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IMPLEMENTATION STATEMENT

This report provides recommendations of three candidate incident detection
algorithms for consideration by TxDOT for the inclusion in the initial implementation of
their freeway surveillance and control centers. The report provides information on the use
and effectiveness of existing incident detection algorithms. it also contains information
on the data required to operate and calibrate the recommended incident detection
algorithms. |
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SUMMARY

The Texas Department of Transportation (TxDOT) is currently developing the
system architecture to support their freeway surveillance and control centers. These
centers will be designed to perform many functions including the automatic detection of
congestion and capacity-reducing incidents. One remaining issue to be decided in the
development phase of these centers is which incident detection algorithm should be used
when the centers are first implemented in the various metropolitan areas in Texas. This
report provides an evaluation of the existing incident detection algorithms currently
presented in the literature, and provides recommendations as to which algorithms should
be considered by TxDOT for inclusion in the initial implementation of their freeway
surveillance and control centers. This research focuses on existing incident detection
algorithms reported in the literature: no new algorithms were developed as part of this
research. ‘

Several algorithms have been proposed for autornatically detecting incidents using
freeway detector data. Some are comparative algorithms that compare measured traffic
conditions to preestablished thresholds. Others use statistical procedures to detect
significant changes in traffic patterns over time. Still others use complex theoretical
modeis to predict future traffic conditions using current traffic measurements and historical
trends. The structure of an algorithm affects its performance in terms of detection rate,
false alarm rate, and detection time.

Site visits were also performed at seven operating freeway surveillance and control
centers operating in the United States and Canada. The purpose of these site visits was
to obtain firsthand knowledge of the type and effectiveness of incident detection
algorithms currently being used in many of the operating surveillance and control centers.
The site visits revealed that all seven of the control centers are sither using or have used
a modified version of the Callifornia incident detection algorithm at some point. However,
only three are stili currently using a modified version of the California algorithm. Three
locations have stopped using an incident detection algorithm altogether, citing the high
false alarm rates and other faster means of detection (i.e., cellular telephones and closed
circuit television) as being reasons for discontinuing the use of an incident detection
algorithm in their system. Only one visited location (Toronto, Ontario) is using an
algorithm other than a modified California algorithm. This location began using the
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McMaster algorithm in an operational capacity in late 1992. Initial impressions of the
algorithm performance in an operational setting are favorable.

No single algorithm appears to be superior in terms of its reported performance,
data requirements, ease of implementation, ease of calibration, and operational
experience. Using the results from both off-line and on-line evaluations reported in the
literature, most algorithms appear to achieve the same level of detection and produce
similar false alarm rates, when properly calibrated. Detection times for most algorithms
are also similar.

Given the results of the evaluation and the site visits, it is recommended that the
TXDOT consider the following incident detection algorithms in the initial implementation
of their freeway surveillance and control centers:

. Modified California Algorithm #7
. Modified California Algorithm #8
. McMaster Algorithm

These algorithms are recommended because of the ease that they can be implemented
and because they require only limited amounts of on-line complex calculations. When
properly calibrated, they should perform adequately and can be adapted to the different
operating conditions that exist in the various cities where TxDOT will be implementing
systems. Consideration should be given to combining the modified California algorithm
into a detection system where one of two algorithms can be selected based on prevailing
traffic conditions. Unfortunately, as with any algorithm, these algorithms require extensive
calibration, with data required for each detection area to properly calibrate the algorithm.
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1. INTRODUCTION

The Texas Department of Transportation (TxDOT) is currently designing complex
freeway surveillance and contro! centers to be instalied in many major metropolitan areas
in Texas. The purpose of these centers is to improve traffic operations on the freeway
system by performing many functions, including the following:

e detecting the presence of congestion and lane blocking incidents;
. dispatching personnel to clear incidents and accidents from the freeway;
. implementing control strategies (such as ramp metering) to regulate traffic
entering the freeway; and
. ‘providing motorists with information about the cause of the congestion,

expected delays and alternative routes around the congestion.

One issue to be determined by TxDOT in the design of their system is the selection
of an incident detection algorithm to use in the initial implementation of the system. Many
incident detection algorithms have been developed and reported upon in the literature.
Each algorithm uses different techniques for detecting the presence of capacity-reducing
incidents. For example, some algorithms compare the measured loop occupancy levels
at a single or group of detector stations to preestablished thresholds. Other algorithms
monitor how traffic measures change over time. There is no clear winner as to which
algorithm or detection philosophy is best for a single situation. The Texas Transportation
Institute was asked by TxDOT to conduct an analysis of the existing incident detection
algorithms and provide recommendations as to which algorithms should be considered
in the initial implementation of TxDOT's freeway surveillance and control centers.
Specifically, the questions to be addressed in this research were as follows:

. What incident detection algorithms are currently being used in operational
freeway surveillance and control systems in the United States and Canada?

. How effective are these algorithms at detecting incidents in an actual
operating system?

+  What kind of operational problems are caused by these algorithms?




. What incident detection algorithm(s) should TxDOT use (at least initially)
when implementing their freeway surveillance and control system?

Objectives
The objectives of this research were as follows:

1. Using the literature, assess the existing incident detection algorithms in terms of
their reported operational performance, ease of calibration, ease of implementation,
and data requirements;

2, Determine which algorithms, if any, are currently being used in select freeway
management systems in the United States and Canada; and

3. Recommend which of the currently available incident detection algorithms should
be considered by TxDOT for possible inclusion into the initial implementation of
their freeway surveillance and control systems,

Scope

The scope of this research was limited to a review of available incident detection
algorithms reported in the literature or in operation in existing freeway management
centers in the United States and Canada. The research included algorithms that
appeared promising but not yet implemented in an actual freeway management center.
No new incident detection algorithms were developed as part of this research.

The study was limited to a review of incident detection algorithms that use data
from inductive loop detectors only. Although the report does contain a section on other
potential means of detecting incidents (such as video imaging or the use of automatic
identification systems), a detailed assessment of these techniques was not performed.

Furthermore, the assessment of the performance of the incident detection
algorithms was based on the results published in the available literature. No attempt was




made to use actual field data to compare the performance of the algorithms. Since
algorithm performance is very dependent on the design of the system and how well the
algorithm is calibrated for the system, the research assumes that the results published in
the literature by other authors are accurate and objective.

Organization of Report

This report consists of three additional chapters. Chapter 2 discusses the
theoretical aspects of the available incident detection algorithms. Chapter 3 provides a
summary of on-site field observations that were performed at seven operating freeway
surveillance and control systems in the United States and Canada. Chapter 4 provides
an assessment of the performance and implementation aspects of the various incident
_detection algorithms. In Chapter 5, three incident detection algorithms are recommended
for consideration by TxDOT in the initial implementation of their freeway surveillance and
control systems. |




2. REVIEW OF EXISTING INCIDENT DETECTION ALGORITHMS

Many computer algorithms have been developed to detect incidents in freeway
surveillance and control systems. Some algorithms compare direct measurements of
traffic to preestablished thresholds. Others use statistical procedures to detect changes
in traffic conditions over time. Still others use complex theoretical models to predict
expected traffic conditions given current conditions and historical trends. The structure
of an algorithm can greatly influence its performance in terms of detection rate, false alarm
rate, and detection time.

In this chapter, existing incident detection algorithms are reviewed. The review
focuses on the following key elements:

* the underlying theory of each algorithm,
¢ the data required to operate each algorithm, and
® the reported performance of each algorithm in an operational setting.

However, before the each algorithm can be assessed, it is important to understand the

traffic patterns that resuit when incidents occur under different operating conditions on a

freeway. ltis also important to have an understanding of traffic and operational situations
“that can cause incident detection algorithms to generate false alarms.

Incident Traffic Patterns

An incident is defined as any non-recurrent event which causes a temporary
reduction in the capacity of a freeway or an abnormal increase in demand on a freeway
(1). Incidents can be predictable (such as construction or maintenance operations and
special events) or unpredictable (such as accidents, stalled vehicles, weather, etc. ) The
purpose of an incident detection algorithm is to automatically identify the occurrence of
unpredictable incidents that affect the capacity of a freeway (specifically accidents and
stalled vehicles) so that appropriate response and clearance procedures can be executed
to minimize the effects of the incident on traffic operations. The goal is to identify incident
focations as quickly as possible.




Typically, when an incident occurs on a freeway, the capacity of the freeway is
reduced. The amount of the reduction depends on several factors, including the following:

] the time at which the incident occurred (i.e., whether the incident occurred
peak versus off-peak travel demand periods),
® the location of the incident (i.e., whether the incident is on the shoulder or
in the travel lanes),
L the number of lanes that are blocked,
. the duration of the incident, and
® the severity of the incident.

Table 2-1 shows the magnitude of capacity reductions for several typical incident
situations occurring on the Gulf (I-45 South) Freeway in Houston, TX.

Table 2-1. Typical Reductions in Capacity for Different Incident Types (2).

Amount of
~ Incident Situation Capacity Reduction
(Percent)
Normal Flow {three lanes - no incident) -

. Stall (one lane blocked) 48
Non-injury accident (one lane blocked) 50
Accident (two lanes blocked) 79
Accident on shoulder 26

However, the effects of an incident are not solely dependent on the magnitude of
the capacity reduction. The nature of the incident and the traffic conditions that prevail at
the time of the incident also influences its effect on traffic operations. The difference
between the incoming traffic demand and the resulting capacity dictates the traffic patterns




that develop when an incident occurs on a freeway. In general, there are five basic
incident situations that create distinctive patterns in traffic detector data (3):

Incidents in Uncongested Freeway Sections

e The capacity at the incident site is less than the oncoming traffic
demand. Under this situation, a queue would develop upstream of the
incident since the oncoming traffic demand is greater than the number of
vehicles that can pass through the incident site. The queue propagates
upstream of the incident site as more vehicles enter the congested area.
Because not as many vehicles are getting past the incident site, a region of
light traffic moves downstream at the same time as the queue begins to build
upstream of the incident. This type of traffic pattern is the most distinctive
of all the possible patterns that can develop; therefore, it is the easiest traffic
pattern that can be detected by an algorithm. Figure 2-1 illustrates this type
of traffic pattern.

o The capacity at the incident site is greater than the oncoming
traffic demand. This type of traffic pattern is typically associated with
incidents that have been moved to the shoulder. As shown in Figure 2-2,
traffic flow past the incident site is not greatly impacted. Measurements from
the loop detectors show that traffic is basically the same as before the
incident occurred. Only minor queues (and possible no queues) form in the
immediate area of the incident. Depending on how close the incident is to
a detector station, queues may not extend over the detectors. Therefore,
this type of incident pattern is more difficult to distinguish than the one
above. Most incident detection algorithms cannot detect this type of incident
pattern when it occurs.

o The traffic demand is so light that the incident has no
measurable effect of traffic patterns. In this case, the light traffic demand
prevent queues and congestion from forming at the incident site. Since
there is no congestion or queuing, delays to motorists are minimal. This type
of traffic pattern typically occurs under low traffic volumes (such as at night).
Because traffic is not significantly impacted, most algorithms. are not capable
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Figure 2-1. Typical Traffic Pattern When Demand Exceeds Capacity During
Incident Conditions (37).

of detecting incidents that occur under this situation. However, attempts
have been made to develop algorithms that can detect incidents under low-
volume conditions. These algorithms and their performance are discussed
later in this chapter. The typical traffic patterns associated with this
particular situation is shown in Figure 2-3.

Incidents in. Congested Freeway Sections

o The capacity at the incident site is less than the volume of traffic
downstream of the site. This situation typically occurs during heavy traffic
conditions where fraffic is congested prior to the incident. In this situation,
the incident meters traffic entering the segment of freeway downstream of
the incident. Because the demand in the downstream section has reduced,
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The capacity at the incident site is not less than the downstream
ffic volume. This type of situation is typically associated with secondary
incidents that occur in queues caused by other incidents. Most of the time,

During Incident Conditions.

o
tra

already congested, traffic queues and shock waves do not propagate
upstream to a detector station. As a result, the second incident does not

these situations may be detected by some algorithms but only after a
the effects of these incidents are localized (see Figure 2-5). Since traffic is

the congestion downstream of the incident begins to slowly clear, while
_considerable delay. This situation is illustrated in Figure 2

upstream of the incident, congestion persists.
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Figure 2-2. Typical Traffic Pattern When Capacity is Greater Than Demand
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Figure 2-3. Typical Traffic Pattern When Incident Occurs in Low Volume
Conditions.

typically result in a noticeable difference in traffic conditions. For this
reason, some algorithms may not detect incidents that occur under this
situation until the congestion from the first incident has cleared.

As indicated above, not all types of incident patterns can be readily detected by all
incident detection algorithms. Some algorithms can detect certain types of incident-
induced traffic patterns better than others. Currently, there does not appear to be an
incident detection algorithm that can detect all incidents under all conditions. Furthermore,
the ability of an algorithm to detect an incident is also influenced by the duration of the
incident, the spacing between detector stations, the location of the incident relative to the
detector stations, and the operating conditions that existed at the time the incident
occurred. '
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Flgure 2-4. Typical Traffic Pattern When Capacity at incident Site is Less Than
Volume Downstream of Incident.

Situations That Cause False Alarms

The inability to quickly detect incidents under different traffic patterns is one
difficulty facing existing incident detection algorithms. Another difficulty is limiting the
-number of times that an algorithm issues an incident alarm when an incident does not
actually exist (i.e., a false alarm).

