Technical Reports Center Texas Transportation Institute

			TECHNICAL REPORT STA	NDARD TITLE PAGE
1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog No	• •
4. Title and Subtitle			5. Report Date	
			August, 1973	
ELASTIC MODULI DETERMINATIC PAVEMENT STRUCTURES BASED C			6. Performing Organization	n Cod e
7. Author ⁽ s)			8. Performing Organization	n Report No.
William M. Moore			Research Report	No. 136-5
9. Performing Organization Name and Address			10. Work Unit No.	
Texas Transportation Instit	ute		11. Contract or Grant No.	
Texas A&M University			Research Study	
College Station, Texas 77	7843		13. Type of Report and Pe	riod Covered
12. Sponsoring Agency Name and Address Texas Highway Department			Interim - Septe Augus	mber 1, 1968 t, 1973
11th & Brazos			14. Sponsoring Agency Co	
Austin, Texas 78701			inter oponsoning Agency Co	46
15. Supplementary Notes Research Study Title: Dest		operation with ation of Flexi		
16. Abstract				
This report gives the new computer program, which deflection measurements obto pavement system, to give the layers.	n is capable o tained on the	of converting surface of a	routine Dynaflect two-layer highway	•
A description of the are included with the repor- less cost and to eliminate programs.	rt. The progr	ram has been d	esigned to operat	e at
·			·	
17. Key Words Deflection, Pavement Evalu	ation	18. Distribution State	ement	
Elastic Modulus, Non-destr				
testing.				
.				
19. Security Classif, (of this report)	20. Security Clas	sit. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclass	ified	74	1
			/4	

ELASTIC MODULI DETERMINATION

for

SIMPLE TWO-LAYER PAVEMENT STRUCTURES

BASED ON SURFACE DEFLECTIONS

Ъy

William M. Moore

Research Report Number 136-5 Design and Evaluation of Flexible Pavements Research Study 2-8-69-136

Sponsored by

The Texas Highway Department In Cooperation with the U. S. Department of Transportation Federal Highway Administration

August, 1973

TEXAS TRANSPORTATION INSTITUTE Texas A&M University College Station, Texas

Preface

This is the fifth report issued under Research Study 2-8-69-136, "Design and Evaluation of Flexible Pavements," being conducted at the Texas Transportation Institute as part of the cooperative research program with the Texas Highway Department and the Department of Transportation, Federal Highway Administration.

Previous reports from this study are as follows:

- "Seasonal Variations of Pavement Deflections in Texas," by Rudell Poehl and Frank H. Scrivner, Research Report 136-1, Texas Transportation Institute, January, 1971.
- (2) "A Technique for Measuring the Displacement Vector throughout the Body of a Pavement Structure Subjected to Cyclic Loading," by William M. Moore and Gilbert Swift, Research Report 136-2, Texas Transportation Institute, August, 1971.
- (3) "A Graphical Technique for Determining the Elastic Moduli of a Two-Layered Structure from Measured Surface Deflections," by Gilbert Swift, Research Report 136-3, Texas Transportation Institute, November, 1972.
- (4) "An Empirical Equation for Calculating Deflections on the Surface of a Two-Layered Elastic System," by Gilbert Swift, Research Report 136-4, Texas Transportation Institute, November, 1972.

The author wishes to thank the many members of the Institute who contributed to this research. Special appreciation is expressed to Mr. Gerald Turman, who wrote the computer program and description in Appendix A, Mr. Danny Y. Lu, who wrote Subroutine FIBO, and Messrs. F. H. Scrivner, Gilbert Swift and C. H. Michalak who provided valuable advice and assistance in many phases of the research.

The support given by the Texas Highway Department is also appreciated, particularly that of Messrs. James L. Brown and L. J. Buttler who suggested the subject of this report.

i

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

Abstract

This report gives the theoretical background and a description of a new computer program, which is capable of converting routine Dynaflect deflection measurements obtained on the surface of a two-layer highway pavement system, to give the elastic moduli of the pavement and subgrade layers.

A description of the program and several solutions to example problems are included with the report. The program has been designed to operate at less cost and to eliminate fitting problems encountered in similar existing programs.

Key Words: Deflection, Pavement Evaluation, Elastic Modulus, Nondestructive testing.

Summary

A technique is described for determining the elastic moduli for two-layer highway pavement structures from field deflection measurements. This technique is based upon the "best fit" of the entire measured deflection basin; therefore, the moduli are believed to be more representative of in-situ material properties than those obtained by other existing techniques.

Through an illustrative example, it is shown that the five deflection measurements conventionally made with the Dynaflect are not sufficient to determine a unique set of elastic moduli for some typical highway pavement structures. It is also shown that this ambiguity can be eliminated by taking one additional deflection measurement closer to the load wheels.

A computer program designed to compute moduli from routine deflection measurements is given in Appendix A.

Implementation Statement

A new computer program has been written to permit rapid inexpensive calculation of the elastic moduli of two-layer pavement structures from routine field-measured pavement deflections. These in-situ elastic modulus values are significant for pavement evaluation purposes and are expected to be required in future pavement design systems.

It is recommended that an observation be added to routine field deflection measurements in order to eliminate ambiguities found in the evaluation of some typical highway pavements.

v

Table of Contents

		Page
1.	Introduction	1
2.	Method of Approach	2
3.	Example Solutions	8
4.	Implication of Results	19
5.	Conclusions and Recommendations	22
6.	References	23
	Appendix A	24

List of Figures

.

Figure		Page
1	B _l versus RMSE for Typical Pavement having Alternate Sets of Elastic Moduli	7
2	Relative Position of Dynaflect Loads and Sensors	20

List of Tables

Table		Page
1	Two Cases for Predicting Deflections	5
2a-2g	Computer Print-outs for Flexible Pavements	9-15
3	Comparison between Elastic Modulus I, Elastic Modulus II and the New Program on Flexible Pavements	
	ravements	16
4	Calculated Moduli for Rigid Pavements	17
5	Comparison between Elastic Modulus II and the	
	New Program on Rigid Pavements	18

1. Introduction

This report presents a technique for determining the elastic modulus for each layer in a simple two-layered pavement structure. The thickness of the top layer is known (or measured) and the thickness of the lower layer is assumed to be infinite. The basic concept is to determine the set of values E_1 and E_2 (elastic modulus of pavement subgrade, respectively) which will best predict a measured surface deflection basin in accordance with layered elastic theory.

The technique is somewhat similar to that developed previously by Scrivner, Michalak and Moore (1,2), the chief differences being that the present technique is more rapid and uses the "best fit" of the entire measured deflection basin rather than two arbitrarily selected points of the basin. It is more rapid because it employs the simple empirical equation developed by Swift (3) instead of a conventional, rigorous, mathematical technique for two elastic layers like that developed by Scrivner, et al. The two techniques are similar in that they both assume a point load on a two-layer elastic pavement structure for which the thickness of the top layer is known. Both determine the elastic moduli for the two layers and assume that the layers have a Poisson's ratio of 0.5.

2. Method of Approach

Deflection predictions are based upon the empirical equation given below which was developed by Swift (3).

$$\hat{w} = \frac{3P}{4\pi E_1} \left[\frac{1}{r} + \left(\frac{E_1}{E_2} - 1 \right) \left(\frac{1}{x} + \frac{a^2}{2x^3} + \frac{3a^4}{2x^5} \right) \right]$$
(1)

in which x = $\sqrt{r^2 + a^2}$ a = 2h $\sqrt[3]{\frac{1}{3}(2 + E_1/E_2)}$

and P = magnitude of point load

r = horizontal distance from loading point

h = thickness of upper layer

$$E_1$$
, E_2 = elastic modulus of upper and lower layers respectively

w = predicted surface deflection at r

Swift found this equation to closely approximate surface deflections computed using rigorous elastic theory with a Poisson's ratio of 0.5. In this equation deflection is expressed as a function of the following five independent variables: P, r, h, E₁, and E₂. When deflections of a simple pavement structure of known thickness are measured with the Dynaflect, the first three independent variables are known and the last two are unknown. Thus, if one finds the set of values of E₁ and E₂ that best predicts the measured deflections, w₁, these values can be assumed to represent the elastic moduli for the two layers. The criterion selected for determination of the "best fit" is that the root mean square error, RMSE, be minimized, i.e., RMSE = $\sqrt{\frac{1}{n}} \frac{\frac{n}{2}}{\frac{1}{n}} \left(\frac{w_1 - w_1}{v_1} \right)^2$ is minimum value.

Equation 1 can be written in the following generalized form.

$$\hat{\mathbf{w}} = \mathbf{B}_{\bullet} \cdot \mathbf{f} (\mathbf{r}, \mathbf{h}, \mathbf{B}_1) + \boldsymbol{\varepsilon}$$
(2)

where $B_{\bullet} = \frac{3P}{4\pi E_1}$

 $B_1 = E_1/E_2$ and

 ε is a prediction error (w - \hat{w})

The RMSE is minimized by use of the following step-by-step procedure.

- 1. A trial value of B_1 is selected.
- 2. Five values of the function, f, are computed, one for each of the five standard values of r (r = 10.0", 15.6", 26.0", 37.4" and 49.0").
- 3. B. is computed using the following equation to obtain the least RMSE for the trial value of B_1 .

$$B_{\circ} = \sum_{i=1}^{5} w_{i} f_{i} / \sum_{i=1}^{5} f_{i}^{2}$$

4. The RMSE is computed, using the value of B_o computed in step 3.
RMSE =
$$\sqrt{\frac{1}{5} \sum_{i=1}^{5} (w_i - \hat{w}_i)^2}$$

- 5. Steps 1 through 4 are repeated using the search process described below until the values of B. and B_1 are found which result in minimizing the RMSE.
- 6. The elastic moduli for the individual layers are then computed using the following equations.

$$E_1 = \frac{3000}{4\pi B_o}$$
$$E_2 = \frac{3000}{4\pi B_o B_1}$$

The search process consists of calculating the values of RMSE for each of 21 logarithmically spaced trial values of B_1 , which cover the entire range of reasonable values of the ratio, E_1/E_2 . These values sufficiently define the RMSE versus B_1 curve to determine the one or two ranges for B_1 within which minima of RMSE occur. The location of the minimum within a range is found to an accuracy of 0.5 percent employing a Fibonacci search technique (4).

In fitting two-layer elastic systems to normal Dynaflect measurements, it is often difficult to distinguish between two alternate sets of elastic moduli which result in similar deflection basins. This problem occurs because there are many cases where two entirely different pairs of elastic moduli will provide nearly equal values of deflections in the range of the standard measurements (r values between 10 and 49 inches). In such cases both alternate sets are determined. A typical example of such a difficult distinction is shown in Table 1. In this table , measured deflection values and sets of computed deflection values for two different pairs of elastic moduli are shown. Both computed sets reasonably predict the measured deflections and are almost alike in the normal measuring range (r = 10 to 49 inches). Figure 1 contains a log-log plot of RMSE versus the trial values of B_1 obtained as described in steps 1 through 4 above. Two distinct minimums are apparent which represent the cases compared in Table 1.

