Technical Report Documentation Page

1. Report No. FHWA/TX-98/1131-9	2. Government Accessi	on No.	3. Recipient's Catalog	No.
4. Title and Subtitle URBAN ROADWAY CONGEST		94	5. Report Date August 1997	
VOLUME 1: ANNUAL REPOR	Г	ľ	6. Performing Organiza	ution Code
7. Author(s) David L. Schrank and Timothy J.	Lomax		8. Performing Organiza Research Report	
			Volume 1	ŕ
9. Performing Organization Name and Address Texas Transportation Institute			10. Work Unit No. (TR	AIS)
The Texas A&M University Syste				
			11. Contract or Grant N	1
College Station, Texas 77843-313	5		Study No. 0-113	1
12. Sponsoring Agency Name and Address			13. Type of Report and	Period Covered
Texas Department of Transportation			Interim:	
Research and Technology Transfer	rOffice		September 1982	- August 1994
P. O. Box 5080			14. Sponsoring Agency	Code
Austin, Texas 78763-5080				
15. Supplementary Notes Research performed in cooperation Department of Transportation, Fee Research Study Title: Measuring	deral Highway Adı	ninistration.	-	U.S.
16. Abstract This research report represents the mobility. This study contains the database used for this research of characteristics from 1982 to 1994. to update and verify the primary information is the Federal Highwa	e facility informati contains informatio Various federal, sta database. The p	on for 50 urban a n on vehicle trave ate, and local agen primary database a	reas throughout the el, system length, cies provided the nd original source	ne country. The and urban area information used e of most of the
Researchers combined vehicle trav values for 50 urban areas, includi the relative mobility level within a	ng the seven large	-	• •	
This report includes an analysis of the cost of congestion using travel delay and increased fuel const as estimated quantities. The impact of congestion was also estimated by the amount of additional capacity required to provide urban mobility. Congestion costs were estimated on an areawide, per driver, and per capita basis.				
		10 0:00		
17. Key Words	A	18. Distribution Stateme	This document is	s available to the
Mobility, Congestion, Economic	• •	public through N		s available to the
Transportation Planning, Travel D	belay, RCI	• •	cal Information Se	rvice
		5285 Port Royal		1 1 100
		Springfield, Virg		
19. Security Classif. (of this report) Unclassified	20. Security Classif.(of Unclassified	this page)	21. No. of Pages 92	22. Price

URBAN ROADWAY CONGESTION-1982 TO 1994 VOLUME 1: ANNUAL REPORT

by

David L. Schrank Assistant Research Scientist Texas Transportation Institute

and

Timothy J. Lomax Research Engineer Texas Transportation Institute

Research Report 1131-9, Volume 1 Research Study Number 0-1131 Research Study Title: Measuring and Monitoring Urban Mobility in Texas

> Sponsored by the Texas Department of Transportation In Cooperation with U.S. Department of Transportation Federal Highway Administration

> > August 1997

TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135

IMPLEMENTATION STATEMENT

This report provides information that will assist the Texas Department of Transportation in planning future transportation needs for urban areas in Texas. This report quantifies congestion levels and the economic impact of congestion on urban motorists in seven large cities in Texas. The report also presents data for other large U.S. metropolitan areas to assist in determining mobility trends and the relative performance of Texas's roadway networks. This report is valuable for identifying transportation trends and prioritizing future needs.

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. In addition, this report is not intended for construction, bidding, or permit purposes. David L. Schrank and Timothy J. Lomax (Texas Professional Engineer certification number 54597) prepared this research report.

TABLE OF CONTENTS

Page
LIST OF FIGURES xi
LIST OF TABLES
SUMMARY
INTRODUCTION 1 Purpose of Congestion Research 2 Congestion Research Background 2 Report Organization/Content 3 Areawide Congestion 4 Impacts of Congestion 6 Cost of Congestion 6
AREAWIDE MOBILITY
TRAVEL DELAY
COST OF CONGESTION 29 Additional Capacity 29 Cost Analysis 31
CONCLUSIONS 37 Effects of Congestion 37 Congestion Growth 38 Congestion Solutions 40
REFERENCES
APPENDIX A-SYSTEM LENGTH AND TRAVEL CHARACTERISTICS 47 Travel and System Length Statistics 49 Freeway Travel and Distance Statistics 49 Principal Arterial Street Travel and System Length Statistics 51 Travel Delay 51

TABLE OF CONTENTS, Continued

Page

APPENDIX B-ESTIMATION OF CONGESTION COST	
Estimation of Congestion Cost	
Cost Estimate Constants	57
Cost Estimate Variables	
Daily Vehicle-Kilometers of Travel	60
Fuel Costs	60
Population	60
Eligible Drivers	60
Cost Estimate Calculations	61
Congestion Cost	67
Delay Cost	67
Fuel Cost	69

LIST OF FIGURES

FIGURE	Pag	;e
1	Regional Designations Used in Congestion Summaries	5
2	Texas Urban Area Congestion Levels, 1982-1994	3
3	Roadway Congestion Index and Annual Delay per Capita	8
4	Population and Congestion Level from 1982 to 1994	9
5	Population Ranges and Congestion Level	9
6	Population Density and Congestion Level from 1982 to 1994	1

-

LIST OF TABLES

TABLE	Page
S-1	1994 Roadway Congestion Index Value xvi
S-2	Fastest Congestion Growth Areas xvii
S-3	Slowest Congestion Growth Areas
S-4	Daily and Annual Hours of Delay for 1994 xix
S-5	Areawide Speeds and Congestion Levels for 1994 xix
S-6	Annual Excess Fuel Consumed Due to Traffic Congestion in 1994 xix
S-7	Illustration of Annual Capacity Increase Required to Prevent Congestion Growth
S-8	Component and Total Congestion Costs by Urban Area for 1994
S-9	1994 Congestion Cost per Eligible Driver
S-10	1994 Congestion Cost per Capita xxi
1	1994 Roadway Congestion Index Value
2	Roadway Congestion Index Values, 1982 to 1994
3	Daily and Annual Person-Hours of Delay for 1994
4	Annual Person-Hours of Delay per Eligible Driver, 1982 to 1994 19
5	Areawide Speeds and Congestion Levels for 1994
6	Areawide Speed Ratio 1982 to 1994 23
7	Areawide Speeds and Delay per Capita for 1994

LIST OF TABLES, Continued

TABLE	Page
8	Annual Excess Fuel Consumed Due to Traffic Congestion in 1994 26
9	Annual Wasted Fuel Due to Congestion
10	Illustration of Annual Capacity Increase Required to Prevent Congestion Growth
11	Total Congestion Costs by Urban Area for 1994
12	Estimated Unit Costs of Congestion in 1994 34
13	1994 Rankings of Urban Area by Estimated Impact of Congestion
14	Congestion Index and Cost Values, 1993 and 1994
A-1	1994 Freeway System Length and Travel Volume
A-2	1994 Principal Arterial Street System Length and Travel Volume
A-3	Freeway and Expressway Recurring and Incident Vehicle-Hours of Daily Delay for 1994
A-4	Principal Arterial Street Recurring and Incident Vehicle-Hours of Daily Delay for 1994
B-1	Congested Daily Vehicle-Kilometers of Travel by Average Annual Daily Traffic per Lane Volumes
B-2	1994 Congestion Cost Estimate Variables 59
B-3	1994 Congested Daily Vehicle-Kilometers of Travel
B-4	Recurring and Incident Delay Relationships for 1994
B-5	Component and Total Congestion Costs by Urban Area for 1994

SUMMARY

This report represents the ninth year of a planned ten-year study to measure and monitor urban mobility in 50 urbanized areas throughout the United States. This research study estimates the level of congestion in the seven largest Texas urban areas and 43 other areas representing a cross-section of urban areas throughout the country. Quantitative estimates of mobility levels allow comparisons of transportation systems in the various urbanized areas and assist the transportation community in analyzing urban mobility.

The level of congestion in an urban area was estimated using procedures developed in previous research (1-4). The Roadway Congestion Index (RCI) combines the daily vehicle-kilometers of travel (VKT) per lane-kilometer for freeways and principal arterial street systems in a ratio comparing the existing value to values identified with congested conditions. Equation S-1 illustrates how the areawide and congested level travel per lane values are combined into the RCI values for each urban area.

$$\begin{array}{l} Roadway\\ Congestion\\ Index \end{array} = \frac{Freeway}{VKT/Ln.-Km.} \times \frac{Freeway}{VKT} + \frac{Prin \ Art \ Str}{VKT/Ln.-Km.} \times \frac{Prin \ Art \ Str}{VKT} \quad Eq. \ S-1 \\ \hline \end{array}$$

An RCI value of 1.0 or greater indicates that congested conditions exist areawide. It should be noted that urban areas with areawide values of less than 1.0 may have sections of roadway that experience periods of heavy congestion, but the average mobility level within the urban area could be defined as uncongested. The RCI analyses presented in this report are intended to evaluate entire urban areas and not specific locations. The nature of the RCI equation (Eq. S-1) is to underestimate point or specific facility congestion if the overall system has "good" operational characteristics.

Areawide Mobility

Table S-1 combines the freeway and principal arterial street system daily VKT and daily VKT per lane-kilometer into the 1994 estimated Roadway Congestion Index (RCI). The 10 most congested urban areas in the study are displayed. The RCI values range from 1.52 (Los Angeles) to 1.18 (Atlanta). All of these urban areas have surpassed the RCI value at which undesirable levels of congestion occur (1.0).

Urban Area	Freeway/E Daily VKT ¹ (000)	Expressway Daily VKT ² Ln-Km	Principal Arterial Street Daily VKT ¹ Daily VKT ² (000) Ln-Km		Roadway Congestion Index ³	Rank
Los Angeles, CA	181,930	20,430	134,270	6,650	1.52	1
Washington, DC	49,310	18,230	29,790	7,770	1.43	2
San Fran-Oak, CA	68,960	17,480	23,670	6,230	1.33	3
Miami, FL	17,030	15,900	27,610	7,310	1.32	4
Chicago, IL	67,820	16,300	59,570	6,880	1.28	5
Seattle-Everett, WA	34,290	16,380	15,900	5,930	1.25	6
Detroit, MI	47,660	16,130	43,500	6,110	1.24	7
San Diego, CA	44,800	15,900	15,780	5,520	1.21	8
San Bernardino-Riv, CA	24,960	16,060	17,950	5,250	1.20	9
Atlanta, GA	53,130	15,350	20,530	6,010	1.18	10

Table S-1. 1994 Roadway Congestion Index Value

Notes: ^t Daily vehicle-kilometers of travel.

² Daily vehicle-kilometers of travel per lane-kilometer.

³ See Equation S-1.

See Table 1 for complete listing of urban areas. Source: TTI Analysis

Table S-2 displays the 10 urban areas that have experienced the greatest growth in congestion between 1988 and 1994. The RCI values reflect the level of congestion occurring in the urban areas. Salt Lake City experienced a 31 percent increase in congestion during the seven-year period. The congestion increase rate in the top seven cities in this group approached or exceeded two percent per year.