One common problem that can create false alarms are malfunctioning loop
detectors (3). When this occurs, the detector station can falsely report a high occupancy
rate. Most freeway surveillance and control systems include tests that check the validity
of incoming detector data before it is used in the algorithm.

11
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Figure 2-5. Typical Traffic Pattern When Capacity is not Less Than Volume
: Downstream of Incident.

There are also patterns in incident-free traffic that tend to mimic traffic patterns
associated with incidents (3). False alarms can also be generated when individual
vehicles create isolated variations in speed. This type of pattern can be caused by trucks
or other slow-moving vehicles in the traffic stream, and is a prevalent cause of false alarms
in most incident detection algorithms. The pattern manifests itself as a compression wave
that propagates in the opposite direction of the flow of traffic. It causes a false alarm to
be sounded because the station-to-station differences in traffic conditions are similar in
- magnitude to that generated by incidents.

A third common situation that tends to cause incident detection algorithms to

produce false alarms is associated with abnormal geometries (3). Abnormal geometries,
such a sharp horizontal curves or severe vertical grades, can cause speeds to decrease

12



on a freeway, particularly on freeways with heavy truck traffic. Freeway-to-freeway
interchanges where one or more lanes are dropped or shared can also be as source of
speed variations. Heavy demand on the exit ramps can cause differences in occupancies
between two detector stations to appear as incidents to some detection algorithms. Proper
calibration of the algorithm to account for the different operating characteristics of traffic
at these locations may help to reduce the number of false alarms.

A final situation that can cause some incident detection algorithms to produce false
alarms is typically associated with bottleneck areas (3). Bottlenecks occur when traffic
demands exceed the physical capacity of the freeway, thereby causing congestion and
delays. Most incidents are temporary and unexpected bottlenecks. However, bottleneck
congestion is recurrent, occurring at the same location at the same time each day. A
typical location where bottleneck congestion can occur is at high volume entrance ramps
where entering traffic demand exceeds the capacity of the freeway. This situation creates
the high occupancy values and detector-to-detector differences in traffic parameters that
are used in incident detection algorithms.

Relationship Between Detection, False Alarms, and Time to Detect

As shown in Figure 2-6, a tradeoff exists between the number of incidents that can
be detected by an algorithm, the number of false alarms that an algorithm produces and
the time required to detect an incident (3). For the most part, the detection rate and the

false alarm rate are directly related. Algorithms that are set to detect a large percentage
of the incidents also tend to produce a high number of false alarms. Similarly, algorithms
whose sensitivity is reduced to minimize the number of false alarms also tend to miss
incidents.

A third variable, the time taken to detect the incident, also influences the detection
and false alarm rates. By increasing the time taken by the algorithm to detect an incident,
it is possible to both increase the detection rate while, at the same time, reduce the false
alarm rate. However, the longer it takes to detect an incident, the greater the impact of the

“incident on traffic flow. Therefore, to be effective, it is critical that incident detection
algorithms achieve a balance between the number of incidents that can be detected, the
faise alarm rate and the detection time. The most effective algorithms are those that

13
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Figure 2-6. Relationship Between Detection Rate, False Alarm Rate,
and Detection Time.

maximize the detection rate while minimizing both the detection time and the false alarm
rate.

Existing Incident Detection Algorithms

Existing incident detection algorithms can be categorized into one of the five groups
listed below. These categories are based on the theoretical approaches that are used to
detect incidents.

Comparative Algorithms,

Statistical Algorithms,

Time-Series Algorithms,

Smoothing or Filtering Algorithms, and
Modeling Algorithms.

14




Table 2-2 lists the existing incident detection algorithms contained within each
category. The remainder of this chapter is devoted o discussing the existing algorithms
in these categories.

Table 2-2. Existing Incident Detection Algorithms.

COMPARATIVE ALGORITHMS ®Basic California
| ®Modified California
e All Purpose Incident Detection
®Pattern Recognition (PATREG)

STATISTICAL ALGORITHMS @ Standard Normal Deviate (SND})
®Bayesian
SMOOTHING / FILTERING ® Exponential Smoothing
ALGORITHMS ®ow-Pass Filtering
TRAFFIC MODEL ALGORITHMS ®Dynamic Model
eMcMaster

Comparative Algorithms

Comparative algorithms are the simplest of all the existing algorithms. They rely on
the principle that an incident will cause an increase in the loop detector occupancy levels
upstream of the incident while, at the same time causing a decrease in the occupancy
levels downstream of the incident. Sometimes called pattern-recognition algorithms,
comparative algorithms compare the value of a measured traffic parameter (i.e., volume,
‘'occupancy, or speed) to a preestablished threshold value. The thresholds are used to
define the point that traffic flow becomes congested at a location. An incident is detected
when the measured traffic parameter exceeds the established thresholds. Most
comparative algorithms perform one or more of the following tests:

15




L tests to distinguish between incident and bottleneck congestion,

tests to detect the presence of compression waves in traffic data,

® tests to ensure that incident traffic patterns persist for a specified period (and
not caused by short-lived random fluctuations in traffic), and

® tests to determine whether to terminate an incident atarm.

California Algorithm

The California Algorithm is the most widely known (and perhaps most commonly
used) comparative algorithm in the United States. It was originally developed for use in
the Los Angeles freeway surveillance and control center in the late 1960s. The basic

- structure of the algorithm compares traffic conditions between two adjacent detector

stations using the following three parameters derived from measurement of loop
occupancy (3):

o the absolute difference in the measured occupancy between the upstream
and downstream detector stations,

@ the difference in the measured occupancy between the upstream and
downstream detector stations relative to the occupancy level at the upstream
station, and

® the relative difference in the measured occupancy from two minutes ago as
compared to the current occupancy level at the down stream detector
station.

An incident is declared when all three of these traffic parameters exceed the

preestablished thresholds. Additional tests, which also compare the difference in

occupancy between detector stations, are used to decide whether to terminate an incident
alarm after a specified period.

Figure 2-7 shows the basic California algorithm structured as a binary decision tree.
A binary decision tree consists of one or more logical decisions grouped together in a
tree-like structure. Each logical decision is based upon a comparison of a traffic feature

to its corresponding threshold value.

16
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Figure 2-7. Structure of Basic California Incident Detection Algorithm (3).

Modified California Algorithm

In fate 1973, FHWA awarded a contract for a research study to develop improved
incident detection algorithms (3). This research study was initiated because of the high
false alarm rate produced by many of the incident detection algorithms then. in use in
existing surveillance and control centers (4). The research identified and tested ten
modified versions of the California algorithm. Besides using different traffic variables, two
additional features were employed in these modified algorithms to reduce false alarm
rates: persistence checks and compression wave tests. As previously discussed, incident
free-data contains many flow disturbances (or inhomogeneities) which mimic incident
conditions. These disturbances are short-lived, typically lasting only one or two execution
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cycles of the algorithm. To combat these short-lived disturbances, Payne et al. (3)
included additional tests that required traffic discontinuities to persist for a specific time

- before an incident alarm was sounded, thereby increasing the detection time. These

persistence checks were found to be sufficient to eliminate most short-lived disturbances.

Compression waves in heavy traffic also tend to produce false alarms in many
incident detection algorithms. Compression waves occur in heavy traffic where stop-and-
go traffic conditions create large sudden increases in occupancies. These surges in

-occupancies move through the traffic stream from 5 to 15 mph (8 to 24 kmph) in the

direction counter to the traffic flow. They are detected by monitoring traffic data for a large
increase in occupancy at a station followed by a similar increase in occupancy at the next
upstream station within the interval required for the compression wave to reach the
upstream station.

- Payne et al. (3) conducted an evaluation of the ten versions of the California
algorithm using data obtained from the Los Angeles and Minnesota freeway surveillance
systems. A total of 1583 incident and 30 incident-free data sets were used in the
evaluation. Performance characteristic curves of the detection rate and the false alarm
rate were developed to evaluate each algorithm. All except one of the modified versions
of the California algorithms use traffic variables derived from occupancy measurements
as the primary parameters evaluated in the algorithm. These occupancies are one-minute
averages for a detection station. In the exception, a speed measurement derived from
volume and occupancy was used as a third traffic parameter.

Of the ten algorithms, two were reported by Payne et al. (3) as providing the best
overall results: Algorithms #7 and #8. In Algorithm #7, the third parameter of the basic
California algorithm was replaced with a measurement of the current downstream
occupancy level. This variable was added so that compression waves could be more
readily identified. A persistence check was also added that required incident conditions
at a detection station to last for more than two iterations of the algorithm before an alarm
was sounded.

Algorithm #8 uses a suppression feature that delays sounding an incident alarm for
five minutes after a compression wave has been detected. While the algorithm appears
complex (it involves 21 individual decisions), most are simple comparisons of occupancy-
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related traffic variables to preestablished thresholds. The decision trees for both these
algorithms are shown in Figure 2-8 and 2-9, respectively.

All Purpose Incident Detection Algorithm

The All Purpose Incident Detection (APID) algorithm was developed for use in the
COMPASS advanced traffic management system impiemented in the Metropolitan Toronto
area (5, 6 ). One of two algorithms used in the system, the APID algorithm incorporates

the major elements of the California algorithms into a single structure. The algorithm
~ consists of the following major routines:

o a general incident detection algorithm for use under heavy traffic conditions,
® a light volume incident detection algorithm,
® a medium volume incident detection algorithm,

QCCDF = DIFFERENCE IN
OCCUPANCY

OCCRDF= RELATIVE
DIFFERENCE IN
OCCUPANCY

BOCC = OCCUPANCY AT

DOWNSTREAM
STATION

0 = INCIDENT-FREE

OCCROF OCCRDF OCCRDF STATE
> THRES. 2 >THRES. 2 = THRES. 2 0 I_T_\ = TENTATIVE INCIDENT
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. an incident termination detection routine,
L a routine for testing for the presence of compression waves, and
® a routing for testing for the persistence of incident conditions.

The primary advantage of this algorithm over the other versions of the California
- algorithm is that different algorithms are used depending on existing traffic conditions. An
initial test defines the existing current traffic conditions on the freeway. The test uses
occupancy levels at a detection station to determine the most appropriate incident
detection aigorithm to use. Traffic conditions are classified as heavy, medium, or light.
Different algorithms (which check different traffic parameters) are selected based upon the
prevailing traffic conditions on the freeway. If the traffic conditions are defined as "heavy,"
the algorithm uses the basic California algorithm (discussed above) to detect incidents
between detector stations. For medium traffic conditions, two different traffic parameters
are used: the relative spatial difference in occupancies (OCCRDF(i,t)) and the relative
temporal difference in speed (SPDTDF(i,t)). (Note: the algorithm that was used during
light volume conditions was not defined in the literature). Persistence checks and
compression wave tests are also performed under each traffic volume condition before a
confirmed incident alarm is issued to the operator.

_ A two-week on-line evaluation of the APID algorithm was performed on the

Burlington Skyway in Ontario, Canada. During this evaluation, the APID detected 66
percent of the total 29 incidents that occurred on the freeway. However, this sample
included several minor incidents that did not cause significant disruptions to traffic. If
these incidents are removed from the data base, the APID achieved a detection rate of 86
percent. The average detection time achieved during the evaluation period was 2.5
minutes. The algorithm reportedly experienced a false alarm rate of approximately 0.05
percent during the evaluation period.

As a result of the two-week evaluation plus actual on-line operational experience,
it was concluded that the APID algorithms worked best under heavy traffic volume
conditions. The performance of the algorithms in terms of missed incidents and false
-alarms is not as good under low volume conditions as under heavy volume conditions.
Therefore, it was concluded that another algorithm (such as a double exponential
smoothing algorithm that is discussed below) should be used during light traffic conditions. -
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Pattern Recognition Algorithm

The Pattern Recognition (PATREG) Algorithm was developed by the Transport and
Road Research Laboratory (TRRL) as part of their Automatic Incident Detection (AID)
system (7). It is used in conjunction with another algorithm, HIOCC (discussed later), to
detect the traffic disturbances following an incident on high-speed facilities in England.
Comparing detector data from two consecutive detector stations, the PATREG monitors
detector data for significant changes in speed of individual vehicles between the two
detector stations. The speed of an individual vehicle is calculated based on the
assumption that under steady-state, incident-free conditions, a particular traffic pattern
observed at an upstream detector station can also be observed, after a delay, at a
downstream detector. Under ideal conditions, the delay before the pattern is observed at
the downstream station is equal to the travel time between the two detector stations. By

-determining the amount of delay that occurs before the same traffic pattern appears at a

downstream detector station, the average speed of traffic in each lane can be estimated.
The estimated speed is then compared to predetermined upper and lower speed
thresholds that have been developed for that particular lane. If the estimated speed in a
lane falls outside the threshold value during a pre-set number of consecutive intervals (that
acts as a persistence check), then an alarm is sounded.

A limited off-line evaluation of the performance of the algorithm was conducted
using data from England and 12 Staged incidents in France. The evaluation showed that
the algorithm did not perform well once traiffic volumes exceeded 1500 vehicles per hour
per lane (vphpl). 1t is believed that when traffic becomes heavy, traffic patterns become
too random to be recognized by the detection algorithm. The algorithm was unable to
detect any of the staged incidents.

