TECHNICAL REPORT STANDARD TITLE PAGE

				s *
1. Report No. FHWA/TX-91/1235-3	Government Accessio	n No. 5.	. Recipient's Catalog	No.
4. Title and Subtitle		5.	. Report Date November	1990
TRIPCAL5 User's Manual		6.	. Performing Organi	ration Code
7. Author(s) David Pearson, Charles	E. Bell.	8.	Performing Organi	ration Report No.
and George B. Dresser	···· ,		Research	Report 1235-3
9. Performing Organization Name and Address	,	1	0. Work Unit No.	
Texas Transportation Institute		I.	1. Contract or Grant	No.
The Texas Â&M University S	ystem		2-10-90-12	235
College Station, TX 77843-313		I.	3. Type of Report an	d Period Covered
12. Sponsoring Agency Name and Address			Interim - S	September
Texas Department of Transpor	tation		1989 - Au	- 1
P.O. Box 5051				
Austin, TX 78763		1.	4. Sponsoring Agency	, Code
15. Supplementary Notes Study was conducted in coopera Administration. Research Stud		-	-	
16. Abstract				
In 1989, the Texas Department an overall effort to evaluate and or exceed current state-of-the- program, TRIPCAL5, was su TRIPCAL3 and TRIPCAL4 de TRIPCAL5 is a multi-functiona trip productions and attractions This manual provides the infor Éxample setups are included w reference of the control/input r features of the program is the built-in default models for disag income, and/or auto ownership	d update the prac- art practice in absequently developed in the eveloped in the eveloped in the eveloped in the eveloped for multiple trip for multiple trip rmation necessary with copies of active records necessary ability to use ava- gregating househ	ctice of transportation p transportation p eloped to replace early seventies. generation program p purposes using ty to set up and of tual program setury for accomplishing ailable data for di	tion planning in lanning. A ne e the trip ger n which allows different user-sp operate the TR ps with test dat g specified obje isaggregating zo	the state to equal w trip generation neration programs a user to estimate pecified models. IPCAL5 program a sets and a cross ctives. One of the mal data or utilize
		18. Distribution Statem		
17. Key Words Transportation Planning Trin (umont in
Transportation Planning, Trip (•	No restric		cument is
Productions, Attractions, Dissag		available to the public through the National Technical Information Service		
Independent Variable, Cross-Cl	assilication			1
Model, Regression Model		Springfield	d, Virginia 2210	
	20. Security Classif. (22. Price
Unclassified	Unclas	sified	119	

TRIPCAL5 USER'S MANUAL

by

David F. Pearson Associate Research Engineer

> Charles E. Bell Systems Analyst

> > and

George B. Dresser Research Statistician

Improving Transportation Planning Techniques Research Study Number 2-10-90-1235

> Sponsored by Texas Department of Transportation

In cooperation with U.S. Department of Transportation Federal Highway Administration

Texas Transportation Institute The Texas A&M University System College Station, Texas

November 1990

ζ

METRIC (SI*) CONVERSION FACTORS

	APPROXIMATE	CONVERSI	ONS TO SI UNITS			APPROXIMATE C	ONVERSIO	NS TO SI UNITS	;
Symbol	When You Know	idultiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH	1				LENGTH		
•_					mm	millimetres	0.039	inches	in
in ft	Inches	2.54 0.3048	centimetres metres	cm m	m	metres	3.28	feet	ft
	feet	0.914	metres	m	m	metrea	1.09	yards	yd
yd mi	yards miles	1.61	kilometres	km	km	kilometres	0.621	miles	ml
*144	111148	1.01	RIGHAUDD				AREA		
		AREA			mm²	millmetres squared	0.0016	square inches	in'
				-	m²	metres squared	10.764	aquare feet	ft?
in"	square inches	645.2	centimetressquared	cm *	km²	kilometres squared	0.39	square miles	mP
ft ^z	square feet	0.0929	metres squared	m,	ha	hectores (10 000 m²)	2.53	acres	ac
yd*	square yards	0.836	metres squared	m ^a					
mi	square miles	2.59 0.395	kilometres squared hectares	km² ha			00 (k. a)	
ac	acres	0.385	HACITLA	***		M#	NSS (weig	<u>nt)</u>	
					 9	grams	0.0353	ounces	oz
		ASS (wel	laht)		kg	kilograms	2.205	pounda	lb
	n				Ma	megagrams (1 000 kg		short tons	T
oz	ounces	28.35	grams	9	•				
Ib	pounds	0.454	kilograms	kg			VOLUME		
т	short tons (2000	Ib) 0.907	megagrams	Mg			VOLUME		
					mL	millitres	0.034	fluid ounces	fl oz
					L	litres	0.264	gallons	gal
		VOLUM	E		m³	metres cubed	35.315	cubic feet	ft?
					m,	metres cubed	1.308	cubic yards	yd'
fi oz	fluid ounces	29.57	millilitres	mL					
gai	gailons	3.785	litres instance subset	L		TEMPE	RATURE	(exact)	
ft» yd»	cubic feet cúbic yards	0.0328 0.0765	metres cubed metres cubed	m, m,				(0/1201)	
				***	°C	Celsius 9/5	(then	Fahrenheit	۰F
NOTE: V	olumes greater than	n 1000 L shall l	be shown in m³.			temperature a	dd 32)	temperature	
						•F 32	96.6	°F 212	
	TEM	PERATUR	E (exact)			-40 0 40	80 120	السفير فيتقير فيسترسا وساقت	
÷E				~~		-40 -20 0 *C	20 40 37	80 80 100 °C	
۹F	Fahrenheit ! temperature	5/9 (after subtracting 3	Celsius 32) temperature	°C	These (actors conform to the r		FHWA Order 5190	14

* SI is the symbol for the international System of Measurements

ABSTRACT

In 1989, the Texas Department of Transportation, through the Texas Transportation Institute, began an overall effort to evaluate and update the practice of transportation planning in the state to equal or exceed current state-of-the-art practice in transportation planning. A new trip generation program, TRIPCAL5, was subsequently developed to replace the trip generation programs TRIPCAL3 and TRIPCAL4 developed in the early seventies.

TRIPCAL5 is a multi-functional, flexible trip generation program which allows a user to estimate trip productions and attractions for multiple trip purposes using different userspecified models.

This manual provides the information necessary to set up and operate the TRIPCAL5 program. Example setups are included with copies of actual program setups with test data sets and a cross-reference of the control/input records necessary for accomplishing specified objectives. One of the features of the program is the ability to use available data for disaggregating zonal data or utilize built-in default models for disaggregating households at the zonal level by household size, household income, and/or auto ownership.

DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration or the Texas Department of Transportation. This report does not constitute a standard, specification, or regulation.

TABLE OF CONTENTS

Abstract iv
Disclaimer iv
List of Tables vi
Introduction
Program Options
Program Setups 5 General 5 Production Models 11 Attraction Models 15
TRIPCAL5 Example Setups
TRIPCAL5 Program Output
Appendix A Record Formats and Descriptions
Appendix B TRIPCAL5 Example Program Setups
Appendix C TRIPCAL5 Input Record Cross-Reference Tables
Appendix D Output Examples

د کریکس به در

LIST OF TABLES

Table 1	TRIPCAL5 Data Sets
Table 2	TRIPCAL5 Sort Data Sets
Table 3	Recommended Data Control Block (DCB) and Maximum Space Parameters for Data Sets
Table 4	TRIPCAL5 Independent Variables 10
Table 5	Cross-Classification Regression Example 14
Table 6	TRIPCAL5 Program Setups 22
Table 7	TRIPCAL5 Output Tables 27
Table 8	Generation Output Format for Unit 20 30
Table 9	Generation Output Format for Unit 21 31
Table 10	Generation Output Format for Unit 22

.

.

.

INTRODUCTION

Transportation planning typically involves a four-step process consisting of trip generation, trip distribution, mode split, and traffic assignment. These steps systematically produce estimates of travel demand for both existing and proposed transportation facilities. The first step in this process is that of trip generation. Trip generation is the means by which estimates of the amount of travel are developed. These estimates typically are computed for different trip purposes for sub-areas called zones. Estimates of the number of trips either produced or attracted are based on different socioeconomic characteristics of the households or activities within the zones.

This manual presents instructions for the setup and operation of a new trip generation program called TRIPCAL5. TRIPCAL5 was developed for the Texas Department of Transportation to replace the previous trip generation programs TRIPCAL3 and TRIPCAL4. TRIPCAL5 is a multi-functional, flexible program which allows a user to estimate trip productions and attractions for multiple trip purposes using different userspecified models. Trip productions and attractions for as many as ten trip purposes may be estimated for up to 9,999 zones. A number of features are included in the program which allow the program to utilize available data or default models for the disaggregation of data at the zone level. The program allows trips to be estimated for each trip purpose using specific models for each trip purpose and provides the use of disaggregate data at the zone level for estimating the trips. The flexibility of the program allows the trip generation process to be designed to maximize the use of local data and significantly improve the resulting estimates of travel demand.

This manual is designed to provide the information necessary to set up and operate the TRIPCAL5 program. A separate documentation manual has been prepared which contains the detailed information on the subroutines and models in the program. The preparation of two separate manuals was felt to offer the advantage of providing only the information desired by the user in a clearer and more understandable format. Following this section, a brief discussion of the options available within the program is presented. The third section presents the setup requirements for the operation of each production model,

each attraction model, and the options for disaggregating data at the zone level, and how to use them or not use them. The fourth section contains example setups for some of the models most likely to be used. The fifth section presents the output options with examples. The appendix contains the record formats and descriptions of the record input data. It should be noted that the descriptions of program setups, etc., do not include the record format or data contents. This is contained in the appendix. This simplifies the information presented and reduces the amount of repetition.

-

PROGRAM OPTIONS

TRIPCAL5 is designed to be flexible and allow different options for the user in the development of estimates of travel demand. This allows the trip generation process to be designed to use available data and improve the overall travel demand estimates. The different options available include trip production models, trip attraction models, disaggregation models, multiple trip purposes, and user-selected data inputs.

Up to ten trip purposes may be used with specific trip rates or models for each. The only limitation is that the same type of cross-classification model must be used for each run where those trip purposes are being estimated using a cross-classification model. For example, if home based work trip productions are being estimated using a three-way cross-classification model, then the trip productions for the other trip purposes must also be estimated using a three-way cross-classification model. If a different model (e.g., two-way cross-classification) is to be used for the other trip purposes, a separate run and setup will be required.

Three trip production models are included in TRIPCAL5 for estimating trip productions. A two-way cross classification model may be selected and trip rates stratified for up to six categories for each independent variable. A three way cross-classification model may be selected and trip rates stratified for up to six categories for two of the independent variables and up to four categories for the third independent variable. A linear regression may also be used with up to six independent variables. Other trip production models may also be developed and used by the selection of different variables and cross classification schemes. An example of this is the cross classification regression production model. This can be set up as a special two-way cross classification model. This setup is discussed following this section. If the production model option is left blank, the program will set the zonal productions equal to the zonal attractions.

Five trip attraction models may be used to estimate trip attractions. A two-way crossclassification model may be selected and attraction trip rates stratified for up to six categories for each independent variable. A three-way cross-classification model may be selected and attraction trip rates stratified for up to six categories for two of the

independent variables and up to four categories for the third independent variable. A crossclassification "regression" model may also be specified with trip rates stratified for up to 24 generation areas by households and employment type. A linear regression model may also be used with up to six independent variables. The fifth option available for attractions is the use of a two-tier regression model. Each regression model may use up to six independent variables.

The disaggregation models provided in TRIPCAL5 are for three production model variables, households by household size, households by household income, and households by auto ownership. For any one of these three variables, the user may choose to input the marginal distribution for each zone, input a disaggregation curve for the urban area which is used to develop a marginal distribution for each zone, let the default model in the program compute the marginal distribution for each zone, or use a combination of those three methods. While TRIPCAL5 is oriented to those three variables, the user may select and use any other variable desired as long as the marginal distribution is input for each zone.

TRIPCAL5 is designed to use socioeconomic data normally used in trip generation. Provisions are included to allow the user to input and use non-typical variables and/or combinations of typical variables. User-selected data may be input and used in either crossclassification models and/or regression models.

TRIPCAL5 also provides the user the option of selecting the information to be output from the program. Depending upon the model selected and size of the area, the output can exceed 1 million lines of print. Options are provided for the user to select the output and, in certain reports, select the zones for which the information is desired.

The following sections describe in detail the actual program setups for running TRIPCAL5 using most of the options described in this section.

PROGRAM SETUPS

GENERAL

TRIPCAL5 has been written in FORTRAN and ASSEMBLY languages. A steplib or joblib statement is necessary to access the load module. A region size of 4500K has been found to work with the setup described in Tables 1, 2, and 3. The region size may need to be larger if a different sort package is used. If the user wishes to suppress the debugging output, the unit FT08F001 should be set to DUMMY. Table 1 outlines the data set files, data set names, purpose, number of records, and logical record length (LRECL) requirements. Table 2 presents the sort data sets, data set names, purpose, and space requirements. Table 3 presents the recommended data control block (DCB) specifications and space requirements for each of the data sets and sort data sets. An example JCL setup to run TRIPCAL5 is provided in Appendix B, Table B-1.

Before proceeding with the setup requirements for the different options in TRIPCAL5, it is necessary to specify the general program setups which must be done prior to the subsequent setups for the program to execute properly. The general setups are as follows:

Program Control/Specification Record - The format for this record is contained in Appendix A. It is referred to as the "PS" record. It inputs basic information which sets up the dimensions for the program (e.g., number of zones, etc.) which tells the program the type of trips being estimated; indicates whether individual models will be used for each trip purpose and, if not, how the percentage of trips by trip purpose will be input; indicates whether add-on trip records and/or trips for special generators will be input, indicates regional median income for area under study, and indicates the 1967 based consumer price index for the year corresponding to the median income. If individual models are not being used for each trip purpose, the user may specify that the percentage of trips for each trip purpose will be input by row, column, or depth in the model being used.

Trip Purpose Record - The trip purpose record is referred to as the "TP" record. It allows the user to input a code number, the trip purpose name associated with the

DDNAME	Purpose	No. of Records	LRECL
FT01F001	Zonal data in sort format	No. of zonal data records	128
FT02F001	Unscaled productions and attractions	3 records per zone	128
FT04F001	Comment records in sort format	No. comment records	128
FT05F001	Control data and zonal data	7 89 75	80
FT06F001	Printed output	Up to 5 pages/zone if Table 18 is printed	133
FT08F001	Debugging output		133
FT09F001 - SORTIN	Input to sort	Up to 11 per zone	128
SORTOUT - FT10F001	Output from sort	Up to 11 per zone	128
FT11F001	Zonal allocations for district regression model	1 record per zone plus 1 record per district	52
FT12F001	District attractions	1 record per district	156
FT13F001	Two tier regression model unscaled zonal attractions	1 record per zone	128
FT14F001	Scratch unit for ordering output	150 records per zone	133
FT15F001	Scratch unit for ordering output	2 records per zone	133
FT16F001	Scratch unit for ordering output	2 records per zone	133
FT17F001	Scratch unit for ordering output	150 records per zone	133
FT18F001	Scratch unit for ordering output	2 records per zone	133
FT20F001	Generation data card images for purposes 1-4 and external local	No. of zones	80
FT21F001	Generation data card images for purposes 5-8	No. of zones	80
FT22F001	Generation data card images for purposes 9-10	No. of zones	80

Table 1TRIPCAL5 DATA SETS

 Table 2

 TRIPCALS SORT DATA SETS

DDNAME	Purpose	Space		
SORTLIB	Contains sort load modules			
SORTMSG	Prints messages about sorts			
SORTWK01	Sort work unit	40 tracks/1000 zones on 3380 disks		
SORTWK02	Sort work unit	40 tracks/1000 zones on 3380 disks		
SORTWK03	Sort work unit	40 tracks/1000 zones on 3380 disks		

Table 3
RECOMMENDED DATA CONTROL BLOCK (DCB) AND
MAXIMUM SPACE PARAMETERS FOR DATA SETS

DDNAME	DCB	Space in 3380 Tracks		
		1,000 zones	3,000 zones	9,999 zones
FT01F001	RECFM=FB,LRECL=128,BLKSIZE=6272	38	114	380
FT02F001	RECFM=FB,LRECL=128,BLKSIZE=6272	10	30	100
FT04F001	RECFM=FB,LRECL=128,BLKSIZE=6272	32	96	320
FT09F001 - SORTIN	RECFM=FB,LRECL=128,BLKSIZE=6272	38	114	380
FT10F001 - SORTOUT	RECFM=FB,LRECL=128,BLKSIZE=6272	38	114	380
FT11F001	RECFM=VBS,LRECL=6228,BLKSIZE=6232	2	6	20
FT12F001	RECFM=VBS,LRECL=6228,BLKSIZE=6232	4	12	40
FT13F001	RECFM=FB,LRECL=128,BLKSIZE=6272	38	114	380
FT14F001	RECFM=FB,LRECL=133,BLKSIZE=1330	480	1440	4800
FT15F001	RECFM=FB,LRECL=133,BLKSIZE=1330	10	30	100
FT16F001	RECFM=FB,LRECL=133,BLKSIZE=1330	10	30	100
FT17F001	RECFM=FB,LRECL=133,BLKSIZE=1330	480	1440	4800
FT18F001	RECFM=FB,LRECL=133,BLKSIZE=1330	4	- 12	40
FT20F001	RECFM=FB,LRECL=80,BLKSIZE=6320	2	6	20
FT21F001	RECFM=FB,LRECL=80,BLKSIZE=6320	2	6	20
FT22F001	RECFM=FB,LRECL=80,BLKSIZE=6320	2	. 6	20
SORTWK01		40	120	400
SORTWK02		40	120	400
SORTWK03		40	120	400

Note: FT14F001 and FT17F001 will require much less space if Table 6 is not printed or if Table 6 is printed for only a few zones.

code number, the production model option to be used to compute the productions for that trip purpose, the attraction model option to be used to compute the attractions for that trip purpose, a code indicating whether the trips for that trip purpose should be balanced on the computed productions or attractions, and a flag indicating whether the trip purpose is non-home based or truck-taxi. The option is also provided for the user to input a control total of trips to be used for the area.

These two records will be input for all options and will contain the information that defines most of the remaining input for the program. There are, however, some typical inputs which are optional depending upon the user. In some urban areas, it is desirable to have socioeconomic information and resulting trip estimates printed for aggregations of zones. These aggregations of zones are typically referred to as sectors and/or districts. Zones may also be grouped together by area type in cases where area type may be one of the independent variables used in one or more models. TRIPCAL5 accepts table of equals information which equates zone numbers with sectors, districts, and/or area type. Up to 100 sectors and/or districts may be used. Up to 24 area types may be used. The table of equals information for sectors is input using the sector table of equals (ES) records. The information for districts is input using the district table of equals (EA) record. Area type is input using the area type table of equals (AT) records. The formats for these records are found in Appendix A.

As previously mentioned, TRIPCAL5 uses socioeconomic data normally used in trip generation modeling. In addition, however, provision is made for the input and use of other variables which may be unique (or just available) to a particular area. These variables may also be given names for use in the program outputs. Table 4 presents a listing of the variables input on both the Input Data Record One (DA1) and the Input Data Record Two (DA2). It is important to note the variable number assigned to each variable in column one. This is the number used in other input records to identify the variable being used in the selected trip generation model (except where otherwise noted). It will also be noted that none of the variables on the DA2 record have a name. These can be user-specified through the use of the Independent Variable Name (NAM) records. These records input the variable number (i.e., column one in Table 1) and the name of that variable. The user has the ability to input and use different variables and/or combinations of variables for trip generation.

Independent Variable Number	Data Card Type	Data Card Field Number	Data Card Field Name
1	DA1	2	Zone size in acres
2	DA1	3	Total zone population
3	DA1	4	Total households in zone
4	DA1	5	Average household size for zone
5	DA1	6	Median household income in zone
6	DA1	7	Zone total employment
7	DA1	8	Zone total basic employment
8	DA1	9	Zone total retail employment
9	DA1	10	Zone total service employment
10	DA2	2	Value of selected independent variable
11	DA2	3	Value of selected independent variable
12	DA2	4	Value of selected independent variable
13	DA2	5	Value of selected independent variable
14	DA2	6	Value of selected independent variable
15	DA2	7	Value of selected independent variable
16	DA2	8	Value of selected independent variable
17	DA2	9	Value of selected independent variable

Table 4 TRIPCAL5 INDEPENDENT VARIABLES

TRIPCAL5 also allows the trip productions and attractions for special generators to be directly input via the use of the Special Generator Productions (SGP) records and the

.