	Percent Change Rank 1988-1994 1988-1994		Year						
Urban Area			1982	1988	1992	1993	1994		
Salt Lake City, UT	31	50	0.63	0.72	0.90	0.92	0.94		
Columbus, OH	20	49	0.68	0.79	0.93	0.93	0.95		
Cincinnati, OH	19	48	0.86	0.88	1.01	1.03	1.05		
Charlotte, NC	17	47	0.71	0.80	0.89	0.92	0.94		
Detroit, MI	16	46	1.06	1.07	1.19	1.23	1.24		
Minn-St. Paul, MN	16	45	0.76	0.90	0.99	1.02	1.04		
Baltimore, MD	15	44	0.84	0.92	1.04	1.04	1.06		
Miami, FL	12	43	1.05	1.18	1.30	1.32	1.32		
Fort Worth, TX	11	42	0.76	0.87	0.94	0.95	0.97		
Kansas City, MO	11	41	0.62	0.72	0.77	0.78	0.80		

Table S-2. Fastest Congestion Growth Areas

See Table 2 for complete listing of urban areas.

Source: TTI Analysis

Table S-3 shows the nine urban areas with the smallest growth in congestion between 1988 and 1994. Of the top 10, only Austin and San Bernardino-Riverside experienced a small increase in congestion levels. Congestion decreases in the other eight urban areas were between zero and one percent per year.

	Percent Change	Rank	Year					
Urban Area	1988-1994	1988-1994	1982	1988	1992	1993	1994	
Boston, MA	-4	1	0.90	1.12	1.07	1.07	1.08	
Houston, TX	-3	2	1.17	1.15	1.12	1.13	1.12	
Philadelphia, PA	-2	3	1.00	1.07	1.05	1.04	1.05	
New Orleans, LA	-2	4	0.98	1.13	1.10	1.09	1.11	
Norfolk, VA	-1	5	0.79	0.94	0.92	0.92	0.93	
Los Angeles, CA	0	6	1.22	1.52	1.54	1.54	1.52	
San Fran-Oak, CA	0	6	1.01	1.33	1.33	1.33	1.33	
St. Louis, MO	0	6	0.83	0.98	0.95	0.96	0.98	
Austin, TX	1	9	0.84	0.96	0.95	0.95	0.97	
San Bernardino-Riv, CA	2	10	1.11	1.18	1.22	1.12	1.20	

Table S-3. Slowest Congestion Growth Areas

See Table 2 for complete listing of urban areas

Source: TTI Analysis

Table S-4 shows the 10 urban areas with the highest amount of daily delay. Los Angeles topped this list with approximately 2.4 million person-hours of delay on a daily basis. New York was the only other urban area with over a million person-hours of daily delay. While Los Angeles tops the list for greatest amount of total delay, it ranks fourth amongst all of the study cities with 63 person-hours of delay annually per eligible driver.

Another way of examining the effect of congestion on travel speeds is the areawide speed ratio (ASR). The ASR is a ratio of the network average speeds to the average freeflow speeds on the freeway and principal arterial street networks. The lower the ASR value, the slower the speeds estimated for the areawide roadway system during peak periods. Table S-5 shows the urban areas with lowest ASR values. San Francisco-Oakland has the lowest ASR of 65. This indicates that a driver in San Francisco-Oakland is experiencing peak period driving speeds that are 65 percent of free-flow speeds. All of these 11 areas have ASR values under 75.

Table S-6 lists the top 11 urban areas based on the amount of fuel wasted annually due to congested travel. Los Angeles tops the list with almost 2.5 billion liters of wasted fuel annually. New York is second with about 2.3 billion liters. Dallas and Seattle-Everett are tied at tenth in this group with about 410 million liters of fuel wasted annually. These 11 areas consume 10.4 billion liters annually due to congestion in their urban areas. San Bernardino-Riverside led this group with about 316 liters of fuel wasted annually per eligible driver.

Table S-7 combines existing freeway and principal arterial street distances with 1990 to 1994 recent annual traffic volume growth rates to produce the number of additional lane-kilometers for both freeway and principal arterial street that would be necessary to avoid increases in areawide congestion. This value illustrates the amount of roadway that would have to be added *every year* to maintain a constant congestion level. The average amount of roadway that was added annually during this time period was also calculated. Table S-7 shows the annual deficiency in construction of lane-kilometers of freeway and principal arterial streets. Detroit leads this list of cities with a deficiency of 238 lane-kilometers annually between 1990 and 1994 (105 lane-kilometers of freeway and 133 lane-kilometers of principal arterial streets).

	Daily Person-Hours of Delay (000)				Person-Annual		Person-Hours of	
Urban Area	Recurring	Incident	Total	Rank ¹	Hours of Delay per Capita	Rank ¹	Annual Delay per Eligible Driver	Rank
Los Angeles, CA	1,089	1,275	2,364	1	49	5	63	4
New York, NY	764	1,399	2,162	2	32	14	40	15
San Fran-Oak, CA	367	462	828	3	54	2	65	3
Chicago, IL	383	443	826	4	27	21	35	20
Washington, DC	293	522	815	5	59	1	71	2
Detroit, MI	257	419	677	6	42	9	57	7
Houston, TX	232	313	546	7	46	6	61	5
Boston, MA	122	332	454	8	38	12	46	12
Atlanta, GA	202	222	424	9	44	7	56	8
Seattle-Everett, WA	166	221	387	10	51	4	59	6

Table S-4. Daily and Annual Hours of Delay for 1994

Notes: ¹ Rank value of 1 associated with most congested conditions.

See Table 3 for complete listing of urban areas.

Source: TTI Analysis.

Table S-5. A	reawide Speeds	and Congestion	Levels for 1994
--------------	----------------	----------------	-----------------

	Roadway		Areawide		Peak Period Speeds (kph)		
Urban Area	Congestion Index	Rank	Speed Ratio	Rank	Freeway	Prin. Arterial	
San Fran-Oak, CA	1.33	3	65	1	60	44	
Los Angeles, CA	1.52	1	69	2	61	47	
Washington, DC	1.43	2	69	2	65	42	
Houston, TX	1.12	13	70	4	65	48	
Seattle-Everett, WA	1.25	6	70	4	65	47	
San Bernardino-Riv, CA	1.20	9	72	6	65	47	
New York, NY	1.15	11	73	7	71	41	
San Jose, CA	1.06	21	74	8	70	47	
Austin, TX	0.97	32	75	9	70	48	
Chicago, IL	1.28	5	75	9	69	45	

See Table 5 for complete listing of urban areas.

Source: TTI Analysis.

Table S-6. Annual Excess Fuel Consumed Due to Traffic Congestion in 1994

	Annual	Liters of Fu	Annual Excess Fuel Consumed		Annual Excess Fuel Consumed			
Urban Area	Recurring Incident Total Rank ¹		per Capita (liters)	Rank ¹	per Eligible Driver (liters)	Rank ¹		
Los Angeles, CA	1,138	1,331	2,469	1	206	5	264	4
New York, NY	802	1,469	2,271	2	134	16	167	15
San Fran-Oak, CA	391	493	884	3	228	3	279	3
Chicago, IL	398	460	858	4	111	21	144	21
Washington, DC	307	546	853	5	248	1	296	2
Detroit, MI	265	432	697	6	174	9	236	8
Houston, TX	250	337	587	7	199	6	261	5
Boston, MA	129	351	480	8	161	12	193	13
Atlanta, GA	213	234	447	9	186	8	235	9
Dallas, TX	155	256	411	10	187	7	239	7
Seattle-Everett, WA	176	235	411	10	215	4	252	6

Notes: ¹ Rank value of 1 associated with greatest fuel consumption.

See Table 8 for complete listing of urban areas.

Source: TTI Analysis

	Existing (1994) Lane-km		Average Annual	Annual Freeway Lane-km		Annual P Lane	rin. Art. -km	Lane-km Deficiency		
Urban Area	Fwy	Prin. Art.	VKT Growth (%) ¹	Needed	Added	Needed	Added	Fwy	Prin. Art.	
Detroit, MI	2,954	7,124	4.83	143	. 38	344	211	105	133	
Orlando, FL	1,047	1,932	6.78	71	24	131	52	47	79	
New York, NY	10,151	12,478	1.59	162	163	199	76	-1	123	
Kansas City, MO	2,520	1,819	5.22	132	83	95	28	49	67	
Atlanta, GA	3,462	3,413	7.25	251	177	247	221	74	26	
Washington, DC	2,705	3,832	3.27	89	62	125	52	27	73	
Nashville, TN	1,079	1,570	6.97	75	72	109	14	3	95	
Cincinnati, OH	1,586	1,344	4.44	70	32	60	6	38	54	
San Antonio, TX	1,594	1,827	4.93	79	66	90	18	13	72	
Minn-St. Paul, MN	2,496	1,996	4.42	110	28	88	97	82	-9	

Table S-7. Illustration of Annual Capacity Increase Required to Prevent Congestion Growth

Note: ¹ Average Annual Growth Rate of Freeway and Principal Arterial Streets Daily VKT between 1990-1994.

See Table 10 for complete listing of urban areas.

Source: TTI Analysis

Table S-8 shows the urban areas with the highest annual congestion costs. Delay and fuel costs comprise the total congestion costs. These 10 urban areas have an annual combined congestion cost of over \$34 billion. Los Angeles and New York had the highest total congestion costs with values of \$8.6 billion and \$7.9 billion, respectively. The final urban area in the table, Seattle, had a total congestion cost of \$1.4 billion annually.

	Annual C			
Urban Area	Delay	Fuel	Total	Rank
Los Angeles, CA	7,790	830	8,620	1
New York, NY	7,140	760	7,900	2
San Fran-Oak, CA	2,760	300	3,060	3
Chicago, IL	2,720	280	3,000	4
Washington, DC	2,690	270	2,960	5
Detroit, MI	2,210	210	2,420	6
Houston, TX	1,830	170	2,000	7
Boston, MA	1,500	150	1,650	8
Atlanta, GA	1,400	130	1,530	9
Seattle-Everett, WA	1,280	140	1,420	10

Table S-8. Component and Total Congestion Costs by Urban Area for 1994

See Table 11 for complete listing of urban areas.

Source: TTI Analysis and Local Transportation Agency Reference

Congestion costs can be used in relation to eligible drivers to show the impact on each potential driver in the urban area. Table S-9 lists the top 10 congestion costs per eligible driver for 1994. San Bernardino-Riverside ranks first with a cost of \$1,100 per driver. Dallas and Houston had costs of \$810 and \$890 per driver, respectively, or approximately \$3.5 per driver per workday.

	Total Congestion Cost						
Urban Area	Per Eligible Driver (dollars)	Rank					
San Bernardino-Riv, CA	1,100	1					
Washington, DC	1,030	2					
San Fran-Oak, CA	960	3					
Los Angeles, CA	920	4					
Houston, TX	890	5					
Seattle-Everett, WA	870	6					
Detroit, MI	820	7					
Dallas, TX	810	8					
Atlanta, GA	800	9					
Miami, FL	760	10					

Table S-9. 1	1994	Congestion	Cost per	Eligible	Driver
--------------	------	------------	----------	----------	--------

See Table 12 for complete listing of urban areas.