Statistical Algorithms

Algorithms in this category use standard statistical techniques to determine whether

“observed detector data differ statistically from estimated or predicted values. Algorithms

in this category include the Standard Normal Deviate and the Bayesian algorithms.
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Standard Normal Deviate

The Standard Normal Deviate (SND) algorithm was developed by the Texas
Transportation institute in the early 1970's for use in the initial surveillance and control
center installed for the Gulf Freeway (I-45 South) in Houston, TX (8). The algorithm is
‘based on the premise that a sudden change in a measured traffic variable suggests that
an incident has occurred on the freeway. Using this premise, the algorithm evaluates
trends in selected traffic variables (i.e., either occupancy or energy) to determine when
they deviate more rapidly than the expected.

The algorithm computes the standard normal deviate of the control measure. A
standard normal deviate (or SND) is the number of deviations a particular value of a
variable is away from the mean of that particular variable. It is equivalent to placing
confidence intervals on the measured traffic variable. The SND reflects the degree to
which the observed field measurement (e.g., the one minute average of loop occupancy)
has changed during a given interval compared to the average trend measured during
several previous intervals (e.g., three minutes). Measured SND values are compared to
critical values that define thresholds for detecting incidents. An SND value greater than
the critical SND value indicates that a major change in operating conditions has occurred
on the freeway. An SND value less than the critical SND value implies that measured
traffic conditions are not statistically different from past trends.

_ Two operational strategies were developed for implementing the SND model in an
actual freeway surveillance and control center. The first requires that only the present
minute SND value to be critical. The second operating strategy requires that two
successive SND values be critical. In actuality, the second SND value is used as a
persistence check.

A moving average technique was used to compute the mean of the control variable.
The performance of the algorithm was evaluated using two time bases. The first method
- used data from the previous three-minute sampling periods to compute the mean and
- standard deviation of the control variable. The second method considered parameters
from the previous five minutes.
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The SND model was evaluated using data from the Guilf Freeway in Houston, TX.
Incidents were observed manually using video surveillance cameras. When an incident
was observed, data about the incident were recorded in a log book at the surveillance
center. A computer program was also started that recorded the loop detector data. The
evaluation of the performance of the algorithms then occurred off-line. Data were collected
from a total of 35 incidents. Data from three A.M. peak periods (7-8 a.m.) where no
incidents occurred were used to evaluate the false alarm rate of the algorithm. Because
of the tradeoff between detection capabilities and false alarms, an SND value that
achieved results approaching a 90 percent detection rate and a 1 percent false alarm rate
was used to determine the critical SND value

When only one SND iteration value was required to be critical, the algorithm
achieved an 86 percent detection rate when both occupancy and energy were used as
control variables. The performance of the occupancy variable was considered better,
however, because of the lower frequency of false alarms. Changing the time bases (from
~ a three-minute moving average to a five-minute moving average) did not greatly affect the
performance of the algorithm in terms of detection rate or false alarm rate.

When two successive SND values were required to be critical before an alarm was
- issued, a higher percentage of incidents were detected using occupancy than energy.
When a five minute moving average of the inboming traffic data was used to compute the
mean and the standard deviation, this approach detected 92 percent of the 35 incidents
with an average detection time of 1.1 minutes. The false alarm rate was computed to be
1.3 percent during the peak period. Both time bases, however, resulted in a lower false
alarm rate than when only one SND was required to be critical.

Bayesian Algorithm

Levine and Krause (9) proposed an algorithm that uses Bayesian statistical
techniques to compute the probability that an incident signal is caused by a lane-blocking
incident after accounting for the previous incident and nonincident signals produced by the
algorithm. The algorithm actually uses the relative difference the occupancies (OCCRDF)
used in the California algorithm as the traffic measure. However, unlike the California
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algorithm, the algorithm applies Bayesian statistics to compute the conditional probability
that the relative difference in the occupancy is caused by an incident. Bayesian theory
assumes that frequency distributions of the upstream and downstream occupancies during

- incident and incident-free conditions can be developed. Using historical data on the

frequency of the capacity-reducing incidents for a section of freeway, the probability of an
incident occurring on a section of freeway can be derived. Similarly, the probability of not
having any capacity-reducing incidents can also be derived from historical occupancy
data. Given these probabilities, Bayesian concepts are applied to find the probability that
an incident has occurred given that the relative difference in occupancy has exceeded an
established threshold.

In theory, the probability that an incident occurred between two detector stations
can be determined for a series of incident indications. For example, Bayes theory can be
applied to compute the probability that an incident has occurred given that two of the last

- three signals from the algorithm showed no incident has occurred in the section. Because
~ the probability is assigned to this occurrence, the operator can estimate the likelihood that

an incident signal is a false alarm or actual incident.
To impiement this algorithm, three data bases are needed:
L traffic occupancy and volume data during incident conditions,
L traffic occupancy and volume data during incident-free conditions, and

L historical data on the type, location, and effects of incidents.

These data are required for each section in which the algorithm will be used. The first two
are required to develop the frequency distributions used to calculate the conditional

- probabilities. The third is needed to develop the historical probabilities of capacity-

reducing incidents occurring in a section of freeway. The probability of an incident
occurring at a given detector station at a specified minute in time is given by the following
ratio:

A

B-C

where,

25




A= the average number of incidents occurring in the study section in the total
period,
B = the total number of detectors in the study section, and
C = the number of minutes used in the study period.

Levine and Krause (9) evaluated the performance of the Bayesian algorithm using
off-line data from Chicago, Illinois. A total of 17 incidents representing the afternoon rush-
‘hour on dry-weather weekdays and two hours of incident-free data taken at 15 subsystems
were analyzed. Levine and Krause reported that one hundred percent of all the incidents
were detected with a 0.0 percent false alarm rate. The structure of the algorithm requires
a minimum mean time of detection of at least four minutes.

Levine and Krause (9) also compared the performance of the Bayesian algorithm
with three versions of the California algorithm (specifically the original California algorithm,
Algorithm #7, and Algorithm #8). Using the off-line data, Levine and Krause found that
Bayesian algorithm compares favorably with the other algorithms. However, both
Algorithms #7 and #8 detect incidents 2 to 2.5 minutes faster than the Bayesian algorithm.
Results from an on-line comparison of the Bayesian algorithm and a modified version of
the California algorithm (Algorithm #7) are shown in Table 2-3.

Table 2-3. Resuits from On-line Comparison of Bayesian and a Modified California

Algorithm.
Algorithm Detection Rate False Alarm
(Percent) Rate (Percent)
- Bayesian 40
80
Algorithm #7 46 69
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Time Series Algorithms

This type of algorithm assumes that traffic follows a predictable pattern over time.
Using historical data that has been collected over time, short-term {i.e., one or two time
slices ahead of the current time) prediction of future traffic conditions can then be made.
Incidents are detected by comparing observed traffic parameters with values that have
been predicted using the time series model. An incident is declared when the difference
between the observed and predicted values falls outside an acceptable range.

Figure 2-10 illustrates the general approach used by time series models to detect
incidents. A traffic parameter (in this case occupancy) is monitored over time (represented
as a solid line in Figure 2-10). Using time series statistical techniques, a relationship is
developed to predict future values of the traffic parameter. Confidence intervals
(represented by the dashed line in Figure 2-10) are then placed on the predicted traffic
variable. An incident alarm is sounded when the observed data crosses outside the
confidence interval.

Several different techniques have been used to predict time-dependent traffic
variables, including the following:

o ARIMA Algorithm, and
L High Occupancy Algorithm

Time Series ARIMA Algorithm

Ahmed and Cook (10) applied Box-Jenkins technigues to analyze the time series
patterns of detector data from several freeway systems in the United States. Using a total
of 166 data sets from surveillance centers in Los Angeles, Minneapolis and Detroit, they
found that traffic flow on a freeway could be represented by an Autoregressive Integrated
Moving-Average (ARIMA [0,1,3]) time series model. The model implies that differences
in a traffic variable measured in the current time slice (t) and the same traffic variable in
the previous time slice (t-1) can be predicted by averaging the errors between the
predicted and observed traffic variable from the last three time slices. Under nomncudent
conditions, these errors are assumed to follow a random pattern.
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Figure 2-10. General Approach of Time Series Detection Algorithms (11).

Once an appropriate ARIMA model that represents normal traffic operations has
been developed, the model can then be used to develop short-term forecasts (one or two
time-slices into the future) of the fraffic variables. Confidence intervals can alsc be
assigned to the forecast variable, usually two standard deviations away from the
corresponding forecast value. Incidents are detected if the observed occupancy values
fall outside the established confidence interval {11).

In their research, Ahmed and Cook tested the application of the ARIMA(0,1,3)
model to predict traffic patterns on different freeways. Although some differences exist in
the specific form of the time series equation, the general ARIMA model is transferable to
different freeways within the system. Ahmed and Cook attributed these differences in
specific ARIMA models to variations in flow and specific geometric conditions of particular
freeways.

Although occupancy was used in the original developing and testing of the ARIMA
model, there is no theoretical limitation to other traffic parameters (such as volume or
speed) being used in the algorithm. To apply the Box-Jenkins technique in an operational
setting, data must first be collected in time series form (i.e., measurements indexed in
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time). Then using time series statistical techniques, a candidate model that represents the
observed time series pattern is developed. The autocorrelation functions (the correlation
of a traffic parameter with its own past) and the cross-correlation functions (the correlation
of a traffic parameter with another variable's present and past values) are then compared
to the candidate model to determine how well the predicted model "fits” the observed data
(12).

Ahmed and Cook (11) performed an off-line analysis of the algorithms using 1642
minutes of occupancy observations associated with 50 incidents. These data were
recorded for a 2 mile (3.2 km) section of the Lodge Freeway in Detroit. Confidence limits
were computed using both parameters estimated from incident-free historical data and
parameters that are dynamically estimated from the data in real-time. At a 100 percent
detection rate, the false alarm rate was 2.6 percent when constant model parameters were
used and 1.4 percent when variable estimates of the model parameters were used. In

- terms of detection time, the average time to detect an incident using constant-parameter

and variable-parameter estimates were 0.58 and 0.39 minutes, respectively.

It should be noted that the ARIMA algorithm was evaluated under heavy and
moderate fraffic flow conditions (1200-2000 vphpl) only. The literature is unclear on how
the algorithm would perform under light volume conditions where the effects of incidents
are not as pronounced.

High Occupancy Algorithm

_ The High Occupancy (HIOCC) algorithm also monitors detector data for changes
in traffic conditions over time (7). Developed for use in England, HIOCC inspects
occupancy data from individual loop detectors for the presence of stationary or

slow-moving vehicles. An alarm is sounded when several consecutive seconds of high

occupancy values are observed by the algorithm.

The algorithm examines the individual pulses from the detectors. A computer scans
each detector in the system once every tenth of a second to test if the detector is

~ occupied. At the end of each second, the number of times a detector was occupied is

computed. The resulting value is termed the instantaneous occupancy. Several
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consecutive values of instantaneous occupancies are then examined to see if they exceed
a predetermined threshold. A threshold value of 10 lasting two or more seconds is
equivalent to a loop occupancy level of 100 percent, and an incident alarm is then
sounded.

After an alarm has been sounded, the occupancy level is artificially raised to a
higher level, usually 90 percent. This is to prevent the alarm from switching on and off due
to random fluctuations in traffic. The alarm is ended when the occupancy level falls to the
level that existed before the initial alarm was sounded.

An off-line evaluation of the algorithms was performed using queue data from the
England and 12 staged incidents in Paris. From the evaluation, it was determined that the
detection threshold could be set at 70 percent for two seconds without producing any false

~alarms. Using a 100 percent occupancy threshold for two seconds, the HIOCC algorithm
was successful at detecting all occasions when gueues formed at the sites in England and
each of the 12 staged incidents in Paris. The response times for the detection of the
staged incidents ranged from 20 to 130 seconds.

Smoothing/Filtering Algorithms

As shown in Figure 2-11, loop detector data viewed over time tends to fluctuate with
many sharp peaks and valleys. These fluctuations are more pronounced when loop data
are compiled over short periods (i.e., less than one minute). Sometimes, the fluctuations
are caused by noise in the communication medium, but more often than not, they are
caused by random impulses in the traffic stream. It is these fluctuations that are primarily
responsible for causing false alarms with most incident detection algorithms. To eliminate
false alarms, most algorithms use persistence checks or tests for compression waves to
delay sounding an alarm until detection thresholds are exceeded for a specified period.
This, however, can cause significant time required to detect an incident.

Smoothing and filtering techniques are designed to remove the short-term
inhomogeneities from traffic data that cause false alarms so that the true traffic patterns
are "more visible" to the detection algorithm. Smoothing is a mathematical technique
(usually an exponential function) for producing a weighted average of a traffic variable.
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This approach reduces the impacts or "smooths" the effects of outliers. Filtering
algorithms use a linear filter that allows the low-frequency components (i.e., wide
fluctuation in a traffic variable characteristic of an incident condition) of the detector data
to pass while removing the undesirable high-frequency (i.e., a sharp fluctuation in traffic
characteristic or random noise) portions of the detector data. Smoothing and filtering
techniques are extremely useful when detector data includes impulse noise that hide
incident patterns. Both types of techniques for processing detector data are discussed

below.