Based upon the step-by-step procedure described previously, a new computer program was developed to determine the "best fit" set of values for the pavement and subgrade moduli. In cases like the example the two

		Ca	<u>se 1</u>	Ca	se 2
<u>r</u>	<u></u>		<u>w-w</u>		<u>w-w</u>
10.0	1.86	1.83	0.03	1.90	-0.04
15.6	1.35	1.43	-0.08	1.28	0.07
26.0	0.90	0.90	0.00	0.91	-0.01
37.4	0.63	0.60	0.03	0.66	-0.03
49.0	0.50	0.44	0.06	0.51	-0.01

Table 1: Comparison of two cases for predicting measured deflections

RMSE	0.051	0.038
El	195,600 psi	3,600 psi
E ₂	11,700 psi	9,400 psi
h	7.5 in	7.5 in

Note: r = horizontal distance in inches

w = measured Dynaflect deflection in 0.001 inches

 $\hat{\mathbf{w}}$ = predicted deflection in 0.001 inches (from Equation 1)

alternate "best fit" sets of moduli are determined. The new program is somewhat similar to several other existing programs used to compute pavement layer stiffness parameters from routine Dynaflect data. Three such existing programs, (1) The Texas Highway Department stiffness coefficient program, (2) Elastic Modulus I and (3) Elastic Modulus II (1,2,5), evaluate the layer stiffness parameters required to precisely fit two points on the measured deflection basin. As might be expected, the calculated basins which result from those programs often have rather large prediction errors at locations removed from the fitted points. The "best fit" technique employed in the new program, "Two-Layer Elastic Moduli for Five Deflections," eliminates this problem and thus is believed to more nearly represent the true material properties within an existing pavement structure insofar as elasticity theory applies to such structures. In addition, the new program has been found to be about ten times faster than the Elastic Modulus programs. Appendix A contains a description and a computer listing of this program.

÷

Figure 1: B₁ versus RMSE for typical pavement having alternate possible sets of elastic moduli.

3. Example Solutions

Tables 2a through 2g are computer print-outs based upon the same data used in References 1 and 2. These tables can be compared directly with Tables 6a through 6g in Reference 1 and Tables 5a through 5g in Reference 2. Such a comparison is made in Table 3. Note in this table that six of the seven comparisons appear to have two possible "best fit" solutions based upon the new program.

Table 4 contains solutions based upon the new program for eleven test points taken on rigid pavements at the Houston Intercontinental Airport. These solutions are based upon the same data reported in Reference 2. A direct comparison with the results of Reference 2 is made in Table 5.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 08/28/73

		DIST. 17	COUNTY BRAZOS	
	CONT. SECT. 1560 1	JOB HIGHW 1 FM 16	AY DATE DY 87 5-21-68	NAFLECT 1
		PAV.	THICK. = 12.50 INC	HES
	SEAL COAT	0.50	RED SANDY GRAVEL	12.00
	GREY & BRWN SAND	SUB 0.0		
STAT ION	W1 W2 W3	W4 W5	SCI ** ES ** *	* EP ** * RMSF *
5 - A 5 - B AVERAGES W'S,SCI POINTS STIFF OI POINTS SOFT ON POINTS W1 W2 W3 W4 W5 SCI	1.200 0.840 0.490 1.140 0.770 0.470 1.110 0.770 0.460 1.470 0.960 0.490 1.380 0.900 0.470 1.290 0.870 0.500 1.260 0.800 0.460 1.260 0.800 0.400 1.260 0.800 0.400 1.260 0.800 0.400 1.260 0.800 0.400 1.260 0.800 0.400 1.260 0.800 0.400 1.260 0.800 0.800 1.260 0.800 0	0.310 0.213 0.300 0.204 0.300 0.201 0.300 0.195 0.300 0.201 0.320 0.222 0.310 0.213 0.340 0.231 0.310 0.219 0.310 0.219 0.310 0.212 10 10 10 0.900 0.310 10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.370 20400. 0.450 18700. 0.360 19500. 0.370 20700. 0.340 21000. 0.510 16500. 0.480 17600. 0.480 17600. 0.460 19200. 0.416 10 19983. 6 18000. 4	28000. 32400. 0.0252 32400. 0.0211 18400. 0.0314 27700. 0.0311 27100. 0.0214 30800. 0.0176 14100. 0.0546 15200. 0.0458 21900. 0.0202 16900. 0.0198 27983. 6 16150. 4
ES EP		DF THE SUBGRA DF THE PAVEME	DE FROM W1,W2,W3,W NT FROM W1,W2,W3,W	4,8 W5 4,8 W5

Table 2a: Computer print-out for Section 3.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 08/28/73

DIST.	COUNTY
17	BRAZOS

CONT.	SECT.	JOB	HIGHWAY	DATE	DYNAFLECT
2824	2	1	FM 2776	5-21-68	1

PAV. THICK. = 8.00 INCHES

SEAL COAT 0.50 ASPHALT STAB. GRAVEL 7.50

GREY SANDY CLAY SUBG 0.0

STATION	Wl	₩2	W3	₩4	W 5	SCI	**	ES	**	** EP	**	*	RMSE *	
1 - A	1.650	1.200	0.870	0.660	0.500	0.450		120	00.	2931	00.		0.0702	
_			DLUTION						00.		00.		0.0409	
1 – B	1.560	1.110	0.810	0.610	0.490	0.450		129		2999	00.		0.0761	
	ALTERN	NATE SO	DLUTION	ł				99	00.	30	00.		0.0297	
2 - A	2.310	1.470	0.930	0.710	0.530	C. 840		92	.00	51	00.		0.0161	
2 - B	2.310	1.410	0.900	0.670	0.510	0.900		97	00.	63	00.		0.0270	
3 - A	2.430	1.500	C.930	0.670	0.490	0.930		97	00.	81	00-		0.0213	
3 – B	2.490	1.530	0.930	0.670	0.500	0.960			00.		00.		0.0254	
4 - A	2.490	1.470	C.900	0.640	0.480	1.020		99	00.		00.		0.0497	
	2.430			-				103			.00.		0.0625	
5 - A	2.340	1.440	0.870	0.620	0.450	0.900		104			00.		0.0250	
5 - B	2.430	1.470	C.930	0.650	0.470	0.960		98	00.	88	00.		0.0331	
AVERAGES														
W'S,SCI	2.244	1.401	0.891	0.651	0.489	0.843								
POINTS			10			10								
STIFF O				-				111	00.	1250)40-			
POINTS									5		5			
SOFT ON	TOP S	OLUTIC	NS					95	86.	61	57.			
POINTS									7		7			
					-									
Wl		•	AT GEO											
₩2			AT GEO											
W3		CTION		PHONE										
W4	DEFLE	CTION	AT GEO	PHONE	4									

W5 DEFLECTION AT GEOPHONE 5 SCI SURFACE CURVATURE INDEX (W1 MINUS W2)

ES ELASTIC MODULUS OF THE SUBGRADE FROM W1,W2,W3,W4,& W5 EP ELASTIC MODULUS OF THE PAVEMENT FROM W1,W2,W3,W4,& W5

Table 2b: Computer print-out for Section 4.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 08/28/73

			DIST. 17						
	CONT. 1399	-	JOB 1	HIGHWA FM 13		DATE -21-68	DYN	AFLECT 1	
				PAV.	тніск.	= 12.0	DO INCH	ES	
	SEAL COAT		0	• 50	LIME	STAB.	SANDST	JNE 11.5	0
	TAN SANDY	CLAY SU	BGR O	•0					
STATION	W1 W2	W3	W4	W5	SCI	** ES	** **	EP **	* RMSE *
2 - B 3 - A 3 - B 4 - A 4 - B 5 - A 5 - B AVERAGES W'S,SCI POINTS STIFF O POINTS	1.500 1.0 1.440 0.9 1.500 1.0 1.380 0.9 1.920 1.2 1.800 1.1	30 0.780 00 0.670 50 0.640 50 0.600 90 0.580 50 0.560 90 0.540 60 0.650 4C 0.630 07 0.636 1C 10 TIONS	0.480 0.400 0.380 0.370 0.370 0.340 0.330 0.400 0.420	0.330 0.243 0.246 0.267 0.261 0.216 0.213 0.280 0.310	0.330 0.450 0.390 0.450 0.450 0.450 0.390 0.660 0.660	131 141 159 159 164 159 170 127 134	500. 500. 100. 700. 400. 900. 700. 400. 388. 8 950. 2	44600. 50800. 22800. 32000. 22600. 22900. 19900. 25000. 11500. 11300. 30075. 8 11400. 2	0.0315 0.0641 0.0387 0.0345 0.0242 0.0607 0.0501 0.0787
W1 W2 W3 W4 W5 SCI ES EP		N AT GEO N AT GEO N AT GEO N AT GEO URVATURE Odulus o	PHONE PHONE PHONE PHONE INDEX F THE	2 3 4 5 (W1 SUBGRA	DE FRO	M W1,W	2,W3,W4 2,W3,W4	∙& ₩5 •& ₩5	

Table 2c: Computer print-out for Section 5.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 08/28/73

COUNTY	DIST.
WASHINGTON	17

CONT. 186	SECT. JOB 5 1		HIGHWAY SH 36	DATE 5-21-68	DYNAFLECT
			PAV. TH	ICK. = 19.90	INCHES
HOT MIX	ASPH.	CONC.	3.75	SANDSTONE	16.15

BLACK CLAY SUBGRADE 0.0

EP

STATION	W1	W2	W3	W 4	W 5	SCI	**	ES	**	**	FP	**	* (RMSE	*
1 - B 2 - A 2 - B 3 - A 3 - B 4 - A 4 - B	1.740 1.950 1.680 1.710 1.680 1.560	1.080 1.080 1.170 1.080 1.080 1.110 1.080	0.610 0.670 0.690 0.680 0.670 0.750 0.750	0.420 0.470 0.490 0.500 0.480 0.570 0.550	0.310 0.360 0.370 0.380 0.370 0.460 0.440	0.750 0.660 0.780 0.600 0.630 0.570 0.480		1500 1440 1390 1300 1370 1380 1260 1300	0. 0. 0. 0. 0.		106 136 109 158 145 195			0.01 0.00 0.01 0.01 0.01 0.01 0.04	73 35 04 84 43 16
5 - B AVERAGES W'S,SCI POINTS	10	0.990 1.065 10	0.600	0.430	0.330	0.600		1560) 1520)			169	00.	(0.01 0.01	51
STIFF ON FOINTS SOFT ON POINTS	N TOP S	OLUTIO	INS			•••		1374(1430(5).		179) 125:	5			
W2 W3 W4 W5 SCI	DE FLEC DE FLEC DE FLEC DE FLEC DE FLEC SURFAC EL ASTI	TION A TION A TION A TION A E CURV	T GEOP T GEOP T GEOP T GEOP ATURE	HONE 2 HONE 3 HONE 4 HONE 5 INDEX	(W1 M	INUS W	2)								

ELASTIC MODULUS OF THE SUBGRADE FROM W1, W2, W3, W4, & W5 ELASTIC MODULUS OF THE PAVEMENT FROM W1, W2, W3, W4, & W5

Table 2d: Computer print-out for Section 12.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 08/28/73

