX2(I) NX2(I) is the index into array F of where the record for
the link represented by B2(I) is stored.
F(I) This is a full word array used to store a group of words
and half words which are a single record for a link.
H(I) This is a half word array equivalenced to array F.

IV-38

Array Contents

RIT(I) Contains either the number of route reéords for route I
S or zero if the records are in array F or have been printed.

RT10(I) Contains the number of route records for route I for the
first ten routes. '
A route record has the following order of items and is stored in
array F in the same order:

Displacement Length

in bytes in bytes ' Contents
0 | 2 Route code
2 2 Anode number
4 2 ' » Bnode number
6 2 - link functional ¢1assifipation
8 2 - ~ link distance in 1/160 miles
10 2 o llink speed in tenths of a mile/hour
12 2 link countlloo
i4 2 - 1link capacity/100
16 4 , link ﬁondirectionai'assigned volume
~ for first assignment
E; . ,
12 + 4NLD 4 link nondirectional assigﬁed volume for the

last assignment

V-39

SUBROUTINE SELECT

Control Variable Contents ’ Meaning

out ' N True | no errors found in SELECT cards.
ouT False errors found in SELECT cards.
Array Contents _

INDEX(I) This array contains'thé FORTRAN type index indicating the
location where the links from node I begin in array LINKS.
The indices are used as 16 bit positive integers.

LINKS This array contains a link in each word, the links are
structures which contain 5 data items..

Links Structure

Displacement Bits Length Bits Contents

0 1 ‘ iast link flag (0 if not last.
: : : link, 1 if last link or dummy
one-way link).

-1 1 Shaft code
2 o o 1 : Arrow cpde
3 o 3 Back inAex for Bnode
6 v' : | 1 Bnode Centroid Flag
7 | : 1 | - Fréeway link flag
8 | 10 " Link impedance in units of 0.0l
minutes. ‘
18 ~ - 14 Bnode of fhe link.

Iv-40

Array
IORG(I)

IDEST(I)

IIN(I)
ouT (1)
INTRA(I)
ISUB(I)
IFSTND(I)

LSTND(I)

Variable

NOSUB

SUBROUTINE SUMEND

Contents

The
the

The
for

The

The

sum of all trip volumes with the origin I except for
intrazonal volume for I.

sum of all trip volumes with the destination I except
the intrazonal volume for I.

number of nonzero trip volumes with destination I.

number of nonzero trip volumes with origin I.

Intrazonal volume for zone I.

Number of zones in subnet I.

The

first zoneuin subnet I.

Last zone in subnet I.

Contents

~Number of subnets

IV-41

Control

Variable

RES

RES
CNVRG
CNVRG
SUM

SUM

Variable

ITER
LASTJ
L

Array

VMI(J,L)

VHR(J,L)

MI(J,L)

-Contents

False

True
False
True
False

True

SUBROUTINE SUMRY

Meaning

- This is either a LOAD NETWORK run or a LOAD

SELECTED LINKS run or the weighted assignment
of an ASSIGN SELF-BALANCING run.

This is an ASSIGN SELF-BALANCING rum in
iteration 1 thru 5, call subroutine ALCP

The "T" test value for iteration ITER is
greater than or equal to 1.96.

The "T" test value for iteration ITER is
less than 1.96.

A weighted assignment 'is not to be calculated
by subroutine GTLD.

A weighted assignment is to be calculated

by subroutine GTLD and written on unit
NEWNET.

Contents

The iteration number if an ASSIGN SELF—BALANCING is being
run, otherwise 1.

The 1argest jurisdiction code in'the network

The number of assignments which are on unit NETWORK.

CQntents

Vehicle miles cross classified by jurisdiction + 1 used as
the first index and three link classes used as the second

. index.

The three link classes are centroid connectors,
arterials, and freeway links.

Vehicle hours cross classified the same as VMI.

Network miles cross classified the same as VMI.

IV-42

Arraz
VM(J,F)

M(J,F)
VMC(J,F)
MC(J,F)
VMCC (J,F)
MCC(;,F)
FC(F)

FN(R,J)

SY(R,J)
SYY(R,J)

SX(R,J)

SXX(R,J)

Contents

Vehicle miles cross classified by jurisdiction + 1 used as
the first index and functional class + 1 used as the second
index.

'Network miles cross classified the same as VM.

Vehicle miles for links with nonzero count field
cross classified the same as VM.

Network miles for the links with a nonzero count field cross
classified the same as VM.

Vehicle miles for links with a nonzero capacity field
cross classified the same as VM.

Network miles for links with a nonzero capacity field cross

classified the same as VM.

The number of links, with functional class + 1 used as
index F, in the network.

J = 1: Number of links with nonzero link counts by route;

J =-2: Number of links with nonzero link capacity by route;

J = 3: Number of links in the network by route.

J =1: Sum of link counts by route code;

J =2 Sum of link capacities by route code;

J = 3: Sum of nondirectional link volumes from the previous

"+ assignment by route.

J =1: Sum of link counts squared by route code:

J =2: Sum of 1link capacities squared by route code;

J = 3: Sum of nondirectional link volumes from the previous
assignment squared by route code.

J =1: Sum of nondirectional link volumes for this assignment

. for those links which have a nonzero count by route;
J = 2: Sum of nondirectional link volumes for this
assignment for those links which have a nonzero link
capacity by route; '
J = 3: Sum of nondirectional link volumes for this assignment
- by route.

J =1: Sum of nondirectional link volumes squared for this
assignment for those links which have a nonzero
count by route;

J = 2: Sum of nondirectional link volumes squared:fOr this

~assignment for those links which have a nonzero link
capacity by route;

IV-43

Array . . ‘ Contents

J = 3: Sum of nondirectional link volumes from this assignment
multiplied by nondirectional link volumes from the
previous assignment by route. :

H1 k The header record and date from the previous assignment
H2 ' The header record and date from the laét assignment

HN vfhe header record and date of when the network was built.
WGT(J) This array contains the weights in percentages to use on

each iteration when sum is true.

The following arrays and variables are summed for links with a nonzero
count (or cépacity) field. The *TURN card is used to specify whether
the count or capacity field is used. It should also be noted that the

following arrays and variables are not summed for centroid connectors.

