
TECHNICAL REPORT STANDARD TITLE PAGE
1. Keport Number 2. Government Accession No. 3. Kectp1ent's catalog No.

FHWA/TX-92/1189-2F
4. Title and Subtitle S. Report Date

November 1992
Development of Image Algorithms for Automated 6. Performing Organization Code

Pavement Distress Evaluation Svstem
7. AUIDOf\S} 8. Perfonning organization Report No.

P. Chan, A. Rao, L. Li, and R. L. Lytton
Research Report 1189-2F

9. Performmg Organization Name and Address 10. Work Unit No.

Texas Transportation Institute
Texas A&M University 11. umtract or urant No.

College Station, Texas 77843 Study No. 2-18-89-1189
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

Texas Department of Transportation Final Sept. 1988 -
Transportation Planning Division August 1992
P. O. Box 5051 14. Sponsoring Agency Code

Austin, Texas 78763
15. Supplementaty Notes

Research performed in cooperation with DOT and FHWA
Research Study Title "Automatic Photo Interpretation S.vstern for the ARAN"

16. Abstract

The first step in the successful management of pavements is the location and
identification of the distresses. This allows the pavement manager to identify
candidates for maintenance and rehabilitation. This requires the collection of a large
volume of distress data differentiated by type, extent, and severity. Visual methods
of collection have proven to be too labor intensive, inconsistent, and hazardous
because of exposure to traffic. Currently, videotapes of highway pavement surfaces are
collected with the Automatic Road Analyzer (ARAN). The videotapes are then brought
back to the lab for visual evaluation. Therefore, there exists a need to automatically
determine the type and extent of cracking by computerized means.

This report describes the image analysis algorithm to classify the cracking of
Asphalt-concrete Pavement (ACP) and Continuously Reinforced Concrete Pavement (CRCP).
The image analysis software features a three-pass approach. The first pass detects
crack segments from the analysis of the block projection histogram. The second pass
re-examines the vicinity of the detected edge segments to locate the remaining thinner
crack segments with less stringent rules. The third pass is to classify the cracking
type based on the position alignment and orientation of the crack segments in the edge
map. Summarized results of a 12-mile ACP survey section are included to illustrate the
above algorithm. The frame percent accuracy is better than 70% and 60% for a Hot-mix
Asphalt-concrete {HMAC) surface and a seal coat surface, respectively. Furthermore,
the processing results of 0.5 miles of CRCP also show that the percent accuracy is
better than 70%.
17. Key Words 18. Distnbution Statement

Pavement Crackings, Pavement Surface No Restrictions. Available through the
Distress, Image Processing, Pattern National Technical Information Service
Recognition, Image Analysis 5285 Port Royal Road

Springfield, Virginia 22161

19. ;:,ecunty Classif.(of thtS report) 20. Secunty C..lass1f.(of this page) 21. No. of Pages 22. Pnce

Unclassified Unclassified Il7
Form DOT F 1700.7 (8-69)

Development of Image Algorithms for Automated

Pavement Distress Evaluation System

by

Paul Chan

Ashok Rao

Lan Li

Robert L. Lytton

Texas Transportation Institute

Research Report 1189-2F

Study Title: "Automatic Photo Interpretation System for the ARAN"
Project 2-18-89-1189

Sponsored by

Texas Department of Transportation

in cooperation with

U.S. Department of Transportation

Federal Highway Administration

November 1992

ABSTRACT

The first step in the successful management of pavements is the location
and identification of the distresses. This allows the pavement manager to
identify candidates for maintenance and rehabilitation. This requires the
collection of a large volume of distress data differentiated by type,
extent, and severity. Visual methods of collection have proven to be labor
intensive, inconsistent, and hazardous because of exposure to traffic.
Currently, videotapes of highway pavement surfaces are collected with the
Automatic Road Analyzer (ARAN). The videotapes are then brought back to the
lab for visual evaluation. Therefore, there exists a need to automatically
determine the type and extent of cracking by computerized means.

This report describes the image analysis algorithm to classify the
cracking of Asphalt-concrete Pavement {ACP) and Continuously Reinforced
Concrete Pavement (CRCP). The image analysis software features a three-pass
approach. The first pass detects crack segments from the analysis of the
block projection histogram. The second pass re-examines the vicinity of the
detected edge segments to locate the remaining thinner crack segments with
less stringent rules. The third pass is to classify the cracking type based
on the position alignment and orientation of the crack segments in the edge
map. Summarized results of a 12-mile ACP survey section are included to
illustrate the above algorithm. The frame percent accuracy is better than
70% and 60% for a Hot-mix Asphalt-concrete (HMAC) surface and a seal coat
surface, respectively. Furthermore, the processing results of 0.5 miles of
CRCP also show that the percent accuracy is better than 70%.

; ii

DISCLAIMER

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official view or policies of the
Texas Department of Transportation or the Federal Highway Administration.
This report is not intended for construction, bidding, or permit purposes.
The principal investigator of this research study is Dr. Robert L. Lytton
who is a registered Professional Engineer of Texas {No. 27657).

iv

IMPLEMENTATION STATEMENT

The developed cracking classification software can assist the Texas
Department of Transportation (TxDOT) in collecting pavement surface distress
data of Asphalt-concrete Pavement (ACP) and Continuously Reinforced Concrete
Pavement {CRCP) for the Pavement Management Information System (PMIS).
Along with the improvements in the video image quality and computer
controllable Video Cassette Recorder (VCR), this developed system can
routinely process large numbers of pavement videotapes and extract distress
data automatically.

v

ACKNOWLEDGEMENTS

The authors wish to thank Mr. Thomas Scull ion, program manager of
Pavement Systems in TTI, with his enthusiastic participation, insightful
advice and expertise in the Pavement Management Information system, he has
contributed much to the success of this study. The authors also wish to
thank the TxDOT project panel chairman, Mr. David Fink for his conceptual
contributions at every stage of the study, member Mr. Carl Bertrand for his
helpful advice in electronic instrumentation and member Mr. Al Rubio for his
recommendations related to the video camera and video cassette recorder.

vi

TABLE OF CONTENTS

List of Tables •.....
List of Figures
Chapter I. Introduction
Chapter II. Pavement Surface Distress .

2 .1 ACP
2.2 CRCP
2.3 JCP .•..

Chapter III. Image Analysis and Image Features
3.1 ITEX software
3.2 Projection Histogram .
3.3 Block Size
3. 4 Edge Map . .
3.5 Edge Clear ..
3.6 Second Pass

Chapter IV. Classification Rules and Results
4.1 ACP Rules .•.
4.2 ACP Results
4.3 CRCP Rules .
4.4 CRCP Results

Chapter V. Conclusions and Recommendations
Appendix A

References .

A.I Program Listing of ACP ...
A.2 Program Listing of CRCP

vii

viii
ix

. . . . 1

4

5

8

10
13

16

17

22
23

24

25

27
27
35

46

50

57

59

60

82

107

LIST OF TABLES

TABLE PAGE
I. Comparison of Block Size • • • 23
2. Notation Table for Classification Rules for ACP & CRCP 29
3. Computer Program Output for Section 7 (Reference Marker 607 + 0.0

to 606 + 0.5) • . • . . . • • • • 41
4. Summarized Transverse Cracking Data for 24 Half-Mile Sections

(Reference Marker 610 + 0.0 to 598 + 0.0) . • . • • . 42
5. Summarized Longitudinal Cracking Data for 24 Half-Mile Sections

(Reference Marker 610 + 0.0 to 598 + 0.0) . • . . 43
6. CRCP Processing Result of US 59 • • 53

viii

LIST OF FIGURES
FIGURE
l. Alligator Cracking
2. Longitudinal Cracking
3. Transverse Cracking
4. Spalled Crack
5. Main Function Block Diagram for Crack Classification

PAGE
7

7

8

9

15

6. Illustration of the Projection Histogram for a Transverse Crack 18

7. Image with Block on Transverse Edge 21
8. Horizontal Projection Histogram: Shape factor = 1.83 21
9. Vertical Projection Histogram: Shape factor = 0.38 . . 22

10. Edge Map showing the Presence of a Transverse Crack
11. Edge Map with "False" 90° Edges Caused by Oilstain

12. Edge Map with False Edges Removed
13. Flowchart for Initial Tests on Each Block
14. Flowchart for Edge Map Clear and Second Scan
15. Flowchart for Final Classification of ACP
16. Transverse Cracking on HMAC Surface
17. Longitudinal Cracking on HMAC Surface
18. Transverse Cracking on Seal Coat Surface
19. Longitudinal Cracking on Seal Coat Surface
20. Number of Raw Transverse Cracking Count from Visual and Computer

Evaluation. • ..•.........
21. TxDOT PMIS Rating of Transverse Cracking
22. Raw Data for Longitudinal Cracking .•
23. PMIS Rating for Longitudinal Cracking
24. Skid Mark on HMAC Surface
25. Intact Sealcoat Surface
26. Flowchart for CRCP Distress Classification
27. Spalled Crack on CRCP (Example 1)
28. Spalled Crack on CRCP {Example 2) ...

29. Transverse Crack on CRCP {Example 1)
30. Transverse Crack on CRCP (Example 2)

31. Intact CRCP • •

ix

23
25

25
28
31

33

36

37

38

39

44
44
45

45

47
48
49

51

52
54

55
56

CHAPTER I

INTRODUCTION

Highway systems form the backbone of the transportation infrastructure
of this nation. These resources are used for trade and travel. In this
context, the importance of having safe and sound pavements cannot be
emphasized enough. To keep pavements in good working condition, planning,
regular maintenance, and efficient use of allocated funds are required.
Hence a maintenance scheme that optimizes available resources for
maintenance is a prime necessity.

The primary contributing factors to pavement wear and tear are
environmental and loading, which can cause stress on the pavement surface
or within the pavement layers. The stress manifests itself in the forms of
cracks, spalling, and rutting. Without regular maintenance, the pavement
will break up resulting in high costs of reconstruction. However, if
maintenance treatments are applied at the critical time, the usable life of
the roadway will be extended.

The Texas Department of Transportation (TxDOT} has implemented a
Pavement Management Information System {PMIS) to assist in its management
of the highway network. PMIS collects four types of road data to monitor
the road condition. The four types of data are pavement surface distress,
ride quality, deflection, and skid resistance. The pavement surface
distress data are collected by trained rating teams or the Automatic Road
Analyzer (ARAN}. The ARAN records the pavement surface condition on
videotapes which are reviewed to determine distress.

Sending rating teams out to the field, expose the personnel to hazardous
traffic. The labor costs that are associated with this visual survey are
also very high. 150 to 200 raters are trained annually at an estimated cost
of $500,000.

Besides rating teams, the current distress survey also deploys the
Automatic Road Analyzer (ARAN) vehicle to survey high traffic roads in urban
areas such as Houston and Dallas. The recorded video tape is brought back
to the office for data reduction. A number of trained technicians review
and count and measure the different distresses recorded on the video tape.

1

However, this visual evaluation is very tedious work, and fatigue reduces
accuracy.

TxDOT has been searching for ways to improve the evaluation process.
With the pavement surface condition recorded on videotape, the next logical
step is the automatic analysis of the video images. Development in
integrated circuit design and fabrication techniques has grown to a point
where very complex circuits will only take up one single chip. Growth in
surface mount technology and multi-layer circuit board design result in more
computer power on a single board.

Digital image processing techniques have long been considered as
valuable contributions to the science and engineering arena because they
enable a professional to comprehend a two-dimensional view or even a three
dimensional object rather than the conventional one-dimensional signal.
Despite the tremendous potential of digital image processing {DIP}
techniques, the applications of {DIP} remained locked in the research
institutions, R&D departments of large corporations and the military due to
the expensive hardware requirements. The advancements in Very Large Scale
Integrated Circuit (VLSI) have provided an affordable hardware platform.
Therefore, only in recent years have most of the disciplines started
applying image processing technology in their areas.

The goal of this project is to develop a comprehensive image processing
system to assist the TxDOT in distress data collection. Currently the
videotapes of pavement surface condition are brought to the office for
manual visual evaluation. The processing system developed in this project
can analyze these video tapes automatically. The system determines the
distress by types and extent. The image algorithms were designed to meet
three criteria outlined by the TxDOT project panel. The criteria were (a)
the percent accuracy must be above 703, {b) the processing speed must be at
least 4 miles per hour, and (c} the resolution for crack width is 1/8".
These three requirements were based on the comparison with subjective visual
rating.

Chapter II describes the common surface distress in Asphalt-concrete
Pavement {ACP) and Continuously Reinforced Concrete Pavement {CRCP}. The
report proceeds to describe the development efforts of the image processing
algorithms to meet the three project criteria. The image feature selection

2

is the most critical link in the c 1 ass i fi cation process. Chapter I II
describes the image features and the utilization of the image features in
the classification of different distress types. Chapter IV presents the
classification rules for ACP and CRCP along with processing results.
Chapter V states the conclusions and recommendations for future work.

3

CHAPTER II

PAVEMENT SURFACE DISTRESS

TxDOT Pavement Management Information System (PMIS) considers many
aspects of the pavement to provide input to its maintenance and
rehabi 1 i tat ion programs. An important aspect of the PMIS is surface
distress which is provided by a visual evaluation survey. The visual
evaluation survey looks at three major pavement types.

1. Asphalt-concrete Pavement (ACP}
2. Continuously Reinforced Concrete Pavement (CRCP)
3. Jointed Concrete Pavement (JCP)
Each pavement type has different surface distresses. TxDOT currently

uses rating teams and video to collect visual evaluation data. The video
recordings are rated manually. The problems in manual rating of the video
tapes are listed below.

1. Accuracy
2. Operator Fatigue
3. Repeatability
To overcome the problems, TxDOT started research to automate the video

tape rating process. The primary objective of this research was to develop
procedures for automated rating of the pavement using image processing. It
was desired that the automated rating system detects all types of surface
distress that occur and generates a rating of the pavement comparable to
that of a human observer.

Some of the problems faced in this research were:
1. The presence of different types of cracking on pavement

surface.
2. Features like oilstains, tire marks, and paint markings on

pavement surface are mistaken for cracking.
3. Varying color and texture of the pavement.
TxDOT annually publishes a manual that defines distresses by pavement

type and describes how to rate these distress. This manual is called the
"TxDOT Pavement Management Information System Rater's Manual".

4

2.1 ACP
TxDOT rates the following distresses on ACP.
1. Rutting.
2. Patching.
3. Failures.
4. Block Cracking.
5. Alligator Cracking.
6. Longitudinal Cracking.
7. Transverse Cracking.
However, in this research project, only four cracking distress types are

evaluated with the automatic method. They are Longitudinal Cracking,
Transverse Cracking, Alligator Cracking and Block Cracking. Rutting is
collected with the ultrasonic rut bar. The number of Patches and Failures
will be keyed in by the operator during ARAN's video survey. The following
sections are excerpts from the 1992 Pavement Management Information System
Rater's Manual.

Raters travel along the side of the road (with traffic, on the roadbed
being rated) at no more than 15 miles per hour, rating the most severely
distressed lane, and stopping at least once every 0.5 miles. The first stop
is made at the beginning of the section. At this 200 foot stop, the raters
observe all distress types visible. The purpose of the stop is to
"calibrate" the rater's vision as to which distress types exist within the
section. Additional stops are made where major changes occur. At the end
of the section, raters enter their overall section ratings for all of the
flexible pavement distress types.

A. Rutting
A rut is a surface depression in a wheelpath. Rutting in the rated lane

may be observed in one or both of the wheelpaths. Rutting is caused by
consolidation or lateral movement of the pavement materials due to traffic
loads. Significant amounts of rutting indicate that one or more of the
pavement layers is inadequate. Rutting is indicative of a structural
problem and may lead to the onset of serious structural failures.

5

B. Patching
Patches are repairs made to pavement distress. The presence of patching

indicates prior maintenance activity, and is thus used as a general measure
of maintenance cost.

C. Failures
A Failure is a localized section of pavement where the surface has been

severely eroded, badly cracked, or depressed. Failures are important to
rate because they identify specific structural deficiencies which may pose
safety hazards.

D. Block Cracking
Block cracking consists of interconnecting cracks that di vi de the

pavement surface into approximately rectangular pieces, varying in size from
I foot by I foot up to 10 feet by 10 feet. Although similar in appearance
to alligator cracking, block cracks are larger. Block cracking is not load
associated. Instead, it is commonly caused by shrinkage of the asphalt
concrete or by shrinkage of cement or lime stabilized based courses.

E. Alligator Cracking
Alligator cracking consists of interconnecting cracks which form small,

irregularly-shaped blocks resembling the patterns found on an alligator1 s
skin {Figure 1). Blocks formed by alligator cracks are less than 1 foot by
1 foot { 0. 3 meters by 0. 3 meters). Larger b 1 ocks are rated as b 1 ock
cracking.

Alligator cracks are formed whenever the pavement surface is repeatedly
flexed under traffic loads. As a result, alligator cracking may indicate
improper design or weak structural layers. Alligator cracking may also be
caused by heavily-loaded vehicles.

F. Longitudinal Cracking
Longitudinal cracking consists of cracks or breaks which run

approximately parallel to the pavement centerline (Figure 2). Edge cracks,
joint or slab cracks, and reflective cracking on composite pavement {i.e.
overlaid concrete pavement) may all be rated as longitudinal cracking.

6

Figure I. Alligator Cracking.

Figure 2. Longitudinal Cracking.

7

Differential movement beneath the surface is the primary cause of
longitudinal cracking.

G. Transverse Cracking
Transverse cracking consists of cracks or breaks which travel at right

angles to the pavement centerline (Figure 3). Joint cracks and reflective
cracks may also be rated as transverse cracking.

Transverse cracks are usually caused by differential movement beneath
the pavement surface. They may also be caused by surface shrinkage due to
extreme temperature variations.

Figure 3. Transverse Cracking.

2.2 CRCP

In order to distinguish various types of distress, their physical shape
characteristics are examined. According to the TxDOT rater's manual for
CRCP (Continuously Reinforced Concrete Pavement), there are basically five
types of distress. They include:

1. Spalled Cracks
2. Punchouts
3. Asphalt Patches

8

4. Concrete Patches
5. Average Crack Spacing
Among the five distress types, the frequency of occurrence of Punchouts,

Asphalt Patches and Concrete Patches are relatively small when compared with
Spalled Cracks and Transverse Cracks. In addition, the developed algorithm
was aimed at the recognition of cracks. After a project meeting with the
TxDOT project panel, the research team decided to employ the automatic
evaluation techniques only for Spalled Cracks and Average Crack Spacing
while the Punchouts and Patches are entered into the computer system during
the survey by operators.

Rigid pavement sections (CRCP or JCP) are rated according to a different
procedure from the ACP. Raters should begin counting distress occurrences
at one end of the section, travell"ing along the edge of the road (with
traffic, on the roadbed being rated) at no more than 15 miles per hour. The
only stop required is at the end of the survey section, to enter the
evaluation data.

A. Spalled Cracks
A spalled crack is a crack which has widened, showing signs of chipping

on either side, along some or all of its length (Figure 4).

Figure 4. Spalled Crack.

9

B. Punchouts
A punchout is a block of pavement formed when one longitudinal crack

crosses two transverse cracks. Although usually rectangular in shape, some
punchouts may appear in other shapes.

C. Asphalt Patches
An asphalt patch is a localized area of asphalt concrete which has been

placed to the full depth of the surrounding concrete slab, as a temporary
method of correcting surface or structural defects.

D. Concrete Patches
A concrete patch is a localized area of newer concrete which has been

placed to the full depth of the existing slab as a method of correcting
surface or structural defects.

