
1. Report No. 2. Government Accession No. 

FHW A/TX-94/1278-3 

4. Title and Subtitle 

DEVELOPMENT OF ANALYTICAL TOOLS FOR EVALUATING 
OPERATIONS OF LIGHT RAIL AT-GRADE WITHIN AN 
URBAN SIGNAL SYSTEM: INTERIM REPORT 3 

7. Author(s) 
Richard A. Berry and Carol H. Walters 

9. Performing Organization Name and Address 

Texas Transportation Institute 
The Texas A&M University System 
College Station, Texas 77843-3135 

12. Sponsoring Agency Name and Address 

Texas Department of Transportation 
Research and Technology Transfer Office 
P. 0. Box 5080 
Austin, Texas 78763-5080 

15. SupplementaryNotes 

Technical Report Documentation Page 

3. Recipient's Catalog No. 

5. Report Date 
November 1994 

6. Performing Organization Code 

8. Performing Organization Report No. 

Research Report 1278-3 

10. Work Unit No. (TRAIS) 

11. Contract or Grant No. 

Study No. 0-1278 

13. Type of Report and Period Covered 
Interim: 
September 1991 - August 1994 

14. Sponsoring Agency Code 

Research performed in cooperation with the Texas Department of Transportation and the U.S. Department 
of Transportation, Federal Highway Administration. 
Research Study Title: Development of Analytical Tools for Evaluating Operations of Light Rail At­
Grade Within an Urban Signal System 

16. Abstract 

This report identifies and recommends measures of impact that are applicable to the operation of at-grade 
light rail crossings within traffic signal systems. The key point in identifying measures of impact is to 
maintain consistency with traffic signal measures of impacts. The recommended measures of impact 
include average delay and queue length. This report illustrates how the analyst can apply both manual 
calculation methods and computer models to estimate these measures of impact. Included in the 
discussion is a screening procedure that is designed to minimize total work effort by identifying impacts 
and mitigating them with the least intensive analysis method. However, if the analysis results are 
marginal, then full simulation of the traffic signal system including the light rail line is warranted. The 
recommended programs for such evaluation are TRANSYT-7F for simpler problems and Traf-NETSIM 
for complex problems and analysis of system variances. 

17. KeyWords 
Light Rail Transit, At-grade Crossings, Crossing 
Capacity, Queuing, PASSER II, PASSER Ill, 
TRANSYT-7F, Traf-NETSIM 

18. Distribution Statement 
No restrictions. This document is available to the 
public through NTIS: 
National Technical Information Service 
5285 Port Royal Road 
Springfield, Virginia 22161 

20. SecurityClassif.(ofthis document) 

Unclassified 
20. Security Classif.(ofthis page) 
Unclassified 

21. No. of Pages 22. Price 

72 
Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 





DEVELOP1\1ENT OF ANALYTICAL TOOLS FOR 
EVALUATING OPERATIONS OF LIGHT RAIL 

AT-GRADE WITIDN AN URBAN SIGNAL SYSTEM: 
INTERIM REPORT 3 

by 

Richard A. Berry, P.E. 
John F. Hickman & Associates 

and 

Carol H. Walters, P.E. 
Research Engineer 

Texas Transportation Institute 

Research Report Number 2178-3 
Research Study Number 0-1278 

Research Study Title: Development of Analytical Tools for Evaluating 
Operations of Light Rail At-Grade Within An Urban Signal System 

Sponsored by the 
Texas Department of Transportation 

In Cooperation with 
U. S. Department of Transportation 

Federal Highway Administration 

November 1994 

TEXAS TRANSPORTATION INSTITUTE 
The Texas A&M University System 
College Station, Texas 77843-3135 





IMPLEMENTATION STATEMENT 

The following report is the third interim report for project 1278. This report discusses 

various measures of impact used to estimate the effect of at-grade light rail operations on traffic 

signal systems. Recommendations are made on the most suitable measures of impact, and 

methods of estimating these measures using manual calculation and computer-based traffic signal 

evaluation models are presented. 

The completed research, of which this interim report forms a part, will provide engineers 

with a method and computerized procedure for assessing the effects of a light rail system on a 

signalized urban arterial street network. Through analyzing various configurations of roadway 

and track geometry and signalization alternatives, the engineer can make decisions for the 

optimum light rail guideway placement and traffic signal operations in an efficient and organized 

manner. 
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SUMMARY 

The purpose of this report is to summarize the means and methods of analysis of the 

impacts of at-grade light rail transit on traffic operations -- especially within traffic signal system 

environments. Rail transit has a significant impact on traffic operations on streets and highways. 

The degree of impact varies depending on the degree of interface between the rail and highway 

modes of travel. In-street rail operations will have greater impacts than light rail on exclusive 

rights-of-way where all crossings are either mid-block at-grade or grade separated. This report 

identifies and recommends measures of impact (average delay and length of queue assuming an 

nth percentile vehicle arrival rate) that are applicable to the operation of at-grade light rail 

crossings within traffic signal systems. The key point in identifying measures of impact was to 

maintain consistency with traffic signal measures of impacts. 

The analyst can apply both manual calculation methods and computer models to estimate 

these measures of impact. A screening procedure designed to minimize total work effort identifies 

impacts and mitigates them with the least intensive analysis method. The Highway Capacity 

Software can be applied to all types of at-grade light rail crossings, so long as each crossing is 

considered on an individual basis, and is the simplest analysis tool after manual calculation 

techniques. PASSER II follows the Highway Capacity Software as the next simplest analysis tool 

and can be applied to all types of at-grade light rail crossings. The arterial evaluation capabilities 

of PASSER II are one of the primary strengths of this program. PASSER III is nearly perfectly 

designed to analyze median-running light rail within an arterial traffic signal system. However, 

if the analysis results are marginal, then full simulation of the traffic signal system including the 

light rail line is warranted. The recommended programs for such evaluation are Traf-NETSIM 

for complex problems and analysis of system variances and TRANS YT-7F for simpler problems. 
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1.0 INTRODUCTION 

1.1 BACKGROUND 

During the late 1970's and throughout the 1980's to the present, metropolitan areas in 

Texas have been moving toward implementation of light rail transit as an alternative to bus transit 

and travel by private automobile. One of the reasons transit agencies are including light rail in 

their plans is that it is less costly to build and operate than heavy rail options while it provides the 

"glamour" of rail transit that is necessary to sell voters on local option sales tax increases that will 

fund all modes of transit. 

For most of the twentieth century, rail transit in the form of trolleys, street railways, and 

interurbans were fixtures in major Texas cities. However, during the post-World War II years, 

changes in urban land use patterns and densities coupled with widespread private automobile 

ownership and the development of the modern highway system left rail transit without a market 

share large enough to survive on. 

In the forty years since rail transit was a common fixture in major Texas cities, motorists 

have lost the knowledge and driver expectancy of how to coexist with rail transit in an urban 

environment. In the coming years as rail transit returns to Texas, motorists will be relearning to 

watch for rail transit while they drive. Meanwhile, rail transit options -- primarily light rail -- will 

have a significant impact on traffic operations on streets and highways. The degree of impact will 

vary depending on the degree of interface between the rail and highway modes of travel. In-street 

rail operations will have greater impacts than light rail on exclusive rights-of-way where all 

crossings are either mid-block at-grade or grade separated. 

1.2 PURPOSE 

The purpose of this report is to summarize the means and methods of analysis of the 

impacts of at-grade light rail transit on traffic operations -- especially within traffic signal system 

environments. The primary means and methods are applied by the general traffic engineering 

practitioner without a specific background in advanced computer simulation. The results these 

means and methods provided vary depending on the level of analysis from general order-of­

magnitude results to finely detailed estimates of impacts. 
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1.3 LAYOUT OF THE REPORT 

This report is composed of four sections: an introduction, a discussion on the selection of 

measures of traffic and light rail impacts, a discussion of models and methods, and lastly, some 

typical applications of some of the models. 
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2.0 SELECTING MEASURES OF TRAFFIC 

AND LIGHT RAIL IMPACTS 

2.1 BACKGROUND 

As defined by the Highway Capacity Manual (1), streets that have at-grade light rail grade 

crossings are, for the purposes of level of service analysis, interrupted flow facilities. According 

to the Manual, interrupted flow facilities have fixed elements that cause periodic interruptions to 

traffic flow, and such elements include traffic signals, stop signs, and other types of controls. 

Further, the Manual states that these devices cause traffic flow to periodically stop irrespective 

of how much traffic exists. 

It is reasonable then that the measures of traffic and light rail impact should be consistent 

with those for interrupted flow facilities. These measures include, specifically, motor vehicle 

delay and travel speed. Other measures have, however, been used by some analysts such as load 

factor and queue lengths, and still other analysts have tried to apply benefit - cost analysis and cost 

effectiveness measures. All of these approaches can be applied, although some are of more value 

than others when explaining the effect of light rail operations on a traffic signal system. 

When identifying and classifying candidate measures of traffic and light rail impact, it must 

be remembered that the user may not be familiar with the nuances of the measure of impact used. 

In the following paragraphs, candidate measures of impact are identified. Application of each of 

these measures has been attempted at one time or another by engineers and planners working for 

transit agencies actively engaged in light rail development. 

Not all of the measures of impact have proved practical or, indeed, desirable within the 

political arena where the ultimate decisions are made. Some measures of impact give results that 

are vastly different from other measures of impact and, as a result, confuse the decision-making 

process. Our recommendations, therefore, consider the global implications of a measure of impact 

-- not just the ease with which it can be estimated. 
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2.2 CANDIDATE MEASURES OF IMPACT 

The following four candidate measures of impact have been identified from a review of 

the literature on light rail operations and from discussions with consultants actively engaged in the 

analysis of the traffic impacts of at-grade light rail crossings: 

0 Load factor, 

0 Delay, 

0 Travel speed, 

0 Queue length, and 

0 Other applications. 

Load factor is defined in the second edition of the Highway Capacity Manual (2) as the 

ratio of fully loaded traffic signal cycles on a given intersection approach to the total number of 

traffic signal cycles on that intersection approach in the time period. A fully loaded traffic signal 

cycle on an intersection approach is one in which not all of the vehicles in the queue at the 

beginning of the green phase clear the intersection before the end of the green phase. In simpler 

terms, some vehicles on the intersection approach must wait through more than one red phase 

before clearing the intersection. Levels of service from "A" though "E" were defined in the 

Manual for various load factor ratios. Today, load factor is a somewhat archaic measure of 

impact, although it has been used by at least two transit agencies (San Diego (3) and Dallas (4)) 

in the past as part of their analysis method. 

Delay is defined in the third edition of the Highway Capacity Manual (1) in two forms -­

as stopped delay and as approach delay. Either measure can be used for level of service 

determination, although stopped delay is easier to measure in the field. Stopped delay is defined 

as the time during which vehicles in a lane group on an intersection approach are not moving. 

It can be computed on a "total" basis as the summation of the discrete stopped delays of each 

vehicle in the lane group moving through the intersection during the time period or on an average 

"per vehicle" basis where the total stopped delay for all of the vehicles in the lane group is divided 

by the total number of vehicles in the lane group moving through the intersection during the time 

period. Levels of service from "A" though "F" are only defined for various amounts of average 

individual stopped delay, although it is an easy calculation to convert them to approach delay 
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values. Delay is probably the most widely used measure of impact for interrupted flow facilities 

at this time. 

Approach delay is defined as the time during which vehicles in a lane group on an 

intersection approach are not moving at their free speed. It includes stopped and moving delays. 

Moving delays occur during acceleration and deceleration when a vehicle transitions from a 

stopped condition to free-flow operation. Like stopped delay, approach delay can be computed 

on a "total" basis or on an average individual basis. Levels of service are not defined by the 

Highway Capacity Manual (1) for approach delays. 