	DIST. 17	COUNTY Robertson	
CONT. SECT. 49 8	JOB HIGHW 1 US 19	AY DATE 0 5-21-68	DYNAFLECT 1
	PAV.	THICK. = 15.20	INCHES
HOT MIX ASPH. CO			
		CERN JINDE E	
REC SANDY CLAY S	UBGR 0.0		
STATION W1 W2 W3	W4 W5	SCI ** ES	** ** EP ** * RMSE *
1 - A 0.680 0.590 0.49	0 0.390 0.310	0.090 1860	0. 347700. 0.0096
1 - B 0.680 0.600 0.49		0.080 1860	0. 341600. 0.0070
2 - A 0.720 0.630 0.51	0 0.390 0.310		
2 - B 0.700 0.620 0.49			
3 - A 0.750 0.650 0.52			
3 - B 0.760 0.650 0.51			
4 - A 0.600 0.540 0.45		0.060 2030	
4 - B 0.580 0.520 0.43 5 - A 0.620 0.550 0.45			
5 - B = 0.650 0.570 0.41			
5 - B U. CSU U. STU U. 4	0 0.500 0.200		0. 323400. 0.0047
AVERAGES			
W'S,SCI 0.674 0.592 0.48	31 0.373 0.294	0_082	
· · ·	0 10 10		
STIFF ON TCP SOLUTIONS			321420.
POINTS		1	.0 10
NO SOFT ON TOP SOLUTIONS	5		
W1 DEFLECTION AT G			
W2 DEFLECTION AT G			
W3 DEFLECTION AT G			
W4 DE FLECTION AT GI W5 DE FLECTION AT GI			
SCI SURFACE CURVATU		MINUS 421	
ES ELASTIC MODULUS			W3.W4.E W5
EP ELASTIC MODULUS			

Table 2e: Computer print-out for Section 15.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 08/28/73

DIST.	COUNTY
17	BRAZOS

	SECT.	JOB	HIGHWAY	DATE	DYNAFLECT
1560	1	1	FM 1687	5-21-68	1

PAV. THICK. = 7.50 INCHES

ASPHALT SURFACING 1.00 ASPH EMUL STAB GRAVE 6.50

BREWN CLAY SUBGRADE 0.0

STAT ION	W1	W2	W3	W 4	₩5	SCI	**	ES	**	** EP	**	* RMSE *
1 - A	2.160	1.500	0.960	0.660	0.520	0.660		110	00.	1044	.00.	0.0497
	ALTERN	NATE S	OLUTIO	N				91			00.	0.0328
1 - B	2.130	1.530	0.960	0.650	0.510	0.600		109		1179	-	0.0337
2 - A	1.920	1.410	0.930	0.640	0.490	0.510		114		1814		0.0394
			OLUTIO						00.		00.	0.0490
2 - B	1.860	1.350	0.900	0.630	0.500	0.510		117		1956		0.0507
	ALTER	NATE S	OLUTIO	N					00.		00.	0.0379
3 - A	2.040	1.470	0.930	0.630	0.490	0.570		113		1282		0.0330
	ALTERN	NATE S	OLUTIO	N					00.		00.	0.0503
3 - B	2.070	1.500	0.960	0.650	0.500	0.570		110		1373		0.0342
	ALTERN	NATE S	OLUTIO	N		_			00.		00.	0.0528
4 – A	2.220	1.620	1.020	0.670	0.490	0.600		104		1160		0.0202
4 – B	2.220	1.590	1.020	0.650	0.490	0.630		105		1085		0.0292
5 - A	1.980	1.380	0.900	0.610	0.470	0.600		118		1222		0.0454
			OLUTIO						00.	46		
5 - B	1.980	1.440	0.930	0.610	0.460	0.540			00.			· · · • · • ·
AVERAGES												
W*S _* SCI	2.058	1.479	0.951	0.640	0.492	0.579						
POINTS	10	10	10		10	10						
STIFF ON	N T CP S	SOLUTI	ONS			•		111	50.	1352	90.	
PDINTS									10		10	
SOFT ON	TOP SC	DLUTIC	NS						50.	41	50.	
POINTS									6		6	
									•		Ū	
W1	DEFLEC	CTION	AT GEOI	PHONE	1							
W 2	DEFLEC	CTION	AT GEOI	PHONE :	2							
WЗ	DEFLEC	TION	AT GEOI	PHCNE	3							
W 4			AT GEOI									
₩5			AT GEOI									
SCI	SURFAC	CE CUR	VATURE	INDEX	(W1 /	INUS I	W2)					
ES	ELAST	IC MOD	ULUS OF	F THE S	SUBGRA	DE FROI	M W)	1,W2	• W3 -	W4.8 W	15	
EP	ELAST	IC MOD	ULUS OF	F THE I	PAVEME	NT FROM	M WI	1,W2	• W3	W4.8 W	15	

VEMENT FROM WI,WZ,W3,W4,& W5 ***** IN CASES WITH ALTERNATES, RMSES ARE NOT SIGNIFICANTLY DIFFERENT

Table 2f: Computer print-out for Section 16.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULI

THIS PROGRAM WAS RUN - 08/28/73

		1011 5 7 K	UUNAP I		- 00/20		
		DIST. 17		CCUNTY BRAZOS			
	CDNT. S 540	ECT. JOB 3 1	HIGHWA FM 974	Y D 5-	0ATE -21-68	DYNAFLECT 1	
			PAV. 1	гніск.	= 8.30	INCHES	
	SEAL COAT	0	.50	IRON	ORE GRAN	/EL 7.	.80
	GREY SANDY	CLAY SUBG O	• 0				
STATION	W1 W2	W3 W4	W5	SCI	** ES >	** ** EP *>	* * <u>RMSE</u> *
1 - A	2.400 1.530	0.960 0.680	0.500	0.870	940(=
1 - B 2 - A	2.250 1.440	0.900 0.630	0.480	0.810	10000		
2 - A	ALTERNATE S	0.820 0.600	0.480	0.600	13100		
2 - B		0.820 0.620	0 4 6 0	0 600	10100 12800		
2 0	ALTERNATE S		0.470	0.000	9900		
3 - A		0.840 0.640	0-510	0.480	12300		· · · · •
	ALTERNATE S				9500		
3 - B		0.840 0.610	0.510	0.420	12400		
	ALTERNATE S				9600		
4 - Δ	2.250 1.470	0.990 0.750	0.600	0.780	10600		• • • • •
	ALTERNATE S	OLUTION			8300		
4 - B	2.340 1.590	: 1.050 C.790	0.630	0.750	9900		
	ALTERNATE S				7800	31 00.	
5 - A		0.990 0.710			8600). 3700.	• 0.0269
5 – B		0.960 0.680	0.530	0.690	11200). 83700	0.0763
	ALTERNATE S	SOLUTION			8900). 3600.	• 0.0337
AVEDACES							
AVERAGES		0.917 0.671	0 5 2 0	0 475			
POINTS	10 10			10			
	N TCP SOLUTI		10	10	1175	7. 138629.	
POINTS	1 1 C 502011					· 150025. 7 7	•
	TOP SOLUTIO	INS.				4090	
POINTS							•
					-		
W 1	DEFLECTION	AT GEOPHONE	1				
W2	-	AT GEOPHONE	-				
WЗ		AT GEOPHONE					
W4		AT GEOPHCNE					
W 5		AT GEOPHONE					
SCI	SURFACE CUR	VATURE INDEX	(W1 /	MINUS V	(2)		
ES EP	ELASIIC MOD	OULUS OF THE	SUBGRA	JE FROM	W1,W2,1	N3, W4, & W5	
	TN CASES HT	ULUS OF THE	PAVEMEI	NI FRUM	4 WI,WZ,	N3, W4, & W5	
-1. An An An An An	SULLITIONS A	TH ALTERNATE	39 KM31	ES UF A DED4	THE SUEL	ANU SLIFF	UN TUP
		A	ALA,	LU PERL	LENT LEV	EL UF SIGNI	FICANCE

Table 2g: Computer print-out for Section 17.

Table 3: Comparison between Elastic Modulus I, Elastic Modulus II and the new program on flexible pavements.

				Computed Moduli Values							
Test			Pvmt Thick	<u>Elastic</u>	Mod I*	<u>Elastic</u>	Mod II*	New Pr	ogram		
Sect	Surfacing	Base	<u> </u>	<u> </u>	E ₂	<u> </u>	<u> </u>	<u> </u>	E		
3	0.5" ST	12.0" Red sandy grav	15.2	24720	18970	23660	18980	27983 16150	19983 18000**		
4	0.5" ST	7.5" Asph stab Ls	8.0	78900	14900	110475	11800	125040 6157	11100 9586**		
5	0.5" ST	11.5" Lime stab Ss	12.0	32340	14480	23760	14840	30075 11400	15388 13050**		
12	3.7" HMAC	16.2" Crushed Ss	19.9	13900	14420	14920	14010	17960 12520	13740 14300**		
15	1.2" HMAC	14.0" Cement stab Ls	15.2	283180	19990	314100	19120	321420 No Alt	19480 ernate		
16	1.0" HMAC	6.5" Asph stab grav	7.5	73910	11740	109330	11110	135 29 0 4150	11150 9350**		
17	0.5" ST	7.8" Iron ore grav	8.3	36600	12700	81910	11400	138629 4090	11757 9210**		

.

*See Table 6 Reference 2.
**Alternate Solutions.

_	Pvmt			Deflecti		Calculated Moduli Values				
Test <u>Point</u>	Thick <u>H</u>	<u>W1</u>	<u>W2</u>	<u>W3</u>	_ W 4	<u>_W5</u>	<u> </u>	<u> </u>	RMSE	
6	12.0	0.400	0.400	0.370	0.340	0.310	15,600	4,928,400	0.0035	
10	12.0	0.500	0.470	0.440	0.380	0.330	16,300	2,389,400	0.0046	
13	12.0	0.520	0.510	0.470	0.400	0.350	15,300	2,251,200	0.0053	
25	12.0	0.400	0.390	0.360	0.330	0.290	17,400	4,052,300	0.0017	
28	12.0	0.430	0.410	0.390	0.360	0.330	14,500	4,895,000	0,0041	
32	12.0	0.410	0.390	0.360	0.320	0.280	18,900	3,247,900	0.0026	
34	12.0	0.400	0.390	0.370	0.340	0.310	15,300	5,253,100	0.0011	
49	12.0	0.410	0.400	0.370	0.350	0.350	12,200	8,191,900	0.0104	
56	14.0	0.330	0.330	0.310	0.290	0.270	16,500	5,046,300	0.0025	
63	12.0	0.390	0.380	0.350	0.320	0.290	17,300	4,451,100	0.0032	
69	12.0	0.237	0.234	0.216	0.207	0.198	21,900	12,731,400	0.0039	
AVERAG	ES						16,470	5,221,600	0.0039	

Table 4:	Dynaflect	deflections and calculated elastic moduli for test points on rigid	
	pavements	at the Houston Intercontinental Airport.	

.

•

,

Note: Deflection data from Figures 10a through 10k Reference 2.

Table 5: Comparison between Elastic Modulus II and the new program on rigid pavements.