E. Average Crack Spacing
Average crack spacing is not, in itself, a pavement distress type. It

is rated as a method of obtaining the percentage of transverse cracks that
are spalled. However, average crack spacing is valuable as a measure of
whether or not the CRCP slab is behaving as designed. A CRCP section with
a small average crack spacing may deteriorate rapidly into a series of small
punchouts if the proper corrective procedures are not applied.

2.3 JCP
According to the Rater's manual, the following distress types are to be

rated on JCP sections.
1. Failed Joints and Cracks
2. Failures
3. Shattered Slabs
4. Slabs with Longitudinal Cracks
5. Concrete Patches
6. Apparent Joint Spacing
Of the six distress types, only the Failed Joints and Cracks and Slabs

with Longitudinal Cracks are potential candidates for automatic evaluation.
Distress types such as Failures and Shattered Slabs which include a number
of different distress types. For example, Failures include the following
five distress types:

10

1. Corner Breaks
2. Punchouts
3. Asphalt Patches
4. Failed Concrete Patches
5. D - Cracking
Each distress type shows a different form of pavement surface distortion

or disintegration. These varieties in the physical shape and pattern can
become so complex that the computer evaluation will be a very slow process.
The process time that is required to sort out each possible pattern will
exceed the time criterion set up at the beginning of the project. Because
of the relative small number of miles of existing JCP, and most new
construction in rigid pavement will be of CRCP, the TTI research team, after
consulting with the TxDOT project panel, has decided to postpone the
a 1 gori thm deve 1 opment for JCP. The f o 11 owing two sections are excerpts from
the 1992 PMIS Rater's Manual.

A. Failed Joints and Cracks
The distress type Failed Joints and Cracks covers two major items:

spalled joints or transverse cracks, and asphalt patches of spalled joints
or transverse cracks.

B. Failures
Failures are localized areas in which traffic loads do not appear to be

transferred across the reinforcing bars. Failures are typically areas of
surface distortion or disintegration.

C. Shattered Slabs
A shattered slab is a slab which is so badly cracked that it warrants

complete replacement.

D. Slabs with Longitudinal Cracks
A longitudinal crack is a crack which roughly parallels the roadbed

centerline.

11

E. Concrete Patches
A concrete patch is a localized area of newer concrete which has been

placed to the full depth of the existing slab as a method of correcting
surface or structural defects.

F. Apoarent Joint Spacing
Some transverse cracks may become so wide that they look and act like

joints. The crack must be at least 1/2" wide all the way across the lane.
These 11 apparent 11 joints are important because they serve to di vi de the
original slab into smaller units.

12

CHAPTER III

IMAGE ANALYSIS AND IMAGE FEATURES

This section describes the image features used for image analysis in the
classification of cracking on ACP and CRCP. At the beginning, it was
decided to employ spatial domain image features rather than spatial
frequency domain image features. The primary reasons for employing spatial
domain images features are to meet the processing time requirement and to
employ less expensive imaging hardware. The designed algorithm locates crack
segments in small square blocks of 48 pixels. A pixel (picture element) is
the basic unit of information in a digitized image. A large number of pixels
arranged in a 2 dimensional array can reproduce the complete picture. The
quality with which a picture is reproduced is called the resolution of the
image and is a function of the number of pixels used in the 2 dimensional
image array. The arrangement of pixels in a digitized video image array of
512 pixels in width by 480 pixels in depth provides good resolution and is
an accepted industry standard.

Each pixel has an attribute associated with it, called the greylevel.
The greyl eve 1 is the discrete value that each pi xe 1 ho 1 ds and is a
representation of the intensity of the picture at that point. Since a pixel
is represented by an 8 bit integer in the computer memory, the number of
discrete values it can take range from 0 to 255. Hence, a pixel describes
256 levels of grey in the image. A greylevel image is one in which each of
the 512 by 480 pixels represents the intensity or greylevel of the picture
at that point. Color images have pixels that carry extra information,
namely Red, Green, Blue (RGB) colors. However, since pavements are a shade
of grey, greylevel images are adequate to describe the picture completely.
In an image, the dark pixels take on values in the lower end of the 0 - 255
range while light pixels take on values in the upper end of the 0 - 255
range. Typically, dark pixels can have a value such as 10 while light
pixels can have a value of 200. Cracks on pavements show up as dark pixels
on a digitized image having a value between 40 to 60 whereas the background
has a value between 80 to 120. Thus, a crack detection scheme will locate
pixels with lower greylevels by differentiating them from the background,
then compute the severity, extent and orientation of these pixels to
determine the cracking type.

13

The main function block diagram in Figure 5 depicts the functional
blocks used in the algorithm to determine the cracking type. The first phase
involves digitizing the image from videotape to create a 512 by 480
greyscale image. The digitized image is then divided into 63 blocks of size
48 by 48 pixels in width and depth. If the image contains a crack, then each
block in the cracking section of the image now contains only a small part
of the total crack called an edge. The goal of the algorithm is to pick out
all the blocks containing edges and the edge orientations in each of these
blocks. Division into blocks is necessary since differentiation of the edge
from the background can be performed accurately only within small blocks.

Within each of the 48 by 48 blocks, a series of tests are run to
determine the likelihood of finding an edge. This analysis within each of
the 63 blocks is a series of steps that includes a variance and a mean
computation. If these two tests indicate the presence of an edge, a
projection histogram analysis is performed within the selected blocks. The
presence of an edge is precisely determined by the projection histogram.
These tests will be described in more detail in later sections.

Once an edge is discovered, its orientation is determined and the edge
map is updated. The edge map is a simple array that holds the orientations
of the edges discovered and is used in classification of the image. Besides
edges detected as part of a transverse or longitudinal crack, marks on
pavements such as oil stains, tire markings, and lane markings are picked up
as edges too. Hence, clearing the edge map of extraneous or false edges is
important to remove the effects of noise. The edge clear section performs
this function by a comparison of the mean of each block to the surrounding
blocks. To detect thin edges a second pass of the edge map is used. The
second pass picks up thin edges which helps in classifying thin cracks more
accurately.

Finally, the image type is determined using the information available in
the edge map. A classification of the image into one of the image type
categories is made. The classification section uses the edge map as its main
input in order to classify the image. Once all images have been classified,
the final result is printed out in tabular form showing the total number of
cracks detected for each image category.

14

Figure 5.

Main Function Block Diagram

Begin pr-oeess
D1g1 t1ze Image

~12 by 480

Sub-divide
into 48 by 48

blocks

On each blo=k
perform

1n1t ial tests

Clear Edge
Map; Run

Second Pass

Use Edge Map
to classify

lmage

Print Results
Exit

Yes

Update Edge
Map

Main Function Block Diagram for Crack Classification.

15

3.1 ITEX Software
The Imaging Technology Series 151 image processor is a software

configurable processor that can run all standard and special image
processing routines on its own specialized hardware at speeds exceeding
those of regular processors. It achieves this speed by coding all routines
in low- level assembly language and executing them on its specialized
hardware. These routines are in the form of C language callable library
functions which requires a host C program to ca 11 these functions to
execute. There are two main modes of software operation. In the first mode,
the main program runs on the host computer, usually a Personal Computer (PC)
or a desktop workstation (SUN}. On a function call by the host computer, the
execution of the function passes on to the Series 151 image processor which
then executes the desired function. Control returns to the host after
execution. Besides running all standard image processing functions like
convolution and fast fourier transforms, the Series 151 can also run
specialized image processing routines l·ike morphological functions. A vast
array of image processing functions are available to the host computer with
many of these functions running at near real time rates.

In the second mode of operation, a program development system compiles
the program in a way to make it possible to download the entire program to
the Series 151 for execution on the Image Processor Accelerator. The Image
Processor Accelerator {IPA) is a fast and dedicated image processor that is
part of the Series 151 system. Entire programs are downloaded to it for
execution whereas in the previous case, only the specific functions are
downloaded. Downloading entire programs implies that the actual program is
executed on the image processor leaving the host computer free to perform
other tasks. Since the operational methods for the two cases differ, there
are some advantages and disadvantages that need to be considered.
Downloading the entire program to the IPA can make some programs run faster
because the IPA has smaller overheads. Unfortunately, very few of the
available library functions can be called using this mode. Most library
functions can only be called from the host computer in the first mode of
operation.

The boards that are present in the unit are capable of digitization,
frame storage, arithmetic operations, real time convolution, histogram

16

feature extraction, and executing IPA functions. Some of the digitization
functions are grab, snap, and freeze. By invoking grab in a C program it is
possible to digitize the video image in real time. Frame operations
typically include fb_zoom that allows the image to be zoomed out or in.
Also, via the frame operations it is possible to read and write pixels into
the frame buffer. The frame buffer provides storage for the ·image in the
form of pixels. The function that can read pixels from the frame buffer is
fb_rpixel. ALU functions can perform multiplication, shifting operations,
addition, and subtraction of pixel data. The function that can perform
multiplication is alu_multmode. The real time convolver can convolve an
image in the frame buffer with a preset mask. Histogram extraction can be
performed by calling one of the many software routines existing in the
function library. The IPA functions allow for downloading of entire programs
to it as well as execution of these programs at speeds comparable to that
of the host computer without overheads. Overheads are caused by the transfer
of pixel data from the image processor to the host computer through the S
BUS. The cracking program runs in the second mode of operation where the
entire program is downloaded to the IPA for execution so as to avoid the
overhead caused by transfer of pixel data. The unavailability of many
l i brary functions is not a cause for concern s i nee only basic image
processing functions are used in the program.

3.2 Projection Histogram
The projection histogram is a projection of the mean of the

grey level values of an image along an axis. In general, a projection P(x)
on the x-axis is defined as

N

P(x) - .l L f(x,y)
N y-1

where 1 ~x~N

N is the block size and f(x,y) is the pixel grey level value of the image.
Figure 6 illustrates the projection histogram process for an idealized

transverse cracking image block. It depicts the sequence of events taking
place within a 4 by 4 pixel block. The actual algorithm has a 48 by 48
block. The histogram data is first computed by projecting the values of the

17

Illustration of the Projection Histogram for a Transverse Crack

4by 4 Block

. ' .
- - - - .. ·-r - - - · -- -r - - -- - - -r - .. - .. -· -. ' .

. ' . r · -- --,--- ---,----- -,- -- --
' ' . ' . . . ' . ----- __ , _ ------>--- -- -->- --- -- -. . .
' . ' . . ' . ' '
: : : I

Pixel View

255 255 I 255 255

0 Q Q 0

255 255 255 255

255 255 255 255

255-SUM/4
__..

Transverse Crack

Horizontal Projection

Raw

Q
Smoothed

0 0

255 127

0 127
I

Q I
I 0

0

Mean

Peak

l
1 Spread

Vertical Projection
Shape Factor = (Peak-Mean)/Spread

Raw c-~-----~'-63---63-~l-63-~-63~1_-_-~-.J
= (127-63)/2 = 32

Smoothed 63 63 63 63 Shape Factor = (63-63)/4 = O

Figure 6. Illustration of the Projection Histogram for a Transverse
Crack

18

pixel greylevels along the horizontal and vertical axis. In Figure 6, the
vertical projection results in values of 63 in the vertical projection array
because the values in each column are summed up and divided by the number
of rows. Hence 255+0+255+255 sums up to 765 which when divided by 4 results
in 191. This is reversed to obtain 63 (255-191). Reversal is performed so
that edges which have a low greylevel appear as peaks in the projected
array. Similarly, the horizontal projection results in the horizontal
projection array. The values at either end of the projected arrays are
mirrored so as to facilitate smoothing. In the horizontal projection array,
the values at either end are 0 which are mirrored or duplicated on the end
of the array. Smoothing in this case is performed with a 2 element running
average, in the actual algorithm a 7 element running average is performed.
The first value and the mirrored value are the first inputs to the smoothing
routine. In the horizontal projection case the average of these two inputs
is {0+0)/2=0. The second pair of inputs are 0 and 255. The average of these
two inputs is 127 and this is reflected in the data in the smoothed array.
Finally when the data in the two arrays are plotted, it is noticed that a
peak exists for the horizontal projection whereas no peak exists for the
vertical projection. The existence of a peak in the horizontal projection
array signifies that a transverse edge is present in that block.

The next step is to compute the shape factor for the two projections to
quantitatively decide whether an edge is present.
The shape factor is computed as

Shape factor = peak - mean
spread

Peak is the greyl eve 1 va 1 ue of the largest peak. For the horizontal
projection case it is 127. Mean is the average of the grey level values
which is 63. Spread is the width from one point of the projected curve
intersecting the mean to the other. It is 2 for the example. Therefore the
shape factor = {127-63)/2=32. For the vertical case the shape factor is 0
because the value of the peak and the mean are the same. The large shape
factor obtained for the horizontal projection is quantitative proof that an
edge is present. The position of the peak on the projected axis denotes the

19

position of the edge element. In the example, the peak position is at
horizontal array location 2. In the actual algorithm, the shape factor
obtained is compared with a shape factor threshold to decide if an edge is
present in the block. If the vertical shape factor dominates, the
orientation of the edge is 90 else if the horizontal shape factor dominates,
the orientation is O.

Oilstains, dark spots, and shadows on the pavement create a noisy and
dirty image that can contribute to the presence of a peak in the Projection
Histogram curve. These edges detected are termed "false edges". Usually
noise cause the peaks to be sharp and small. To avoid misinterpreting peaks
generated by noise as real edges, the extracted curve is smoothed. The curve
smoothing is a running average of the previous three values and the next
three values of the extracted curve. Curve smoothing eliminates most of the
random peaks generated by noise.

Figure 8 shows the horizontal projection for the block framed by the
white square for a real pavement image shown in Figure 7. Figure 9 shows the
vertical projection histogram for the same image in Figure 7. The dotted
curve depicts the unsmoothed or raw greylevel projection while the dark
curve is the greylevel after smoothing. Smoothing reduces sharp edges and
pronounces the peak better. A 1 arge peak is evident in the hori zonta 1
projection seeming to indicate the presence of a transverse edge. No peak
can be seen for the vertical projection. To verify these results
quantitatively, the shape factor is computed for each case.

For the horizontal projection in Figure 8, the peak for the projection
has a value of 131. The mean of the block is 109. Hence the spread points
are at positions 30 and 18 on the x-axis. This leads to a spread of 12. The
shape factor computes to (131-109)/(30-18)=1.83.

For the vertical projection in Figure 9, the peak has a value 114. The
mean is 109 for the block. It can be seen that the means for the vertical
and horizontal projections are the same because the same set of data in the
block is being considered. The spread points are at positions 48 and 35.
Hence, the shape factor computes to (114-109)/(48-35}=0.38.

To make a quantitative decision based on the data available from the
shape factors for the two projections, the shape factors are compared to a
shape factor threshold chosen by empirical analysis. Since the shape factor

20

145

140

135

130

<l.l 125 <;;
u
"' >.
<l.l

0 120

115

110

105

100

Fi gure 7. Image with Block on Transverse Edge.

Projection Histogram of Transverse Elements

Transverse Crack Position---7

Spread Begins

.,
I \
I I
I I
I I
I I
I I
I I
I 1- ,
I I
I I
I I
I I
I I
I I
I I
I I
I I

I
I
I

',
I
I
I
I
I

"smoothed-curve"
"raw-greyscale"

''mean1

'

Shape Factor=(Peak-Mean)/Spread
Peak=131
Spread=30-18=12
Shape Factor=(131-109)/12=1.83

Spread Ends
,.,

-- -- --- ... - - - - --- --- ----- ... ,r -' --- - ... -/-- - - -- -- -- - -- --- -- -\--
I

--\- --- -,- ---,- -- - - - - -- --- -- - -

0

I
I
I

5 10

I I
I I
I
I

I
I

\ I

' / '

15 20 25 30
Pixel position in 48 pixel wide block

\ \
I '--\ ,_, \

I
I

I
I
I

35 40

r ---
1

I

45

Figure 8. Horizontal Projection Histogram: Shape Factor= 1.83.

21

145

140

135

130

Q) 125
«!
(.)

"' :>.
~
0 120

115

110

105

100

,-\
\

0

\
\

\

5

Projection Histogram of Longitudinal Elements

,-,
......... , / \

"smoothed-curve" -
"raw-greyscale" - - -

''mean" - .. - -

Shape Factor=(Peak-Mean)/Spread
Peak=l 14
Spread=48-35=13
Shape Factor=(l 14-109)/13=0.38

I I I \

/ \ I \ -, II

/ \ f read Begins r- -'

- - - - .. - .. - - .. '!;,.,,. - - 7"' .. - .. '-~ ----J~ • ..,,_ - - - - - - - - '\.. - - - .. - .. - - L -
/' I \ / \ /

\ / '-J

10

I \ I \ I
I ,1 \ f

I \ I
I I 1,,..-

I I
\ I
\ I
' / , ...

15 20 25 30
Pixel position in 48 pixel wide block

35 40 45

Figure 9. Vertical Projection Histogram: Shape Factor = 0.38.

for the horizontal case is much larger than the threshold and is also larger
than the shape factor obtained for the vertical case, it is concluded that
a transverse edge exists within the block whose orientation is "O".

3.3 Block size
The optimum block size chosen is 48 by 48 pixels square. Small block

sizes like 16 by 16 prove to be more sensitive to noise since noise due to
an oil-spot occupies the whole block and is detected as an edge. It also
takes longer to scan the whole image. Large blocks 64 by 64 pixels square
miss out on thin small cracks since the crack edge is then only a small
fraction of the block. Table 1 compares the advantages and disadvantages of
different sized blocks.

22

Table I. Comparison of Block Size.

Block size Advantages Disadvantages

16 by 16 detects fine cracks noisy
32 by 32 detects most cracks slow
48 by 48 optimal speed -
64 by 64 fast misses fine cracks

3.4 Edge Map
Creation of the edge map is a pre-requisite to classifying the image

because the classification algorithm uses the edge map as its main input.
The creation of the edge map is a result of the initial processing done on
each of the 48 by 48 blocks into which the image was divided. During the
processing of each block, a variance, mean, and projection histogram test
are carried out. The variance test is the first test that is carried out and
differentiates between blocks having likely edges and those having none. If
the variance test is successful, a projection histogram is performed to
determine the orientation and position of the edge. It is not necessary for
the projection histogram to return an edge. In fact many times it does not
find a edge in the block. If the projection histogram does return a valid
edge, the result is saved in an array called the edge map. Each block in the
image is associated with an array location. Hence the results from each
block are stored in this edge map. For example, if a transverse crack is
input to the algorithm, then there is a strong likelihood that the edge map
after processing all blocks will appear as in Figure IO.

1 1 1 1 1

1 1 1 1 1

0 0 0 1 0

1 1 1 0 1

1 1 1 1 1

Figure 10. Edge Map Showing the Presence of a Transverse Crack.

23

The 5 by 5 array in Figure 10 is the edge map of the complete image with
each element of the array denoting the corresponding block in the image. The
numeric character 11 111 in the array denotes that no edge was present in the
b 1 ock while the numeric character "O" denotes the presence of a transverse
edge e 1 ement and the numeric character "90" denotes the presence of a
longitudinal element. As can be seen, there is a row of "O" in the edge
map. This seems to indicate the presence of a transverse crack in the
image. The decision to classify the complete image as a transverse crack is
not made until the results of the edge map are input to the classification
algorithm which then decides on the cracking type. The edge map is created
from the ana 1 ys is resu 1 ts on each b 1 ock and is the key to the later
classification process.

3.5 Edge Clear
The function edge clear removes noise from the edge map. This noise

is usually caused by false edges picked up because of oilstains, shadows
from passing vehicles, and shadows from trees by the roadside present in the
image.