Research into the relationship between stopped delay and approach delay has resulted in 

a recommended ratio of 1.3 (1). Average approach delay is approximately 30 percent greater than 

average stopped delay. Average approach delay is an output of three computer models that can 

be applied to at-grade light rail crossings within traffic signal systems. 

Travel speed is defined in the third edition of the Highway Capacity Manual (1) as the 

average speed at which vehicles can traverse a section of roadway. Levels of service from "A" 

though "F" are defined for various combinations of roadway types, characteristics, and travel 

speeds. Travel speed can be estimated by dividing the travel distance by the sum of the total of 

the average individual approach delays and the inter-intersection travel times. 

Queuing distance on an intersection approach can be defined in two ways. First, it can be 

defined by the number of stopped vehicles in a lane group or on an intersection approach that 

arrive during the red phase. This distance we define as "back of queue at end of red. " Second, 

it can be defined as "maximum back of queue." Maximum back of queue includes not only the 

vehicles that arrive and stop during the red phase, but also those vehicles that arrive and stop 

during the discharge of the leading vehicles in the queue. Neither the "back of queue on end of 

red" distance nor the "maximum back of queue" distance may contain the actual maximum queue 

length. However these two measures do define important points in queue formation and discharge 

that can affect traffic operations at other nearby roadway features, such as driveways, lane drops, 

and intersections. 
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2.3 OTHER APPLICATIONS 

In addition to the foregoing candidate measures of impact, there have been other measures 

considered including: 

o Benefit-cost methods, 

o Accident prediction formulae and priority indices, and 

o Railroad grade-separation warrant criteria. 

Benefit-cost methods and the closely associated cost effectiveness indices can provide an 

overall view of various capital outlay options such as comparing a street closure versus an at-grade 

crossing versus a grade separation. However, application of benefit-cost methods requires 

extreme judgement by the analyst and is highly subject to the political process. The primary 

reasons can be found by reviewing the basic outline of the method. 

Physical, operational, and sometimes institutional data are estimated that describe the 

various options to be evaluated. Monetary values are placed on each of these inputs. A life span 

for each system is estimated and a capital recovery factor is estimated, and the benefits of each 

are compared to the costs of each, resulting in a descriptive ratio. The problem is that so many 

of these factors are estimates based on estimates that accuracy is lost. Among the components of 

the benefit-cost method that may be most prone to debate are the value of time and the capital 

recovery factor. 

Dallas Area Rapid Transit (DART) tried to use benefit-cost as a measure of impact during 

1987 and 1988. The primary problems that DART consultants (including one of the authors of 

this report) faced were related to the value of time and the capital recovery factor. At that time, 

the Urban Mass Transit Administration (UMTA) specified a value of time in the range of $2.00 

to $4. 00 per hour for travel cost depending on the trip type. At the same time the Texas 

Transportation Institute (TTI) recommended a value of $8.40 per hour for travel time, and the 

North Central Texas Council of Governments (NCTCOG) recommended the use of $10.00 per 

hour for travel time. Because Federal funds were expected to be involved, DART chose to use 

the UMT A cost figures so that consistency would be maintained when calculating required cost 

effectiveness indices. The Texas Department of Transportation (TxDOT) contended that the 

UMTA costs were too low and that TTI's cost estimate should be used. Other groups contended 

that the NCTCOG costs should be used. Much debate was expended on this item. It was likewise 
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with the capital recovery factor. DART's financial personnel figured the cost of money to DART 

at that time to be in the 3 to 4 percent per year range. DART's consultants and others figured that 

the cost of money should have been near the market rate of the time - 10 percent, or so. The vast 

differences between these two sets of values, travel costs and capital recovery factors, were easily 

shown to swing decisions from a point of constructing at-grade crossings to a point of constructing 

grade separations although the traffic and light rail volumes remained the same for both cases. 

Based on these shortcomings, our recommendation is to forego in-depth discussion of this class 

of analysis method. Transportation Research Record 1361 (4) provides a brief discussion of how 

the North Central Texas Council of Governments benefit-cost model (5) was used by DART. 

Accident prediction formulae and priority indices, many of which can be found in the 

railroad-highway grade crossing literature, are not readily applicable to light rail operations for 

several reasons. 

o The purpose of the formula or index is to prioritize improvement and maintenance 

projects at highway-railroad crossings. 

o The formula or index is often estimating accidents. 

o The length of trains used to validate the formula or index is much greater than the 

typical length of a two, four, or six car light rail. 

o The number of trains per day used to validate the formula or index is much less 

than the number of light rail trains per day expected at a typical light rail crossing. 

o The traffic conditions used to validate the formula or index may be different from 

the urban environment in which light rail operates. 

o The formulae and indices provide a comparative base from which to make 

decisions in the railroad environment but do not assess the effect of rail operations 

on nearby highway features such as preempted signalized intersections. 

Based on these reasons, our recommendation is to forego in-depth discussion of this class of 

analysis method. 

Railroad grade-separation warrant criteria are also not readily applicable to light rail 

operations. The primary reasons include the following: 

o The assumption of long crossing blockage times such as those associated with 

freight train operations and 
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o The weight given to trains per day that would discriminate against high volume 

light rail lines. 

Based on these reasons, our recommendation is to forego in-depth discussion of this class of 

analysis method. 

2.4 APPLICATION OF MEASURES OF ™PACT 

2.4.1 Load Factor 

There have been at least two instances where a load factor has been proposed or used to 

estimate traffic impacts of at-grade light rail crossings. One of these was a proposition by Stone 

and Wild (6) that used the work of May and Pratt and Crommelin to develop a regression equation 

relating the intersection utilization factor (ratio of volume to capacity) to individual vehicle delay. 

Because this method is based on the second edition of the Highway Capacity Manual (2), load 

factor is one of the primary parameters defining the capacity of an intersection approach. This 

method has been superseded by delay-based methods using the third edition of the Highway 

Capacity Manual (1). 

In the second instance, the load factors at signalized intersections bounding a mid-block 

light rail crossing were used to estimate the maximum expected service volumes for each level of 

service on a scale of "A" through "F" (4). The maximum service volumes were further reduced 

by the percentages of time that the crossings were blocked. The resulting volumes were 

considered to set the level of service volumes for these mid-block crossings. This approach, 

developed by DART consultants in 1986, had merit before the wide distribution of the third 

edition of the Highway Capacity Manual (1). However, as an estimator of impacts, this method 

appeared to show potential level of service constraints at volume levels half as great as necessary 

to produce similar level of service constraints when methods based on average individual stopped 

delay were used. Transportation Research Record 1361 (4) provides an overview of this method. 

Both load factor-based methods have been superseded by methods based on the level of 

service criteria used in the third edition of the Highway Capacity Manual (1). Consequently, we 

do not recommend continued consideration of this measure of impact. 
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2.4.2 Delay 

Delay models have been successfully validated for at-grade light rail crossing applications 

for train headways exceeding 15 minutes. Berry (7) validated the basic delay equation in the 

Highway Capacity Manual (1) using pretimed control and random arrivals. It was the best among 

20 delay models and model components that Berry studied. Berry (7) and Berry and Williams (8) 

provide an in-depth discussion of the other models and model components studied. 

The application of the Highway Capacity Manual model is simple following two possible 

approaches. The simplest, but least accurate approach, is to estimate the average "traffic signal" 

cycle length based on the average number of trains during a time period. For example, if there 

are 24 trains per hour (12 in each direction, assuming two-way operation), then the cycle length 

is computed as follows: 

3,600 seconds per hour/24 trains per hour = 300 seconds per train. 

"Green" and "red" times are based on the crossing blockage time. Saturation flow is either 

measured in the field or estimated. The appropriate values are put in the equation, and the delay 

calculated for the at-grade crossing. 

The second approach is similar, except that two calculations of cycle length are made -­

one each for the time between consecutive trains, again, assuming two-way operation. It is not 

typical for the opposing trains to arrive at a crossing on equal intervals. Instead of being constant 

300 second cycles, as assumed in the previous example, it is more likely that the cycle pattern may 

be something like 50 seconds and 250 seconds or 100 seconds and 200 seconds. For this 

approach, delay is calculated based on each portion of the cycle pattern, and the weight of these 

delays in the final estimate is proportioned according to the proportion of the traffic volume that 

arrives at the crossing during each part of the cycle pattern. Berry (7, 9) provides additional detail 

for estimating delay using this method. 

The primary shortcoming to using delay as a measure of impact is deciding how to apply 

it equitably. The previous examples have been based solely on vehicular delays. The issues open 

to debate are listed below. 
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o Should average vehicular delay be used or should it be person-delay? 

o If delay is to be minimized and person-delay is the measure, then should average 

person-delay at each individual crossing be minimized, accounting for rail and 

motor vehicle delays; or should person-delay of all crossings in a corridor be 

minimized? The issue here is best illustrated by example. Consider a light rail line 

that carries 7 ,500 persons per hour. This line crosses five streets, each of which 

carries 4 ,500 persons per hour. Should person-delay at each intersection be 

minimized based on a utilization proportion of 7 ,500 persons for light rail versus 

4,500 persons for the cross-street, or should the person-delay of the corridor be 

minimized based on a utilization proportion of 7 ,500 persons for light rail versus 

22,500 for the total cross-corridor person-trips on all five cross-streets? 

o Should delays to light rail operations such as those in the off-peak direction be 

considered when their purpose in the schedule is to mitigate possible deleterious at­

grade crossing operations? 

The issue of using vehicle delay versus person-delay is one of having good planning data 

from which to estimate vehicle occupancies for both motor vehicles and light rail. The primary 

problem during public debate is whether the vehicle occupancies and ridership numbers are 

accurate or (as usually thought of by the public) inflated. From the public perception standpoint, 

vehicle delay is a much simpler concept than person-delay, and one that is inherently less prone 

to manipulation. If ridership and vehicle occupancy numbers are known to be accurate, then it 

may be possible to use person-delay as a measure of impact. 

Extending the foregoing argument over types of delay further, one can argue that the total 

delay to light rail ridership on a line during a time period should be balanced against delay to the 

persons traversing all of the at-grade crossings in that same corridor during that time period -­

essentially minimizing the delay to all of the person-trips in a given corridor. However, this 

approach is not usually taken. The typical approach is to minimize the delay at individual at-grade 

crossings which results in the light rail ridership being given greater weight because instead of 

being counted in the analysis only once, the light rail ridership is counted repetitively at each 

individual at-grade crossing. Active discussion of this point should be encouraged at all levels 

within the transportation field. 
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The final point is that delays built into the light rail schedule to improve traffic operations 

should be considered when minimizing total person-delay. These hidden delays, typically in the 

off-peak direction of travel, are the result of not grade separating a crossing or preempting nearby 

traffic signals to give the light rail operation exclusive right-of-way through an at-grade crossing 

during all time periods. 

2.4.3 Travel Speed 

When a light rail line traverses a traffic signal system, it is not difficult to apply an average 

travel speed analysis using a variety of calculations, such as those described in the Highway 

Capacity Manual (1), or computer simulation routines, such as TRANSYT-7F or Traf-NETSIM. 

The basic technique consists of estimating the total travel time per vehicle on a section of the 

"base" street network and adding the additional average delay time at each at-grade crossing to 

the total travel time. Within the Highway Capacity Software package (10), the travel speed (urban 

and suburban arterials) level of service calculation includes a convenient input -- "other delay" -­

where the grade crossing delay can be addressed simply and easily. The additional average delay 

time at each at-grade crossing will increase the network travel time and reduce the network travel 

speed, thus allowing for level of service comparisons using the level of service criteria for arterial 

streets in the Highway Capacity Manual (1). 