Array | Contents
SX2(J) ‘Sum of the nOhdirectional link volumes for iteration J.
XX(J) Sum of the nond1rect10nal link volumes multlplled by the

count (or capacity) for iteration J.

XX(J,K) Sum of the nondirectlonal 1ink volume for iteration J
’ ‘multiplied by the nondirectlonal link volume for iteration K.

Variable 4 | Contents

SYZ » The'sﬁm of the count (or capacity) fields.

SYY2 ' The sum of the squaredvcounf or (squared capacity) fields.
FN2 The number of nonzero count (or capacity) fiélds for links

which are not centroid connectors.

IV-44

Variable

NSG
NLKF
ITER

NODES

Array
BL(I)

WL(I)

BT(I)

WT(I)
FS(I)
LS(I)

INDEX(I)

~ IPATH(I)

LINKS(I)

- VOL(I)

SUBROUTINE SVLOAD

Contents

This is the number of segments that the loaded network
must be summed in,

The index of the fifst link volume or turn volume of a
group of 4000 volumes or less for ome record.

The iteration number.

The last node number in the network.

Contents

The number ofvbiocks of links (or records) for segment I.
The number of link volumes for segment I.

The number of blocks of turn volumes (or records) for segment
I. '

The number of turn volumes for segment I.
The first node number of segment I.
The last node number of segment I.

The sixteen bit unsigned integer at INDEX(I) is the index
into array LINKS where the links out from node I start.

The eight bit byte at index I contains in bit 0 a centroid
flag, in bit 1 a freeway flag, and in bits 2 thru 7 the
turn code for node I.

This array contains links. Bit O of a link is the last link
flag, bit 1 is the selected link flag, and bits 2 thru 15
arée the Bnode of the link. The Anode of the link is the :
index used to index array INDEX.'

' VOL(I) is the assigned directional volume for link LINKS(I)

if the volume is less than 32767. If the volume is greater than
32767 the VOL(I) bits 1 thru 15 are an index into array IOVER
where the volume is stored and bit 0 of VOL(I) is a one.

IV-45

Array
XRTRN{(J)

ITR(J)
IOVER

BUF

Contents

4XRTRN(J) is the index into array ITR where the turﬁ volumes

saved for node J start. XRTRN(J) is an unsigned 16 bit
positive integer. : v

ITR(J) is either a turn volume or a flag in bit 0 of the
half word of 1 and an index in bits 1 thru 15 into array
IOVER where the turn volume is saved.

This is a full word array which contains both directional
link volumes greater than 32767 and turn volumes saved
which are greater than 32767.

This is an array of 4000 words used to group volumes to
write in one record.

IV-46

SUBROUTINE TRN

Control Array Contents | | Meaning

TL(I,J) . False Don't print turn mo§ement ™(I,J).
TL(I,J) - True Print turn movement TM(I,J)

™(I,J) -1 ' The turning.movement ™(I,J) is uqknown.
TM(i,J) | ip | TM(I,J) is a turning movement volume. |
Variable _ : : _Contents

TRNCD .Contains the turn code for NODE.

NODE Node number to get directional volumes for and calculate

turn movements for.

IND ' " Turn code for NODE (the turn codes are explained in the
Other Information section).

N Number of nodes connected to NODE.
INDXT This is the index into array TVOL where the turn volumes for
; NODE start.

Array Contents

™(I,J) Turn movement between the Ith node and the Jth node

connected to NODE.

NDIR(I) Nondirectional link volumes for the 1inks connected to
IDIR(I) _Directional link volumes for the links connected to NODE.
CH(I) Directional link volumes for the links going in the

direction of the nodes connected to NODE.

TVOL This array contains the turn volumes saved they are indexed
by variable INDXT.

Iv-47

Array . ' Contents

"KC(IND) ‘A table indexed by the turn code which has the number of
one-way links out from NODE. '

KR (IND) | A table indexed by the turn code which has the number of
one-way links into NODE.
The following arrays are used to place the turning movementsbwhich
have been ‘saved in ARRAY ™ béfore the ofher turning movements are calculated.
When a location in the following tables is not negative, the‘folloﬁing
action is taken: ™(I,J) = TRNTB(XRTRN(NODE) + IDSPXX(I,J)). If the
IDSPXX(I;J) position is negative, a zero is placed in TH(I,J). The XX

part of the IDSPXX array above varies.

E_a_z Used for turn codé_ |
IDSP3 10

IDSP41 13, 17, 18, 20, 22

IDSP42 21

IDSP43 23,24

IDSP44 - 25

Isnps”“ o 26

IDSP6 - 27

IV-48

Control Array

TL(I,J)
TL(I,J)

™(I,J)
TM(I,J)

vVariable

NODE

IND

Array
™(I,J)

NDIk(I)
IDIR(T)
CR(T)

KC(IND)
KR (IND)

- IPATH(I)

SUBROUTINE TURNM

Contents Meaning
False. Don't print turn movement TM(I,J).
True Print turn‘movement TM(I,J).
-1 The turning movement TM(I,J) is
unknown.
>0 | TM(I,J) is a turning movement‘voiume;
Contents

Node number to get directional volumes for and calculate
turn movements for.

Turn code for NODE (the turn codes are explained in the
Other Information section).

Number of nodes connected to NODE.

Contents

Turn movement between the Ith node and the Jth node
connected to NODE,

Nondirectional link volumes for the links connected to
NODE. :

Directional link volumes for the links connected to NODE.

Directional link volumes for the links going in the
direction of the nodes connected to NODE.

A table indexed by the turn code which has the number of
one-way links out from NODE.

A table indexed by the turn code which has the number of
one-way links into NODE. ”

This a path index for node I.

IvV-49

Array
INDEX(I)

LINKS

VOL(I)

TRNTB (I)

XRTRN (J)

OVERF

Contents

This array contains the FORTRAN type index indicating
the location where the links from node I begin in array
LINKS. The half words are used as 16 bit unsigned integers.

This array contains a link in each half word. Bit 0 is the
last 1link flag, bit 1 is the selected link flag, and bits
2 through 15 are the Bnode number.