	Pvmt				Elasti	c Mod II	New	Program
Point	Thick <u>H</u>	General Location	Subbase	Subg	<u>E2</u>	<u> </u>	<u> </u>	<u> </u>
6	12.0	Runway 14-32	6" Sand Shell	4' Compact	13,000	7,494,800	15,600	4,928,400
10	12.0	Runway 14-32	6" Sand Shell	4' Compact	14,300	3,066,500	16,300	2,389,400
13	12.0	Runway 14-32	6" Sand Shell	4' Compact	11,700	4,137,400	15 ,30 0	2,251,200
24	12.0	Taxiway A	6" Sand Shell	4' Compact	15,600	5,085,500	17,400	4,052,300
28	12.0	Taxiway A	6" Sand Shell	4' Compact	14,000	5,154,900	14,500	4,895,000
32	12.0	Taxiway A	6" Sand Shell	4' Compact	17,600	3,674,300	18,900	3,247,900
34	12.0	Taxiway A	6" Sand Shell	4' Compact	13,000	7,494,800	15,300	5,253,100
49	12.0	Taxiway B	6" Sand Shell	4' Compact	15,100	5,099,500	12,200	8,191,900
56	14.0	Taxiway K	9" Soil Cement	4' Compact	13,600	7,831,000	16,500	5,046,300
63	12.0	Taxiway K	9" Soil Cement	4' Compact	16,400	4,952,600	17,300	4,451,100
69	12.0	North Apron	12" Soil Cement	6' Compact	23,000	10,975,400	21,900	12,731,400

.

Calculated Moduli Values

4. Implication of Results

As pointed our previously, there are many instances where two entirely different sets of elastic moduli provide nearly equal values of deflections at the locations of the normal set of Dynaflect measurements (r values between 10 and 49 inches). Thus, two alternate sets of elastic moduli may appear to be equivalent solutions in a particular pavement evaluation problem. This phenomena does not imply that point load, two-layer, elastic deflection basins are not unique. In fact, Swift's "Two-Layer Elastic Deflection Chart" (6) clearly demonstrates that each possible twolayer elastic case has its own unique characteristic deflection basin. However, the phenomena does indicate that two alternate cases can become confused when the set of measurement points is not extensive enough.

The distinction between alternate cases could be greatly improved by extending the range of observations to include measurements at values of r that are less than 10 inches and/or greater than 49 inches. For example, at a radius of 5 inches from a point load, the calculated deflections for the two different cases, illustrated in Table 1, would be 2.22 and 6.01, respectively. Thus, a measured deflection at a 5 inch radius from a point load would clearly distinguish between the two possible cases.

With the current configuration of the Dynaflect, 10 inches is the smallest radius that can be used on the symmetry axis (See Figure 2). However, it is possible to obtain measurements closer than 10 inches by employing the principle of superposition. For example, a deflection measured at location number 6, Figure 2, would be the sum of the deflection due to one 500-pound load at a 5 inch radius and another deflection due to a 500 pound load at

Figure 2: Relative position of Dynaflect loads and sensors. Vertical arrows represent load wheels. Points numbered 1 through 5 indicate location of sensors for standard test. Point 6 indicates the location of a desired additional measurement. a 15-inch radius. The calculated value of deflection at this point for each of the two cases which were compared above, would be 1.85 and 3.66, respectively. Although this distinction is not as great as the previous comparison for r equal to 5 inches, it is significant enough to clearly distinguish between the two possible cases.

5. Conclusions & Recommendations

- Because the presented technique for determining elastic moduli for simple two-layer pavement structures fits the entire measured deflection basin, it is believed to be more representative of the true material properties, insofar as elasticity theory applies to such structures, than any other technique known to the author.
- 2. The five Dynaflect deflection measurements normally made in field testing are not sufficient to determine a unique set of elastic moduli for some two-layer highway pavements.
- 3. The apparent two alternate solutions for many existing flexible pavement structures could be resolved by making an additional deflection measurement closer to the loading point. It is recommended that the mechanics of accomplishing such a measurement be given immediate consideration for use in future deflection based pavement evaluations.

5. References

- Scrivner, F. H.; Michalak, C. H.; and Moore, W. M. "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections," Research Report No. 123-6, Texas Transportation Institute, Texas A&M University, College Station, Texas, March 1971.
- Scrivner, F. H.; Michalak, C. H.; and Moore, W. M. "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections, Part II," Research Report No. 123-6A, Texas Transportation Institute, Texas A&M University, College Station, Texas, December, 1971.
- Swift, Gilbert. "An Empirical Equation for Calculating Deflections on the Surface of a Two-Layered Elastic System," Research Report No. 136-4, Texas Transportation Institute, November, 1972.
- 4. Pierre, Donald A., Optimization Theory with Application's, John Wiley and Sons, Inc., New York, March 1969, pp. 280-283.
- 5. "Texas Highway Department Pavement Design System, Part I, Flexible Pavement Designer's Manual," Highway Design Division, Texas Highway Department, Austin, Texas, 1970.
- Swift, Gilbert. "A Graphical Technique for Determining the Elastic Moduli of a Two-Layered Structure from Measured Surface Deflections," Research Report No. 136-3, Texas Transportation Institute, November, 1972.

. -. -•

APPENDIX A

This Appendix contains a description of a computer program, "Two-Layer Elastic Moduli for Five Deflections," which determines the pavement and subgrade moduli for simple two-layer pavement structures based on surface deflections.

TABLE OF CONTENTS

SUBJECT	PAGE
Description of Main Program	A1
Main Program Variables	A-4
Main Program Flow Chart	A-8
Description of EMPI Subroutine	A-19
Subroutine EMPI Variables	A-21
Subroutine EMPI Flow Chart	A-23
Subroutine VARI	A-25
Subroutine SIGNIF	A-26
Subroutine FIBO	A-27
Program Listing	A-28
DESCRIPTION OF THE MAIN PROGRAM

The data input format for the main computer program is the same as that used by several previously written computer programs that compute pavement strength properties from Dynaflect data, namely the Texas Highway Department stiffness coefficient program, ELASTIC MODULUS I, and ELASTIC MODULUS II. Each input data card is read into a storage area and the subroutine CORE is used to select the read statement and data format to read each data card. Subroutine CORE allows a FORTRAN program to read under format control from a storage area which contains alphabetic character codes of a card image. Each data card has a code punched in the first three columns that designate the card type.

100 - Card that indicates the beginning of data cards for each job and contains control information about the job, location, date and total pavement thickness.

200 - Card contains word descriptions and thicknesses of the first three layers of the pavement.

300 - Card contains word descriptions and thicknesses of layers 4,5 and 6 (if present).

400 or blank - Card contains station number and geophone deflection headings and multipliers for each observation. Two digit numbers in columns 75 and 76 of this card denotes end of data.

The deflections at each radial distance are calculated from the geophone deflection readings and multipliers on each 400 or blank card. The Surface Curvature Index (SCI) is also calculated, SCI=W1-W2. If any W (deflection) is equal to zero, or if any W is greater than its preceding W, the cases are flagged to denote data errors and are not

used for further calculations. If the W's are valid observations they are converted to inches and passed to subroutine EMPI along with the total pavement thickness for the elastic modulus and RMSE calculations.

EMPI returns to the main program two alternate solutions for pavement and subgrade elastic moduli with their corresponding RMSE's. In cases where only one solution exists, the variables for its alternate solution contain the flag number 99999. The pavement and subgrade moduli are then rounded to the nearest 100 psi. The counter N (the number of valid sets of observations) is incremented and the program reads the next data card to continue the process until all stations in a section are read. When all the data cards for a section have been read, the program prints output headings and initializes the variables used in calculating section averages.

A loop is set up to print the station numbers, deflections, SCI's, subgrade moduli, pavement moduli and RMSE's of all valid data observations. Messages for the following situations are printed for which a data observation is not used in the calculations:

1. Data observation computes a negative SCI in which case the message 'NEGATIVE SCI OTHER CALCULATIONS OMITTED' is printed.

2. Date observation where any W is equal to zero. 'ERROR IN DATA' is printed.

3. Data observation where both alternate pavement and subgrade solutions are "soft on top" (pavement modulus is less than subgrade modulus) or where both solutions are "stiff on top" (pavement modulus is greater than subgrade modulus). The message printed for this occurrence is 'NO SOLUTION'.

For all data observations other than the three mentioned above, elastic moduli for the soft and stiff on top solutions are summed separately. For all observations which have two alternate solutions for pavement and subgrade elastic moduli, the RMSE's of the stiff and soft for each solution are stored in separate arrays for a variance analysis calculation to denote significant differences.

After all data and any error messages for a section are printed, the average deflections, SCI's, subgrade moduli, pavement moduli and RMSE are calculated. If more than two observations in a section have alternate solutions, the program calls Subroutine VARI to calculate an analysis of variance between the RMSE's of the stiff on top solutions and the soft on top solutions to determine if these values are significantly different at the 10% level.

The averages are then printed along with the number of points used in calculating each average. These averages are divided into two groups: the average and points of the stiff on top solutions and the average and points of the soft on top solutions.

Definitions of the heading abbreviations are given next in footnote form. An additional footnote occurs when the variance analysis has been run, denoting whether or not the RMSE's of the alternate pavement and subgrade modulus are significantly different.

The program then returns to its beginning to read data for another section or terminates execution normally when all data have been read.

MAIN PROGRAM VARIABLES

- A Dummy array used with subroutine core to select the correct input format for each card read.
- AAP2 Sum of pavement moduli
- AAS2 Sum of subgrade moduli
- AAP2V Average pavement modulus
- AAS2V Average subgrade modulus
- ALRMS Stiff on top alternate solution RMSE array
- AP2 Elastic modulus of the pavement rounded to nearest 100 psi
- AS2 Elastic modulus of the subgrade rounded to nearest 100 psi
- ASCI Sum of (W1 W2), WI W2 = surface curvature index
- ASCIV Average surface curvature index
- AW1 Sum of geophone 1 deflections
- AW2 Sum of geophone 2 deflections
- AW3 Sum of geophone 3 deflections
- AW4 Sum of geophone 4 deflections
- AW5 Sum of geophone 5 deflections
- AW1V Average geophone 1 deflections
- AW2V Average geophone 2 deflections
- AW3V Average geophone 3 deflections
- AW4V Average geophone 4 deflections
- AW5V Average geophone 5 deflections
- BLRMS Soft on top alternate solution RMSE array
- CNT Number of soft on top solutions
- CORE Subroutine to re-read a card under format control
- CO1, CO2, CO3, CO4 County name

- D1 Geophone 1 reading
- D2 Geophone 1 multiplier
- D3 Geophone 2 reading
- D4 Geophone 2 multiplier
- D5 Geophone 3 reading
- D6 Geophone 3 multiplier
- D7 Geophone 4 reading
- D8 Geophone 4 multiplier
- D9 Geophone 5 reading
- D10 Geophone 5 multiplier

DAP - Pavement elastic modulus (unrounded) as calculated in subroutine EMPI DAS - Subgrade elastic modulus (unrounded) as calculated in subroutine EMPI DATE - An IBM subroutine that returns the current month, day, and year DP - Total pavement thickness

- Ell Alternate pavement elastic modulus rounded to nearest 100 psi
- E21 Alternate subgrade elastic modulus rounded to nearest 100 psi
- EMPI Subroutine to calculate pavement and subgrade moduli, RMSE, and alternate

if it exists.

HWY1, HWY2 - Highway name and number

- I Pointer for data read into storage
- ICK Switch to indicate last data card

ICONT - Contract number for the highway

IDAY - Day the deflections were taken

IDIST - District number

IDYNA - Dynaflect number

IJOB - THD job number

ISECT - THD section number for the highway

ISW - Switch to indicate whether the two RMSE arrays are significant and to control the footnotes to be printed.