Obviously, to apply a travel speed analysis, one must be able to estimate the delays 

incurred at each at-grade light rail crossing. Tliis means that a level of service for the crossing 

itself is already available to the analyst through the application of the Highway Capacity Manual 1 s 

interrupted flow levels of service. 

While it would intuitively seem that travel speed would be a good measure of impact 

because it includes all delays that occur over a section of roadway, it is not in practice, because 

it is prone to subjective manipulation by the analyst. An examination of the debate that occurred 

in 1987 in Dallas, Texas, when DART consultants proposed travel speed provides a good case 

study. 

At the time, the DART general engineering consultant was searching with DART staff for 

a method to determine the traffic impacts of at-grade light rail crossings that could be applied all 

across the proposed DART light rail system. Average travel speed, as the measure of impact for 
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arterial streets in the Highway Capacity Manual (1), seemed to be a good candidate. Using the 

methods for interrupted flow facilities, the consultants could estimate the approach delay at 

signalized intersections and at proposed at-grade crossings. The change in travel speed for a 

roadway segment between having an at-grade crossing and not having an at-grade crossing was 

considered representative of the impact of the at-grade crossing on traffic operations. 

The problem that the consultants overlooked when conceptualizing the use of travel speed 

was travel speed's sensitivity to roadway segment length. For example, consider two roadway 

segments: one is 100 meters (328 feet) long and the other is 1,000 meters (3,280 feet) long. 

Assume that cross-sections and traffic volumes are identical for both roadway segments and that 

each includes an at-grade light rail crossing. Assume that the free speed on each street is 50 

kilometers per hour (km/h) or approximately 30 miles per hour (mph) and that delays related to 

traffic signal operations at each end of each street segment amount to a total of 36 seconds of 

average approach delay. Finally, assume that the average approach delay related to light rail 

operations in 12 seconds for both roadways. Table 1 summarizes the travel speed calculations for 

each street segment. 

Table 1. Example Travel Speed Calculations 

100 m (328 ft) street 1,000 m (3,280 ft) street 
segment segment 

Intersection delay 36 sec. 36 sec. 

Free speed travel time 7 sec. 72 sec. 

Total travel time 43 sec. 108 sec. 

Average travel speed 8.4 km/h (5.2 mph) 33 km/h (21 mph) 

Grade crossing delay 12 sec. 12 sec. 

Total travel time w/LRT 55 sec. 120 sec. 

Average travel speed 6.6 km/h (4.1 mph) 30 km/h (19 mph) 

Percent delay added bv LRT 21 oercent 9 percent 

What is obvious when reviewing Table 1 is that although the delay related to light rail 

operations is identical for both roadways, the apparent impact of an at-grade light rail crossing on 

the 100 meter (328 foot) street segment is greater than the impact of the 1,000 meter (3,280 foot) 
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street segment. In terms of the raw change in speed, the delay associated with the at-grade light 

rail crossing did not affect the overall speed appreciably. In terms of percent change, however, 

the delay associated with the crossing was considerable. 

At the most impacted point - the at-grade light rail crossing - the 12 seconds of approach 

delay would have resulted in a Level of Service "B" designation using an interrupted flow level 

of service while the travel speed levels of service would have been "F" for both cases for the 100 

meter street segment, "A" for the 1,000 meter street segment without the crossing, and "B" for 

the 1,000 meter street segment with the at-grade crossing. When estimating average travel speed, 

the length of the roadway segment can be more important than the amount of delay incurred at 

an at-grade crossing. 

2.4.4 Queuing Distance 

Estimating the length of queues resulting from both traffic signal operations and at-grade 

light rail crossing blockages is not inherently difficult although this is an analysis type that requires 

good judgement to apply. The number of vehicles in the queue can be estimated using hand 

calculations, such as those described in many statistics textbooks, or computer simulation routines, 

such as TRANSYT-7F or Traf-NETSIM. 

Before starting the analysis for either an intersection approach or an at-grade crossing 

approach, the analyst should be able to answer the following questions. 

1. How sensitive is the end result to the degree of accuracy? 

2. Should back of queue at end of red be used instead of maximum back of queue? 

3. Can typical traffic flow distributions be estimated? 

4. Is lane distribution equal or highly skewed? 

5. Is there an upstream constraint that will control queue length by limiting the 

number of vehicles that pass that point? 

6. What is the average length of vehicles within the queue? That is, what distance is 

assigned to each vehicle in the queue to convert from numbers of vehicles to 

distance? 

The question on the degree of accuracy leads to a number of key decisions that include the 

following: 
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o Choice of average queue length, 85th percentile queue length, 95th percentile 

queue length, 99th percentile queue length, etc. and 

o The calculation method that is applied. 

The decision on the location of the end of the queue may be critical in some traffic signal 

system situations. If the at-grade crossings are far from signalized intersections and there are only 

driveways between the crossings and the signalized intersections, then back of queue at end of red 

may be appropriate because it describes that part of the queue that most significantly delays cross­

traffic. On the other hand, if momentary intersection blockage cannot be tolerated, then 

maximum back of queue would be a better measure because it estimates where the last vehicle 

stops -- even if only momentarily. 

The next question on traffic flow distributions defines more assumptions. 

o If the traffic flow is constant, then queue lengths are more stable from occurrence 

to occurrence, and an average queue length estimate may be adequate. 

o If traffic flow is highly variable, then a high percentile queue length may be needed 

to offset the variability, and estimation techniques that overestimate queue lengths 

may be more appropriate than techniques that underestimate queue lengths. 

o If the traffic flow distribution can be assumed to be stable over a period of years, 

then the distribution can be used to estimate the queue length at various percentiles. 

The lane distribution question again defines a critical assumption. 

o If the number of vehicles in each lane is nearly equal, then queue length estimates 

can use standard Highway Capacity Manual equivalency factors. 

o If the number of vehicles in each lane is highly variable, then the analyst can make 

multiple queue length estimates on an approach so that the impact of the queue 

length for each lane can be individually assessed. 

The question on upstream constraints addresses a condition many analysts overlook -­

"What is the maximum number of vehicles that can physically arrive at the crossing or intersection 

approach while the crossing is blocked or the signal is red?" This simple question needs to be 

addressed because queue lengths are not infinite in length although that is what some calculations 

will tell us. If there is a constraint, such as a parking gate, toll booth, or an intersection approach 
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with a lot of "dead" green time that is not being used, then it should be included in estimating 

queue lengths. 

The final question on vehicle length seems simple enough at first glance. It is, however, 

a question that can raise significant debate. The reason is that distance occupied by different 

vehicle classes and even different vehicles within a class varies considerably. It is one thing if all 

vehicles on a roadway facility are automobiles. Then 6.7 meters (22 feet) per vehicle may be 

adequate. It is something quite different if all of the vehicles on a roadway facility are 12.2 meter 

(40 foot) transit buses or tractors with 14.6 meter (48 foot) semi-trailers. 

Among computer simulations that might be applied to the problem, TRANSYT-7F assumes 

a length of 7.62 meters (25 feet) per vehicle with no provision for increasing the queue length as 

the percentage of heavy vehicles increases. PASSER III uses number of vehicles that can be 

stored in a lane as an input and recommends 7.62 meters (25 feet) per vehicle. Traf-NETSIM 

provides intermediate output in terms of number of vehicles only, leaving the length calculation 

to the analyst. Among the hand calculations for queuing, all provide only a number of vehicles 

in the queue and leave the calculation of length as an additional step for the analyst. 

After setting the assumptions, the next question answered concerns the technique used to 

estimate queue lengths. There are at least five variations on this theme. 

1. Take the average number of vehicles per lane that arrive on red and multiply them 

by a factor: 

1. 0 for average queue length, 

1.5 for 85th percentile queue length, and 

2.0 for 95th percentile queue length. 

These factors taken from AASHTO (11) for left tum storage have been validated 

for light rail crossings by Berry (7) using 20 observation periods at 11 light rail 

grade crossings throughout the United States, both within and outside of traffic 

signal systems. They underestimate at low approach volume levels and 

overestimate at high approach volume levels. The resulting queue length estimate 

is for the number of vehicles in that lane at end of red. 
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To compute the maximum back of queue in the lane, the analyst must calculate the 

point of intersection between a line that describes the discharge rate of the queue 

and a line that describes the arrival rate of vehicles on the intersection approach. 

This point can be found with the following two equations: 

t = (q(r) + 14.2(q) - 5)/(2.1 - q) 

where 

t = time to discharge the queue after saturation flow conditions have been 

reached, 

q - vehicle arrival rate in vehicles per second (vps); q < 2.1 vps 

r = red time or crossing blockage time, and 

Q - q(r + 14.2 + t) = maximum back of queue. 

The derivation of these equations is given in the Appendix. These equations are 

based on Greenshield's queue discharge model (12) and are applicable for queues 

of at least five vehicles in length. For queues of less than five vehicles, the analyst 

can estimate the number of arrivals during the initial discharge and add that number 

to the initial discharge volume. For saturation flow rates that exceed 1, 714 

vehicles per hour green per lane (vphgpl), the analyst can reduce the saturation 

headway of 2.1 seconds per vehicle in the first equation to a level consistent with 

conditions in their area. Please note, however, that Berry (7) found saturation 

flows on at-grade light rail crossing approaches to be approximately 200 vphgpl 

less than saturation flows at nearby signalized intersections. 

2. Use the traffic flow distribution and estimate the number of vehicles per lane that 

will arrive on red from the statistical distribution for each percentile in question. 

The resulting queue length estimate for that lane is for the number of vehicles at 

end of red. To compute the maximum back of queue in that lane, the analyst must 

calculate the point of intersection between a line that describes the discharge rate 

of the queue and a line that describes the arrival rate of vehicles on the intersection 

approach. The calculation is identical to that illustrated in the preceding 

paragraphs. 
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3. Use an accepted random arrival queuing formula such as the following: 

Q = (ln(0.5)/ln(v/c)) - 1.0 

where 

Q = 95th percentile queue length, 

v/c - the ratio of volume to capacity, where volume is assumed the arrival 

rate and capacity is assumed the service rate, and 

ln(x) = natural logarithm of (x). 

This particular formula based on an M/M/l queuing system (single channel, first­

in, first-out, random arrival rate and random service rate system) is found in some 

traffic engineering textbooks and was derived from an exponential distribution. 

For the derivation, see Wohl and Martin (13). While some analysts may want to 

investigate it, it did fail validation testing by Berry (7) by consistently 

underestimating queue lengths measured in the field. 

4. Use a computer program such as TRANSYT-7F that estimates the average 

maximum back of queue. The term "maximum back of queue" is somewhat 

misleading because the input for TRANS YT-7F uses average traffic volumes. To 

determine higher percentile maximum back of queue, the input volumes would 

have to be manipulated accordingly. 

5. Use a computer program such as Traf-NETSIM that estimates the average queue 

length per lane on intersection approaches as part of its standard intermediate 

output. Although the queue length is an average, the microscopic nature of Traf­

NETSIM allows the user to run the program with a variety of random number 

seeds so that multiple simulation runs can be aggregated together to statistically 

estimate higher percentile queue lengths from the intermediate output. 

From a usefulness standpoint, the AASHTO method outlined above is an exceedingly easy 

method that usually gives conservative results and is sufficient for most early screening work 

during the light rail system planning process. The two computer programs are both useful with 

judgement applied. However, the TRANSYT-7F program is easier to code than Traf-NETSIM. 
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Either of these programs can be applied if more sophisticated analysis is needed. The estimates 

provided by any method should be checked for reasonableness and upstream constraint. 

2.4.5 Recommendations 

Based upon consistency with the Highway Capacity Manual (1) and previously validated 

measures, we recommend the following as a minimum set of measures of impact: 

o Motor vehicle delay and 

o Generated queue length, both from at-grade crossing operations and from nearby 

traffic signal operations. 