Source: TTI Analysis

Expressing congestion costs on a per capita basis illustrates the congestion "tax" paid by residents (Table S-10). The highest 1994 cost per capita occurred in Washington, DC with a cost per capita of \$860. Detroit and Miami had the smallest cost per capita (\$600) of the top 10 urban areas with a cost of just over \$2 per capita for each workday.

Table S-10.	1994	Congestion	Cost	per	Capita
-------------	------	------------	------	-----	--------

	Total Congestion Cost						
Urban Area	Per Capita (dollars)	Rank					
Washington, DC	860	1					
San Bernardino-Riv, CA	790	2					
San Fran-Oak, CA	790	3					
Seattle-Everette, WA	740	4					
Los Angeles, CA	720	5					
Houston, TX	680	6					
Dallas, TX	640	7					
Atlanta, GA	640	8					
Detroit, MI	600	8					
Miami, FL	600	10					

See Table 12 for complete listing of urban areas.

Source: TTI Analysis

INTRODUCTION

Congestion within the inner city has long been recognized as a severe problem. Congested streets and freeways have forced residents and businesses to relocate in the surrounding suburbs. Relocating to the suburbs, however, proved to be only a temporary solution to metropolitan area congestion problems. Congestion has expanded into the suburbs, with street systems designed for service to residential areas overburdened with traffic headed to large shopping malls and business parks. Urban transportation systems have been required to serve more travel needs between suburbs and fewer trips to or from downtown business districts.

A recent study (5) showed this move to the suburbs has been occurring with the length of work trips increasing in urban areas of all sizes. Between 1983 and 1990, work trip length in urban areas under 1 million increased by 20 percent to 13 kilometers, and by 13 percent to 17 kilometers in urban areas with populations over 1 million. The percentage of the population with a work trip length of greater than 16 kilometers increased from 19 percent of the population in 1983 to 23 percent in 1990 for urban areas under 1 million in population. This increase was also true in urban areas with over 1 million in population, with an increase from 31 percent of the population to 36 percent in 1990.

This same study (5) shows that commute times did not increase significantly as did the length of the commute trip. In urban areas with populations of greater than 1 million, the commute times remained virtually unchanged. Overall, the commute times increased by 6 percent between 1983 and 1990. Much of this increase occurred in urban areas of under 1 million population and areas classified as not urban with increases in commute times of about 4 percent and 6 percent, respectively.

The decline in urban mobility resulting from congestion has become a major concern to not only the transportation community, but also to the motoring public and business community. The understanding that comes from measuring congestion assists transportation professionals, policy makers, and the general public in communicating problems, developing necessary transportation system improvements and formulating new policies and programs.

Purpose of Congestion Research

Mobility improvement in most metropolitan areas has meant choosing from a limited set of alternatives including controlling area development, spending large sums of money for personal vehicle and transit facility improvements, or accepting decline in the quality of transportation in the cities and suburbs. Transportation professionals, policy makers, the media, and the general public typically view these options as undesirable. In recent years, cities have encouraged the use of various aspects of travel demand management (TDM). Some of these techniques reduce vehicle travel, thus reducing congestion, while others only modify demand by shifting the time of travel.

Whether cities use more traditional techniques of congestion management or the more recent techniques such as TDM, measuring congestion is still a vital step in understanding the problems of congestion and aiding in the development of effective solutions to the urban mobility problem.

Previous research efforts of this series developed a quantitative procedure to compare traffic volumes and roadway systems. The procedure estimates the mobility levels within an urban area and permits the comparison of roadway networks from year to year and area to area. It is important to note that this research is areawide and does not show direct effects from particular corridors or projects within an urban area. Previous research has determined that approximately 95 percent of trips are contained in private auto and truck trips in an urban area. Thus, this report shows the effects of the vast majority of travel within the urban area. This research does not, however, show the effects of operational improvements, transit, or ridesharing.

Congestion Research Background

This research study uses existing data from federal, state, and local agencies to develop planning estimates of the level of congestion within an urban area. The analyses presented in this report

are the results of previous research (1-4) conducted at the Texas Transportation Institute. The methodology developed by the previous research provides a procedure that yields a quantitative estimate of urbanized area mobility levels, utilizing generally available data, while minimizing the need for extensive data collection.

The methodology primarily uses the Federal Highway Administration's Highway Performance Monitoring System (HPMS) database with supporting information from various state and local agencies (<u>6</u>). The HPMS database is used as a base because of the relative consistency and comprehensive nature. State departments of transportation collect, review, and report the data. Since each state classifies roadways in a slightly different manner, TTI reviews and adjusts the data, and then state and local agencies familiar with each urban area review the data.

This process was of particular importance with the 1992 HPMS data because a U.S. Census realignment affected many of the urban areas. This realignment may have significantly changed the size of the urban area which, in turn, would also cause a change in system length and vehicle travel with resulting changes in the areawide congestion levels. To avoid a stair-step appearance in the data, some historical data may have been changed also to make the realignment a smoother transition that more closely resembles the actual experience for each year. Thus, *some figures which have been reported in past reports may have changed in this report.*

Currently, the database developed for this research contains vehicle travel, population, urban area size, and system length from 1982 to 1994. Vehicle travel and vehicle travel per lane-kilometer are used as the basis of measuring urban congestion levels and comparing areawide roadway systems.

Report Organization/Content

This report is the ninth of a series (3,4) of reports and is the fourth in the series to utilize the metric system in the analyses. Tables 1 through 14 and the tables in the Appendix of Volume 1 are reprinted in Imperial units in Appendix A of Volume 2. It is important to note that the

calculations performed in this report may produce slightly different results between the two systems due to conversions. This research report focuses on 1994 congestion levels and trends displayed by the data from 1982 to 1994. Volume 2 of this report contains information on the methodology and the equations utilized to produce the tables, along with detailed yearly summaries of the data.

This report summarizes and discusses urban mobility levels in 50 urban areas throughout the United States. Seven of the areas studied represent the largest urban areas in Texas; the remaining 43 areas are located in 27 states (Figure 1). These 50 areas include nearly all of the urban areas in the United States with populations of 800,000 or more that have a significant amount of congestion.

There are three major topics addressed in this report: areawide congestion, the impacts of congestion, and the cost of congestion. The following are brief descriptions of the information included within each of these topics.

Areawide Congestion

Understanding the reasons for the type and scope of the urban congestion problems is important to transportation planners and policy makers. Quantitative estimates of congestion levels on major roadways allow comparisons of transportation systems and provide a tool to analyze the differences between different transportation systems and urban areas. This section discusses the trends in urban development, travel and system length statistics, and the 1994 Roadway Congestion Index (RCI) values for 50 urban areas included within the study.

Figure 1. Regional Designations Used in Congestion Summaries

Impacts of Congestion

This section addresses travel delay, the most apparent impact of congestion to the motoring public. Delay may be categorized into two general components—recurring and incident. The impacts of travel delay and the relationship with an urban area's roadway congestion index are analyzed. The amount of excess fuel consumed by vehicles moving slowly in traffic congestion is also estimated.

Cost of Congestion

The economic impact of congestion was estimated for the 50 urban areas studied. Congestion costs have two components—travel delay and wasted fuel. Estimating the costs associated with congestion provides another tool for comparing urban mobility from one area to another. More importantly, congestion cost is another method of tracking changes in congestion levels and their impact on an urbanized area over an extended period of time. Another quantifiable impact of congestion is the additional capacity required to eliminate congestion conditions with only roadway improvements.

AREAWIDE MOBILITY

A 1989 report (7) identified several trends shaping traffic congestion. The interrelated forces impacting the nature and severity of congestion identified in that report include: (1) suburban development, (2) the economy, (3) the labor force, (4) automobile usage, percent of truck traffic, and the highway infrastructure. The following is an example of how these forces interact:

"Trends in suburban and economic development have supported and generated increased automobile usage and truck traffic. This has resulted in increasing traffic congestion in many metropolitan areas throughout the country" (7).

Trends in Urban Development

Most metropolitan areas have experienced dynamic suburban growth since the 1960s. The prevailing desire to live away from the inner city and yet to be in close enough proximity to enjoy urban amenities encouraged suburban development. This evolutionary process begins with families and then expands to commercial services and jobs. The process shapes traffic congestion in most metropolitan areas by altering the commuting patterns.

The demands placed on the existing highway infrastructure in general and by the migration of the population and employment opportunities have not been met by new facility construction. Demands for suburban traffic movement, increasing vehicle-kilometers of travel, and more freeway access points have greatly altered the function of the freeway/expressway system in most metropolitan areas. Increases in delay are the result of the roadway system's capacity not increasing to meet new demands.

The decline in new facility construction during the past 20 years may be attributed to reduced funding, increased construction costs, and public resistance to building and widening transportation facilities. These factors have promoted lower levels of mobility and greater dispersion of the metropolitan area's population. In recent years, an increasingly negative

perception of the mobility level has renewed interest in the condition of transportation systems. This perception has also increased the desire of the transportation community, general public, policy makers, and numerous others to understand the causes, effects, and solutions to urban congestion.

Roadway Congestion Index Values, 1994

Urban roadway congestion levels are estimated using a formula that measures the density of traffic. Average travel volume per lane on freeways and principal arterial streets are estimated using areawide estimates of vehicle-kilometers of travel (VKT) and lane-kilometers of roadway (Ln-Km). The resulting ratios are combined into one value using the amount of travel on each portion of the system. This variable weighting factor allows comparisons between areas such as Phoenix, where principal arterial streets carry twice the amount of travel of freeways, and cities such as Portland, where the ratio is reversed.

The traffic density ratio is divided by a similar ratio that represents congestion for a system with the same mix of freeway and street volume. While it may appear that the travel volume factors on the top and bottom of the equation cancel each other, a sample calculation should satisfy the reader that this is not the case.

Equation 1 illustrates the factors used in the estimate and their combination. The resulting ratio indicates an undesirable level of *areawide* congestion if a value greater than or equal to 1.0 is obtained.

Roadway Congestion		Freewa VKT/Ln		x Freeway VKT	+	Prin Art VKT/Ln		x Prin Art Str VKT	T = 1
Index (RCI)	-	13,000	x	Freeway VKT	+	5,000	x	Prin Art Str VKT	Eq. 1

The congestion index is a macroscopic measure which does not account for local bottlenecks or variations in travel patterns that affect time of travel or origin-destination combinations. It also does not indicate improvements such as ramp metering or improvement of treatments designed to give a travel speed advantage to transit and carpool riders.

1994 Roadway Congestion Index Estimates

Table 1 lists the roadway congestion index values for 1994. Of the 50 urban areas studied, 28 have 1994 RCI values of or exceeding 1.0. RCI values for the 10 most congested urban areas range from 1.52 (Los Angeles) to 1.18 (Atlanta). Sixteen urban areas have estimated RCI values ranging between 0.90 and 0.99, indicating the potential approach of undesirable congestion levels. These areas may not currently experience undesirable levels of congestion; however, traffic growth rates indicate that congestion levels could become undesirable within the next few years in many of these cities.

The Western region has the highest average RCI value (1.21), and the Northeastern (1.08), Midwestern (1.01), and Southern (1.02) regional averages also exceeded 1.0. The Southwestern region has an average RCI value below 1.0.