IXDATE - Return arguments from subroutine date (month, day, year) IYEAR - Year the deflections were taken

JNT, LNT - Number of RMSE's in the two arrays to be tested for

significance

KNT - Number of stiff on top solutions

LA1 - Description of materials in layer 1

LA2 - Description of materials in layer 2

LA3 - Description of materials in layer 3

LA4 - Description of materials in layer 4

LA5 - Description of materials in layer 5

LA6 - Description of materials in layer 6

LO - Number of both data errors and no solutions

M - Month the deflections were taken

MNT - Number of solutions printed

N - Counter for number of error free data cards read

NCARD - Denotes card type

100 - Project identification card

200 - Existing pavement description card (Layers 1, 2, & 3)

300 - Existing pavement description card (layers 4, 5, & 6)

400 - Data card (geophone readings and multipliers)

RATIO - Ratio of AP2/AS2

RATIO1 - Ratio of E11/E21

ROUND - Statement function to round a given value of El or E2 to the nearest 100 psi

SCI - Surface curvature index, W1-W2 in mils

STA - Station number

Tl - Layer 1 thickness

T2 - Layer 2 thickness

T3 - Layer 3 thickness

T4 - Layer 4 thickness

T5 - Layer 5 thickness

T6 - Layer 6 thickness

W1 - Deflection at geophone number 1

W2 - Deflection at geophone number 2

W3 - Deflection at geophone number 3

W4 - Deflection at geophone number 4

W5 - Deflection at geophone number 5

XLANE - Traffic lane and direction

∆_0

.

·· .

END	

DESCRIPTION OF EMPI SUBROUTINE

This subroutine uses the five deflections and the pavement thickness and calculates pavement and subgrade moduli solutions from the empirical equation along with the corresponding RMSE (Root Mean Squares of the Errors). Due to the nature of data, two solutions for pavement and subgrade moduli sometimes exist.

EMPI calculates both solutions according to the following procedure.

1. An array of \log_{10} numbers from -2.5 to 7.0 with 0.5 intervals is built. The anti-log of each number is then used as the ratio of E_1/E_2 to calculate an array of RMSE's.

2. This array of RMSE's is searched and the three lowest values are found along with their corresponding locations in the array.

		RMSE	<u>Location</u>
	lowest	TEMP1	ISUB1
2nd	lowest	TEMP 2	ISUB2
3rd	lowest	TEMP 3	ISUB3

3. The locations of these three RMSE's are then checked to determine whether or not there are one or two significant minimums.

If only one significant minimum exists all three locations of RMSE will be consecutive.

If two significant minimums exist one of the locations of RMSE will be separated from the other two.

4. The vicinity of each distinct minimum is searched using a Fibonacci search subroutine. This search will find the minimum value of a unimodal function between two points on its curve. It should be noted that the RMSE versus E_1/E_2 curve is not a unimodal function in its

entirety; however, it has been found to be unimodal between any three consecutive points in the stored array in the vicinity of a minimum. The subroutine returns to the program the minimum RMSE value and the corresponding value of the ratio E_1/E_2 .

5. Next the ratio (E_1E_2) that corresponds to the minimum RMSE is sent to a subroutine ANA. ANS calculates the pavement (E1) and subgrade (E2) moduli using this value for the ratio (E_1E_2) .

6. Two sets of pavement and subgrade moduli along with their respective RMSE's are alswys sent back to the main program in the following form.

1st Solution E1 - Pavement modulus

E2 - Subgrade modulus

RMSE - Root mean square of the errors

*2nd Solution Ell - Pavement modulus

E21 - Subgrade modulus

RMSE1 - Root mean square of the errors

*If only one distinct minimum exists, values for Ell, E21 and RMSE1 will be 99999.

SUBROUTINE EMPI VARIABLES

B - Sum of the XW's divided by sum of the X's squared (See equation)

DLTA - Intervals on log₁₀ scale

El - Pavement elastic modulus

E2 - Subgrade elastic modulus

Ell - Alternate pavement elastic modulus

E21 - Alternate subgrade elastic modulus

E(I) - Errors between recorded deflections and calculated deflections

EX - X (See equation)

EXSQ - X^2 (See equation)

H - Total pavement thickness

ISUB1 - Location of lowest RMSE in array

ISUB2 - Location of second lowest RMSE in array

ISUB3 - Location of third lowest RMSE in array

K - Number of RMSE's in array to find three lowest

MSE - Mean square of the errors

N - Number of deflections in each case

NOI - Number of points to be tested in Fibonacci search.

RATIO - Ratio of E1/E2

R(I) - Distances from the point at which load is applied

RLDG - Array of log₁₀ numbers to be searched

RMSE - Root mean square of the errors

SMESQ - Sum of the errors squared

SMXSQ - Sum of the X's squared

SMXW - Sum of the X's times the W's

- TEMP Minimum RMSE of the Fibonacci search.
- TEMP1 Lowest RMSE in array
- TEMP2 Second lowest RMSE in array
- TEMP3 Third lowest RMSE in array

TEMPO - Minimum RMSE of the alternate solution of the Fibonacci search

- TX1, TX2, TX3 Location of RMSE that is the left boundary in the Fibonacci search
- TX11, TX21, TX31 Location of RMSE that is the right boundary in the Fibonacci search
- W(I) Vertical deflections

 $X(I) - \frac{1}{r} + (RATIO - 1) * XTWO$ (See equation)

XL - L (See equation)

 $XL3 - L^3$ (See equation)

XL5 - L⁵ (See equation)

XTWO $-\frac{1}{L}$ + $\frac{X^2}{2L^3}$ + $\frac{3X^4}{2L^5}$ (See equation)

A-23

••

SUBROUTINE VARI

VARI is a variance analysis subroutine to determine whether or not there is a significant difference between the array of soft on top alternate RMSE's and the array of stiff on top alternate RMSE's at a 10% level of significance.

SUBROUTINE VARI VARIABLES

AMSBS - Mean square between sets AMSWS - Mean square within sets CNT - Number of soft on top solutions F - Ratio of AMSBS over AMSWS IDFBS - Degrees of freedom between sets IDFWS - Degrees of freedom within sets KNT - Number of stiff on top solutions N - Total number of RMSE's tested RMSE - Array of stiff on top alternate RMSE's RMSE1 - Array of soft on top alternate RMSE's SSBS - Sums of squares between sets SSQ(1) - Sum of all stiff on top alternate RMSE's squared SSQ(2) - Sum of all soft on top alternate RMSE's squared SSWS - Sums of squares within sets SUM(1) - Sum of all stiff on top alternate RMSE's SUM(2) - Sum of all soft on top alternate RMSE's TSSQ - Total sum of alternate RMSE's squared TSUM - Total sum of alternate RMSE's

SUBROUTINE SIGNIF

This is an F-distribution table for a 10% level of significance with the numerator at 1 since there will always be only two sets.

SUBROUTINE SIGNIF VARIABLES

F - Ratio of AMSBS over AMSWS (See VARI variables)

IDFWS - Degrees of freedom within sets (Denominator)

ISW - Pointer as to significance

ISW = 0 - Not significant at 10%.

ISW = 1 - Is significant at 10%.

SUBROUTINE FIBO

This subroutine is a Fibonacci search which is used to determine the minimal value of a unimodal function. A subroutine FUNC (X,Y) is called to obtain the Y value of the unimodal function, Y = F(X).

SUBROUTINE FIBO VARIABLES

- N Number of search desired, Max = 20
- X1 Lower limit of X value
- X2 Upper limit of X value
- X Location of optimal Y
- Y Optimal Y value

С	TWO LAYER ELASTIC MODULI FOR FIVE DEFLECTIONS	TTI	0
	DIMENSION STA(200), W(200,5), D(10), AW(5), AWV(5), RATIO(200).	TTI	10
	* AP2(200), LA1(5), LA2(5), LA3(5), LA4(5), LA5(5), LA6(5),	TTT	20
	* KATIUI(200),AS2(200),A(20),SCI(200),	TTI	30
	*E11(200), E21(200),RMSE1(200).	TTI	40
	<pre>* IXDATE(3),COMM(7),REM(4),RMSE(200),BLRMS(200),ALRMS(200)</pre>	TTI	50
	INTEGER CNT	TTI	60
	REAL * 8 STA, DAS, DAP, DBLE, E11, E21, RMSE1, RMSE, BLRMS, ALRMS	TTI	70
С		TTT	80
	C STATEMENT FUNCTION TO ROUND 'X' TO NEAREST 'EVEN'	TTI	90
С		TTI	100
	ROUND(X, EVEN) = AINT((X + EVEN * .5) / EVEN)	TTI	110
	* * EVEN	TTI	120
С		TTI	130
	10 CONTINUE	TTI	140
	READ(5,1,END=1000) NCARD, (A(I), $I = 1$, 20)	TTI	150
	1 FURMAT(I3, 19A4, A1)	TTI	160
	CALL CORE (A, 80)	TTI	170
	IF(NCARD.EQ.100) GO TO 11	TTI	180
•	IF(NCARD.EQ.200) GO TO 12	TTI	190
	IF(NCARD.EQ.300) GO TO 13	TTI	200
	14 I=N+1	TTI	210
	READ(5,6) ICONT, ISECT, M, IDAY, IYEAR, STA(I), (D(K), K=1,10),	TTI	220
	▼{KER{J}+J=1+4}+ICK	TTI	230
_	6 FORMATI 14,412,A7,3X, 5(F2.1,F3.2),8X,4A4,12)	TTI	240
С	PRINT OUTPUT COLUMN HEADINGS	TTI	250
С		TTI	260
С	CALCULATE DEFLECTIONS & SCI (DEFLECTIONS IN MILS)	TTI	270
	L=1	TTI	280
	00_4 J=1,5	TTI	290
	$W(I_{+}J) = D(L) + D(L + 1)$	TTI	300
	L = L + 2	TTI	310
	4 CONTINUE	TTI	320
-	SCI(I) = W(I,1) - W(I,2)	TTI	330
C		TTI	340
C	TEST FOR W1 OR W2 = 0, AND W1 LESS THAN W2	TTI	350
С		TTI	360
	DO 5 J=1,5	TTI	370
	IF(W(I,J) .EQ. 0.0) GO TO 21	TTI	380
	5 CONTINUE	TTI	390
	D0 7 J=1,4	TTI	400
	IF(W(I,J) .LT. W(I,J+1)) GD TO 22	TTI	410
	7 CONTINUE	ITT	420
	DO 8 $J=1,5$	TTI	430
	$W(I_{J}J) = W(I_{J}J) / 1000.$	TTI	440
с	8 CONTINUE	TTI	450
C C	DASS THE HES S TOTAL DAVENERY THEORY OF THE	TTI	460
c	PASS THE WIS & TOTAL PAVEMENT THICKNESS TO EMPI,	TTI	470
c	EMPI RETURNS UNROUNDED VALUES OF PAVEMENT & SUBGRADE AND RMSE	TTI	480
C	MODULI AS DAP & DAS & RMSE(I) AND E11(I), E21(I), & RMSE1(I)	TTI	490

-4

..