- Exponential Smoothing Algorithms

Exponential smoothing algorithms use short-term forecasting techniques to detect
iregularities in a time series pattern of traffic data (13). Using past observations, forecasts
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Figure 2-11. Example of Typical Freeway Volume and Occupancy Data (15).
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of future traffic conditions are made with the more recent observations receiving greater
weight than older observations. By using weighted averages of the incoming traffic data,
the effects of observed outliers and random fluctuations can be reduced, thereby
producing a forecast that more closely resembles the true traffic condition on the freeway.

Mathematically, most smoothing algorithms used for incident detection purposes
can be expressed as either as a single or double exponential smoothing function. A
smoothing constant is used to affect the degree that past observations influence the
forecast value. With a large smoothing factor, more weight is given to the most recent
observations. A smaller smoothing constant places less weight on more recent
observations, which slows the response of the algorithm to observed changes in detector
data.

Incidents are detected using a tracking signal, which is the algebraic sum (to the
present minute) of all the previous errors (i.e., the difference between the predicted traffic
variable and the observed traffic variable) divided by the current estimate of the standard
deviation. Under nonincident conditions, the tracking signal should dwell around zero
since the value of the predicted traffic variable should be equal (theoretically) to the value
- of the measured (or observed) traffic variable. However, when an incident occurs, the
predicted traffic variable and the measured traffic variable are not equal, causing the
tracking signal to deviate significantly from zero. An incident alarm is sounded when the
- tracking signal exceeds an established threshold. The threshold can be set either as a
function of the variability of the data, or to minimize the likelihood of false alarms.

Cook and Cleveland (13) applied an exponential smoothing technique to develop
a total of thirteen incident detection algorithms These algorithms use control variables
derived from traffic measures from either a single detector station (station algorithms) or
for two adjacent detector stations (subsystem algorithms). All these variables are direct
measures (or can be derived from direct measures) of one-minute averages of volume,
occupancy, and/or speed from loop detectors.

These algorithms were evaluated using a total of 50 lane blocking incidents
(including 18 accidents, 28 stalls and breakdowns, two instances of debris on the roadway,
and two short-term maintenance operations) from the Lodge Freeway in Detroit. In only
one of these incidents was more than one lane blocked, and the freeway was never
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completely blocked. In two-thirds of the cases, the lane next to the median, where there
was no shoulder refuge for vehicles, was blocked. The average duration of the blockages
was 6.1 minutes, with times ranging from 1 to 19 minutes.

_ Of the thirteen algorithms studied, Cook and Cleveland (13) found that the three
best exponential algorithms were the station occupancy, station volume, and the station
~ discontinuity algorithms. Overall, the exponential station occupancy algorithm performed
better than all the other algorithms evaluated, detecting 46 of the 50 incidents (92%) at a
false alarm rate of 1.87 percent and a mean detection time of 0.74 minutes after the onset
of congestion. All 50 incidents were detected at a 6 percent faise alarm rate. In terms of
detection time, the station occupancy algorithm experienced shorter detection times than
any of the other algorithms evaluated. Detection times varied from 0.35 to 1.46 minutes
depending upon the false alarm rate.

Low-Pass Fifter

Filtering algorithms mathematically remove inhomogeneities from incoming detector
data to produce a smoothed moving average of the measured traffic variable (in this case
loop occupancy) (14, 15). The filter (called a low-pass (LP) filter) removes the sharp
fluctuations (or high-frequency components) that are characteristic of noise in the data
while allowing the wide fluctuations (or low-frequency components) typically associated
with incident conditions to "pass" through the filter. The filter takes the form shown in the
following equation:

Mo

yt=2

......_._..x_
o M1

where,
y; = the smoothed or filtered traffic variable,
X = the observed traffic variable in t-k intervals, and
M = the maximum number of intervals over which the data is filtered.

‘An example of the effects of filtering detector data is shown in Figure 2-12.
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Figure 2-12. Effects of Using a L.ow-Pass Filter on Detector Data (15).

Stephanedes and Chassikos (14, 15) use this technique to develop an incident
detection algorithm. The algorithm is based on a simple comparison of the occupancy
levels at two adjacent loop detector stations. Using occupancy data compiled every 30
seconds as an example, a low-pass filter is applied to the difference in occupancy between
two adjacent detector stations to obtain a 3-minute moving average. Since all random
- fluctuations have been theoretically removed by the filter, a high value of the filtered
occupancy should be indicative of congestion caused by either a bottleneck or an
incident. To distinguish between incident and bottleneck congestion, a second filter is
used. The second filter is designed to examine an additional 5-minute time average of the
spatial difference in occupancy prior to the first three minutes.

Stephanedes et al. (15) compared the performance of the filtering model with the
‘performance of the Callifornia-type algorithm (both the basic California and Algorithm #7),
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the SND model and the double exponential smoothing algorithm. Operating characteristic
curves depicting the detection and false-alarm rates accomplished by the algorithms at
specific threshold values were developed. A total of 140 hours of traffic data from 5.5
miles (9 km) of freeway in the Minneapolis areas was used. Thirty-second occupancy and
volume data were obtained from 14 detector stations located in the study area. The data
set contained a total of 27 capacity-reducing incidents.

At every detection rate, the performance of the filtering algorithm was superior to
that of the California-based algorithms. At an 80% detection rate, the filtering algorithm
achieved a false alarm rate of approximately 0.3%, whereas Algorithm #7, the next best
performing California-based algorithm, achieved a 0.6% false alarm rate. Stephanedes
reported that the filtering algorithm alsc achieved comparable mean detection times.
Although the structure of the algorithm imposes a three minute delay, the detection times
were within one minute of the other algorithms. The main limitation of the algorithm is that
it cannot separate other traffic phenomena, (such as compression waves) that can also
create temporal changes in the traffic stream, from incident data.

Traffic Models

Traffic modeling approaches for detecting incidents use complex traffic flow theory
to describe the behavior of traffic during incident conditions. Models are used to predict
the performance of traffic under incident conditions. Algorithms then compare observed
~ traffic parameters to traffic parameters predicted by the model. The two algorithms that
use this approach are the Dynamic model and the McMaster incident detection algorithms.

Dynamic Model

One reported problem with many existing incident detection algorithms is that they
do not account for the dynamic nature of traffic. To address this problem, Willsky et al.
(16) developed an algorithm that uses macroscopic traffic flow models to capture the
dynamic nature of freeway traffic. At the heart of the algorithm is the fundamental velocity-
density and flow-density relationships depicted in Figure 2-13. The algorithm assumes
that traffic flow can be modeled using these relationships.
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Model Aigorithm (16).

The aigorithm uses two statistical hypothesis testing techniques for examining the
'f!ow-density relationships in observed traffic data: the Multiple Model (MM) method and
the Generalized Likelihood Ratio (GLR) method. The MM method is used to identify a
linear system of equations that represent traffic flow conditions on a freeway. Using these
equations, the conditional probability of the validity of the observed data "fitting" a flow-
density model indicative of incident conditions is determined. The value of the conditional
probabilities is used as the control measure for detecting incidents. A high conditional
probability implies that the observed traffic data indicates that an incident has occurred on
the freeway.

Incident conditions are also detected monitoring detector data for abrupt system
changes. The algorithm assumes that abrupt changes in the freeway system (such as
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those caused by incidents) follow a predictable pattern (or "signature") in a stream of
detector data. To detect system changes, the algorithm uses the GLR, which measures
the likelihood that the observed flow-density pattern is indicative of an incident condition,
as the control variable. Incident conditions are said to exist on a freeway when the
maximum likelihood ratio exceeds a specified threshold.

This algorithm is based on a dynamic theoretical model of traffic flow developed by
Payne (17). The model, designed to capture both the flow fluid and car-following aspects
of freeway traffic, is used to describe the relationship between velocity, density, and flow.
To use the algorithm, estimates of these parameters are obtained from detector data.
Unfortunately, presence detector data provide time-averaged information about travel
conditions at a fixed location. Therefore, measured loop detector data must be converted
from a time-based average to a spatial-based average. Willsky et al. provide procedures
for converting loop detector data o spatial averages.

The performance of the algorithm has been tested using only simulated traffic
conditions. The performance of the algorithm was evaluated over a wide range of traffic
flow (900 vphpl to 2000 vphpl) and detector noise conditions. Under these simulated
conditions, the algorithm performed relatively well. No false alarms or incorrect detections
were observed. The response time of the detection system was also relatively small.
However, the algorithm has not been tested using real detector and incident data.

Mc Master Algorithm

The McMaster algorithm is a single-station incident detection algorithm (18, 19, 20).
It uses the speed-flow-occupancy relationship to determine when traffic conditions change
at a detection station. It is based on the premise that while speed experiences a sharp
change when traffic conditions move from uncongested to congested conditions, flow and
occupancy change smoothly. Therefore, the algorithm uses historical data from a detector
station to determine the flow-occupancy relationship as traffic operation change from
uncongested to congested flow. [t was derived based on observations by Persaud and
Hall (19) that found the relationship between flow and occupancy (or volume and
occupancy) clustered tightly about a line. This line can be used to identify when traffic
-operations on a freeway transition from uncongested to congested flow.
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Figure 2-14. Flow-Occupancy Template for McMaster Algorithm (18).

The algorithm assumes that traffic operations at a single detector station can be
classified into states based on volume and occupancy measurements made at the station.
Figure 2-14 illustrates a typical volume-occupancy template that is used to determine
traffic states in the algorithm. The template is composed of four areas, which are divided
by the lower bound of the uncongested data (LUD), the critical occupancy (OcRIT), and the
critical volume (VCRIT). Area 1 (the area above the LUD curve and to the left of OCRIT)
* defines an uncongested traffic state (i.e., high flow rates with low occupancies). The area
below the LUD and VCRIT curves and to the left of OCRIT (Area 2) represents congested
traffic flow conditions while the area to the right of OCRIT and below VCRIT (Area 3)
represents traffic conditions that are heavily congested. The area to the right of OCRIT but
above VCRIT {Area 4) reflects traffic operations that might appear downstream of a
permanent bottleneck in a section of freeway operating at or near capacity. |
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To detect incidents, the algorithm employs two tests. The first test is used to
determine whether traffic at a detector station is congested. Raw loop detector data are
compared against the appropriate template developed for that particular station. If traffic
conditions fall below the LUD curve (i.e., into Areas 2 or 3) for longer than three
consecutive intervals (30 seconds each), the station is considered congested. The logic
used to determine the state of traffic at a detector station is shown in Figure 2-15.

If the algorithm detects congestion at a station, it then attempts to identify the cause
of the congestion by evaluating the traffic state at a downstream detector station. If traffic
conditions downstream of the detector station are relatively clear (i.e., in Areas 1 or 2),
then it is iikely that an incident happened between the two detector stations. The logic
used in the algorithm for determining the cause of congestion at a detector station is
shown in Figure 2-16.

The algorithm uses volume and occupancy measurements from a single detector
station to identify traffic conditions on the freeway. Raw measurements of flow and
occupancy are directly compared to template values for each station. Although the
algorithm was initially developed to use 30 second flow and occupancy values, there is no
theoretical reason data compiled at a different rate cannot be used in the algorithm.

To calibrate the algorithm, the LUD curve, O¢RIT, and VCRIT must all be defined.
The LUD curve is calibrated manually with approximately three days of incident-free data.
A standard quadratic function is used to fit the LUD directly to the flow-occupancy
boundary. Visual inspection is used to determine if any aspects of the curve needs to be
modified (intercept, slope, curvature). Once the curve has been established, the relevant
coefficients for the equation are then adjusted. While the procedure is not easily
automated, experience has shown that proper calibration of a station can be accomplished
. in less than two hours (20).

The other parameters (VCRIT and OCRIT) are also decided manually. OCRIT is
defined as the occupancy at which the highest observed volume occurred. To properly

establish VCRIT, recurrent congestion must occur at a detector station.

Both off-line and on-line evaluations of the performance of the McMaster Algorithm
have occurred and were reported in the literature (18). The off-line evaluation used 39
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days of data from the Mississauga Freeway Traffic Management System (FTMS). In these
39 days, a total of 28 incidents were detected by control center personnel. The algorithm
detected 15 of the 28 incidents (a detection rate of 62 percent). By deleting seven
incidents that the author claims had no affect on traffic, the detection rate was 88 percent.
The average detection time for these incidents was 2.2 minutes. The reported false alarm
~ rate was 0.0012 percent.

On-line testing of the algorithm was also conducted using data from the
Mississauga FTMS for a total of 64 days. During this time, the operators reported 230
incidents. All but 28 of the incidents were not included in the evaluation because they did
not have a significant impact on traffic. Of the 28 remaining incidents, nineteen were
successfully detected by the algorithm for a detection rate of 68%. The mean detection
time for all incidents was 2.1 minutes. The average detection time for the lane blocking
incidents was 1.4 minutes. Similar false alarm rates as those reported in the off-line
~evaluations were achieved during the on-line evaluation.

Low-Volume Incident Detection Algorithms

Most of the existing algorithms reported problems detecting incidents under low
volume conditions. This is because most algorithms are monitoring traffic data for flow
discontinuities, queues, or congestion that result when the capacity of the freeway is
reduced below demand levels. However, incidents that occur during low volume
conditions, such as those that occur late at night between the hours of 1:00 a.m. and 5:00
a.m., seldom reduce the capacity below demand levels. As a resulf, incidents that occur
during low volume conditions seldom generate the level of congestion and queuing that
is typically associated with incidents that occur at medium or high traffic volume conditions,
and the same general concepts that are used to detect incidents during heavy traffic
conditions may not be applicable during light traffic conditions.