This is a half word array which has the same dimension _
as array LINKS and element I contains either the assigned .

‘directional link volumes for link LINKS(I) or the index

of where it is in array OVERF. The first bit of a VOL
element is a flag bit, if it is zero, then the next 15

bits are an unsigned binary integer which is a link volume.
If the flag bit is 1, then the next 15 bits are an unsigned
binary integer which is an index into array OVERF where the
link volume is stored.

This is a half word array which is either used to store
turn volumes or indexes to where they are stored. The
flag bit is the same as for array VOL and the next 15
bits are also treated the same as for array VOL.

This is a half word array which contains unsigned 16 bit
integers which are indexes into array TRNTB where the
turn volumes for node J are stored.

This is a full word array used to store link volumes
greater than 32767 and turn volumes greater than 32767.

IV-50

SUBROUTINE UPDTNT

NMPD

Control Variable Contents Meaning

DLT False There are no errors in the parameter
cards read.

. DLT True There are one or more errors in the

parameter cards read for DELETE o
ASSIGNMENTS. The program will continue
reading control cards but it will
end execution with a STOP 3 when the
next card with a $ character is column
1 or an *END card is read.

IMPD False An *IMPEDANCE parameter card has not
been read.

SLF False An *ADJUST parameter card has not been
read.

SLF True An *ADJUST parameter card has been fead.

Variable Contents

The assignment number of the assignment which is to be the
new link impedance if IMPD is true or from which the
impedance update function using the count field is to be
used to calculate a new set of link impedances.

IV-51

Variable

L
LNKL
LNK2
MAXTIM
MAXLNK
MAXNDS
NOSUB

ERR.

Array
FSTND
LSTCEN
LSTFWY
LSTART

LINKS
ARRAY

ARRAY?2

SUBROUTINE VREC

Cdntents

This
‘Tﬁis
Thié
This
This
This
This

This

is

is

is

is

is

is

is

is

Length'

73343

220

220

the

the

the

the

the

the

the

the

number of link records in array LINKS.
number of links written on unit 3.

number of linksiwrittén on unit 11.

maximum link time in 0.0l minute units.
maximum number of one-way links fér a network.
ma#imum number of nodes for a network.

number of subnets thé network is in.

number of errors found in processing the link data

Arrays

Contents

First nodé of each subnet. -
Last centroid of each subnet.
' Laéf freeway of each subnet;
Last arterial node of each sﬁbnet.

Contains the sorted packed llnks array
o described in NEWNET.

Contains one record from unit 3 of 40 packed
links.

Contains one record from unit 11 of 40
packed links. :

Iv-52

Variable

ITER
ISG

NSG

IN
10
IT

NSPL

NSAL

- NSPT

NSAT

IWT

NS

Array
WIG(TI)

VOLS (I)

SUBROUTINE WTSGLN

Conternts

Number of iteration rumsin an ASSIGN SELF-BALANCING
run which are to be used to produce a weighted assignment.

The segment number of the network which is being;summed in
core.

The number of segments the network is broken into.

The index into array VOLS where the out link volumes are
to be summed.

The index into array VOLS where the in link volumes are to
be summed.

The index into array VOLS where the turn volumes are to be
summed . ‘

The number of 1link volume records to skip to reach the
link volume records for segment ISG for both the out 11nk
volumes and the in link volumes. :

The number of link volume records which must be skipped to
reach the end of either type of link volume records after
the link volume records for segment ISG have been read.

The number of turn volume records which mnst be skipped to
reach the turn volume records for segment ISG.

The number of turn volume records to skip after reading

the turn volume records for segment ISG to reach the end of
the records written for one assignment on unit 3.

The percent weight for iteration ISG.

The number of records to skip on unit 3 at various places

in subroutine WTSGLN.

Contents

The weight to use for iteration I expressed as a number
between'O and 1.0.

The full word array in which all weighted volumes for a
segment are summed. '

Iv-53

Array Contents

BL(I) Thé number of blocks of links (or records) for segment I.
WL(I) The,number of link volumes for segmenf I.
BT(I) The numbef of blocks of ﬁurn volumes (or records) for
‘ segment I.
WI(I) The number of turn volumes for ségment I.
FS(I) Thé first node number of segment I;
LS(I) ' The last node number of segment I.
BUF : fhis is an array of 4000 words which is used to read link

volume records and turn volume records.

IV-54

DATA SETS AND

DATA SET FORMATS

DATA SETS
DATA SET FORMATS

OUTPUT SELECTED LINKS

- DATA SETS

Two categories of data sets are associéted with the Texas Large
Netwo;k Package: felocatable data sets and fixed &ata sets. The unit
numbers associated with relocatable data sets may be changed either by
the use of unit control cards or, in some instances, by the execution
of some programs such as ASSIGN SELF-BALANCING. A cross reference of

the data sets with associated programs is given in Table 6.

DATA SET FORMATS

‘There are eleven basic fqrmats,aésociated with data sets used by

the package. These eleven format types are:

FORMAT _ : FORMAT’
_TYPE ' : , IYPE CODE
Trip Volumes Data Set
 Flexible Record Data Set
Separation Matrix Data Set
Selected Interchanges Data Set
Paths Data Set
Calcomp Plot Tape
Route Data Set
Trip Matrix Data Set
Scratch Node NamesvData Set
Scratch Packed Links Data Set
Scratch Mhltiple Assignments Data Set

N MK H ® " P H oW W

The format type’codes (indicated above) are used in the cross reference

contained in Table 7 to indicate the format types uéed.with-each data set

TABLE 6: CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS

Relocatable Data Sets Fixed Data Sets
Heneificacion %E%E%Eéﬁsigiﬁi:iéggn
THEHHEEEHEHEHEHE IR EE

(Default) Unit Number s|10| 8|16 |* | *| 1|25 9|20 3] 417 |11 12|13 [*x % |49 50

PREPARE NETWORK I 0 | 1/oi/0| |1/0

ASSEMBLE NETWORK I 0 /ojto| |70

REVISE NETWORK 1 of | | [wojvo| |wo|1|uo

OUTPUT NETWORK ' I

DELETE ASSIGNMENTS | ol | I

PREPARE TRIP VOLUMES I} 0

OUTPUT TRIP VOLUMES e

BUILD TREES N 1| 0 | 1 l1]o
 LOAD NETWORK i I I{1/0{ O | I
ASSIGN SELF-BALANCING| | Yoj/oo| o|1/0f ! 1/0
* LOAD SELECTED LINKS I 1{1/0{ 0 0 I

PLOT ROUTE PROFILES | 1| | 11 0

FRATAR FORECAST#** I|1/0 | 1/0

SUM TRIP ENDS | I |
. MERGE | o| 1|

Input Data Set
Output Data Set

No default option exists for the MERGE program. Appropriate Unit Designation
Cards must be provided by the user.