These foreign image features usually do not cover the whole image,
instead they are spread over a small area with the darkest part being in the
center of the feature as in the case of an oilstain. The lighter parts are
usually around the oil stain and carry the maximum probability of being
picked up as a false edge. The darker parts of features can be eliminated
from good pavement by the "mean test". This test works in the following
manner. If the block has a local mean much higher than the global mean (ie:
mean of the whole image), the result from the block can be discarded.
However, this test fails on blocks with light oilstains and where a false
edge is detected. To eliminate these blocks an edge clear technique is
employed. For example, if a part of the edge map appears as in Figure 11.

The numeric character "2" in the edge map denotes a block with a low
mean caused by an oilstain or shadow. The numeric character 11 111 denotes no
edge detected in the block while the numeric character 11 90 11 is a
longitudinal edge detected in the block. The numeric character 11 90 11 in the
edge map seems to indicate the presence of a longitudinal crack, however,
the real reason for the presence of the "90" edge is because of the lighter

24

1 1 1 1 1

1 1 90 1 1

1 90 2 90 1

1 1 90 1 1

1 1 1 1 1

Figure 11. Edge Map with "False" 90° Edges Caused by Oilstain.

area around the main dark area. The edge clear routine works by clearing all
11 90 11 or "O" edges around the "2" in the edge map. All "90" or 11 011 edges that
occur in the 4 directions around the "2" are set to 11 5". It is set to 11 5"
and not "l" so as to keep track of the number of false edges. This technique
ensures that false "90" edges are not used in the classification of the
image type, instead they are cleared and set to "5". Hence the edge map
appears as in Figure 12.

1 1 1 1 I

1 1 5 I I

I 5 2 5 I

I I 5 I I

1 I 1 I I

Figure 12. Edge Map with False Edges Removed.

3.6 Second Pass
The second pass is used to detect thin edges or curved edges that were

not detected in the first pass. The mean, variance, and projection histogram
analysis performed on each block determines the presence of strong edges and
their respective orientations. This is called the first pass of the
algorithm.

In the first pass, to offset the effects of noise, the comparison
thresholds used with the mean, variance, and projection histogram analysis
are set high. If these thresholds were set low for the first pass it would
result in too many false edges being detected. The net result is that only
strong edges present in the image are detected, while weak edges that might

25

be part of a crack are missed. There is a need for these weak edges to be
picked up in cases where the number of strong edges picked up is not enough
for classification into a image type but is still indicative of a crack
being present.

If there are a sufficient number of strong edges picked up in the first
pass, a second pass is performed. The values for the comparative thresholds
are reduced and the edge map is scanned again. In the second pass, the edge
map is searched with a decreased threshold only in the areas surrounding the
locations of the strong edges to restrict the search to areas of the image
having a greater probability of having weak edges. The row or column pair
having the maximum number of strong edges is rescanned and new edges found
in these areas are recorded in the edge map. The classification routine
makes a more informed decision with the extra information available in the
edge map. Typically the second pass helps in classifying thin transverse and
thin longitudinal crackings, or cracks that lie in a direction deviating
from the horizontal or the vertical direction.

26

CHAPTER IV
CLASSIFICATION RULES AND RESULTS

This chapter describes the developed classification rules in automatic
distress evaluation. These rules employ the image features discussed in
Chapter III to recognize various cracking types in both ACP and CRCP.

4.1 ACP Rules
The ACP crack classification process is divided into three passes. The

first pass is called the "Initial Test on Each Block." In this pass, the
digitized image is sub-divided into 7 by 9 {Row by Column) blocks of 48
pixels. Each block is tested to determine if there exists a segment of the
cracking inside the block. The existence and the orientation of the crack
segment data is coded into a 7 by 9 matrix called Edge Map. The second pass
called "Edge Map Clear and Second Scan" detects and negates false edges
caused by non-cracking objects on road surf ace such as oi 1 stains. The
second pass also re-examines the vicinity of the detected edge segments to
locate remaining thinner crack segments with less stringent rules and
updates the Edge Map accordingly. The third pass which is called "Final
Classification 11 classifies the cracking type based on the number, the
position, and the orientation of the edge segments in the modified Edge Map.

A. Initial Test on Each Block
The Projection Histogram Curve and its corresponding Shape Factor have

been discussed in Chapter II I in detai 1. The first test app 1 i ed to the
image block is to compute the variance of the Projection Histogram Curve
(see Figure 13 and Table 2). A high variance value indicates that the
Projection Histogram Curve is not level and flat, but rather a jagged curve,
possibly with a peak or valley.

This computed variance of the Projection Histogram is compared with a
threshold value. The determination of the threshold is empirical and based
on the results computed from a number of image blocks where each one has a
crack segment slightly different from the other in crack width, intensity
contrast between crack and background, and shape of crack.

27

Initial Tests on Each Block
Begin Test on

Eac:h Block

Calculate
lmn0 +

Calculate
lmn90 +

Edge Angle
= 1

Calculate
lmnll -

Calculate
lmn90 -

Edge Angle
• 0

Edge Angle
= 90

Figure 13. Flowchart for Initial Tests on Each Block.

28

Table 2. Notation Table for Classification Rules for ACP and CRCP.

SYMBOL

ab lo
ab hi
to
t90
WO
W90
sdO

sd90

d-cnt

sd var

T

K

COMMENTS

number of blocks that are considered as oilstains

number of blocks that are considered as lane markings

max number of horizontal edge in a pair of rows

max number of vertical edge in a pair of rows

Total number of horizontal edge in the image

Total number of vertical edge in the image

Standard deviation of the position of the horizontal edges
in to

Standard deviation of the position of the vertical edges in
t90

number of blocks that have both high horizontal and
vertical projection variance

variance of the projection variance
Threshold value
Constant

Those image blocks that have Projection Histogram variances greater than
the threshold are further analyzed. This analysis is called Shape Factor.
A Shape Factor (lmn) is a measure of how "sharp" is the peak of the
Projection Histogram. Most cracks that have been observed on the survey
tape are darker than the background pavement. However, a light color crack
which was filled with fine materials from the base course is also observed.
A dark crack has a peak in the Projection Histogram Curve but a light color
crack has a valley instead. Before the Shape Factor is calculated, the size
of the peak is compared with the size of the va 11 ey in the Project ion
Histogram Curve to determine if the crack segment is darker or lighter than
the background pavement.

29

The determination of a horizontal crack segment is based on the
following three criteria computed from the Projection Histogram Curve.

1. Horizontal Shape Factor > Threshold
2. Horizontal Shape Factor > Vertical Shape Factor
3. Peak Size > Threshold
The first rule is utilized to ensure that the Projection Histogram Curve

in the horizontal direction has a large Shape Factor. In other words, the
quotient of the peak size divided by the peak base (spread) is large. The
second rule was resulted when a single black spot inside an image block gave
both a large horizontal Shape factor and a large Vertical Shape factor. The
second rule is designed to avoid classifying the spot as a crack. The third
rule emphasizes the amplitude of the peak because a large Shape Factor value
could be caused by a small peak divided by a small peak base (spread}. A
small peak having a small peak base usually is associated with a spot or
random noise in the image block.

The numeric character "0 11 will be assigned to the image block to denote
the presence of a horizontal crack segment if the horizontal Projection
Histogram Curve satisfies the above three criteria (rules). A similar set
of rules are set up for vertical edge detection. A numeric character "90"
will be assigned to those image blocks which have properties indicative of
a vertical edge. All other image blocks will be assigned a numeric
character of "l" for no crack found.

B. Edge Map Clear and Second Scan
At this point, the algorithm passes control to the Edge Map Clear

subroutine as shown in Figure 14. The subroutine starts by defining image
blocks that are much darker such as oilstains and shadows, and blocks that
are much lighter, such as lane markings. From the study of a large number
of different images, the TTI research team empirically determined that the
threshold value for the difference between a global (whole) image mean and
a local (block) image mean to be 20.

A numeric character "2" is assigned to an image block with mean
greylevel larger than the global mean by 20. A numeric character 11 311 is
assigned to an image block that is smaller than the global mean. As it was

30

Edge Map Clear and Second Scan

Figure 14.

Begin Ed9e Map
Clear; Second

Scan each Block

Map clear
Reflect Edge
2 on 4 sides

Calculate Max
II of edges l.n

a RQW:t0
COL:t90

Update Edge
Map

Update Edge
Map

Angle 2

Angle = 3

Edge angle
= 0

Edge Angle
= 90

Flowchart for Edge Map Clear and Second Scan.

31

discussed in Chapter III, the pavement images are presented in reverse scale
where a dark object has a high greylevel and a light object has a low
greylevel. In other words, a numeric character 11 2" is assigned to dark
image blocks while "3 11 is assigned to light image blocks.

Frequently, the images blocks that overlap with the oilstain would
result in a Projection Histogram Curve similar to the one projected from a
real crack segment. This Projection Histogram Curve resulting from partial
overlapping with an oilstain, may even satisfy the three requirements to be
considered as a crack segment. Therefore, the Edge Map Clear subroutine is
used to check all the neighboring image blocks after the 11 2" dark image
b 1 ocks are 1 ocated. Any 11 false 11 edges that are detected in those four
neighboring b 1 ocks wi 11 be removed. A numeric character "5" will rep 1 ace
the previous "O" or "90" for the false edge detected in these neighboring
image blocks and the number of the "5" image blocks are tabulated to be used
later in the classification process.

The Second Scan starts by computing the maximum number of horizontal
edges within two neighboring rows of image blocks as shown in the lower half
of the flowchart in Figure 14. If the maximum number of horizontal edges
is greater than 2, the image blocks in the two rows will be rescanned. But
the conditions needed to be met for the determination of a horizontal edge
is less stringent than the First Pass. The Shape Factor threshold is
reduced and the acceptable range for the variance of the Projection
histogram Curve is widened. This Second Scan or Second Pass will pick up
crack segments that are thin and curve shapes or crack segments that have
a weak greylevel contrast with the background pavement. Similar procedures
will be followed to pick up the thin vertical edges missed in the First Pass
(Initial Test for Image Blocks).

C. Final Classification
Before the actual classification of various cracking types in ACP, a

number of parameters are first calculated from the information in the edge
map. Referring to Figure 15 and the notation explanation in Table 5, WO and
W90 are the total number of horizontal and vertical edges in the image
respectively. to is the maximum number of horizontal edges in a pair of
rows and t90 is the maximum number of vertical edges in a pair of columns.
sdO is the standard deviation of the location of the hori zonta 1 edges
detected in the pair of rows with maximum number of edges. sd90 is the

32

Begin
Class1f1cat1on

Calculate Parameter
..,0=# of 0 edges

w90=# of 90 edges
sd0=1 of edges row
sd90=# of edges col
&blow=# of 2 edges
abhi9h=# of 3 edges

Intact

Final Classification

Intact

Longitudinal
Cracking

Transverse
Cr-acking

Intersect

Alligator
Cracking

Yes

No

Longitudinal
Cracking

Transverse
Cracking

Alligator
Crack11'g

011 Stain

Figure 15. Flowchart for Final Classification of ACP.

33

standard deviation of the location of the vertical edges detected in the
pair of columns with the maximum number of vertical edges. A small standard
deviation value indicates that the crack segments closely line up either in
a horizontal line or vertical line. This standard deviation measure is used
to sort out false edges caused by random noise, because these false edges
do not align. Lastly, ab_lo and ab_hi keeps track of the number of "dark"
and "light" image blocks, respectively.

The counts of the dark and light image blocks (ab_lo and ab_hi) are used
to divide the pavement images into two groups. The "Stained" images with
non-cracking objects, such as oilstains, shadows and lane markings will have
a high ablow or a high abhigh value. This group of "stained" images will
follow the steps outlined in the right branch while the "clean" images will
follow the steps outlined in the left branch of the flowchart.

The first step in the left branch is to isolate images without any form
of cracking since the majority of the pavement images are intact. If the
intact images are detected in the early stages of the cl ass i fi cation
process, the overall processing time will be shortened due to the fact that
the following stages of the analysis algorithm are avoided. The next four
stages i nvo 1 ve the detection of four primary types of cracks, name 1 y,
Longitudinal Cracking, Transverse Cracking, Block (Intersect) Cracking, and
Alligator Cracking. The rules for recognition of these cracks are designed
based on the characteristic shape of each crack type. For example, in order
to classify Longitudinal Cracking, three criteria must be met.

l} Total # of horizontal edge < 4
2) Total # of vertical edge in the maximum column

pair > 3
3) The standard deviation of the vertical edges

locations < 20
The criterion #1 is aimed at separating out both Block Cracking and

Alligator Cracking because these two crack types have both horizontal and
vertical edge segments.

Criterion #2 is based on the total count of the vertical edge segments
within the pair of columns which has the maximum number of vertical edge
segments. Criterion #3 is to check the alignment between this set of
vertical edge segments. It is to see if all ·individual vertical edge
segments are part of a meandering vertical crack.

34

An equivalent set of criteria are set up for the detection of Transverse
Cracks. For the recognition of Block Cracking, it is assumed that a
horizontal crack intersects with a vertical crack inside the image. The set
of criteria used are to locate a horizontal line and a vert i ca 1 1 i ne
existing together. However, when there are no obvious alignments of these
edge segments, then this cracking image is classified as the Alligator
Cracking type.

The classification of the cracking types in "stained" images are shown
on the right branch of the flowchart, for example, the rules for restricting
the number of horizontal edge segments in the determination of Longitudinal
Cracking is removed. The reason is that for the "stained" images there are
a large number of edge segments in both directions, due to the presence of
non-cracking objects on the road surface such as oilstains and skid marks.

4.2 ACP Results
To evaluate the video data and processing methodology, many miles of

pavement were collected and processed. The results shown below are from SH-
6 near Navasota, 12 miles of one wheel path videolog (reference marker 610
to 598 in the North bound direction). The videolog was collected with a
special remote camera mounted at 7 feet high on a camera mount attached to
the right side of the bumper. The videolog was collected on a sunny day
during noon time where the lighting condition were almost ideal and there
is no shadow projected from the videolog vehicle or from the trees on the
roadside. The coverage of the camera is five feet wide and the camera
shutter speed is 1/4000 sec. The videolog vehicle was travelling at 50 mph
during the survey. The first half-mile section and the last half-mile
section (section 19 to section 24) are sealcoat surfaces. Typical example
images of Transverse Cracks and Langi tudi na 1 Cracks are il 1 ustrated in
Figure 16 to 19.

It can be seen that most of the edges in the image are picked up by the
algorithm. For the case of the 12 mile section, 900 frames were processed
for each half mile section. Each frame covers an area 5 feet wide x 4 feet
long. The actual processed area is about five feet wide and only three feet
1 ong because the top one foot is covered by information header. This
processing is a 1003 sampling (900 frames x 3 ft/frame = 2700 ft) and the
image frames are contiguous and slightly overlapped. The approximate
processing time for each half mile section is twelve minutes, which is

35

Figure 16. Transverse Cracking on HMAC Surface.

36

Figure 17. Longitudinal Cracking on HMAC Surface.

37

Figure 18. Transverse Cracking on Seal Coat Surface.

38

Figure 19. longitudinal Cracking on Seal Coat Surface.

39

equivalent to 0.8 second per frame. Results were then tabulated every 100
frames and the program is terminated at 900 frames to report the results.

Table 3 lists the computer output of the crack analysis program for
section #7. Four categories of cracking and an intact category are listed.
Two or more categories which are oilstain and lane mark are omitted in the
print out but were actually tabulated as well. The length of longitudinal
cracking is equal to the number of frames multiplied by three feet. An
intersecting crack depicts a horizontal crack intersecting with a vertical
crack.

Tables 4 and 5 summarize the results of Transverse Cracking and
Longitudinal Cracking for the 24 sections. Each half-mile long section is
equivalent to 900 video frames. The computer processing results are listed
in the "Raw Data - Computed" column. As the tape is being rated by the
computer, a visual counting of distress was taken. These visual counts are
entered in the "Raw Data - Actual" column. Both the visual counts from the
tape and the computed counts are converted into PMIS ratings for comparison.
The ratings used are the new multiple category system used in the TxDOT
which is more accurate than the old category system.

The classification of transverse cracks is very stable. The "Computed"
count for all sections agree well with the "Actual" count under PMIS rating.
(Figure 20 and Figure 21}. Figure 21 shows the TxDOT PMIS rating using the
raw data from Figure 20. The computed rating categories for these sections
are 0, 1, 2, and 4 cracks per station. The high accuracy of identifying
transverse cracks is due to the fact that there are few non-distress items
lying in the horizontal direction. When the calculated raw data was
examined, it was found that more cracks were detected in some sections while
fewer were detected in other sections. The sections that have higher
computed counts than the actual counts are due to the double counting of the
transverse cracks. The current setting of the VCR speed results in double
counting if the crack appears at the bottom of a frame and then appears
again at the top of the frame. A little overlap is desired so as to pick up
most cracks. The results show that the algorithm adapts equally well for
both HMAC and sealcoat surfaces.

For longitudinal cracks, (Table 4, Figure 22 and Figure 23) there are
more non-distress items lying in vertical directions. A small number of

40

Table 3. Computer Program Output for Section 7
{Reference marker 607 + 0.0 to 606 + 0.5)

Ent.er st.art DMI for 1/2 mile section :3.0

Processing 1/2 mile section from 3.0 to 3.5

frames intact, long, trans, alli, intersect
100 91 7 2 0 0

frames intact., long, trans, alli, intersect
200 185 8 7 0 0

frames intact, long, trans, alli, intersect
300 254 34 12 0 0

frames intact, long, trans, alli, intersect
400 330 52 16 0 l

frames intact., long, trans, alli, intersect
500 424 53 21 0 1

frames intact, long, trans, alli, intersect
600 512 57 29 0 l

frames int.act, long, trans, alli, intersect
700 594 59 45 0 l

frames intac-:::, long, trans, alli, intersect
800 667 73 57 0 2

frames int.act, long, trans, alli, intersect
900 -c; i

, __
81 65 0 2

41

Table 4. Summarized Transverse Cracking Data for 24 Half-Mile Section
(Reference Marker 610 + 0.0 to 598 + 0.0).

Raw Data (# of cracks per 0.5 PMIS Rating (# per *station)
mile)

Section
Actual Computed Actual Computed #

1 5 3 0 0

2 31 21 1 1
3 101 91 3 3
4 56 46 2 1
5 110 405 4 4
6 61 59 2 2
7 91 65 3 2
8 104 83 3 3
9 85 77 3 2
10 58 71 2 2
11 78 74 2 2
12 88 101 3 3
13 69 75 2 2
14 80 77 3 2

15 73 56 2 2

16 50 58 1 2
17 49 56 1 2

18 56 71 2 2
19 9 8 0 0
20 3 6 0 0
21 5 1 0 0

22 8 18 0 0

23 3 22 0 0

24 1 8 0 0

* station = 100 ft.

42

Table 5. Summarized Longitudinal Cracking Data for 24 Half-Mile Section
(Reference Marker 610 + 0.0 to 598 + 0.0).

Raw Data (feet per 0.5 mile) PMIS Rating (feet per *station)
Section

Actual - Actual # Computed Computed

1 75 153 2 4

2 90 150 2 4

3 60 126 2 4

4 48 210 0 6

5 60 99 2 2

6 54 108 2 4

7 126 243 4 8

8 18 30 0 0

9 60 24 2 0

10 45 75 0 2
11 15 96 0 2
12 180 111 6 4

13 39 66 0 2
14 9 21 0 0

15 60 72 2 2

16 360 222 12 8

17 246 204 8 6
18 45 102 0 2

19 0 33 0 0
20 3 408 0 14
21 0 273 0 10
22 0 306 0 10
23 30 105 0 2
24 18 78 0 2

* 1 station = 100 ft.

43

ta
0 150
a
j 100

Transverse Cracking
Raw Data

2 4 6 8 10 12 14 16 18 20 22 24
Section#

Figure 20. Number of Raw Transverse Cracking Count from Visual
and Computer Evaluation.