Special Generator Attractions (SGA) records. In addition, add-on trip productions and attractions may be input for selected zones. The Add-On Trip Production (AOP) and Add-On Trip Attraction (AOA) records may be used for this purpose. The special generator data to be added to each zone's data for table tabulation is input using the SGZ records. Additional comment information on the special generators may be input using the CMT records and printed in TRIPCAL5, Table 21. These records are basically the same as the C-2 and C-3 cards used in TRIPCAL4. It should be noted that special generator productions and attractions, add-on productions and attractions, special generator data, and comment information on the special generators should be input after the zonal data have been input. These records, as well as the zonal data records (i.e., DA1, DA2, DA3, DA4, and DA5 records) must follow the program control and setup records in terms of input sequence. Reference may be made to Appendix A for the format for these records.

PRODUCTION MODELS

As discussed previously, there are four typical production models used in trip generation. This section will discuss the required setup for each. The assumption is made in the first two options that the trip rates being used are trips per household. This does not have to be the case, and it will be discussed later in this section.

Two-WayCross-Classification

A two-way cross-classification production model simply uses trip rates (normally trips per household) stratified by two independent variables, e.g., household size and household income. The user specifies the independent variables and the number of categories (up to a maximum of six). The following inputs are required to run a two-way cross-classification model:

Production Column Information (PCI) Record - This record inputs the independent variable name for the column stratification, identifies the default marginal model to be used, inputs the number of stratifications (i.e., number of columns up to a maximum of six), and inputs a data description (name or range of values) for each

stratification (i.e., column).

Production Row Information (PRI) Record - This record inputs the independent variable name for the row stratification, identifies the default marginal model to be used, inputs the number of stratifications (i.e., the number of rows up to a maximum of six), and inputs a data description (name or range of values) for each stratification (i.e., row).

Production Trip (PT) Rate Records - These records input the production trip rates for each trip purpose being used to estimate the trip productions for that trip purpose. One record is required for each trip purpose and each row stratification. It inputs the trip rate for each column stratification for that trip purpose and row stratification.

Regional Distribution for Production Cross-Classification (PCR) Record - This record inputs the distribution of households (assuming trip rates are trips per household) for the urban area and are stratified by the same independent variables as the trip rates input on the PT records and defined by the PCI and PRI records. This is the "seed" distribution used in combination with the zonal marginal distributions to develop estimates of the number of households within each category at the zone level.

If household income and/or household size are being used as independent variables, income ranges (IR) and household size ranges (HS) records must also be input to define the income ranges and household size ranges being used in the model. The format for these records is in Appendix A.

Three-Way Cross-Classification

The setup for running a three-way cross-classification model is the same as that for a two way cross-classification model with one additional record being required as described below:

Production Depth Information (PDI) Record - This record inputs the independent variable name for the depth stratification, identifies the default marginal model to be used, inputs the number of stratifications (i.e., number of depth categories up to a maximum of four), and inputs a data description (name or range of values) for

each stratification (i.e.,,depth).

The PT and PCR records provide for the input of the depth information along with the two-way cross classification information. Reference may be made to the format for these records in Appendix A.

Linear Regression

The linear regression setup requires only one record other than the general program setup. That record is as follows:

Production Regression Model (PMR) Record - This record inputs the trip purpose code (i.e., the trip purpose for which this model is to be used), the value of the constant in the linear regression equation, the independent variable numbers, and respective coefficients. Up to six independent variables may be input.

This model as well as the previous two may use non-typical independent variables. These variables would be input via the data two (DA2) record. To provide a name for these type variables, the user may use the following:

Independent Variable Name (NAM) Record - This record inputs the variable number on the DA2 record and the name of the variable. It gives the program a name to associate with the variables input via the DA2 record.

Cross-Classification Regression

This model, when used for productions, requires a different setup than the other models. In effect, the user has to set up the program as if a two-way cross-classification model was being run. This description is for the case where the user is using trip rates that are stratified by area type (up to six) and households/employment type (combined categories cannot exceed six). The user would set the program up as if a two-way cross-classification model were being run. The input records would be the same with the appropriate descriptions being input. The key difference in this setup would be the use of the DA2 record to input a variable which would be the sum of the zone's households and employment. The DA3 and DA4 records (see Appendix A) would be used to input the marginal distributions for each zone. If area type were the independent variable for the

columns, the DA3 record would set up the marginal distribution for that variable as 100 percent for the zone with that area type. In other words, the marginal distribution for that independent variable would be 100 percent for each zone depending on what area type the zone was. The marginal distribution for the row independent variable would be the respective percentages for each of the variables added to make up the variable input on the DA2 record. For example, Table 5 shows a typical cross-classification where there are five area types as the column independent variables and four row independent variables, those being households and three types of employment. Assume, for purposes of this example, that a zone has 20 households, 100 basic employees, 30 retail employees, 50 service employees, and is an area type one zone. The new variable input on the DA2 card would have a value of 200. The marginal distribution for that zone input on the DA3 record (the record used to input the zonal marginal distribution for the column independent variable) would be 100 percent for the first column and zero for the other columns (see format in

	Area Type 1	Area Type 2	Area Type 3	Area Type 4	Area Type 5
Households					
Basic Employment				4. 	
Retail Employment					
Service Employment					

 Table 5

 CROSS-CLASSIFICATION REGRESSION EXAMPLE

Appendix A). The marginal distribution input for the row independent variables on the DA4 record would be 10 percent for the first row (households), 50 percent for the second row (basic employment), 15 percent for the third row (retail employment), and 25 percent for the fourth row (service employment). In setting up the production model in this option,

the user will know, in most cases, the exact marginal distribution for each zone; and the regional distribution (input via the PCR record) will be found by summing all the zonal marginal distributions.

This particular example illustrates how the flexibility of TRIPCAL5 may be used to implement trip production models other than those most typically used.

ATTRACTIONMODELS

There are five types of attraction trip models which have been used in trip generation modeling. This section will discuss the required setup for each in terms of the necessary input records for TRIPCAL5 to be able to execute the type of attraction model desired.

Two-WayCross-Classification

A two-way cross-classification attraction model simply uses trip rates stratified by two independent variables, e.g., income and employment type. The user specifies the independent variables and the number of categories for each (up to a maximum of six). The following inputs are required to run a two-way cross-classification attraction model:

Attraction Column Information (ACI) Record - This record inputs the independent variable name for the column stratification, inputs the number of stratifications (number of columns up to a maximum of six), and inputs a data description (name or range of values) for each stratification (column).

Attraction Row Information (ARI) Record - This record inputs the independent variable name for the row stratification, inputs the number of stratifications (number of rows up to a maximum of six), and inputs a data description (name or range of values) for each stratification (row).

Attraction Trip Rate (AT) Records - These records input the production trip rates (for each trip purpose) being used to estimate the trip attractions. One record is required for each trip purpose and each row stratification. It inputs the trip rate for each column stratification for that trip purpose and row stratification.

Cross-Classification Variable Number (CCV) Record - This record inputs the variable number of the variable that will be distributed by the production cross-

classification model and the variable number of the variable that will be distributed by the attraction cross-classification model. The input is required for the attraction cross-classification model but is only used for the production cross-classification model if households are not the base unit for the trip rates.

Regional Distribution for Attraction Cross-Classification (ACR) Records - These records input the distribution of the variable which is the base unit for the trip rates being used in the attraction model. For example, if the trip rates were in units of trips per employee, the ACR records would contain the distribution of employees for the urban area stratified by the same independent variables as input on the ACI and ARI records. This is the "seed" distribution used in combination with the zonal marginal distributions to estimate the number of units (base variable) within each category at the zone level.

Data Card Three (DA3) Records - These records input, for each zone, the column marginal distribution of the variables which serve as the base unit for the trip rates being used in the model. The record provides for the input of the column marginal distribution for both the production and attraction model. The production marginal distribution is optional (depending on the production model and its independent variables), but the column marginal distribution for the attraction model is <u>required</u> in this setup. For example, if the column independent variable in the attraction model were income with five stratifications and the trip rates being used were trips per employee, the input on these cards would specify, for each zone, the percentage of employees in each of the five income categories.

Data Card Four (DA4) Records - These records input, for each zone, the row marginal distribution for the variable being used as the base unit for the trip rates being used in the attraction model. Provision is made for the input of the row marginal distribution for the variable being used in the production model as well as the attraction model, but it may not be used depending on the independent variables in the production model. The row marginal distribution is <u>required</u> for the attraction model in this setup.

Three-Way Cross-Classification

The setup for running a three-way cross-classification attraction model is the same as that for a two-way cross-classification attraction model with two additional records being required as described below:

Attraction Depth Information (ADI) Record - This record inputs the independent variable name for the depth stratification, inputs the number of stratifications (number of depth categories up to a maximum of four), and inputs a data description (name or range of values) for each stratification (depth).

Data Card Five (DA5) Records - These records input, for each zone, the depth marginal distribution of the variables which serve as the base unit for the trip rates being used in the model. The record provides for the input of the depth marginal distribution for both the production and attraction models. The production marginal distribution may not be used (depending on the production model and its independent variables), but the depth marginal distribution for the attraction model is required in this setup.

Cross-Classification Regression

The cross-classification regression attraction model option in TRIPCAL5 is specifically designed for estimating attractions using trip rates that are stratified by area type and for up to six other independent variables. The six independent variables are not disaggregated at the zone level, and the variables used must be input for each zone on either the DA1 and/or the DA2 records. Up to 24 different area types may be used. The required records for this model setup are as follows:

Attraction Cross-Classification Regression (AMC) Records - These records input the trip purpose code for which attractions are being estimated (using values on this record), the area type (up to 24), the number of independent variables (for this trip purpose and area type), the variable number (up to six variables may be specified), and the value of the coefficient associated with that variable.

The only other input for this model is dependent on the variables used in the model. If a non-typical variable (i.e., one which is not being input on the DA1 record) is being used, it will have to be input via a DA2 record.

Linear Regression

The linear regression attraction model requires only one type of input record other than the general program setup. Those records will be the following type:

Attraction Simple Regression (AMR) Records - These records input, for each trip purpose, the number of independent variables in the regression equation, the value of the constant in the equation, the variable number for each independent variable, and the value of the associated coefficient with each independent variable.

Two-Tier Regression

The two-tier regression attraction model requires the following input records:

Attraction District Regression (DR) Records - These records input, for each trip purpose, the number of independent variables in the regression equation, the value of the constant in the equation, the variable number for each independent variable, and the value of the coefficient associated with each independent variable. The regression equation input via these records is for estimating the number of attractions to each district in the urban area under study.

District to Zone Regression Allocation (DZR) Records - These records input, for each trip purpose, the regression equation used to estimate the attractions for each zone. The zonal attractions for the zones in each district are forced to total the estimated attractions for each district. The data input via these records includes the number of independent variables (up to six), the value of the constant in the equation, the variable number for each independent variable, and the value of the coefficient associated with each independent variable.

District Table of Equals (ED) Records - These records input the table of equals information which tells the program the zones which are a part of each district.

Disaggregation Setups

There are several options available for disaggregating data at the zone level for estimating

trip productions. As mentioned in the setups for the attraction cross-classification models, the DA3, DA4, and DA5 input records allow marginal distributions to be input for any base unit variable being used for the production trip rates. It should be noted that when the column, row, and depth information were being input for the production cross-classification models, one of the inputs was to identify whether the independent variable was household income, household size, auto ownership, or none. "None" stipulates that a variable other than income, household size, or auto ownership is being used. The program then expects to read the following record:

Cross-Classification Variable Number (CCV) Record - This record inputs the variable number of the variable that will be distributed by the production cross-classification model and the variable number of the variable that will be distributed by the attraction cross-classification model. The input is required for the attraction cross-classification model but is only used for the production cross-classification model if households are not the base unit for the trip rates.

With respect to the use of household size, household income, and auto ownership, the user has three other options available to estimate the marginal distributions at the zone level. The first is the use of disaggregation curves. These curves may be input using the following records:

Household Size Disaggregation Curves (HH) Records - These records input, for each value of the ratio of zonal average household size to the regional average household size (values range from 1.1 to 3.5 in increments of 0.1), the percentage of households in household size category 1, the percentage of households in household size category 2, etc., to the percentage of households in household size category 6.

Household Income Disaggregation Curves (IC) Records - These records input, for each value of the ratio of zonal median income to the regional median income (values range from 0.1 to 2.5 in increments of 0.1), the percentage of households in income category 1, the percentage of households in income category 2, etc., up to the percentage of households in income category 6.

Auto Ownership Disaggregation Curves (AU) Records - These records input median household income ranges (i.e., beginning and ending values); and, for each range, the

percentage of households with 0 autos, with 1 auto, with 2 autos, and with 3 or more autos is input.

The second option available to the user with respect to these three variables is the use of the default models which are incorporated into TRIPCAL5. These models do not have to be specified except in the PCI, PRI, and PDI records which identify which variable is the column, row, or depth independent variable. If the user does not input zonal marginal distributions (via the DA3, DA4, and/or DA5) records and does not input the disaggregation curves (see above), TRIPCAL5 assumes (provided the specification is on the PCI, PRI, and/or PDI records) that the default models are to be used.

The third option available to the user is to use a combination of options. Two combinations may be used. The user may input marginal distributions for selected zones and use either disaggregation curves or the default models for the other zones. This allows the user to use available information to improve the travel demand estimates.

The disaggregation of zonal data requires both the regional distribution (input via the PCR and/or ACR records) and an estimate of the marginal distribution for each zone. The user may input the marginal distributions for each zone and use any variable as specified on the CCV record. If households are the base unit for the production trip rates and household size, household income, and/or auto ownership are independent variables in the cross-classification production model, the user may input marginal distributions, input disaggregation curves, use default models, or use a combination.

> ---• •

TRIPCAL5 EXAMPLE SETUPS

With the ability to specify three (or more) trip production models, five (or more) trip attraction models, different disaggregation options, etc., it is not possible to provide an example setup of every different combination. Two different types of examples are, however, included in this section. The first set of examples is the records necessary to run specific models and options in TRIPCAL5. The second set of examples is actual data inputs for several trip generation runs for selected urban areas in Texas.

The example setups shown in Table 6 simply illustrate the specific record inputs required for the models and options identified. The formats for the records are contained in Appendix A and describe the specific information for each record as well as the format for coding the information. Not shown in the examples in Table 6 are the inputs for the sector, area type, and district tables of equals except where required. These inputs are primarily for summary reporting, and the user should input them if these types of reports are desired.

The first example in Table 6 is a two-way cross-classification production model with trip rates (trips per household) stratified by household size and household income. The attraction model is a cross-classification regression with trip rates stratified by area type, households, and employment type. The zonal marginal distributions are computed using disaggregation curves for both household size and household income. The second example is the same as the first example except the zonal marginal distributions are computed using the default models.

The third example in Table 6 is a two-way cross-classification model for both productions and attractions. The production trip rates (trips per household) are stratified by household size and auto ownership. The attraction trip rates are stratified by employment type and income. Note that in this case, the income disaggregation for the attraction model is done by the input of the marginal distributions for each zone. The marginal distributions for the zones for the production model are computed using the default model for the household size and disaggregation curves for auto ownership.

Table 6 TRIPCAL5 PROGRAM SETUPS

Production Model Type	2-Way Cross-Class.	2-Way Cross-Class.	2-Way Cross-Class.	Linear Regression	3-Way Cross-Class.	3-Way Cross-Class.	2-Way Cross-Class.	Cross-Class Regression
Production Column Variable	Household Size	Household Size	Housebold Size		Household Size	Housebold Size	Household Size	Area Type
Production Row Variable	Household Income	Household Income	Auto Ownership		Household Izcome	Housebold Income	Household Income	Household & Employment
Production Depth Variable					Age of Head Housebold	Auto Ownership		
Altraction Model Type	Cross-Class. Regression	Cross-Class. Regression	2-Way Cross-Class.	Two-Tier Regression	Linear Regression	3-Way Cross-Class.	Two-Tier Regression	Cross-Class. Regression
Attraction Column Variable	Алеа Туре	Area Type	Employment Type			Area Type		Area Type
Attraction Row Variable	Housebolds & Employment	Households & Employment	lacome			Income		Household & Employment
Attraction Depth Variable						Empkoyment Type		
Income Disaggregation	Disaggregation Curves	Default	Zone Marginals		Disaggregation Curves	Default / Zone Marg.	Defauk / Zone Marg.	
Household Size Disaggregation	Disaggregation Curves	Default	Default		Default	Default	Disaggregation Curves	
Auto Ownership Disaggregation			Disaggregation Curves			Disaggregation Curves		
Other Disaggregation					Zone Marginals	Zone Marginals		Zone Marginals
Input Records	PS	PS	PS	PS	PS	PS	PS	PS
	TP	TP	TP	TP	TP	TP	TP	TP
	TBL	TBL	TBL	TBL	TBL	TBL	TBL	TBL
	PCI	PCI	PCI	PMR	PCI	PCI	PCI	PCI
	PRI	PRI	PRI	DR	PRI	PRI	PRI	PRI
	АМС	AMC	ACI	DZR	PDI	PDI	DR	АМС
	ACI	ACI	ARI	ED	AMR	v ci .	DZR	ACI
	ARI	ARI	PT	NAM *	PCR	ARI	PCR	ARI
	PT	PT	AT	DAI	IC	ADI	NAM •	PT
	AT	AT	PCR	DA2 •	IR	ccv	PT	AT
	PCR	PCR	ACR		HS	PCR	IR	PCR
	ю	IR	HS		DA1	ACR	нн	EA
	IR	HS	AU		DA2	PT	нs	DAI
	нн	EA	ccv		DAS	AT & DAI	DAI	DA3
	HS	DA1	DA1			EA & DA2	DA2 *	DA4
	EA		DA2			IR & DA3	DA4	
	DAI		DA3			HS & DA4		
		<u></u>	DA4			AU & DAS		

The fourth example illustrates the input for a linear regression production model and a two-tier linear regression attraction model. The input records with an "*" are optional depending on the variables specified in the models. For example, if school employment were being used as an independent variable, it would be input on the DA2 record and named with the NAM record.

The fifth example is a three-way cross-classification production model and a linear regression attraction model. The production trip rates (trips per household) are stratified by household size, household income, and age of head of household. The zonal marginal distributions are computed using disaggregation curves for household income, the default model for household size, and are input for age of head of household for each zone on the DA5 records. The DA2 record is shown here assuming additional variables for the attraction regression model (i.e., other than those already on the DA1 record).

The sixth example is the most complex in that it is a three-way cross-classification model for both productions and attractions. The production trip rates (trips per household) are stratified by household size, household income, and auto ownership. The attraction trip rates are stratified by area type, income, and employment type. The disaggregation for the production model uses the default model for household income and household size and the disaggregation curves for auto ownership. The disaggregation for each of the attraction independent variables is input on the DA3, DA4, and DA5 records. The input records are shown double at the end simply to avoid continuing the table on the next page.

The seventh example is a two-way cross-classification production model with a twotier regression attraction model. The production trip rates (trips per household) are stratified by household size and household income. The disaggregation of households by household income is done using the default model <u>and</u> marginal distributions input directly for selected zones. The household size disaggregation is done using disaggregation curves. Note that the only distinction between this example and the first two examples is the DA4 record which would be input <u>only</u> for those zones where the marginal distribution of households by household income was being input. The NAM and DA2 records are shown as optional (indicated by "*") since their requirement would be dependent on the independent variables being used in the two regression models. The eighth example in Table 6 is a cross-classification regression model for both productions and attractions. The trip rates for both are stratified by area type, households, and employment type. The marginal distributions for the production model are input for each zone on the DA3 and DA4 records.

As an aid in further understanding the input to run TRIPCAL5, three examples of the actual data input for two urban areas are shown in Appendix B, Tables B-2, B-3, and B-4. The first is a test run using data from the Dallas-Fort Worth area. The model being tested was a two-way cross-classification trip production model and a three-way crossclassification trip attraction model. This setup was run for only one trip purpose, home based work trips, because this was the type model used in the Dallas-Fort Worth area in their trip generation program. Production trip rates are stratified by six categories of household size and four categories of household income. The attraction trip rates (trips per employee) are stratified by five area types, four income categories, and three employment types. Only two examples are shown of the DA1, DA2, DA3, DA4, and DA5 records. This was done to keep the length of the example to a manageable level since there were 605 zones (five data records per zone would yield over 3,000 records). It will be noted that the disaggregation of the households by income group and household size was done using disaggregation curves for the production model. The disaggregation of employees in the attraction model was done by inputting the marginal distribution for each zone (i.e., by inputting the DA3, DA4, and DA5 records).

The second example shown in Appendix B is also for the Dallas-Fort Worth area. In this example, TRIPCAL5 was set up to run a two-way cross-classification trip production model for home based non-work and non-home based trips. The trip attraction model was a cross-classification regression model using trip rates stratified by five area types versus households and by three employment types. The trip production rates were stratified by four income groups (i.e., income quartiles) and six groups of household size. Once again, only two examples are shown for the DA1 records. It will be noted that the disaggregation curves were used for disaggregating households by income group and household size for the production model.