*% Assembly language program reference. v
- *%% The FRATAR FORECAST program sets the CTVOUT unit to the same unit as FRATAR.

Note: Some of the output data sets may be suppressed by use of the DD DUMMY
option in the JCL. '

V-2

TABLE 7: CROSS REFERENCE OF DATA SETS WITH ASSOCIATED PROGRAMS
INDICATING THE DATA SET FORMAT TYPES

Relocatable Data Sets Fixed Data Sets
, o3|
et M A P B R B B EHEEEEHB R
S B EHHEHEEHEEEE
ClolEEIBIEIRIEIG|IQ|E|Q||2(S|B|d|8|L
(Default) Unit Number [10| 8|16 |** |*%| 1]25| ol20| 3| 4 |17 |11|12|13|%*|#49]50
PREPARE NETWORK - . Y| x Y
ASSEMBLE NETWORK | | F Y| x Y
REVISE NETWORK | 1 | F 1| x| |¥|7|F
OUTPUT NETWORK - F|
DELETE ASSIGNMENTS | F BEE:
PREPARE TRIP VOLUMES | B| T
OUTPUT TRIP VOLUMES T
BUILD TREES N | F BE | | |ala
LOAD NETWORK T F|R|F| I | A
ASSIGN SELF-BALANCING T | FlR{F| 1|2 | A
LOAD SELECTED LINKS T| F|R|F | . L A
* PLOT ROUTE PROFILES | R 1l : P
FRATAR FORECAST#*%#% AR T
. SUM TRIP ENDS- T
MERGE | T|T

** No default option exists for the MERGE program. Appropriate Unit Desig-
nation Cards must be provided by the user. :

**% Assembly language program reference
*%%% The FRATAR FORECAST program sets the CTVOUT unit to the same unit as FRATAR.

Note: - Some of the output data sets may be suppressed by use of the DD DUMMY option
in the JCL.

and its associated pr§grams; As can be seen frqm Table 7, some of the
data sets have two different formats_aSsociated with ﬁhem deﬁending_on
the user‘program option being executed: Likewise,'seVeral of the data
setsvmay have the same format as in the case of tﬁé_trib matrix data set
format. In order to determine'thé format for a given data set, the
programmer should:

e Reference Table 7 to determine which of the eleven formats

is aésociated with the data set of interest. |
e Refer to the detailed deécription of the format.

The detailed descriptions of ten* of the eleven formats are as follows:

*The format for the Calcomp ploﬁ tape (format type code: . P) has not
been included. '

V-4

PATHS DATA SET 7
(Format Type Code: A)

Parameter Record

Displacement Bytes Length Bytes o _ Contents
0 4 The number of subnets in the
' network. :
4 N 4 'The.last node number. in the
network.
8 ' : 4 The number of words of path
’ ' : - indices in a path record.
12 o 4 . . The first zone number in
' subnet 1.,%
16 4 The last zone number in subnet
l.*

Path Record

Displacement Bytes Length Bytes ‘ Conteﬁts

-0 : -4 Home zone of the tree.

4 v 4 Path indices for nodes 1

thru 10.%*

8 A 4 Path indices for nodes 11 thru 20.%**
12 ’ : ' 4 Path indices for nodes 21 thru |
16 | 4 Path indices for nodes 31

. . thru 40.** ‘ N
4K 4 Path indices for nodes 10(K - 1)

+ 1 thru 10(K - 1) + 10.%%

- *These two items are repeated for each subnet.
**The first two bits of each word containing ten path indices are not used.

TRIP VOLUMES DATA SET
(Format Type Code: B)

Trip Volume Record

Displécement Bytes Length Bytes Contents
0 ‘ | 6 Zone of Origin
6 ‘ 6 Zone of Destination
12 ' v 6 - 24-hour volume
| 18 | 6 | AM-peak volume
24 ‘ 6 PM-peak volume

Each field in the record is in EBCDIC and these records must be
sorted into ascending order on a key of the first 12 bytes. The records
should be in Fixed length or‘Fixed Blocked format, The‘minimum'length
of the records is 18 bytes if‘the’24-hpur volume is used,‘24.bytes if the

AM-peak volume is used, or 30 bytes if the PM-peak volume is used.

End of Data Set Indicator Record

Displacement Bytes Length Bytes : Contents
0 - ‘ ' 1 ny
1 ' N-1 blanks

N is the_miniﬁum length for a trip volume record, This record is
only required if this data set is on cards and is read from unit 5 and

it must follow the last Trip Volume record.

FLEXIBLE RECORD DATA SET
(Format Type Code: F)

Parameter Record (One record)

Bytes Displacement o Length Contents

0 , v . 4 Number of Subnetworks

in the Network
4 _ | ' - 4 Number of Assignments

8 ' _ 4 Number of directional
links in the Network

12 4 | First Centroid in
g Subnetwork 1

16 ' 4 Last Centroid in
- Subnetwork 1

20 _' ' 4 Last Arterial node in
Subnetwork 1

24 4 ; Last Freeway node in
: ' ' " Subnetwork 1 ‘

.

'(The last four items are repeated once for each subnetwork)

Heading record (One from network prepafation and one from each assignment)

Bytes Displacement } Length Contents
0 ;. - » 80 Heading record in EBCDIC
80 12 ‘ 'Proceséing date

Anode record (One for each Anode; the records are in sorted order on the

Bits

O .

Displacement
 Bytes ‘

0 0
2

4

4 1
.

5

8 0
10 0
12 0
14 0

which are connected to it).