Travel speed and benefit-cost applications are still possible, if necessary, with these two basic sets 

of impact criteria, leaving maximum flexibility available to the analyst while using a minimum 

of information. 
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3.0 OVERVIEW OF MODELS AND METHODS 

3.1 KEEP IT SIMPLE STUPID 

One of the primary shortcomings of most traffic engineering analysis methods is not 

identifying the primary user. Many methods are developed in the academic realm without 

sufficient consideration that the end user 

o May not be an engineer, 

o May not have had any continuing education, 

o May not have an advanced degree, 

o May not even have transportation as a specialty, and 

o May have to learn by doing. 

This problem transcends agency barriers. It is conceivable on a light rail project that 

neither the consultants, municipal agencies, county agencies, State transportation agencies, nor 

transit authorities may have staff that can understand and apply a complex traffic engineering 

analysis. Therefore, in our discussions and proposals we have held that simplicity and 

straightforwardness are to be desired. While precision and accuracy do not have to be sacrificed 

to obtain simplicity and straightforwardness, the answers of any proposed method are but estimates 

and are subject to quality of the input data -- which may have gross inaccuracies. 

3.2 TYPES OF CROSSINGS 

There are basically five types of at-grade crossing configurations. 

1. Mid-block, or isolated - Queues of vehicles stopped at the crossing do not 

adversely affect operations at or on significant nearby roadway components such 

as signalized intersections, freeway and expressway ramps, major facility 

driveways, or cross-walks. 

2. Mid-block with nearby intersections - Queues of vehicles stopped at the crossing 

may significantly affect traffic operations on a nearby cross-street, ramp gore area, 

driveway, or in another geometric feature. 
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3. Adjacent- the crossing is located adjacent to an intersection between two or more 

streets, either in or next to the right-of-way of one of the streets entering the 

intersection and following its alignment. 

4. Intra-intersection - the crossing is located within an intersection between two or 

more streets but with a light rail alignment that does not necessarily follow the 

alignment of any of the streets entering the intersection. 

5. Median - an intra-intersection form of crossing where the light rail alignment is 

located in the median of one of the streets entering the intersection and follows its 

alignment. 

3.3 TYPES OF METHODS 

The types of methods available to the analyst vary widely. They range from simple 

calculations using a minimum amount of information to complex computer simulation modeling 

that needs a full range of detail concerning the proposed traffic and light rail operations. 

It must be remembered that the estimates provided by each method are only as good as the 

input data. If the traffic volumes used are projections with a probable error of 10 percent, then 

the output of the method used may have an error of at least 10 percent. The more sophisticated 

and complex analysis methods may not be worth the effort to apply if the input data is only sketch 

planning level data. It may be more cost effective to use a simple manual calculation with 

judgement when using sketch planning level input data and leave the sophisticated analysis for a 

time when better input data is available. 

3.4 USEFUL MANUAL CALCULATION TECHNIQUES 

There are several useful manual calculation techniques that the analyst should be familiar 

with when evaluating at-grade light rail crossings within a traffic signal system. 

o Calculation of signalized intersection capacity using the Highway Capacity Manual 

(1) methods. 

o Calculation of unsignalizecl intersection capacity using the Highway Capacity 

Manual (1) methods. 

o Calculation of queue lengths based on red times and traffic flow distributions. 
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o Calculation of queue discharge times using a method such as Greenshield' s 

equation (12). 

o Knowledge of time-space diagram development techniques. 

While these techniques are typically applied to sketch-planning level analyses that consider grade 

crossings as isolated features, they can also be useful for a variety of crossing types within traffic 

signal systems. 

3 .. 5 COMMONLY USED COMPUTER MODELS 

The computer models have been applied to the study of the interaction of motor vehicle 

traffic with light rail operations. 

o The Highway Capacity Software package - for estimating delay and level of service 

at all configurations of at-grade crossings, for estimating arterial speeds and level 

of service on arterial streets. 

o PAS SER II series of arterial signal system evaluation models - for evaluating 

operations and estimating delay of median and side-running light rail in the right­

of-way of an arterial street. 

o PAS SER III series of frontage road signal system evaluation models - for 

evaluating operations and estimating delay of median running light rail in the right­

of-way of an arterial street. 

o TRANSYT-7F series of traffic signal network optimization and simulation models -

for evaluating operations and estimating delay, queue length, and fuel consumption 

impacts at most configurations of at-grade crossings. 

o The TRAF-NETSIM series of traffic network simulation models - for evaluating 

operations and estimating delay, queue length, fuel consumption, and air quality 

impacts at most configurations of at-grade crossings. 

3.6 RECOMMENDED SCREENING PROCEDURE 

A screening procedure is useful to identify and assemble the data needed and the level of 

analysis necessary to estimate the impacts that light rail operations will have on a traffic signal 
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system. The following screening procedure will allow the analyst to estimate the impacts of light 

rail operations with a step-wise approach that will maximize results while minimizing effort. 

Step 1 - Identify analysis components 

What are the geometric and operational characteristics of the roadway network that will 

be studied? This is the network through which the light rail alignment passes. The following 

questions need to be addressed at this stage. 

o How are the streets laid out? 

o How many lanes wide is each street? 

o Is the operation one-way or two-way on each street? 

o Where are traffic signals located with respect to the light rail line? 

o Where are major unsignalized intersections and driveways located with respect to 

the light rail line? 

o How much storage space is there for queues of vehicles to form at the light rail line 

without blocking operations at adjacent intersections and driveways? 

o How much storage space is available for queues of vehicles to form at intersections 

without blocking operations on the light rail line? 

o Are the existing traffic signals coordinated, and in what manner? 

o What are the capabilities of the jurisdiction maintaining the traffic signals with 

respect to the issues of coordination and equipment maintenance? What level of 

control complexity can the operating jurisdiction reasonably be expected to handle? 

o What are the traffic signal timing parameters, such as cycle length, minimum 

green, clearance time, and all red time, used by the jurisdiction operating the 

traffic signals? 

o What type of vehicle detection does the agency operating the traffic signals use? 

o What are the hourly traffic volumes on each approach to each crossing? Identify 

the peak traffic volume periods. 

o What are the peak hour turning movement volumes at nearby intersections and 

driveways that may affect, or be affected by, an at-grade light rail crossing? 
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o Does traffic flow show an affinity for one lane over other lanes, or is the approach 

volume evenly distributed over all lanes on the intersection or crossing approach? 

What is the proposed operating practice of the light rail transit operator? The questions 

need to be addressed. 

o Will the policy-making board of the transit operator set guidelines on what types 

of crossings will be grade-separated? For example - grade separation might be 

mandated at all crossings of freight and passenger railroads, all crossings of 

interstate highways, all crossings of multi-lane controlled access freeways, and 

other situations. 

o What type of train control will be provided - cab signals, wayside signals, line of 

sight, or another method? 

o Will preemption be provided at each crossing where there are traffic signals within 

200 feet as provided by the American Railway Engineering Association's Manual 

for Railway Engineering (14) and the Manual on Uniform Traffic Control Devices 

(15)? 

o What types of crossing warning devices will be used - flashing lights and gates, 

flashing lights only, cross-buck signs only, stop signs, traffic signals, or another 

device? 

o Will the light rail line segment under study be a one-way or two-way operation? 

o Can a time-space trajectory of the light rail operation be obtained early in the study 

process so that the effect of two-way train operations can be evaluated? 

o What will be the speed of trains across at-grade crossings? Is it enforceable? 

o What will be the headway of the light rail operation? 

o What standard of operating precision will the train operators be required to uphold? 

- that is, what time frame constitutes "on-time" operation versus being "late?" 

o Will light rail operations be platooned in the peak direction during peak periods? 

o What will be the maximum train length? 

o Will there be a provision for a minimum time between crossing warning device 

actuations - similar to setting a minimum green for traffic signals? 
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o Will crossing warning devices be left in an active mode when a train dwells in a 

station near an at-grade crossing? 

Step 2 - I .ay out the problem within the sh1dy are.a 

In this step, the analysis problem is laid out so that all available information can be 

reviewed in a simple and straightforward manner. A map or drawings showing the study area and 

the relationship between the street network and the light rail line is useful in identifying the first 

level of analysis. The following items should be identified during this step. 

o Which crossings are mid-block, and what is the queue storage space for each? 

Which of these mid-block crossings are bounded by intersections controlled by 

traffic signals, and are these traffic signals within a coordinated traffic signal 

system? 

o Does the light rail line run within a street median, and are there signalized 

intersections along this section of street? Are these traffic signals within a 

coordinated traffic signal system, and, if so, is coordination currently provided 

along the street with the median-running light rail? 

o Does the light rail line run next to a street, and are there signalized intersections 

along this street? Are these traffic signals within a coordinated traffic signal 

system, and, if so, is coordination currently provided along the street with the 

adjacent-running light rail? 

o Does the light rail line run through any intersections, such as on a diagonal from 

corner to corner, or when entering or leaving a median-running configuration? Is 

this intersection signalized, and is it within a coordinated traffic signal system? 

Step 3 - Develop a time-space diagram for the light raj] operation 

In this step, the operation of the light rail line is laid out in detail. The primary output of 

this step is the pattern of crossing blockages at each prospective at-grade crossing. Of special 

concern to the analyst should be those crossings where there are less than 40 to 60 seconds 

between the start of consecutive blockages. These crossings merit special consideration including 
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studying the two blockages as a single blockage of great length to account for the variance in train 

operations. 

Development of a time-space diagram for light rail operations is not difficult and can be 

accomplished using either the results of a train performance model or by making assumptions 

concerning acceleration and deceleration rates, speeds, and train lengths. Train performance 

models are typically used to estimate the operating characteristics of light rail trains for a variety 

of purposes including estimating electrical power consumption, estimating operating speeds, 

setting and testing the schedule, and determining the number of rail cars the system needs. 

One of the outputs often provided by train performance models that is of particular use to 

the- analyst studying the traffic impacts of at-grade light rail crossings are time-distance 

trajectories. These trajectories will show the cyclic pattern of train arrivals at each crossing and 

are useful for setting up the specific analysis at each proposed at-grade crossing. 

If a suitable train performance model is not available, then the analyst can make reasonable 

assumptions concerning the operation of the light rail line using typical operational values such 

as those shown in Table 2, coupled with estimates for station dwell times and end of line layovers. 

As an example, assume a light rail line of 6 km (3. 73 miles) in length. All trains start at Station 

A on 5 minute (300 second) headways, and the average operating speed is 48 km/hr (30 mph). 

Stations are at 2 km (1.24 mile) intervals, so there are four total stations, A - D. Layovers occur 

at Stations A and D. Average station dwell time is 30 seconds. There are two streets that cross 

this light rail line. The First Street crossing is located half way between Stations A and B, and 

Second Street is located one-third of the way between Stations B and C. 

Table 2. Typical Light Rail Vehicle Characteristics 

Characteristic Value 

Acceleration Rate 4.8 km/h/s (3 mph/s) 

Service Braking Rate 4.8 km/h/s (3 mph/s) 

Car length 18 m to 29 m (60 ft to 95 ft) 

Although each train will not instantaneously start with an acceleration rate of 4.8 km/h/s 

(3 mph/s), for calculation purposes, this fact can be ignored for the moment. Similarly, for the 

deceleration to a stop, it is easier to set the trajectory up in a simplistic manner and then adjust 
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the cyclic pattern of crossing blockages later than it is to calculate the true acceleration and 

deceleration trajectories at less than maximum service rates. Therefore, it will take 10 seconds 

and 67 meters (220 ft) to accelerate from zero to 48 km/h (30 mph). Likewise, it will also take 

10 seconds and 67 meters (220 ft) to decelerate from 48 km/h (30 mph) to a full stop. 