10

9

8

d 7

~ 6

! 5

~ 4
3

2

1

0

-

-

-
-

-
-

-

-

-

I

Transverse Cracking
PMIS Rating

~ l I: I
l I I I I I l I I I I I I l I I I I l I I I

2 4 6 8 10 12 14 16 18 20 22 24
Section#

Figure 21. TXOOT PMIS Rating of Transverse Cracking.

44

300 -250 Actual
D .
Computed

200

150

100

50

0

10 -- 9 Actual
D .

.... 8 Computed

.... 7

.... 6

.... 5

-4

-3

.... 2

-1

0

600

500

tq 300
0

.s
.,J

Jl 200
'O
'U:

100

0

-

-

-

-

-

30
i::

.Sl

~
tll

"' 8. 20
....,

~
'O
"!!::

10

Longitudinal Cracking
Raw Data

I I I ~ t l 1: ~-~I I n I I
I I I I I I l l l I I I I I I I I I I I I I I

2 4 6 8 10 12 14 16 18 20 22 24
Section:#

Figure 22. Raw Data for Longitudinal Cracking.

Longitudinal Cracking
PMIS - Rating

2 4 6 8 10 12 14 16 18 20 22 24
Section'#

Figure 23. PMIS Rating for Longitudinal Cracking.

45

-

-

-

-

'--

600 -
Actual
CJ

500 ~mpuled

400

300

200

100

0

30

20

10

-Actual

Computed

dark skid marks (Figure 24} oilstains, exposed aggregate, and ravelling are
misclassified as cracks are observed since the algorithm has provisions
for these non-distress items. As far as the PMIS ratings, most of the
sections agree with the visual evaluation of the tape. But sections 20,
21, and 22 exhibit much higher computer counts when compared with the visual
counts. This discrepancy is caused by the sealcoat treatment which covered
only part of the original hot-mix surface as shown in Figure 25, hence a
false edge is detected at the overlapped area.

In Table ,3 ~ it can be seen that under section 3 there were 101 actua 1
transverse cracks that were visually rated. The computer picked up 91 cracks
resulting in a classification % of 90. This is remarkably high and in fact
can get higher given a VCR that can be controlled reliably in slow motion.
A number of cracks were missed because the digitizer did not grab the frame
properly or the VCR did not display the crack properly. A plot of these
sections is also available. The PMIS rating for the actual number of cracks
in section 3 is 3; the computed number is also 3.

4.3 CRCP Rules
The automatic pavement evaluation system concentrates on the analysis of

surface cracks because they occur more frequently than non-cracking
distresses. The two cracking types of CRCP currently required by PMIS are
spalled cracks and average crack spacing. The average crack spacing is
defined as the survey length divided by total number of transverse cracks
and spalled cracks.

Therefore, the objective of the CRCP classification rules is to
determine cracks that lie perpendicular to the pavement centerline. As
shown in Figure 26 and Table fa',1,;the flowchart has two main branches. The
branch on the left shows steps for the analysis of relatively clean images,
while the right branch shows the decision steps for the "stained" ·images.
A "stained" image contains any combinations of the following contaminants:
oilstains, skid marks, and lane markings.

The first step on the right branch is to decide if a longitudinal crack
exists in the image. This feature is added because a number of longitudinal
cracks on the CRCP surface video are observed. The decision of the presence
of a longitudinal cracking is based on the following three conditions. The

46

Figure 24. Skid Mark on HMAC Surface.

47

Figure 25. Intact Sealcoat Surface.

48

Be91n Process
i;lass1fy

Intact

Figure 26.

lntect

Inter-seet

Longitudinal
Cracbng Intact

Seal led
Crack

ll'"'ansverse
Crack1n9

Spalled
Crack

Transverse
Cracking

Long1tud1nal
cracking

Spalled
Crack

Transverse
Cracking

Tf'ansverse
Cracklng

Flowchart for CRCP Distress Classification.

49

first is the max # of vertical edges in a pair of columns. The second is
the degree of alignment of the edges along a straight 1 ine. The third
condition is related to a parameter called "double count". A block
labeled as a "double count" has high projection variance in both horizontal
and vertical directions. This third condition helps to identify a heavily
"stained" image to avoid misclassification.

The second step on the right branch employs a corresponding set of
three conditions to determine the presence of transverse cracks. Once a
transverse crack is classified, the next logical step is to determine if the
detected transverse crack is spalled. Spalling describes an area where the
cement paste and some of the aggregates have fallen out along the transverse
crack. In the context of image analysis, the spalled area displays a high
projection variance mostly in the horizontal direction and sometimes even
in the vertical direction. The high projection variance is caused by the
non-uniform pixel intensities of the spalled area. A parameter called the
variance of the block projection variances is used to differentiate between
a transverse crack and a spalled crack.

The third step examines the total number of horizontal and vertical
edges. If this total number exceeds a certain threshold, there is a good
chance that either a transverse or spalled crack is present. Once more, the
variance of the block projection variances is used to differentiate the
spalled cracks and transverse cracks.

The left branch is used to process relatively clean images and it has
five steps. The first step in this decision branch isolates the intact
image thus saving processing time. The second step actually can be
eliminated as there are no intersecting cracks in CRCP. Steps 3, 4, and 5
are identical to the three steps in the right branch. These two branches
"in the flowchart are very effective in classifying spalled cracks and
transverse cracks because there are provisions for identifying cracks in
both clean and "stained" images.

4.4 CRCP Results
In order to verify the classification rules, a half mile section of US

59 was processed, a total number of 900 image frames were tested. Figure 27
to Figure 31 show representative images with the detection and
classification of cracks following. Figure 27 and Figure 28 show two
typical spalled cracks and their processed results. The white framed block

50

Figure 27. Spalled Crack on CRCP (Example 1).

51

Figure 28. Spalled Crack on CRCP (Example 2).

52

indicates that the block has a high horizontal projection variance. When
a crack segment was detected within the framed block, a line is placed on
the position where the crack segment is detected. Figure 29 through Figure
30 show two transverse cracks being detected and classified. Figure 31
shows an image having no cracking being classified as intact.

The results are tabulated in Table 6 where the percent error in the two
types of cracking is shown. The average crack spacing for this 0.5 mile
section is 3.3 feet and this is calculated by visually counting the total
number of transverse cracks and spalled cracks. Three observations can be
made. The first is that some fine transverse cracks were missed. The
solution to this problem is either to increase the resolution of the survey
camera or employ multiple camera units. The second observation is that the
algorithm can adapt well to the smear tiremarks and the water marks along
the cracks. The third observation shows that only one crack is counted in
a cracking image with multiple cracks. These missed counts contribute to
the low percent accuracies. The image algorithms are needed to be modified
to detect the presence of the multiple cracks.

Table 6. CRCP Processing Result of US 59 (DMI Reading 32.400 to 32.900}.

Cracking Type Actual Number Computed Number Percent Error

Spalled Crack 60 13 22%
Transverse 690 34 5%

crack

53

Figure 29. Transverse Crack on CRCP (Example 1).

54

Figure 30. Transverse Crack on CRCP (Example 2).

55

Figure 31. Intact CRCP.

56

CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

An image classification system based on the principle of the
projection histogram for both ACP and CRCP are presented. The performance
of this system is highly satisfactory and the project goals are achieved.
The project goals are that the overall accuracy of the processing system
must be over 703 and the minimum processing speed is 4 mph which is
equivalent to a processing time of 1 frame per second.

The ACP algorithm results were over 703 accurate even in noisy images
such as sealcoat surfaces or "stained" images such as oil stain images. The
videolog was collected on a sunny day during noon time and there is no
shadow projected from the videolog vehicle or from the trees on the
roadside. This developed algorithm has been tested extensively with over 12
lane miles of pavement and the results are very consistent and reliable.
Algorithms improvements are needed for the CRCP analysis program to account
for the presence of multiple cracks.

Recommendations related to acquisition and enhancements of pavement
distress videolog are addressed in 1189-1 entitled "System Hardware for
Acquisition and Automatic Processing of Pavement Distress Videolog." These
issues are:

1) Artificial Illumination system to eliminate shadows.
2) Proto-type videolog survey vehicle.
3} Camera type and camera lens selection.
4) Operator input of non-cracking distress count

with keyboard during field survey.

The following recommendations are specifically for the office video
image processing system and automatic evaluation software.

1) High resolution digitizer and frame buffer.
2) Variable speed tracking VCR.
3) Personal Computer platform imaging hardware.
4) Incorporate non-cracking distress data.
5) Sampling scheme for videolog processing.
6) Operator override and crosscheck of the

processing result.

57

A high resolution frame grabber, which is a video digitizer and data
buffer will enable the detection of early stage cracking. A conventional
frame grabber has a pixel resolution of about 0.12 inch/pixel while a high
resolution frame grabber will double the resolution to 0.06 inch. This will
satisfy the PMIS requirement of 0.125 inch.

A time variable speed tracking VCR can overcome the video jitter, and
the degradation in accuracy caused by this jitter. The VCR al so a 11 ows
computer access to individual frames with a time code for non-supervised
processing.

Faster and denser imaging hardware has been manufactured by a number
of vendors recently. This hardware is a potential candidate to convert the
office processing system from a workstation to a PC platform. The
advantages of using PC hardware are the user friendly library software,
flexibility in PC programming because of larger user base and lower hardware
cost. The disadvantage is the limitation in the overall processing speed.
TTI is interested in evaluating some of this PC hardware in the follow-up
study.

A subroutine will be developed to incorporate the non-cracking data
such as the length of patching and number of failures for ACP. These data
will be keyed in and stored in a file during the videolog survey with a
specialized keyboard. The subroutine will read the data and integrate it
with the automatic cracking evaluation to give comprehensive surface
distress ratings.

Since the majority of the pavement surfaces are free of any form of
distress, a sampling scheme should be developed when processing the pavement
images. During the videolog survey, the operator will enter a condition
score, from 1 to 10 to approximate the overall condition of the half mile
section and this score will be stored in a file. At the time of post
processing, a sampling scheme will apply, for example, if the pavement score
is above 9, only 10% of the pavement surface video is processed.

Options will be built into the processing software for the operator to
override the computed results with manual input. The operator will also be
able to visually double check those sections that show great differences
between the field condition scores and the automatic evaluation results.

58

APPENDIX A

59

A.1

Program Listing of

Hotmix.c

60

/***
Program : hotm.i.x.c:s

CopyRighted : Reqistration I TX 517 825

Author : TTI Div 2.

Date : Nov 92.

Task: Main program to detect ora~nq on ACP. Refer to
flowchart of the main block diagram to understand the program
better.

The program initializes the image processor and then
digitizes a frame from video. 'l'wo versions o:f this program exist.
The first version gets its input from pre-acquired images from ha.rd
disk while the second version gets its input from the VCR directly.
Both programs fol.l.ow the same algorithm from this point onwards.

The image is first digitized from videotape and then sub-divided
into 48 by 48 blocks. Sub-division is employed to make it easier
to detect thin edges. Within each of the 48 by 48 windows,
an analysis is performed to indicate the presence of an edge.
This bl.oak analysis is a aeries of steps
that includes a variance, mean and projection histogram analysis.

Once, an edge is discovered, its orientation is calc:sul.ated and the
edge map is updated. The edge map is a simpl.e array that holds the
orientations of the edges discovered and is used for later classification.
The edge clear section re:m.oves the effects of noise.
To detect thin edges a second pass of the edge map is used. The second pass
picks up thin edges Which helps in classifying thin cracks.

Finally, the image is ready to :be classified or recognized as a crack
of a certain type. The classification section uses the edge map as its ma.in
input in order to cl.assify the image. Once all images have been classified,
the results are printed out.
A number of varial:>J.es are used in the program, most of which
are various thresholds used to distinguish edges.

***/

#include <stdio.h>
#include <itexl.50.h>
#include <strings.h>
#include <math.h>

#define X 30 /* Upper Right Horizontal Position of AOI */
#define Y l.00 /* Upper Right Vertical Position of AO! */
#define BX 48 /* Horizontal Size of Window */
fdefine BY 48 /* Vertical Size of Window •/
#define COL 9 /* Number of Columns */
fdef.ine ROW 7 /* Humber of Rows */
#define WINDOW 7 /* Number of Pixels used .in Smoothing Histogram */
#define OFFSE~ (int) (WJ:NDOW/2) /* Number of" Pixels used for fol.d back :in Projection curve */
#define WING 12 /* Number of extra pixels on either side of window used */
/* in calculating aetual spread */

/* Defines used .in Decision function
Refer to Decision rule */

#define KLMNX l..1
#define KLMNY 1.5
#define PEAJCO 9
#define PEAJC90 9

61

#define GTEO 20
#define GTH90 10
#def.ine SDTB.R 21.0

/* 'I'hreshold Below Mean for White Paint Mark */
/* 'I'hreshold Above Mean for Black Oil Stain */
/* Min.imum SD of Detected Edqes to be a Crack */

/* Global Variables accessed by most fuctions */

static int PKO[ROW] [COL],PK90[ROW][COL],SPR0[ROW)[COL),SPR90[ROW] [COL),
LMNO sign[ROW] [COL),LMN90 sign[ROW][COL],wind.[ROW][COL],
local mean[ROWJ [COL],wind-var[ROW] [COL],posiO[ROW] [COL],posi90[ROWJ [COL];
float -LMNO [ROW] [COL] , LMN90 [ROW] [COL] , VAR.O [ROW] [COL] , VAR.90 [ROW] [COL] ;
int imq[512][512];

/*
Function: Init
Inputs: -
outputs: -
Task: Initializes the Image Processor.
*/
void init()

/*

J.oad_cfg("/usr/ITEX/150/lib/std.cf<;");
initsys ();
adi hbanksel(l5);
adi::hgroupsel(REDIGREENJBLUE);
adi clearlut(255);
adi-lutmode(OYNAMIC);
contour(AOI,GREEN,l,0,156,255);
linlut(AOI,REOjGREENIBLUE,O);

Function: read_image
Inputs: -
OUtputs:-

/* Load Standard Configuration */
/* Clear Screen */

/* Activate Dynamic OVerlay */

Taak: Reads Image from disk, removes bright spots by averaging them, stores
result in buffer Bl.
*/
void read_image()
{

/*

int i,j;
int temp;
BYTE buf[512];

for(j=O;j<480;j++){
fb_rhline(Bl,O,j,512,buf);
for(i=O;i<512;i++){

temp=buf [i] ;
imq[i] [jJ=temp;

Function: hist_90
Inputs:

/* 480 Horizontal lines */
/* 512 Pixels in one line */

x:Upper left horizontal coordinate of window.
y:Upper left vertical coordinate of window.

Outputs:-
array: Array containing Projection Values.
Returns mean of window.

62

Task: Cal.cul.ate Vertica1 Projection Curve
Sum Va1ues of G:i:-ay Level. al.on9 Vertical. Axis
*I
fl.oat hist 90(x,y,a.rray)
int x,y,array[BX+2*0FFSET+2*wrNG];
{

int i,j,aum,sumO,temp;

sumO=O;
fo:i:- (i=x-WING;i<x+BX+Wl:NG;i++){

sum.=O;
for (j=y;j<y+BY;j++){

temp=255-i.mg[i] [j]; /*Reverse Gray l.evel */
sum.=sum+temp;

I*

}
temp=sum/BX;
arrs.y[i-x+OFFSET+WINGJ=sum/BY; /* Store averaqed va1ues in array of size BY */
if (i>=x && i< x+BX) sumO=sw:nO+temp;

for (i=O;i<=OFFSET;i++){

}

a:i:-ray[OFFSE!t'-i]=array[OFFSET+i]; /* Mir:i:-or val.ues of array on each end*/
array[BX+2*WING+OFFSET-1+i]=array[BX+2*Wl:NG+OFFSET-1-i];

return((float) sumO/(float) BX);

Function: hist O
rnputs:

x:Upper left horizontal coordinate of window.
y:Upper l.eft vertical coordinate of window.

Outputs:-
array: Array containing Projection Values.
Returns mean of window.

Task: Calculate Horizontal Projection curve
Sum Val.ues of Gray Level. a1ong Horizontal. Axis
*/
float hist O(x,y,array)
int x,y,array[BY+2*0FFSET+2*Wl:NGJ;
{

int i,j,sum,sum.O,temp;

sumO=O;
for (j=y-WING;j<y+BY+WJ:NG;j++){

sum.=O;
for (i=x;i<x+BX;i++){

temp=255-i.mg[i] [j]; /*Reverse Gray l.evel. */
sum=sum+temp;

I*

}
temp=.,um/BX;
array[j-y+OFFSET+WING]=tem:p; /* Store averaged values in array of size BY */
if (j>=y && j<y+BY) sumO=sumO+temp;

for (i=O;i<=OFFSET;i++){

}

array[OFFSET-i]=array[OFFSET+i]; /*Mirror values of array on each end*/
array[BY+2*Wl:NG+OFFSET-l+i]=array[BY+2*Wl:NG+OFFSET-1-i];

return((fl.oat) sumO/(fl.oat) BY);

Function: draw_hist
rnputs:

x: Coordinate x on screen where pl.ot is desired

63

y: Coordinate y on screen where plot is desired
array: Array containing Projection Values.
mean: Mean of array input.

Outputs: -
Task: Routine to Plot the Projection Bistogrsm on the Screen.
Also Plots a line indieating mean.
*I
void draw hist(x,y,array,mea.n)
int x,y,array[BX+2*WINGJ;
{

/*

int i,j;
for (i=O;i<BX+2*WING;i++){

j=(array[i]*160)/160;
line(B1,1, (x+i) ,y, (x+i), (y+j) ,255);

line(B1,l,x,y+mean,x+BX,y+mea.n,100);

Function: clear hist
:Inputs:

x: Coordinate x on screen where plot is desired
y: Coordinate y on screen where plot is desired

Outputs: -
Task: Routine to clear the Projection Bistogram on the Screen.
so that the next plot does not overwrite on the previous one.
*I
void clear bist(x,y)
int x,y; -
{

/*

:l.nt i, j;
for (i=O;:i.<BX;i++){

j=160;
l.:l.ne(Bl,1, (x+:i.),y, (x+:i.), (y+j),O);

Function: l.ine_90
:Inputs:

x: Upper Left x coordinate of window.
x: Upper Left y coordinate of window.
pos90: Position of detected vertical edge.

Outputs: -
Task: Routine to Pl.ot a line on the screen indicating the
position of detected edge.
*/
void l.ine90(x,y,pos90)
int x,y,pos90;
{

l.ine(B1,0, (x+pos90),y, (x+pos90),y+BX-1,255);

/*
Function: l.ine O
:Inputs:

x: Upper Left x coordinate of window.
x: Upper Left y coordinate of window.
posO: Position of detected horizontal. edge.

Outputs: -
Task: Routine to Plot a line on the screen indieating the

64

position of detected edge.
*I
void lineO(x,y,posO)
int x,y,posO;

line(B1,0,x,(y+pos0), (z+BX-1),(y+pos0),255);
}

/*
Function: curve_smooth
Inputs:

rawx: Unsmoothed array containing horizonta1 projection va1ues.
rawy: Unsmoothed array containing vertical. projection values.

Outputs: -
smoothx: Smoothed array containing horizontal projection va1ues.
smoothy: Smoothed array containing vertical projection values.
m.axx: Maximum value in z projection array.
mazy: Maximum value in y projection array.
minx: Minim.um val.ue in x projection array.
miny: Minim.um value in y projection array.
pma.xx: Position of ma.xx in array.
pmaxy: Position of maxy in array.
pmi.nx: Position of minx in array.
pmi.ny: Position of miny in array.