Bytes -

2

2

2

20

Bits

0

b

Anode number; each Anode record is followed by the Link records

Contents

Anode numbef

Number of links connected
to this. node

Céntfoid'flag (One if it
is a centroid)

Freeway flag (One if it
is a Freeway)

Turning movement type
code

Not used

X coordinate of Anodé
Y coordinate of Anode
Subarea code of Anode

Anode name in_EBCDIC

Link Record (There is one link record for each link connected to a node;

the link records follow the Anode to which they are connected)

Bits

Displacement
Bytes
0 0
0 1
0 2

thes

0

0

Bits

1

1

Contenfs

Last Link from Anode flag

Shaft flag
0 = ‘one direction

1 = other direction -
Arrow flag

0 = one direction

1 = other direction

Displacement : Length

Bytes Bits Bytes Bits - - Contents
0 3 . 0 1 © Not used
0o 4 0 14 . Link time in hundredthsi
' of a minute
o 18 0 14 Bnode of Link
4 0 : 0o 4 : Jurisdiction code of
: Anode :
4 4 _ -0 14 Distance of Link in
' : hundredths of a mile
4 18 0 14 Speed in tenths of a
mile/hour
8 0o 2 0 . Functional class -

(Codes 0 thru 15)

10 -0 - 2 0 Route number .
' (Codes O thru 99)

12 ’ 0 2 0 Corridor intercept

14 0o -2 0 " Duplicate Mileage

Eliminaotr flag
(One if link is to be
eliminated from mileage:

summaries)
1 0 2 0 . Link Volume
18 0 | 2 0 ' Link Capacity
20 | 0 | 4 v '0 Link impedance used on

first assignment

24 0 4 0 Nondirectional Link
: ‘ volume from first assignment

(The last two items are'repeated for each assignment, the above two
are not present on a Flexible Record with no assignments).

V-9

SEPARATION MATRIX DATA SET
(Format Type Code: 1I)

Parameter Record

Byte Displacement Length in Bytes Contents
0 o 4 Number of zones
4 . 4 Zero‘:

4 (number of zones)-4 4 S Zero

Separation Record

Bjtes Displacement Length in Bytes Contents
0 ' ' ' 4 Time to Zome 1
4 | : 4 _ Time to Zone 2

4 (number of zones)-4 4 © Time to.the last zone
The time is in hundredths of a minute. If a zone is not reached, its

time field will be 32,767 hundredths of a minute. The sepération

records will be in the same order as the trees that are built.

- V-10

SELECTED INTERCHANGES DATA SET
' (Format Type Code: L)

Header Records

Bytes Displacement Length in Bytes Contents
0 » 2 ~ Zeros
2 | 2 2+ 1
4 8 " Columns 8I + 1 to
‘ 81 + 7 of the Header
Line

There are 12 header records (I = 0, 11); each header record has eight
bytes of the header line excépt the last record which has four bytes

of thé header line.

Select Record

Bytes Displacément Length in Bytes Contents
0 : | 2 Link Index of the-
Selected Link¥*
2 ' , 2 | "~ Zeros
4 | , 2 Percent of Trip Volumes
: » to Print for this Selected
Link . ‘
6 2 . | Smaiiestdede of Selected
: : ' Link
8 v 2 Largest Node of Selected
‘ Link c :
10 . _ 2 : Cut of Volume for Printing
12 ' 2 Number of Trip Interchanges
to print

*#This is the index of the directional link from the smallest‘nbde
of this selected link to the largest node of this selected link.

vV-11

Interchange Record

Bytes Displacement Length in Bytes
0 ' 2
2 2
4 2
6 4 .
10 ~ 4
14 2
: : Direction of
Trip Direction Code Interchange
' ‘lb First Zone to

Second Zone

2 , First Zone to
' Second Zone

Interchange Record

- Contents

Link Index of Selected Link*

First Zone of the Interchange
Second Zone of the Interchange

Number of Trips in the
Interchange

Zeros

Trip Direction Code

‘Direction of Trip

Bytes Displacement Length of Byteé
0 | 2
2 2
4. | - 2
6 4
10 : 4

14 | 2

V-12

Through Selected Link

‘Small Node number to Large

Node number

Large Node number to Small
Node number o

Contents

Link Index of Selected Link*
First Zone of the Iﬁteréhange
Second.Zone”bf fhe Interchange
Zeroé.

Number of Trips in the
Interchange

Trip Direction Code

Direction of

Trip Direction Code Interchange
1 o Second Zone to
' First Zome
5 o Second Zone to
First Zone

Direction of Trip Through
Selected Link

Small Node number to Large
Node number

Large Node number to
Small Node number

*These records are written fixed blocked 18 bytes ‘long. They are

18 bytes long so that they can be sorted.

v-13

ROUTE DATA SET
(Format Type Code: R)

Parameter Record

Displacement Bytes Length Bytes Contents
0 4 ~ NLS = the Number of
Assignments
4 4% (NLS + 3) Unused

Header Records

1Disp1acement Bytes " Length Bytes : Contents
0 ’ | | 4 : - Sort Key = 100* (Assignment
: 3 - number + 1) + J
4 12 : Twelve bytes of the header
16 ,- - 4% NLS A Unused -

There are 8 éf the Header records for each Header that is onia
Fléxible Record., The J in the Sort Key of the above records is 1, 4, 7,
10, 13, 16, 19, 22 and is the index of‘where thg three words should be
read into the‘header array in core whenvfhey are fead. The record where
J = 22 contains only two words of the header. The loéation that would
be the third word is filled by 4 bytes of a O integer. The assignment
number fbr the header record when the‘Flexible Record was built iévset‘to

0. The above records are fepeated for each assignment.

V-14

Route Records

Displacement Bytes

2

10
12
14

16

12 + NLS*4

Length Bytes
2

2

Contents

Route Code
Anode of the Link
Bnode of the Link

Functional Class Code

-Distance of the link in

0.01 mile units

Speéd'of the link in 0.1
mile/hour units

Count field in units of
100 trips

Capacity in units of 100

trips

Nondirectional Assigned
volume for the first
assignment

Nondirectional Assigned
volume for the NLS assignment

One Route record is written for each link that has a route code

where the Anode is less than the Bnode.