The trajectory from Station A to Station B, from Station B to Station C, from Station C 

to Station D, from Station D to Station C, from Station C to Station B, and from Station B to 

Station A are all identical and described in Tables 3 and 4. The cyclic pattern between blockages 

at the First Street crossing is 28 seconds and 272 seconds. The cyclic pattern between blockages 

at the Second Street crossing is 163 seconds and 137 seconds. At the First Street crossing, 

opposing trains will overlap arrivals and cause the crossing to be blocked for a period that may 

exceed twice the single train blockage time. At the Second Street crossing, it would be an unusual 

occurrence for opposing trains to ever overlap arrivals. 

Table 3. Example Train Time-Distance Trajectory Travel from Station A to D 

Distance from 
Incremental Time Elapsed Time Station A 

Calculation Point (seconds) (seconds) (meters) 

Station A to 48 km/h speed 10 10 67 

48 km/h speed to First St. 19 29 933 

First St. to decel. point 20 49 1,866 

Decel. pt. to Station B 10 59 2,000 

Dwell Station B 30 89 2,000 

Station B to 48 km/h speed 10 99 2,067 

48 km/h speed to Second St. 13 112 2,667 

Second St. to decel. point 26 138 3,933 

Decel. pt. to Station C 10 148 4,000 

Dwell Station C 30 178 4,000 

Station C to 48 km/h speed 10 188 4,067 

48 km/h speed to decel. pt. 39 227 5,933 

Decel. pt. to Station D 10 237 6,000 

Dwell Station D 30 267 6,000 

Layover, Station D 183 450 6,000 
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Table 4. Example Train Time-Distance Trajectory Travel from Station D to A 

Distance from 
Incremental Time Elapsed Time Station A 

Calculation Point (seconds) (seconds) (meters) 

Station D to 48 km/h speed 10 460 5,933 

~8 km/h speed to decel. point 39 499 4,067 

Decel. pt. to Station C 10 509 4,000 

Dwell Station C 30 539 4,000 

Station C to 48 km/h speed 10 549 3,933 

~8 km/h speed to Second St. 26 575 2,667 

Second St. to decel. point 13 588 2,067 

Decel. pt. to Station B 10 598 2,000 

Dwell Station B 30 628 2,000 

Station B to 48 km/h speed 10 638 1,933 

48 km/h speed to First St. 19 657 1,000 

[First St. to decel. point 20 677 67 

tDecel. pt. to Station A 10 687 0 

Dwell Station A 30 717 0 

Lavover, Station A 183 900 0 

These two crossings show why the acceleration and deceleration rates can be assumed to 

be instantaneous -- crossing blockages will either clearly occur singly, or they will occur in such 

a manner where prudence will counsel the analyst to assume an overlapping of arrivals. 

The analyst must be aware of the normal variation in train arrivals at crossings. Unlike 

traffic signals where operating precision can be measured to less than one second, most light rail 

operations in the United States consider arriving and leaving a station within one minute of the 

schedule to be "on time." Berry (7) collected train headway data in the form of train arrival times 

at crossings within traffic signal systems on five different light rail lines in the following cities: 

1. Buffalo, New York, 

2. Cleveland, Ohio, 

3. San Jose, California, 
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4. Sacramento, California, and 

5. San Diego, California. 

A total of 46 data sets were collected. Assuming that the scheduled headway was precise 

to 1.0 seconds, Berry calculated the error of each headway data set at these crossings. In fitting 

the data sets to a cumulative distribution function, Berry found that each headway error data set 

accepted a hypothesis at the 0.05 level for a Normal distribution using a Kolmorgorov-Smirnov 

goodness-of-fit test. In only two cases did the mean error exceed one minute. However, the 

standard deviation of these data sets varied widely. Table 5 summarizes the mean standard 

deviations for Berry's data. 

The results in Table 5 show that the analyst should consider the effect of normal operating 

variation when analyzing the traffic impacts of at-grade light rail crossings. Manual simulation 

techniques may be effective at introducing normally distributed error effects into an iterative 

analysis framework using either manual analysis methods or computer simulation. 

Table 5. Mean Standard Deviations for Headways at Crossings 

Mean Standard Range of Standard 
Time Period and Train Deviations Deviations 
Direction (seconds) (seconds) 

AM Inbound Trains 82.65 44.4 - 162.6 
12 data sets 

AM Outbound Trains 100.35 22.2 - 169.8 
12 data sets 

PM Inbound Trains 161.02 54.6- 406.8 
11 data sets 

PM Outbound Trains 132.00 29.4 - 249.0 
11 data sets 

All data sets 117.81 22.2 - 406.8 

Step 4 - Estimate single train blockage times 

In this step, estimate the blockage time for each type of crossing. For at-grade crossings 

with either passive traffic control or flashing lights only, the crossing blockage time is simply the 
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ti.me it takes for the train to cross the street plus a small amount of lost time as motorists stop as 

the train approaches and start after the train leaves the crossing. Berry (7) contains data on 

blockage times at crossings where flashing light units were the only form of traffic control. 

For at-grade crossings where traffic control is provided by flashing light units and gates, 

the blockage time can be estimated with the following equation: 

where 

BT = taw + 1tc + tee +t1 

BT = effective crossing blockage time per blockage, 

t.w = advance warning time in seconds, 

1tc = time the crossing is physically blocked by trains in seconds, 

tee = crossing clearance time after trains have cleared the crossing in seconds, and 

t1 = start-up lost time in seconds. 

The value of taw is normally 20 to 25 seconds at a minimum. The Manual on Uniform Traffic 

Control Devires (MUTCD) (15) and the American Railway Engineering Association (AREA) (14) 

specify a warning time of 20 seconds. The California Public Utilities Commission specifies a 

warning time of 25 seconds. The value of the train crossing time, ttc, is a function of train speed, 

crossing width, number of cars in the train, and car length and is easily calculated. The crossing 

clearance time, tee' is usually in the range of 6 seconds. Again, this is a value specified by both 

the MUTCD (15) and the AREA (14). The start-up lost time, t1' is variable; however, 

examination of Berry's data (7) finds a mean start up lost time of 3.2 seconds. This data is for 

at-grade light rail crossings with flashing lights and gates in traffic signal systems in Sacramento 

and San Diego, California. 

For at-grade crossings where traffic control is provided by traffic signals, the blockage 

time can be estimated with the following equation: 

where 

BT = t. + 1tc + te +t1 

BT = effective crossing blockage time per blockage, 

t. = advance time in seconds, 

1tc = time the crossing is physically blocked by trains in seconds, 
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tc = clearance time after trains have cleared the crossing in seconds , and 

t1 = start-up lost time in seconds. 

The values of ta and tcc are variables set by the jurisdiction operating the traffic signals controlling 

the crossing. At this time, the MUTCD (15) does not specify minimum values for these times. 

The value of the train crossing time, fie, is again a function of train speed, crossing width, number 

of cars in the train, and car length and is easily calculated. The start-up lost time, t1, is again 

variable; however, examination of Berry's data (7) finds a mean start up lost time of 2.2 seconds. 

This data is for at-grade light rail crossings with traffic signal control in traffic signal systems in 

Buffalo, New York and San Jose, California. 

When estimating the blockage time where traffic control is provided by traffic signals, the 

type of at-grade crossing can be important. If the crossing is within a mall environment such as 

those in downtown Buffalo, New York or San Diego, California, then the warning time, that is 

the lost time between the end of the cross-street yellow phase and the arrival of the train at the 

crossing, can be a minimal amount of time. However, if the light rail guideway is operating in 

an adjacent or median environment, then it may be prudent for the analyst to increase the warning 

time to include the stopping sight distance of the train. The stopping sight distance (SSD) can be 

estimated from the following equation: 

SSD - (v x 1J,r) + (a x to2)/2 

where 

SSD - Stopping sight distance, 

v - Train speed before brake application, 

1J,r - Perception - reaction time, 

a - deceleration rate of the train -- typically 4.8 km/h/s (3 mph/s), and 

to - time to decelerate from the train speed to zero, approximately v/a. 

One additional factor to be considered when the crossings are controlled by traffic signals 

is whether minimum pedestrian green times must be provided. The geometry of some crossings, 
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such as Church Street in downtown Buffalo, New York cause the minimum pedestrian green time 

calculated in the normal manner to exceed the effective crossing blockage time. 

Being generous with blockage times is recommended to account for variations in train 

speed, track circuit or control system operation, and device operating characteristics. 

Overestimation of blockage times provides a measure of safety. If the results of any analysis show 

that an increase of 10 to 20 percent in the blockage time substantially changes the results of the 

analysis, then additional mitigatory analyses should be undertaken. Only for long blockages, such 

as those measured on the San Diego Trolley that were in excess of 100 seconds, should lesser 

increases be accepted. 

Step S(A) - Perform a cursory queue length study at each mid-block crossing and critical 

intersection approach 

The purpose of this step is to winnow out the minor crossings where traffic operations will 

not be significantly affected and to identify what parts of the street network need additional study. 

Unless traffic volumes and crossing blockage times are high and train headways are low or two 

trains pass through the crossing over a short time period, crossing capacity will not typically be 

a controlling factor at mid-block crossings. The effective green time to cycle length ratio (g/C 

ratio) of most at-grade light rail crossings is greater than most green time to cycle length ratios 

at signalized intersections. 

Since crossing capacity is not typically a problem at mid-block crossings, average stopped 

delay encountered by motor vehicles at the crossing is also not typically a problem. The most 

likely motor vehicle impact at mid-block crossings results from queuing. Any of the procedures 

outlined in Section 2.4.4 can be applied at this point. However, a strategic decision at this point 

can save the analyst time and effort. 

A quick check of the potential queuing caused by light rail operations can be performed 

by multiplying the average number of vehicles arriving at the crossing during the blockage time 

by 2.0 and adjusting for lane distribution. If this queue estimate does not show that any 

significant nearby intersections or driveways are likely to be blocked, then a similar check should 

be made of queuing resulting from traffic signal or stop sign operations. 
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For the traffic signal estimate, the minimum reasonable green time plus clearance interval, 

and hence, maximum red time should be assumed for the street approach that may queue across 

the light rail crossing. Queuing estimates resulting from stop signs are dependent upon whether 

the intersection is an all-way stop or a stop with other, uncontrolled approaches. 

If these queue estimates do not show that the light rail crossing is likely to be blocked, then 

light rail operations probably will not adversely affect traffic operations at these at-grade 

crossings. If, however, queue estimates do show that either the nearby intersection or the crossing 

may be blocked, then it is appropriate to study the crossing and street segment in additional detail 

to determine feasible mitigation strategies. 

For an additional measure of safety, maximum back of queue calculations can be 

substituted for the queue at end of red calculations given in the preceding paragraphs. The 

maximum back of queue calculation is only slightly longer and will yield a greater queuing 

distance at all arrival percentiles than the back of queue on red estimate. 

The alternative to these simple, straight forward estimating procedures is to use a 

computer-based traffic simulation program such as TRANSYT-7F or Traf-NETSIM. These 

programs will give estimates of average queue lengths. If the jurisdiction that maintains and times 

the traffic signals bounding the street segment containing the mid-block crossing uses either of 

these programs, then the analyst can probably reduce the coding time of the programs by starting 

with the jurisdiction's model. Again, queuing that results from the crossing blockage and any 

nearby traffic signals should both be checked. After determining which intersections and at-grade 

crossings exhibit undesirable queue interactions, further analysis can be planned. 