Several algorithms have been designed specifically for detecting incident under low
volume conditions. One algorithm, developed by TTI, uses an input-output analysis of
individual vehicles on section of freeway to detect incidents during light flow conditions
~ (21). The algorithm is based on the time and speed of vehicles entering to predict an exit
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time of vehicles in a section of freeway. Exit times are predicted using the following
equation:

=t +dlv
-where,

t. = the time (in seconds) of the vehicle exiting the freeway section,

. ;= the time (in seconds) of the vehicle entering the freeway section,
d = the length of the freeway section, and
v = the speed of the vehicle as it enters the freeway section.

The algorithm assumes that the speed of the vehicle remains constant as it travels through
the freeway section.

As vehicles enter a freeway section, the earliest and latest times that they are
expected to arrive at the downstream detector station are determined. Vehicles are placed
in one of three accounting intervals based on their projected arrival times. All vehicles
- whose projected arrival times overlap are placed in the same accounting interval. Each
vehicle that exits the freeway section after the earliest projected arrival are counted. When
the time-of-day equals the latest projected arrival time, the exit count is compared to
~ number of vehicles assigned to the counting interval. If the exit count is less than the
projected number in the accounting interval, an incident is declared. If the exit count is
equal to the projected number in the accounting interval, no incident is detected. An
unknown situation is declared when the number of exiting vehicles is greater than the
expected number for that accounting interval.

The performance of this algorithm was evaluated using five days of data from I-610
North in Houston, Texas. The algorithm was evaluated over a range of traffic volumes
(from 100 vph to 1200 vph). The effects of detector station spacing were also examined.
Staged incidents were used to evaluate the algorithm. The evaluation found that the
algorithm achieved a detection rate between 49 and 78 percent, depending upon the
spacing of the detector stations. At lower volume levels (less than 400 vph), the false
alarm rate was one per 7 hours of operation. At higher volume levels (between 800 and
1200 vph), the false alarm rate increased to one per 2 hours of operation.
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A similar approach has been proposed for detecting incidents in the Lincoln and
Holland tunnels leading into New York City (22). In the tunnels, lane changing is
prohibited and only a small amount actually occurs. Under normal light volume conditions,
less than 1 percent of the vehicles can be expected to change lanes. However under
incident conditions, it is reasonable to expect that some motorist will change lanes to avoid
being delayed. Using these assumptions, an incident detection algerithm was developed
that monitors the lanes in which individual vehicles entered and exited the tunnel. Primary
indicators that an incident has occurred in the tunnel are the number of vehicles that have
changed lanes and the amount of delay individual vehicles experience in the tunnel.
Ultrasonic detectors or automatic vehicle identification systems have been proposed to
track individual vehicles. Unfortunately, this concept has not been tested in an operational
setting.

'Advanced Incident Detection Techniques

Several innovative approaches for detecting incidents have also been developed.
These approaches use advanced detection technologies and computer programming
languages to aid in detecting incident conditions on freeways. While these approaches
provide promises for improving incident detection capabilities, they are beyond the scope
of this report and are only introduced here to provide completeness.

Atificial Intelligence

Artificial intefligence is an approach used by computer scientists to emulate the
human thought process using computational models (23). Artificial intelligence is a
mechanism for including inexact reasoning and uncertainty in complex decision-making
processes. Because of the complex and dynamic nature of traffic, the application of
-artificial intelligence for detecting incidents has been explored by several researchers ( 24,
23, 26).

Two general artificial intelligence approaches have been considered for incident

detection: Fuzzy Sets and Neural Networks. Fuzzy sets provide a mechanism for applying
inexact or imprecise data to a set of rules, such as threshold values in an incident
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detection algorithm. Unlike classical algorithms that require strict (or crisp) adherence
thresholds, fuzzy set algorithms allow data that is close (but does not exceed) thresholds
to be considered in the detection decision. Therefore, fuzzy sets allow decisions to be
made even though data may be inexact or missing. The ability to make decisions based
on incomplete data has the potential to significantly improve the performance of many
incident detection algorithms.

Neural networks are used to simulate the knowledge reasoning of the human brain.
Like the human brain, a computer neural network consists of interconnected elements
(called neurons) working in parallel. The neurons not only receive input from other
neurons but also communicate its output to other neurons. Because different "paths” can
be taken to reach a final decision, the step-by-step processing normally associated with
most incident detection algorithms is no longer required. Neural networks also have the
ability to "learn" from past trial-and-error processes. Consequently, the potential for
improving detection capabilities in an incident detection system is great. Recent research
has shown the application of neural networks for detecting incidents tc be very promising,
particularly with respect to limiting the number of false alarms that typically occur with other
approaches for detecting incidents.

Automatic Vehicle Identification Systems

Automatic Vehicle ldentification (AVI) systems have alsc been proposed for
detecting incidents on freeways. With AVI, vehicles are equipped with transponders.
Each transponder is encoded with a unique identification number. Reading devices are
instalied either over or next to the freeway. As vehicles pass the reading devices, their

~ identification numbers are broadcast to the readers. By installing multiple reader stations,
. avehicle can be tracked as it travels the freeway. Incidents can be detected by monitoring

how long it takes for vehicles to fravel a section of freeway compared with the expected

- travel time. This approach has been proposed in many cities in the United States such as

Houston, Texas (27).
Video Image Processing

Another approach for detecting incidents that has received considerable attention
lately is Video Image Processing (28). With video image processing, measures of traffic
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performance (such as traffic volumes, traffic densities, queue lengths, etc.) are
automatically extracted from a video image using a computer program. Video image
processing units can be used in two ways to detect incidents. First, the image processing
unit can be used as a loop detector station to provide volume and/or occupancy counts
that can be used in conventional incident detection algorithms. The second approach
requires the computer to interpret the entire video image to find stationary or slow-moving
vehicles. Current leaders in the application of video image processing include the
University of Minnesota and Washington State Department of Transportation.

Summary

As discussed above, numerous algorithms have been developed to automatically
detect congestion and lane-blocking incidents in freeway surveillance and control systems.
These algorithms use a variety of techniques for detecting incidents ranging from simple
comparisons of measured traffic relative data to preestablished thresholds to theoretical
traffic flow models to predict future traffic conditions based on current observations. Most
of these algorithms have been developed and evaluated off-line, using recorded loop
detector data from incident and nonincident conditions. Relatively few have been used in
an actual operational capacity. Therefore, most remain untested in detecting incidents
using live (or on-line) loop detector data. Substantial differences can exist between testing
an algorithm in an off-line situation and using an algorithm to detect incidents in a real-
world situation. Because of the differences that can exist between theoretical and
practical applications, it is important to find out what incident detection algorithms are
being used in actual operating freeway surveillance and control centers. The next chapter
presents findings of site visits to selected freeway surveillance and control centers in the
United States and Canada to determine the use and effectiveness of incident detection
algorithms. ' -
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3. SITE VISITS TO SELECTED FREEWAY MANAGEMENT SYSTEMS

As part of this research, site visits were conducted at the following freeway
management systems:

® Los Angeles, California ] Seattle, Washington

® Northern Virginia . Long Island, New York
®  Minneapolis, Minnesota ® Chicago, lllinois

o Toronto, Ontario

The purpose of the site visits was to obtain in-depth information as to the type and
performance of the computer algorithms being used to detect incidents in these freeway
management systems. Four of the above sites (Los Angeles, Northern Virginia, Chicago,
and Toronto) are currently using algorithms to detect incidents. The other locations
(Seattle, Long Island, and Minneapolis) have all discontinued algorithm usage. Site visits
to these locations provided insight into why incident detection algorithm usage was
discontinued in these freeway management centers.

Another primary objective of the sites visits was to determine, through observation,

the role and usefulness of the incident detection algorithm as part of the overall incident

detection and management system at these locations. It was felt that a more realistic
representation of the performance of the algorithms could only be obtained by actually
observing the operations of the control center.

This chapter provides a summary of what was learned from the site visits.
Observations from each center visited are provided. General conclusions and comments
that can be drawn from the site visits are provided at the end of this chapter.

Los Angeles, California

The freeway surveillance and control system monitors over 264 miles of freeway in
the Los Angeles area. It operates 24 hours a day and is staffed by at least two California
Department of Transportation {Caltrans) employees and one California Highway Patrol
(CHP) officer. The primary responsibility of the Caltrans employees is to operate the ramp
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metering and incident management systems. The CHP officer acts as a liaison to
coordinate incident response measures between CHP and Caltrans. The officer also
monitors CHP's computerized dispatching system (there is a terminal located in the control
center) and alerts the Caltrans operators of incidents reported to the dispatch center.

The primary means of obtaining data from the freeways is through loop detectors
embedded in the pavement. A single loop detector embedded in each lane provides
volume and occupancy data. The spacing of the detectors varies from % mile in the core
area to one mile or more in the outlying areas. Occupancy and volume data are compiled
by Type 170 controllers in 30 second intervals. An average occupancy and volume level

~is calculated for each detector station. The average occupancy at each detector station
_is then smoothed with two minutes of previous data.

A wall-sized electronic map and computer graphics displays are used to show the
operating conditions of the freeways currently under surveillance. Different colors are
used to display the current speed of traffic traveling over the detector stations. The
following color codes are used:

® Green -- speeds > 35 mph
® Yellow - speeds between 20 mph and 35 mph
L Red -- speeds < 20 mph

A flashing red light is used to show when a potential incident has been detected at a
station.

Currently, only a small portion of the freeway system is covered with CCTV
surveillance. At the time of the site visit, only four CCTV cameras were operational.
These cameras were placed at select interchanges that were known problem areas.
Caltrans is currently in the process of installing additional CCTV cameras in their system,
‘but only on a limited scale (a total of 17 cameras will be included in the system).

Incident Detection Algorithms

The surveillance and control software has been designed so that one of the
following strategies for detecting incidents can bé employed:
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o One algorithm with a single set of threshold values to detect incidents in the
entire surveillance area,

® Different algorithms and corresponding threshold values can be used to
detect incidents on different freeways or segment of freeways in the
surveillance area, or

® Different algorithms and corresponding threshold values can be used to
detect incidents in individual zones (a zone being defined as two adjacent
detector stations).

Although the same algorithm is used throughout the surveillance area, incident detection
is performed on a zone-by-zone basis with threshoid values calibrated to specific zones.
A flow chart of the automatic incident detection process is provided in Figure 3-1.

Caltrans is currently using two different algorithms in their freeway surveillance
system. The algorithms are selected based on measured traffic conditions that exist
_ throughout the surveillance area (29). During periods when traffic is heavy (essentially all
daylight periods), Caltrans uses the modified California Algorithm #8 which tests for the
presence of compression waves in the traffic stream. During lighter traffic conditions (i.e.,
late night), Caltrans uses the modified California Algorithm #5 with a three minute
persistence check. Decision trees for both of the algorithms are shown in Appendix A.

Currently, both algorithms are operating in their original form (29). No in-house
modifications have been made by Caltrans. Although the operators are aware that other
incident detection algorithms and theories exist, they currently do not have operational
experience with any of these other algorithms.

Once an incident has been detected by the algorithm, it is assigned a log number
and priority by the computer (29). Even though the incident has been logged; it is not
immediately displayed to the operator as a potential incident. Incident conditions must
exist in a zone for a minimum of six cycles (three minutes) before an alarm is displayed to
the operator. Adding in the time used by the algorithm, then, the actual detection time
could be five to eight minutes. |
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Severity is estimated by the amount of reduction in capacity that occurs because
of the incident. The reduction in capacity is estimated by evaluating the relative difference
in the occupancy levels of the upstream and downstream detector stations with respect to
the upstream detector station. Nine user-defined threshold values are employed to
establish incident priorities. For example, an incident that results in a reduction in capacity
of between 90% and 100% is given a Severity 1 rating. A Severity 2 incident is given to
an incident that reduces capacity between 75% and 90%. The severity index is used to
assign response priorities for the incident management team.

General Observations

In Los Angeles, not all capacity-reducing events are classified as incidents. Minor
accidents and stalls that are located on the shoulder are considered part of normal freeway
operations. Caltrans policy defines an incident as an event that blocks a lane of traffic for
‘more than two hours. An incident response team is dispatched when requested by CHP
or when the incident is anticipated to block a freeway lane for more than two hours.
Therefore, the operators, for the most part, do not appear to rely heavily on the incident
alarm display and the map display to respond to incidents. The operators rely mainly on
the CHP officer and maintenance radio dispatchers to alert them to the presence of
incidents.

Seattle, Washington

Traffic conditions on the freeways in the Seattle area are monitored through a
system of loop detectors placed in each lane at each detector station. On the average,
detector stations are spaced every ¥ mile. Each station accumulates loop occupancy and
- volume data for a 20-second interval. A oenhe-minute moving average of the loop

occupancy and volume data is then computed using three consecutive 20 second
“intervals.

Besides loop detectors, a total of 55 CCTV cameras provide surveillance on
-approximately 35 miles on I-5, [-90, and SR 520 in the Seattle area. The video images are
 displayed to operators through a bank of video display terminals in the control center. The
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video is used to visually inspect the operations of the various facilities and to verify
incidents that are reported by local radio stations, the State Highway patrol, and
Washington State Department of Transportation (WsDOT) maintenance forces. The
control center also relies heavily on the CCTV surveillance system for detecting incidents.