÷

~			
С		TTI	500
	CALL EMPI(DBLE(W(I,1)), DBLE(W(I,2)), DBLE(W(I,3)), DBLE(W(I,4)),	TTI	
~	<pre>#DBLE(W(I,5)),DBLE(DP),DAP,DAS,RMSE(I),E11(I),E21(I),RMSE1(I))</pre>	TTI	520
Ç	CONVERT THE W'S TO MILS	TTI	530
	DO 9 J=1,5		540
	W(I,J) = W(I,J) * 1000.	TTI	550
	9 CONTINUE	TTI	560
	RMSE(I) = RMSF(I) * 1000.	TTI	570
	RMSE1(I) = RMSE1(I) * 1000.	TTI	580
	DAS = ROUND(DAS, 100.)	TTI	590
	DAP = ROUND(DAP, 100.)	TTI	600
	AS2(I) = DAS	TTI	610
	AP2(I) = DAP	TTI	620
	IF(E11(I) .EQ. 99999) GD TO 23 E11(I) = ROUND(E11(I),100.)	TTI	
	E21(I) = ROUND(E21(I), 100.)	TTI	640
	23 CONTINUE		650
	N = N + 1	TTI	660
	IF(ICK .EQ. 0) GO TO 10		670
	GO TO 80	TTI	680
	11 READ(5,2) IDIST,CO1,CO2,CO3,CO4,ICONT,ISECT,IJOB,HWY1,	TTI	690 700
	* HWY2, XLANE, DP, M, IDAY, IYEAR, IDYNA, (COMM(1), I=1.7)	TTI TTI	700
	2 FORMAT (12,3A4,A2, 14,212,A4,A3,A3,F5.2,412,7A4)	TTI	710 720
	PRINT 51	TTI	730
	51 FORMAT('1')	TTI	740
	PRINT 52	TTI	750
	52 FORMAT(35X, TEXAS HIGHWAY DEPARTMENT /)	TTI	760
	PRINT 53, IDIST	TTI	770
	53 FORMAT (33X, 'DISTRICT ', 12, ' - DESIGN SECTION' /)	TTI	780
	PRINT 54	TTI	790
	54 FORMAT(21X, 'DYNAFLECT DEFLECTIONS AND CALCULATED ',	TTI	800
	* 'ELASTIC MODULI ' /)	TTI	810
	CALL DATE (IXDATE(1), IXDATE(2), IXDATE(3))	TTI	820
	PRINT 55,IXDATE	TTI	830
	55 FORMAT(32X, THIS PROGRAM WAS RUN - ', 2A3,A2 /)	TTI	840
	PRINT 56, IDIST, CO1, CO2, CO3, CG4	TTI	850
	PRINT 57, ICONT, ISECT, IJOB, HWY1, HWY2, M, IDAY, IYEAR, IDYNA	TTI	860
	PRINT 58, (COMM(I), I=1,7), DP	TTI	870
	58 FORMAT (10X,7A4,2X, 'PAV. THICK. = ', F5.2, ' INCHES' /)	TTI	880
	N=0	TTI	890
	DO 15 J=1,5	TTI	900
	AW(J) = 0.0	TTI	910
	15 CONTINUE	TTI	920
	ASCI=0.	TTI	930
	AAS2=0.	TTI	940
	AAP2=0.	TTI	950
	BAS2 = 0. BAP2 = 0.	TTI	960
	GO = 0.	TTI	970
с	READ & PRINT INFORMATION ON DATA CARD 2		980
•	HERE & FRINT IN CONTINUE OF DELM CMCD Z	TTI	990

	12 READ(5,3) (LA1(I),I=1,5),T1,(LA2(I),I=1,5),T2,	TTI 1000
	" \LAJ\1]+1=1+5]. T3	TTI 1000
	3 FORMAT(5A4, F4.2, 5A4, F4.2, 5A4, F4.2)	TTI 1010
	$PKINI D9_{0}(LAL(I), I=1, 5), T1_{1}A_{2}(I), T=1, EV = 0$	TTI 1020
	FRINE 274 L LA3[1], E=1,51, T2.	TTI 1030
	59 FORMAT(16X, 544, 1X, F5.2, 5X, 5A4, 1X, F5.2/)	TTI 1040
	GO TO 10	TTI 1050
С	READ & PRINT INFORMATION ON DATA CARD 3, IF PRESENT	TTI 1060
	13 READ(5,3) (LA4(I),I=1,5),T4,(LA5(I),I=1,5),T5,	TTI 1070
	* (LA6(1), I=1,5), T6	TTI 1080
	PRINT 59,(LA4(I),I=1,5),T4,(LA5(I),I=1,5),T5	TTI 1090
	PRINT 59, (LA6(1), I=1,5), T6	TTI 1100
	GO TO 10	TTI 1110
	22 CONTINUE	TTI 1120
		TTI 1130
	AS2(1) = 7777777	TTI 1140
	AP2(I) = 7777777	TTI 1150
	IF(ICK .EQ. 0) GO TO 10	TTI 1160
	GO TO 80	TTI 1170
	21 CONTINUE	
	AS2(1) = 888888	TTI 1180
	AP2(I) = 888888	TTI 1190
	IF(ICK .EQ. 0) GO TO 10	TTI 1200
	GO TO 80	TTI 1210
	80 CONTINUE	TTI 1220
	PRINT 61	TTI 1230
	61 FORMAT(/ 7X, STATION W1 W2 W3 W4 W5",	TTI 1240
	= * SCI ** ES ** ** EP ** * RMSE **/}	TTI 1250
	CNT = 0	TTI 1260
	KNT = 0	TTI 1270
	MNT = O	TTI 1280
	JNT = 0	TTI 1290
	LNT = O	TTI 1300
	LO = 0	TTI 1310
	00 50 I=1.N	TTI 1320
	IF(AS2(I) .EQ. 777777) GD TO 24	TTI 1330
	IF(AS2(I) .EQ. 8888888) GO TO 25	TTI 1340
	RATIO(I) = AP2(I)/AS2(I)	TTI 1350
	IF(E11(I) -EQ. 99999) GD TO 26	TTI 1360
	RATIO1(I) = E11(I)/E21(I)	TTI 1370
	IF(RATIO(I) .LT. 1.0) GC TC 27	TTI 1380
		TTI 1390
С	IF (RATIO1(I) .LT. 1.0) GO TO 28	TTI 1400
C	BOTH ALTERNATES HARD ON TOP	TTI 1410
	PRINT 62, STA(I), (W(I, J), J=1, 5), SCI(I)	TTI 1420
	62 FORMAT (7X, A7, 1X, 6(F6.3), 10X, 'NO SOLUTION')	TTI 1430
	MNT = MNT + 1	TTI 1440
	LO = LO + 1	TTI 1450
	GO TO 50	TTI 1460
~	27 IF(RATIOL(1) .GT. 1.0) GO TO 29	TTI 1470
С	BOTH ALTERNATES ARE SOFT ON TOP	TTI 1480
	PRINT 62, STA(1), (W(1, J), J=1, 6), SCI(1)	TTI 1480
		111 1490

```
MNT = MNT + 1
                                                                         TTI 1500
   10 = 10 + 1
                                                                         TTI 1510
                                                                         TTI 1520
  GO TO 50
28 PRINT 63, STA(I), (W(I, J), J=1, 5), SCI(I), AS2(I), AP2(I), RMSE(I)
                                                                         TTI 1530
63 FORMAT (7X+A7+1X+6(F6-3)+2F10+0+2X+F8-4)
                                                                         TTI 1540
   PRINT 64,E21(I),E11(I),RMSE1(I)
                                                                         TTI 1550
64 FORMAT(T17, 'ALTERNATE SOLUTION', T52, 2F10.0, 2X, F8.4)
                                                                         TTI 1560
   BAS2 = BAS2 + E21(I)
                                                                         TTI 1570
   BAP2 = BAP2 + E11(I)
                                                                         TTI 1580
   AAS2 = AAS2 + AS2(1)
                                                                         TTI 1590
   AAP2 = AAP2 + AP2(I)
                                                                         TTI 1600
                                                                         TTI 1610
   JNT = JNT + 1
   BLRMS(JNT) = RMSE1(I)
                                                                         TTI 1620
   LNT = LNT + 1
                                                                         TTI 1630
   ALRMS(LNT) = RMSE(I)
                                                                         TTI 1640
   CNT = CNT + 1
                                                                         TTI 1650
   KNT = KNT + 1
                                                                         TTI 1660
   MNT = MNT + 2
                                                                         TTI 1670
   GO TO 40
                                                                         TTI 1680
29 PRINT 63,STA(I),{W(I,J),J=1,5),SCI(I),E21(I),E11(I),RMSE1(I)
                                                                         TTI 1690
   PRINT 64,AS2(I),AP2(I),RMSE(I)
                                                                         TTI 1700
   BAS2 = BAS2 + AS2(1)
                                                                         TTI 1710
   BAP2 = BAP2 + AP2(I)
                                                                         TTI 1720
   AAS2 = AAS2 + E21(I)
                                                                         TTI 1730
   AAP2 = AAP2 + Ell(I)
                                                                         TTI 1740
   JNT = JNT + 1
                                                                         TTI 1750
   BLRMS(JNT) = RMSE(I)
                                                                         TTI 1760
   LNT = LNT + 1
                                                                         TTI 1770
   ALRMS(LNT) = RMSE1(I)
                                                                         TTI 1780
   CNT = CNT + 1
                                                                         TTI 1790
   KNT = KNT + 1
                                                                         TTI 1800
   MNT = MNT + 2
                                                                         TTI 1810
   GO TO 40
                                                                         TTI 1820
26 CONTINUE
                                                                         TTI 1830
   IF(RATIO(I) .LT. 1.0) GO TO 30
                                                                         TTI 1840
   PRINT 63 , STA(I), (W(I,J), J=1,5), SCI(I), AS2(I), AP2(I), RMSE(I)
                                                                         TTI 1850
   AAS2 = AAS2 + AS2(I)
                                                                         TTI 1860
   AAP2 = AAP2 + AP2(I)
                                                                         TTI 1870
   KNT = KNT + 1
                                                                         TTI 1880
   MNT = MNT + 1
                                                                         TTI 1890
   GO TO 40
                                                                         TTI
                                                                             1900
30 PRINT 63, STA(I), (W(I,J), J=1,5), SCI(I), AS2(I), AP2(I), RMSE(I)
                                                                         TTI 1910
   BAS2 = BAS2 + AS2(I)
                                                                         TTI 1920
   BAP2 = BAP2 + AP2(I)
                                                                         TTI 1930
   CNT = CNT + 1
                                                                         TTI 1940
   MNT = MNT + 1
                                                                         TTI 1950
40 CONTINUE
                                                                         TTI 1960
   DO 16 M=1,5
                                                                         TTI 1970
16 AW(M) = AW(M) + W(I,M)
                                                                         TTI 1980
   ASCI = ASCI + SCI(I)
                                                                         TTI 1990
```