Step 5(8) - Perform a cursory intersection capacity and queuing study on aJJ left tum Janes and 

street approaches at intra-intersection crossings obliquely traversing intersections 

The purpose of this step is to determine if proposed at-grade light rail crossings through 

intersections may create adverse intersection capacity constraints and to estimate if the queues of 

vehicles generated on the intersection approach legs to such crossings may exceed the storage 

space available. The key assumption of this step is that the intersection will either be fully gated 

or controlled by a traffic signal. A study of the intersection capacity is easily performed using any 

one of several computerized intersection evaluation routines such as the Highway Capacity 
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Software, PASSER II, TRANSYT-7F, Traf-NETSIM, or the TEXAS model. TRANSYT-7F, 

Traf-NETSIM, and the TEXAS model will also generate average queue lengths either based on 

the queue at the end of red or the maximum back of queue. 

The setup of the problem within each of the computer programs is similar. The 

intersection geometry is coded in the normal way. Traffic signal operations are assumed even if 

the intersection is protected by flashing lights and gates. Left tum phasing is typically assumed 

to be protected only - not protected - permitted because of safety issues associated with clearing 

the intersection on the approach of a train. Left turns may lead or lag depending on local 

conditions. The crossing of the light rail train is modeled by adding a dummy phase to the traffic 

signal phase sequence modeled. The length of the dummy phase corresponds to the length of the 

crossing blockage and should consider whether the transit operator will have stopping sight 

distance rules in effect at these types of crossings. If the model used does not estimate queue 

lengths, then the back of queue at end of red or maximum back of queue can be estimated for each 

lane or lane group using any of the methods outlined in Section 2.4.4. 

Step S(C) - Perform a cursory intersection capacity and queuing analysis on left tum lanes and 

cross-street approaches at crossings within street medians 

The purpose of this step is to determine if proposed median-running at-grade light rail 

crossings through intersections may create adverse intersection capacity constraints and to estimate 

if the queues of vehicles generated on the intersection approach legs to such crossings may exceed 

the storage space available. The key assumption of this step is that the intersection will be 

controlled by a traffic signal. Like the intra-intersection, a study of the intersection capacity is 

easily performed using any one of a number of computerized intersection evaluation routines such 

as the Highway Capacity Software, PASSER II, TRANSYT-7F, Traf-NETSIM, or the TEXAS 

model. TRANSYT-7F, Traf-NETSIM, and the TEXAS model will also generate average queue 

lengths either based on the queue at the end of red or the maximum back of queue. 

The setup of this problem within each of the computer programs is similar. The 

intersection geometry is coded in the normal way. For the sake of discussion, the median-running 

light rail operations are considered to parallel the "main-street." The cross-street is considered 

to be the "minor" street. Left tum phasing is typically assumed protected only -- not protected -
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permitted because of safety issues associated with clearing the intersection of left turning vehicles 

on the approach of a train. Left turns may le.ad or lag depending on the light rail operations. The 

crossing of the light rail train is modeled by adding sufficient green time to the "main-street" 

through phase of the traffic signal phase sequence modeled. The length of the "main-street" green 

phase, as a minimum, must correspond to the length of the crossing blockage and should consider 

whether the transit operator will have stopping sight distance rules in effect at these types of 

crossings. If the model used does not estimate the left turn and cross-street queue lengths, then 

the back of queue at end of red or maximum back of queue can be estimated for each lane or lane 

group using any of the methods outlined in Section 2.4.4. 

Step 5(0) - Perfonn a cursmy queuing analysis on right turn lanes and cross-street approaches at 

crossings adjacent to signalized intersections 

The purpose of this step is to determine if proposed at-grade light rail crossings adjacent 

to intersections may create adverse intersection capacity constraints and to estimate if the queues 

of vehicles generated on the intersection approach legs to such crossings may exceed the storage 

space available. The key assumption of this step is that the intersection will be controlled by a 

traffic signal. The crossing itself may or may not be controlled by flashing lights and gates. Like 

the intra-intersection and median crossings, a study of the intersection capacity is easily performed 

using any one of several computerized intersection evaluation routines such as the Highway 

Capacity Software, PASSER II, TRANSYT-7F, Traf-NETSIM, or the TEXAS model. 

TRANSYT-7F, Traf-NETSIM, and the TEXAS model will also generate average queue lengths 

either based on the queue at the end of red or the maximum back of queue. 

The setup of this problem within each of the computer programs is similar. The 

intersection geometry is coded in the normal way. For the sake of discussion, the adjacent­

running light rail operations are considered to parallel the "main-street." The cross-street is 

considered the "minor" street. Left turn phasing is typically assumed protected only -- not 

protected - permitted because of safety issues associated with clearing the intersection of left 

turning vehicles on the approach of a train. Left turns may lead or lag depending on the light rail 

operations. Right turns are typically assumed controlled by green, yellow, and red arrow signals 

and allowed as a "protected-only" phase because of safety issues associated with right turning 
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vehicles sideswiped by a train approaching from the rear. Right turns, like left turns, may lead 

or lag depending on the light rail operations. The crossing of the light rail train is modeled by 

adding sufficient green time to the "main-street" through phase of the traffic signal phase sequence 

modeled. The length of the "main-street" green phase, as a minimum, must correspond to the 

length of the crossing blockage and to the time necessary to serve the protected main-street right 

tum movement crossing the light rail guideway. It should also consider whether the transit 

operator will have stopping sight distance rules in effect at these types of crossings. If the model 

used does not estimate the left tum, right tum, and cross-street queue lengths, then the back of 

queue at end of red or maximum back of queue can be estimated for each lane or lane group using 

any of the methods outlined in Section 2.4.4. 

Step 6(A) - Develop strategies to mitigate undesirable queue interactions resulting from mid-block 

crossing operations 

The key purpose of this step is to determine the appropriate technique for mitigating the 

undesirable queues that may be related to mid-block crossing operations. The first task in this step 

is to determine the cause of the queuing. 

a. Light rail crossing blockages 

b. Signalized intersection operations 

c. An unsignalized intersection with insufficient service times 

d. The geometry of the roadway network. 

If the queuing is the result of light rail crossing blockages, the following questions apply. 

o What impact is it having on the roadway network? 

o Is the upstream intersection signalized? 

o Is it within a progressive arterial traffic signal system? 

o Is it within a traffic signal network? 

o What is the relationship of the upstream intersection with other traffic signals in the 

system? 

o Can the traffic signal be preempted? 

o Can priority control be implemented? 

o What level of disruption to traffic signal operations can be tolerated? 
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o Is the upstream intersection (or major driveway) unsignalized? Can it be signalized? 

If signalized, can it be preempted without disrupting the rest of the traffic signal 

system? 

o Is the street segment that contains the at-grade light rail crossing so short that the 

queue spill-back from the crossing blocks left tum and right tum approaches from the 

major street the short street segment tees into? 

If the queuing is the result of nearby signalized intersection operations, the following 

questions apply. 

o What impact is it having on the at-grade crossing and other intersections within the 

roadway network? 

o Is the signalized intersection within a progressive arterial traffic signal system? Is it 

within a traffic signal network? What is the relationship of the signalized intersection 

with other traffic signals in the system? 

o Can the traffic signal be preempted? 

o Can priority control be implemented? 

o What level of disruption to traffic signal operations can be tolerated? 

o Can the red time on the intersection approach downstream from the at-grade crossing 

be minimized to reduce queue lengths? 

o Can the traffic signal be double cycled with respect to the rest of the traffic signal 

system to reduce red time and thereby queue lengths? 

If the queuing is the result of nearby unsignalized intersection or major driveway 

operation, the following questions apply. 

o What impact is it having on the at-grade crossing and other intersections within the 

roadway network? 

o Does traffic control at the unsignalized intersection need to be reevaluated to increase 

the service rate of vehicles clearing the at-grade light rail crossing? 

o Can the driveway be closed and traffic diverted to another route? 

If the queuing is the result of roadway geometry, the following questions apply. 

o Can additional geometric enhancements mitigate the queue formation? 
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o Can right tum lanes be constructed so that right turns occur in a free-flow mode from 

behind a protective island? 

o Can left turns be prohibited and routed over a different path? 

o Can the crossing be relocated adjacent to the intersection? Can it be moved further 

away? 

Each of these questions in this task narrows the analysis technique that is appropriate to 

estimating the impact of the at-grade light rail crossing. For such items as extending queue 

storage areas or adding lanes, it is appropriate to first check the adequacy of storage using manual 

calculation techniques. Where the queuing problem includes Stop or Yield sign control, Traf­

NETSIM is the most appropriate analysis tool. For strategies that involve changing the traffic 

signal operation, an optimization program such as PASSER II or TRANSYT-7F may be 

appropriately used first followed by a simulation program such as TRANSYT-7F or Traf­

NETSIM. For strategies that physically relocate a traffic movement, reassignment of the affected 

traffic volume should be carefully performed considering such factors as travel time, directness 

of route, and driver acceptance of the new route before analysis. 

Step 6(B) - Develop strategies to mitigate intersection capacity constraints and undesirable queue 

interactions at intra-intersection crossings obliquely traversing intersections 

The purpose of this step is to determine the appropriate techniques for mitigating the 

intersection capacity constraints and undesirable queue lengths at intra-intersection light rail 

crossings. To mitigate capacity constraints, either crossing blockage times must be reduced or, 

more likely, pavement will have to be added in the form of additional through or tum lanes for 

critical movements. To mitigate queuing problems in the tum lanes, either additional lane length 

will be necessary, or additional turning lanes. 

Although PASSER II, TRANSYT-7F, Traf-NETSIM, and the TEXAS model can be 

applied to this type of problem, if intersection capacity is the only impact to be mitigated, then 

the Highway Capacity Software may be the simplest approach to the problem. If, on the other 

hand, queues and capacity constraints are both involved, then an isolated intersection modeled 

with TRANSYT-7F or Traf-NETSIM will be the best approach. While the TEXAS model can 

be applied, its data intensiveness and accuracy is lost in the rough precision of the light rail 

37 



environment. Finally, if only queues are involved, manual calculation techniques may be 

sufficient to provide workable alternatives. 

Step 6(C) - Develop strategies to mitigate intersection capacity constraints and undesirable queue 

interactions on left tum Janes and cross-street approaches at crossings within street medians 

The purpose of this step is to determine the appropriate techniques for mitigating the 

intersection capacity constraints and undesirable queue lengths in left turn lanes and on cross-street 

approaches at light rail crossings within street medians. Like the intra-intersection crossings, to 

mitigate capacity constraints, either crossing blockage times will have to be reduced or, more 

likely, pavement will have to be added in the form of additional through or turn lanes for critical 

movements. Also, to mitigate queuing problems in the left turn lanes and on cross-street 

approaches, either additional lane length will be necessary, or additional lanes may be needed. 

At this point, depending on the left turn operation, if intersection capacity is the only 

impact to be mitigated, then the Highway Capacity Software or PASSER III may be the simplest 

approach to the problem. If, again, queues and capacity constraints are both involved, then an 

isolated diamond interchange modeled with TRANSYT-7F or Traf-NETSIM will be the best 

approach. If only exterior interchange queues are involved, manual calculation techniques may 

be sufficient to provide workable alternatives. 

If queues are the problem and the left turns are concurrent, one technique that should not 

be overlooked, however, is to use PASSER II or TRANSYT-7F and change the phase sequence 

from concurrent leading to concurrent lagging or vice versa. The effect of this change cannot be 

easily measured with either the Highway Capacity Software or with manual calculation techniques. 

Step 6(D) - Develop strategies to mitigate undesirable queue interactions on right tum Janes and 

cross-stre.et approaches at crossings adjacent to signalized intersections 

The purpose of this step is to determine the appropriate techniques for mitigating 

undesirable queue lengths in right turn lanes and on cross-street approaches at light rail crossings 

adjacent to signalized intersections. The primary mitigation techniques for queuing problems in 

the right turn lane and on cross-street approaches is to add either additional lane length or 

additional lanes. Although TRANSYT-7F and Traf-NETSIM can be applied to this type of 
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problem, if only queues are involved, manual calculation techniques may be sufficient to provide 

workable alternatives. 