Task: Smooth both horizontal and vertical projection values
also oal.oul.ate the max and min values in the array along with
their respective positions in the array.
*I
void curve smooth(rawx,smoothx,rawy,smoothy,:ma.xz,
minx, pmaxx-; pminx,maxy ,m.iny, pmaxy, pmi.ny)
int rawx[BY+2*0FFSET+2*WI:NG],smoothz[J3Y+2*W'ING],rawy[BY+2*0FFSET+2*W'ING],smoothy[BY+2*W'ING];
int *ma.zx,*minx,*:pma.zx,*pminx,*ma.xy,*miny,*:pmazy,*pminy;
{

int sumx,avgz,sumy,avqy;
int Bead,Tail.,center,eount;

for(oente:r=OFFSET;oenter<BY+2*W'ING+OFFSET;oenter++){
sumx=O;
sumy=O;
avgx=O;
avgy=O;
Bead=oenter-OFFSET;
Tail=oenter+OFFSET;
for(count=O;count<OFFSET;aount++){

sumz +=rawx[Bead];
sumx +=rawx[Tail.];
sumy +=rawy[Bead];
sumy +=rawy[Tail];
Bead++;
Tail-;

sumx=sumz+rawx[oenter];
sumy=s'Ullly+rawy[oenter];
avqx=s'UIDX/W'INDOW;
avgy=s1.'lmY /WINDOW i
smoothx[oenter-OFFSET]=avgz;
smoothy[oenter-OFFSET]=avgy;
if (oente:r==OFFSET+WJ:NG){

*ma.xx=*minx=avqz;
*mazy=*miny=avgy;
:pma.zx=:pmazy=center-OFFSET;
*pminx=*pminy=oenter-OFFSET;

if(oenter >= OFFSET+WI:NG &Iii center < BY+OFFSET+W:CNG)
{

65

I*

if (avgx>=*ma.xx) {

}

*ma.xx=avqx;
*pmaxx=eenter-OFFSET;

if (avqx<=*minx) {
*minx=avgx;
*pminx=eenter-OFFSET;

if (avgy>=*ma.xy){
*ma.xy=avgy;
*pmaxy=center-OFFSET;

if (avgy<=*miny){
*miny=avgy;
*pminy=eenter-OFFSET;

Function: 1mnY
Inputs:

array:Smoothed array of vertical projection.
max: Maximum vlaue in array.
pma.x: Position of max.
mean: Mean of array.

outputs: -

Task:

peak: peak
denom: Spread.
posit: position of crack
sign: positive
Returns 1mn

Calculate the lmn=peak/spread=(max-mean)/spread
for the vertical projection values for positive peaks.
*I
float 1mnY(array,max,pma.x,mean,peak,denom,posit,sign)
int mean,max,*P6ak,*denom,*posit,*sign,array[BY+2*W'.!NGJ;
{

int i,maxi,mmi;
float result;

maxi=BX+2*Wl:NG-1;
mmi=O;
for (i=pmax;i<BX+2*W'.!NG;i++) /* Find spread to the riqht of position of maximum */

if (array{i]<=mean){
max:L=i;
break;

}
for (i=pmax;i>=O;i--) /* Find spread to the left of position of maximum */

if (array[i]<=mean){

*P&ak=max-mean;
*denom=maxi-mmi;
*posit=pmax;
*aign=l;

m:m.i.=i;
break;

result= (float) (max-mean)/(float) (*denom);
if (*denom>30 II *denom<7) result=O.O;

return(result);

/* If spread<7 or spread> 30 set l.mn=O */

66

I*
Function: l.mnYY
J:nputa:

array:Smoothed array of vertical projection.
min: M:i.n;i.mu:m value in array.
pmin: Position of min.
mean: Mean of array.

outputs: -

Task:

peak: peak
denom: Spread.
posit: position of peak
sign: negative
Returns J.mn

Calculate the 1mn=peak/aprea.d=(mean-min)/spread
for the vertical projection values for negative peaks.
*I
float J.mnYY(array,min,pmin,mean,peak,denom,posit,sign)
int mean,min,pmin,*peak,*danom,*posit,*sign,array[BY+2*W:CNG];
{

int i,mini,mni;
float resul.t;

mini=BX+2*WJ:NG-l.;
mni=O;
for {i=pmin;i<BX+2*W:CNG;i++) /* Find spread to the right of position of m:i.nimum */

if {array[i]>::mean}{
mini=i;
break;

for (i=pmin;i>=O;i--) /*Find spread to the left of position of minimum */
if (array[i]>=mean){

*peak=mean-min;
*denom=mini-mni;
*posit=pmin;
*aiqn=-l.;

mni=i;
break;

result= {float) (mean-min}/(float) {*denom);
if (*denom>30 I I *denom<7) result=O.O;

return(resul.t);

I*
Function: l.mnX
:Inputs:

array:Smoothad array of horizontal projection.
max: MaximUm value in array.
pmax: Position of max.
mean: Mean of array.

outputs: -

Task:

peak: Peak
denom: Spread.
Posit: Position of peak.
sign: Positive
Returns lmn

Cal.cul.ate the J.mn=peak/spread={max-mean)/spread
for the horizontal projection values for positive peaks.
*I
float lmnX(array,max,pmax,mean,pea.k,denom,posit,si'iJil}

67

I* J:f spread<7 or spread> 30 set l.mn=O */

int mean,max,*pEU1.k,*denom,*Posit,*sign,array[BX+2*WING];

int i,maxi,mm.i;
fl.oat resu.l.t;

maxi=BX+2*WING-1;
mmi=O;
for (i=pmax;i<BX+2*WING;i++) /* Find spread to the right of position of maximum*/

if (a.rray[i]<=mean){
max:i.=i;
break;

}
for (i=pmax;i>=O;i-) /*Find spread to the l.eft of position of maxim"WD. */

if (a.rray[i]<=mean){

/*

..tpeak--max-mean;
*denom--maxi-mmi;
*Posit=pmax;
*sign=1;

mmi=i;
break;

resu.l.t= (fl.oat) (max-mean)/(fl.oat) (*denom);
if (*denom>30 II *denom<7) resul.t=O.O;
return(resul.t);

Function: l.mnXX
Inputs:

array:Smoothed array of horizontal. projection.
min: Minimum va1ue in array.
pm.in: Position of min.
mean: Mean of array.

Outputs: -

Task:

peak: Peak
denom: Spread.
posit: Position of peak.
sign: Ne9ative
Returns l.mn

Ca1aulate the lmn=peak/spread=(mean-min)/spread
for the horizontal project:i.on values for neqative peaks.
*I
float l.mnXX(array,min,pmi.n,mean,peak,denom,posit,sign)

/* If spread<7 or spread> 30 set l.mn=O */

int mean,ndn,pmin,*peak,*denom,*posit,*sign,array[BX+2*WING];

int i,m.ini,mni.;
fl.oat result;

mini=BX+2*WING-1;
mni=O;
for (i=pmin;i<BX+2*WING;i++) /* Find spread to the right of position of minimtm1 */

:i.f (array[i]>=mean){
m.ini=i;
break;

}
for (i=pmin;i>=O;i-) /* F:i.nd spread to the l.eft of posit:i.on of minimum */

if (array[:i.]>=mean){

..tpeak=:mean-min;
*denom--mini-mni;
*posit=pmin;

mni=i;
break;

68

}

/*

*aign=-1;

resul.t= (fl.oat) (m.ean-m:i.n)/(fl.oat) (*denom);
if (*denom>30 11 *denom<7) resul.t=O. O;
return(resul.t);

Function: varX
:Inputs:

array:Smoothad array of horizontal projection.
mean: Mean of array.

outputs: -
Returns variance of array

Task:
Cal.culate the variance of the horizontal projection.
*/
float varX(array,mean)
int array[BX+2*0FFSET+2*Wl:NG];
fl.oat mean;
{

int i;
fl.oat sum,temp;

sum=O. O;
for (i=O;i<BX;i++){

tamp::(fl.oat) array[i+OFFSET+WJ:NGJ-mean;
sum=sum+temp*temp;

}
return((f1oat) (sum)/{fl.oat) (BX-1));

I*
Function: varY
:Inputs:

array:Smoothed array of vertical. projection.
mean: Mean of array.

Outputs: -
Returns variance of array

Task:
Cal.cul.ate the variance of the vertical. projection.
*/
float varY(array,maan)
int array[BY+2*0FFSET+2*WJ:NG];
fl.oat mean;
{

int i;
fl.oat aum,temp;

aum=O.O;
for (i=O;i<BY;i++){

tamp::(float) array[i+OFFSET+WJ:NG]-maan;
sum=sum+temp•temp;

}
return((fl.oat) (sum)/(fl.oat) (BY-1));

I*
Function: prints
:Inputs: -

type: pointer to string-.
Outputs: -
Task:
Print string (ALLIGATOR etc) on screen.

69

/* :If apread<7 or spread> 30 set l.mn=O */

*/
void prints(type)
char *type;
{

text(Bl,0,70,100,BORIZONTAL,2,255,type);

I*
Function: decision
:rnputs:

lmnO:lmn for horizontal projection.
lmn90: lmn for vertical projection.
LMNX: Minimum threshold for horizontal projection.
LHNY: Minimum threshold for vertical projection.
i: Borizonta.1 index of window.
j: Vertical index of window.
peakO:
peak90:
spreadO:
spread90:
signO:
siqn90:

outputs: -

Task:

Returns a.nqle
a.nqle 0: no edqe
a.nqle 4: horizontal edqe
anqle 90: vertical edqe

Decides if the window contains ii.n edqe based on the
information available. Returns an angle.
*/
int decision(lmnO,lmn90,LMNX,LHNY,nLMNX,nLMNY,i,j,peakO,peak90,spreadO,spread90,siqnO,siqn90)
fl.oat lmnO, 1mn90, LMNX, LHNY, nLMNX, nLMNY;
int i,j,peakO,peak90,spreadO,spread90,si91lO,siqn90;
{

int angl.a;
fl.oat temp_lmnO,temp_lmn90;

angla=l;
if (signO==l) temp lmnO=LMNX;
al.se temp_lmnO=nLMNx;
if (siqn90==J.) temp_l.mn90=LMNY;
else temp_lmn90=nLMNY;

if (lmnO>temp l.mnO && lmnO > (KLMNX*l.mn90) && (peakO > PEAXO) &&
(wind_var[iJ[jJ==4 I I wind_var[iJ[j]==49))a.ngle=4*siqnO;

I*

if (lmn90>temp lmn90 && l.mn90 > (XLMNY*l.mnO) && (peak90 > PEAX90 && peak90<40) &&
(wind var[i][j]==90 I I wind var[i] [jJ==49) && peak90

> i.s"*Paako && spread90 > 5-) angle=90*sign90;
return(angle);

Function: var2ool
:Inputs: -
outputs: -

Returns smal.lei;st SD of edqes in a pair of ool.s.
Task:
DeteJ:m.i.nes if the edges detected fall in a straight line
inclicating a longitudinal crack. Checks overlapping
pairs of cols calculating the SD of the edges. Returns SD.

70

If the n'lmlber of edqes in any col. > 4, SD is cal.aul.ated
for that QOl. on1y.
*/
fl.oat var2QOl. ()
{

int sum[COL-1];
int .i, j,k;
int sumup,countl.,count2;
int varl.,temp,tampl.;
stat.ic int data1[ROW],data2[ROW];
fl.oat sdl.,SD;

SD=l.00.0;
for (j=O;j<COL-l.;j++J{ /*Count the nUl!lber of adq&s in every pair of col.s */

sumup=O;
for (i=O;.i<ROW;.i++){

if (al:>s(wind[i][j])==90) sumup++;
if (al:>s(wind[i][j+l.])==90) sumup++;

sum [j J =sumup;

for (j=O;j<COL-l.;j++){
countl.=O;
QOunt2=0;
if (B\'lm[j]>2){ /*If the number of edges in the pair is >2 */

for (i=O;i<ROW;i++){
if (al:>s(wind[i)[j])==90){ /*find number of edq&s in each row*/

data.1[count1]=posi90[i][j];
countl.++;

}

if (a.bs(wind[i] [j+l.J)==90){
data.2[count2J=BX+posi90[i] [j+l.];
count2++;

if (countl.>4){ /*If number of edq&s in row is> 4 */
temp=templ.=O; /* find SD for the row */
for (k=O;k<countl.;k++){

tamp=temp+datal.[k]*datal.[k];
templ.=tampl.+datal.[k];

}
varl.=(tamp-(templ.*templ./countl.))/(countl.-1);
sdl.= (fl.oat) sqrt ((doubl.e) varl.) ;
if (sdl.<SD) SD=sdl.;

if (count2>4){
tamp=templ.=O;
for (k=O;k<count2;k++){

tamp=tamp+data2[k]*data2[k];
tampl.=templ.+data2[k];

}
var1=(tCNnp-(tamp1*temp1/count2))/(count2-1);
sdl.= (fl.oat) sqrt ((doubl.a) varl.);
if (sdl.<SD) SD=sdl.;

tamp=templ.:O;
for (k=O;k<countl.;k++){

tamp=temp+datal.[k]*d&tal.[k];
tampl.=tampl.+datal.[k];

for (k=O;k<count2;k++){
tamp=tamp+data2[k]*data2[k];
tampl.=temp1+data2[k];

71

return {SD);

/*

var1=(temp-(temp1*tamp1/(count1+count2)))/((count1+count2)-1);
sd1=(float) sqrt((double) var1);
if (sd1<SD) SD=sd.1;

Function: var2row
rnputs: -
Outputs: -

Returns smallest SD of edges in a pair of rows.
Task:
Dete:r:mines if the edges detected fall in a straight line
indicating a transverse crack. Checks overlapping
pairs of rows calculating the SD of the edges. Returns SD.
*I
float var2row ()
{

int sum[ROW-1];
int i,j,k;
int sumup,count;
int var1,temp,tamp1;
static int data[COL+COL];
fl.oat sd.1, SD;

SD=100.0;
for (i=O;i<ROW-1;i++){

sumup=O;
for (j=O;j<COL;j++){

if (a.bs(wind[i] [j])==4) sumup++;
if (a.bs(wind[i+l] [j])==4J sumup++;

sum[i]=sumup;

for (i=O;i<ROW-1;i++){
count=O;
if (sum[i]>3){

return(SD);

for (j=O;j<COL;j++){
if (a.bs(wind[i][j])==4J{

data[count]=posiO[i][j];
count++;

if (a.bs(wind[i+l] [jJl==4){
data[count]=BX+posiO[i+lJ [j];
count++;

temp=tampl=O;
for (k=O;k<count;k++){

temp=tamp+data[k]*data[k];
temp1=temp1+data[kJ;

}

var1=(temp-(templ*templ/count))/(count-1);
sd1=(float) sqrt((doul:>le) varl);
if (sd1<SD) SD=scU;

72

I*
Function: clear_edge
l:nputs: -
Outputs: -
Task:
Clear false edges detected around oilst~n in 4 directions
to prevent a misclassification.
*I
void clear_edge()

int i,j;

for (i=O;i<ROW;i++){
for (j=O;j<COL;j++){

I*
Function: sca.n_trans
l:nputs: -

if (wind[i][j]==2){
/*if (i>O && wind[i-1J[j]!=2) wind[i-1][j]=5;
if (i<ROW-1 && wind[i+1][j]l=2) wind[i+1] [j]=S;*/
if (j>O && wind[i] [j-1]!=2) wind[i][j-1]=5;
if (j<COL-1 && wind[i] [j+1]!=2) wind[i][j+1J=5;

trans inct.x: l:ndex of row where second scan needs to be done
IMNX: LMN threshold for positive cracks.
LMNY: LMN threshold for negative cracks.

Outputs: -
Task:
Perfo:r111 a second scan using a different decision rule in order
to pick up edges missed in the first run for transverse crack.a.
*/
void scan trans (trans index, LMNX, nLMNX)
int tra.ns:index; -
float LMNX,nLMNX;
{

int i,j;
float tamp;

for (i=trans_index;i<ROW && i<trans_index+2;i++){
for (j=O;j<COL;j++){

I*
Function: scan_long
Inputs: -

if (LMNO sign[i] [j]==-1) tamp=nLMNX;
els& temP=LMNX;
if ((wind var[i] [j]==4 I I wind var[i][j]==49) && LMNO[i] [j]>temp &&
wind[i] [jJ==l) wind[i][j]= 4; -

long_index: Index of col where second scan needs to be done
IMNX: LMN threshold for positive cracks.
LMNY: LMN threshold for negative cracks.

outputs: -
Task:
Perfo:r111 a second scan using a different decision rule in order

73

to pic::k up edges missed in the first run for longitudina1 crac::ks.
*/
void scan long(long index,LMNY,nLMNY)
int long: 'Index; -
float LMNY,nLMNY;
{

int i,j;
float tamp;

for (j=long index;j<COL && j<long indax+2;j++){
for-(i=O;i<ROW;i++){ -

I*

if (LMN90 sign[i][jJ==-1) temp=nLMNY;
tem.p=LMNY7
if ((wind var[i] [jl==90ltwind var[i][j]==49) && LMN90[i] [j]>temp &&

wind['IJ [j]==l && PK90[i] [j] > 1.5*PKO[i][j] && SPR90[i][j]> 5) wind[i][j]= 90;

Function: find_long
Inputs: -
Outputs: -

index: Index of col having maximt:ml number of 90 edges.
Returns number of edges in the col.

Task:
Find index of col having maximum m:miber of 90 edges from the edge map.
*I
int find long(index)
int *ind;x;
{

int sum,i,j,MAX;

MAX=O;
*index=O;
for (j=O;j<COL-l;j++){

sum=O;
for (i=O;i<ROW;i++){

if ((al::>s(wind[1J[j]))==90) sum++;
if ((al::>s(wind[i] [j+1]))==90) sum++;

if (sum>MAX) {
MAX=sum;
*index=j;

return (MAX) ;

/*
Function: find_long_var
Inputs: -
Outputs: -

Returns index of col with max number of 90 var windows.
Task:
Find index of col having maximtlm number of blac::k windows(90 windows)
from the varianoe map.
*/
int find_long_var()

int sum,i,j,MAX;

MAX=O;
for (j=O;j<COL;j++){

74

sum=O;
for (i=O;i<ROW;i++){

if ((al:>a(wind_var[i] [j]))==90 I I (al:>a(wind_var[i] [j]))==49) sum++;

if (sum>Ml!.X) {

raturn (MAX) ;

/*
Function: find_trans
Inputs: -
outputs: -

Ml!.X=sum;

indax: Indax of row havinq maximum numbar of 4 (horizontal.) Qdqas.
Raturns numl:>Qr of adqes in the row.