	IF(MNT .EQ. 20) GO TO 31	TTI 2000
	GD TD 50	TTI 2010
	1 PRINT 51	TTI 2020
	PRINT 56, IDIST, CO1, CO2, CO3, CO4	TTI 2030
5	6 FORMAT(T35, DIST. COUNTY'/ T36, 12,9X, 3A4,A2 /)	TTI 2040
	PRINT 57, ICONT, ISECT, IJOB, HWY1, HWY2, M, IDAY, IYEAR, IDYNA	TTI 2050
5	T FORMATI T19, "CONT. SECT. JOB HIGHWAY DATE",	TTI 2060
	" DYNAFLECT' / T19,14,217,4X,A4,A3,14,2('-',12),19 /)	TTI 2070
	PRINT 61	TTI 2080
	MNT = O	TTI 2090
_	GO TO 50	TTI 2100
	4 PRINT 65, STA(1)	TTI 2110
•	5 FORMAT(7X,A7,3X, 'NEGATIVE SCI OTHER CALCULATIONS OMMITTED')	TTI 2120
	MNT = MNT + 1	TTI 2130
	GO TO 50	TTI 2140
	5 PRINT 66, STA(I)	TTI 2150
	6 FORMAT(7X+A7+3X+*ERROR IN DATA*)	TTI 2160
	MNT = MNT + 1 Go Continue	TTI 2170
c	CALCULATE AVERAGES	TTI 2180
C	N = N - LO	TTI 2190
	DO 17 M=1.5	TTI 2200 TTI 2210
1	.7 AWV(M) = AW(M)/N	TTI 2220
	ASCIV = ASCI/N	TTI 2230
	IF(KNT .EQ. 0) GO TO 32	TTI 2240
	AAS2V = AAS2/KNT	TTI 2250
	AAP2V = AAP2/KNT	TTI 2260
3	2 CONTINUE	TTI 2270
	IF(CNT .EQ. 0) GO TO 33	TTI 2280
	BAS2V = BAS2/CNT	TTI 2290
	BAP2V = BAP2/CNT	TTI 2300
	IF(KNT .EQ. 0) GO TO 33	TTI 2310
	IF(JNT .LT. 3 .AND. LNT .LT. 3) GO TO 33	TTI 2320
	CALL VARI(ALRMS,BLRMS,JNT,LNT,ISW)	TTI 2330
	IF(ISW .EQ. 0) ISW = 2	TTI 2340
	GO TO 34	TTI 2350
	33 CONTINUE	TTI 2360
	ISW = 3	TTI 2370
	B4 CONTINUE	TTI 2380
	PRINT 81, (AWV(J), J=1, 5), ASCIV	TTI 2390
1	31 FORMAT(/7X, *AVERAGES*, /, 8X, 7HW'S, SC1, 6(F6.3))	TTI 2400
	PRINT 82, N, N, N, N, N, N	TTI 2410
	32 FORMAT(8X, 'POINTS', T19, 13, 3X, 13, 3X, 13, 3X, 13, 3X, 13, 3X, 13)	TTI 2420
	IF(KNT .EQ. 0) GO TO 35	TTI 2430
	IF(CNT .NE. 0) GO TO 36 PRINT 83,AAS2V,AAP2V	TTI 2440
	B3 FORMAT(8X, STIFF ON TOP SOLUTIONS , T52, 2F10.0)	TTI 2450 TTI 2460
	PRINT 84,KNT,KNT	TTI 2470
:	34 FORMAT(8X, 'POINTS', T58, 13, T68, 13)	TTI 2480
	PRINT 85	TTI 2490
		111 2470

85	FORMAT(8X, 'NO SOFT ON TOP SOLUTIONS')	TTI	2500
	GO TO 90		2510
36	CONTINUE		2520
	PRINT 83, AAS2V, AAP2V		2530
	PRINT 84.KNT.KNT		2540
	PRINT 86+BAS2V+BAP2V	-	2550
86	FORMAT(8X, 'SOFT ON TOP SOLUTIONS', T52, 2F10.0)		2550
00	PRINT 87, CNT, CNT		
97	FORMAT(8X, POINTS', T58, 13, T68, 13)	-	2570
01	GO TO 90		2580
	CONTINUE		2590
			2600
	PRINT 88		2610
. 00	FORMAT(8X, 'NO STIFF ON TOP SOLUTIONS')		2620
	PRINT 86, BAS2V, BAP2V		2630
	PRINT 87, CNT, CNT		2640
90	CONTINUE		2650
	PRINT 91		2660
91	FORMAT(/10X,'W1 DEFLECTION AT GEOPHONE 1')	-	2670
	PRINT 92		2680
92	FORMAT(10X, W2 DEFLECTION AT GEOPHONE 2*)		2690
	PRINT 93	TTI	2700
. 93	FORMAT(10X, W3 DEFLECTION AT GEOPHONE 3!)		2710
	PRINT 94	TTI	2720
94	FORMAT(10X, W4 DEFLECTION AT GEOPHONE 4)	TTI	2730
	PRINT 95	TTI	2740
95	FORMAT(10X, 'W5 DEFLECTION AT GEOPHONE 5')	TTI	2750
	PRINT 96	TTI	2760
96	FORMAT(10X, SCI SURFACE CURVATURE INDEX (W1 MIN*,	TTI	2770
1	* * US W2) *)	TTI	2780
	PRINT 97		2790
97	FORMAT(10X, ES ELASTIC MODULUS OF THE SUBGRADE FRO*,	TTI	2800
	* *M W1,W2,W3,W4,& W5*]		2810
	PRINT 98		2820
98	FORMAT(10X, 'EP ELASTIC MODULUS OF THE PAVEMENT FRO',		2830
	* [•] M W1,W2,W3,W4,& W5 [•])		2840
	GO TO (100,200,300) , ISW		2850
100	PRINT 99		2860
	FORMAT(10X, ***** IN CASES WITH ALTERNATES, RMSES OF THE SOFT AND		
	*STIFF ON TOP',/,16X, 'SOLUTIONS ARE DIFFERENT AT A 10 PERCENT LEVE	TTT	2880
	* OF SIGNIFICANCE()		2890
	GD TD 300	_	2900
200	PRINT 101		2910
	FORMAT(10X, ****** IN CASES WITH ALTERNATES, RMSES ARE NOT SIGNIFIC		
	NTLY DIFFERENT)		2930
	CONTINUE		2940
200	GO TO 10		2950
1000	CONTINUE		2960
	END	-	2970
		111	2710

..

	SUBROUTINE EMPI(W1,W2,W3,W4,W5,H,E1,E2,TEMP,E11,E21,TEMPO)	EMPI	10
	IMPLICIT REAL*8(A-H,O-Z)	EMPI	
	DIMENSION RLOG(30), RATIO(30), X(20), RMSE(30), E(20)	EMPI	
	DIMENSION RAT1(30),RAT2(30),RAT3(30)	EMPI	
	DIMENSION R(5),W(5)	EMPI	
	COMMON /A/ R,W	EMPI	
	REAL*8 MSE, LRMSE	EMPI	
	N=5	EMPI	
	R(1) = 10.0	EMPI	
	R(2) = 15.620499	EMPI	
	R(3) = 26.0	EMPI	
	R(4) = 37.363083		
	R(5) = 49.030603	EMPI	
	W(1)=W1	EMPI	
	W(2)=W2	EMPI	
	W(3)=W3	EMPI	
	W(4)=W4	EMPI	
	W(5)=W5	EMPI	
	DLTA = .5	EMPI	
	RLOG(1) = -2.5	EMPI	
	00 1 K=2.21	EMPI	
1	RLOG(K) = RLOG(K-1) + DLTA	EMPI	
•	DO 2 J=1,21	EMPI	
	RATIO(J) = 10**(RLOG(J))	EMP I	
		EMPI	
	RATIOI = RATIO(J)	EMPI	
	DO 3 $I=1,N$	EMPI	
	EX=2.*H*(((2.+RATIO1)/3.)**0.33333333)	EMPI	270
		EMPI	280
	XL=DSQRT(R(I) *R(I) +EXSQ)	EMPI	290
		EMPI	300
	XL5=XL+XL+XL+XL	EMPI	310
~	XTWD=(1./XL)+(EXSQ/(2.*XL3))+((3.*EXSQ*EXSQ)/(2.*XL5))	EMPI	320
د	X(I)=(1./R(I))+(RATIO1-1.)*XTWO	EMPI	330
	SMXW=0.0	EMPI	340
	SMXSQ=0.0	EMPI	350
	SME SQ=0.0	EMPI	360
	DO 4 I=1,N	EMPI	370
	SMXW=SMXW+X(I)+W(I)	EMPI	380
4	SMXSQ=SMXSQ+X(I)*X(I)	EMPI	390
	B=SMXW/SMXSQ	EMPI	400
	DO 5 I=1,N	EMPI	
	E(1)=W(1)-(B*X(1))	EMPI	
5	SMESQ=SMESQ+E(I)+E(I)	EMPI	
	MSE=SMESQ/N	EMPI	
	RMSE(J)=DSQRT(MSE)	EMPI	
	LRMSE = DLOG10(RMSE(J))	EMPI	-
2	CONTINUE	EMPI	
	Κ=20	EMPI	
	TEMP1 = RMSE(1)	EMPI	
	TEMP2 = RMSE(1)	EMPI	
		Cur I	100

TEMP3 = RMSE(1)ISUB1 = 1ISUB2 = 1ISUB3 = 1DO 8 L=2,K IF(RMSE(L) .GT. TEMP1) GO TO 6 TEMP3 = TEMP2ISUB3 = ISUB2TEMP2 = TEMP1ISUB2 = ISUB1TEMP1 = RMSE(L) ISUB1 = LGO TO 8 **6 CONTINUE** IF(RMSE(L) .GT. TEMP2) GO TO 7 TEMP3 = TEMP2 ISUB3 = ISUB2TEMP2 = RMSE(L) ISU82 = LGO TO 8 7 CONTINUE IF (RMSE(L) .GT. TEMP3) GO TO 8 TEMP3 = RMSE(L) ISUB3 = L8 CONTINUE TX1 = RLOG(ISUB1 - 1)TX2 = RLOG(ISUB2 - 1) TX3=RLOG(ISUB 3-1) TX11 = TX1 + 1.0TX21 = TX2 + 1.0TX31 = TX3 + 1.0TEST FOR MINIMUN AT TX2 JR1 = ISUB2 - ISUB1 JR = IABS(JR1)IF(JR .EQ. 1) GO TO 99 FIND MINIMUNS FOR TX1 & TX2 NOI = 11CALL FIBO(NOI, TX1, TX11, RLOG1, RMLOG, H) NOI = 11CALL FIBD(NOI,TX2,TX21,RLOGO,RMLOGO,H) TEMP = 10**RMLOG TEMPO = 10**RMLOGO CALL ANS(RLOG1,E1,E2,H) CALL ANS(RLOGO,E11,E21,H) GO TO 70 99 CONTINUE NO MINIMUN AT ISUB2 TEST FOR MINIMUN AT ISUB3 JW1 = ISUB3 - ISUB1

EMPI 530 EMPI 540 EMPI 550 EMPI 560 EMP1 -570 EMPI 580 EMPI 590 EMPI 600 EMPI 610 EMPI 620 EMPI 630 EMPI 640 EMP1 650 EMPI 660 EMPI 670 EMPI 680 EMPI 690 EMPI 700 EMPI 710 EMPI 720 EMPI 730 EMPI 740 EMP1 '750 EMPI 760 EMPI 770 EMPI 780 EMPI 790 EMPI 800 EMPI 810 EMP1 820 **EMPI 830** EMPI 840 EMPI 850 EMPI 860 EMPI 870 **EMPI 880** EMPI 890 **EMPI 900 EMPI 910** EMPI 920 EMPI 930 EMPI 940 EMPI 950

EMPI 960

EMPI 970

EMPI 980

EMPI 990

EMPI1000

EMPI 510

EMPI 520

÷.,•

-4

C C

JW = IABS(JW1)

С

С

JWT1 = ISUB3 - ISUB2JWT = IABS(JWT1)IF(JW .EQ. 1) GO TO 98 IF(JWT .EQ. 1) GO TO 98 MINIMUN AT ISUBL AND ISUB3 С NOI = 11CALL FIBO(NOI,TX1,TX11,RLOG1,RMLOG,H) NOI = 11CALL FIBO(NOI, TX3, TX31, RLOGO, RMLOGO, H) TEMP = 10**RMLOG TEMPO = 10**RMLOGO CALL ANS(RLOG1,E1,E2,H) CALL ANS(RLOGO, E11, E21, H) GO TO 70 98 CONTINUE C O LY ONE DISTINCT MINIMUN NOI = 11CALL FIBO(NOI, TX1, TX11, RLOG1, RMLOG, H) TEMP = 10**RMLOG CALL ANS(RLOG1,E1,E2,H) E11 = 99999E21 = 99999TEMP0 = 9999970 CONTINUE RETURN END

EMPI1010 EMP11020 EMPI1030 EMP11040 EMP I 1050 EMPI1060 EMP11070 EMPI1080 EMPI1090 EMPI1100 EMPI1110 EMPI1120 EMPI1130 EMPI1140 EMPI1150 EMPI1160 EMPI1170 EMPI1180 EMPI1190 EMPI1200 EMPI1210 EMPI1220 EMPI1230 EMPI1240 EMPI1250 EMP11260

-4

.