The third example in Appendix B is for the Austin urban area. It differs from the
previous two examples in that the trip production model used is a three-way crossclassification model with trip rates (trips per household) stratified by household size (three categories), household income (five categories), and auto ownership (four categories). The trip attraction model is a cross-classification regression model with trip rates stratified by area type versus households and by three types of employment. The disaggregation of households at the zonal level for the production model is done using the default models in TRIPCAL5. One of the main differences in this example is that the trip productions are estimated for each zone and then percentages are applied to estimate the home based work, home based non-work, and non-home based productions. The total truck-taxi productions are read in directly on the TP record. The trip purpose percentages are input by income category on the PCT records. Productions and attractions for special generators are input via the SGP and SGA records and add-on trips are input via the AOP and AOA records.

Appendix C also contains input cross-reference tables which list the required and optional input records for each model in TRIPCAL5.

· ·

~

TRIPCAL5 PROGRAM OUTPUT

In keeping with the overall concept of flexibility, the program output from TRIPCAL5 has been designed to allow, as much as possible, the user to specify the output desired. In addition to the information output for direct input to the trip distribution process, 21 different reports may be printed. The user specifies the report(s) to be printed by inputting the TBL record. A listing of the reports and their respective numbers is shown in Table 7.

TRIPCAL5, Table 1 prints out the production and attraction models specified by the user for each trip purpose. Included are the trip rates if a cross-classification type model is being used and/or the constant and coefficients input if a regression model is being used.

TRIPCAL5, Tables 2, 3, and 4 are basically equivalency tables which print out, respectively, the zone to sector equivalencies, zone to district equivalencies, and zone to area type equivalencies.

TRIPCAL5, Table 5 prints out the regional distribution input for the production model and/or the attraction model. For example, if the production model is a two-way cross-classification with trip rates (trips per household) stratified by household size and household income, the regional distribution (for the production model) would be the percentage of households for each category of household size by each category of household income.

TRIPCAL5, Tables 6, 7, and 8 output the disaggregate results of the trip generation process. Respectively, the results are printed by zone, sector, and/or area type. Depending upon the number of zones and the type model used, the output for Table 6 (i.e., for each zone) can be extensive. For example, if a two-way cross-classification model is used for productions, the trip production output for Table 6 would be the trips produced for each individual stratification of independent variables for each trip purpose. If the user wants the Table 6 output only for certain zones, these zone numbers must be input using the SEL record. This allows the user to analyze the detailed information for only selected zones. If no zones are specified on the SEL record(s), Table 6 is not printed. If Table 6 is desired, the SEL record(s) must be input.

Table 7TRIPCALS OUTPUT TABLES

Table Number	Title of Table
1	TRIP MODEL INPUT
2	ZONE TO SECTOR TABLE OF EQUALS
3	ZONE TO DISTRICT TABLE OF EQUALS
4	ZONE TO AREA TYPE TABLE OF EQUALS
5	REGIONAL DISTRIBUTION
6	DISAGGREGATE ZONAL RESULTS
7	DISAGGREGATE SECTOR RESULTS
8	DISAGGREGATE AREA TYPE RESULTS
9	UNSCALED RESULTS
10	SCALING FACTOR COMPUTATIONS
11	AGGREGATE PRODUCTIONS AND ATTRACTIONS BY SECTOR
12	AGGREGATE PRODUCTIONS AND ATTRACTIONS BY ZONE WITHIN SECTOR
13	AGGREGATE PRODUCTIONS AND ATTRACTIONS BY AREA TYPE
14	AGGREGATE PRODUCTIONS AND ATTRACTIONS BY ZONE WITHIN AREA TYPE
15	STUDY AREA CHARACTERISTICS SUMMARY BY SECTOR
16	STUDY AREA CHARACTERISTICS SUMMARY BY ZONE WITHIN SECTOR
17	STUDY AREA CHARACTERISTICS SUMMARY BY AREA TYPE
18	STUDY AREA CHARACTERISTICS SUMMARY BY ZONE WITHIN AREA TYPE
19	STUDY AREA CHARACTERISTICS SUMMARY BY ZONE
20	FINAL PRODUCTIONS AND ATTRACTIONS
21	SPECIAL GENERATOR DATA COMMENTS

TRIPCAL5, Table 9 presents the unscaled productions and attractions by trip purpose and zone, and Table 10 presents the scaling factor computations.

TRIPCAL5, Tables 11, 12, 13, and 14 contain the aggregate productions and attractions which have been estimated for each trip purpose. Table 11 presents the estimates by sector, Table 12 presents the estimates by zone within each sector, Table 13 presents the estimates by area type, and Table 14 presents the estimates by zone within each area type.

TRIPCAL5, Tables 15, 16, 17, 18, and 19 present basic data for the study area in different formats. The data presented include population, households, average household size, employment, employment by type, autos per household, autos per person, household income; and trips per person and trips per household by trip purpose. This information can be printed by sector, by zone within each sector, by area type, by zone within each area type, and/or just by zone.

TRIPCAL5, Table 20 presents the final productions and attractions by trip purpose for each zone. These values have been scaled according to the specifications of the user and are the base information output in the correct format for input to the trip distribution process.

TRIPCAL5, Table 21 prints out the comment information on the special generators which were input via the CMT records. This information is printed out by zone. If no zones are specified on the SEL record(s), Table 6 is not printed. If Table 6 is desired, the SEL record(s) must be input.

Appendix D contains example printouts of each table. The printouts reflect the information for one or two zones only and are included simply to illustrate the format and content for each table.

Generation Card Output

The format of the generation cards is the same as is used in TRIPCAL4. There are some differences, however, since there are 10 possible trip purposes; and these purposes may be in any order. The first four trip purposes are output in the generation card format as shown in Table 8. If non-home based trips are present, these are also output as external local attractions. The non-home based trip purpose is recognized from the "N" flag on the TP

record. Trip purposes 5 through 8 are output in the second format as shown in Table 9 to Unit 21. If trip purpose 9 or 10 is used, these are output to Unit 22 in the format shown in Table 10. These three formats are identical in fields except that Tables 9 and 10 have fewer fields. The formats all specify productions and attractions. If one of the purposes is NHB, then productions for that purpose will be origins; and attractions will be destinations.

For the generation card format to be identical to TRIPCAL4, a four-purpose model with purpose 1 being non-home based, purpose 2 being home based work, purpose 3 being home based non-work, and purpose 4 being truck-taxi must be run in TRIPCAL5.

Table 8 GENERATION OUTPUT FORMAT FOR UNIT 20

Format - ("GENERATION,"15,1015,A10,I1,I4)

<u>Columns</u>	<u>FMT</u>	Contents
1-10	A10	"GENERATION"
11-15	15	Serial Zone Number
16-20	15	Productions for Trip Purpose 1
21-25	15	Attractions for Trip Purpose 1
26-30	15	Productions for Trip Purpose 2
31-35	15	Attractions for Trip Purpose 2
36-40	15	Productions for Trip Purpose 3
41-45	15	Attractions for Trip Purpose 3
46-50	15	External Local Productions ¹
51-55	15	External Local Attractions ²
56-60	15	Productions for Trip Purpose 4
61-65	15	Attractions for Trip Purpose 4
66-75	A10	Study ID
76	I1	Mode ($0 = Person Trips$, $1 = Auto Driver Trips$)
77-80	I4	Year

¹ This field is output as zero from TRIPCAL5 since it is assumed that TRIPCAL5 only processes internal zones.

 $^{^2}$ The present TRIPCAL5 takes the NHB attractions for this field. The NHB trip purpose is detected by the Non Home based Flag on the TP card (an "N" in column 34 of the TP card).

Table 9GENERATION OUTPUT FORMAT FOR UNIT 21

Format - ("GENERATION, "I5,6I5,10X,2I5,A10,I1,I4)

<u>Columns</u>	<u>FMT</u>	Contents
1-10	A10	"GENERATION"
11-15	15	Serial Zone Number
16-20	15	Productions for Trip Purpose 5
21-25	15	Attractions for Trip Purpose 5
26-30	15	Productions for Trip Purpose 6
31-35	15	Attractions for Trip Purpose 6
36-40	15	Productions for Trip Purpose 7
41-45	15	Attractions for Trip Purpose 7
56-60	15	Productions for Trip Purpose 8
61-65	I5	Attractions for Trip Purpose 8
66-75	A10	Study ID
76	I1	Mode ($0 = Person Trips$, $1 = Auto Driver Trips$)
77-80	I4	Year

Table 10GENERATION OUTPUT FORMAT FOR UNIT 22

Format - ("GENERATION,"I5,4I5,30X,A10,I1,I4)

<u>Columns</u>	<u>FMT</u>	Contents
1-10	A10	"GENERATION"
11-15	15	Serial Zone Number
16-20	I5	Productions for Trip Purpose 9
21-25	15	Attractions for Trip Purpose 9
26-30	15	Productions for Trip Purpose 10
31-35	15	Attractions for Trip Purpose 10
66-75	A10	Study ID
76	I1	Mode ($0 = Person Trips$, $1 = Auto Driver Trips$)
77-80	I4	Year

APPENDIX A RECORD FORMATS AND DESCRIPTIONS

TABLE A-1TRIPCAL5 DATA AND CONTROL RECORDS

CONTROL

RECORDS

PS	Program Control/Specification Record	36
TP	Trip Purpose Record	37
TBL		38
SEL	•	39
CCV		40
PCI		41
PRI		42
PDI		43
PMR		44
NAM		45
AMR		46
AMC		47
ACI	······································	48
ARI		49
ADI		50
DR	$-\mathbf{r}$	51
DZR		52
PCR		53
PCT		54
PT		55
ACR	1	56
AT		57
ES		58
EA		59
ED		60
IC		61
IR	50 0	62
HH		63
AU		64
HS		65
DA1		56
DA2		57
DA3	-	58
DA4	-	59
DA5	*	70
SGP	•	71
SGA	-	72
AOP	······································	73
AOA		74
	T in the second se	

SGZ	Special Generator Data	75
CMT	Zone Comment card	76

ł

PS Program Control/Specification Record

Format - (A2,1X,A15,I7,2I4,I5,4I2,F10.0,F8.3,I2)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"PS"
4-18	A15	Name of urban area
19-25	17	Number of zones (up to 9,999)
26-29	I4	Number of sectors (up to 100)
30-33	I4	Number of generation areas (up to 24)
34-38	15	Study year
39-40	I2	Trip type code ($0 = person trips$, $1 = auto driver trips$)
41-42	12	Purpose code (0 = distinct trip model for each trip purpose [no PCT records], 1 = PCT records input by row category, 2 = PCT records input by column category, 3 = PCT records input by depth category)
43-44	12	Add-on records code ($0 = no$ add-on records, $1 =$ special generator or add-on records)
47-56	F10.0	Regional median income
57-64	F8.3	1967 based consumer price index
65-66	12	Default truck-taxi model code ($0 = use truck-taxi default model to compute control total for truck-taxi trips; 1 = do not use truck-taxi default model)$

TP Trip Purpose Record

Format - (A3,T3,I3,1X,A20,1X,A1,1X,A1,1X,A1,1X,A1,T41,F10.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"TP"
4-5	12	Trip purpose code (1-10)
7-26	A20	Trip purpose name
28	A1	Production model option
30	A1	Attraction model option
32	A1	Balance code (" P " = balance to productions, " A " = balance to attractions)
34	A1	Flag for non-home based = "N" or Truck-Taxi = "T"
41-50	F10.0	Trip control total

Production Model Option Codes:

- A = two-way cross-classification table ("PCI", "PRI", and "PCR" records)
- B = three-way cross-classification table ("PCI", "PRI", "PDI", and "PCR" records)
- C = simple regression model ("PMR" record)

Attraction Model Option Codes:

- A = two-way cross-classification table ("ACI", "ARI", and "ACR" records)
- B = three-way cross-classification table ("ACI", "ARI", "ADI", and "ACR" records)
- C = simple regression model ("AMR" record)
- D = regression type cross-classification ("AMC" records)
- E = two-tier regression model ("DR" and "DZR" records)

TBL Reports to Be Printed

Format - (A3,2X,15I5)

<u>Columns</u>	FMT	Contents
1-2	A3	"TBL"
6-10	15	Report number ³
11-15	15	Report number
16-20	15	Report number
21-25	15	Report number
26-30	15	Report number
31-35	15	Report number
36-40	15	Report number
41-45	15	Report number
46-50	15	Report number
51-55	15	Report number
56-60	15	Report number
61-65	15	Report number
66-70	15	Report number
71-75	15	Report number
76-80	I5	Report number

³Two consecutive report numbers on one TBL record can form a range by using a dash before the second report number. Ranges cannot be split over records.

SEL Zones to Be Printed in Table 6

Format - (A3,2X,15I5)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A3	"SEL"
6-10	15	Zone number ⁴
11-15	15	Zone number
16-20	15	Zone number
21-25	15	Zone number
26-30	15	Zone number
31-35	15	Zone number
36-40	15	Zone number
41-45	15	Zone number
46-50	15	Zone number
51-55	15	Zone number
56-60	15	Zone number
61-65	15	Zone number
66-70	15	Zone number
71-75	15	Zone number
76-80	15	Zone number

⁴Two consecutive zone numbers on one SEL record can form a range by using a dash before the second zone number. Ranges cannot be split over records.

CCV Cross-Classification Variable Number Record

value.

Format - (A3,T5,I2,I3)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"CCV"
5-6	12	Production cross-classification variable number. This is the variable which will be distributed by the production cross- classification model. The variable number may be between 1 and 17. Variables 1 through 9 are taken from the DA1 record, and variables 10 through 17 are taken from the DA2 record. If there is no CCV card image, then the default is 3.
7-9	13	Attraction cross-classification variable number. This is the variable which will be distributed by the attraction cross-classification model. The variable number may be between 1 and 17. Variables 1 through 9 are taken from the DA1 record, and variables 10 through 17 are taken from the DA2 record. There is no default

PCI Production Column Information Two-WayCross-Classification Model

Format - (A3,1X,A10,1X,A1,1X,I1,1X,6A10)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"PCI"
5-14	A10	Column variable name
16	A1	Default marginal model code ("N" = none, "I" = Income, "H" = Household size, "A" = Auto Ownership)
18	I1	Number of columns
20-29	A10	Column one data description
30-39	A10	Column two data description
40-49	A10	Column three data description
50-59	A10	Column four data description
60-69	A10	Column five data description
70-79	A10	Column six data and Control Records description

PRI Production Row Information Two-WayCross-Classification Model

Format - (A3,1X,A10,1X,A1,1X,I1,1X,6A10)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"PRI"
5-14	A10	Row variable name
16	A 1	Default marginal model code ("N" = none, "I" = Income, "H" = Household size, "A" = Auto Ownership)
18	I1	Number of rows
20-29	A10	Row one data description
30-39	A10	Row two data description
40-49	A10	Row three data description
50-59	A10	Row four data description
60-69	A10	Row five data description
70-79	A10	Row six data description

PDI Production Depth Information Two-WayCross-Classification Model

Format - (A3,1X,A10,1X,A1,1X,I1,1X,4A10)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"PDI"
5-14	A10	Depth variable name
16	A 1	Default marginal model code ("N" = none, "I" = Income, "H" = Household size, "A" = Auto Ownership)
18	I 1	Number of depths
20-29	A10	Depth one data description
30-39	A10	Depth two data description
40-49	A10	Depth three data description
50-59	A10	Depth four data description

9.90° --14°.,

PMR Production Simple Regression Model

Format - (A3,I2,I3,2X,F8.0,6(I2,F8.0))

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"PMR"
4-5	12	Trip purpose code (1-10)
6-8	13	Number of independent variables (1-6)
11-18	F8.0	Constant coefficient
19-20	12	Variable number for first independent variable
21-28	F8.0	Coefficient for first independent variable
29-30	I2	Variable number for second independent variable
31-38	F8.0	Coefficient for second independent variable
39-40	12	Variable number for third independent variable
41-48	F8.0	Coefficient for third independent variable
49-50	12	Variable number for fourth independent variable
51-58	F8.0	Coefficient for fourth independent variable
59-60	12	Variable number for fifth independent variable
61-68	F8.0	Coefficient for fifth independent variable
69-70	12	Variable number for sixth independent variable
71-78	F8.0	Coefficient for sixth independent variable

NAM Independent Variable Name

Format - (A3,I3,1X,A10)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"NAM"
4-6	13	Independent variable number on DA1 (1-9) and/or DA2 (10-17) (see Table 4)
10-29	A20	Independent variable name

3

J. 1

AMR Attraction Linear Regression Model

Format - (A3,I2,I3,2X,F8.0,6(I2,F8.0))

.

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"AMR"
4-5	12	Trip purpose code (1-10)
6-8	13	Number of independent variables (1-6)
11-18	F8.0	Constant coefficient
19-20	12	Variable number for first independent variable
21-28	F8.0	Coefficient for first independent variable
29-30	12	Variable number for second independent variable
31-38	F8.0	Coefficient for second independent variable
39-40	12	Variable number for third independent variable
41-48	F8.0	Coefficient for third independent variable
49-50	12	Variable number for fourth independent variable
51-58	F8.0	Coefficient for fourth independent variable
59-60	12	Variable number for fifth independent variable
61-68	F8.0	Coefficient for fifth independent variable
69-70	12	Variable number for sixth independent variable
71-78	F8.0	Coefficient for sixth independent variable

AMC Attraction Cross-Classification Regression Model

Format - (A3,I2,2I3,T19,6(I2,F8.0))

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"AMC"
4-5	I2	Trip purpose code (1-10)
6-8	13	Area type
9-11	13	Number of independent variables (1-6)
19-20	12	Variable number for first independent variable
21-28	F8.0	Coefficient for first independent variable
29-30	I2	Variable number for second independent variable
31-38	F8.0	Coefficient for second independent variable
39-40	I2	Variable number for third independent variable
41-48	F8.0	Coefficient for third independent variable
49-50	I2	Variable number for fourth independent variable
51-58	F8.0	Coefficient for fourth independent variable
59-60	12	Variable number for fifth independent variable
61-68	F8.0	Coefficient for fifth independent variable
69-70	I2	Variable number for sixth independent variable
71-78	F8.0	Coefficient for sixth independent variable

ACI Attraction Column Information Two-WayCross-Classification Model

Format - (A3,1X,A10,3X,I1,1X,6A10)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"ACI"
5-14	A10	Column variable name
18	I1	Number of columns
20-29	A10	Column one data description
30-39	A10	Column two data description
40-49	A10	Column three data description
50-59	A10	Column four data description
60-69	A10	Column five data description
70-79	A10	Column six data description

ARI Attraction Row Information Two-WayCross-Classification Model

Format - (A3,1X,A10,3X,I1,1X,6A10)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"ARI"
5-14	A10	Row variable name
18	I1	Number of rows
20-29	A10	Row one data description
30-39	A10	Row two data description
40-49	A10	Row three data description
50-59	A10	Row four data description
60-69	A10	Row five data description
70-79	A10	Row six data description

ADI Attraction Depth Information Two-Way Cross-Classification Model

Format - (A3,1X,A10,3X,I1,1X,4A10)

<u>Columns</u>	FMT	Contents
1-3	A3	"ADI"
5-14	A10	Depth variable name
18	I1	Number of depths
20-29	A10	Depth one data description
30-39	A10	Depth two data description
40-49	A10	Depth three data description
50-59	A10	Depth four data description

DR Attraction District Regression Model

Format - (A3,I2,I3,2X,F8.0,6(I2,F8.0))

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"DR "
4-5	I2	Trip purpose code (1-10)
6-8	I3	Number of independent variables (1-6)
11-18	F8.0	Constant coefficient
19-20	12	Variable number for first independent variable
21-28	F8.0	Coefficient for first independent variable
29-30	I2	Variable number for second independent variable
31-38	F8.0	Coefficient for second independent variable
39-40	I2	Variable number for third independent variable
41-48	F8.0	Coefficient for third independent variable
49-50	12	Variable number for fourth independent variable
51-58	F8.0	Coefficient for fourth independent variable
59-60	12	Variable number for fifth independent variable
61-68	F8.0	Coefficient for fifth independent variable
69-70	12	Variable number for sixth independent variable
71-78	F8.0	Coefficient for sixth independent variable

51

DZR District to Zone Regression Allocation

Format - (A3,I2,I3,2X,F8.0,6(I2,F8.0))

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"DZR"
4-5	I2	Trip purpose code (1-10)
6-8	13	Number of independent variables (1-6)
11-18	F8.0	Constant coefficient
19-20	12	Variable number for first independent variable
21-28	F8.0	Coefficient for first independent variable
29-30	12	Variable number for second independent variable
31-38	F8.0	Coefficient for second independent variable
39-40	I2	Variable number for third independent variable
41-48	F8.0	Coefficient for third independent variable
49-50	12	Variable number for fourth independent variable
51-58	F8.0	Coefficient for fourth independent variable
59-60	12	Variable number for fifth independent variable
61-68	F8.0	Coefficient for fifth independent variable
69-70	12	Variable number for sixth independent variable
71-78	F8.0	Coefficient for sixth independent variable

PCR Regional Distribution for Production Cross-Classification Model

Format - (A3,2I2,6F5.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"PCR"
4-5	I2	Depth "i" category number (three-way cross-classification only)
6-7	12	Row "j" category
8-12	F5.0	Regional percentage of unit variable ⁵ for production trip rate within depth "i,"row "j,"and column 1
13-17	F5 .0	Regional percentage of unit variable for production trip rate within depth "i,"row "j,"and column 2
18-22	F5.0	Regional percentage of unit variable for production trip rate within depth "i,"row "j,"and column 3
23-27	F5.0	Regional percentage of unit variable for production trip rate within depth "i,"row "j,"and column 4
28-32	F5.0	Regional percentage of unit variable for production trip rate within depth "i,"row "j,"and column 5
33-37	F5.0	Regional percentage of unit variable for production trip rate within depth "i, "row "j, "and column 6

⁵Unit variable is the variable on which the trip rate is based; e.g., if trip rate is trips per household, the unit variable is households.