V-15

“TRIP MATRIX DATA SET
(Format Type Code: T)

Header Record

Displacement - Length " Contents
0 ' o 4 : Number of Subﬁethrks
4 S 4 | First centroid in Subnet I
8 - | 4 Last centroid in Subnet I

The last two items are repeated for the number of subnets where I = 1;N.

Trip Record

Displacement » Length : _ Contents
0 ‘ 4 Origin zone of all inter-

changes -in this record
A ‘ 4 . Subnet of the‘ofigin zone

'8 . 4 ' N=Number of interchanges
in this record (from 1 to 100)

12 ' , 4 . Interchange item

8+4N _ o 4 Interchange item

The interchange item is an 18 bit interchange volume followed by a l4-bit
destination zone number.

The trip records are in sort on the origin zone and the interchange items
for each origin are in sort on the destination zone.

V-16

SCRATCH NODE NAMES DATA SET
(Format Type Code: X)

Node Name Record

Displacement Bytes : Length Bytes Contents
0 . 4 Anode number as a 4 byte
' integer ‘ :
4 ‘ 20 ’ Node name

The node name records are written in ascending order of node numbers.

v-17

SCRATCH PACKED LINKS DATA SET
(Format Type Code: Y)

This data set is made up of records which contain 40 link records.
These 40 link records are in the 22 byte format used in the LINKS array
kin Logical Division 1. The link records are sorted on the key of Anode,
Link class, and Link data card count in ascehding order for both Unit 3

‘and Unit 11 separately; The‘fo:mat for the 22 byte link records is as

follows:
Displacement ° Length o
Bytes Bits Bytes Bits v Contents
o o0 0 14 -+ Anode number
1 6 ' 0 2 Link class code
S ' 0 = twoway
1 = oneway out
2 & 3 = dummy link
2 0o 0o 15 ' Link data card count
3 ! 7 -0 1 Mileage code
: : : 0 = Use in Vehicle Mileage Summary
1 = Do not use in Vehicle Mileage
Summary
4 0 0 14 Bnode number
5 6 iO 14 Count field in units of 100 trips
7 4 -0 4 Jurisdiction code in hexadecimal
8 0 0 4 Functional class code in hexadecimal
8 4 0 7 Subarea code
9 3 0 14 Link Capacity in units of 100 trips
11 1 0 7 Speed in units of tenths of a mile
‘ per hour

v-18

Link Record Format (continued)

Displacement o Length o
Bytes Bits Bytes Bits ; Contents
12 0 0 10 Link distance in units of 1/100 of a
mile
13 2 0 7 Corridor intersect code
14 1 ' 0 5 Route number
14 6 0 1 Shaft code, 0 = one direction
‘ 1 = other direction
4 7 0 1 Arrow code, 0 = one direction
o : ’ -1 = other direction
15 0 1 0 - Unused
16" 0 0 6 Link Impedance field, in units of
' ' o . 1/100 minutes _
16 6 -0 1 Link delete code
' 0 = keep link
1 = delete link from updated
Flexible Data Record
6 7 b 1 Unused

V-19

SCRATCH MULTIPLE ASSIGNMENTS DATA SET
(Format Type Code: Z)

Parameter Record _

- Digplacement Bytes Length Bytes Contents

-0 4 The number of segments that
the network is divided into.

4 o 4 The number of link records
for segment 1.

8 : 4 | The number of link volumes
' for segment 1.

12 - " ‘ 4 ‘ : -The number of turn volume
' records for segment 1.

16 ' 4 ' The number of turn volumes
for segment 1.

20 The first node in segment 1.

E T

24 The last node in segment 1.

The last six items are repeated in the above order for the other segments.

Volumes Record#** -

Displacement Bytes ’ Length Bytes | Contents
0 ‘ ' 4 A volume
4 (K-1) 4 _ A volume

*% The volume records contain from one to 4000 volumes.

V=20

All of the volume records for one assignment are grouped together.‘
Within thé‘volﬁme records written for one subnet, the records are in the
order of out volume records, in volume records, and turn volume records.

. Each type bf volume records is further divided by segment. Each récord-
for each type is 4000 words long unless it must be shorter because of

either a segment boundary or the end of the network.

V=21

OUTPUT SELECTED LINKS

The OUTPUT SELECTED LINKS program must be runvas‘avseparate job
(or as separate job steps). It uses the SELTRP data set built by
ASSIGN SELECTED LINKS as input. The program performs two sorts and,

thereby, produces two data sets. Both data sets have the same format.

The format for these data sets is as follows:

V=22 -

SORTED SELECTED INTERCHANGES DATA SET

This is the data set which comes from the first sort in the OUTPUT

SELECTED LINKS job as it is modified by the E35 exit in the IBM sort

using the E35 assembly language subroutine. It is also the format of

the data set which'fesults-from the second sort pérformed in the OUTPUT

SELECTED LINKS job.

- Header Records

Bytes‘Displacement:-i Length in Bytes Contents
0 o 2 Zeros
2 ' 2 a4+l
4 . 8 Columns 8I + i to

8I + 7 of the Header Line

There are 12 header records (I =0, 11); each header reéord;has

eight bytes of the headér line except the last record which has four

bytes of the header line.

Select Record

Bytes Displacement Length in Bytes
0] . 2
2 | 2
4 2
6 2

Contents

Link Index of Selected Link*

Smallest node number of the
selected link

Largest node nuﬁbér of the
selected link

32767

* This is the index of the directional link from the smallest node of this
selected link to the largest node ofvthis selected link,

v-23

Select Record (coﬁtinued)

Bytes DiSplaceﬁent

8

10

12

Sum Record

Displacement Bytes

0

2

10

Interchange Record

Displacement Bytes

0

2

10

14

Length in Bytes

Contents

2

Length in Bytes-

Percent of Trip Volumes

to print for this selected
Link

Cut of Volume for Printing

Number of Trip Interchanges

‘to print

Contents

2

4

Length in Bytes

Link Index of Selected Link
Zero

32766

_;

Sum of Trip interchéngevolumes

loaded through the Selected
Link

Contents'

2

2

V-24

Link Index of Selected Link
First Zone of the Interchange
Second Zone of the Interchange
Nondirectioﬁal link volume
between the origin and
destination zones

Directonal link volume
(direction specified by Trip

Direction Code)

Trip Direction Code (see table
on next page).