Four areas in California ranked in the top 10, including two from the Los Angeles Metropolitan area (also San Bernardino-Riverside). None of the urban areas studied in Texas were included in the 10 most congested areas. Houston (13th) and Dallas (tied at 16th) were the only urban areas studied in Texas that were in the 20 most congested urban areas. Austin and Fort Worth had the next highest rank of the Texas urban areas (tied at 32nd). Florida was the only other state with more than one area in the twenty most congested systems (Miami and Tampa).

	Freeway/E	Expressway	Principal A	rterial Street	Roadway/ ³	
Urban Area	Daily VKT ¹ (000)	Daily VKT/² Ln-Km	Daily VKT ¹ (000)	Daily VKT/ ² Ln-Km	Congestion Index	Rank
Los Angeles, CA	181,930	20,430	134,270	6,650	1.52	1
Washington, DC	49,310	18,230	29,790	7,770	1.43	
San Fran-Oak, CA	68,960	17,480	23,670	6,230	1.33	2 3 4
Miami, FL	17,030	15,900	27,610	7,310	1.32	4
Chicago, IL	67,820	16,300	59,570	6,880	1.28	5 6
Seattle-Everett, WA	34,290	16,380	15,900	5,930	1.25	6
Detroit, MI	47,660	16,130	43,500	6,110	1.24	7
San Diego, CA	44,800	15,900	15,780	5,520	1.21	8
San Bernardino-Riv, CA	24,960	16,060	17,950	5,250	1.20	9
Atlanta, GA	53,130 141,800	15,350 13,970	20,530 89,680	6,010 7,190	1.18 1.15	10
New York, NY	9,020	14,000	3,120	7,610	1.13	11 12
Honolulu, HI Houston, TX	53,070	14,650	18,900	5,220	1.13	12
New Orleans, LA	8,870	13,280	8,090	6,790	1.12	13
Portland, OR	13,910	13,820	7,570	6,710	1.11	14
Dallas, TX	41,380	14,120	16,950	5,480	1.09	16
Phoenix, AZ	16,740	13,870	29,980	5,560	1.09	16
Boston, MA	35,020	14,310	22,940	4,900	1.08	18
Tampa, FL	7,250	12,860	8,080	6,280	1.07	19
Denver, CO	21,690	13,480	18,110	5,950	1.07	19
Baltimore, MD	30,270	13,570	16,180	5,830	1.06	21
Sacramento, CA	17,110	13,040	12,800	6,260	1.06	21
San Jose, CA	27,170	13,720	11,710	5,270	1.06	21
Philadelphia, PA	33,680	12,090	35,420	6,670	1.05	24
Cincinnati, OH	21,690	13,680	7,120	5,300	1.05	24
Minn-St. Paul, MN	33,330	13,350	11,500	5,760	1.04	26
Cleveland, OH	24,810 12,560	12,840 12,890	10,100 9,820	5,390 5,170	1.00 1.00	27 27
Milwaukee, WI Ft. Lauderdale, FL	12,360	12,890	10,380	5,120	0.99	27 29
St. Louis, MO	33,170	11,870	20,490	6,360	0.98	30
Albuquerque, NM	4,700	11,680	7,680	5,610	0.98	30
Jacksonville, FL	10,500	12,540	10,550	4,850	0.97	32
Austin, TX	10,590	12,180	4,700	5,670	0.97	32
Fort Worth, TX	22,280	12,300	9,050	5,430	0.97	32
Nashville, TN	12,480	11,570	9,500	6,050	0.96	35
Columbus, OH	16,380	12,110	5,800	5,540	0.95	36
Louisville, KY	12,240	11,780	5,880	5,790	0.95	36
Charlotte, NC	6,170	11,610	5,300	5,480	0.94	38
Memphis, TN	8,690	11,490	9,290	5,390	0.94	38
Salt Lake City, UT	10,350	11,800	4,590	5,760	0.94	38
Hartford, CT Norfolk VA	11,370 9,780	11,490	6,150 8,170	5,700 6,590	0.93 0.93	41
Norfolk, VA Indianapolis, IN	9,780 15,300	10,470 11,590	8,170	6,390 5,250	0.93	41 43
San Antonio, TX	13,560	11,640	9,760	5,340	0.92	43
Orlando, FL	10,830	10,350	10,140	5,250	0.86	45
Oklahoma City, OK	12,480	10,330	7,490	5,310	0.85	45
Pittsburgh, PA	15,170	8,050	18,930	6,270	0.83	47
Kansas City, MO	25,160	9,990	9,050	4,970	0.80	48
El Paso, TX	6,150	10,190	5,470	3,890	0.78	49
Corpus Christi, TX	3,470	9,370	2,750	4,500	0.76	50
Northeastern Avg	45,230	13,100	31,300	6,330	1.08	
Midwestern Avg	26,880	12,750	16,560	5,650	1.08	1
Southern Avg	14,520	12,570	11,600	5,920	1.01	
Southwestern Avg	19,000	12,300	11,630	5,310	0.97	
Western Avg	46,910	15,650	26,970	6,160	1.21	
Texas Avg	22,210	12,060	9,660	5,080	0.94	
Total Avg	28,600	13,180	18,320	5,820	1.05	
Maximum Value	181,930	20,430	134,270	7,770	1.52	
Minimum Value	3,470	8,050	2,750	3,890	0.76	

Table 1.	1994 Roadway	Congestion	Index Value	e
				-

Notes:

¹ Daily vehicle-kilometers of travel.
² Daily vehicle-kilometers of travel per lane-kilometer.
³ See Equation 1.

Source: TTI Analysis.

The limitation of any roadway congestion estimate based on traffic volumes, however, is that only part of the land use transportation system is addressed. As Richardson et al. point out, travel times for work trips did not substantially increase between 1983 and 1990 (8). This reflects the impact of "urban sprawl" as a congestion relief mechanism. Urban residents have changed where they work or where the live (or both) in response to growing roadway congestion. These moves initially occur so that travel is on less congested suburban roads. Trip lengths and travel speeds can thus both increase as traffic volumes rise due to growth in development. As more development occurs outside the defined urban area, urban area residents make more trips on the roadway system. The long-term sustainability of this growth pattern is being debated, but there is no doubt as to its impact on transportation systems.

Travel time is a very useful congestion measurement. It can be used in multimodal analyses and can illustrate the effect of operational improvements and policy changes designed to make the land use/transportation system function better. Unfortunately, if an analysis focuses only on the work trip, it ignores approximately 50 percent of weekday peak period vehicle trips and 66 percent of weekday vehicle trips. In addition, since 1969, work trips have declined from 36 to 28 percent of total vehicle trips, while family and personal business trips have increased from 31 to 45 percent of total vehicle trips. To suggest that congestion is not increasing because work trip travel times have not substantially changed is to ignore traffic volumes that are significantly larger than roadway designs envisioned and to discount the effect of three hour peak periods on economic activity in congested travel corridors ($\underline{8}$).

Roadway Congestion Index Growth

Table 2 summarizes roadway congestion index values for all 50 urban areas for certain years between 1982 to 1994. During the last seven years, Salt Lake City and Columbus were estimated to have experienced the largest increase in congestion, while Boston, Houston, Philadelphia, and New Orleans have experienced the smallest. During the span of the entire study, 1982 to 1994, Houston and Phoenix experienced small decreases in congestion. In this same time, San Diego, Salt Lake City, and Columbus have experienced the largest increase in congestion.