PCT Percent of Trips by Category Index and Trip Purpose⁶

Format - (A3,I2,10F4.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"PCT"
4-5	12	Category index (1-6) ⁷
6-9	F4.0	Percent of trips by selected category for trip purpose 1
10-13	F4.0	Percent of trips by selected category for trip purpose 2
14-17	F4.0	Percent of trips by selected category for trip purpose 3
18-21	F4.0	Percent of trips by selected category for trip purpose 4
22-25	F4.0	Percent of trips by selected category for trip purpose 5
26-29	F4.0	Percent of trips by selected category for trip purpose 6
30-33	F4.0	Percent of trips by selected category for trip purpose 7
34-37	F4.0	Percent of trips by selected category for trip purpose 8
38-41	F4.0	Percent of trips by selected category for trip purpose 9
42-45	F4.0	Percent of trips by selected category for trip purpose 10

⁶ Only present if not discreet trip purposes

⁷ The type of index is specified by the Purpose code on the "PS" control record. If "3" is specified by depth index, then the limit is 1-4.

PT Production Trip Rate

Format - (A2,3I3,1X,6F10.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"PT"
3-5	13	Trip purpose code (1-10)
6-8	13	Depth "i" category number (three-way cross-classification only)
9-11	13	Row "j" category
13-22	F10.0	Trip rate for depth "i, "row "j, "and column 1
23-32	F10.0	Trip rate for depth "i,"row "j,"and column 2
33-42	F10.0	Trip rate for depth "i,"row "j,"and column 3
43-52	F10.0	Trip rate for depth "i,"row "j,"and column 4
53-62	F10.0	Trip rate for depth "i, "row "j, "and column 5
63-72	F10.0	Trip rate for depth "i, "row "j, "and column 6

ACR Regional Distribution for Attraction Cross-Classification Model

Format - (A3,2I2,6F5.0)

<u>Columns</u>	FMT	Contents
1-3	A3	"ACR"
4-5	12	Depth "i" category number (three-way cross-classification only)
6-7	12	Row "j"category
8-12	F5.0	Regional percentage of unit variable ⁸ for attraction trip rate within depth "i, "row "j, "and column 1
13-17	F5.0	Regional percentage of unit variable for attraction trip rate within depth "i,"row "j,"and column 2
18-22	F5.0	Regional percentage of unit variable for attraction trip rate within depth "i,"row "j,"and column 3
23-27	F5.0	Regional percentage of unit variable for attraction trip rate within depth "i,"row "j,"and column 4
28-32	F5.0	Regional percentage of unit variable for attraction trip rate within depth "i,"row "j,"and column 5
33-37	F5.0	Regional percentage of unit variable for attraction trip rate within depth "i,"row "j,"and column 6

⁸Unit variable is the variable on which the trip rate is based; e.g., if trip rate is trips per employee, the unit variable is employees.

AT Attraction Trip Rate

Format - (A2,3I3,1X,6F10.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"AT"
3-5	I 3	Trip purpose code (1-10)
6-8	I3	Depth "i" category number (three-way cross-classification only)
9-11	I3	Row "j" category
13-22	F10.0	Trip rate for depth "i, "row "j, "and column 1
23-32	F10.0	Trip rate for depth "i, "row "j, "and column 2
33-42	F10.0	Trip rate for depth "i, "row "j, "and column 3
43-52	F10.0	Trip rate for depth "i, "row "j, "and column 4
53-62	F10.0	Trip rate for depth "i, "row "j, "and column 5
63-72	F10.0	Trip rate for depth "i, "row "j, "and column 6
ES Sector Table of Equals

Format - (A2,I3,15I5)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"ES"
3-5	13	Sector number
6-10	15	Zone number within sector ⁹
11-15	15	Zone number within sector
16-20	15	Zone number within sector
21-25	15	Zone number within sector
26-30	15	Zone number within sector
31-35	15	Zone number within sector
36-40	I5	Zone number within sector
41-45	15	Zone number within sector
46-50	15	Zone number within sector
51-55	15	Zone number within sector
56-60	15	Zone number within sector
61-65	15	Zone number within sector
66-70	15	Zone number within sector
71-75	15	Zone number within sector
76-80	15	Zone number within sector

⁹Two consecutive zone numbers on one ES record can form a range by using a dash before the second zone. Ranges cannot be split over records.

EA Area Type Table of Equals

Format - (A2,I3,1515)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"EA"
3-5	13	Area type number
6-10	15	Zone number within area type ¹⁰
11-15	I5	Zone number within area type
16-20	15	Zone number within area type
21-25	15	Zone number within area type
26-30	15	Zone number within area type
31-35	15	Zone number within area type
36-40	15	Zone number within area type
41-45	15	Zone number within area type
46-50	15	Zone number within area type
51-55	15	Zone number within area type
56-60	15	Zone number within area type
61-65	15	Zone number within area type
66-70	15	Zone number within area type
71-75	15	Zone number within area type
76-80	15	Zone number within area type

¹⁰Two consecutive zone numbers on one EA record can form a range by using a dash before the second zone. Ranges cannot be split over records.

ED District Table of Equals

Format - (A2,I3,15I5)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"ED"
3-5	13	District number
6-10	15	Zone number within district ¹¹
11-15	15	Zone number within district
16-20	15	Zone number within district
21-25	15	Zone number within district
26-30	15	Zone number within district
31-35	I5	Zone number within district
36-40	15	Zone number within district
41-45	15	Zone number within district
46-50	15	Zone number within district
51-55	15	Zone number within district
56-60	15	Zone number within district
61-65	15	Zone number within district
66-70	15	Zone number within district
71-75	15	Zone number within district
76-80	15	Zone number within district

¹¹Two consecutive zone numbers on one ED record can form a range by using a dash before the second zone. Ranges cannot be split over records.

IC Income Disaggregation Curves

Format - (A2,F5.1,6F6.2)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"IC"
3-7	F5.1	Ratio of zonal median income to regional median income $(0.1 \text{ to } 2.5 \text{ in increments of } 0.1)$
8-13	F6.2	Percentage of households in income category one
14-19	F6.2	Percentage of households in income category two
20-25	F6.2	Percentage of households in income category three
26-31	F6.2	Percentage of households in income category four
32-37	F6.2	Percentage of households in income category five
38-43	F6.2	Percentage of households in income category six

IR Income Ranges

Format - (A3,1X,6F10.0)

<u>Columns</u>	FMT	Contents
1-3	A3	"IR"
5-14	F10.0	Ending value of income range in income category one
15-24	F10.0	Ending value of income range in income category two
25-34	F10.0	Ending value of income range in income category three
35-44	F10.0	Ending value of income range in income category four
45-54	F10.0	Ending value of income range in income category five
55-64	F10.0	Ending value of income range in income category six

HH Household Size Disaggregation Curves

Format - (A2,F5.1,6F6.2)

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"HH"
3-7	F5.1	Ratio of zonal average household size to regional average household size $(1.1 \text{ to } 3.5 \text{ in increments of } 0.1)$
8-13	F6.2	Percentage of households in household size category one
14-19	F6.2	Percentage of households in household size category two
20-25	F6.2	Percentage of households in household size category three
26-31	F6.2	Percentage of households in household size category four
32-37	F6.2	Percentage of households in household size category five
38-43	F6.2	Percentage of households in household size category six

AU Auto Ownership Disaggregation Curve

Format - (A2,1X,2F6.0,4F6.2)

1.14

<u>Columns</u>	<u>FMT</u>	Contents
1-2	A2	"AU"
4-9	F6.0	Beginning median household income
10-15	F6.0	Ending median household income
16-21	F6.2	Percentage of households with zero autos owned or available in that range of median household income
22-27	F6.2	Percentage of households with one auto owned or available in that range of median household income
28-33	F6.2	Percentage of households with two autos owned or available in that range of median household income
34-40	F6.2	Percentage of households with three or more autos owned or available in that range of median household income

HS Household Size Ranges

Format - (A3,6F5.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"HS"
4-8	F5.0	Ending value of household size range in household size category one
9-13	F5.0	Ending value of household size range in household size category two
14-18	F5.0	Ending value of household size range in household size category three
19-23	F5.0	Ending value of household size range in household size category four
24-28	F5.0	Ending value of household size range in household size category five
29-33	F5.0	Ending value of household size range in household size category six

.

DA1 Input Data Card One

Format - (A3, 15, 9F7.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"DA1"
4-8	15	Zone number
9-15	F7.0	Zone size in acres
16-22	F7.0	Total zone population
23-29	F7.0	Total households in zone
30-36	F7.0	Average household size for zone ¹²
37-43	F7.0	Median household income in zone
44-50	F7.0	Zone total employment ¹³
51-57	F7.0	Zone total basic employment
58-64	F7.0	Zone total retail employment
65-71	F7.0	Zone total service employment

¹²If left blank, program will compute.

¹³If this is zero, the program will compute this value by adding the value from the next three zones.

DA2 Input Data Card Two

Format - (A3,I5,8F9.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"DA2"
4-8	15	Zone number
9-17	F9.0	Value of selected independent variable
18-26	F9.0	Value of selected independent variable
27-35	F9.0	Value of selected independent variable
36-44	F9.0	Value of selected independent variable
45-53	F9.0	Value of selected independent variable
54-62	F9.0	Value of selected independent variable
63-71	F9.0	Value of selected independent variable
72-80	F9.0	Value of selected independent variable

DA3 Input Data Card Three

Format - (A3,I5,6F5.0,6F5.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"DA3"
4-8	15	Zone number
9-13	F5.0	Percentage of production unit variable in column category 1
14-18	F5.0	Percentage of production unit variable in column category 2
19-23	F5.0	Percentage of production unit variable in column category 3
24-28	F5.0	Percentage of production unit variable in column category 4
29-33	F5.0	Percentage of production unit variable in column category 5
34-38	F5.0	Percentage of production unit variable in column category 6
39-43	F5.0	Percentage of attraction unit variable in attraction column 1
44-48	F5.0	Percentage of attraction unit variable in attraction column 2
49-53	F5.0	Percentage of attraction unit variable in attraction column 3
54-58	F5.0	Percentage of attraction unit variable in attraction column 4
59-63	F5.0	Percentage of attraction unit variable in attraction column 5
64-68	F5.0	Percentage of attraction unit variable in attraction column 6

¢

DA4 Input Data Card Four

Format - (A3,I5,6F5.0,6F5.0)

ŧ

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"DA4"
4-8	15	Zone number
9-13	F5.0	Percentage of production unit variable in row category 1
14-18	F5.0	Percentage of production unit variable in row category 2
19-23	F5.0	Percentage of production unit variable in row category 3
24-28	F5.0	Percentage of production unit variable in row category 4
29-33	F5.0	Percentage of production unit variable in row category 5
34-38	F5.0	Percentage of production unit variable in row category 6
39-43	F5.0	Percentage of attraction unit variable in attraction row 1
44-48	F5.0	Percentage of attraction unit variable in attraction row 2
49-53	F5.0	Percentage of attraction unit variable in attraction row 3
54-58	F5.0	Percentage of attraction unit variable in attraction row 4
59-63	F5.0	Percentage of attraction unit variable in attraction row 5
64-68	F5.0	Percentage of attraction unit variable in attraction row 6

DA5 Input Data Card Five

Format - (A3,I5,4F5.0,T39,4F5.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"DA5"
4-8	15	Zone number
9-13	F5.0	Percentage of production unit variable in depth category 1
14-18	F5.0	Percentage of production unit variable in depth category 2
19-23	F5.0	Percentage of production unit variable in depth category 3
24-28	F5.0	Percentage of production unit variable in depth category 4
39-43	F5.0	Percentage of attraction unit variable in attraction depth 1
44-48	F5.0	Percentage of attraction unit variable in attraction depth 2
49-53	F5.0	Percentage of attraction unit variable in attraction depth 3
54-58	F5.0	Percentage of attraction unit variable in attraction depth 4

SGP Special Generator Productions

Format - (A3,I5,10(I2,I5))

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"SGP"
4-8	15	Zone number
9-10	I2	Trip purpose of trips being added
11-15	15	Number of trips added for that trip purpose
16-17	12	Trip purpose of trips being added
18-22	15	Number of trips added for that trip purpose
23-24	12	Trip purpose of trips being added
25-29	15	Number of trips added for that trip purpose
30-31	I2	Trip purpose of trips being added
32-36	15	Number of trips added for that trip purpose
37-38	I2	Trip purpose of trips being added
39-43	15	Number of trips added for that trip purpose
44-45	I2	Trip purpose of trips being added
46-50	15	Number of trips added for that trip purpose
41-52	12	Trip purpose of trips being added
53-57	15	Number of trips added for that trip purpose
58-59	12	Trip purpose of trips being added
60-64	15	Number of trips added for that trip purpose
65-66	12	Trip purpose of trips being added
67-71	15	Number of trips added for that trip purpose
72-73	12	Trip purpose of trips being added
74-78	15	Number of trips added for that trip purpose

SGA Special Generator Attractions

Format - (A3,I5,10(I2,I5))

•

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"SGA"
4-8	15	Zone number
9-10	12	Trip purpose of trips being added
11-15	15	Number of trips added for that trip purpose
16-17	I2	Trip purpose of trips being added
18-22	15	Number of trips added for that trip purpose
23-24	12	Trip purpose of trips being added
25-29	I5	Number of trips added for that trip purpose
30-31	I2	Trip purpose of trips being added
32-36	15	Number of trips added for that trip purpose
37-38	I2	Trip purpose of trips being added
39-43	15	Number of trips added for that trip purpose
44-45	I2	Trip purpose of trips being added
46-50	15	Number of trips added for that trip purpose
41-52	I2	Trip purpose of trips being added
53-57	15	Number of trips added for that trip purpose
58-59	I2	Trip purpose of trips being added
60-64	15	Number of trips added for that trip purpose
65-66	12	Trip purpose of trips being added
67-71	15	Number of trips added for that trip purpose
72-73	12	Trip purpose of trips being added
74-78	15	Number of trips added for that trip purpose

AOP Add-on Trip Production Input

Format - (A3,I5,10(I2,I5))

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"AOP"
4-8	15	Zone number
9-10	12	Trip purpose of trips being added
11-15	15	Number of trips added for that trip purpose
16-17	12	Trip purpose of trips being added
18-22	I5	Number of trips added for that trip purpose
23-24	12	Trip purpose of trips being added
25-29	15	Number of trips added for that trip purpose
30-31	I2	Trip purpose of trips being added
32-36	15	Number of trips added for that trip purpose
37-38	I2	Trip purpose of trips being added
39-43	15	Number of trips added for that trip purpose
44-45	I2	Trip purpose of trips being added
46-50	15	Number of trips added for that trip purpose
41-52	12	Trip purpose of trips being added
53-57	15	Number of trips added for that trip purpose
58-59	I2	Trip purpose of trips being added
60-64	15	Number of trips added for that trip purpose
65-66	I2	Trip purpose of trips being added
67-71	15	Number of trips added for that trip purpose
72-73	I2	Trip purpose of trips being added
74-78	15	Number of trips added for that trip purpose

73

AOA Add-on Trip Attraction Input

Format - (A3,I5,10(I2,I5))

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"AOA"
4-8	15	Zone number
9-10	I2	Trip purpose of trips being added
11-15	15	Number of trips added for that trip purpose
16-17	I2	Trip purpose of trips being added
18-22	I5	Number of trips added for that trip purpose
23-24	I2	Trip purpose of trips being added
25-29	15	Number of trips added for that trip purpose
30-31	I2	Trip purpose of trips being added
32-36	15	Number of trips added for that trip purpose
37-38	12	Trip purpose of trips being added
39-43	15	Number of trips added for that trip purpose
44-45	I2	Trip purpose of trips being added
46-50	15	Number of trips added for that trip purpose
41-52	12	Trip purpose of trips being added
53-57	15	Number of trips added for that trip purpose
58-59	12	Trip purpose of trips being added
60-64	15	Number of trips added for that trip purpose
65-66	12	Trip purpose of trips being added
67-71	15	Number of trips added for that trip purpose
72-73	I2	Trip purpose of trips being added
74-78	15	Number of trips added for that trip purpose

SGZ Special Generator Data

Format - (A3,15,9F7.0)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"SGZ"
4-8	15	Zone number.
9-15	F7.0	Special generator size in acres.
16-22	F7.0	Population of special generators.
23-29	F7.0	Total households in special generators.
30-36	F7.0	Average household size for special generators ¹⁴ .
37-43	F7.0	Median household income for special generators.
44-50	F7.0	Total employment in special generators ¹⁵ .
51-57	F7.0	Total basic employment in special generators.
58-64	F7.0	Total retail employment in special generators.
65-71	F7.0	Total service employment in special generators.

¹⁴ If left blank, program will compute and assume it read in as a variable

¹⁵ If this is zero, the program will compute this value by adding the value from the next three zones.