Loop detector data are transmitted back to the central control center and displayed
on a color-graphics terminal. The display shows the level of congestion on the freeways
in the Seattle area. Color codes are used to display congestion levels. A green indication
over the freeway is used to display free-flowing traffic. Moderate congestion is displayed
as a yellow band while heavy congestion is displayed as a red indication. A flashing red
indication is used to display stop-and-go traffic and incident locations.

Incident Detection Algorithm
When the system was originally activated in 1981, WsDOT used a modified version
of the basic California Algorithm (30). The version that was used was developed in-house

and performed the following three comparisons in sequence:

o The difference in loop occupancy levels between upstream and downstream
detector stations was compared to a preset threshold value (OCCDF),

® The relative difference in the occupancy levels of the upstream and
downstream detector station was compared to a second threshold value

(OCCRDF),

L The occupancy level of the downstream detector station was compared to
a third threshold value (DOCC).

An incident alarm was sounded if all three of the threshold values were exceeded. A
diagram depicting the algorithm logic is shown in Figure 3-2 (30).
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Currently, though, WsDOT is not using an algorithm to detect incidents in the
surveillance area (30). It was felt that the algorithm produced toc many false alarms and
that other means of detecting incidents were more accurate and faster. Under the current
system design, the primary means of detecting incidents in the Seattle area include the
following:

L a police computer-aided dispatching (CAD) terminal located in the control
center,

® the CCTV system,

® the monitoring of radio scanners, and

® WsDOT maintenance crews traveling the freeway network.

When the algorithm was used, specific threshold values were developed for each
detector zone (30). Operational experience with the algorithm showed that roadway
geometry appeared to infiluence the effectiveness and performance of the incident
detection algorithm.

WsDOT also experienced problems with calibrating the algorithms (30). It was felt
that the algorithm could not be properly calibrated unless an incident occurred in the
particular detection area. Since not all detection zones experienced an incident when the
algorithm was operational, WsDOT felt that the algorithm was never properly calibrated.

General Observations

At the time of the site visit, WsDOT was in the procéss of upgrading their computer
system and relocating their control center to a new location. The new control center was
expected to greatly expand the control functions and surveillance capabilities of the
operator. In addition, district dispatching personnel would be physically located in the
new control center. Since maintenance forces are one of the primary means of not only
~ detecting but also responding to major incidents, it was expected that the physical
presence of the dispatchers in the same area as the control center operators will greatly
improve incident detection capabilities and response efficiency.
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Although WsDOT is currently not using an incident detection algorithm in their
system, they anticipate reinstating an incident detection algorithm in their system in the
future. They believe that the algorithm could eventually be an important tool in their
overall incident management system.

Northern Virginia

The general philosophy of incident detection in the Northern Virginia system is to
use an algorithm to identify regions of congestion and then decide, through visual
inspection with their CCTV system, whether the congestion is a result of an incident or
whether it was caused by a normal bottleneck condition (31). if an incident is the cause
of the congestion, its location is identified and the capacity of the incident is calculated for

" use by the ramp metering control and advisory message sign algorithms. If the congestion
is a result of a bottleneck condition, the algorithm then calculates the capacity of the
bottleneck and uses this value in the ramp metering control algorithm. A computer
algorithm is also used to decide when incidents and bottleneck congestion end.

Incident Detection Algorithm

The Virginia system also uses a modified version of the California Algorithm,
although not one of the ten modified versions of the algorithm referred to earlier (31). The
algorithm was developed by Sperry Systems Management and has two specifically added
features. The first feature is that the operator is required to manually enter when an
incident has cleared the travel lanes, even though the algorithm contains a test for
determining when an incident terminates. This feature was added as a safeguard against
the system from falsely indicating that the incident has terminated. A false indication can
occur when ramp metering and advisory signing reduce the demand at an incident site to
a level that is below the capacity of the incident, thereby clearing the congestion. The
other feature that has been added to the algorithm is the ability to use historical data in the
algorithm computations if the operator has to take a detector station off-line because of
malfunctions.
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The detection algorithm consists of two modules: one for detecting incidents and
another for identifying bottleneck congestion locations. It differs from the basic California
algorithm in that it does not include a test of the relative difference in the occupancy levels
between two detection station with respect to time (i.e., DOCCTD). In order for an incident
to be declared, the operator must manually confirm the presence of an incident through
visual inspection using the CCTV system. Manual confirmation is used to prevent false
alarms from triggering unwarranted advisory sign messages and unduly restrictive ramp
metering. The bottleneck module compares the average occupancy level at the upstream
detector station to a third threshold. Tests for determining when to terminate incident and
congestion alarms are also included in the algorithm. A decision tree showing the incident
detection process is provided in Figure 3-3.

The algorithm is executed once every minute for every detector station covered by
the system. The algorithm uses one-minute average occupancies which are updated
every 30 seconds. The loop occupancy data are averaged across all lanes at a detector
station.

General Observations

Although specific data on the performance of the algorithm are unavailable, the
operators of the Virginia system indicated during the site visit that they were relatively
satisfied with the performance of the algorithm. The general feeling was that the algorithm,
as calibrated, achieved a good balance between the number of incidents detected, the
time to detect incidents, and the rate of false alarms. Currently, Virginia Department of
Transportation does not have any plans to abandon their existing algorithms.

However, during the on-site observations, the operators appeared to pay little
attention to the incident detection algorithm. Most of the time, the operators were watching
the CCTV monitors and reacted directly to the video images displayed in the control room.
Even though, the operators occasionally would check the status of the incident display
screen, they did not appear to be reacting directly to the information on the terminal. This
-was because, for the most part, they had already detected the incident using the
surveillance cameras.

56



'SS0901d UOII9a)a( JuapIou] BILIBIA WSYLION '¢-¢ 0InBly

@
dNIONY { INGIOAY - dNIQAY] = 408300 X = o m :

INGOOAY - dNIQAY] = 43230 9L¥ §1<
ORNeg 18 0 PURBC PAOOWS RALND = NGIOAY
JOROR BRI T8 KRN0 a0 POYIOOUIE KR = JNIOAY

v &5 S

-1
N
L]
2] 4] -
@ R o 4Qu200
o R A ]
915 .
o dMIOAY
bt N
E-1Y
rLZ
o> K < -
N
E-T) QILYNIEL INJAITNI &
o™ Q3103130 INJaice ¢
615 B QILYNIWHIL NCILSIONCD Z
LS 3153130 NO(ES3ONOD |
40000 1G990

F34d INSTIONE ¢

57




Long Island, New York

The INFORM (INformation FOR Motorists) system is a motorist information/ freeway
surveillance and control system that operates in a 40-mile long freeway corridor on Long
Island, New York. The system provides surveillance and control on a total of 128

- centerline miles of highway including two major freeways (the Long Island Expressway and
the Northern State Parkway/Grand Central Parkway) as well as many parallel and crossing
arterial streets and freeways. Although the system was originally envisioned in the early
1970s, it did not become fully operational until 1988 (34). ‘

The INFORM system was designed primarily to prove the potential applications and
effectiveness of motorist information systems. The primary purpose of the system is to
alert drivers of impending congestion and delays, and provide them with diversion
messages to alternate routes. The management of traffic (in terms of control functions)
is a secondary objective.

The individual elements of the system include the following:

o an extensive loop detector surveillance system,
L an extensive network of changeable message signs (over 70 signs total)
e a ramp metering system that controls the operations of 50 ramps in either a

manual, time-of-day, or traffic responsive mode, and
o a wall-size board that is used to display to the operator the average link
speeds on the facilities.

The system also contains a limited amount of CCTV cameras. At the time of the site
visit, only 12 cameras are operational. These cameras were not part of the original design
but were added to the system to provide surveillance during a project to reconstruct part
of the Long Island Expressway (32). |

The electronic surveillance system consists of over 2000 individual inductive loop
detectors grouped into approximately 500 detector stations or zones. Besides loop
detectors placed in each lane, loops are alsc placed at or near each entrance and exit
ramp in each detection zone. The typical spacing between mainline detection zones is %
mile. This spacing varies, however, depending upon the spacing of entrance and exit
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ramps. Paired "speed" trap loop detectors are located approximately every 3 miles.
Detector data are compiled locally at each detector zone and then transmitted to the
central computer once every minute.

Incident Detection Algorithm

The system began operating originally with a modified version of the California
Algorithm to detect incidents. (The exact algorithm that was used at that time was not
known by the operators.) New York Department of Transportation (NYDOT) discontinued
using the algorithm because it produced too many false alarms (32). Through
conversations with operating personnel, it appears that the algorithm was not properly
calibrated for the system. Discussions indicated that a single set of threshold values may
have been used for the entire surveillance area. No attempt was made to establish
threshold values that were specific for particular detection zones. NYDOT does not have
" any plans to reactivate the algorithms.

Currently, NYDOT relies on the experience of the operators to detect incidents.
A large, color-coded wall map is used to display travel speeds on each segment of
highway under surveillance. A red indications is displayed to the operators when travel
speeds fall below 30 mph. The operators use their experience to evaluate which red
indications are "typical” and which are "unusual" for that time-of-day.

As a rule, the operators generally take remedial action only after two or more
atypical but consecutive indications on the map are illuminated. If the operator observes
an unusual condition, they typically retrieve additional information (such as loop
occupancy and volume data) from the system. If the congestion occurs in the area of one
of their CCTV cameras, they will use the cameras to investigate the cause of the
congestion. The severity of the congestion is estimated by how rapidly delays propagate
upstream. In the absence of other sources, the operators monitor police and CB radio
scanners to determine the cause of an unusual congestion display. By monitoring the
display board, an experienced operator can reliably predict the following (32):

L the nature of the congestion (i.e., whether it is recurring or non-recurring),
L the severity of the capacity reduction,
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L the presence of rubbernecking, and
L4 the amount of delay to be expected based on the location, time of day, and

severity of the congestion.

General Observations

Because of the way the INFORM system is designed and operated, the rapid
detection of incidents is not critical. INFORM was designed to be a motorist information
system. [t was never designed or intended to be an incident management system.
NYDOT uses its CMSs to inform motorists of impending delays only. NYDOT's operating
policy is to not use messages that describe the cause of a delay (i.e., "ACCIDENT", "CAR
FIRE", etc.) for fear that these types of rhessages will peak the interests of some motorists
and cause them not to divert from the congested freeway (32). From an operating
standpoint, however, the use of an automatic incident detection algorithm was perceived
as a beneficial tool to the operators of the INFORM system.

Minneapolis, Minnesota

Minnesota Department of Transportation's (MNnDOT) Traffic Management Center
(TMC) is the communication and computer center for managing traffic on the freeways in
the Minneapolis/St. Paul area. It has been operating in the Minneapolis/St. Paul area
since 1972 (33). The TMC is responsible for monitoring and controlling the operations of
a total of five interstate highways (I-35W, 1-94, 1-394, 1-494, and |-694) and five State
Highways (Trunk Highways 212, 169, 100, 62 and 77). The freeway surveillance and
control system includes approximately 308 ramp meters (223 which are centrally
controlled), over 100 closed circuit television cameras, and 32 rotating drum changeable
message signs.

A system of inductive loops is used to provide the TMC with volume, occupancy,
and speed data in the surveillance area. A single loop detector is installed in each lane
of the freeway. Data from the loops are averaged across all lanes to develop station
averages. Loop data averages are compiled every 30 seconds and then transmitted to the
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TMC. Type 170 controllers are used to compile data in the field. Loop detector stations
are spaced every ¥z mile.

The most impressive feature about the Minnesota system is the amount of video
surveillance used in the system. Approximately forty-five percent of the freeways in
Minneapolis/St. Paul area are under CCTV surveillance. A total of 108 CCTV cameras
provide surveillance on portions of five interstate highways and five state highways.

A redesign of the control room at the TMC was recently completed. The new control
room has areas for two independent operator stations, a radio announcer station, and an
information officer station. The two operators are responsible for monitoring the forty-eight
17-inch video monitors (each operator monitors twenty-four). Typically, video images from
two or three cameras are displayed on each monitor in a sequential fashion. Each
operator station is also equipped with a computer graphic terminal which is capable of
controlling on-line ramp meters and the changeable message signs. In addition, a large
~ screen computer-generated map is used to display real-time traffic conditions on the
freeways in surveillance area. The map display is used by the information officer and the
radio operators to broadcast congestion and incident information to motorists. (MnDOT
provides live broadcasts from the TMC on a public radio station operated by Minneapolis
Public Schools).

Incident Detection Algorithm

When the system originally became operational, a modified version California type
. algorithm was used to detect incidents. At the time the algorithm was operational,
approximately one-half of the current area under surveillance was covered (approximately
150 miles). Use of algorithm was discontinued because of the large number of false
alarms generated by the algorithm and because other sources (i.e., the video surveillance
system) provided more accurate and faster detection of incidents (33). Through
discussions with the MnDOT operating personnel, it appears that one set of threshold
values was used for the entire city.

Currently, the primary means of detecting incidents in the coverage area is through
the video surveillance cameras. Operators watch the video monitors for tell-tale signs of
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incidents (i.e., unusual congestion or light traffic, stopped vehicles, flashing lights, etc.).
The general feeling at MNDOT is that this method allows them to detect incidents as
quickly and as accurately as an algorithm.