Stq> 7 - Study signalize.d intersection and at-grade light rail crossing interactions using simulation 

The purpose of this step is to take each full street network and traffic signal system and 

integrate the appropriate mitigated light rail crossing types into a cohesive simulation problem. 

Using either TRANSYT-7F or Traf-NETSIM, the analyst should develop the network appropriate 

to the street network and signal system being studied. All mid-block crossings, intra-intersection 

crossings, median-running light rail sections, and adjacent-running light rail sections should be 

included in the simulation network. 

To minimire total network size, each individual traffic signal system should be simulated 

separately. Traffic signal sub-system configurations may allow further reduction in each study 

network. The purpose behind minimizing network size is twofold: a reduction in coding and 

debugging the software, and faster computational times resulting in the ability to make more 

simulation runs. 

The output of the simulation runs should be carefully checked to make sure that mitigation 

techniques perform as expected. Stop line flow profiles, platoon progression diagrams, and time­

space diagrams should be reviewed. The trajectory of light rail trains should be checked. 

Clearance phases should be checked against time-space diagrams to make sure they are properly 

offset. Transitions between phase sequences should be checked. All queue data should be 

reviewed, especially when using TRANSYT-7F, since a queue blocking an intersection approach 

is not explicitly modeled as a blockage. Finally, offsets in the traffic signal system should be 

checked to determine if slight modifications, not identified in the optimization process, might 

result in increased efficiency of the traffic signal system. 

The final task in this step is to run the simulation model over again and again, varying the 

light rail trajectory somewhat to model the natural variation in train operations. If using 

TRANS YT-7F, this will be the most that can be done without totally recoding the network. If 

using Traf-NETSIM, then the random number seed can be changed to automatically introduce 

randomness into the simulation. This process should cover the expected bounds of the light rail 

operation and is essentially a sensitivity analysis. At the end of this process, the analyst should 

39 



be able to grasp the impact of at-grade light rail operations on the street network and traffic signal 

system. 

Step 8 - Review the results of the analysis for re,asonableness 

The last step in the screening procedure is to check all of the results for reasonableness. 

In part, that is the purpose of making multiple simulation runs that vary the light rail trajectories; 

but this step really should go beyond that to a careful, thoughtful review of the analysis process 

so that the analyst and, eventually the light rail patron and motorist, are comfortable with the end 

decisions in the process. 
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4.0 TYPICAL APPLICATION OF MODELS TO PROBLEMS 

4.1 INTRODUCTION 

In this section, application of five computer models to the evaluation of at-grade light rail 

crossings within traffic signal systems will be discussed. In each case, it is assumed that the 

reader is familiar with the models: 

1. The Highway Capacity Software program, 

2. PASSER II, 

3. PASSERID, 

4. TRANSYT-7F, and 

5. Traf-NETSIM. 

These models are ranked in order of complexity, and to some degree, usefulness as simulators of 

the light rail environment. Only the basic changes in application, approach, or coding are 

addressed. 

4.2 HIGHWAY CAPACITY SOFTWARE 

The Highway Capacity Software (HCS) (10) can be applied to all types of at-grade light 

rail crossings so long as each crossing is considered on an individual basis. The Highway 

Capacity Software is the simplest analysis tool after manual calculation techniques, and 

sometimes, is even easier to apply than a manual mathematical calculation. The primary 

shortcomings of the software are that: 

o It only considers ind,ividual intersections, 

o It does not provide queuing estimates, and 

o Each analysis only applies to a single traffic signal cycle length. 

Modeling a mid-block crossing with the Highway Capacity Software is simple. The 

operation is simply coded as a two-phase traffic signal where each blockage to blockage in the 

cyclic pattern of crossing blockages makes up an individual traffic signal cycle length. Berry (7) 

validated the delay equation used by the Highway Capacity Software for light rail headways up 

to 15 minutes in length on light rail guideways with two-way operations. 
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Modeling an intra-intersection crossing with the Highway Capacity Software is perhaps the 

most difficult of applications. This is because of the extra phase needed to account for light rail 

blockages. Three-leg intersections, which are analyzed as four-leg intersections due to the 

additional phase required for light rail blockages, can be modeled explicitly. However, four-leg 

intersections cannot be analyzed because the current version of Highway Capacity Software cannot 

analyze five-leg intersections (four-leg intersections must be analyzed as five-leg intersections 

because an extra phase is needed to allow for light rail blockages). Five intersection leg versions 

of the Highway Capacity Manual (1) signalized intersection capacity method are available. These 

computer programs, that produce results similar to the Highway Capacity Software, can be used 

to gain the extra light rail phase necessary for the delay calculations. 

Modeling median- and adjacent-running light rail crossings is easier than the intra­

intersection crossing because the light rail operation only results in an extended green for the 

main-street through movements, and the Highway Capacity Software computer program only sees 

this as a long green phase. Like the mid-block crossing, the cyclic pattern of crossing blockages 

and normal signal cycles must be considered together to get an accurate representation of the 

intersection operation. 

4.3 PASSER II 

PASSER IT can be applied to all types of at-grade light rail crossings. Mid-block crossings 

are considered on an individual basis. Intra-intersection crossings and crossing involving median­

and adjacent-running light rail can be studied individually or in arterial systems. 

In terms of simplicity, PASSER Il follows the Highway Capacity Software as the next 

simplest analysis tool after manual calculation techniques. The arterial evaluation capabilities of 

PASSER II are one of the primary strengths of this program. The primary shortcomings of the 

software are listed below. 

o It studies only individual signalized intersections and arterial traffic signal systems. 

o It does not provide queuing estimates. 

o Each analysis only applies to a single traffic signal cycle length. Cycle length 

flexibility is not permitted within a single modeling run. 
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o The maximum cycle length of the program is limited to 150 seconds for optimization 

and 300 seconds for evaluation. 

Modeling a mid-block crossing with PASSER Il is simple. The operation is simply coded 

as a two-phase isolated traffic signal where each blockage to blockage in the cyclic pattern of 

crossing blockages makes up an individual traffic signal cycle length. Each component of the 

cyclic pattern is analyzed separately. An average weighting of the results of each component is 

performed to estimate the overall impact of the crossing. 

Modeling intra-intersection crossings with PASSER II is limited. Only isolated 

intersections can be studied because model limitations may require multiple computer runs to 

develop usable estimates. The extra phase is needed to account for light rail blockages. Three-leg 

intersections, which are analyzed as four-leg intersections due to the additional phase required for 

light rail blockages, can be modeled explicitly. However, four-leg intersections cannot be 

analyzed because the current version of PASSER II cannot analyze five-leg intersections (four-leg 

intersections must be analyzed as five-leg intersections because an extra phase is needed to allow 

for light rail blockages). Five intersection leg intersections can be studied implicitly by using two 

four-leg intersection PASSER II runs. In the first run, the main-street red phase is increased to 

account for the cross-street green and clearance phase and for the light rail crossing blockage. In 

the second run, the cross-street red phase is similarly increased. By taking the measures of impact 

for intersection approaches with the increased red phases from both PASSER II runs and 

combining them on a "weighted" basis, an estimate of the impact of an intra-intersection can be 

estimated. Simulation with a program such as TRANSYT-7F or Traf-NETSIM should be used 

to check the operational results of this application. 

PAS SER II may be the best program for setting up analysis on median- and adjacent­

running light rail crossings because they inherently involve arterial traffic signal operation. A 

median-running light rail analysis requires only one basic assumption, the design of the median 

is such that concurrent leading or lagging left turns are possible without conflict. If the median 

design will not allow safe concurrent left tum operation, then PASSER III should be used and 

each signalized intersection should be modeled as a small diamond interchange. 

The key points in setting up a PASSER II analysis for median-running light rail operations 

are listed below. 
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o Use a time-space diagram for the rail operations (see Section 3.6) to determine 

preliminary arterial speeds and traffic signal offsets. 

o Determine if the station dwell times or other aspects of the light rail operation make 

it reasonable for the light rail trajectory to stay within a single arterial street green 

band drop from one arterial street green band to the next arterial street green band. 

o Use only protected left turns -- either concurrent lagging or concurrent leading. 

o Do not use lead-lag left turns unless cross-street impacts are inconsequential. The 

lead-lag operation of left turns may provide a superior arterial green band in normal 

arterial traffic signal systems, but the through green phase necessary for light rail 

operations may result in arterial green time being provided even when there is no 

arterial traffic demand. Lead-lag left tum operations can result in inefficient arterial 

operation where median-running light rail is present. 

o Add arterial green time to cover the stopping sight distance of the train as the 

minimum warning time if no guidance on train control is provided by the transit 

operator. 

Multiple PASSER II runs may be useful, depending on the light rail headways and 

trajectories, to provide optimal arterial operation for traffic signal cycles that do not need to 

accommodate light rail operations. If this type of strategy is used, then it is recommended that 

simulation with a program such as TRANSYT-7F, or Traf-NETSIM be used to check the 

operational results of the arterial traffic signal system. 

The adjacent-running light rail analysis is only slightly more difficult than the median­

running light rail analysis. Whereas the median-running light rail analysis can be performed with 

a minimum of one PASSER II run, adjacent-running light rail will require a minimum of two 

PASSER II runs. The key points in setting up the adjacent-running PASSER II analysis are listed 

below. 

o Use a time-space diagram for the rail operations (see Section 3. 6) to determine 

preliminary arterial speeds and traffic signal offsets. 

o Determine if the station dwell times or other aspects of the light rail operation make 

it reasonable for the light rail trajectory to stay within a single arterial street green 

band drop from one arterial street green band to the next arterial street green band. 
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o Use only protected right turns -- either lagging or leading. 

o Do not use right-turn-on-red operation. 

o Add arterial green time to cover the stopping sight distance of the train as the 

minimum warning time if no guidance on train control is provided by the transit 

operator. 

o For one PASSER II run, use only the left and right arterial movements on the 

intersection approaches next to the light rail line. For the second PASSER II run, use 

only the left and through arterial movements on the intersection approaches next to the 

light rail line. 

The first PASS ER II run will provide the arterial green time necessary to serve the 

protected right turns. Adding this green time to the crossing blockage time for the second 

PASSER II run will provide the minimum arterial through movement green time for the through 

movement adjacent to the light rail line. A third PASSER II run can be performed to optimize 

arterial traffic flow for traffic signal cycles that do not need to accommodate light rail operations. 

It is recommended that simulation with a program such as TRANSYT-7F or Traf-NETSIM be 

used to check the operational results of the arterial traffic signal system for adjacent-running light 

rail when using multiple PASSER II runs as the basis for operational development. 

4.4 PASSERID 

Conceptually, PASSER III is nearly perfectly designed to analyze median-running light 

rail within an arterial traffic signal system. The frontage roads act as the parallel arterial on each 

side of the median with the light rail guideway being the "freeway." For streets with wide 

medians where concurrent left turn movement paths would overlap and interlock, the four-phase 

TTI diamond interchange signal sequence that is one option in PASS ER III provides the solution 

to the problem as no other computer program can. The key points in setting up a PASSER ill 

analysis for median-running light rail operations are listed below. 

o Use a time-space diagram for the rail operations (see Section 3.6) to determine 

preliminary arterial speeds and traffic signal offsets. 
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o Determine if the station dwell times or other aspects of the light rail operation make 

it reasonable for the light rail trajectory to stay within a single arterial street green 

band drop from one arterial street green band to the next arterial street green band. 

o Use only signal sequences that minimize or prevent storage of vehicles in the interior 

area of the interchange. The interior must be clear for light rail operations without 

having to add explicit clearance phasing. 

o Add arterial green time to cover the stopping sight distance of the train as the 

minimum warning time if no guidance on train control is provided by the transit 

operator. 