CMT Zone Comment card

Format - (A3,I5,1X,A71)

<u>Columns</u>	<u>FMT</u>	Contents
1-3	A3	"CMT"
4-8	15	Zone number.
10-80	A71	Comments describing special conditions for this zone

*

APPENDIX B

TRIPCAL5 EXAMPLE PROGRAM SETUPS

. . -

Table B-1 EXAMPLE JCL TO RUN TRIPCAL5 AT TEXAS A&M UNIVERSITY

```
//TCAL5 JOB (,60A,S59,20,MS),'SALAMI DFW TEST RUN'
//TR5
         EXEC PGM=TRIPCAL5, REGION=4500K
//STEPLIB DD DISP=SHR, DSN=USR.W208.CB.TR5LIB2
//SORTLIB DD DSN=SYS1.SORTLIB, DISP=SHR
//SORTMSG DD SYSOUT=A
//FT09F001 DD UNIT=SYSDA,DSN=&INSORT,SPACE=(TRK,(30,10)),
// DCB=(RECFM=FB,LRECL=128,BLKSIZE=6272)
//SORTIN
            DD DSN=&INSORT, VOL=REF=*.FT09F001, DISP=(OLD, PASS),
// DCB=(RECFM=FB,LRECL=128,BLKSIZE=6272),SPACE=(TRK,(30,10))
//SORTWK01 DD UNIT=SYSDA, SPACE=(TRK, (30),, CONTIG), SEP=SORTIN
//SORTWK02 DD UNIT=SYSDA, SPACE=(TRK, (30),, CONTIG), SEP=SORTWK01
//SORTWK03 DD UNIT=SYSDA, SPACE=(TRK, (30),, CONTIG), SEP=SORTWK02
//SORTOUT DD DSN=&OUTSORT, UNIT=SYSDA, SEP=SORTWK03,
// DCB=(RECFM=FB,LRECL=128,BLKSIZE=6272),SPACE=(TRK,(30,10))
//FT10F001 DD DSN=&OUTSORT, VOL=REF=*.SORTOUT, DISP=(OLD, PASS),
// DCB=RECFM=FB
//FT01F001 DD UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=128,BLKSIZE=6272),SPACE=(TRK,(30,10))
//FT02F001 DD UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=128,BLKSIZE=6272),SPACE=(TRK,(30,10))
//FT04F001 DD UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=128,BLKSIZE=6272),SPACE=(TRK,(30,10))
//FT06F001 DD SYSOUT=A
//FT08F001 DD DUMMY
//FT11F001 DD UNIT=SYSDA,
// DCB=(RECFM=VBS,LRECL=6228,BLKSIZE=6232),SPACE=(TRK,(30,10))
//FT12F001 DD UNIT=SYSDA,
// DCB=(RECFM=VBS,LRECL=6228,BLKSIZE=6232),SPACE=(TRK,(30,10))
//FT13F001 DD UNIT=SYSDA, SPACE=(TRK, (30, 10)),
// DCB=(RECFM=VBS,LRECL=6228,BLKSIZE=6232),SPACE=(TRK,(30,10))
//FT14F001 DD UNIT=SYSDA,DCB=(RECFM=FB,LRECL=133,BLKSIZE=1330),
// SPACE=(TRK, (20, 20))
//FT15F001 DD UNIT=SYSDA,DCB=(RECFM=FB,LRECL=133,BLKSIZE=1330),
// SPACE=(TRK, (20, 20))
//FT16F001 DD UNIT=SYSDA,DCB=(RECFM=FB,LRECL=133,BLKSIZE=1330),
// SPACE=(TRK, (20, 20))
//FT17F001 DD UNIT=SYSDA,DCB=(RECFM=FB,LRECL=133,BLKSIZE=1330),
// SPACE=(TRK, (20, 20))
//FT18F001 DD UNIT=SYSDA,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330),
// SPACE=(TRK, (20, 20))
//FT20F001 DD SYSOUT=A,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
//FT21F001 DD SYSOUT=A, DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
//FT05F001 DD DISP=OLD, DSN=USR.W208.MS.DFW.S19867
```

Table B-2EXAMPLE ONEDALLAS-FORT WORTH

J.111 + MOME BASED WORK A B A PCI HH SIZE H 6 HH SIZE 1 HH SIZE 2 HH SIZE 3 HH SIZE 4 HH SIZE 5 HH SIZE 6 PRI INCOME GRT I 4 0 - 14.8K 14.9-27.0K27.1-42.5K42.5K PLUS ACI AREA TYPE 5 CBD OUT BUS DT URBAN RES SUBURBAN RURAL ARI INC QUART 4 QUARTILE 1QUARTILE 2QUARTILE 3QUARTILE 4 ADI EMPLOYMENT 3 BASIC RETAIL SERVICE PCR 112.00 6.88 2.70 1.70 0.92 0.80 PCR 2 6.67 8.28 4.25 3.16 1.53 1.11 PCR 3 2.69 8.23 5.36 5.09 2.26 1.36 PCR 4 1.26 7.79 5.79 5.92 2.69 1.56 PT 1 1 1.000 1.700 1.800 PT 1 2 1.204 1.070 PT 1 3 4 PT PT PT 5.286 3.198 3.439 Ĩ4 1.600 2.800 2.848 PT 1 ES 1-50 12345678 51- 100 ES 101- 150 ES 101- 150 151- 200 201- 250 251- 300 301- 350 351- 400 401- 450 451- 605 ES ES ËS ES ES 0 ES 10 ES T8L 1 -30 91.0 06.0 82.7 11.5 02.0 01.0 IC .1 11.5 17.2 02.0 03.8 10 .2 03.4 06.3 73.1 IC .3 22.8 27.3 63.5 57.3 45.8 8.80 IC .4 • 10 .5 12.1 06.9 10 .6 30.0 15.0 09.2 11.9 10 .7 38.4 31.2 18.5 .8 32.0 31.2 21.8 15.0 10 30.1 27.0 24.1 21.6 .9 26.9 25.0 18.0 10 22.5 19.2 16.5 22.0 IC 1.0 28.5 26.2 30.5 35.2 30.5 10 1.1 1.2 10 31.4 14.6 31.1 ič 19.1 29.4 26.5 24.3 22.1 İĈ 1.4 17.3 40.6 IC IC IC IC IC IC IC IC 11.3 16.1 46.1 10.4 09.5 08.7 14.3 51.0 1.6 1.7 54.8 58.4 1.8 13.0 19.9 07.9 07.1 06.5 05.9 05.5 12.4 11.9 11.4 18.5 2.0 2.1 2.2 2.3 2.4 2.5 17.0 64.0 66.2 68.3 15.9 11.0 14.8 14.0 13.3 12.5 10.5 70.0 1C 1C 05.0 71.6 09.8 10 IR HH HH ΗН HH HH HH HH ЯН НH HH HH НK HH HH KH KH 2.7 20.80 34.20 2.8 18.70 32.70 2.9 16.80 30.90 3.0 15.20 29.20 3.1 13.70 27.70 HH HH ĸн HH HH

HH 3.2 12.10 26.20 22.30 20.80 11.20 07.40 HH 3.3 11.00 24.60 22.50 21.40 12.00 08.50 HH 3.4 10.10 23.40 22.10 21.80 12.70 09.90 HH 3.5 09.20 22.20 21.70 22.30 13.20 11.40 HS 1 2 3 4 5 6 ACR 1 1 0.48 4.01 2.13 1.05 0.38 ACR 1 2 0.55 4.58 2.43 1.20 0.43 ACR 1 3 0.38 3.17 1.69 0.83 0.30 ACR 1 4 0.87 7.20 3.83 1.88 0.68 ACR 2 1 0.14 1.45 1.47 0.50 0.10 ACR 2 2 0.16 1.66 1.68 0.57 0.12 ACR 2 3 0.11 1.15 1.16 0.40 0.08 ACR 2 4 0.26 2.60 2.63 0.90 0.19 ACR 3 1 1.47 4.11 2.52 1.10 0.23 ACR 3 2 1.68 4.69 2.88 1.26 0.27 ACR 3 3 1.16 3.25 2.00 0.87 0.19 ACR 3 4 2.64 7.37 4.52 1.97 0.42									
CCV 6 AT 1 1 AT 1 1 AT 1 1 AT 1 1 AT 1 2 AT 1 3 EA 1 -15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.413 1.300 1.300 1.643 1.400 1.736 1.344 1.424 1.424 1.420 1.365 1.265 44 45	1.312 1.277 1.260 1.388 1.400 1.634 1.358 1.402 1.295 1.456 1.323 47 51	1.389 1.464 1.530 1.521 1.455 1.400 1.286 1.422 1.338 1.566 1.244 292 -297	299 -301				
EA 1 310 311 EA 2 16 17 EA 2 64 66	316 20 23 25 30 72 77 78 79 298 302 304 305	32 38 80 81 309 312	41 42 90 164 313 315	50 53 227 228 318 319	54 55 248 249 321 324				
EA 2 275 286 EA 2 326 328 EA 3 18 24	298 302 304 305 371 430 431 477 31 33 35 39	488 43 46	48 52	56 58	59 60				
EA 3 62 63 EA 3 91 94 EA 3 107 108 EA 3 130 131 EA 3 169 170 EA 3 203 204 EA 3 203 204 EA 3 203 204 EA 3 203 201 EA 3 203 204 EA 3 203 201 EA 3 203 201 EA 3 203 203 EA 3 203 203 EA 3 203 203 EA 3 329 330 EA 3 505 506 EA 4 124 128 EA 4 124 128 EA 4 255 256 EA 4 322 333 EA 4 322 3366	31 33 33 33 33 35 65 67 -71 73 95 96 97 99 109 110 111 112 132 133 134 137 171 173 174 175 205 206 207 208 232 233 234 235 262 263 264 265 288 289 290 291 334 335 336 348 384 385 386 389 432 433 434 435 452 460 461 462 524 525 527 528 36 37 49 57 129 135 136 138 172 177 178 179 213 214 217 223 258 267 <td< td=""><td>-76 82 100 101 113 115 140 150 176 187 215 216 236 237 306 307 359 362 402 403 436 437 463 467 139 141 180 181 2278 279 346 347 381 387 407 411 454 455 500 -503 545 546 147 148 198 199 3403 376 473 474 492 493 519 520</td><td>-89 102 103 117 118 151 152 188 189 218 220 242 250 274 276 308 317 365 367 404 406 438 439 464 406 438 439 464 406 438 439 543 93 93 98 142 143 183 192 241 243 284 285 349 350 388 390 414 415 507 510 155 157 201 209 343 344 397 398 480 481 494 495 523 533 </td><td>104 105 120 125 153 163 190 191 221 222 252 253 277 280 320 322 368 372 408 409 444 445 476 489 114 116 145 149 193 194 245 247 303 314 351 352 391 392 417 418 465 466 521 159 345 353 423 -429 482 496 497 534 535 496</td><td>106 126 127 166 168 195 202 226 229 257 259 281 282 323 327 374 375 410 412 446 449 499 504 119 121 154 156 196 200 251 254 325 331 360 361 393 394 419 420 470 471 160 161 225 238 354 355 511 512 536 537</td></td<>	-76 82 100 101 113 115 140 150 176 187 215 216 236 237 306 307 359 362 402 403 436 437 463 467 139 141 180 181 2278 279 346 347 381 387 407 411 454 455 500 -503 545 546 147 148 198 199 3403 376 473 474 492 493 519 520	-89 102 103 117 118 151 152 188 189 218 220 242 250 274 276 308 317 365 367 404 406 438 439 464 406 438 439 464 406 438 439 543 93 93 98 142 143 183 192 241 243 284 285 349 350 388 390 414 415 507 510 155 157 201 209 343 344 397 398 480 481 494 495 523 533	104 105 120 125 153 163 190 191 221 222 252 253 277 280 320 322 368 372 408 409 444 445 476 489 114 116 145 149 193 194 245 247 303 314 351 352 391 392 417 418 465 466 521 159 345 353 423 -429 482 496 497 534 535 496	106 126 127 166 168 195 202 226 229 257 259 281 282 323 327 374 375 410 412 446 449 499 504 119 121 154 156 196 200 251 254 325 331 360 361 393 394 419 420 470 471 160 161 225 238 354 355 511 512 536 537				
DA1 50 280 DA1 100 1818 DA3 50	309 171 11381 4392	31393	5294 2144 6709 1097 00		2431 3057				
DA3 100 DA4 50 DA4 100 DA5 50 DA5 100		28 40		40 29					

Table B-3 EXAMPLE TWO DALLAS-FORT WORTH

TP 2 PCI HH PRI IN ANC 1 ANC 1 ANC 2 PCR 0 PCR 0 PT 1 PT 2 PT 2	1 14 10 NON-HI SIZE COME 2 4 3 4 4 4 5 2 4 6 1 12.0 12.6 6 1 12.0 12.6 12.6 12.6 12.2 12.6 1.7 12.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	-3 -30 120 BASED OME B QRT I 9 8.22 9 8.22 9 8.22 6 7.7	5 400 NON- ASED 6 HH 4 0 4 4 4 4 4 4 4 4 4 4 8 2.7 8 4.2	- 14.45 0.566 0.112222710 0.56695045910	8K 14 42 9 51 9 27 9 82 9 00 9 16 9 61 9 61 9 6 1.5	P N SIZE7 .9-27 1.0 1.0 1.0 1.12 231.1 23697 105073	2 HH 10K27 74 8 000 8 59 8 000 8 67 8 67 8 67 8 67 8 67 8 67 8 67 8 67	1-428 1-188.06 1-188.06 1-4279 48574448	3 HH .5K42 11 7 44 7 96 7 60 7 14 7	-5K0-44 00-32 00-56 00-55 00-55 00-55 00-55 00-55	4 HH LUS 53 42 00 39 00 55 58 89	3200.00	6.87 7.70 8.38 14.14 0.75 1.80 2.07 3.35	0 5 3 0 7
ESSSEESSSEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	101- 151- 251- 301- 351- 401- 401- 310 164 275 326 18 627 326 18 627 326 107 130 169 2230 2839 2839 2839 2839 2839 2839 2839 2850 19 19 107 107 107 107 107 107 107 107	250 350 450 605 -15 311 66 286 328 243 94 131 204 231 261 280 383 416 4516 21	22 316 20 72 298 371 365 109 132 232 2688 334 432 2688 3384 432 2688 3384 4524 36	26 23 77 302 433 67 910 133 173 203 289 335 5433 460 525 7135 177	-28 25 78 304 431 -71 111 134 207 234 260 336 434 461 527 49	40 30 3057 3057 3057 3057 3057 3057 3057	44 320 3098 433 -760 1113 1400 1765 2722 3069 4363 5292 4363 5291 139	45 38 81 312 46 82 101 1155 150 237 273 307 2403 403 403 403 403 403 403 530 92	47 41 90 313 48 -89 107 151 188 242 274 308 3654 438 468 543 142	51 42 164 315 52 103 118 220 250 276 317 367 406 439 98	50 227 318 56 104 123 190 221 252 277 320 368 408 444 476 114	- 297 53 228 319 58 105 125 163 191 222 253 280 322 372 409 445 489 116	54 248 321 59 106 126 166 195 226 257 281 323 374 410 446 499 119	-301 55 249 324 60 127 168 202 229 259 282 327 375 412 449 504 121
EA 4 4 4 4 4 4 4 4 5	124 165 211 255 332 363 395 421 472 522 29	128 167 212 256 333 366 396 422 475 526 34	36 129 172 213 258 337 377 399 440 478 531 122	135 177 214 267 338 378 400 447 479 532 123	136 178 217 270 339 379 401 448 483 539 144	57 138 179 223 271 341 380 405 453 498 544 146	180 224 278 346 381 407 454	141 181 240 279 347 387 411 455 -503 546 148	183 241 284 349 388 414 456	143 192 243 285 350 390 415 464 -510 157	145 193 245 303 351 391 417 465 521 158	149 194 247 314 352 392 418 466	154 196 251 325 360 393 419 470 160	156 200 254 331 361 394 420 471

EA EA EA	5 162 5 239 5 356	244 24	34 185 56 266 58 364	186 268 369	197 269 370	198 340 373	199 342 376	201 343 397	209 344 398		219 353 -429	225 354	238 355
EA EA	5 441	485 44	3 457 36 487	458 490		473 492	474 493	480 494	481 495	482 496	497	511	512
EA EA	5 513 5 538	540 54		517 547	518 -605	519	520	523	533	534	535	536	537
1C 1C	.2 8	1.0 06.0 2.7 11. 5.1 17.	02.0	01.0									
1C 1C	.4 6	3.5 22.8	3 08.8	03.4									
1C 1C	.5 5	7.3 27.3) 15.0	06.9 09.2									
1C 1C	.7 34	3.4 31.2 2.0 31.2	2 18.5 2 21.8	11.9									
ic ic	.9 2	6.9 30. 2.5 27.0	1 25.0	18.0									
10	1.1 1	9.2 24.4	1 30.5	26.2				•					
1C 1C	1.3 14	5.5 21.0 4.6 19.	1 31.1	30.5 35.2									
IC IC	1.5 1	2.7 17.3 1.3 16.	26.5	40.6									
1C 1C	1.6 10	0.4 14.3 9.5 13.4	5 24.3	51.0 54.8									
1C 1C	1.8 0	8.7 13.0 7.9 12.4) 19.9	58.4									
IC IC	2.0 0	7.1 11.9	7.0	64.0 66.2									
ic IC	2.2 0	5.9 11.0) 14.8	68.3 70.0									
10	2.4 0	5.0 10.1	13.3	71.6									
IC IR	14870.	4.5 09.8 27050).	42950.			• /						
HH HH	1.2 86	.30 04.90 .60 09.80	01.84	01.04	00.40	00.	32						
HH HH	1.3 79) 02.76) 03.68										
HH MH	1.5 66		04.60										
HH HH	1.7 54		07.00	03.80	01.40	01.3	20						
HH HH	1.9 45	.00 36.30	09.10		02.10	01_3	70						
HH	2.1 36	.70 38.50) 11.80	07.80	03.00	02.3	20						
HH HH	2.3 30	.00 39.00) 14.00	10.00	04.00	03.0	00						
HH Hh	2.5 24		0 16.10	12.20	05.70	03.	70						
HH HH		.80 34.20) 18.40	14.90	07.20	04.	50						
HH HH	2.8 18 2.9 16	.80 30.9	20.80	17.40	08.80	05.3	30						
HH	3.0 15 3.1 13	.20 29.20) 21.40) 21.80	18.70 19.70	09.60	05.9	90						
HH	3.2 12 3.3 11	.10 26.2	22.30	20.80 21.40	11.20	07.	40 50						
HH HH	3.4 10	10 23.40	22.10	21.80	12.70	09.9	90						
HS DA1	1 50	2 3 280	4 309	5 171	6	156		5294	214	6	719	2431	
DAT	100			4392		313		6709	109		555	3057	

Table B-4 EXAMPLE THREE AUSTIN

PS	AUSTI			635		5 20	20 0	11	1598	83.0	2.	.174	
TBL	1		13	14	18	29	34	44	-46	52	58	65	66
SEL	70	75	89	- 96	97	101	104	151		-160	175	188	191
SEL	195 251		209 262	213 264	215 265	217 272	221 277	223 280	235 281	237 294	243 295	246 308	
SEL SEL	312		323	337	343	344	347	356	360	365	371	385	
SEL	387	396	400	404	406		409	435	447	452	473	480	
SEL SEL	490 544		498 574	501 580	506	507 611	509	511	522	525	530	534	
TP	1 HOME	BASEC) WORK	(BD	P							
TP	2 HOME	BASE	NON-	WORK	BD	P							
TP TP	3 NON-	K TAXI	ASED		D	ΡŤ		45200	0.0				
PC1	HH 517	F F	13	0 - 2	2.5 2	2.5 -	3.0	3.0	+				
PRI	MEDIAN	INCI		.OW YERO	i c	.UW-FIE MF	1 U		1	THREE	+	HIGH	
EA	1 373	376	- 384	404	-408	439	440						
EA	2 201		318	344 123	358 124	359 128	361	362 131	481 132	13/	- 138		
EA EA	2 107 2 141		118 153	162	173	193	199	202	203	205	214		
EA	2 215	217	-219						25.0		2/5		
EA		-238	244 -280	-246	247 -292		-254 303	256 319	259 321	263 322	-265		
EA EA	2 267 2 326 2 390	-332	341	345	-348	356	360	372	374	375			
EA	2 390	397	398	403	. 409	-414							
EA EA	2 416 2 452		419 456	423 457	437 462	464	466	467	471	473	-475		
ĔĂ	2 478	480	482	484	492	509		-513	515	516			
EA	2 538		79	114	133	142	149						
EA EA	3 48 3 151		161	163	168	169	181						
EA	3 183	190	224	226	227		-232		-241	207	207		
EA EA	3 248 3 298		260 317	-262 320	266 323	268 343	273 350	276 351	277 353	293	294		
ËÂ	3 368	370	371	388	389	391	-393	399	402	417			
EA	3 421		-428	441	443	444 477	448 479	454 488	455 -491	458	459		
EA EA	3 465 3 503		-470 -507	472 517	476 518		-529	543	549	473	~475		
EA	3 573										75	20	
	4 1 4 32		7 35	10 37	14 39	15 41	18 42	19 45	22 49	23 -51	25 53	-28 54	
	4 57		60	61	63	-66	68	-70	73	-78			
EA		-106		-112		-117	119	120	-122				
EA EA	4 125 4 150	-127	130 - 160	139	140 -167		- 148 - 172	174	-178	180			
EA	4 182	184	- 189	191	192			220	227				
EA EA	4 194 4 225	-198 228	200 229	204 242	206 243	207	-213 258		-223 -272				
ĔĂ	4 274	275	281	-285	295	-297	301	302	309		-316		
	4 324 4 363		333 366	334 369	340 387	342	349	352	354	355	357		
EA EA	4 394	-396	400	401	415	420	422	424		-436			
EA	4 442	445	-447		-451		461	463	483	-522	524		
EA EA	4 485	-487 -537		-502 540	504 542	508 544	510 -548	514 550	-554	556	-563		
EA	4 567	' -572	574	-576	578	583	586	587	589				
EA EA	4 593 4 625	-595 -632	598 634	-602	604	-606	608	-613	0 17	-623			
ËA	5 4		8	9	11	-13	16	17	20	21	24	29	
EA	5 30	31	33	36	38	40	43	44	46	47			
EA EA	5 52 5 59	55 67	56 71	72	179	286	304	-308					
EA	5 310	-313	335	-339	364	367	385	386	429	430	438		
EA	5 519 5 577		541 -582	555 584	564 585	-566 588	590	591	596	597			
EA EA			614	-616	624	633	635						
AHC	1 1	4	3	0.	91 8	1.	95 7	1.	95 9 95 9		.95 .95		
AMC		4 4	33		.81 8 .41 8	1.	.95 7 .95 7		95 9		.95		
AMC		4	3	Ő.	26 8	1.	95 7		95 9	1.	.95		

AMC 1 5 4 3 0.11 8 1.9' AMC 2 1 4 3 0.84 8 1.5' AMC 2 2 4 3 0.69 8 1.5' AMC 2 3 4 3 0.70 8 12.0' AMC 2 3 4 3 0.70 8 12.0' AMC 2 5 4 3 0.70 8 12.0' AMC 3 1 4 3 0.70 8 1.20' AMC 3 1 4 3 0.71 8 1.4' AMC 3 4 3 0.21 8 4.0' AMC 3 4 3 0.25 8 3.1.3' AMC 4 2 4 3 0.34 8 0.4' AMC 4 3 0.34 8 0.5' 8 1.2' AMC 4 4 3 0.34 8 0.8' 8 1.2' AMC 4 4 3 0.34 8 0.8'	7 0.84 9 2.95 8 7 0.62 9 1.39 9 7 0.40 9 1.39 8 7 0.28 9 1.44 4 7 0.22 9 2.75 5 7 0.65 9 0.79 9 7 0.63 9 0.83 9 7 0.56 9 1.11 3 7 0.53 9 1.18 7 0.53 9 1.18 6 7 0.32 9 0.32 5 7 0.26 9 0.25 9 7 0.43 9 0.34 5 7 0.43 9 0.46 8 7 0.97 9 0.77
PCT 5 23 44 33 IR 9999 14999 19999 HS 2.5 3.0 PCR 1 15.79 0.25 0.54 PCR 1 1 5.79 0.25 0.54 PCR 1 20.86 0.07 0.23 PCR 1 3 0.40 0.03 0.08 PCR 1 4 0.31 0.04 0.17 PCR 1 5 0.15 0.02 0.06 PCR 2 115.79 0.82 1.97 PCR 2 2 7.52 0.62 1.50 PCR 2 2 7.52 0.62 1.50 PCR 2 2 7.52 0.62 1.50 PCR 2 2 7.52 0.62 1.50 PCR 2 2 7.52 0.62 1.50 PCR 2 5 2.84 0.40 1.32 PCR 2 2 7.52 0.62 1.50 PCR 3 4 5.32 1.17 3.67 PCR 3 4 5.32 1.17 0.62 PCR 4 0.38 0.37 0.36 PCR 4	29999 17500 6622 3517 3105 0 8000 1712 564 1148 0

.