Urban Area Short-Term 1982 to 1994 Long-Term 1982 to 1994 1982 1986 1986 1980 1992 1993 1994 Boston, MA 4 1 20 20 0.90 1.04 1.12 1.06 1.07 1.07 1.08 Houston, TX -3 2 4 2 1.17 1.21 1.15 1.12 1.13 1.12 1.13 1.12 1.13 1.12 1.13 1.12 1.10 1.06 1.05 1.06 1.06 1.07 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.03 1.33			Percer	nt Change		Year						
Boston, MA -4 1 20 20 0.90 1.04 1.12 1.05 1.07 1.07 1.08 Houston, TX -3 2 -4 2 1.17 1.21 1.15 1.12 1.13 1.12 1.13 1.12 1.13 1.12 1.13 1.12 1.13 1.12 1.13 1.12 1.10 1.04 1.05 Norfolk, YA -1 5 18 15 0.79 0.89 0.94 0.66 0.92 0.92 0.93 1.55 1.53 1.33 1.33 1.33 1.33 1.35 1.34 1.53 1.35	Urban Area					1982	1986	1988	1990	1992	1993	1994
Houston, TX-32-421.171.211.151.121.121.131.12Philadelphia, PA-23531.001.061.071.051.041.05Norfolk, VA-1518150.790.890.940.960.920.93Los Angeles, CA0622221.221.421.331.3		Percent	Rank	Percent	Rank							
New Ordeans, LA -2 4 13 7 0.98 1.09 1.13 1.12 1.10 1.09 1.11 Norfolk, VA -1 5 18 15 0.79 0.94 0.96 0.92 0.92 0.93 San Fran-Ouk, CA 0 6 12 22 1.42 1.33 1.3		-3										
		-2										
Los Angeles, CA 0 6 25 29 1.22 1.42 1.53 1.54 1.54 1.53 1.54 1.53 1.33 1.22 1.14 1.14 1.12 1.12 1.21 1.24 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.22 1.24 1.34 <										1		
st. Louis, MO 0 6 18 15 0.83 0.93 0.98 0.95 0.95 0.95 0.97 San Bernardino-Riv, CA 2 10 8 6 1.11 1.15 1.81 1.21 1.22 1.21 1.21 1.22 1.21 1.21 1.22 1.21 1.21 1.21 1.22 1.21 1.21 1.22 1.21 1.22 1.21 1.21 1.21 1.21 1.21 1.22 1.21 1.22 1.21 1.22 1.21 1.22 1.22 1.22 1.22 1.21 1.22 1.22 1.21 1.22 1.23 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.25 1.25 1.29 0.71 0.81 0.82 0.91 0.93 0.94 0.93 0.93										1		1.52
Austin, TX 1 9 15 13 0.84 0.94 0.95 0.		-										
Sam Bernardino-Riv, CA 2 10 8 6 1.11 1.15 1.18 1.21 1.22 1.21 1.21 1.22 <th1.21< th=""></th1.21<>			-									0.98
												1.20
Jacksonville, FL212750.910.950.950.930.970.960.97Plashville, TN21325290.770.860.890.920.930.96Pinsburgh, PA214640.780.790.810.820.810.820.81Sacramento, CA31533450.800.950.940.950.950.981.00Hardrod, CT31722220.760.850.900.890.910.93Adama, GA41830400.911.091.141.141.171.161.18Tampa, FL41914100.940.960.311.051.071.061.07New York, NY52014101011.061.101.141.141.151.15Phoenix, AZ521-511.151.201.041.061.081.09Bi Paso, TXI62223260.921.031.071.061.011.141.141.151.15San Jose, CA6242323260.970.740.740.760.770.78Hondulu, HI62323200.921.001.001.101.111.11San Jose, CA7722830400.951.09 <td></td> <td>0.98</td>												0.98
Nashville, TN 2 13 25 29 0.77 0.86 0.94 0.89 0.92 0.93 0.96 Pirtsburgh, PA 2 14 6 4 0.77 0.78 0.79 0.81 0.82 0.83 0.83 0.86 0.86 0.86 0.97 0.94 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.05 1.07 New York, NY 5 20 1.4 10 1.04 1.04 1.05 1.07 1.06 1.07 New York, NY 5 22 2.4 2.8 0.63 0.75 0.74 0.76 0.77 1.06 1.07 1.08 1.08 1.09 Phoenix, AZ 5 21 -5 1 1.15 1.20 1.04 1.05 1.07 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.97</td>		2										0.97
		2										
		2										
		3										
Adama, GA41830400.911.091.141.141.171.161.18Tampa, FL41914100.940.961.031.051.071.06New York, NY52014101.011.061.101.141.141.151.15Phoenix, AZ521-511.151.201.041.051.071.081.08Bl Paso, TX52224280.630.730.740.740.760.770.78Honolulu, HI62323260.921.031.001.051.071.051.06Miwakee, WI62520200.880.971.041.081.101.111.11Seattle-Everett, WA72732420.951.091.171.201.221.231.25Dallas, TX72830400.841.041.021.121.21 <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.93</td>		3										0.93
	1											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			19		10							
El Paso, TX52224280.630.750.740.760.770.78Honolulu, HI62323260.921.031.071.091.101.131.13San Jose, CA62423260.860.971.001.051.071.051.06Milwaukee, WI62520200.830.900.940.991.001.001.00Portland, OR72628360.870.971.041.021.221.231.25Dallas, TX72830400.841.041.021.051.071.071.09San Antonio, TX72919180.770.880.860.880.900.910.92San Diego, CA73055500.781.001.131.221.221.211.211.21Denver, CO83122220.880.850.840.850.890.920.910.92Chicago, L83237460.670.810.850.840.850.890.920.930.95Chicago, L83325291.021.151.181.251.281.281.28Caryus Christi, TX93518150.720.760.760.800.930.95Memphis, TN937<		5								(
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5										1.09
		5										
Milwaukee, WI62520200.830.900.940.991.001.001.00Portland, OR72628360.870.971.041.081.101.111.11Seardte-Everett, WA72732420.951.091.171.201.221.231.25Dallas, TX72830400.841.041.021.051.071.071.09San Antonio, TX72919180.778.80.860.880.800.900.910.92San Diego, CA73055500.781.001.131.221.221.211.21Indianapolis, IN83237460.670.810.850.840.850.890.92Chicago, IL83325291.021.151.181.251.281.261.28Corpus Christi, TX9341370.670.770.760.780.990.830.860.85Louisville, KY93622220.780.800.870.860.900.930.95Memphis, TN9371370.830.860.890.920.930.94Washington, DC103828361.121.301.341.361.411.43F. Lauderdale, FL1039 </td <td></td> <td>1.13</td>												1.13
Portland, OR 7 26 28 36 0.87 0.97 1.04 1.08 1.10 1.11 1.11 Seattle-Everett, WA 7 27 32 42 0.95 1.09 1.17 1.20 1.22 1.23 1.25 Dallas, TX 7 29 19 18 0.77 0.88 0.86 0.88 0.90 0.91 0.92 San Diego, CA 7 30 55 50 0.78 0.86 0.88 0.90 0.91 0.92 Denver, CO 8 31 22 22 0.88 0.97 0.99 1.03 1.05 1.07 1.07 Indianapolis, IN 8 32 37 46 0.67 0.71 0.70 0.72 0.74 0.75 0.76 Corpus Christi, TX 9 34 13 7 0.67 0.71 0.70 0.72 0.74 0.75 0.76 Duaisville, KY 9 36												1.00
Dallas, TX72830400.841.041.021.051.071.071.09San Antonio, TX72919180.770.880.860.880.900.910.92San Diego, CA73055500.781.001.131.221.221.211.21Denver, CO83122220.880.970.991.031.051.071.07Indianapolis, IN83237460.670.810.850.840.850.890.92Chicago, L83325291.021.151.181.251.281.26Corpus Christi, TX9341370.670.710.700.720.740.750.76Oklahoma City, OK93518150.720.760.780.990.830.860.85Louisville, KY93622220.780.800.860.890.920.930.94Washington, DC103828361.121.271.301.341.361.411.43Ft. Lauderale, FL104019180.720.760.780.770.780.80Kansas City, MO114129390.620.680.720.740.770.780.80Fort Worth, TX11422836 </td <td></td> <td>7</td> <td>26</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.11</td>		7	26									1.11
San Antonio, TX72919180.770.880.860.880.900.910.92San Diego, CA73055500.781.001.131.221.211.21Denver, CO83122220.880.970.991.031.051.071.07Indianapolis, IN83237460.670.810.850.840.850.890.92Chicago, IL83325291.021.151.181.251.281.261.28Corpus Christi, TX9341370.670.710.700.720.740.750.76Oklahoma Civ, OK93518150.720.760.780.790.830.860.85Louisville, KY93622220.780.800.870.860.900.930.95Memphis, TN9371370.830.800.860.900.930.94Washington, DC103828361.121.271.301.341.361.411.43Ft. Lauderdale, FL104019180.720.760.780.770.800.820.86Kansas City, MO114129390.620.680.270.740.770.780.80Kansas City, MD15442633												1.25
San Diego, CA73055500.781.001.131.221.211.21Derver, CO83122220.880.970.991.031.051.07Indianapolis, IN83237460.670.810.850.840.850.890.92Chicago, IL83325291.021.151.181.251.281.261.28Corpus Christi, TX9341370.670.710.700.720.740.750.76Oklahoma City, OK93518150.720.760.780.790.830.860.85Louisville, KY93622220.780.800.870.860.900.930.95Memphis, TN9371370.830.800.870.860.900.930.95Mashington, DC103828361.121.271.301.341.361.411.43Ft. Lauderdale, FL103914100.870.850.900.940.960.980.99Orlando, FL104019180.720.760.780.770.780.80Kanasa City, MO114129390.620.680.720.740.770.780.80Jaltimore, MD154426331.05 <td></td>												
Denver, CO 8 31 22 22 0.88 0.97 0.99 1.03 1.05 1.07 1.07 Indianapolis, IN 8 32 37 46 0.67 0.81 0.85 0.84 0.85 0.84 0.85 0.89 0.92 Chicago, IL 8 33 25 29 1.02 1.15 1.18 1.25 1.28 1.26 1.28 Corpus Christi, TX 9 34 13 7 0.67 0.71 0.70 0.72 0.74 0.75 0.76 Oklahoma City, OK 9 35 18 15 0.72 0.76 0.78 0.79 0.83 0.86 0.85 0.84 0.85 0.99 0.93 0.95 Memphis, TN 9 37 13 7 0.83 0.80 0.86 0.89 0.92 0.93 0.94 Orlando, FL 10 40 19 18 0.72 0.76 0.78												
Indianapolis, IN 8 32 37 46 0.67 0.81 0.85 0.84 0.85 0.89 0.92 Chicago, L. 8 33 25 29 1.02 1.15 1.18 1.25 1.28 1.26 1.28 1.28 1.26 1.36 0.80 0.86 0.90 0.93 0.95 0.97 0.83 0.80 0.86 0.99 0.93 0.95 0.97 0.80 0.86 0.99 0.94 0.96 0.88 0.99 0.62 0.68 0.72 0.74 0												