Chicago, lllincis ’

The lllinois Department of Transportation (IDOT) Traffic System Center provides
~ surveillance and control on over 130 centerline miles on eight freeways in six counties in
the Chicago metropolitan area (34). The system was one of the first traffic surveillance
and control systems in the United States. Although the control center is staffed only from
5:00 a.m. to 7:00 p.m. on weekdays, the system operates 24 hours a day, 7 days a week.

Approximately 2000 loop detectors provide surveillance capabilities on the eight
different freeways. Detector stations are spaced approximately every % mile. Each
detector station consists of a single inductive loop detector. Loops are placed in only the
center lane at each detector station. All the detector stations are monitored centrally by
a VAX 11-750 computer system. Loop detectors are polled by the central computer 60
times a second. The central computer then develops 1 minute average occupancies and
volumes from the individual pulses. A separate mainframe computer is used to monitor
traffic from each freeway under surveillance.

In addition to the surveillance system, IDOT relies heavily on other systems to
provide them with traffic and congestion information including the following:

an extensive freeway service patrol system (over 35 vehicles),
police patrols,

maintenance forces,

aerial surveillance by traffic reporting services,

the monitoring of CB radio, and

reports from cellular telephone users.
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Incident Detection Algorithm

Although IDOT has experimented with several different algorithms (including the
Bayesian and California algorithms), they are currently using a simple comparative
algorithm to automatically detect incidents in the surveillance area. Using five minutes
worth of data the algorithms compares the one minute average occupancy level at two
adjacent detector stations. An incident is declared when the occupancy levels at both
detector stations exceed ali five of the following conditions,

Lane Occupancy Levels

Time Upstream Downstream
T > 30% < 10%

T-1 | > 30% < 10%

T2 > 28% <12%

T-3 > 26% <14%

T-4 > 24% < 16%

Since the algorithm is working with a five minute window of data, the minimum
detection time for the algorithm is five minutes. For this reason (and others), IDOT relies
on other sources (such as the cellular telephone number, emergency service patrols, CB
and police radio monitoring, and operator experience) as the primary means of detecting
incidents.

General Observations

It should be noted that the IDOT's philosophy has never been to use a computer
algorithm as the primary means of detecting incidents. For this reason, the incident
detection algorithm used in the Chicago system is intended to be a secondary means of
detecting incidents and a tool for training new operators (34). By design, the algorithm is
intended to help the operators spot possible incident locations that have not already been
detected by visual patrols or by monitoring the real-time displays. The "alarms" produced
by the algorithm are used to alert the operators as to locations that should be monitored
more closely. |
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Because the algorithm is not a primary means of incident detection, statistics on the
performance of the algorithm (i.e. detection time, false alarm rate, mean time-to-detect) are
not kept by IDOT. Furthermore, IDOT does not classify nonrecurrent congestion as an
incident until it is visually confirmed and responded to by the emergency service patrol.
In many cases, the initial cause of the congestion either has cleared by the time the patrol
arrives or is unknown. Therefare, it is hard for IDOT to classify an alarm as either being
the result of an incident or as a false alarm.

Toronto, Ontario

The Ontario Ministry of Transportation has installed a freeway surveillance and
control system on the Highway 401 freeway in the Toronto area. Highway 401 is one of
the major freeways in the Toronto area and carries approximately 350,000 vehicles per
day. It contains both express through lanes and collector lanes. Ingress and egress to the
express lanes is provided by slip ramps spaced periodically throughout the length of the
freeway. Each section of the collector lanes services three or four entrance and exit ramps
to and from the freeway (35).

The freeway management system on Highway 401 became operational in 1990.
It provides 24 hour-a-day, 7 day-a-week surveillance on over 27 km {16 miles) of freeway
in the Toronto area. It includes over 220 loop detectors, 37 color video surveillance
cameras, and 13 LED changeable message signs.

Inductive traffic loops are used to obtain volume, occupancy, and speed data from
the freeway. Both single loop and dual loop detectors stations are used in the system to
provide traffic data. Because of the greater accuracy and redundancy that is provided
using dual loop detector stations, the current design policy for new or replacement loops
is to use dual loops. The spacing between detector stations is approximately 600 meters
(Va2 mile).

The local controller produces aggregate volume and occupancy data across all the
lanes at each detector station. The data are then transmitted the central computer once
every 20 seconds. Since detector data are checked by the central computer in the next
20 second interval, data used in the incident detection algorithm are 40 seconds old.
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Incident Detection Algorithm

When the system originally came on-line, two algorithms were used to automatically
detect incidents: the All-Purpose Incident Detection (APID) algorithm and the Double
Exponential Smoothing (DES) algorithm. Even though the software has been designed
to run up to five different algorithms at a time, only one algorithm can be used to detect
incidents in a particular group of detector stations. The software was configured so that
different algorithms can be used for different groups of detector stations. The operator
selects which algorithm to use for each particular set of detector stations.

Recently, the Ministry has switched to the McMaster algorithm as the primary
algorithm used to detect incidents in the main lanes. The Ministry began using the
McMaster algorithm in an operational mode late in 1992 (35). Although they have not
completed their evaluation, the Ministry is generally pleased with the performance of the
McMaster algorithm (35). They feel the algorithm has significantly reduced their false
alarm rate over the California algorithm. The Ministry did report that they had problems
with the algorithm during one period of inclement weather (a snow storm in January). The
storm caused atypical driving patterns on the freeway, which resulted in a high false alarm
- rate during the storm.

Findings

On-site interviews and observations were conducted at seven freeway surveillance
and control centers operating in the United States and Canada. The purpose of the site
visits was to obtain a better understanding of the types of algorithms that are being used
in these systems to detect incidents, and the role automatic incident detection plays in the
entire incident management and freeway management efforts in these cities.

Of the seven locations visited, only four (Los Angeles, Northern Virginia, Chicago,
and Toronto) are actively using an algorithm to detect incidents on the freeways covered
under their respective surveillance systems. Except for Toronto, all of these systems are
using a modified version of the California algorithm. Toronto has recently switched from
a family of California algorithms to the McMaster algorithm. Most of these systems did not
have quantifiable data on the performance of their algorithms.
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For the most part, the operators from these four centers reported they are generally
pleased with the performance of the algorithms they are using. However, with the
exception of Toronto, on-site observations of the control centers revealed that the
operators did not depend heavily on the algorithm to alert the operators to the presence
of incidents. For the most part, the operators relied on other mechanisms, such as radio

‘reports or CCTV systems, to alert them of incidents on the freeway.

Three locations (Seattle; Long Island, New York; and Minneapclis) are not using
any kind of algorithm to assist them in detecting incidents in their systems. All of these
systems were using modified versions of the California algorithm at one time, but have
subsequently discontinued its use the algorithms because of the high number of false
alarms produced. Both Seattle and Minneapolis depend on their CCTV systems to detect
incidents, while the INFORM system relies on the experience of the operators to
distinguish between incidents and normal bottleneck congestion.

In general, how an algorithm performs in a system depends upon the role the
algorithm is expected to play in the overall incident management/freeway management
system. No incident detection algorithm can detect an incident the instant it occurs.
Regardless of the type of algorithm or how frequently the algorithm is executed, there is

‘always some delay in detection, Therefore, those agencies that demand rapid detection

of incidents with very few false alarms are generally not pleased with the performance of
their algorithms. Agencies are generally more pleased with the performance of the
algorithms when used as secondary means of detection, where longer detection times and
high false alarm rates are not as critical.

Proper calibration of the algorithms also effects performance. Of those systems that
have discontinued algorithm use, improper calibration appears to the most prevalent
reason why the algorithms generated a high number of false alarms. Most of these
systems appeared to be using only one set of threshold values for the entire surveillance
area. Since geometric anomalies (i.e., lane drops, severe grades, etc.) affect traffic flow,
algorithms must be calibrated on a zone-by-zone basis for them to be of use to the

- operators.
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Extensive amounts of data, effort, and time are required to properly calibrate an
algorithm. Even then, it may not be possible to totally eliminate all of the false alarms.
Minor fluctuations in traffic caused by slow moving vehicles or inclement weather may
interfere with traffic flow enough to trigger false alarms. Furthermore, at least one agency
believes that the algorithms cannot be properly calibrated unless an incident occurs in
every detection zone.
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4. ASSESSMENT OF EXISTING INCIDENT DETECTION ALGORITHMS

| In this chapter, a comparative assessment of the existing incident detection
| algorithms is performed. The assessment focuses on the following major issues that
should be considered in the selection of an incident detection algorithm in an operating
freeway surveillance and control center:

L the performance of the algorithms as reported in the existing literature,
L the data required to operate the algorithms,
] the ease at which they can be implemented in an freeway surveillance and
control center, both from an operators and a system designer standpoint,
_ the ease at which they can be calibrated once in an operational setting, and
. the use in operational control centers throughout the United States and
Canada.

Again, it should be noted that this assessment is based on data that are currently
available in the literature. An actual comparison of algorithm performance (either off-line
or on-line) was not performed as part of this study.

Reported Performance

Three major measures are typically used to assess the performance of incident
detection algorithms: detection rate, false alarm rate, and detection time. Of these three,
detection rate is the primary measure for assessing the ability of the algorithm to detect
incident patterns in a stream of detector data. It is typically defined as the percentage of
the total number of capacity-reducing incidents that are detected by the algorithm in a
specified period.

The false alarm rate, on the other hand, is used to assess an algorithm's ability to
distinguish true incident patterns from random fluctuations in detector data. Historically,
there are two ways of calculating the false alarm rate for an algorithm. The first is to
calculate the false alarm rate as the percentage of incident alarms that are falsely declared
to the total number of incident declarations (both true incidents and false alarms) that
occurred in a specified period. This is commonly called the on-line false alarm rate and
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represents how an operating agencies might typically calculate the false alarm rate of
algorithm used in an actual operational setting. The second is to define the false alarm
rate as the percentage false alarm signals produced by the algorithm out of all signals
(both incident and nonincident). This definition includes not only decisions where an
~incident alarm was produced (either as a true incident or a false alarm) but also alf
decisions where the algorithm determined that no incident was present. This is typically
called the off-line false alarm rate and is used by many research to assess the
“performance of their algorithms. Typically, the off-line false alarm rate is significantly less
than the on-line rate.

Detection time is typically defined as the time between when an incident occurs and
when it is detected by the algorithm. However, because of the way data were collected,
the reported detection time in some studies is actually the time between when an incident
is observed by an operator and the time detected by the algorithm. In these cases, the
time between when the incident occurred and recorded by the operator is not known. 1t
is possible considerable delays can occur between when the incident occurs and when it

is recorded by the operator.

There is no single study that compares the performance of all the existing
algorithms using the same set of data. Furthermore, very few of the algorithms have

. actually been evaluated in an on-line study. Therefore, results from different studies have

been used to assess the performance of the different algorithms. Unfortunately, the
algorithms are seldom evaluated under similar operating conditions.

Table 4-1 presents the best detection rate, false alarm rate, and detection time for
each of the existing algorithms. The performance measures shown in the table represent
an off-line evaluation. This table is intended for illustrative purposes only and should not
be used for direct comparisons. Because of the differences in the way that performance
measures are computed in some studies, a direct comparison of the performance of the
algorithms is not possible.  Also, note that performance data from the PATREG, HIOCC,
and Dynamic Model algorithms are not included in the table because they were not
evaluated using the same performance measures as the other algorithms.
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Table 4-1. Reported Best Performance of Existing Incident Detection

Algorithms.
Algorithm Detection False Average
Rate Alarm Rate Detection Time
California
Basic 82% 1.73% 0.85 mins
-Algorithm #7 67% 0.134% 2.91 mins
Algorithm #8 68% 0.177% 3.04 mins
APID 86% 0.05% 2.5 mins
Standard Normal 92% 1.3% 1.1 mins
Deviate
Bayesian 100% 0% 3.9 mins
Time-Series ARIMA 100% 1.5% 0.4 mins
Exponential 92% 1.87% 0.7 mins
Smoothing
Low-Pass Filter 80% 0.3% 4.0 mins
McMaster 68% 0.0018% 2.2 mins

From this table, it can be seen that there is little difference in the performance of
existing incident detection algorithms. The detection rate of all of the algorithms ranged
between almost 70 and 100 percent, with the majority of the algorithms achieving detection
“rates between 85 and 95 percent. The false alarm rates were reported to be below 1.5
percent for most of the algorithms. It is important to remember that actual performance in
the field may vary tremendously from that reported in the literature.

Three noteworthy exceptions to this generalization are the modified California

Algorithm #7, and the modified California Algorithm #8, and the McMaster algorithm.
While these three did not achieve detection rates as high as some of the other algorithms,
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they reported producing fewer false alarms. Recall that there is a trade-off between
detection rate and false alarm rate. For most algorithms, changes in the algorithm to
increase in detection rate also result in increases in the false alarm rate.

It is also important to remember that the structure of a particular algorithm
influences the detection times. Some algorithms use special tests (such as persistence
checks and compression wave tests) that delay signaling an alarm until incident conditions
are detected for a specified number of iterations. For example, the Modified California
Algorithm #7 includes a persistence check which requires that threshold values be
exceeded for three minutes. This persistence check adds to the overall detection time.
In cases where algorithms include persistence and compression wave tests, it is logical
for algorithms that include these tests to have higher detection times. Therefore, the high
detection times reported for Algorithm #7, Algorithm #8, and the Low-Pass Filter algorithms
are to be expected.