Trip Direction

First Zone to Second Zone

- Interchange

Second Zone to First Zone

Interchange

Direction of trip

Direction of trip

Code through link is small through link is
node number to large S small node number
Decimal Binapy Present node number Present | to large node number

1 0001 No - Yes Yes

2 0010 Yes Yes No -

3 0011 fes Yes Yes Yes

5 0101 No - Yes No

7 0111 Yes Yes Yes No
10 1010‘ Yes No No -
11 1011 Yes No Yes Yes

15 Yes B No Yes

1111

V=25

No

OTHER INFORMATION

PRINTED OUTPUT FROM $LOAD NETWORK AND
$ASSIGN SELF-BALANCING

TURNING MOVEMENTS

PRINTED OUTPUT FROM $LOAD NETWORK AND
$ASSIGN SELF-BALANCING

Nineteen different types of tables may be produced during the
execution of $ASSIGN SELF-BALANCING and sixteen different types during
the execution of $LOAD NETWORK. However, many of these tébles are pro-
duced only under certain cdnditions. >In addiﬁion,dnring the $ASSIGN SELF-
BALANCING process;'many of these tables are produced multiple times: some
after each iteration, some after certain iterations, and some only aftér
the last iteratioﬁ.' The following two tables, therefore, pfoﬁide a summary

of the output produced by these two programs under the various conditions:

VI-1l

SﬁMMARY OF OUTPUT FOR $ASSIGN SELF-BALANCING AND $LOAD. NETWORK

$ASSIGN SELF-BALANCING

$LOAD NETWORK

@
2 ag
- 9 :
8RR g
N o 0
B0 2d g g
=R =3} 3 8
s B° IE %5
g g g8 ¢€m O
O O g B®o oW
.4 0 Ak o
H 2 d wwH wd -
d © L - + =]
= ~ o 2"5 g.c.‘/\ a4
4 9 & @ AT
$ B 0 Y YO o
H H ®# a8 0gg 64
s w o278 5%3 H
" 5 o B8 BT 889
o e R T B - -
P W Ud Oed O By
OUTPUT B O H 2O =~ oO<d
1. Selectgd Tables and X X X X X X
Summaries*
2, Iteration Weighting-
Mnltlp}e Regression X X X g
Analysis v y
3. Link Volumes X X X X
4, Iteration Weights
1 Applied ' X
5. Corridor Ihtercept _
Tables X X
6. Route Profiles X X
7. List of Volumes and .
Impedances for X‘

Updated Links

*See table titled "Tables and Summaries Produced with Each Assignment"
on next page. i : R

VI-2

. TABLES AND SUMMARIES PRODUCED WITH EACH ASSIGNMENT

CONDITIONS UNDER WHICH
TABLE OR SUMMARY IS PRODUCED
, i
o o ug o
& [t oM
vy 9 “E T8
58 |2 w3 A% g
od o8 o [3
°d °3 22 »% 3
2w gw Y He B
88 @6 LDw Gu M
N — g0 ®o m
O O 3 9=
i n Hoeo o T
T ®g -6 -8 o
§2 B2 988 £84 P
28 3% §u §¢ of
H o NO NO O
~ 29 88 Lo Ltu oW
Tables and Summaries 28 &3 =26 248 ‘ 54
1. Cross Classification of V/C Frequencies X
from Last Two Assignments ’
2, Cross Classification of Link Counts by |
V/C Ratio from Last Two Assignments X - X
3. Jurisdiction Summary - X
4. Jurisdictional/Functional Cross Classi-
fication of Assigned Volumes X
5. Jurisdictional/Functional Cross Classi-
fication of Counted Volumes 1 X - X
6. Jurisdictionai/Functional Cross Classi-{ .
fication of Link Capacities ' X ‘ X
7. Comparison of Assigned Volumes with
Counted Volumes : X
8. Comparison of Assigned Volumes with v ,
Link Capacities . ' X
9, Comparison of Assigned Volumes (from
last assignment) with Assigned , .
Volumes (from assignment before last) , X

VI-3

TURNING MOVEMENTS

Turning movements are directional volumes which are loaded through
a specific triplet of nodes. Turning movements are logically associated
‘with the intersection node. For a node conmnected to three other nodes

the following equations can be written:

Ti,10%v T 2% T30
Ty, 1 T Ty 0t Ty 3= Dy
T3,1 ¥ T3,2 ¥ T3,3 = D3
Tttt
11,27 T o*tT3 =Ry

Ty 3+ T, 3+ T3 3= Ry

Where R, = the directional link volume from the intersection
node to the node of the ith link,
Where Dj = the directional link volume from the node of the

h .. .
jt link to the intersection node.

Where Ti = the turning movement between the'node in the ith

§|
link and the node in the jt:h link which are connected

to the intersection node.

These equations can also be represented by a matrix with two vectors:

1,1 Ti,z T3 | Dp
To,1 Ta,2 Ta3 | Dy
T3,1 T3,2 T3 D
N

VIi-4

Becausé of the way in which trees are built and in which paths are
represented in the Tex@s Large Network Package the turning moveﬁents
on the diagonal of the matrix which are U-turns are all zero. Also the
turning movements in some rows and golumns will be zero because éf the
one~-way links. To limit the possible number of_cases with one-way
links, the links which are connected to each node are connected in the
following order: one-way links into the néde, two-way links; one~way
links out from nodé.