Task:
Find index of row havinq maximum n'l.ll:lll:ler of 4 adqes (horizontal.) from the edqe map.
*/
int find trans(indax)
int *in&;"x;
{

int sum,i,j,MAX;

MAX=O;
*indax=O;
for (i=O;i<ROW-1;i++){

sum=O;
for (j=O;j<COL;j++){

if ((al:>s(wind[il [j)))==4) sum++;
if ((abs(wind[i+l)[j]))==4) sum++;

}
if (sum>MAX) {

Ml!.X=aum;
*indax=i;

return (MAX) ;

/*
Function: 99t_d:i.r
Inputs: - x: number of directory.
outputs: -

Returns pointer to name of directory.
Task:
Find directory name given a directory number.
*I
char *get_d:i.r(x)
int x;
{

char *clirname1 = "/export/ac:p ima.qes/hotmix",
*d:i.rnama2 = "/export/ima9es2/~a.non",
*d:i.rname3 = "/export/imagea2/test",
*d:i.rname4 = "/export/imaqes2/sh6",
*d:i.rnmne5 = •/erport/imaqes2/aran",
*d:i.rname6 = •/export/ima9es3";
char *dirnama="";

switch(x) {
case '1':

clirnama=d:i.rnama1;

75

I*

case

case

case

case

case

case

break;
, 2":

d.irname =dirn.ame2;
break;

, 3' :

dirname =d.irname3;
break;

, 4':
dirname =dirname4;
break;

, 5' :
dirname =dirname5;
break;

, 6' :

dirname =dirname6;
break;

, 0, :

printf("New Directo:i:y :");
scanf("%s",dirname);
getcllar();

return(dirname);

Function: initialize l.:mn
:Inputs: -
outputs: -

Task:

LMNX: Positive threshold for LMNO
LMNY: Positive threshold for LHN90
nLMNX: Negative threshold for LMNO
nLMNX: Negative threshold for LHN90

:Initialize values of LMN reading from file l.:mn-hotmix
*/
void initialize lmn(LMNX,LMNY,nLMNX,nLMNY)
float *LMNX,*LHNY,*nLMNX,*nLMNY;
{

I*

FJ:LE *fopen(),*shape;

shape=fopen("/home/1189/ashok/itex/l.:mn-hotmix","r");
fscanf(shape,"\f %f \f %f",LMNX,LMNY,nLMNX,nLMNY); /*Get values for l.:mn thresholds*/
fclose (shape) ;

Function: classify edges
:Inputs:

to: max number of horizontal edges in a pair of rows.
t90: max number of vertical edges in a pair of rows.
ab_l.ow:number of windows having paint mark in them.
ab high:nU'IJll)er of windows having oil stain in tham.
do'iii.:.le_eount:number of windows havinq a high O and. 90 variance.
wO: n\lllll:>er of windows having borizontal(4) edges.
w90:numl:>Gr of windows having- vertical (90) edges.
sdO:stand.ard deviation of ed.qes in to
sd.90:standard. deviation of edges in t90

outputs: -
elass_num:number of classification
Returns classification name

Task:
:Initialize values of LMN reading from file lmn-hotmix
*/

76

char *cl.assify(t0,t90,a.b l.ow,ab hiqh,doul:>l.e count,wO,w90,sdO,sd90,ol.ass num)
int to, t90, a.b_l.ow, a.b_high, doul:>l.e_count, wo,w9o, cl.ass_num; -
fl.oat sd0,sd90;
{

if (a.bl.ow> 5 II ab high> 10){
- if (t90>2 &&-sd90<SDTSR && doubl.e_count <8){

cl.ass="LONGI':l'ODINAL";
cl.ass_num.=3;

el.se if (t0>3 && sdO<SOTSR && doul:>l.e count <8){
cl.ass="TRANSVERSE CRACKING";
cl.ass_num=4;

}

el.se if ((w0+w90)>10){
cl.ass="ALLIGATOR CRACKING";
cl.ass_ num=5;

el.se{
cl.aas="INTACT";
cl.ass_num=O;

el.se if(w0<4 && w90<3){
cl.ass="INTACT";
cl.ass_ num=O;

el.se if (t0>3 && t90>2 && sdO<SDTSR && sd90<SD'l'SR && doubl.e count <8){
cl.ass="INTERSECT";
cl.ass_num=6;

el.se if (t90>2 && sd90<SOTSR && doubl.e count <8){
cl.ass="LONGITUDINAL ClU.CllNG" ;
cl.ass_num=3;

el.se if (t0>3 && sdO<SOTSR && double count
cl.ass="TRANSVERSE CRACXI:NG";
cl.ass_num=4;

el.se if ((wO+w90)>10){
cl.ass="ALLIGATOR ClU.CK!NG";
cl.ass _num=5;

el.se{
cl.ass="INTACT";
cl.ass_ num;:::O;

return(cl.asa);

<8){

void main ()
{

:static int unsmO[BY+2*0FFSET+2*WING],unsm.90[BX+2*0FFSET+2*WING],
smO[BY+2*WING],sm90[BX+2*W:INGJ;
int max0,max90,maan0,mean90;
int pma.xO,pmax90,pm:i.nO,pmi.n90,minO,min90;
fl.oat l.mnO,lmn90,varO,var90,meanl.;
char *di.ma.me="", in;
FILE *input_fil.e,*fopen(),*shape;
char fname[20],nama[20];
int l.en;

77

int r,s;
int i, j;
:fl.oat nLHNX,nLMNY,LMNX,LMNX';
int row, col.;
int angl.e,w:indow90,w:indow0;
char *al.ass="";
.int cl.aaa num;
:fl.oat ado-:;-ad90;
.int tO,t90,wO,w90,gl.obal. mean,al:I J.ow,ab h.:i.gh,poa.it;
static int SBADOW,PA:INT,TRlNS,LONG,ALLI7:mTAC'.r,rNTER;
int aignO,aign90,trans_index,long_index;
int peakO,peak.90;
int apread.O,apread90,temp;
float tempp;
int doubl.e_count;

init (); /* Initial..ize :Image Processor */
fl:> al.:f(Bl.,110);
prI'ntf("\nDiraatory O
in=getchar () ;
d.irname=get_d.ir(i.n);
qatchar();

6 : ");

/* Get ha.nd.1.e of image di.rectory */

.input file= f'open(":!.magea","r");
chd.ir(dirname);
wh.il.e (fgeta(nama,60,input_fil.a)!=NULL){

J.en = strl.en(name);
strcpy(fname,"");
strnaat (fnama,name, (J.en-1));
init.ializa l.mn(&LMNX,&LMN'!C,&nLMNX,&nLMNY); /*Get vaJ.uea for J.mn */
=X; - /* Initialize starting x and y */
s=Y;
im read(BJ.,0,0,512,512,fname);
read image () ;
wind~wO=window90=gl.obaJ._mean=al:l_J.ow=ab_h.igh=O;
for (row=O;row<ROW;row++){

for (col.=O;aol.<COL;col.++){
reatang1e(B2,0,r,s,8X,BY,15);
angl.a=J.;
meanl.=hiat O(r,a,unamO);
varO=varX (UnamO, meanJ.) ;
maanO=(int) meanJ.;
meanJ.=h.iat 90(r,a,unsm90);
var90=varY(unam90,mean1);
mean90=(.int) meanJ.;
wi.nd_var[row] [col.]=1;
V.ARO [row] [col.] =varO;
Vll90 [row] [col.]=var90;
J.mn0=1mn90=0.0;
peakO=peak90=apreadO=apraad90=0;
if (varO > 30.0 && var90< 300.0){

}

wind_var[row][aol.]=4;
reatangl.e(BJ.,O,r,a,BX,BY,200);

if (var90 >50.0 && var90 <350.0 && varO< 350.0){
if (wind_V&l!:[row] [aol.]=4) wind_va.r[row)[aol.]=49;
el.ae wind var[row][aol]=90;
reatangJ.e(BJ.,O,r,s,BX-5,BY-5,0);

if ((varo > 30.0 && var90< 300.0)
II (var90 >50.0 && va.r90 <350.0 && var0<350.0)){

curve_smooth(unamO,amO,unam90,am90,&ma.xO,&m.inO,
&pma.xO,&pmi.nO,&ma.x90,&m1.n90,&pma.x90,&pmi.n90);

if ((meanO-minO) > (mazO-meanO))
l.mnO=lmnYY (amO ,minO, pmi.nO, meanO, &pea.kO,

&apreadO,&poait,&aignO);

78

=X;
s=Y;

s=s+BX;
=X;

}

else
l.mnO=lmnY (smO, maxO, pma..xO ,meanO, &paakO,

&spreadO,&posit,&signO);
posiO[row}[col.)=posit-Wl:NG;
LMNO_sign[row][col.J=signO;

if ((m.aan90-min90) > (max90-maan90))
l.mn90=lmnXX(sm90,min90,pmin90,mean90,&paak90,

&spread90,&posit,&sign90);
else

lmn90=lmnX(sm90,max90,pmax90,mean90,&paak90,
&spread90,&posit,&sign90);

posi90[row] [col]=posit-w:tNG;
LMN90_sign[row)[col]=sign90;

angle=d.ecision(lmn0,l.mn90,LMNX,LMNY,nu«:NX,nLMNY,
row,col,paakO,paak90,spraadO,spraad90,signO,sign90);

local mean[row][col.]=m.aanO;
gl.oba.I 111.Qan=global mean+meanO;
LMNO[row][colJ=l.mnO;
LMN90[row][col.]=lmn90;
PKO[row] [col)=peakO;
PK90[row] [col]=peak90;
SPRO[row][col]=spreadO;
SPR90[row] [col]=spread90;

Wind[row] [col]=anqle;

=r+BX;
fb_cl.:f (B2, O);

global. mean=global mean/(ROW*COL);
for (row=o;row<ROW"irow++) {

for (col=O;col<COL;col.++){
it' ((local_mean[row] [coll +G'l'SO) < gl.o:ba.l_mean) wind[row] [col] =3;
::i.t' (local_mean[row] [col]> (GTB90+global_mean) &&

(wind[row][col]:=90 I I wind[row] [coll== -90)) w::i.nd[row] [col.]= 2;
:i.:f' (local_mean[row][col] > (G1'BO+qlob&l._mean) } wind[row][col]=2;

cl.ear edge () ;
tO=:f':i.nd trans(&trans ind.ex);
t90=find l.ong(&l.ong "Index};
if (t0>2) acan trans (trans index,LMNX,nLMNX);
if (t90>1) scan l.ong(l.ong: 'index,LMNY,nLMNY);
tO=:f'ind trans(&trans index);
t90=:f'ind_l.ong(&l.ong_i"nd.ex);
=X;
s=Y;
double count=O;
for (row=O;row<ROW;row++){

:t:or (col.=O;col.<COL;col.++){
:i.:f' (wind var[row] [col.]=49) double_count++;
angl.e=wind[row] [col.];
switoh(angl.e){
case 4:

lineO(r,s,posiO[row] [col.]);
windowO++;

79

s=s+BX;
r=X;

wO=windowo;
w90=window90;

break;
case -4:

case 90:

lineO{r,s,posiO[row][ool]);
windowO++;
break;

line90(r,s,posi90[row][ool]);
window90++;
break;

case -90:

case 2:

case 3:

line90{r,s,posi90[row] [ool]);
window90++;
break;

ab low++;
break;

ab hiqh++;
br;ak;

default:
break;

r=r+BX;

sdO=var2row {) ;
sd90=var2.col{);
printf("sd0=%f\n",sd0);
printf{"sd90=%f\n",sd90);

olass=classify(t0,t90,al:>_low,al:>_hiqh,double_oount,wO,w90,sdO,sd90,class_num);

printf("Ima.qe mean wo w90 to t90
printf("%s",fname);
printf(" %3d",qlol:>al mean);
printf(" %2d" ,wO); -
printf C" %2d", w90) ;
printf(" %2d",tO);
printf(" %2d",t90);
printf (• %3d •,ab low) ;
printf(" %3d",ab:hiqh);
printf(" %-s\n",class);
switch(class_num){
case O:

INTACT++;
break;

case l:
SBADOW++;
break;

case 2:
PAINT++;
break;

case 3:
LONG++;
break;

case 4:
'l'RANS++;
break;

case 5:
ALL:I++;
break;

80

w<m W>m class\n");

}

oase 6:
ImER++;
break;

printf ("\n");
pr:i.nts(cJ.ass);

pri.ntf ("TRANSVERSE LONGJ:TUDINAL ALLJ:GATOR J:NTACT SHADOW J:NTERSECT PAINT\n");
printf("\9d \9d \9d \9d \9d \9d \9d\n",TRANS,LONG,ALLJ:,J:NTACT,SSADOW,J:N'l'ER,PAJ:NT);

81

A. 2

Program Listing of

CRC.C

82

/***
Program : crc.c

CopyRighted : Registration i 'J!X 517 825

Author : TTr Div 2.

Date : Nov 92.

Taak: Ma.in program to det.act cracki.ng on CRC. Refer to
fl.owchart of the ma.in block diagram to understand the program
better.

This program is adpated from the ACP program., hotmix.a.
A new image feature was used for classifiying
the spa1l and the transverse crack on CllC. rt is based on the
local variance of the sub-windows that divided up the m&in image.
The program detects transverse and spall cracks and also
keeps a count of them.

***/
#define X 30 /* Upper Right Horizontal Position of AOr */
#define Y 100 /* Upper Right Vertical Position of Aor */
#define BX 48 /* Horizontal Size of Window */
#define BY 48 /* Vertical Size of Window */
#define COL 9 /* Number of Columns *I
#define ROW 7 /* Num:ber of Rows */
#define W:CNDOW 7 /* Number of Pixels used in Smoothing Histogram */
#define OFFSET (int) (W:CNDOW/2) /* Number of Pixels used for fold hack in Projection eurve */
#define wrNG 12 /* Number of extra pixels on either side of window used */
/* in calou1ating actual spread */

/* Defines used in Decision function
Refer to Decision rule */

#define KLMNX 1.1
#define XLMNY 1.5
#define PEAKO 9
#define PEAK90 9

#define GTBO 20 /* Threshold Below Mean for White Paint Mark */
#define GTB90 10 /* Threshold Above Mean for Black Oil Stain */
#define SDTBR 21.0 /*Minimum SD of Detected Edges to he a Crack */
#define MAX OBJECT COL*ROW
/*#define PRINT v.A:R.90
#define PRINT PEAK SPREAD
#define PRI:NT-v;ut -
#define PRJ:NT-MEAN
#define PRJ:NT:LMN*/

st:.ruct: object {
int col.;
int y;

};

static int PKO[ROWJ[COL],PK90[ROWJ[COL],SPRO[ROW][COL],SPR90[ROW] [COL],
LMNO sign[ROW] [COL],LMN90 sign[ROW][COL],wind[ROW] [COL],
l.oeaJ:' mean[ROW] [COL],wind-var[ROW][COL],posiO[ROW][COL},posi90[ROW][COL];
float-LMNO[ROW] [COL],LMN90[ROW] [COL],VARO[ROW] [COL],VAR90[ROW] [COL];

int img[512][512];

/* Added for position of the objects */
struct object ohjectO[MAX_OBJECT],ohject90[MAX_OBJECT];

83

I*
Function: Init
Inputs: -
Outputs: -
Task: Initial.izes the Image Processor.
*/
void init ()

/*

load cf9("/uar/ITEX/150/lib/std.cf9");
initsyaO;
adi hbanksel(l5);
adi-hgroupsel(REDJGREEN(BLUE);
adi-clearlut(255);
adi-lutmode(DD!mMIC);
contour(ADI,GREEN,1,0,156,255);
linlut(ADI,RED(GREENIBLUE,O);

Function: read_image
Inputs: -
Outputs:-

/* Load Standard Confi9Uration */
/* Clear Screen */

I* Activate Dynamic overlay */

Task: Reads Image from disk, removes bright spots by averagin9 them, stores
result in buffer B1.
*/
void read_ima.9e 0
{

/*

int :I., j;
int temp;
BYTE buf[512l;

for(j=O;j<4SO;j++){
:fb rhline(Bl,O,j,512,buf);
fo;(i=O;:i.<512;i++){

temp=buf[i];
i:mg[i] [j] =temp;

Funct:i.on: hist_90
Inputs:

/* 480 Horizontal lines */
/* 512 Pixels in one line */

x:Upper left horizontal coordinate of window.
y:Upper left vertical coordinate of window.

Outputs:-
array: Array containing Projection Values.
Returns mean of window.

Task: Cal.cul.ate Vertical Projection Curve
Sum Val.ues of Gray Leval along Vertical Axis
*/
float hist_90(x,y,array)
int x,y,array[BX+2*0FFSET+2*WJ:NG];
{

int i,j,aum,sumO,temp;

sumO=O;
for (i=x-WJ:NG;i<x+BX+WING;i++){

sum=O;
for (j=y;j<y+BY;j++){

temp=255-i:mg[:i.] [j]; /* Revar.se Gray level */
sum=sum+temp;

}

temp=sum/BX;

84

}

I*

array[i-x+OFFSET+WJ:NG]=sum/BY; /* Store averaged va.1ues in array of size BY */
if (i>=x && i< x+BX) sumO=sumO+temp;

for (i=O;i<=OFFSET;i++){

}

array[OFFSET-i]=array[OFFSET+i]; /*Mirror values of a:rray on each end*/
array[BX+2*W:tNG+OFFSET-l+i]=array[BX+2*Wl:NG+OFFSET-1-i];

return((float) sumO/(float) BX);

Function: hist_o
J:nputs:

x:Upper left horizontal coordinate of window.
y:Upper l.eft vertical coordinate of window.

Outputs:-
array: Array containing Projection Values.
:Returns maan of window.

Task: Ca.J.cul.ate Horizontal Projection Curve
Sum Values of Gray Level along Horizontal Axis
*I
float hist O(x,y,array)
int x,y,array[BY+2*0FFSET+2*WING];
{

int i,j,sum,sumO,temp;

sumO=O;
for (j=y-W:tNG;j<y+BY+WING;j++){

sum=O;
for (i=x;i<x+BX;i++){

temp=255-:imq[i][j]; /*:Reverse Gray level*/

I*

sum=sum+temp;
}
temp=sum/BX;
array[j-y+OFFSET+Wl:NG]=temp; /* Store averaged values in array of size BY */
if (j>=y && j<y+BY) sumO=sumO+temp;

for (i=O;i<=OFFSET;i++){

}

array[OFFSET-i]=array[OFFSET+i]; /*Mirror va.l.ues of array on each end*/
array[BY+2*WING+oFFSET-1+i]=array[BY+2*WING+OFFSET-l-i];

return C (float) sumo/ (float) BY);

Function: draw_hist
:Inputs:

x: Coordinate x on sareen where plot is desired
y: Coordinate y on sareen where plot is desired
array: Array containing Projection Values.
mean: Mean of array input.

Outputs: -
Task: Routine to Plot the Projection Histogram on the Screen.
Also Plots a line indioat:ing maan.
*I
void draw h:ist(x,y,array,maan)
int x,y,array[BX+2*WINGJ;
{

int i, j;
for (:i=O;i<BX+2*WING;i++){

j=(array[:i.]*160)/160;
line(B1,1, (x+i),y, (x+i), (y+j),255);

l:ine(B1,1,x,y+mean,x+BX,y+mean,l00);

85

I*
Function: clear_h.ist
l:nputs:

x: Coordinate x on screen where plot is desired
y: Coordinate y on screen where plot is desired

Outputs: -
Task: Routine to clear the Projection Histogram on the Screen.
so that the next plot does not overwrite on the previous one.
*/
void clear_hist(x,y)
int x,y;
{

I*

int i,j;
for (i=O;i<BX;i++){

j=l60;
l.i.ne(Bl,l, (x+i) ,y, (x+i), (y+j), 0);

Function: line 90
l:nputs:

x: Upper Left x coordinate of window.
x: Upper Left y coordinate of window.
pos90: Pos.i.t.i.on of detected vertical edge.

Outputs: -
Task: Routine to Plot a line on the screen indicating the
position of detected edge.
*I
void line90(x,y,pos90)
int x,y,pos90;
{

line(B1,0, (x+pos90),y, (x+pos90),y+BX-1,255);

I*
Function: line O
l:nputs:

x: Upper Left x coordinate of window.
x: Upper L<ilft y coordinate of window.
posO: Position of detected horizontal edge.

Outputs: -
Task: Routine to Plot a line on the screen indicatinq the
position of detected edge.
*/
void lineO(x,y,posO)
int x,y,posO;
{

line(B1,0,x, (y+posO), (x+BX-1),(y+pos0),255);

/*
Function: curve smooth
l:nputs:

rawx: Un.smoothed array containinq horizontal projection values.
rawy: Unsmoothed array containing vertical projection values.

Outputs: -
smoothx: Smoothed array containing horizontal projection values.
s:inoothy: Smoothed array containing vertical projection values.