The negative effects of including these tests (in terms of increased detection times)
are offset by the reduction in the false alarm rate. As shown in Table 4-1, the algorithms
with the higher detection times also tend to have a lower false alarm rate. The lower false
‘alarm rate can be directly attributed to the structure of the algorithm for delaying sounding
an incident alarm until the algorithm is certain that a true reduction in capacity has
occurred,

Data Requirements

From an operational standpoint most of the algorithms require the same amount and
type of data, Table 4-2 lists the traffic features that are used in each algorithm as the
control variable. As seen from this table, most algorithms use occupancy (or a derivative
of occupancy) as the control measure for detecting congested traffic conditions.
Occupancy is defined as the percentage of time that a loop detector is occupied by
vehicles (35). As such, it is a direct measure of the level of concentration {or congestion)
that exists on a freeway. Typically, occupancy values range from 0 percent (the complete
absence of vehicles passing over the loop) to 100 percent (a vehicle is completely stopped
over the loop). Occupancy levels greater than 30 percent are typical of congested flow
conditions. | - |
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Table 4-2. Traffic Parameters Used as Control Variable in

Detection Algorithms.

Existing Incident

Algorithm

Occupancy

Volume

Speed

Other

California
Basic
Algorithm #7
Algorithm #8
APID
PATREG

Standard Normal
Deviate

Bayesian
Time Series ARIMA
HIOCC

Exponential
Smoothing

. Low-Pass Filter
- Dynamic Model

McMaster

X X X X X X X X X X

P

X
X

X4

Station®
Discontinuity

_ ! Derived from occupancy and volume
2 Derived as the square of volume divided by the occupancy
3 Comparison of kinetic energy of individual lanes

* Optional parameter
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Most algorithms use a 80-second average occupancy value (i.e., loop occupancy
levels measured for 60 seconds) as the control variable. Others use a 60-second moving
average where occupancy measures are updated every 20 to 30 seconds. Table 4-3 lists
the interval and the update cycles of the traffic variable in each of the existing algorithms.
As discussed above, the interval over which the traffic variable is averaged often dictates
the time required to detect an incident.

Table 4-3. Interval and Update Cycle of Traffic Parameters Used in Existing
Incident Detection Algorithms.

Algorithm Time Interval Over Update
Which Control Variable Cycle
is Averaged (sec) (sec)
California
Basic 60 20,_30, or 60
Algorithm #7 60 20, 30, or 60
Algorithm #8 ' 60 20, 30, or 60
APID 20 to 300 20
PATREG 40 1
Standard Normal Deviate 180 or 300 60
‘Bayesian 60 20
Time Series ARIMA 20 20
~HIOCC 2 1
Exponential 60 60
Smoothing
Low-Pass Filter 180 _ 30
Dynamic Model 60 5

McMaster 30 30
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Ease of Implementation

The ease at which an algorithm can be implemented into the design and operation
of the surveillance and control center should also be considered when selecting an
incident detection algorithm. Usually, the incident detection algorithm is only one piece
of information that has to be processed by an operator in a traffic control center. Besides
monitoring the incident detection algorithm, control room operators are often responsible
for operating ramp-metering systems, CCTV systems, and motorist information systems.
Because operators are required to make decisions based upon the results of the algorithm,
it is important for them to understand how incidents are detected in the algorithm. An
operator is more likely to use and make decisions if the algorithm is intuitively easy to
understand.

Furthermore, it is also important that the algorithm must be relatively easy to
integrate into the proposed design of a freeway surveillance and control center. For
TxDOT, the large areas that covered by the surveillance centers and the desire for a
distributed computing structure makes it desirable to use an algorithm that performs well
(in terms of detection rates, false alarm rates, and detection times) but does not require
extensive amounts of computer processing time. Algorithms that have simpler structures
(in terms of the number of calculation required during each iteration of the algorithm) are
typically easier to implement in a control center.

Unfortunately, there is little quantitative information on how easy it is to implement
each of the incident detection algorithms in an actual freeway surveillance and control
center. Table 4-4 provides a qualitative assessment of the ease that each algorithm could
be implemented in proposed TxDOT design. The assessment is based on judgments

relating to the complexity of the design of the algorithm and the amount of processing
required by each algorithm. Each algorithm is given a rating of Low, Moderate, High, or
Extremely High based on the complexity of the algorithms structure and the perceived
- ease that the algorithm can be integrated into the proposed structure of the surveillance
“and control system.
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Table 4-4. Perceived Degree of Complexity and Ease of Integration of Existing
Incident Detection Algorithms Into TxDOT Freeway Surveillance and

Control System.

Algorithm Degree of Ease of
Complexity Integration
California
Basic Low Easy
Algorithm #7 Moderate Easy
Algorithm #8 Moderate Easy
APID Moderate Easy
PATREG Low Difficult
Standard Normal Deviate Low Easy
Bayesian High Moderate
Time Series ARIMA High Difficult
HIOCC Low Difficult
Exponential Moderate Moderate
Smoothing
Low-Pass Filter Moderate Easy
Dynamic Model Extremely Extremely
' High Difficult
Moderate

__McMaster

Moderate
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Ease of Calibration

Another important factor to consider in selecting an incident detection algorithm is
the level of effort required to calibrate the algorithm in an operational setting. Calibration
is the process of identifying the relationships in traffic detector data and establishing the
thresholds that are used to detect incidents. Each detection for most algorithms is a
complex and time-consuming task, requiring extensive amounts of traffic data under both
incident and nonincident conditions. Without proper calibration, most incident detection
algorithms will not perform to as expected. Improper calibration is one reason some
agencies have not been pleased with the performance of the incident detection algorithms
in their systems.

No single algorithm is easier to calibrate than the others. All require some degree
of calibration and modification. Seldom can traffic relationships and detection thresholds
be transferred from system to system without being calibrated to the specific conditions
that exist. On occasions, it may possibly to use a single algorithms with a single set of
thresholds (perhaps varying by time of day) for a group of detectors and possible a single
freeway, but more likely than not detection threshold and traffic relationships will need to
be developed for each individual detector station or detection zone on a freeway.

To fully calibrate an algorithm, traffic data from both incident and nonincident
conditions are required for each detector station or detection zone included in the incident
detection system. Incident data are used to establish trends and identify threshold values
under incident conditions. Nonincident data are used to identify areas of peculiar
operations and to assess the false alarm rate. Calibration should occur using both off-line
and on-line data.

Calibration can be a time-consuming and labor intensive effort. Most algorithms
require incident and nonincident data be collected and analyzed from each detection zone.
Detection zones with particular geometric and operational characteristics must be
considered in the calibration process. Areas that experience unusual traffic operations
are identified for testing to find out if the algorithm should be tailored to meet the peculiar
operating conditions of traffic in that detection zone. Once the areas the experience
peculiar operating conditions have been identified, off-line analyses can be performed to
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| develop specific detection threshold and traffic relationships for these zones. On-line
analyses are performed to insure that the algorithm is functioning as expected.

- Operational Experience

A final factor to consider in selecting an incident detection algorithm is the
experiences other operating agencies have had with the different algorithms in an
operational setting. Algorithms that perform well in off-line evaluation may not perform as
expected when implemented in the field. Therefore, the experiences that other operating
agencies have had with the different algorithms is a valuable source of information.

As discussed in the previous chapter, most of the traffic control centers that are
operating today are using (or have used) the some variation of the California algorithm.
There are two possible explanations for this. First (and probably foremost) is that many
of these centers began operating in the 1970s. At this time, the California algorithms (or

-one of its variations) was considered the standard algorithm. The second is nature of the
algorithms itself. The underlying idea of the California algorithm is easy to understand and
makes intuitive sense.

Not all of the operating agencies, however, have been pleased with the

- performance of the California algorithm in their system. Representatives from many of the

agencies reported problems with false alarms. Several operating agencies have stopped
using their incident detection algorithms altogether. While there are a number of possible
- explanations for the false alarm problem, the most probable cause is improper or
inadequate calibration.

The bn[y other existing algorithm that is currently being used in an operational
setting is the McMaster algorithm. The Ontario Ministry of Transportation has recently
begun using the McMaster algorithm in an operational capacity to detect incidents in the
Toronto area. They began using the algorithm in late 1992 and have been generally
pleased with its performance so far.
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Summary

No single algorithms appears to be superior in terms of it reported performance,
data requirements, ease of implementation, ease of calibration, and operational
experience. Essentially, there is no significant difference between the reported
performance of any of the detection algorithms. All of the algorithms tend to acheive
detection rates greater than 70 percent, at an off-line false alarm rate of less than 2
percent. Most algorithms, when properly calibrated, best reported detection rate ranged
between 85 and 90 percent with false alarm rates well below 1 percent. Although two
algorithms reported achieving 100 percent detection rates, one did not function well in an
on-line comparison (achieving a 40 percent detection rate with an 80 percent false alarm
rate) while the other experienced a relatively high off-line false alarm rate (over 1
percent).

Of all the algorithms, the California algorithms (specifically, Algorithm #7 and

Algorithm #8) and McMaster algorithm appear to be the most logical choices for TxDOT

to consider in the initial implementation of their freeway surveillance and control system.
Both of these types of algorithms have relatively simple structures and should be relatively

- easy to implement in the TxDOT's control system logic. California algorithms use traffic

paratmeters that are derived using simple subtraction and division equations. The
McMaster algorithm uses a simple comparison of measured traffic conditions to volume-
occupancy curves that has been established for each detector station.

In terms of data requirements, both of these types of algorithms require the same
type of data. Both types of algorithms use data that can be directly obtained from loop
detectors. The California algorithms use one-minute moving averages of occupancy. This
moving average can be updated at either 20, 30 or 60 second cycles. The McMaster

“algorithm uses both volume and occupancy measures derived from loop detector data.

These measures can be 20, 30 or 60 second averages.
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5. RECOMMENDATIONS

This report has provided an evaluation of the application and performance of the
existing algorithms for detecting incidents on freeways using loop detector data. This
evaluation was based on a review of operating performance as reported in the literature
and site visits {o operating freeway surveillance and control centers in the United States
and Canada. Performance measures used in the evaluation included reported detection
rate, false alarm rate, detection time, ease of calibration and implementation, data
requirements, and actual operating experience.

Based on a review of the reported performance in the literature, and site visits to
operating freeway surveillance and control centers, no single algorithm can provide
optimum performance under all traffic situations that are likely to occur on a freeway. With
alt of the algorithms, there is a tradeoff between the number of incidents that are detected
‘by the algorithm and the number of false reports of incidents produced by the algorithm.
Algorithms that are set to achieve a high detection rate also achieve a high false alarm
rate. As the sensitivity to the algorithm is adjusted to lower the false alarm, the number of
incidents that are detected by the algorithm is also reduced. Therefore, expectations of
obtaining a 100 percent detection rate with no false alarms with any of the existing
algorithms are unrealistic.

It is also unrealistic to expect any of the reviewed algorithms to be able to detect
an incident the moment that it occurs. There is always some level of delay associated
with all of the existing incident detection algorithms. For the most part, the delay comes
from two sources: the physical proximity of the incident to a detector station and the
structure of the algorithm. The structure of most algorithms results in a one to three minute
delay in detection. Persistence checks and compression wave tests that are used to
reduce false alarms often add between three and five minutes of additional delay to the
detection time. Many operating agencies reported that they often already knew of an
incident through other means (i.e., CCTV surveillance, cellular telephone reporting
systems, efc.) before it was detected by the algorithm.

With these limitation in mind, three incident detection algorithms are recommended

~ for consideration for initial implementation in TxXBOT's freeway surveillance and control
system: '
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. the Modified California Algorithm #7,
L the Modified California Algorithm #8, and
® the McMaster Algorithm

These algorithms are recommended for a number of reasons. First, all three of
these algorithms were reported to perform well in both off-line and on-line comparisons in
the literature. When calibrated properly, these algorithms can be expected to achieve
detection rates in the 70 to 85 percent range with reasonable false alarm rates (less than
1 percent). The modified California Algorithm #7 is a good all-purpose algorithms that can
be expected to perform well under most traffic conditions. The modified California
Algorithm #8 performs best under high volume conditions. Consideration shouid be given
to incorporating logic (similar to that used by the APID algorithm) in the control system that
uses both of the modified California algorithms depending upon the prevailing traffic
conditions. Time-of-day changes in traffic conditions are reflected in the flow/occupancy
curves developed for each detection station in the McMaster algorithm.

Conceptually, these algorithms are relatively easy to understand and implement
from an operator standpoint. These algorithms do not require complicated theoretical
relationships or formulas to detect incidents, but use simple comparisons of measured
traffic parameters to preset thresholds or relationships to detect the presence of incident
conditions. Most of the problems associated with the performance of these algorithms in
an operating setting are believed to result from inadequate or improper calibration.

Regardiess of the type of algorithm that is selected, calibration is a time-consuming
process. With most algorithms, calibration must occur either on a station-by-station basis
(as with the McMaster algorithm) or on a zone-by-zone basis (as with the California
algorithms). In order for each algorithm to perform adequately, data from both incident and
nonincident conditions must be used. It is unrealistic to expect to develop a single set of
thresholds or traffic flow curves that can be universally applied to entire area under
surveillance. Thresholds for each algorithm need to reflect the actual operating
characteristics of traffic passing through each area of detection.
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