Chicago, IL 8 33 25 29 1.02 1.15 1.18 1.25 1.28 1.26 1.28 Corpus Christi, TX 9 34 13 7 0.67 0.71 0.70 0.72 0.74 0.75 0.76 Oklahoma City, OK 9 35 18 15 0.72 0.76 0.78 0.79 0.83 0.86 0.85 Louisville, KY 9 36 22 22 0.78 0.80 0.87 0.86 0.90 0.93 0.93 Memphis, TN 9 37 13 7 0.83 0.80 0.87 0.85 0.90 0.94 0.96 0.92 0.93 0.94 Washington, DC 10 39 14 10 0.87 0.85 0.90 0.94 0.96 0.98 0.99 0.94 0.96 0.98 0.99 0.94 0.96 0.96 0.99 0.91 1.41 1.8 1.27 1.30												
Oklahoma City, OK 9 35 18 15 0.72 0.76 0.78 0.79 0.83 0.86 0.85 Louisville, KY 9 36 22 22 0.78 0.80 0.87 0.86 0.90 0.93 0.94 Memphis, TN 9 37 13 7 0.83 0.80 0.87 0.86 0.89 0.92 0.93 0.94 Washington, DC 10 38 28 36 1.12 1.27 1.30 1.34 1.36 1.41 1.43 Ft. Lauderdale, FL 10 40 19 18 0.72 0.76 0.78 0.97 0.80 0.82 0.86 Kansas City, MO 11 41 29 39 0.62 0.68 0.77 0.78 0.80 0.82 0.86 Fort Worth, TX 11 42 28 36 0.76 0.87 0.87 0.90 0.94 0.95 0.97 Miami												
Louisville, KY 9 36 22 22 0.78 0.80 0.87 0.86 0.90 0.93 0.95 Memphis, TN 9 37 13 7 0.83 0.80 0.86 0.89 0.92 0.93 0.94 Washington, DC 10 38 28 36 1.12 1.27 1.30 1.34 1.36 1.41 1.43 Ft. Lauderdale, FL 10 40 19 18 0.72 0.76 0.78 0.77 0.80 0.82 0.86 Fort Worth, TX 11 42 28 36 0.76 0.87 0.90 0.94 0.95 0.97 Miami, FL 12 43 26 33 1.05 1.14 1.18 1.27 1.30 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.34 1.04		9		13		0.67		0.70	0.72	0.74	0.75	0.76
Memphis, TN 9 37 13 7 0.83 0.80 0.86 0.89 0.92 0.93 0.94 Washington, DC 10 38 28 36 1.12 1.27 1.30 1.34 1.36 1.41 1.43 Ft. Lauderdale, FL 10 39 14 10 0.87 0.85 0.90 0.94 0.96 0.98 0.99 Orlando, FL 10 40 19 18 0.72 0.76 0.78 0.77 0.80 0.82 0.86 Kansas City, MO 11 41 29 39 0.62 0.68 0.72 0.74 0.77 0.78 0.80 Fort Worth, TX 11 42 28 36 0.76 0.87 0.87 0.90 0.94 0.95 0.97 Miami, FL 12 43 26 33 1.05 1.14 1.18 1.27 1.30 1.32 1.32 Baltimore, MD 15 <td></td>												
Washington, DC 10 38 28 36 1.12 1.27 1.30 1.34 1.36 1.41 1.43 Ft. Lauderdale, FL 10 39 14 10 0.87 0.85 0.90 0.94 0.96 0.98 0.99 Orlando, FL 10 40 19 18 0.72 0.76 0.78 0.77 0.80 0.82 0.86 Kansas City, MO 11 41 29 39 0.62 0.68 0.77 0.74 0.77 0.78 0.80 0.95 0.97 Miami, FL 12 43 26 33 1.05 1.14 1.18 1.27 1.30 1.32 1.32 1.32 Baltimore, MD 15 44 26 33 0.84 0.88 0.92 1.01 1.04 1.04 1.06 Minn-St. Paul, MN 16 45 37 46 0.76 0.89 0.90 0.95 0.99 1.02 1.04 Charlotte, NC 17 47 32 42 0.71 0.78 <td></td>												
Ft. Lauderdale, FL 10 39 14 10 0.87 0.85 0.90 0.94 0.96 0.98 0.99 Orlando, FL 10 40 19 18 0.72 0.76 0.78 0.77 0.80 0.82 0.86 Kansas City, MO 11 41 29 39 0.62 0.68 0.72 0.74 0.77 0.78 0.80 0.82 0.86 Fort Worth, TX 11 42 28 36 0.76 0.87 0.90 0.94 0.95 0.97 Miami, FL 12 43 26 33 1.05 1.14 1.18 1.27 1.30 1.32 1.32 Baltimore, MD 15 44 26 33 0.84 0.88 0.92 1.01 1.04 1.06 Minn-St. Paul, MN 16 45 37 46 0.76 0.89 0.90 0.95 0.99 1.02 1.04 Detroit, MI 16 46 17 14 1.06 1.05 1.07 1.13 1.19												
Orlando, FL 10 40 19 18 0.72 0.76 0.78 0.77 0.80 0.82 0.86 Kansas City, MO 11 41 29 39 0.62 0.68 0.72 0.74 0.77 0.78 0.80 Fort Worth, TX 11 42 28 36 0.76 0.87 0.87 0.90 0.94 0.95 0.97 Miami, FL 12 43 26 33 1.05 1.14 1.18 1.27 1.30 1.32 1.32 Baltimore, MD 15 44 26 33 0.84 0.88 0.92 1.01 1.04 1.04 1.06 Minn-St. Paul, MN 16 45 37 46 0.76 0.89 0.90 0.95 0.99 1.02 1.04 Detroit, MI 16 46 17 14 1.06 1.05 1.07 1.13 1.19 1.23 1.24 Charlotte, NC 17 <td></td> <td>0.99</td>												0.99
Kansas City, MO 11 41 29 39 0.62 0.68 0.72 0.74 0.77 0.78 0.80 Fort Worth, TX 11 42 28 36 0.76 0.87 0.87 0.90 0.94 0.95 0.97 Miami, FL 12 43 26 33 1.05 1.14 1.18 1.27 1.30 1.32 1.32 Baltimore, MD 15 44 26 33 0.84 0.88 0.92 1.01 1.04 1.04 1.06 Minn-St. Paul, MN 16 45 37 46 0.76 0.89 0.90 0.95 0.99 1.02 1.04 1.04 1.06 Detroit, MI 16 46 17 14 1.06 1.05 1.07 1.13 1.19 1.23 1.24 Charlotte, NC 17 47 32 42 0.71 0.78 0.80 0.86 0.89 0.92 0.94 Columbus, OH 20 49 40 48 0.68 0.72 0.85												0.86
Miami, FL 12 43 26 33 1.05 1.14 1.18 1.27 1.30 1.32 1.32 Baltimore, MD 15 44 26 33 0.84 0.88 0.92 1.01 1.04 1.04 1.06 Minn-St. Paul, MN 16 45 37 46 0.76 0.89 0.90 0.95 0.99 1.02 1.04 Detroit, MI 16 46 17 14 1.06 1.05 1.07 1.13 1.19 1.23 1.24 Charlotte, NC 17 47 32 42 0.71 0.78 0.80 0.86 0.89 0.92 0.94 Columbus, OH 19 48 22 22 0.86 0.84 0.88 0.96 1.01 1.03 1.05 Salt Lake City, UT 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 0.80 0.87 0.91 0.94 0.97 0.99 1.01 0.02 0												0.80
Baltimore, MD 15 44 26 33 0.84 0.88 0.92 1.01 1.04 1.04 1.06 Minn-St. Paul, MN 16 45 37 46 0.76 0.89 0.90 0.95 0.99 1.02 1.04 Detroit, MI 16 46 17 14 1.06 1.05 1.07 1.13 1.19 1.23 1.24 Charlotte, NC 17 47 32 42 0.71 0.78 0.80 0.86 0.89 0.92 0.94 Columbus, OH 19 48 22 22 0.86 0.84 0.88 0.96 1.01 1.03 1.05 Salt Lake City, UT 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Notheestern Avg												0.97
Minn-St. Paul, MN 16 45 37 46 0.76 0.89 0.90 0.95 0.99 1.02 1.04 Detroit, MI 16 46 17 14 1.06 1.05 1.07 1.13 1.19 1.23 1.24 Charlotte, NC 17 47 32 42 0.71 0.78 0.80 0.86 0.89 0.92 0.94 Cincinnati, OH 19 48 22 22 0.86 0.84 0.88 0.96 1.01 1.03 1.05 Columbus, OH 20 49 40 48 0.68 0.75 0.79 0.89 0.93 0.93 0.95 Salt Lake City, UT 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Midwestern Avg												
Detroit, MI 16 46 17 14 1.06 1.05 1.07 1.13 1.19 1.23 1.24 Charlotte, NC 17 47 32 42 0.71 0.78 0.80 0.86 0.89 0.92 0.94 Cincinnati, OH 19 48 22 22 0.86 0.84 0.88 0.96 1.01 1.03 1.05 Columbus, OH 20 49 40 48 0.68 0.75 0.79 0.89 0.93 0.93 0.95 Salt Lake City, UT 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 0.80 0.87 0.91 0.94 0.97 0.99 1.01 1.02 Southern Avg 0.86 0.92 0.97 0.98 <td></td>												
Cincinnati, OH 19 48 22 22 0.86 0.84 0.88 0.96 1.01 1.03 1.05 Columbus, OH 20 49 40 48 0.68 0.75 0.79 0.89 0.93 0.93 0.95 Salt Lake City, UT 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 9 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 9 0.92 0.99 1.03 1.04 1.05 1.07 1.08 Midwestern Avg 0.80 0.87 0.91 0.94 0.97 0.99 1.01 1.02 Southern Avg 0.86 0.92 0.97 0.98 1.00 1.01 1.02 Southwestern Avg 0.83 0.93 0.91 0.93 0.95 0.96 0.97 Western Avg 0.81 0.91 0.90 0.91 0.93 0.93 0.94 Total				17						1.19	1.23	1.24
Columbus, OH Salt Lake City, UT 20 49 40 48 0.68 0.75 0.79 0.89 0.93 0.94 0.94 0.92 0.94 0.72 0.85 0.90 0.92 0.94 0.94 0.97 0.98 1.00 1.01 1.02 0.86 0.92 0.97 0.98 1.00 1.01 1.02 0.97 0.98 0.90 0.91 0.93 0.95 0.90 0.91 0.93 0.93 0.94 0.91 0.												
Salt Lake City, UT 31 50 49 49 0.63 0.68 0.72 0.85 0.90 0.92 0.94 Northeastern Avg 0.92 0.99 1.03 1.04 1.05 1.07 1.08 Midwestern Avg 0.80 0.87 0.91 0.94 0.97 0.99 1.01 Southern Avg 0.80 0.87 0.91 0.94 0.97 0.99 1.01 Southwestern Avg 0.83 0.93 0.91 0.93 0.95 0.96 0.97 Western Avg 0.83 0.93 0.91 0.93 0.95 0.96 0.97 Western Avg 0.81 0.91 0.90 0.91 0.93 0.93 0.94 Total Avg 0.86 0.95 0.99 1.01 1.03 1.04 1.05 Maximum Value 1.22 1.42 1.52 1.55 1.54 1.52												
Midwestern Avg 0.80 0.87 0.91 0.94 0.97 0.99 1.01 Southern Avg 0.86 0.92 0.97 0.98 1.00 1.01 1.02 Southwestern Avg 0.83 0.93 0.91 0.93 0.95 0.96 0.97 Western Avg 0.95 1.09 1.16 1.20 1.21 1.21 Texas Avg 0.81 0.91 0.90 0.91 0.93 0.93 0.94 Total Avg 0.86 0.95 0.99 1.01 1.03 1.04 1.05 Maximum Value 1.22 1.42 1.52 1.55 1.54 1.52												
Midwestern Avg 0.80 0.87 0.91 0.94 0.97 0.99 1.01 Southern Avg 0.86 0.92 0.97 0.98 1.00 1.01 1.02 Southwestern Avg 0.83 0.93 0.91 0.93 0.95 0.96 0.97 Western Avg 0.95 1.09 1.16 1.20 1.21 1.21 Texas Avg 0.81 0.91 0.90 0.91 0.93 0.93 0.94 Total Avg 0.86 0.95 0.99 1.01 1.03 1.04 1.05 Maximum Value 1.22 1.42 1.52 1.55 1.54 1.52	Northeastern Avg					0.92	0.99	1.03	1.04	1.05	1.07	1.08
Southwestern Avg 0.83 0.93 0.91 0.93 0.95 0.96 0.97 Western Avg 0.95 1.09 1.16 1.20 1.21 1.21 Texas Avg 0.81 0.91 0.90 0.91 0.93 0.93 0.94 Total Avg 0.86 0.95 0.99 1.01 1.03 1.04 1.05 Maximum Value 1.22 1.42 1.52 1.55 1.54 1.52						0.80	0.87	0.91	0.94			1.01
Western Avg 0.95 1.09 1.16 1.20 1.21 1.21 Texas Avg 0.81 0.91 0.90 0.91 0.93 0.93 0.94 Total Avg 0.86 0.95 0.99 1.01 1.03 1.04 1.05 Maximum Value 1.22 1.42 1.52 1.55 1.54 1.52												1.02
Texas Avg 0.81 0.91 0.90 0.91 0.93 0.93 0.94 Total Avg 0.86 0.95 0.99 1.01 1.03 1.04 1.05 Maximum Value 1.22 1.42 1.52 1.55 1.54 1.52											0.96	
Total Avg 0.86 0.95 0.99 1.01 1.03 1.04 1.05 Maximum Value 1.22 1.42 1.52 1.55 1.54 1.52												
Maximum Value 1.22 1.42 1.52 1.55 1.54 1.54 1.52												
					l							
Minimum Value 0.62 0.68 0.70 0.72 0.74 0.75 0.76	Minimum Value]				0.62	0.68	0.70		0,74		