86

ma.xx: Maxi.mum va..lue in x projection array.
maxy: Maximum va..lue in y projection array.
minx: Mini.mum va1ue in x projection array.
miny: Mini.mum va..lue in y projecti.on array.
pma:xx: Poai.ti.on of ma.xx in array.
pma.xy: Poaiti.on of mazy in array.
pm.in.x: Poaiti.on of mi.nx in array.
pm.iny: Poaiti.on of mi.ny in array.

Task: Smooth :both horizonta1 and vertical projection values
a..lao calcul.ate the max and min values in the array along with
their respective positions in the array.
*I
void curve_amooth(rawx,amoothx,rawy,smoothy,max.x,
minx, pma.xx, pm.inx, maxy, m.i.ny, pmaxy, pm.iny)
int rawx[BY+2*0FFSET+2*WING],amoothx[BY+2*~G],rawy[BY+2*0FFSET+2*WING],smoothy[BY+2*Wl:NG];
int *m.axx,*m.i.nx,*PnaJtx,*pm.inx,*m.axy,*m.i.ny,*Pm&Xy,*pm.iny;
{

int sumx,avqx,sumy,avgy;
int Bead,Tail,center,count;

for(center=OFFSET;center<BY+2*WING+OFFSET;oenter++){
sumx=O;
sumy=O;
avg-x=O;
avsy=O;
Bead=center-OFFSET;
Tail=c:enter+OFFSET;
for(count=O;count<OFFSET;oount++){

sumx +=rawx[Bead];
sumx +=rawx[Tail);
sumy +=rawy[Bead];
sumy +=rawy[Tail];
Bead++;
Tail--;

sumx=sumx+rawx[center];
sumy=sumy+rawy[center];
avqx=sumx/WJ:NDOW;
avsy=sumy/WINDOW;
smoothx[center-OFFSET]=avg-x;
smoothy[center-OFFSET)=avgy;
if (center==OFFSET+WING) {

}

*maxx=*m.i.nx=avgx;
*ma.xy=*m.i.ny=avgy;
*Pmaxx=*Pm&Xy=center-OFFSET;
*pm.inx=*pm.iny=center-OFFSET;

if(center >= OFFSET+W:CNG && center < BY+OFFSET+w:ING)
{

if (avg-x>=*maxxl {
*maxx=avgx;
*Ptnaxx=center-OFFSET;

if (avqx<=*minx){
*minx=avqx;
*pm.inx=center-OFFSET;

if (avgy>=*ma.xy){

}

*maxy=avgy;
*pma.xy=center-OFFSET;

if (avgy<=*miny){
*m.i.ny=avgy;
*pm.iny=center-OFFSET;

87

I*
Function: lmnY
:Inputs:

array:Smoothed array of vertioa.J. projection.
max: Maxilm:lm vlaue in array.
pma.x: Position of max.
mean: Mean of array.

Outputs: -

Task:

peak: peak
denom: Spread.
posit: position of crack
sign: positive
Returns lmn

Calculate the lmn--peak/spread=(max-mean)/spread
for the vertical projection values for positive peaks.
*/
float l.mnY(array,max,pmax,mean,peak,denom,posit,sign)
int mean,max,*P&a.k,*denom,*posit,*sign,array[BY+2*Wl:NG];
{

int i,maxi,mm.i;
float result;

maxi=BX+2*W:ING-l;
mmi.=O;
for (i=pmax;i<BX+2*WINGii++) /* Find spread to the right of position of maximum */

if (array[.i]<=mean){
ma.x1.=i.;
break;

for (.i=pmax;i>=O;i--) /* Find spread to the left of position of maxi.mum */
if (array[i]<=mean){

I*

*P&ak=ma.x-mean;
*denom=maxi-mmi;
*posit=pmax;
*sign.=1;

mmi=i;
break;

result= (float) (max-mean)/(float) (*denom);
if (*denom>30 II *denom<7) result=O.O;

return(result);

Function: lmnYY
Inputs:

array:Smoothed array of vertical. projection.
ml.n: M.in..imum value in array.
pmin: Position of min.
mean: Mean of array.

Outputa: -

Task:

peak: peak
denom: Spread.
posit: position of peak
sign: negative
Returns lmn

Calculate the lmn=peak/spread=(mean-min)/spread

88

I* :If spread<7 or spread> 30 set lmn=O */

for the vertica1 projection values for neqative peaks.

*I
float l.mnYY(array,m.in,pm.in,mean,peak,denom,posit,sign)
int mean,m.in,pm.in,*peak.,*denom,*posit,*sign,array[BY+2*W:ING];
{

I*

int i,m.ini,mni;
float resul. t;

m.ini=BX+2*WING-1;
mni=O;
for (i=pm.in;i<BX+2*WING;1++) /* Find spread to the riqht of position of minimum */

if (array[i]>=mean){
mini=i.;
break;

for (i=pm.in;i>=O;i-) /* Find spread to the left of position of minimum */
if (array[i]>=maan){

*Peak.=mean-nU.n;
*denom=mini-mni;
*posit=pm.in;
*sign=-1;

mni=i;
break;

result= (float) (mean-min)/(float} (*denom};
if (*denom>30 11 *denom.<7) result=O. O;

return(result);

/* If spread<7 or spread> 30 set lmn=O */

Function: lmnX
:Inputs:

array:Smoothed array of horizontal projection.
max: Maximum value in array.
pmax: Position of max.
mean: Mean of array.

Outputs: -

Task:

peak: Peak
denom: Spread.
Posit: Position of peak.
sign: Positive
Returns l.mn

Calculate the l.mn=peak/spread=(ma.x-mean)/spread
for the horizontal projection values for positive peaks.

*I
float lmnX(array,max,pmax,mean,peak.,denom,posit,sign)
int mean,max,*Peak,*denom,*posit,*siqn,array[BX+2*w.rNG];

int i,maxi,mmi;
float result;

maxi=BX+2*WING-1;
mm.i=O;
for (i=pmax;i<BX+2*WING;i++) /* Find spread to the right of position of maximuln */

if (array[i]<=mean){
man=i;
break;

}
for (i=pmax;i>=O;i-) /* Find spread to the left of position of maximum */

if (array[i]<=mean){
mmi=i;

89

/*

*Pea.k=max-mean;
*denom---ma.xi-mmi;
*POsit=pmax;
*sign=1;

break;

result= (float) (max-mean)/(float) (*denom);
if (*denom>30 I I *denom<7) result=O.O;
return(result);

Function: l.mnXX
Inputs:

array:Smoothed array of horizontal projection.
min: Minimum value in array.
pmin: Position of min.
mean: Mean of array.

Outputs: -

Task:

peak: Peak
denom: Spread.
posit: Position of peak.
sign: Negative
Returns lmn

Calculate the lmn--peak/spread=(mean-min)/spread
for the horizontal projection values for negative peaks.
*/
float 1mnXX(array,min,pmin,mean,peak,denom,posit,sign)

/* If spread<7 or spread> 30 set lmn=O */

int mean,min,pmin,*Peak,*denom,*posit,*sign,array[BX+2*WING];
{

I*

int i,mini,mni;
float result;

mini=BX+2*W:tNG-1;
mni=O;
for (i=pmin;i<BX+2*WING;i++) /*Find spread to the riqht of position of minimum */

if (array[i]>=mean){
mini=i;
break;

for (i=pmin;i>=O;i--) /* Find spread to the left of position of minimum */
if (array[iJ>=mean){

*Pea.k=mean-min;
*denom=mini-mni;
*posit=pmin;
*sign=-1;

mni=i;
break;

result= (float) (mean-min)/(float) (*d.enom);
if (*denom>30 I I *denom<7) result=O.O;
return(result);

/* If spread<7 or spread> 30 set lmn=O */

Function: varX
Inputs:

array:Smoothed array of horizontal projection.
mean: Mean of array.

Outputs: -
Returns variance of array

90

Task:
Calculate the variance of the horizontal projection.
*I
float varX(array,mean)
int array[BX+2*0i'FSET+2*WINGJ;
float mean;
{

int i;
float 11um, tanp;

11um=O.O;
for (i=O;i<BX;i++){

temp=(float) array[i+OFFSET+WJ:NG]-mean;
11um=11um+temp*temp;

}
return((float) (sum)/(float) (BX-1));

}

I*
Function: varY
Inputs:

array:Smoothed array of vertical projection.
mean: Mean of array.

Outputs: -
Returns variance of array

Task:
Calculate the variance of the vertical projection.
*/
float varY(array,mean)
int array[BY+2*0FFSET+2*Wl:NG];
float mean;
{

int i;
float sum, temp;

1n.nn::O.O;
for (i=O;i<:BY;i++}{

temp=(float) array[i+oFFSET+WJ:NG]-maan;
sum=sum+temp*temp;

}
return((float) (sum)/(float) (:BY-1));

I*
Function: prints
J:nputs: -

type: pointer to strinq.
Outputs: -
Task:
Print string (ALLJ:GATOR etc) on screen.
*/
void prints(type)
char *type;

text(Bl,0,70,100,HORIZONTAL,2,255,type);

/*
Function: decision
Inputs: -

lmnO:lmn for horizontal projection.
l.mn90: lmn for vertical projection.
LMNX: Minimum threshold for horizontal projection.

91

LMNY: Minimum threshol.d for vertical. projection.
i: Horizontal. index of window.
j: Vertica.1 index of window.
peakO:
peak90:
spreadO:
spread90:
signO:
sign90:

Outputs: -

Task:

Returns angle
anqle 0: no edge
angle 4: horizontal edge
angle 90: vertical edge

Decides if the window contains an edge based on the
:information a.vailal:>l.e. Returns an angl.e.
*/
:int dec:ision(l.mn0,lmn90,LMNX,LMNY,nLMNX,nLMNY,i,j,peakO,peak90,sprea.dO,spread90,siqnO,sign90)
fl.oat lmnO,l.mn90,LMNX,LMNY,nLMNX,nLMNY;
int i,j,peak0,peak90,spread0,spread90,sign0,siqn90;

I*

int angle;
fl.oat temp_lmnO,temp_lmn90;

anql.e=l.;
if (siqnO==l) temp lmnO=LMNX;
else temp 1mnO=nLMNx;
if (siqn90==1) temp_lmn90=LMNY;
el.se temp_lmn90=nLMNY;

if (lmnO>temp_lmnO && lmnO > (KLMNX*lmn90) && (peakO > PEAKO) &&
(wind_var[i] [j]==4 II wind_var[i][j]==49))angle=4*siqn0;

if (lmn90>temp l.mn90 && l.mn90 > (:KLMNY*1mn0) && (peak.90 > PEAK90 && peak90<40) &&
(wind var[I°] [j]==90 If wind var[i] [j]==49) && peak90
> 1.S"*PeakO && spread90 > 5-) anql.e=90*sign90;

return(angl.e);

Function: var2co1
Inputs: -
Outputs: -

Returns smal.lest SD of edges in a pair of cols.
Task:
Determines if the edges detected fall. :in a straight l.ine
indicating a lonqitudinal. crack. Checks overl.apping
pairs of col.a cal.cul.atinq the SD of the edges. Returns SD.
If the n=i.ber of edges in any col. > 4, SD is cal.cul.a.tad
for that col. only.
*/
fl.oat var2ool ()
{

:int sum[COL-1];
int :i.,j,k;
int sumup,count1,count2;
int var1,temp,temp1;
stat:ic int data1[ROWJ,data2[ROWJ;
fl.oat sell, SD;

SD=l.00.0;
for (j=O;j<COL-1;j++){ /*Count the number of edges in every pair of cols */

92

I*

sumup=O;
for (i=O;i<R.OW;i++){

if (abs(wind[i][j])==90) sum.up++;
if (abs(wind[i] [j+l])==90) sumup++;

sum [j J =sumup;

for (j=O;j<COL-1;j++){
countl=O;
oount2=0;
if (sum[j]>2){ /*If the n\l!llJ:>er of edg'Qs in the pair is >2 */

return(SD);

for {i=O;i<R.OW;i++){
if (abs(wind[iJ [j])==90){ /*find n1JlllbQr of edqes in each row*/

data1[aount1J=posi90[i][j];
oountl++;

}
if (a:bs(wind[i][j+l])==90){

data2[aount2]=BX+poai90[iJ[j+l];
aount2++;

if (count1>4){ /*If m::zml:>er of edqes in row is> 4 */
temp=templ=O; /* find SO for the row */
for (k=O;k<aountl;k++){

tamp=temp+datal[k]*datal[k];
tampl=templ+data.1[k];

}
var1=(temp-{tampl*temp1/oount1))/(aount1-1);
sdl=(float) sqrt((double) varl);
if (sdl<SD) SD=sdl;

if {oount2>4){
temp=tampl:O;
for (k=O;k<aount2;k++){

temp--temp+data2[k]*data2[k];
tamp1=temp1+data2[k];

}
var1={temp-{temp1*templ/oount2))/(oount2-1);
sdl={float) sqrt({double) varl);
if (sd1<SD) SD=sdl;

tamp=temp1=0;
for (k=O;k<aountl;k++){

temp=temp+datal[k]*data1[k];
temp1=tamp1+data1[k];

for (k=O;k<oount2;k++){
tamp=temp+data2[k]*data2[k];
tamp1=temp1+data2[k);

}
var1=(temp-(tamp1*tamp1/{count1+count2)))/((aount1+oount2)~1);

sdl= (float) sqrt ((double) varl); r
if (sdl<SO) SD=sdl.;

Function: var2row
Inputs: -

93

Outputs: -
Returns small.est SD of edges in a pair of rows.

Task:
Determines if the edges d.Eltected fal.l. in a straight line
indicating a transverse crack. Cheeks overlapping
pairs of rows calaul.ating the SD of the edges. Returns SD.
*/
float var2row ()
{

I*

int sum[ROW-l];
int i,j,k;
int sumup,count;
int varl,temp,templ;
static int data[COL+COL];
float sdl.,SD;

SD=l.00.0;
for (i=O;i<ROW-l.;i++){

sumup=O;
for (j=O;j<COL;j++){

if (abs(wind[i][j])==4) sumup++;
if (abs(wind[i+l][j])==4) sumup++;

sum[i]=sumup;

for (i=O;i<ROW-l;i++){
count=O;
if (sum[i]>3){

return (SD) ;

for (j=O;j<COL;j++){
if (abs(wind[i] [j])==4){

data[count]=posiO[iJ[j];
count++;

}
if (a.bs(wind[i+1J[j])==4){

data[oount]=BX+posiO(i+l][j];
count++;

}

temp=templ.=O;
for (k=O;k<count;k++){

temp=temp+data[k]*data[k];
templ.=templ+data[k];

}
varl.=(temp-(templ.*templ/count))/(count-1);
sdl.= (float) sqrt ((doubl.e) varl);
if (sdl.<SD) SD=sdl.;

Function: ol.ear_edge
Inputs: -
Outputs: -
Task:
Cl.ear false edges d.lilteoted around oil.stain in 4 directione
to prevent a misclassification.
*/
void clear_ed9e()
{

94

I*

int i,j;

for (i=O;i<ROW;i++){
for (j:O;j<COL;j++){

}

if (wind[i] [j]==2){
/*if (i>O && wind[i-1][j]l=2) wind[i-1][j]=5;
if (i<ROW-1 && wind[i+1J[j]!=2) wind[i+1][j]=5;*/
if (j>O && wind[i) [j-1]!=2) wind[i][j-1)=5;
if (j<COL-1 && wind[i][j+1J!=2) wind[i][j+1J=5;

Function: saan_trans
Inputs: -

trans index: Index of row where .second saan needa to be done
LHNX: LMN threshol.d for positive cracks.
LMNY: LMN threshol.d for negative oracles.

Outputs: -
Task:
Perfox:m a second scan using a different decision rul.e in order
to piclt up edges missed in the first run for transverse cracks.
*/
void scan trans(trans index,LMNX,n.LHNX)
int trans-ind.ex; -
fl.oat LMNX,n:LMNX;
{

int i,j;
fl.oat temp;

for (i=trans_index;i<ROW && i<trans_index+2;i++){

/*

for (j=O;j<COL;j++){
if (LMNO_sign[i][jJ==-1) temp=nLHNX;
el.se temp=LHNX;
if ((wind_var[i][j]==4 I I wind_var[i][j]==49) && LMNO[i] [j]>temp &&

wind[i][j]==l.) wind[i] [j]= 4;

Function: scan_l.onq
Inputs: -

l.ong index: Index of col Where second scan needs to be done
LMNX.7 LMN threshol.d for positive cracks.
LMNY: LMN threshol.d for neg-ative cracks.

Outputs: -
Task:
Perfox:m a second scan using a different decision rul.e in order
to pick up edges missed in the first run for l.onqitudinal. cracks.
*I
void sean_l.ong(l.onq_index,LMNY,nLMNY)
int l.ong: :i.ndex;
fl.oat LMNY,nLMNY;
{

int i,j;
fl.oat temp;

for (j=l.ong index;j<COL && j<l.ong :i.ndex+2;j++){
for-(i=O;i<ROW;i++){ -

95

I*

if (LMN90_sign[i][j]==-1) temp=nLHNY;
temp=LMNY;
if ((wind var[i][j]==90llwind var[i] [j]==49) && LMN90[i][jJ>tmnp &&

wind(IJ [j]==1 && PK90[i] [j] > 1.5*PKO[i][j] &&
SPR90[i)[j]> 5) wind[i][j]= 90;

Function: find_long
:tnputs: -
Outputs: -

ind.ex: :tndex of col. havinq ma.xinrum number of 90 edqes.
Returns number of edqes in the col..

Task:
Find index of col having maximum number of 90 edges from the edqe map.
*/
int find_l.ong(index)
int *index;
{

int sum,i,j,MAX;

Ml!.X=O;
*index=O;
for (j=O;j<COL-1;j++){

sum=O;
for (i=O;i<ROW;i++){

if ((abs(wind[i] [j]))==90) sum++;
if ((abs(wind[i][j+1]))==90) sum++;

if (sum>MAX) {
MAX=sum;
*index=j;

return (MAX) ;

/*
Function: find_l.ong_var
:tnputs: -
Outputs: -

Returns index of col with max number of 90 var windows.
Task:
Find index of col. having maxi.m.Um number of black windows(90 windows)
from the variance map.
*I
int find_long_var()
{

int sum,i,j,MAX;

HAX=O;
for (j:O;j<COL;j++){

sum=O;
for (i=O;i<ROW;i++){

if ((abs(wind_var[i][j)))=90 11 (abs(wind_var[i]{j]))==49) s=++;

if (sum>MAX) {
MAX=sum;

return (MAX) ;

96

I*
Function: find_trans
:Inputs: -
Outputs: -

Task:

index: :Index of row having :maximum number of 4 (horizontal.) edges.
Returns number of edges in the row.