Like PAS SER IT, multiple PASSER Ill runs may be useful, depending on the light rail 

headways and trajectories, to provide optimal arterial operation for traffic signal cycles that do 

not need to accommodate light rail operations. If this type of strategy is used, then that simulation 

with a program such as TRANS YT-7F or Traf-NETSIM should be used to check the operational 

results of the arterial traffic signal system. PASSER III has a maximum cycle length restriction 

of 150 seconds. 

4.5 TRANSYT-7F 

TRANS YT-7F is a powerful optimization and simulation tool that is flexible enough to be 

useful for light rail applications. It is a tool that can evaluate single mid-block at-grade crossings, 

mid-block at-grade crossings within traffic signal systems, intra-intersection light rail crossings, 

median-running light rail crossings, and adjacent-running light rail crossings. With planning, 

TRANS YT-7F can be used to evaluate the three primary light rail operational strategies. 

o Running within a traffic signal system, but without interfacing with it. An example 

of this type of operation is Greater Cleveland Regional Transportation Authority's 

Shaker Heights median-running operation. The city of Shaker Heights, Ohio sets up 

the traffic signal operation on Shaker Boulevard, and there is no communication 

between the light rail signal system and the traffic signal system. 

o Running within a traffic signal system with "priority" control. This is a form of traffic 

signal preemption where red phases may be truncated or green phases extended on a 

"call" from an approaching light rail train. An example of this type of operation is 
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along the Guadalupe corridor of the Santa Clara County Transportation Agency's light 

rail line in San Jose, California. 

o Running through a traffic signal system with full railroad-type traffic signal 

preemption where the approaching train places a "call" to the traffic signal controller 

and a special phase sequence is implemented to clear the at-grade crossing of any 

vehicles that may be on the light rail guideway. An example of this type of operation 

can be found along the San Diego Trolley's South line that parallels Interstate 

Highway 5 in Chula Vista, California. Full preemption is provided where the light 

rail line crosses E Street and H Street in Chula Vista. 

In practice, TRANSYT-7F is a program that has been used to evaluate the traffic impacts 

associated with light rail operations in Dallas, Texas and Buffalo, New York. 

In Dallas, DART consultants used TRANSYT-7F for: 

o Evaluation of median operations in the Lancaster Road and Jefferson Boulevard traffic 

signal systems in 1987 (16), 

o Evaluation of transitway mall operations within the Dallas Central Business District 

traffic signal system in 1988 (17), and 

o Evaluation of mid-block crossings within the North Central Expressway Corridor 

traffic signal system in 1990 (8). 

In each case, TRANSYT-7F proved to be a versatile tool for evaluation. The primary limitations 

of the model, the maximum traffic signal cycle length and the number of allowable intervals, were 

overcome by creative application of the model. The TRANSYT-7F results were sufficient to 

result in further definitive evaluation using Traf-NETSIM. 

Modeling a mid-block crossing with TRANSYT-7F is simple. The at-grade light rail 

crossing is coded as a two- or four-phase isolated traffic signal where each cross-street through 

movement and each crossing blockage in the cyclic pattern of crossing blockages make up an 

individual traffic signal phase. The two-phase pattern corresponds to one blockage for each 

headway set, and the four-phase pattern corresponds to two blockages for each headway set. The 

green phases associated with the light rail blockage will need movements coded; however, these 

movements should be coded with traffic volumes set to zero. Because TRANS YT-7F will allow 
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coding up to 11 discrete phases, post-run computations to arrive at the final measures of impact 

estimate are less than for the Highway Capacity Software, PASSER II, or PASSER III. 

Modeling intra-intersection crossings with TRANSIT-7F is also quite simple unless the 

interse.ction has five or more controlled legs. For this application, the light rail blockage is coded 

into the intersection as an additional green phase but without movements associated with traffic 

volumes. The five-leg intersection with an intra-intersection crossing may need to be coded with 

some or all of the left tum movements being concurrent rather than overlapped. This adjustment 

is necessary if the 11 phases that TRANSIT-7F allows the user to code are not adequate to model 

the operation of the intersection. 

For both mid-block and intra-intersection crossing types, integration within a traffic signal 

system is only a matter of coding the crossing nodes as part of the overall system. To maintain 

a proper light rail trajectory through the signal system, the "signal offset" relationships between 

the light rail crossing nodes must remain fixed. The remaining signalized intersection nodes can 

be allowed to optimize around the fixed offset relationships or they can be fixed for evaluative 

purposes. 

TRANSIT-7F is useful for most median-running light rail scenarios: 

o Median-running within an arterial traffic signal system and 

o Median-running within a grid traffic signal system where progression may be required 

along the cross-street routes. 

Coding TRANSIT-7F for median-running evaluations varies depending on whether the 

left turns can operate concurrently or if they must be operated separately. If the left turns can be 

operated concurrently, then the problem setup is identical to coding an arterial street for 

progressive movement. No special coding is necessary other than providing adequate arterial 

green time for the light rail operation to clear each cross-street. As stated previously, PASSER 

II outputs can give an excellent starting point for setting up the fixed relationship between the 

arterial intersections that is necessary for median-running light rail. 

If the left turns cannot be operated concurrently, then each cross-street intersection along 

the median-running light rail line should be coded as a tight diamond. Using PASSER III outputs 

as a starting point for identifying the proper phase sequence will significantly reduce the analysis 
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time. Again, the light rail trajectory through the traffic signal system can be maintained by fixing 

the offset relationships of the individual arterial intersections. The key points in setting up a 

TRANSYT-7F analysis for median-running light rail operations are the same as those described 

for the PASSER II and PASSER III applications. 

Cooing TRANSYT-7F for adjacent-running evaluations is similar to the median-running 

coding except that right turns from the arterial street are explicitly coded, phased, and timed. 

Except for this aspect, the problem setup is identical to coding an arterial street for progressive 

movement. Like the median-running light rail problem, PASSER II outputs can give an excellent 

starting point for setting up the fixed relationship between the arterial intersections that is 

necessary for adjacent-running light rail. The key points in setting up a TRANSYT-7F analysis 

for adjacent-running light rail operations are the same as those described for PASSER II 

applications. 

In all of the TRANSYT-7F examples, one technique that normally will be needed is the 

combination of multiple TRANSIT-7F runs. Because TRANSIT-7F models a single traffic 

signal cycle that is expanded out to represent average hourly measures of impact, an analyst can 

take individual TRANSYT-7F runs and combine them as necessary to construct an hour of traffic 

signal cycles. 

The key to applying this technique is consistency. Equal intervals should be used -- ideally 

the traffic signal cycle length. Traffic volumes should not be varied. Once optimized, all 

evaluations should be done in the simulation mode of the program so that the offsets of each of 

the signaliz.ed intersections do not vary with the different traffic signal cycles being modeled. As 

long as the basic parameters of the traffic signal system are fixed, the analyst can vary the light 

rail operations and the traffic signal sequences at adjacent signalized intersections to account for 

priority or preemptive control strategies. 

All outputs should be carefully evaluated for consistency with the results being averaged 

or summed, depending on the measure of impact. Stop line flow profiles and platoon progression 

diagrams are extremely useful in making this reasonability check. If in doubt with the impact of 

a proposed measure after performing an in-depth TRANSYT-7F analysis, the analyst should check 

their results with a true traffic simulation program such as Traf-NETSIM. 
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4.6 TRAF-NETSIM 

As powerful and flexible as TRANSYT-7F can be in evaluating the traffic impacts of at­

grade light rail operations within traffic signal systems, there are times when it is insufficient for 

obtaining definitive results: 

o When complex clearance intervals are involved, 

o When the full effect of traffic-actuated signal control needs to be assessed, 

o When the measures of impact of other, simpler, evaluation techniques indicate that a 

borderline situation may exist between no adverse impact and adverse impact, and 

o When a graphic simulation is needed. 

The best available tool for these cases is Traf-NETSIM. It is a microscopic traffic 

simulation model that can be used to evaluate each case previously discussed for other evaluation 

techniques. Some of the most valuable aspects of Traf-NETSIM are its abilities: 

o Emulate 8-phase pretimed and full-actuated traffic signal control, 

o Simulate. traffic flow over an extended time period, rather than in single signal cycle 

"snapshots" like TRANSYT-7F and the PASSER programs, 

o Transition between different phase sequences with varying transition lengths, 

o Change model randomness by using different random number seeds so that multiple 

Traf-NETSIM runs can be used to develop probabalistic distributions of the measures 

of impact, and 

o Graphically illustrate the operations being modeled on the video monitor screen. 

The primary shortcomings of Traf-NETSIM include the following items. 

o The complexity of the model requires a firm grasp of traffic operations and traffic 

signal operation. 

o The model is not easy to code, even with the software screens and editors that have 

been included in the model since its initial microcomputer release in 1986. 

o Some signalized intersection types -- especially those with more than four approach 

legs--cannot be analyzed under all full-actuated conditions without simplifying 

assumptions. 

o The model is strictly a simulation model with no optimization capabilities. As such, 

other means of developing initial traffic signal timings and offsets, such as using 
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TRANSYT-7F or either PASSER program, is a necessary step in the process of using 

Traf-NETSIM. 

Application of Traf-NETSIM is addressed in Interim Report 2 (18) and will not be 

addressed here other than to emphasize that for median- and adjacent-running light rail, the key 

points in setting up the problem are the same as setting up either the PASSER Il or TRANS YT-7F 

evaluation. 
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5.0 SUMMARY AND RECOMMENDATIONS 

This report has identified and recommended measures of impact that are applicable to the 

operation of at-grade light rail crossings within traffic signal systems. The key point in identifying 

measures of impact was to maintain consistency with traffic signal measures of impacts. The 

recommended measures of impact included average delay and length of queue assuming an nth 

percentile vehicle arrival rate. It was then illustrated how the analyst could apply both manual 

calculation methods and computer models to estimate these measures of impact. Included in the 

discussion was a screening procedure that is designed to minimize total work effort by identifying 

impacts and mitigating them with the least intensive analysis method. However, if the analysis 

results are marginal, then full simulation of the traffic signal system including the light rail line 

is warranted. The recommended programs for such evaluation are TRANSIT-7F for simpler 

problems and Traf-NETSIM for complex problems and analysis of system variances. 
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APPENDIX 

A derivation of the maximum back of queue assuming a constant vehicle arrival rate and 
Greenshields queue discharge model. 

Starting with similar triangJes 

where 

q/1 = Q/(r + 14.2 + t) 

q/1 
Q 
r 
t 

= vehicle arrival rate per second 
= maximum back of queue 
= effective crossing blockage time or effective traffic signal red time 
= time for which vehicles discharge at maximum saturation flow 

SoJving for t 

Q = (q/l)(r + 141.2 + t) = ((5/14.2) x (14.2)) + (112.l)t 
q(r) + 14.2(q) + q(t) = 5 + t/2.1 
q(r) + 14.2(q) - 5 = t/2.1 - q(t) 
q(r) + 14.2 (q) - 5 = t(ll/2.1 - q) 
(Q(r) + 14.2(q) - 5)/(112.1 - q) = t 

SoJving for Q 

Q - q(r + 14.2 + t) 
t - (q(r) + 14.2 (q) - 5)/(112.1 - q) 
Q - q(r + 14.2 + (q(r) + 14.2(q) - 5)/(112.1 - q)) 
Q - q(r) + 14.2(q) + (q2(r) + 14.2(q2

) - 5(q))/(l/2.1 - q) 
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