	SUBROUTINE FIBO(N,X1,X2,X,Y,H)	FIBO 10
	IMPLICIT REAL +8(A-H, D-Z)	
	DIMENSION FIB(20)	FIBO 20 FIBO 30
	DATA FIB/1.0D0,2.0D0,3.0D0,5.0D0,8.0D0,13.0D0,21.0D0,34.0D0,	
	*55.0D0,89.0D0,144.0D0,233.0D0,377.0D0,610.0D0,987.0D0,1597.0D0,	F180 40
	*2584.0D0,4181.0D0,6765.0D0,10946.0D0/	FIBO 50
	DX = (X2 - X1)/FIB(N)	FIBO 60
	XL=X1	FIBO 70
		FIBO 80
į.	N=N-1	FIBO 90
	X=XL+FIB(N)*DX	FIB0 100
	CALL FUNC(X,VR,H)	FIBO 110
1	N=N-1	FIBO 120
	X=XL+FIB(N)*DX	FIBO 130
	CALL FUNC(X,VL,H)	FIBO 140
2	IF(N.EQ.1) GO TO 4	FIB0 150
	IF(VL.GT.VR) GO TO 3	FIBO 160
	XR=XR-FIB(N)*DX	FIBO 170
	VR=VL	FIBO 180
	GO TO 1	FIBO 190
3	XL=XL+FIB(N)*DX	FIBO 200
	VL=VR	FIBO 210
	N=N-1	FIBO 220
	X=XR-FIB(N)*DX	FIBO 230
	CALL FUNC(X,VR,H)	FIB0 240
	GO TO 2	FIBO 250
4	IF(VL.GT.VR) GO TO 7	FIBO 260
	IF(XL.EQ.X1) GO TO 6	FIBO 270
5	X=XL+DX	FIBO 280
	Y=VL	FIBO 290
	RETURN	FIBO 300 FIBO 310
6	CALL FUNC(X1,V,H)	
	IF(V.GT.VL) GO TO 5	FIBO 320 FIBO 330
	X=X1	
	Y=Y	FIBO 340
	RETURN	FIBO 350
7	IF(XR.EQ.X2) GO TO 9	FIBO 360 FIBO 370
	X=XR-DX	FIBO 380
	Y=VR	
	RETURN	FIBO 390
9	CALL FUNC(X2,V,H)	FIBO 400 FIBO 410
	IF(V.GT.VR) GO TO 8	· - ·
	X=X2	FIBO 420
	Y=V	FIBO 430 FIBO 440
	RETURN	
	END	FIBO 450
		FIBO 460

4	SUBROUTINE FUNC(PLOG1,RMLOG,H) IMPLICIT REAL*8(A-H, 0-Z) REAL*8 MSE DIMENSION WHAT(20),E(20),X(20),R(5),W(5) COMMON /A/ R,W N = 5 RATIO1 = 10**(RLOG1) DO 3 I=1,N EX=2.*H*(((2.*RATIO1)/3.)**0.3333333) EXSQ=EX*EX XL=DSQRT(R(I)*R(I)+EXSQ) XL3=XL*XL*XL XL=SQRT(R(I)*R(I)+EXSQ) XL3=XL*XL*XL XL5=XL*XL*XL XL5=XL*XL*XL XL5=XL*XL*XLX XL5=XL*XL*XLX XL5=XL*XL*XLX MXSQ=0.0 SMXSQ=0.0 SMESQ=0.0 SMESQ=0.0 DO 4 I=1,N SMXW=SMXW+X(I)*W(I) SMXW=SMXW+X(I)*W(I) SMXSQ=SMESQ+X(I)*X(I) B=SMXW/SMXSQ DO 5 I=1,N E(I)=W(I)-(B*X(I)) SMESQ=ON DSG=SMESQ+E(I)*E(I) SMESQ=SMESQ+N RMSE = DSQRT(MSE) RMLOG = DLOGIO(RMSE) RETURN	FUNC FUNC FUNC FUNC FUNC FUNC FUNC FUNC	20 30 40 50 60 70 80 90 110 120 130 150 160 170 180 2200 240 240 240 250 240 250 250 250 250 250 250 250 25
	RETURN END	FUNC FUNC FUNC	290

¢

	SUBROUTINE ANS(RLOG1, E1, E2, H)	ANS (
	IMPLICIT REAL*8(A-H, D-Z)	ANS	20
	DIMENSION RAT1(30), WHAT(20), E(20), X(20)	ANSI	30
	DIMENSION R(5),W(5)	ANS	40
	COMMON /A/ R,W	ANS(50
	N = 5	ANS	60
	DO 27 I=1,N	ANS	70
	RATIO1 = 10**RLOG1	ANS	80
	EX=2.*H*(((2.+RATIO1)/3.)**0.3333333)	ANS (90
		ANS	100
	XL = DSQRT(R(I) * R(I) + EXSQ)	ANS (110
	XL3=XL*XL*XL		120
	XL5=XL*XL*XL*XL	ANSC	
	XTWO=(1./XL)+(EXSQ/(2.*XL3))+((3.*EXSQ*EXSQ)/(2.*XL5))	ANS	
27	X(I)=(1./R(I))+(RATIO1 -1.)*XTWO	ANST	
	SMXW=0.0	ANS	
	SMXSQ=0.0	ANS (
	SMESQ=0.0	ANS	
	DO 28 I=1,N	ANS	
	SMXW=SMXW+X(I)*W(I)	ANS (
28	SMXSQ=SMXSQ+X(I)*X(I)	ANS	
	B=SMXW/SMXSQ	ANS	
	DO 29 I=1,N	ANS	
	$WHAT(I) = B \times X(I)$	ANS	
29	E(I) = W(I) - WHAT(I)	ANSC	
	E1=238.73241 *(1./B)	ANS	
	E2 = E1/RATIO1	ANS	
	RETURN	ANS	
	END	ANS (
		ANSI	290
			•

5

```
SUBROUTINE VARI(RMSE, RMSE1, CNT, KNT, ISW)
                                                                        VARI
                                                                              10
   IMPLICIT REAL *8(A-H, 0-Z)
                                                                        VARI
                                                                              20
   DIMENSION SUM(50), SSQ(50), RMSE(200), RMSE1(200)
                                                                        VARI
                                                                              30
  INTEGER CNT
                                                                        VARI
                                                                              40
  00 1 L=1,50
                                                                        VARI
                                                                              50
   SSQ(L) = 0.0
                                                                        VARI
                                                                              60
 1 SUM(L) = 0.0
                                                                        VARI
                                                                              70
   KSET = 1
                                                                        VAPI
                                                                              80
  DO 11 I=1,KNT
                                                                        VARI
                                                                             90
   SUM(KSET) = SUM(KSET) + RMSE(I)
                                                                        VARI 100
   SSQ(KSET) = SSQ(KSET) + (RMSE(I)**2)
                                                                        VARI 110
11 CONTINUE
                                                                        VARI 120
  KSET = KSET + 1
                                                                        VARI 130
  DO 2 I=1,CNT
                                                                        VARI 140
   SUM(KSET) = SUM(KSET) + RMSE1(T)
                                                                        VARI 150
  SSQ(KSET) = SSQ(KSET) + (RMSE1(I)**2)
                                                                        VARI 160
2 CONTINUE
                                                                        VARI 170
  TSUM = SUM(1) + SUM(2)
                                                                        VARI 180
   TSSQ = SSQ(1) + SSQ(2)
                                                                        VARI 190
  N = KNT + CNT
                                                                        VARI 200
  TSS = TSSQ - ((TSUM**2.)/N)
                                                                        VARI 210
  SSQSET =((SUM(1)**2.)/KNT)+((SUM(2)**2.)/CNT)
                                                                        VARI 220
  SSBS = SSQSET - ((TSUM**2.)/N)
                                                                        VARI 230
  SSWS = TSS. - SSBS
                                                                        VARI 240
  IDFWS = N - KSET
                                                                        VARI 250
  IDFBS = KSET - 1
                                                                        VARI 260
  AMSBS = SSBS/IDFBS
                                                                        VARI 270
  AMSWS = SSWS/IDFWS
                                                                        VARI 280
  F = AMSBS/AMSWS
                                                                        VARI 290
  CALL SIGNIF(F, IDFWS, ISW)
                                                                        VARI 300
  RETURN
                                                                        VARI 310
  END
                                                                        VARI 320
```

SUBROUTINE SIGNIF(F, IDFWS, ISW)	SIGN	10
IMPLICIT REAL*8(A-H,O-Z)	SIGN	
DIMENSION FDIST(30)	SIGN	
DATA FDIST/39.864D0,8.5263D0,5.5383D0,4.5448D0,4.0604D0,	SIGN	
*3.7760 D0,3.5894D0,3.4579D0,3.3603D0,3.2850D0,3.2252D0,3.1765D0,	SIGN	50
*3.1362D0,3.1022D0,3.0732D0,3.0481D0,3.0262D0,3.007D0,2.9899D0,	SIGN	60
*2.9747 D0,2.9609D0,2.9486D0,2.9374D0,2.9271D0,2.9177D0,2.9091D0,	SIGN	70
*2•9012D0,2•8939D0,2•8871D0,2•8807D0/	SIGN	80
ISW = 0	SIGN	90
IF(IDFWS -GE-31) GO TO 2	SIGN	100
IF(F •GE• FDIST(IDFWS)) ISW = 1	SIGN	110
RETURN	SIGN	120
2 IF(IDFWS .GE. 40) GO TO 3	SIGN	130
$IF(F \bullet GE \bullet 2 \bullet 8807) ISW = 1$	SIGN	140
RETURN	SIGN	150
3 IF(IDFWS .GE. 60) GO TO 4	SIGN	160
$IF(F \cdot GE \cdot 2 \cdot 8354) ISW = 1$	SIGN	170
RETURN	SIGN	180
4 IF(IDFWS .GE. 120) GO TO 5	SIGN	190
$IF(F \cdot GE \cdot 2.7914) ISW = 1$	SIGN	200
RETURN	SIGN	210
$5 \text{ IF(F } \cdot \text{GE} \cdot 2 \cdot 7478) \text{ ISW} = 1$	SIGN	220
RETURN	SIGN	230
END	SIGN	240

•

.

-4

۰.