APPENDIX C

TRIPCAL5 INPUT RECORD CROSS-REFERENCE TABLES

Table C-1 Input Control/Zone Data Records for Production Models

Model Type	Required	Optional
2-Way Cross-Classification	PCI PRI PCR PT DA1 DA3 ¹⁶ DA4 ¹⁶ DA5 ¹⁶	CCV NAM IC IR HH AU HS DA2
3-Way Cross-Classification	PCI PRI PDI PCR PT DA1 DA3 ¹⁶ DA4 ¹⁶ DA5 ¹⁶	CCV NAM IC IR HH AU HS DA2
2-Way Cross-Classification "Single Trip Rate"	PCI PRI PCT PCR PT DA1 DA3 ¹⁶ DA4 ¹⁶ DA5 ¹⁶	CCV NAM IR IC HH AU HS DA2

¹⁶Only if marginal distributions are input.

Cross-Classification Regression	PCI PRI PDI PCR PT CCV DA1 DA2 DA3 DA4 DA5	NAM
Linear Regression	PMR DA1	NAM DA2

Table C-2 Input Control/Zone Data Records for Attraction Models

Model Type	Required	<u>Optional</u>
2-Way Cross-Classification	ACI ARI ACR AT CCV DA1 DA3 DA4	NAM DA2
3-Way Cross-Classification	ACI ARI ADI ACR AT CCV DA1 DA3 DA4 DA5	NAM DA2
Cross-Classification Regression	AMC EA DA1	NAM DA2
Linear Regression	AMR DA1	NAM DA2
2-Tier Regression	DR DZR ED DA1	NAM DA2
APPENDIX D

OUTPUT EXAMPLES

.

OCT 29, 1990

.

DATA TYPE DA1 ZONE RANGES

1-635

DATA TYPE DA2 ZONE RANGES

DATA TYPE DA3 PRODUCTION ZONE RANGES

DATA TYPE DA3 ATTRACTION ZONE RANGES

DATA TYPE DA4 PRODUCTION ZONE RANGES

DATA TYPE DA4 ATTRACTION ZONE RANGES

DATA TYPE DAS PRODUCTION ZONE RANGES

DATA TYPE DAS ATTRACTION ZONE RANGES

DATA TYPE AGA ZONE RANGES

DATA TYPE AOP ZONE RANGES 107, 348, 361-362, 479, 499

DATA TYPE SGA ZONE RANGES

DATA TYPE SGA ZONE RANGES 1, 6-7, 9-10, 12-13, 16, 18, 24, 28, 36-37, 39, 44, 63, 69, 78, 85-86 101, 103, 107, 113, 120, 122, 125, 127, 129-130, 136-137, 140, 142, 144 146, 151-153, 155, 161-162, 165, 172-173, 176, 178, 180, 182, 186, 188 193, 198, 202, 204, 206, 209, 214, 217, 219, 229, 231, 233-235, 237 240-242, 246, 248-250, 252-254, 258-260, 264, 266, 272-276, 278-280 285, 287, 289, 292, 294-300, 304-305, 315, 317-320, 326-327, 329-333 340-341, 343-346, 348, 359, 361-363, 369-371, 373-574, 376-386, 390-391 396-397, 399, 402, 405, 409, 411-413, 415-416, 419-421, 423, 426, 428 431-433, 436-438, 440, 442-444, 450, 452-455, 457, 460, 462, 465-467 470, 472, 475-479, 481-482, 488-490, 493, 497, 499-500, 502, 505-506 508-509, 512, 515, 518, 520-521, 526-528, 530, 535, 537, 541, 600, 611

DATA TYPE SGP ZONE RANGES

DATA TYPE SGP ZONE RANGES 1, 6-7, 9-10, 12-13, 16, 18, 24, 28, 36-37, 39, 44, 63, 69, 78, 85-86 101, 103, 107, 113, 120, 122, 125, 127, 129-130, 136-137, 140, 142, 144 146, 151-153, 155, 161-162, 165, 172-173, 176, 178, 180, 182, 186, 188 193, 198, 202, 204, 206, 209, 214, 217, 219, 229, 231, 233-235, 237 240-242, 246, 248-250, 252-254, 258-260, 264, 266, 272-276, 278-280 285, 287, 289, 292, 294-300, 304-305, 315, 317-320, 326-327, 329-333 340-341, 343-346, 348, 359, 361-363, 369-371, 373-374, 376-386, 390-391 396-397, 399, 402, 405, 409, 411-413, 415-416, 419-421, 423, 426, 428 431-433, 436-438, 440, 442-444, 450, 452-455, 457, 460, 462, 465-467 470, 472, 475-479, 481-482, 488-490, 493, 497, 499-500, 502, 505-506 508-509, 512, 515, 518, 520-521, 526-528, 530, 535, 537, 541, 600, 611

DATA TYPE SGZ ZONE RANGES

DATA TYPE CMT ZONE RANGES

DATA TYPE CHT ZONE RANGES 1, 6-7, 9-10, 12-13, 16, 18, 24, 28, 36-37, 39, 44, 63, 69, 78, 85-86 101, 103, 107, 113, 120, 122, 125, 127, 129-130, 136-137, 140, 142, 144 146, 151, 153, 155, 161-162, 165, 172-173, 176, 178, 180, 182, 186-188 193, 198, 202, 204, 206, 209, 214, 217, 219, 229, 231, 233-235, 237 240-242, 246, 248-250, 252-254, 258-260, 264, 266, 272-276, 278-280 285, 287, 289, 292, 294-300, 304-305, 315, 317-320, 322, 326-327, 329-333 340-341, 343-346, 348, 359, 361-363, 369-371, 373-374, 376-380, 382-386 390-391, 396-397, 399, 402, 405, 407, 409, 411-413, 415, 419-421, 423

TABLE 1:

AUSTIN PERSON TRIPS 2020 TRIP MODEL INPUT TRIP PURPOSE 1: HOME BASED WORK

B) PRODUCTION MODEL: THREE-WAY CROSS CLASSIFICATION

	AUTOS	: ZERO	* • • •
	H	IH SIZE	
MEDIAN INC	0 - 2.5	2.5 - 3.0	3.0 +
LOW LOW-MED MEDIUM MED-HIGH HIGH	2.30 3.40 4.10 4.50 4.80	3.00 4.20 5.10 5.80 6.10	3.80 5.00 6.10 7.00 7.30
	AUTOS	: ONE	••••
	H	IH SIZE	
MEDIAN INC	0 - 2.5	2.5 - 3.0	3.0 +
LOW LOW-MED MEDIUM MED-HIGH HIGH	5.40 6.60 7.70 8.20 8.50	6.50 7.90	7.40 8.80 10.10 10.70 11.00
	AUTOS	: TWO	
	١	IH SIZE	
MEDIAN INC	0 - 2.5	2.5 - 3.0	3.0 +
LOW LOW-MED MEDIUM MED-HIGH HIGH	9.40 10.40 11.30 11.60 11.90	10.20 11.30 12.20 12.60 12.90	11.00 12.20 13.20 13.70 13.90
	AUTOS	: THREE	• ••••
	H	IH SIZE	
MEDIAN INC	0 - 2.5	2.5 - 3.0	3.0 +
LOW LOW-NED MEDIUM MED-HIGH HIGH	12.40 13.20 14.10 14.80 15.00	13.00 14.00 14.80 15.50 15.70	13.60 14.70 15.50 16.20 16.40

										- · - · ·															
SECTOR	ZONE	S																							
1	48 153 230 259 299 351 389 421 467 503	62 161 231 260 300 353 390 423 468 505	79 162 232 261 303 356 391 425 469 506	107 163 233 262 317 358 392 426 470 507	113 168 234 263 318 359 393 427 471 509	114 169 235 264 319 360 397 428 472 511	118 173 236 265 320 361 398 437 473 512	123 181 237 266 321 362 399 439 474 513	124 183 238 267 322 368 402 440 475 515	128 190 239 268 323 370 403 441 476 516	129 193 240 273 326 371 404 443 477 517	131 199 241 276 327 372 405 444 478 518	132 201 244 277 328 373 406 448 479 525	133 202 245 278 329 374 407 452 480 526	134 203 246 279 330 375 408 453 481 527	135 205 247 280 331 376 409 454 482 528	136 214 248 287 332 377 410 455 484 529	137 215 249 288 341 378 411 456 488 538	138 216 250 289 343 379 412 457 489 543	141 217 251 290 344 380 413 458 490 549	142 218 252 291 345 381 414 459 491 573	143 219 253 292 346 382 416 462 492 592	149 224 293 347 383 417 464 493	151 226 255 294 348 384 418 465 494	152 227 256 298 350 388 419 466 495
2	1 51 85 111 158 194 258 340 435 510 553 594 627	2 53 86 112 159 269 342 436 514 554 595 628	3 54 87 115 160 270 349 442 520 556 598 629	7 57 88 116 164 197 271 352 445 521 557 599 630	10 58 89 117 165 198 272 354 522 558 600 631	14 60 90 119 166 200 274 355 447 524 559 601 632	15 61 91 120 167 204 275 357 449 530 560 602 634	18 63 92 121 170 206 281 363 450 531 561 604	19 64 93 122 171 207 282 365 451 532 562 605	22 65 94 125 208 283 366 460 533 563 606	23 66 95 126 174 209 284 369 461 534 567 608	25 68 96 127 210 285 387 463 535 568 609	26 69 97 130 176 211 295 394 483 536 569 610	27 70 98 139 177 212 296 395 485 537 570 611	28 73 99 140 178 213 297 396 486 539 571 612	32 74 100 144 180 220 301 400 487 540 572 613	34 75 101 145 221 302 401 496 542 574 617	35 76 102 146 184 222 309 415 544 575 618	37 77 103 147 185 223 314 420 498 545 576 619	39 78 104 148 186 225 315 422 499 546 578 620	41 80 105 150 187 228 316 424 500 547 583 621	42 81 106 154 188 229 324 431 501 548 586 622	45 82 108 155 189 242 325 432 502 550 587 623	49 83 109 156 191 243 333 433 504 551 589 625	50 84 110 157 257 334 4308 552 593 626
3	4 55 386 614	56 56 429 615	6 59 430 616	8 67 438 624	9 71 519 633	11 72 523 635	12 179 541	13 286 555	16 304 564	17 305 565	20 306 566	21 307 577	24 308 579	29 310 580	30 311 581	31 312 582	33 313 584	36 335 585	38 336 588	40 337 590	43 338 591	44 339 596	46 364 597	47 367 603	52 385 607

TABLE 2:

AUSTIN PERSON TRIPS 2020 ZONE TO SECTOR TABLE OF EQUALS

:..

OCT 29, 1990

DIST	ZON	ES																							
1	107 214 264 341 390 457	113 215 265 344 397 462	118 216 267 345 398 464	123 217 278 346 403 466	124 218 279 347 404 467	128 219 280 348 405 471	129 233 287 356 406 473	131 234 288 358 407 474	132 235 289 359 408 475	134 236 290 360 409 478	135 237 291 361 410 480	136 238 292 362 411 481	137 244 299 372 412 482	138 245 303 373 413 484	141 246 318 374 414 492	143 247 319 375 416 509	153 249 321 376 418 511	162 250 322 377 419 512	173 251 326 378 423 513	193 252 327 379 437 515	199 253 328 380 439 516	201 254 329 381 440 538	202 256 330 382 452 592	203 259 331 383 453	205 263 332 384 456
2	48 248 389 476	62 255 391 477	79 260 392 479	114 261 393 488	133 262 399 489	142 266 402 490	149 268 417 491	151 273 421 493	152 276 425 494	161 277 426 495	163 293 427 503	168 294 428 505	169 298 441 506	181 300 443 507	183 317 444 517	190 320 448 518	224 323 454 525	226 343 455 526	227 350 458 527	230 351 459 528	231 353 465 529	232 368 468 543	2 39 370 469 549	240 371 470 573	241 388 472
3	1 85 111 158 194 258 340 435 510 553 594 627	2 53 86 1129 195 269 3436 514 555 628	3 54 87 115 160 196 270 349 442 556 598 629	7 57 88 1164 197 271 352 445 521 557 599 630	10 58 89 117 165 198 272 354 446 522 558 600 631	14 60 90 119 166 200 274 355 447 524 559 601 632	15 61 91 120 167 204 275 357 449 530 560 602 634	18 63 92 121 170 281 363 450 531 561 604	19 64 93 122 171 207 282 365 451 532 562 605	22 65 94 125 172 208 283 366 460 533 563 606	23 66 95 126 174 209 284 369 461 534 534 568	25 68 96 127 275 285 387 463 535 568 609	26 69 97 130 176 211 295 394 483 536 569 610	27 70 98 139 177 212 296 395 485 537 570 611	28 73 99 140 178 213 297 396 486 539 571 612	32 74 100 144 180 220 301 487 540 572 613	34 75 101 145 221 302 401 496 542 574 617	35 76 102 146 184 222 309 415 545 545 575 618	37 77 103 147 223 314 420 498 545 576 619	39 78 104 148 225 315 422 499 546 578 620	41 80 105 150 187 228 316 424 500 547 583 621	42 81 106 154 188 229 324 431 501 548 586 622	45 82 108 155 189 242 325 432 502 550 587 623	49 83 109 156 191 243 333 504 551 589 625	50 84 110 157 257 334 434 508 552 593 626
4	4 55 386 614	5 56 429 615	6 59 430 616	8 67 438 624	9 71 519 633	11 72 523 635	12 179 541	13 286 555	16 304 564	17 305 565	20 306 566	21 307 577	24 308 579	29 310 580	30 311 581	31 312 582	33 313 584	36 335 585	38 336 588	40 337 590	43 338 591	44 339 596	46 364 597	47 367 603	52 385 607

AUSTIN PERSON TRIPS 2020 ZONE TO DISTRICT TABLE OF EQUALS

TABLE 3:

USTI	N	PEI	ROS	TRIPS	2020
NE TO	O AREA	TYPE	TABL	E OF	EQUALS

AL ZOI

-52

AREA TYPE ZONES - - - -404 405 406 407 408 439 440 373 376 377 378 379 380 381 382 215 265 344 418 513 216 267 345 419 515 217 278 346 423 516 218 279 347 437 538 219 280 348 452 592 233 287 356 453 234 288 358 456 235 289 359 457 236 290 360 462 237 291 361 464 238 292 362 466 244 299 372 467 245 303 374 471 246 318 375 473 247 319 390 474 249 321 397 475 250 322 398 478 251 326 403 480 252 327 409 481 253 328 410 482 254 329 411 484 256 330 412 492 259 331 413 509 264 341 416 512 255 391 477 260 392 479 261 393 488 262 399 489 266 402 490 268 417 491 273 421 493 276 425 494 277 426 495 293 427 503 298 441 506 300 443 507 317 444 517 320 448 518 323 454 525 351 459 528 353 465 529 294 428 505 343 455 526 350 458 527 368 468 543 248 389 476 370 469 371 470 70 98 139 73 99 140 69 97 130 53 86 112 159 269 2426 514 5542 595 628 58 89 117 165 198 272 354 446 522 558 600 631 60 90 119 166 200 275 55 447 524 559 632 63 92 121 170 206 281 363 450 531 561 604 64 93 122 171 207 282 365 451 532 562 605 65 94 125 172 208 283 366 460 533 563 606 66 95 126 174 209 284 369 461 534 567 608 68 96 127 175 210 285 387 463 535 568 609 74 100 144 180 220 301 400 487 540 572 613 75 101 145 221 302 401 496 542 574 617 76 102 146 184 222 309 415 544 575 618 77 103 147 185 223 314 420 498 545 576 619 78 104 148 225 315 422 499 546 578 620 80 105 150 187 228 316 424 500 547 583 621 81 106 154 188 229 324 431 501 548 586 622 82 108 155 189 242 525 550 587 623 83 85 111 87 115 160 196 270 349 442 520 556 598 629 88 116 164 197 271 352 445 521 557 599 630 91 120 167 204 275 357 449 530 560 602 634 156 191 243 333 433 504 551 589 625 177 212 296 395 485 537 570 611 194 258 340 435 510 211 295 394 483 536 569 610 213 297 396 486 539 571 612 594 627 56 429 615 67 438 624 72 523 635 313 584 55 59 430 616 71 519 633 179 541 286 555 304 564 305 565 306 566 307 577 308 579 310 580 311 581 312 582 335 585 336 588 337 590 338 591 339 596 597

TABLE 4:

TABLE 5:

TOTALS:

B) PRODUCTION MODEL: THREE-WAY CROSS CLASSIFICATION

	AUTOS	: ZERO		
	HI	SIZE		
MEDIAN INC	0 - 2.5	2.5 - 3.0	3.0 +	TOTALS
LOW-MED MEDIUM MED-HIGH HIGH	5.79 0.86 0.40 0.31 0.15	0.25 0.07 0.03 0.04 0.02	0.54 0.23 0.08 0.17 0.06	6.58 1.16 0.51 0.52 0.23
TOTALS:	7.51	0.41	1.08	9.00
	AUTOS	: ONE	******	
	HI	SIZE		
MEDIAN INC	0 - 2.5	2.5 - 3.0	3.0 +	TOTALS
LOW LOW-MED MEDIUM MED-HIGH HIGH	15.79 7.52 4.80 4.58 2.84	0.82 0.62 0.50 0.67 0.40	1.97 1.50 1.34 2.10 1.32	18.58 9.64 6.64 7.35 4.56
TOTALS:	35.53	3.01	8.23	46.77
	AUTOS	: TWO	•••••	
	HI	I SIZE		
MEDIAN INC	0 - 2.5	2.5 - 3.0	3.0 +	TOTALS
LOW LOW-MED MEDIUM MED-HIGH HIGH	3.89 2.90 3.19 5.32 4.85	0.39 0.43 0.59 1.17 1.05	0.82 1.05 1.62 3.67 3.56	5.10 4.38 5.40 10.16 9.46

20.15 3.63 10.72

34.50

BLE 6:	(CROSS CLASSI	FICATION MO		SAGGREGAT	E ZONE RE		OCT 29, 1990 ICK-TAXI ARE NOT SCALED)
				ZONE	3	- AUTOS	: ZERO	
NH SIZE	MEDIAN INC	NUMBER OF HOUSEHOLD	HOME BASED WORK	HOME BASED NON - WORK	NON- HOME BASED			
0 - 2.5	LOW LOW-MED MEDIUM MED-HIGH HIGH	14.0 5.4 3.6 3.5 3.1	6 6 4 4 3	20 9 8 7 7	5 3 4 5			
SU	BTOTALS:	29.6	23	51	21			
2.5 - 3.0	LOW LOW-NED MEDIUM MED-HIGH HIGH	0.7 0.5 0.3 0.5 0.5	1 0 1 1 0	1 1 1 2	1 0 1 1			
SU	BTOTALS:	2.6	3	6	3			
3.0 +	LOW LOW-MED MEDIUM MED-HIGH HIGH	1.3 1.4 0.7 1.9 1.2	12232	3 3 2 7 3	1 1 4 3			
SU	BTOTALS:	6.4	10	18	10			
				ZONE	3	- AUTOS	: ONE	•••••••••••••••••••••••••••••••••••••••
0 - 2.5	LOW LOW-MED MEDIUM MED-HIGH HIGK	37.2 46.3 42.1 50.9 57.1	42 89 90 105 111	125 162 159 196 213	34 55 75 116 160			
su	BTOTALS:	233.6	437	855	440			
2.5 - 3.0	LOW LOW-MED MEDIUM MED-HIGH HIGH	2.3 4.5 5.1 8.7 9.4	3 11 12 21 22	9 19 23 38 41	3 6 11 23 31			
SUI	BTOTALS:	30.0	69	130	74			