Table 2. Roadway Congestion Index Values, 1982 to 1994

Source: TTI Analysis

Figure 2 illustrates trend data for the Texas urban areas studied. This figure graphically shows that all of the Texas urban areas experienced increases in congestion in 1994 except Houston. Austin, Fort Worth, and San Antonio are all above the 0.90 level, which means they could reach the 1.00 level in the next few years.

Figure 2. Texas Urban Area Congestion Levels, 1982-1994
TRAVEL DELAY

Travel delay is the most apparent impact of congestion to the motoring public. Analyses of delay have generally been divided into two estimates—recurring and incident. Recurring delay occurs when travel times are longer during normal daily operations when demand for roadway facilities is near or exceeds capacity. The most common example of recurring delay is the increased travel time during peak periods. This increased travel time results from the slower speeds associated with congested conditions on the freeways and principal arterial streets.

Accidents, breakdowns, or other occurrences that temporarily decrease roadway capacity cause incident delay. When congestion levels increase (creating higher RCI values), it is the recurring delay that is being measured. Incident delay is not directly related to or caused by high traffic volume, and incident congestion may be a much greater percentage of total delay in less congested areas. A severe incident will cause a significant increase in travel delay for an otherwise uncongested area. Appendix B of Volume 1 discussed the estimation of travel delay.

Table 3 illustrates the daily and annual delay estimates and rankings. Daily person-hours of delay are presented along with annual delay per person and per eligible driver. A ranking of these values is also shown. Los Angeles topped the list with almost 2.4 million person-hours of delay daily. Washington, D.C. had the highest annual delay per capita (59 hours), while San Bernardino-Riverside led the annual delay per eligible driver (75 hours). Forty of the 50 urban areas have delay per eligible driver of over 20 hours a year or the equivalent of one-half of a work week. Sixteen urban areas have the equivalent of at least a work week of delay per eligible driver per year. On average, in the 50 areas, over three-quarters of a work week is spent in delay per eligible driver. Summary statistics show that urban areas in the Western and Northeastern regions have the largest average per capita delay, while the Midwestern region has the least. These also show that the Western region had the highest average delay per eligible driver.

	Daily P	erson-Hour	s of Delay	(000)	Annual Person-Hours	Rank ¹	Annual Person- Hours of Delay	~ 11
Urban Area	Recurring	Incident	Total	Rank ¹	of Delay per Capita	Kank	per Eligible Driver	Rank ¹
Northeastern Cities Baltimore, MD Boston, MA Hartford, CT New York, NY Philadelphia, PA Pittsburgh, PA Washington, DC Midwestern Cities	74 122 19 764 160 68 293	137 332 38 1,399 215 101 522	212 454 57 2,162 375 169 815	18 8 40 2 12 22 5	25 38 23 32 18 22 59	22 12 25 14 38 27 1	31 46 31 40 23 27 71	22 12 22 15 38 30 2
Chicago, IL Cincinnati, OH Cleveland, OH Columbus, OH Detroit, MI Indianapolis, IN Kansas City, MO Louisville, KY Milwaukee, WI Minn-St. Paul, MN Oklahoma City, OK St. Louis, MO	383 54 58 257 22 20 24 33 86 17 88	443 37 44 32 419 30 44 27 35 83 19 101	826 81 98 70 677 52 64 51 68 170 36 188	4 34 28 36 6 41 39 42 38 21 48 20	27 16 14 18 42 13 12 16 14 20 11 24	21 40 42 38 9 44 45 40 42 34 46 23	35 21 18 22 57 17 16 19 18 25 14 30	20 40 39 7 44 45 41 42 35 47 24
Southern Cities Atlanta, GA Charlotte, NC Ft. Lauderdale, FL Jacksonville, FL Memphis, TN Miami, FL Nashville, TN New Orleans, LA Norfolk, VA Orlando, FL Tampa, FL	202 23 49 40 19 144 24 38 34 32 31	222 23 65 50 21 180 26 57 62 43 38	424 46 115 90 41 324 50 94 96 75 69	9 44 25 31 45 13 43 30 29 35 37	44 21 22 29 11 42 20 21 24 20 23	7 31 27 18 46 9 34 31 23 34 25	56 27 26 37 15 53 26 28 30 24 28	8 30 32 18 46 10 32 28 24 36 28
Southwestern Cities Albuquerque, NM Austin, TX Corpus Christi, TX Dallas, TX Denver, CO El Paso, TX Fort Worth, TX Houston, TX Phoenix, AZ Salt Lake City, UT San Antonio, TX	19 41 4 106 9 60 232 135 22 50	21 45 4 238 110 101 313 110 17 56	40 85 381 216 19 161 546 245 39 106	46 33 50 11 17 49 23 7 15 47 27	19 36 6 43 32 8 32 46 29 11 22	37 13 50 8 14 49 14 6 18 46 27	24 45 9 55 40 11 43 61 38 14 29	36 13 50 9 15 49 14 5 17 47 26
Western Cities Honolulu, HI Los Angeles, CA Portland, OR Sacramento, CA San Bernardino-Riv, CA San Diego, CA San Fran-Oak, CA San Jose, CA Seattle-Everett, WA	33 1,089 47 59 134 125 367 111 166	53 1,275 76 51 156 86 462 131 221	86 2,364 123 110 290 211 828 242 387	32 1 24 26 14 19 3 16 10	31 49 28 22 54 21 54 39 51	17 5 20 27 2 31 2 11 4	36 63 35 29 75 26 65 51 59	19 4 20 26 1 32 3 11 6
Northeastern Avg Midwestern Avg Southern Avg Western Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	214 89 58 75 236 78 123 1,089 4	393 110 71 94 279 110 168 1,275 4	607 249 129 169 515 188 291 2,364 8		31 19 25 26 39 28 27 59 6		38 24 32 34 49 36 34 75 9	

Table 3. Daily and Annual Person-Hours of Delay for 1994

Notes: ¹ Rank value of 1 associated with most congested conditions.

The annual delay per person and per eligible driver quantifies the congestion levels independent of urban area size and population. Ranking delay in this manner allows an evaluation similar to the RCI in that it analyzes the effects on individual motorists. Figure 7 illustrates the comparison of these two congestion assessments.

Table 4 shows the annual delay per eligible driver for several years from 1982 to 1994. Twentytwo of the 50 urban areas experienced at least a 100 percent increase in delay over the 13-year period. Philadelphia, St. Louis, Tampa, Dallas, Houston, Phoenix, and Honolulu were the only areas that experienced less than a 50 percent increase in delay per eligible driver over the period. The Midwestern region had the greatest increase with 100 percent climb, while the Southwestern and Texas regions had the smallest changes with 62 and 57 percent increases, respectively.

The Areawide Speed Ratio (ASR) is another way of examining the effect of congestion on travel speeds. While delay characterizes the amount of time lost, the ASR is a measure of speeds in relation to free-flow travel. The ASR is a ratio of the network average speeds to the average free-flow speed on the freeway and principal arterial street network. Equation 2 shows this relationship. The ASR values are between 0 and 100. The closer the ASR value is to 0, the slower the speeds estimated for the areawide roadway system during the peak periods. For example in Table 5, Los Angeles has an ASR of 69. This indicates that a driver in Los Angeles is experiencing peak period driving speeds that are 69 percent of free-flow speeds. Some drivers are experiencing speeds much less than 69 percent of free-flow but on average, a driver will encounter speeds of about 69 percent of free-flow.

(Pk Pd Uncongested Fwy DVKT + Pk Pd Uncongested Prin Art DVKT) x Total Pk Pd Fwy DVKT + Total Pk Pd Prin Art DVKT	Uncongested Avg Speed of Fwy and Prin Art DVKT	
+ <u>(Pk Pd Congested Fwy DVKT + Pk Pd Congested Prin Art DVKT)</u> x Total Pk Pd Fwy DVKT + Total Pk Pd Prin Art DVKT	Congested Avg Speed of Fwy and Prin Art DVKT	Eq. 2

(Pk Pd Fwy DVKT x Fwy Uncongested Speed) + (Pk Pd Prin Art DVKT x Prin Art Uncongested Speed) Pk Pd Fwy DVKT + Pk Pd Prin Art DVKT

Figure 3. Roadway Congestion Index and Annual Delay per Capita

		An	mual Delay per	r Eligible Drive	er		Percent Change
Urban Area	1982	1986	1990	1992	1993	1994	1982 - 1994
Northeastern Cities Baltimore, MD Boston, MA Hartford, CT New York, NY Philadelphia, PA Pittsburgh, PA Washington, DC Midwestern Cities	13 26 9 25 20 13 42	21 40 15 31 25 20 56	26 43 23 36 24 24 66	30 45 25 38 23 25 70	31 44 30 39 23 26 70	31 46 31 40 23 27 71	138 77 244 60 15 108 69
Chicago, IL Cincinnati, OH Cleveland, OH Columbus, OH Detroit, MI Indianapolis, IN Kansas City, MO Louisville, KY Milwaukee, WI Minn-St. Paul, MN Oklahoma City, OK St. Louis, MO Southern Cities	19 7 5 11 30 4 6 8 9 9 9 9 20	28 9 7 14 36 5 8 9 13 15 11 24	29 15 13 22 44 7 9 10 16 20 12 26	34 18 15 23 51 8 14 13 17 22 14 26	34 20 16 22 57 12 15 16 17 24 14 29	35 21 18 22 57 17 16 19 18 25 14 30	84 200 260 100 90 325 167 138 100 178 56 50
Atlanta, GA Charlotte, NC Ft. Lauderdale, FL Jacksonville, FL Memphis, TN Miami, FL Nashville, TN New Orleans, LA Norfolk, VA Orlando, FL Tampa, FL	29 17 13 22 7 30 14 14 18 13 21	48 22 17 24 8 35 23 25 29 18 24	45 26 21 32 10 49 28 26 32 17 26	47 27 23 32 12 47 26 25 30 18 28	53 27 24 35 13 51 24 25 29 22 27	56 27 26 37 15 53 26 28 30 24 28	93 59 100 68 114 77 86 100 67 85 33
Southwestern Cities Albuquerque, NM Austin, TX Corpus Christi, TX Dallas, TX Denver, CO El Paso, TX Fort Worth, TX Houston, TX Phoenix, AZ Salt Lake City, UT San Antonio, TX	9 26 3 6 24 5 22 51 30 5 15	13 37 4 56 28 8 35 55 34 6 26	18 35 4 54 33 7 34 55 37 8 22	17 34 7 53 37 11 36 57 39 10 25	20 41 7 53 41 11 40 60 40 12 28	24 45 9 55 40 11 43 61 38 14 29	167 73 200 53 67 120 95 20 27 180 93
Western Cities Honolulu, HI Los Angeles, CA Portland, OR Sacramento, CA San Bernardino-Riv, CA San Diego, CA San Fran-Oak, CA San Jose, CA Seatle-Everett, WA	25 41 16 14 42 12 39 33 26	29 60 18 19 68 19 61 50 41	31 65 27 26 74 29 68 55 56	35 64 32 25 76 28 65 54 59	37 65 34 29 76 26 66 52 59	36 63 35 29 75 26 65 51 59	44 54 119 107 79 117 67 55 127
Northeastern Avg Midwestern Avg Southern Avg Western Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	21 12 18 21 28 23 19 51 3	30 15 25 27 41 32 27 68 4	35 19 28 28 48 30 30 74 4	37 21 29 30 49 32 32 76 7	38 23 30 32 49 34 33 76 7	38 24 32 34 49 36 34 75 9	81 100 78 62 75 57 79 47 200