Putting in zeros for the diagonal elements for a case of tﬁree

two-way links there are six equations with six unknowns:

0 Tio T3 Dy
Ty,1 O 72,3 Dy
T30 T3;2 O Dy
R, R, R,

Each equation'hasitwo variaﬁles in it and one constant.‘ Six equations
with six unknowns can be solved if the equations arekindependent, however
these equations are not, »If'any one of the six turning movements is known
‘the other five can be calculated. The known tufniﬁg movement will make
two equations With only one unknown each which can be calcuiated and the
turning movements which are calculated from these equations will allow
other turning movements to be célculated. |

The:following method is used in calculating turning movements:
(1) All‘locationé in the turning mbvements matrix are set to -1 to

represent unknowns; (2) The diagonal elements are set to zeros;

VI-5

(3) If there are any one-way links into the node then the corresponding
:2w of the matrix is set to zero; (4) If there are any one-way links
‘out the corresponding column of the matrix is set to zero; (5) Turning
movements which have been séved are placed in the matrix; (6) The
directional link volumes are fbund and become two vectors of constants;
(7) The matrix is searched by rows and if a row_ﬁas ohly one unknown,
it is calculated; (8) The matrix is searched by columns and if a column
has only one unknown, it is calculated; (9) If there aré any unknown.
turning movements left. then steps 7 and 8 are repeated for up fo N times
where N is the number of nodes connecfed;to the'intersection node.

The process for calculating unknown turning mbvemeﬁts can be used
for a node connected to any numbéf of nédes but the nuﬁber of turning
movements tb save if all links are two-way goes up_rapidly with the number
of links to which avnode is connected. Also the number of éombinations
of one-way links out, two-way links and one-way links in goes up rapidly
wiﬁh the number of links even when these links are sorted into the three
link classes and’arranged.in‘thé above order, For N, the number of nodes
to which an intersection node is connected, where the 1inké are all two~
way M = Nz‘— 3N + 1 for N > 2 where Mvis-the number of turning movements
to save, If U-turns were allowed then M = Nz - 2N + 1.

In the'Téxas Large Nétwork Package fuxn codes are set up for all
combinations of tﬁoéway and one~way links for a node connected to eithef
three or four nodes, Also there is a ﬁurn code for a néde connegted to
either five or six:nodes.. These turn codes are set up‘in either thé_
Prepare Network, Assembly Network, or the Revise Network prégram and
théy are written on the Flexible Data Record data éet. The turn code

are described in a table. The turn codes for a node connected to five or

VI-6

six nbdes cause enough turning movements to be saved to calculate the
other turning movements when all of the links are two-way. This is also
more‘than‘enough for these cases with one or more one-way lihks.

A méthod for‘determining which turning moveﬁents to save and whicﬁ
to calculate will Be outlined here. The easiest way to work with this
problem is to‘represent the turning movements in a matrix form as was
done eafliervfor the case of a node connected to three other nodes.

It is convenient to let the row and column pdsiticns within the matrix
represent the links which contéin the node numbers instead of writing
sdbsdripts on the variables. Also a "s" will be written if the tufﬁing
movement is saved, a "c" will bé written if it is calculated énd a zero
will be written in the matrix positibn ifvthe turning movement is known
to be zero either because it is a U-turn or because of avoﬁe-way link.
Aiso'the two ﬁectorsfwhich représent directional link volumes will not
be written since these are aiwaysvsaVed.' To identify each case three
one digit integefs will be wtitten over each métrix which are the nuﬁber_of
two-way links, the’number oqune—way links in énd the numbef of one-way
links out which are connected to the intersection node. The following
examples are all of thé cases for~é nodeAconneéted to four other nodes

for which one or more turning movements must be saved:

vVI-7

VI-8

TURN CODES
. Total Number of
Turn Number Turning Move~- _
Code - of Links T I 0 ments to Save Turn Movements to Save*
1 3 ol o} 3 0
2 3 o 1] 2 0
3 3 ol 2| 1 0
4 3 o| 3] o 0
5 3 1| of 2 0
6 3 1| 1| 1 0
7 3 1| 210 0
8 3 21 o 1 0
9 3 2| 1] o0 0
10 3 31 01} 0 1 3-1
11 4 of| ol 4 0
12 4 0| 11| 3 0 ,
13 4 o| 2| 2 1 41
14 4 o] 31| 1 0
15 4 ol 41 o0 0
16 4 11 0] 3 0
17 4 1| 1] 2 1 4-1
18 4 1] 21| 1 1 4-1
19 4 1| 3] o0 0 ,
20 4 21 o] 2 1 41
21 4 2 |1] 1 2 4-1,3-2
22 4 21 2|0 1 4-1
23 4 3 0 1 3 4-1,4-2,3-1
24 4 3 1}{0 3 4-1,4-2,3-1
25 4 41 o o 5 4=1,4-2,3-1,3-2,2-3
26 5 - -1 - 11 5-1,5-2,5-3,4=1,4=2,4-3,
3-1,3-2,3-4,2-3,2-4
27 6 -1 -1 = 19 6-1,6~2,6-3,6-4,5-1,5-2
: 5-3,5-4,5~1,4-2,4-3,4-5
3-1,3-2,3-4,3~5,2-3,2-5,
1-4
28 - - - - 0 ®%

T = number of two-way links connected to the intersection node
- I = number of one-~way links connected into the intersection node
0 = number of one-way links connected out from the intersection node

*The turning movements to save are listed by the subscript pair in the form i-j which

indicate the position of the turning movement in the turning movement matrix.

**Save no turning movements for this node (or centroid) and print no turning movements.
VI-9 | '

NETWORK SEGMENTS

When the ASSIGN SELF—BAtANCING process is rﬁn the loaded network
is broken into ffoh lyto 4 segments by the‘subroutine SVLOAD when it
is written on unit 3. The purpose of thebsegmentation is so that the
weighted loaded network may be summed in 75,000 full words. There is
no indication of WHefe the segments are inbthe'output of fhe weighted

loaded network.

VI-10

‘RECENT CHANGES

AND MODIFICATIONS

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -0.33, -1.16 Width 39.11 Height 793.16 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 -0.3342 -1.1623 39.1066 793.1624

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 281
 280
 281

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 0.00, -1.16 Width 613.34 Height 3.01 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 0 -1.1623 613.3388 3.0082

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 281
 280
 281

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 3 to page 3
 Mask co-ordinates: Left bottom (-0.67 791.00) Right top (613.34 793.34) points

 0
 -0.6685 790.9973 613.3388 793.337

 3
 SubDoc
 3

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 2
 281
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (313.86 22.90) Right top (313.86 23.57) points

 0
 313.8557 22.9033 313.8557 23.5718

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 2
 281
 0
 1

 1

 HistoryList_V1
 qi2base