TABLE 7:	(CROSS CLASSI		D DEL PRODU		SECTOR	HOME BA	SED /	TRUCK-TA	XI ARE NO	T SCALED)	OCT 29	, 1990
HH SIZE	MEDIAN	NUMBER OF HOUSEHOLD	HOME BASED WORK	HOME BASED NON- WORK	NON- HOME BASED	- AUTOS	:	ZERO					•••••
0 - 2.5	LOW LOW-MED MEDIUM MED-HIGH HIGH	16841.8 3109.9 1617.9 1364.3 965.0	8134 3067 1857 1535 1065	24016 5604 3251 2885 2038	6585 1903 1526 1719 1528								
SUE	TOTALS:	23898.9	15658	37794	13261								
2.5 - 3.0	LOW LOW-MED MEDIUN MED-HIGH HIGH	538.9 183.5 87.2 124.2 91.8	340 223 125 180 129	1002 409 218 338 247	275 139 102 202 185								
SUE	TOTALS:	1025.6	9 97	2214	903								
3.0 +	LOW LOW-MED MEDIUM MED-HIGH HIGH	744.1 354.8 132.3 288.9 148.9	593 515 226 505 250	1753 940 395 951 478	480 320 185 567 358								
SUE	TOTALS:	1669.0	2089	4517	1910								
********	********			SEC	TOR 1	- AUTOS	:	ONE			*******	*******	
0 - 2.5	LOW LOW-MED MEDIUM MED-HIGH HIGH	36447.5 22701.2 16558.3 17565.4 16509.1	41332 43450 35700 36009 32275	122026 79409 62475 67697 61744	33459 26969 29325 40330 46308								
SUE	TOTALS:	109781.5	188766	393351	176391								
2.5 - 3.0	LOW LOW-MED MEDIUM MED-HIGH HIGH	1396.2 1359.8 1244.3 1824.6 1666.9	1906 3115 3101 4333 3796	5626 5694 5426 8147 7261	1543 1933 2547 4854 5446								
SUB	TOTALS:	7491.8	16251	32154	16323								

TABLE 8:	(CROSS CLASSI	FICATION MO	AUS DIS DDEL PRODUC	AGGREGATE	PERSON TRIP AREA TYPE RE DTE: NON HOME	SULTS	OCT 29, 1 UCK-TAXI ARE NOT SCALED)	990
•••••			HOME	HOME		- AUTOS	: ZERO		
HH SIZE	MEDIAN INC	NUMBER OF HOUSEHOLD	BASED	BASED NON- WORK	NON- HOME BASED				
0 - 2.5	LOW LOW-MED MEDIUM MED-HIGH HIGH	426.8 67.1 31.6 24.1 13.1	206 66 36 27 15	608 121 64 51 27	167 41 29 31 21				
SUE	STOTALS:	562.8	350	871	289				
2.5 - 3.0	LOW LOW-MED MEDIUM MED-HIGH HIGH	6.0 1.6 0.7 0.8 0.4	4 2 1 1 0	12 3 2 1	3 1 1 1				
SUE	BTOTALS:	9.6	8	20	7				
3.0 +	LOW LOW-MED MEDIUM MED-HIGH HIGH	6.1 2.3 0.8 1.5 0.6	5 4 1 3 1	15 6 25 2	4 2 1 3 1				
SUE	BTOTALS:	11.2	14	30	11				
		•••••		AREA TYP	E 1	- AUTOS	: ONE		
0 - 2.5	LOW LOW-MED MEDIUM MED-HIGH HIGH	902.4 466.3 304.3 289.9 206.9	1023 892 657 594 404	3021 1631 1149 1117 773	829 554 539 665 580				
SUE	STOTALS:	2169.8	3570	7691	3167				
2.5 - 3.0	LOW LOW-MED MEDIUM MED-HIGH HIGH	14.6 10.9 8.7 11.0 7.2	20 25 22 26 16	59 46 38 49 31	17 15 18 29 24				
SUB	BTOTALS:	52.4	109	223	103				

,

TABLE 9:

AUSTIN PERSON TRIPS 2020 UNSCALED PRODUCTION AND ATTRACTION RESULTS BY ZONE AND TRIP PURPOSE

	HOME BA	SED WORK	HOME BASE	D NON-WORK	NON - HOM	E BASED	TRUCK	TAXI
ZONE	PRODUCTION	ATTRACTION	PRODUCTION	ATTRACTION	PRODUCTION	ATTRACTION	PRODUCTION	ATTRACTION
1	10176.09	7846.99	20206.11	32099.34	11203.52	10667.62	4036.28	4036.28
23	2545.66	3540.68	5056.69	13249.48	2626.31	4470.87	1535.60	1535.60
3	2175.72	2634.97	4163.73	9398.83	2511.85	3197.52	1139.47	1139.47
4	5556.94	1938.77	10635.09	7883.30	6416.16	2590.55	1833.94	1833.94
5	1498.22	710.68	2867.62	2556.40	1729.39	867.52	604.34	604.34
67	4019.27	1013.40 9149.62	7692.83 23222.73	4974.00 40056.79	4650.49 12268.27	1573.60	1116.45	1116.45
8	3777.93	2640.18	7507.41	10356.68	3898.57	13063.27 3508.90	4776.01 2128.21	4776.01 2128.21
ğ	1116.32	1634.47	2217.02	6261.14	1177.30	2163.10	1122.04	1122.04
10	14892.74	3769.63	28507.63	15839.41	17293.68	5038.39	2920.09	2920.09
11	3743.20	2950.09	7437.71	10901.46	3863.48	3742.07	2294.36	2294.36
12	2228.88	1296.45	4428.70	5620.33	2313.62	1871.59	1109.31	1109.31
13	2445.15	1067.27	4858.52	2886.46	2605.73	1046.93	930.76	930.76
14 15	1417.15	1482.00 3476.72	2815.91	6945.57	1462.70	2246.78	746.80	746.80
16	1664.11 10666.61	4511.74	3160.44 20416.32	18412.91 18301.20	2156.44 12347.84	5895.48 6067.90	1615.70 3997.73	1615.70
17	1351.34	569.21	2685.18	2557.62	1394.71	833.47	536.80	3997.73 536.80
18	6407.27	3142.92	12168.96	8369.80	8309.93	2957.62	1616.74	1616.74
19	6407.27 1765.37	2115.88	3506.29	9420.80	1823.65	3077.59	1015.20	1015.20
20	1236.57	776.04	2456.98	3322.00	1276.42	1107.92	650.26	650.26
21 22 23	2608.08	1272.22	5180.00	5589.71	2694.18	1840.58	1138.91	1138.91
22	2109.08	2973.88	4190.85	13274.50	2176.78	4341.93	1390.90	1390.90
23	3711.26	1597.18	7373.15	6132.95	3831.67	2003.06	994.28	994.28
24 25	2848.68	3363.10	19.66 5452.45	143.08 12503.62	82.41 3288.00	70.00 4217.10	6.48 1492.78	6.48
26	1827.13	2524.34	3497.18	11329.64	2108.98	3706.05	1164.92	1492.78 1164.92
26 27	786.23	826.28	1561.45	1660.99	812.28	644.92	328.30	328.30
28	3795.67	3314.48	7538.79	14764.38	3989.90	4831.87	1703.66	1703.66
29	1586.22	1008.22	3150.24	4422.52	1638.77	1471.78	842.46	842.46
30	1949.62	93.50	3871.91	867.00	2014.25	212.50	314.50	314.50
31	1460.22	193.14	2900.16	875.40	1508.45	253.86 342.01	304.67	304.67
32 33	375.45 338.06	459.94 306.58	745.66	858.12	387.88	342.01	173.40	173.40
34	1450.67	1226.03	642.06 2755.16	592.20 4578.25	438.02 1879.37	235.58 1536.07	207.43	207.43
35	402.15	677.04	769.71	2267.63	464.21	783.64	580.39 273.62	580.39 273.62
36	692.62	861.74	1325.68	2895.08	981.50	1031.62	560.16	560.16
37	2879.25	3950.56	6039.65	17079.02	2804.90	5593.89	1847.66	1847.66
38	418.22	393.51	794.30	1779.34	541.96	598.01	298.56	298.56
39	2361.21	250.44	4484.45	832.90	3085.32	249.50	308,96	308.96
40 41	336.24 823.58	13.86	638.58	128.52	435.69	31.50	46.62	46.62
42	1059.16	787.15 1070.29	1564.14 2027.24	2952.89 3712.59	1067.27	992.33	360.59	360.59
43	4512.17	703.35	8636.25	3519.50	1222.60 5208.41	1265.89 1059.25	479.61 968.45	479.61
44	583.93	354.21	1117.64	1231.62	738.03	425.11	263.81	968.45 263.81
45	770.18	1818.44	1474.11	6458.95	889.08	2211.99	718.34	718.34
46	245.27	11.77	487.11	109.14	253.40	26.75	39.59	39.59
47	550.12	26.40	1092.55	244.80	568.35	60.00	88.80	88.80
48	1365.59	308.30	2712.01	686.88	1410.88	223.95	221.22	221.22
49	712.44	68.64	1353.07	224.40	923.24	66.00 135.75	89.76	89.76
50	1466.26	141.18	2784.72	461.55	1900.11	135.75	184.62	184.62

TABLE 10:		AUSTIN SCALING FA	20	OCT 29,		
TRIP PURPOSE	TYPE	CONTROL TOTAL	UNSCALED MODELED		ADD ON	SCALE FACTOR
1 HOME BASED WORK	PROD ATTR	1605343.	1601128. 1685617.		0. 0.	1.0000 0.8368
2 HOME BASED NON-WORK	PROD ATTR	3177113.	3153822. 3374327.		0. 0.	1.0000 0.7976
3 NON-HOME BASED	PROD ATTR	2017626.	1757289. 1385256.	249893. 249893.	10444. 0.	1.0000 1.2761
4 TRUCK TAXI	PROD	452000.	631854. 631854.	45287. 45287.	0. 0.	0.6437 0.6437

CONTROL TOTAL = VALUE INPUT FROM TP RECORD OR = MODELED PRODUCTIONS + SPECIAL GENERATORS PRODUCTIONS + ADD ON PRODUCTIONS OR = MODELED ATTRACTIONS + SPECIAL GENERATORS ATTRACTIONS + ADD ON ATTRACTIONS

1990

SCALE FACTOR = (CONTROL TOTAL - SPECIAL GENERATOR)/(UNSCALED MODELLED + ADD ON)

TABLE 11:		AGGREGATE	AUSTIN PRODUCTIONS	PERSON TRIP AND ATTRACTION	
	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME Based	TRUCK TAXI	
SECTOR	P A	P A	P A	P A	
1		5 140842 1272181	9 1040056 1040056	6 218560 218560	
2	56588	5 160500	0 88831	5 200940	
3	854238 5156 118077	1673768 6 16368 231165		4 32500 32500	
STUDY TOTAL		342 3177 3177114	112 2017 2017625	625 45200 452000	0

OCT 29, 1990

.

TABLE 12:	AGGREG	ATE PRODUCTI	AUSTIN ONS AND ATTRA	PERSO	N TRIPS 2020 BY ZONE WITH
	HOME BASED WORK	HOME BASED NON-WORK	NON - HOME	TRUC TAXI	
SECTOR ZONE	P A	P A	P A 286 286 13549 13549 12558 12558 3587 3587 14238 12558 3587 3587 1404 1404 9495 9495 4246 4246 2267 2267 2774 2774 2182 2182 865 868 1103 1653 1657 1557 1557 1557 2152 2125 5643 5643 1699 6299 3492 3492 11078 11078 1679 6297 2152 1525 5643 5643 1629 6299 3492 3492 11078 11078 5732 5732 1522 1522 3957 39357 5323 5323 5938 </th <th>P</th> <th>Α</th>	P	Α
1 48	1366 25/	2712 548	286 286	142	142
62	2882 6172	5723 23112	13549 13549	1560	1560
79	1833 4838	3 3847 19480	11238 11238	1245	1245
107 113	15133 1750	5 30903 18367	12558 12558	3745	3745
114	- 4223 419 516 649	0003 3003	1404 1404	179	170
118	4368 1019	8359 7484	9495 9495	2228	2228
	5606 542	10729 3977	4246 4246	1265	1265
124	5606 542 826 256 782 214 3376 386 505 259 628 113 191 45 1339 167 102 204 232 261 1150 225 748 69 282 133	1638 1752	2267 2267	525	525
128 129	782 214	2 1497 1389	1797 1797	420	420
129	505 250	0401 2000	0 2197 2192	612	612
131 132	628 113	5 1202 709	865 865	221	221
133 134	191 45	378 1453	888 888	107	107
134	1339 167	2659 1025	1103 1103	336	336
135	102 204	196 1148	1653 1653	341	341
135 136 137 138	232 201.	0 400 2012 1 2295 1/20	4667 4667	495	495
138	748 69) 1484 492	495 495	161	161
141 142	282 133	2 590 789	1054 1054	240	240
142	4084 323	2 8568 11646	6575 6575	1019	1019
143	452 242	865 1557	2125 2125	460	460
149 151	2404 204. 4727 116	5 0030 9003 5 0047 4022	0 2043 2043	815	815
152	2357 291	4511 11261	6299 6299	814	814
153	3800 456	7273 3467	3492 3492	990	990
161	2386 475	4565 20744	11078 11078	1394	1394
162	1245 698	2385 4201	5732 5732	1251	1251
163 168	2667 207	5 5974 2044 7 5047 4470	1522 1522	591	391
169	2309 276	4419 8827	5 321 5321	720	720
A 1997	3446 706	6595 5251	5938 5938	1455	1455
181	3044 664	5781 1576	5938 5938 880 880 14333 14333 3424 3424 12961 12961 2601 2601 10038 10038 5319 5319 3917 3917 8833 8833	304	304
183	2966 712	5632 23633	14333 14333	1667	1667
190 193	34/9 103	5 0000 0125	3424 3424	570	270
199	6519 426	1 12476 2977	2601 2601	1011	3797 1011
201 202	0 1216	0 6880	10038 10038	2026	2026
202	0 1216 5885 734 6923 581 5309 1130 1240 401	11692 5339	5319 5319	1570	1570
203 205	6923 581	3 13252 4001	3917 3917	1323	1323
205	2309 1130/ 1260 601/	7 10549 7198 2463 14011		2233	2233 1317
214 215 216 217	1240 401 4815 644	9144 4285	4957 4957	1317 1349	1349
216	EZTO 1074	5 10589 8331	4957 4957 10445 10445 6139 6139	2549	2549
217	899 908	5 1787 5562	6139 6139	1322	1322
218	899 908: 686 503: 5422 618: 3478 5054 3886 819: 5787 630(1362 2999	4154 4154	895	895
219	2422 618 3479 ECE	105// 4507	4348 4348	1284	1284
224	3470 3034	007/ 4832	7616 7616	1480	995 1480
227	5787 630	5 11077 16459	10460 10460	1584	1586
230	5140 228	9762 7311	4348 4348 4348 4348 4723 4723 7416 7416 10460 10460 4202 4202	784	784

AUSTIN PERSON TRIPS 2020 ONS AND ATTRACTIONS BY ZONE WITHIN SECTOR ACCRECATE DOCUMENT

OCT 29, 1990

.

OCT 29, 1990

TABLE 13:		1	AGGREG	NTE PR	AUSTI				PS 2020 BY AREA	TYPE
	8/	me Sed Nrk	HON BAS NON-V	SED	NON- BA	Home Sed	TRI TAJ	JCK KI		
AREA										
TYPE	P	A	P	•	P	A	P	•		
				*****			*****	*****		
1		178030		159799		158097		30669		
	9912		20443		158097	•	30669			
2		596322		572228		489875		124346		
-	356663		724242		489875		24346			
3		213541				392084	124340	63545		
2	266453		527496				63545	03343		
,										
4		565885				888315		200940		
	854238		673768		888315		200940			
5		51564		163683		89254		32500		
	118077	•	231165		89254		32500			

STUDY TOTAL 1605342 3177112 2017625 452000 1605343 3177114 2017625 452000

S

	HOME	HOME		
1751	HOME BASED WORK	BASED NON-WORK	NON-HOME BASED	TRUCK TAXI
AREA TYPE ZONE	Р А	P A	P A	P A
1 373 376 377 378 380 381 382 383 384 404 405 406 407 408 439 440	2107 7956 1024 16430 566 13778 665 17650 32 17272 242 16747 133 11868 197 9385 93 3365 274 5478 67 3062 499 19911 1593 17572 92 10724 1292 1046 0 2059 1036 3727	4435 9123 1961 10629 1191 12904 1401 24283 68 23354 507 10612 280 7499 445 12375 210 2176 545 7831 133 1952 992 14120 3350 11314 176 6827 2569 732 0 1251 2180 2817	P A 7956 7956 9630 9630 8433 8433 19712 19712 17202 17202 14670 14670 11023 11023 10376 10376 2808 2808 3734 3734 2878 29087 16134 16134 10119 10119 589 589 1832 1832 1914 1914	1786 1786 1934 1934 1799 1799 3920 3920 3419 3419 2625 2625 1950 1950 2031 2031 515 515 827 827 509 509 3629 3429 3034 3034 1773 1773 265 265 329 329 524 524
2 107 113 118 123 124 128 129 131 132 134 135 136 137 138 141 143 153 162 173 199 201 202 203 205 214 215 216 217 218	15133 17506 4223 4797 4368 10191 5606 5427 826 2561 782 2149 3376 3867 505 2593 628 1135 1339 1674 102 2044 102 2044 102 2043 1150 2253 748 690 282 1332 2613 1150 2253 748 690 282 1332 452 2429 3800 4560 1245 6980 3446 7063 345509 17840 6519 4260 0 12160 5885 7340 6523 5818 5309 11307 1240 4019 4815 6445 5332 12766 899 9085 686 5032	30903 18367 8083 3665 8359 7484 10729 3977 1638 1752 1497 1389 6461 2568 967 1599 1202 709 2659 1025 196 1148 460 2812 2285 1420 1484 492 590 789 865 1557 7273 3467 2385 4201 16995 5251 59686 12366 12476 2972 0 6880 12695 5339 13252 4001 10549 7198 2463 14011 10549 7198 2463 14011 10549 8331 1787 5562 1362 2999	12558 12558 3587 3587 9495 9495 4246 4246 2267 2267 1797 1797 2774 2774 2182 2182 865 865 1103 1103 1653 1653 2409 2409 1557 1557 495 495 1054 1054 2125 2125 3492 3492 5732 5732 5738 5938 12961 12961 2601 2601 10038 10038 5319 551 2601 2601 10038 10038 5319 5917 8833 8833 8272 8272 4957 4957 10445 10445 6139 6139	30669 3745 3745 1035 1035 2228 2228 1265 1265 525 525 420 812 812 812 477 477 221 336 341 341 495 495 409 409 161 161 240 240 460 460 990 990 1251 1251 1455 1455 3797 37977 1011 1011 2026 2026 1570 1570 1323 1323 2233 2233 1317 1317 1349 1349 2549 1322 895 895

AUSTIN PERSON TRIPS 2020 TABLE 14: AGGREGATE PRODUCTIONS AND ATTRACTIONS BY ZONE WITHIN AREA TYPE OCT 29, 1990

TABLE 15:	AUSTIN PERSON TRIPS 2020 STUDY AREA CHARACTERISTICS SUMMARY BY SECTOR									OCT 29, 1990	
SECTOR	SECTOR SIZE	POP	HOUSE- HOLDS	AVERAGE HH SIZE	MEDIAN INCOME	TOTAL EMPLOYMENT	BASIC	LOYMENT T RETAIL	SERVICE	AUTOS PER HOUSENOLD	AUTOS PER PERSON
1 2 3	0.0 0.0 0.0	589162 826105 114558	278943 349987 49353	2.1 2.4 2.3	18513 23010 20504	409212 286245 26818	150618 144624 11802	247048 141621 14991	11546 0 25	1.5 1.6 1.5	0.7 0.7 0.7
TOTALS:	0.0	1529825	678283	2.3	20978	722275	307044	403660	11571	1.5	0.7

PERSON TRIPS PER PERSON BY TRIP PURPOSE

SECTOR	HOME BASED WORK	HOME BASED NON-WORK	NON - HOME BASED	TRUCK TAXI
1	1.07	2.16	1.77	0.37
2	1.03	2.03	1.08	0.24
2	1.03	2.02	0.78	0.28
TOTALS:	ໍ1 . 05 ິ	່2.08 ົ	່1.32 ົ	່0.30 ິ