Find index of row having maximum n1lmber of 4 edges (horizontal.) from the edge map.
*/
int find trans(index)
int *indGx;
{

int sum,i,j,MAX;

MAX=O;
*index=O;
for (i=O;i<R.OW-l.;i++){

aum=O;
for (j=O;j<COL;j++){

if ((abs(wind[i] [j]))==4) sum++;
if ((abs(wind[i+l.] [j]))==4) sum++;

if (sum>MAX) {
MAX= sum;
*index=i;

return(MAX);

void main()

lonq start, finish;
static int UlUllllO[BY+offset2+2*w:tNG],unam90[BX+offset2+2*w:tNG],
smO[BY+2*W:ING],sm90[BX+2*w:tNG];
int ma.x0,max90,mean;
int pmaxO,pmax90,pminO,pmin90,minO,min90;
float lmnO,lmn90,varO,var90,meanl.;
char *d.irnamel = "/ex:port/CRC/us59",
*dirname2 •/export/imaqes2/canon•,
*d.irname3 = "/export/i.maqes2/test•,
*dirname4 = •/export/images2/sh6",
*dirname5 = •/ex:port/imaqes2/aran•,
*dirname6 = "/export/imaqes3";
char *dirnmne="tt,1n;
FILE *input file,*fopen(},*shape;
char fname[2°0],name[20];
int len;
i.nt r,s;
int i, j;
float nLMNX,nLMNY,LMNX,LMNY;
int row,col.;
int anqle,window90,window0;
char *class=••;
.int class num;
:float sdo7'sd90;
int tO,t90,wO,w90,qlo~al. mean,ab l.ow,ab high,posit;
static int sa:ADOW,PA:INT,TRANS,LONG,ALL:I7:INTACT,:INTER,SPALL;
int siqn,trans index,J.ong index;
int peakO, peak9o; -
int spread0,spread90,temp;

97

float tGlllpp;
int d.ouble_count;
int varOcount;
int var90oount;
/* These variable is for calaulating the variance of var90 and varo */
double sumO=O.O, sum90=0.0, ssum.O=O.O, ssum90=0.0;
double varvarO=O.O, varvar90=0.0, sdvar, local_var;
/* Dealing objects */
int objCount;

init();
f.b c1f (B1, 110) ;
text(B1,0,45,90,BOR:tZON'l'AL,3,200,"Distress Analysis");
text(B1,0,235,220,BORIZONTAL,2,200,"on");
text(B1,0,90,300,BORI:ZONTAL,2,200,"Concrete Pavements");
printf("\nDirecto:cy 0 - 6 :");
in = get char() ;
sw:i.tch (:i.n) {
case

case

case

case

case

case

case

, 1':
d.irname=d.irna.me1;
break;

'2':
d.irnam.e =dirname2;
break;

I 3 I' :

d.irnama =clirname3;
break;

I 41 :

dirname =dirname4;
break;

, S" :

dirname =dirname5;
break;

'EV :
dirname =dirname6;
break;

, 0':
pr:i.ntf("New Directory :");
scanf ("%s" ,dirname);
getchar () ;

input file = fopen("images•, "r");
chd.ir(d.irname) ;
getchar ();

start= clock();
while (fqets{name,60,:i.nput_f:i.le)!=NULL){

getchar();
objCount = 0;
varOcount = O;
var90count = o;
len = str1en(name);
strcpy(fname,"");
strncat{fname,name, (1en-1));
shape=fopen("/home/1189/pchan/oraok/J..mn","r");
fscanf(shape,•tf tf %f %f",&LMNX,&LMNY,&nLMNX,&nLMNY);
fclose(shape);
=X;
s=Y;
i.m_read(B1,0,0,512,512,fname);
read_ :i.:m.aqe () ;
getc:har () ;
WO=w90=global mean=ab low=ab h:i.gh=O;
sumO:O.O, sum90:0.0, ssumO:O':"O, SS'UJll.90=0.0;
for (row=O;row<ROW;row++){

for (col=O;col<COL;co1++){

98

#ifdef PR.INT_VAR90

tend.if PlUNT_VAR90

rectanql.e(B2,0,r,s,BX,BY,15);
ang-J.e=l.;
meanl=hist O(r,a,unsmO);
varO=varX (UnsmO ,mean1) ;
hiat_90(r,s,unam90);
var90=varY(unsm90,meanl);
mean=(int) meanl.;
wind_var[row)[col.]=1;
VARO[row][col]=varo;
if (VARO[row] [col.] > 150.0)
{

varoaount++;
/*Printf("VARO (\d,td) = tf\n",row,col,VARO[row] [col.]);*/

}
VAR90[row][col]=var90;

if (VAR90[row][coJ.] > 200.0)
{

var90count++;
/*Printf("VAR90 (\d,\d) = \f\n•,row,col.,VAR90[row][ool]);*/

l.mnO=l.mn90=0.0;
peakO=peak90=spreadO=apread90=0;
if (va.ro > 15.0 && var90< 500.0){

wind_var[row][aol.]=4;
rectangl.e(Bl,O,r,s,BX,BY,170);

if (var90 >80.0 && var90 <500.0 && varO< 500.0){

}

if (wind var[rowJ[coJ.]==4) wind var[row][ool.]=49;
el.ea Wind var[row][col.]=90; -
rectanqJ.e(BJ.,O,r,a,BX-5,BY-5,70);

if ((varO > 15.0 && var90< 500.0)
I I (var90 >80.0 && var90 <500.0 && var0<500.0)){

curve smooth(unsmO,smO,unsm90,am90,&maxO,&m.inO,
&Pmaz0,&pmin0,&max90,&m.in90,&pmax90,&pmin90);

if ((mean-minO) > (maxO-an)) {
LMNO[row] [coJ.J=l.mnYY (amO,minO,pminO,mean, &SPRO [row] [col]);

/*Posit=pminO-WING;*/
posiO[rowJ [coJ.]=pminO-WING;
sign=-1;
/*peakO=mean-minO;*/
PKO [row] [colJ=mean-mi.nO;

/*Printf("Loeal Variance = %f\n",LMNO[row] [col]);
printf("N9g'ative peak l.mnYY SpreadO %d PeakO = %d\n",SPRO[row] [coJ.],PKO[row] [col]);*/

}
else{

LMNO[row][col]=lmnY(amO,maxO,pmaxO,mean,&SPRO[row] [col]);
/*Posit=pmaxO-WiNG;*/
posiO[row] [col]=pmaxO-WING;
sign=J.;
/*peakO=maxO-mean;*/
PKO[row][ooJ.]=maxO-maan;

/*Printf("Local. Variance = %f\n",LMNO[row][col]);*/
/*Printf("Positive peak l.mnY SpreadO = \d PeakO = %d\n",SPRO[row][col.J,PKO[row] [col]);*/

}
/*PosiO[row][coJ.J=poait;*/

LMNO_siqn[row][col.]=siqn;

if ((mean-min90) > (max90-l11Elan)) {
LMN90[row][coJ.]=l.mnXX(sm90,min90,pmin90,mean,&SPR90[row][col]);

/*Posit=pmin90-WING;*/
posi90[row] [col]=pmin90-Wl:NG;
sign= -l.;

99

/*Peak90=mean-m.in90;*/
PK90[row] [col]=mean-m:l.n90;

/*Printf("Local Variance = if\n",LMN90[row][col]);*/
/*Printf("Neqative peak 1mnXX Spread90 = \d Peak.90 = %d\n",SPR90[row] [col],PK90[row] [col]);*/

}
else{

LMN90[row][col]=l.mnX(sm90,ma.x90,pmax90,mean,&SPR90[row] [col]);
/*POsit=p111ax90-w.ING;*/
posi90[row] [ool)=pmax90-w.ING;
siqn=1;
/*Peak90=ma.x90-mean;*/
PK90[row][col]=max90-maa.n;

/*Printf("Local Variance = %f\n",LMN90[row] [col]);*/
/*Printf("Positive peak 1mnX Spread90 = \d Paak.90 = %d\n",SPR90[row][ool],PK90[row}[ool]);*/

}

s+=BX;
r=X;

/*POsi90[row] [ool]=posit;*/
objCount++;

LMN90_siqn[row][col]=siqn;

/*clear hist(O,O);
clear bist(90,0);
draw_hist(O,O,smO,mea.n);
draw hist(90,0,sm90,mean);
g'8tchar () ; *I

a.nqle=decision(LMNO[row][ool],LMN90[row] [col],
LMNX, LMNY, nI.HNX, nLMNY, mean,
maxO, ma.x90 ,minO, min90,
PKO[row] [col],PK90[row] [col],
SPRO[row][col],SPR90[row] [colj,row,col);

local mean[row] [col]=mean;
qloba.1' mean+=maa.n;
/*LMNO[row][col]=lmnO;*/
/*I.MN90[row][colJ=lmn90;*/
/*PKO[row] [colJ=peakO;*/
/*PK90[row][col]=pea..k90;*/
/*SPRO[row][col]=spreadO;*/
/*SPR90[row] [col]=spread90;*/

wind[row][col]=anqle;

r+=BX;
fl:>_clf(B2,0);

for(col=O;col<COL;col++)
for(row=O;row<ROW;row++)
{

sumo+= (double)VARO[row][col];
sum90 += (double)Vl\.R.90[row] [col];
ssumO += (double)VARO[row] [col] * VARO[row][col];
ssum90 += (double)VAR90[row][ool] * VAR90[row][col];

sumo/= (double) (ool*row);
sum90 /= (double) (col*row);
ssumO /= (double) (col*row);
ssum90 /= (double) (col*row);
varvarO = asumO - sumO*sumO;
varvar90 = ssum90 - sum90*sum90;
sdvar = sqrt(varvarO*varvarO + varvar90*Varvar90);

100

r=X;
s=Y;
global mea.n/=(ROW*COL);
for (row=O;row<ROW;row++) {

for (col=O;col<COL;aol++){
.:i.f ((local maan[row][col]+G'l'BO)< ql.obal. lllElan) w.ind[row][col.]=3;
i.f (loca1 aan[:row] [col]>(G'l'B90+gl.oblll aan)&&

(w.ind[:row][col.]==90 I I wind[row][col]== -90)) wi.nd[row] [col]= 2;
i.f (looal_lllEla.n[row][col] > (G'l'BO+global_maa.n)) wi.nd[:row] [col]=2;

edge 2clear O ;
tO=find tra.na(&trans index);
t90=find l.ong(&lonq Index);
/*PrintfC"\nLocal varo\n">;
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
pr.intf("%5.1f ",VARO[i][j]);

pri.ntf("\n");
}
printf("\nLocal var90\n");
for (i=O;.i<ROW;i.++){

for (j=O;j<COL;j++){
printf("%5.1f ",VAR90[i.][j));

}
printf (• \n •);
}

pr.intf("\nLOCAL SQRTVAR\n");
for (row=O;row<ROW;row++){

for (col=O;ool<COL;ool++){
local var=sqrt(VARO[row][col)*VARO[row][ool]+VAR90[:row] [col]*VAR90[row][ool]);

- pr.intf ("%5 .1f ",local_ var);
}
printf("\n");

}*/
if (t0>2) soa.n trans(trans i.ndex,LMNX,nLMNX);
if (t90>1) soan_long(lonc;_i'ndex,LMNY,nLMNY);
tO=fi.nd_trans(&tra.ns_index);
t90=find lon9(&lon9 .index);
r=X; - -
s=Y;
doUble count=O;
for (row=o;row<ROW;row++){

for (col=O;col<COL;co1++){
.if (w.:i.nd var[row] [col]=49) double_count++;
anqle=wind[row] [col];
switch(angle){
case 4:

case -4:

case 90:

li.neO(r,s,posi.O[row][col]);
wO++;
break;

li.neO(r,s,posiO[row] [col]);
wo++;
break;

li.ne90(r,s,posi90[row][ool));
w90++;
break;

case -90:
li.n&90(r,s,pos.:i.90[row][ool]);
w90++;
break;

101

s+=BX;
r=X;

/*wO=windowO;
w90=window90;*/
sdO=var2row O ;

case 2:

case 3:

ab_low++;
break;

ab_high++;
break;

default:
break;

r+=BX;

sd90=var2col. () ;
/*Printf("sdO='ilf\n",sdO);
printf("sd90='1lf\n",sd90);*/

/* Classification */
if (ab low> 5 II ab high> 10){

- if (t90>2 &&-sd90<SDTBR && double_count <8){
cl.ass=" LONG:I'l'UD:INAL" ;
ol.ass_num.=3;

el.se if (t0>3 && sdO<SDTBR && doubJ.e_count <8){
if(sdvar > 950){

else

class="SPALLED CRACK";
class_num=7;

class="TRANSVERSE CRACKING";
cJ.ass_num=4;

else if ((wO+w90)>5){

}
else{

if(sdvar > 950){
class="SPALLED CRACK";
cl.ass_ num=7;

eJ.se

}

cl.ass="TRANSVERSE CRACKING";
class_num=4;

/*class="ALL:IGATOR CRACKING";
class _mm=5; *I

class=" :INTACT" ;
class_num=l;

else if(w0<4 && w90<3){
class=":INTACT";
cl.ass_num=O;

else if (t0>3 && t90>2 && sdO<SDTEIR && sd90<SDTBR && double count <8){
cl.ass="INTERSECT";
cl.ass_num=6;

el.ae if (t90>2 && sd90<SDTSR && double_count <S){
cJ.ass="LONG:ITUDINAL CRACKING";

102

cl.ass_ num=3;

el.se if (t0>3 && sdO<SOTBR && d.oubl.e count <8){
if(sdvar > 950)
{

el.se
{

cl.ass="SPALLEI> CRACK";
cl.ass_ n'Wll.=7;

cl.ass="TRANSVERSE CRACJCING";
cl.ass_num=4;

el.se if ((WO+w90)>5){
/*if (find_bl.ock()==l) cl.ass="BLOCK CRAClCl:NG";

{ cl.ass="TRANSVERSE CRACKING";
cl.ass_num = 4;

}*/
if(sdvar > 950){

cl.ass="SPALLEI> CRACK";
class_n'Wll.=7;

el.se

cl.ass="TRANSVERSE CRACKING";
cl.ass_ n'Wll.=4;

el.ae{

/*cl.ass="ALLIGATOR CRACKING";
claas_ni:un=5;*/

cl.ass="INTACT";
cl.ass_n'llm=O;

printf("Imag'e mean wO w90
printf("'lla",fname);
printf (" 'ls3d", 9l.obal. _mean) ;
printf(" 'll2d",w0);
printf(" 'll2d",w90);
printf(" 'll2d",tO);
printf(" 'll2d",t90);
printf(" 'll3d",al:> l.ow);
printf(" 'll3d",ab-high);
printf(" 'll-'i\n•,cJ.asa);
switc.h(cl.asa num){
case O: -

ImACT++;
break;

case 1:
SHADOW++;
break;

case 2:
PAINT++;
break;

case 3:
LONG++;
break;

case 4:
TRANS++;
break;

case 5:
ALL:I++;
break;

to t9o

103

cl.ass\n");

case 6:

case 7:

:CNTER++;
break;

SPALL++;
break;

/*Printf("Varianoe of VJU!.O = %1f\n",varvar0);
printf("Varianoe of VJU!.90 = %1f\n•,varvar90);
printf ("Sqrt of the sum of vavarvar = 'Uf\n", sdvar); */

#ifdef PR.INT MEAN
- printf("\nMEAN O\n");

for (i=O;i<ROW;i++){
for (j=O;j<COL;j++){

printf("%3d ",1oca1_mean[i] [jJ);

}
#endif PR.INT MEAN
fifd.ef PR.INT: VAR

tempp=O.O;
temp=O;
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%5.1f ",V1RO[i][j]);
if (VJU!.O[i] [j] < 100.0){

tempp=tem.pp+V1RO[i] [j];
temp++;

}
#endif PR.INT VAR
fifdef PR.INT=VAR

printf("var0=%f\n",tempp /(tamp));
tempp=O.O;
tem.p=O;
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%5.1f ",V1R.90[i] [j]);
if (VAR.90[i] [j] < 100.0){

tempp..--tem.pp+VAR90[i] [j];
temp++;

}
#endif PRJ:NT VAR
f.ifdef PRJ:NT=VAR.

}

pr.intf ("\n •) ;

pr.intf(" var90=%f\n•,tem.pp /(temp));
printf("\n varo + var90\n");
for (.i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%5.1f ",VARO[.i][j]+VAR90(i][j]);

}
#endif PRJ:NT VAR
#.ifdef PRJ:NT:LMN

pr.intf (" \n") ;

printf(":t:t PASS \n");
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%3d •,wind[i] [j]);

printf("\n");

104

printf("LMN 0 \n"};
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%4.2f ",LMNO[i][j]);

printf("\n");

printf("LMN 90 \n");
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%4.2f ",LMN90[i][j));

}
#end.if P1UNT _ LMN

printf("\n"};

/*Printf("~--~~-~--~-~--~~-------~~\n"};

for (j=O;j<COL;j++){
tampp=O.O;
temp=O;
for (i=O;i<ROW;i++){

if (LMN90[i][j}!=O.O) temp++;
tempp=tempp+LMN90[i][j];

if (tEllllp!=O) printf("%4.2f •,tampp/tamp);
eise printf("%4.2f •,tampp);

}
printf ("\n");

printf("VAR \n");
tamp=O;
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%3d •,wind_var[i)[j]);
if (wind_var[i][jl==49) tEllllp++;

}
printf("\n");

printf(" doub1e = %d \n",tamp};*/
#ifdef P1UNT PEAK SPREAD

- Printf ("PEAK O\n");
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%3d ",PKO[i) [j]);

printf("\n");
}
printf("SPREAD O\n");
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%3d ",SPRO[i] [j]};

}

}

printf("\n");

printf("PEAK 90\n");
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%3d ",PK90[i][j]);

printf("\n");
}
printf("SPREAD 90\n");
for (i=O;i<ROW;i++){

for (j=O;j<COL;j++){
printf("%3d ",SPR90[i]{j));

printf ("\n");

105

}

ltenclit' l?lUNT PEAK SPREAD
- pJ;ints(olass);

printf ("\n");
/*Printf("Count of VARO(i] [j] > 150.0 = %d\n",varOC10unt);*/

#ifdef PRINT VAR.90
- printf("Count of VAR90[i][j] > 200.0 = %d\n\n•,var90eount);

#end.if PlUNT_ VAR.90
}
/*finish= oloo.k();
printf("Total time for exeoution = %1d seoonds\n", (finish-start));*/
printf("TRANSV'ERSE LONGITtJDINAL INTACT SHADOW INTERSECT PAINT SPALL\n");
printf("%9d %9d %9d %9d %9d %9d 'ls9d\n",TRANS,LONG,INTACT,SSADOW,IN'l'ER,PA:INT,SPALL);

106

REFERENCES

"1991 Pavement Evaluation System Rater's Manual," Texas State Department of
Highways and Public Transportation, 1991.

D.R. Curphey, D.K. Fronek, J.H. Wilson, "Pavement Management System using
Video Imaging Processing," Phase 1 Final Report, National Science Foundation
Report 17,045-762, July 1984.

C. Chien, "Detection of Cracks in Highway Pavement from Aerial Photographs,"
Thesis, University of Texas, Austin, 1982.

T. Fukuhara, K. Terada, M. Nagao, A. Kasahara, and S. Ichihashi, "Automatic
Pavement Distress Survey System," Proc. 1st Int. Conf. on Application of
Advanced Technologies in Transportation Engineering, San Diego, Feb. 1989,
pp. 33-38.

G. Caroff, P. Joubert, F. Purdhomme, and G. Soussain, "Classification of
Pavement Distresses by Image Processing {MACADAM SYSTEM)," Proc. 1st Int.
Conf. on Application of Advanced Technologies in Transportation Engineering,
Feb. 1989, pp. 46-51.

K. B. Chan, S. Soetandio, and R. L. Lytton, "Distress Identification by an
Automatic Thresholding Technique," Proc. 1st Int. Conf. on Application of
Advanced Technologies in Transportation Engineering, Feb. 1989, pp. 468-473.

D. Mende 1 sohn, "Automated Pavement Crack Detection. An Assessment of Leading
technologies," Proc. 1st Int. Conf. on Pavement Management, 1987.

R. E. Smith, M. I. Darter and S. M. Herrin, "Highway Pavement Distress
Identification Manual," Report DOT-FH-11-9175/NCHRP 1-19. FHWA, U.S.
Department of Transportation, 1979.

R. C. Gonzalez and P. Wintz. Digital Image Processing, 2nd Edition.
Addison-Wesley, Inc, 1987.

107

Series 150/151 Overview 47-Hl5001-00 Imaging Technology Inc, Technical
Publications Department, 600, West Cunvnings Park, Woburn, MA 01801.

108