----- PERSON TRIPS PER HOUSEHOLD BY TRIP PURPOSE ------

SECTOR	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME BASED	TRUCK TAXI
1 2	2.27	4.56	3.73 2.54	0.78
3	2.39	4.68	1.81	0.66
TOTALS:	໌2 .3 7 ົ	໌4 <u>.</u> 68 ົ	2.97	0.67 [^]

TABLE 16: AUSTIN PERSON TRIPS 2020 BY ZONE WITHIN SECTOR										OCT 29, 1990		
SECTOR 2	ZONE	SECTOR SIZE	POP		AVERAGE HH SIZE	MEDIAN INCOME	TOTAL EMPLOYMENT	BASIC	DYMENT TYPE RETAIL SE	RVICE	AUTOS PER HOUSEHOLD	AUTOS PER PERSON
	48 62 79 107 113 114 118 123 124 128		1357 2841 1858 13644 4118 508 4299 5928 814 776	595 1257 925 6549 1647 224 1700 2149 360 304	2.3 2.0 2.1 2.5 2.5 2.8 2.3 2.6	17500 17500 12500 17500 25002 17500 25002 25002 17500 25002	33 3522 2770 6622 2186 351 5539 2433 1420 1191	11 1239 831 3517 727 117 564 355 307 365	22 2283 1939 3105 1459 234 4975 2078 1113 826		1.5 1.5 1.5 1.5 1.5 1.5 1.7 1.5 1.6	0.6 0.6 0.7 0.7 0.6 0.6 0.6 0.6
	ZONE 48 62 79 107 113 114 118 123 124 128	HOME BASED WORK 1.01 1.01 1.01 1.01 1.03 1.01 1.02 0.95 1.01 1.01	HOME BASED NON-WORK 2.00 2.01 2.07 2.26 1.96 2.01 1.94 1.81 2.01 1.93	NON - HOME BASED 0.21 4.77 6.05 0.92 0.87 2.76 2.21 0.72 2.79 2.32		ICK 11 15 15 15 15 15 15 15 15 15 15 15 15	PER PERSON B	Y TRIP PURP	DSE			

PERSON TRIPS PER HOUSEHOLD BY TRIP PURPOSE

SECTOR	ZONE	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME BASED	TRUCK TAXI
1	48 62 79 107 113 114 118 123 124 128	2.30 2.29 1.98 2.31 2.56 2.29 2.57 2.61 2.29 2.57	4.56 4.55 4.16 4.72 4.91 4.55 4.92 4.55 4.92	0.48 10.78 12.15 2.18 6.27 5.59 1.98 6.30 5.91	0.24 1.24 1.35 0.57 0.63 0.80 1.31 0.59 1.46 1.38

TABLE 17:	AUSTIN PERSON TRIPS 2020 STUDY AREA CHARACTERISTICS SUMMARY BY AREA TYPE									OCT 29, 1990	
AREA	AREA TYPE SIZE	POP	HOUSE- HOLDS	AVERAGE HH SIZE	MEDIAN INCOME	TOTAL EMPLOYMENT	BASIC	RETAIL	SERVICE	AUTOS PER HOUSEHOLD	AUTOS PER PERSON
1 2 3 4 5	0.0 0.0 0.0 0.0 0.0	7010 326546 255606 826105 114558	4806 159967 114170 349987 49353	1.5 2.0 2.2 2.4 2.3	14478 17283 20406 23010 20504	78709 232134 98369 286245 26818	24378 84129 42111 144624 11802	52811 138498 55739 141621 14991	519	1.38 1.44 1.51 1.57 1.53	0.95 0.70 0.67 0.67 0.66
TOTALS:	0.0	1529825	678283	2.3	20978	722275	307044	403660	11571	1.52	0.68

------ PERSON TRIPS PER PERSON BY TRIP PURPOSE ------

AREA TYPE	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME BASED	TRUCK TAX1
1 2 3 4 5 AREA	1.41 1.09 1.04 1.03 1.03	2.92 2.22 2.06 2.03 2.02	22.55 1.50 1.53 1.08 0.78	4.38 0.38 0.25 0.24 0.28
TOTALS:	1.05	2.08	1.32	0.30

----- PERSON TRIPS PER HOUSEHOLD BY TRIP PURPOSE

AREA TYPE	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME BASED	TRUCK TAXI
1	2.06	4.25	32.90	6.38
2	2.23	4.53	3.06	0.78
3	2.33	4.62	3.43	0.56
4	2.44	4.78	2.54	0.57
5 AREA	2.39	4.68	1.81	0.66
TOTALS:	2.37	4.68	2.97	0.67

AUS	FIN		PERSON	TRIPS	2020
STUDY	AREA	CHARA	CTERIST	ICS SI	UMMARY
	BY ZO	DNE WI	THIN AR	EA TYI	PE

AREA TYPE	ZONE	AREA TYPE SIZE	POP	HOUSE- HOLDS	AVERAGE HH SIZE	MEDIAN INCOME	TOTAL Employment	BASIC	LOYMENT 1 RETAIL	SERVICE	AUTOS PER HOUSEHOLD	AUTOS PER PERSON
1	373	0.0	1267	1073	1.2	12500	3519	1144	2375	Q	1.34	1.14
	376	0.0	430	410	1.0	25000	4263	1380	2883	0	1.71	1.63
	377	0.0	321	287	1.1	12500	1841	588	1253	0	1.35	1.21
	378	0.0	372	337	1.1	12500	7314	2361	4953	0	1.35	1.23
	379	0.0	48	15	3.2	12504	5196	1631	3565	0	1.34	0.42
	380	ŏ.ŏ	304	117	2.6	12502	9271	2959	6312	Ő	1.30	0.50
	381	ŏ.ŏ	172	64	2.7	12502	7202	2290	4912	ŏ	1.30	0.48
	382	ŏ.ŏ	263	118	2.2	8000	4012	1243	2769	ŏ	1.06	0.47
	383	0.0	118	56	2.1	8000	1722	532	1170	2Ŏ	1.05	0.50
	384	0.0	281	119	2.4	17500	1555	55	ů	1500	1.47	0.62

······ PERSON TRIPS PER PERSON BY TRIP PURPOSE ······

AREA TYPE	ZONE	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME BASED	TRUCK TAXI
1	373 376 377 378 379 380 381 382 383 383 384	1.66 2.38 1.76 0.67 0.80 0.77 0.75 0.79 0.98	3.50 4.56 3.71 1.42 1.67 1.63 1.69 1.78 1.94	6.28 22.40 26.27 52.99 358.37 48.26 64.09 39.45 23.80 13.29	1.41 4.50 5.60 10.54 71.23 8.63 11.34 7.72 4.36 2.94

PERSON TRIPS PER HOUSEHOLD BY TRIP PURPOSE

AREA TYPE	ZONE	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME BASED	TRUCK TAXI
1	373 376 377 378 379 380 381 382 383 383 384	1.96 2.50 1.97 2.13 2.07 2.08 1.67 1.66 2.30	4.13 4.78 4.15 4.16 4.53 4.33 4.38 3.77 3.75 4.58	7.41 23.49 29.38 58.49 1146.80 125.38 172.23 87.93 50.14 31.38	1.66 4.72 6.27 11.63 227.93 22.44 30.47 17.21 9.20 6.95

TABLE 18:

TABLE 19:	AUSTIN PERSON TRIPS 2020 STUDY AREA CHARACTERISTICS SUMMARY BY ZONE							OCT 29, 1990			
ZONE	ZONE SIZE	POP	HOUSE- HOLDS	AVERAGE HH SIZE	MEDIAN INCOME	TOTAL EMPLOYMENT	BASIC	OYMENT T RETAIL	YPE SERVICE	AUTOS PER HOUSEHOLD	AUTOS PER PERSON
1 2 3 4 5 6 7 8 9 10 11		10833 3336 2385 5418 1337 3594 12754 3135 1101 12157 3170	4375 1033 827 2167 593 1590 5003 1683 487 5958 1664	529553359309 232222212221	17500 17504 25002 25000 25000 17502 17500 17500 17500 17500	3330 1678 1241 872 331 430 3983 1259 782 1129 1419	966 576 468 271 125 75 818 342 156 184 444	2364 1102 773 601 206 355 3165 917 601 945 975	0 0 0 0 0 25 0 0	1.47 1.52 1.66 1.64 1.63 1.63 1.47 1.46 1.63 1.46	0.59 0.47 0.58 0.66 0.72 0.58 0.79 0.65 0.80 0.77
HOME HOME											
7045	BASED	BASED	NON-HOM								

ZONE	BASED	BASED NON-WORK	NON-HOME BASED	TRUCK TAXI	
1	0.94	1.87	1.24	0.24	
2	0.76	1.52	1.71	0.30	
2	0.91 1.03	1.75	1.71 0.61	0.31 0.22	
ŝ	1.12	2.15	0.83	0.29	
6	1.12	2.14	0.56	0.20	
7	0.92	1.82	1.30	0.24	
8	1.21	2.39	1.43	0.44	
.9	1.01	2.01 2.34	2.50	0.66	
10 11	1.22	2.35	0.53 1.51	0.15 0.47	

----- PERSON TRIPS PER HOUSEHOLD BY TRIP PURPOSE ------

ZONE	HOME BASED WORK	HOME BASED NON-WORK	NON-HOME BASED	TRUCK TAXI
1	2.33	4.62	3.07	0.60
2	2.46	4.89	5.52	0.96
3	2.63	5.04	4.93	0.89
4	2.56	4.91	1.53	0.54
5	2.53	4.84	1.87	0.66
6	2.53	4.84	1.26	0.45
7	2.34	4.64	3.32	0.62
8	2.24	4.46	2.66	0.81
9	2.29	4.55	5.66	1.48
10	2.50	4.78	1.07	0.32
11	2.25	4.47	2.87	0.89

TABLE 20:

AUSTIN PERSON TRIPS 2020 FINAL PRODUCTIONS AND ATTRACTIONS

OCT 29, 1990

TABLE 21:

ZONE COMMENTS

	***************************************	*********
1	LEANDER HS 108 EMP 1213 STUDENTS LEANDER (ACC) 6 EMP 100 STUDENTS CITY PARK 20 ACRES FAUBION HS 43 EMP 479 STUDENTS RESORT AREA 25 EMP PACE BEND PARK 4 EMP LAGO VISTA HS 10 EMP 80 STUDENTS CITY PARK 219 ACRES CITY PARK 25 ACRES METRO PARK 152 ACRES CYPPESS CPEFK PARK	00002143
•	LEANDED (ACC) & END 100 STIDENTS	00002143
	LEARDER (ACC) O EMP IOU STOLENIS	
6	CITT PARK ZU ACRES	00002145
7	FAUBION HS 43 EMP 479 STUDENTS	00002143
9	RESORT AREA 25 EMP	00002146
•	DACE REND DARK & END	00002146
10	LACT VICTA NO. 10 END 90 CTINENTS	00002147
10	LAUV VISIA AS IN EMP ON STODENIS	
	CITT PARK ZIY ACRES	00002148
12	CITY PARK 25 ACRES	00002150
13	METRO PARK 152 ACRES	00002151
	CYPRESS CREEK PARK	00002151
16	TRAVIS COUNTY 41 EMP	00002151
.0	HAMILTON POOL PARK 6 EMP	00002151
	LAKEWAY AIRPORT 20 EMP	
18	LAKEWAT AIRPORT ZU EMP	00002152
24	EMMA LONG PARK 1148 ACRES COMMON FORD PARK 215 ACRES	00002155
28	COMMON FORD PARK 215 ACRES	00002156
36	WEST RIDGE SCH 60 EMP 498 STUDENTS	00002143
37		00002151
39		
	ST THERESA SCH 9 EMP 72 STUDENTS	00002143
44	ST MICHAELS SCH 25 EMP 180 STUDENTS	00002143
63	OAK HILL SCHOOL 70 EMP 844 STUDENTS	00002143
69	DOMINICAN ACOMY 2 EMP 26 STUDENTS	00002143
78	PATTON SCHOOL 66 EMP 916 STUDENTS	00002143
85	COVINGTON OS END 873 STINENTS	00002143
86		
	BOOKE SCHOOL 33 ENF 044 STOUENTS	00002143
101	PATTON SCHOOL 66 EMP 916 STUDENTS COVINGTON 95 EMP 873 STUDENTS BOONE SCHOOL 55 EMP 644 STUDENTS MANCHACA SCH 47 EMP 637 STUDENTS LEANDER JHS 90 EMP 931 STUDENTS GIDDENS SCH 48 EMP 540 STUDENTS BLOCK HOUSE SCH 61 EMP 764 STUDENTS SCODETORN NO 446 EMP 100 TOTOENTS	00002143
103	LEANDER JHS 90 EMP 931 STUDENTS	00002143
	GIDDENS SCH 48 EMP 540 STUDENTS	00002143
	BLOCK HOUSE SCH 61 EMP 764 STUDENTS	00002143
107	GEORGETOWN HS 146 EMP 1257 STUDENTS	00002159
	HIGH SCHOOL 122 EMP 1514 STUDENTS	
	ATTA SCHOOL IZZ EMP 1314 STUDENTS	00002159
	GEORGETOWN JHS 55 EMP 727 STUDENTS EASTSIDE, MESTSIDE, NORTHSIDE, FROST, WILLIAMS 195 EMP 2652 STU GEORGETOWN HOSPITAL 60 BEDS (180 EMP) SOUTHWESTERN U 275 EMP 1130 STUDENTS (1000 ON CAMPUS) GEORGETOWN AIRPORT 35 EMP GEORGETOWN CITY OF 216 EMP	00002159
	EASTSIDE, WESTSIDE, NORTHSIDE, FROST, WILLIAMS 195 EMP 2652 STU	00002159
	GEORGETOWN HOSPITAL 60 BEDS (180 EMP)	00002160
	SOUTHWESTERN U 275 EMP 1130 STUDENTS (1000 ON CAMPUS)	00002161
	GEORGETCHAN AIRPORT 35 END	00002162
	CEORCETOWN FITY OF 214 END	00002162
447		00002102
113	OLD TOWN SCH 40 EMP 500 STUDENTS	00002163
	ROUND ROCK CITY OF 20 EMP	00002162
120	BRUSHY CREEK 59 EMP 705 STUDENTS	00002163
122	ROUND ROCK HOSPITAL 75 BEDS (275 EMP)	00002166
125	ROUND ROCK CITY OF 16 EMP	00002169
127	DBL FILE TRAIL 61 EMP 707 STUDENTS	
	TEVE CATE ULE ENT IVI JUUENID	00002170
129	TEXAS BABTIST CHILDRENS HOME 49 EMP	00002172
130	ROBERTSON 49 EMP 489 STUDENTS	00002170
136	BERKMAN SCHOOL 52 EMP 499 STUDENTS	00002170
	C.D. FULKES 92 EMP 917 STUDENTS	00002170
137	ROUND ROCK CITY OF 154 EMP	00002170
140	ROUND ROCK HS 187 EMP 3286 STUDENTS	
140	NUMERANG TO FER 200 31002413	00002173
	RUURU RULK ALL CY ENP OOK SILVENIS	00002173
	CHISHOLM INAIL YE EMP YOU STUDENTS	00002173
	DEEPWOOD SCH 59 EMP 592 STUDENTS	00002173
	ACC ADMIN 271 EMP	00002173
142	ROUND ROCK ACC 29 ENP 862 STUDENTS ROUND ROCK ACC 29 ENP 862 STUDENTS CHISHOLM TRAIL 96 EMP 990 STUDENTS DEEPWOOD SCH 59 EMP 592 STUDENTS ACC ADMIN 271 EMP BLUEBONNET 49 EMP 440 STUDENTS VOIGHT SCHOOL 54 EMP 540 STUDENTS	00002173
144	VOIGHT SCHOOL 54 END 540 STIDENTS	00002173
***	GEORGETOWN AIRPORT35EMPGEORGETOWN CITY OF 216EMPOLD TOWN SCH40EMPBRUSHY CREEK59EMPBRUSHY CREEK59EMPPOUND ROCK CITY OF20EMPBRUSHY CREEK59EMPPOUND ROCK CITY OF16EMPDBL FILE TRAIL61EMPCD. FULKES92EMPABATIST CHILDRENS HOME49EMPROBERTSON49EMPAGBERTSON49EMPAGBERTSON49EMPAGBERTSON49EMPAGBERTSON49EMPAGBERTSON49EMPAGBERTSON49EMPAGBERTSON49EMPAGUND ROCK CITY OF154EMPP010ENTSROUND ROCK ACC29EMP90STUDENTSCHISHOLM TRAIL96EMP90STUDENTSDEEPWOOD SCH59EMP540STUDENTSVOIGHT SCHOOL54EMP540STUDENTS	00002173

GENERATION	110176	66012020625990	1342313423	01342	3 2642 2642	AUSTIN	02020	
GENERATION	2 2545	2963 505610568	5705 5705	0 570	5 988 988	AUSTIN	02020	
GENERATION		2205 4164 7497		0 408		AUSTIN	02020	
		162210635 6288						
GENERATION		102210035 0200	2200 2200	0 330		AUSTIN	02020	
GENERATION	5 1498		1107 1107	0 110		AUSTIN	02020	
GENERATION	6 4020	848 7693 3971	2005 2005	0 200	5 719 719	AUSTIN	02020	
GENERATION		76692322232052			0 3086 3086	AUSTIN	02020	
		2209 7508 8261						
GENERATION				0 447		AUSTIN	02020	
GENERATION		1377 2217 5003		0 275		AUSTIN	02020	
GENERATION	1014892	31572850812685	6399 6399	0 639	9 1884 1884	AUSTIN	02020	
GENERATION		2469 7437 8695		0 477		AUSTIN	02020	
GENERATION		1085 4429 4489		0 238		AUSTIN	02020	
		007 (050 0775				VUSITH		
GENERATION	13 2445			0 131			02020	
GENERATION		1240 2816 5540		0 286		AUSTIN	02020	
GENERATION	15 1664	2909 316114687	7524 7524	0 752	4 1040 1040	AUSTIN	02020	
GENERATION	1610667	37902041614611	7733 7733	0 773			02020	
GENERATION	17 1351	476 2685 2040		0 106				
							02020	
GENERATION		263712169 6681		0 377		AUSTIN	02020	
GENERATION	19 1766	1770 3507 7514	3927 3927	0 392	7 654 654	AUSTIN	02020	
GENERATION	20 1236			0 141		AUSTIN	02020	
GENERATION		1065 5180 4458		0 234		AUSTIN		
							02020	
GENERATION		2488 419010588		0 554		AUSTIN	02020	
GENERATION	23 3712	1337 7374 4892	2556 2556	0 255	6 640 640	AUSTIN	02020	
GENERATION	24 10	0 19 142	70 70	07	066	AUSTIN	02020	
GENERATION	25 2849	2814 5453 9973		0 538		AUSTIN	02020	
GENERATION		2113 3497 9036	4729 4729	0 472				
						AUSTIN	02020	
GENERATION	27 786		823 823	0 82		AUSTIN	02020	
GENERATION		2773 753911805		0 614	7 1098 1098	AUSTIN	02020	
GENERATION	29 1586	844 3150 3527	1878 1878	0 187	8 542 542	AUSTIN	02020	
GENERATION	30 1949			0 27		AUSTIN	02020	
GENERATION	31 1461	162 2900 698		0 32				
	- 국가 17일					AUSTIN	02020	
GENERATION	32 375	385 746 684		0 43		AUSTIN	02020	
GENERATION	33 338			0 30	0 134 134	AUSTIN	02020	
GENERATION	34 1451	1026 2755 3651	1960 1960	0 196	0 374 374	AUSTIN	02020	
GENERATION	35 402			0 100		AUSTIN	02020	
GENERATION	36 693			0 126				
						AUSTIN	02020	
GENERATION	37 2879		7125 7125	0 712		AUSTIN	02020	
GENERATION	38 418			0 76		AUSTIN	02020	
GENERATION	39 2361	213 4484 679	311 311	0 31		AUSTIN	02020	
GENERATION	40 337	11 639 103		0 4		AUSTIN	02020	
GENERATION	41 823			0 126				
	42 1059					AUSTIN	02020	
GENERATION				0 161		AUSTIN	02020	
GENERATION	43 4512		1352 1352	0 135		AUSTIN	02020	
GENERATION	44 584	304 1118 1018	525 525	0 52		AUSTIN	02020	
GENERATION	45 771			0 282		AUSTIN	02020	
GENERATION	46 245	10 487 87						
				0 3		AUSTIN	02020	
GENERATION	47 550			0 7		AUSTIN	02020	
GENERATION	48 1366		286 286	0 28	6 142 142	AUSTIN	02020	
GENERATION	49 712	57 1353 179		0 8		AUSTIN	02020	
GENERATION	50 1466			0 17		AUSTIN		
APUPULIT I AN	20 1400	110 6103 300	179 174	V 17	4 117 119	AUSTIN	02020	

,