	Roadway	.	Areawide	2.1	Peak Period	Peak Period Speeds (kph)		
Urban Area	Congestion Index	Rank	Speed Ratio	Rank	Freeway	Prin. Arterial		
San Fran-Oak, CA Los Angeles, CA Washington, DC Houston, TX Seattle-Everett, WA San Bernardino-Riv, CA New York, NY San Jose, CA Austin, TX Chicago, IL	1.33 1.52 1.43 1.12 1.25 1.20 1.15 1.06 0.97 1.28	3 1 2 13 6 9 11 21 32 5	65 69 70 70 72 73 74 75 75	1 2 4 4 6 7 8 9 9	60 61 65 65 65 65 71 70 70 69	44 47 42 48 47 47 41 47 41 47 48 45		
Miami, FL Phoenix, AZ Atlanta, GA Dallas, TX Denver, CO Honolulu, HI Detroit, MI New Orleans, LA San Diego, CA Boston, MA	1.32 1.09 1.18 1.09 1.07 1.13 1.24 1.11 1.21 1.08	4 16 10 16 19 12 7 14 8 18	75 76 77 77 77 77 78 80 80 80	9 12 13 13 13 13 13 17 18 18 20	69 68 74 73 72 74 74 75 76 76	44 45 45 49 47 44 44 48 50 49		
Fort Worth, TX Portland, OR Ft. Lauderdale, FL Charlotte, NC Minn-St. Paul, MN Philadelphia, PA Sacramento, CA San Antonio, TX Jacksonville, FL Norfolk, VA	0.97 1.11 0.99 0.94 1.04 1.05 1.06 0.92 0.97 0.93	32 14 29 38 26 24 21 43 32 41	81 82 83 84 84 84 84 84 85 85	20 22 23 24 24 24 24 24 24 29 29 29	77 79 80 83 82 86 82 79 82 80	50 46 48 46 43 47 51 47 50		
Cincinnati, OH Cleveland, OH Columbus, OH Tampa, FL Baltimore, MD Orlando, FL Pittsburgh, PA Salt Lake City, UT St. Louis, MO Milwaukee, WI	1.05 1.00 0.95 1.07 1.06 0.86 0.83 0.94 0.98 1.00	24 27 36 19 21 45 47 38 30 27	86 86 86 87 87 87 87 87 87 87 88	31 31 31 35 35 35 35 35 35 40	82 82 83 88 84 82 88 84 86 84	51 51 48 45 49 51 45 50 47 50		
Albuquerque, NM Hartford, CT Louisville, KY Memphis, TN Nashville, TN El Paso, TX Indianapolis, IN Oklahoma City, OK Corpus Christi, TX Kansas City, MO	0.98 0.93 0.95 0.94 0.96 0.78 0.92 0.85 0.76 0.80	30 41 36 38 35 49 43 46 50 48	89 91 91 91 92 92 92 94 95 95	41 42 42 42 46 46 46 48 49 49	87 88 90 89 89 87 89 93 91 93	49 51 46 51 51 51 54 51 50 54 52		
Northeastern Avg Midwestern Avg Southern Avg Southwestern Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	1.08 1.01 1.02 0.97 1.21 0.94 1.05 1.52 0.76		82 87 84 82 75 82 82 82 95 65		80 84 81 77 70 77 79 93 60	46 49 48 50 47 51 48 54 41		

Table 5.	Areawide	Speeds and	Congestion	Levels for	1994
----------	----------	------------	------------	------------	------

The ASR provides additional insight into the congestion levels in an urban area, which is not always evident in the RCI (see Table 5). The rankings associated with the RCI and the ASR appear to differ dramatically in some urban areas. The RCI is a macroscopic view of roadway traffic for an urban area. It analyzes total travel and roadway capacity for an area. The RCI does not account for point-specific congestion problems such as capacity bottlenecks or points where demand is funneled into a few corridors. Examples of these locations include points where the number of lanes decrease or tunnels and bridges cross major geographic features. Toll freeways also carry lower than typical traffic volume per lane and can therefore contribute significant reductions in congestion as measured by the roadway congestion index, but not contribute as much benefit to reducing travel delay.

Some urban areas may have the majority of their travel on a small number of roadways, thus creating slow speeds on these roadways. The travel occurring on other roads in the area may be at higher speeds, but it does not account for much of the total travel in the area. In this situation the large amount of travel at the slower speeds would create a lower ASR for the entire area, while the roadway congestion index might show moderate congestion because of the number of roadways carrying relatively low traffic levels.

Table 5 shows a comparison of the roadway congestion index and the areawide speed ratio. Los Angeles leads the list of urban areas with an RCI of 1.52, and it is tied for second with Washington DC with an ASR of 69. San Francisco-Oakland has the lowest ASR at 65. San Francisco-Oakland is a good example of an area with many topographic features that limit the route choices for travelers, creating many natural bottlenecks in the roadway system. These bottlenecks create lower travel speeds and a lower ASR.

Only two urban areas in Texas (Houston and Dallas) ranked in the top 20 RCI values (1.12 and 1.09, respectively), while four urban areas in Texas ranked in the top 20 for the ASR. These four urban areas are Houston (4th), Austin (9th), Dallas (13th), and Fort Worth (20th). The Western region ranked first in both the RCI (1.21) and the ASR (75). The Texas Region had the lowest average RCI (0.94) but ranked second with an ASR of 82.

Table 6 shows the ASR values for several years between 1982 and 1994. The ASR in all but one urban area (Nashville) has decreased in this 13-year span. It has the same ASR (91) in 1994 that it had in 1982. Seattle-Everett has shown the greatest decrease in the ASR between 1982 and 1994 (17 percent). The next three largest decreases occurred in the California urban areas of San Francisco-Oakland, San Bernardino-Riverside, and San Jose. Houston and Corpus Christi experienced the smallest change in the ASR (3 percent decrease) of the Texas cities, while Fort Worth had the largest decrease (8 percent). The Western region showed the largest decrease of about 9 percent. The Texas average decrease was about 5 percent.

Another relationship to explore is between the ASR and hours of delay per capita. As discussed previously, the ASR should be lower as the amount of delay increases. This is not always the case because some cities, such as New York, have a larger segment of the population that is not contributing to the lower speeds on the roadway network because they walk to work or ride transit. They do, however, bring the delay per capita value down when they are included in the calculation. Table 7 shows the comparisons of the two. The first six urban areas listed in the table comprise the top six positions in each category. Washington, DC is first in delay per capita and is second in ASR. San Francisco-Oakland is first in ASR and tied for second in delay per capita (46 hours) and tied for fourth in ASR (70). Dallas ranks eighth in delay per capita (43 hours) and 13th in ASR (77). Austin is the only other Texas city with a top10 ranking. It is tied for ninth with an ASR of 75. The Western region has the highest delay per capita (39 hours) and the lowest ASR (75).

Urban Area			Areawide	Speed Ratio			% Change
	1982	1986	1990	1992	1993	1994	1982-1994
Seattle-Everette, WA San Bernardino-Riv, CA San Fran-Oak, CA San Jose, CA San Diego, CA Ft. Lauderdale, FL Phoenix, AZ Salt Lake City, UT Denver, CO Washington, DC	84 81 73 82 88 91 83 95 84 75	78 75 66 75 85 88 77 94 81 73	71 73 65 74 80 84 77 93 80 71	71 72 65 74 80 84 76 91 78 69	70 71 65 74 80 84 75 89 77 69	70 72 65 74 80 83 76 87 77 69	-17 -11 -11 -10 -9 -9 -9 -8 -8 -8 -8 -8 -8 -8
Fort Worth, TX Minn-St. Paul, MN Cincinnati, OH Cleveland, OH Austin, TX Atlanta, GA New Orleans, LA Boston, MA Charlotte, NC Sacramento, CA	88 91 93 93 81 83 86 87 90 90	83 88 92 91 78 79 79 84 88 88	83 86 89 78 79 80 82 86 86	83 86 88 78 77 80 81 84 87	82 84 86 77 77 80 82 84 85	81 84 86 75 77 80 81 84 84	-8 -8 -8 -7 -7 -7 -7 -7 -7 -7 -7
Albuquerque, NM Miami, FL Detroit, MI Portland, OR Jacksonville, FL Los Angeles, CA Baltimore, MD Orlando, FL Hartford, CT New York, NY	95 80 83 87 90 73 92 92 92 96 77	93 79 82 87 89 68 90 89 95 77	91 75 79 84 86 69 89 89 93 74	90 76 79 82 86 69 87 87 89 93 74	90 75 77 82 85 69 87 87 91 73	89 75 78 82 85 69 87 87 91 73	-6 -6 -6 -5 -5 -5 -5 -5 -5
Indianapolis, IN Chicago, IL Dallas, TX Honolulu, HI San Antonio, TX Pittsburgh, PA Milwaukee, WI Louisville, KY Memphis, TN El Paso, TX	97 79 81 81 88 91 92 95 95 95 96	98 75 77 79 84 88 89 95 94 94	96 76 77 85 87 87 95 94 94	96 74 77 84 87 87 94 93 92	94 75 78 77 84 87 88 93 93 93 92	92 75 77 77 84 87 88 91 91 91 92	-5 -5 -5 -5 4 4 4 4 4 4 4
Norfolk, VA Columbus, OH Oklahoma City, OK Corpus Christi, TX Houston, TX Philadelphia, PA St. Louis, MO Kansas City, MO Tampa, FL Nashville, FL	88 89 97 98 72 86 89 97 87 91	83 89 96 97 68 84 89 97 87 87 92	82 86 95 97 70 84 89 97 85 89	84 86 94 95 70 84 89 95 85 90	84 86 94 95 70 84 87 95 86 91	85 86 94 95 70 84 87 95 86 91	-3 -3 -3 -3 -2 -2 -2 -2 -1 0
Northeastern Avg Midwestern Avg Southern Avg Western Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	86 91 88 87 82 86 87 98 72	84 90 86 84 78 83 85 98 66	83 89 84 84 76 83 84 97 65	82 88 84 83 75 83 83 96 65	82 87 84 83 75 83 83 95 65	82 87 84 82 75 82 82 82 95 65	-5 -4 -5 -6 -9 -5 -6 -3 -10

Table 6. Areawide Speed Ratio 1982 to 1994

Urban Area	Annual Hours of Delay per Capita	Rank	Areawide Speed Ratio	Rank
Washington, DC San Bernardino-Riv, CA San Fran-Oak, CA Seattle-Everett, WA	59 54 54 51	1 2 2 4	69 72 65 70	2 6 1 4
Los Angeles, CA Houston, TX Atlanta, GA	49 46 44	5 6 7	69 70 77	2 4 13
Dallas, TX Detroit, MI Miami, FL	43 42 42	8 9 9	77 78 75	13 17 9
San Jose, CA Boston, MA Austin, TX Denver, CO Fort Worth, TX New York, NY Honolulu, HI Jacksonville, FL Phoenix, AZ Portland, OR	39 38 36 32 32 32 31 29 29 28	11 12 13 14 14 14 14 17 18 18 20	74 81 75 77 81 73 77 85 76 82	8 20 9 13 20 7 13 29 12 22
Chicago, IL Baltimore, MD Norfolk, VA St. Louis, MO Hartford, CT Tampa, FL Ft. Lauderdale, FL Pittsburgh, PA Sacramento, CA San Antonio, TX	27 25 24 23 23 22 22 22 22 22 22	21 22 23 23 25 25 25 27 27 27 27 27	75 87 85 87 91 86 83 87 84 84	9 35 29 35 42 31 23 35 24 24
Charlotte, NC New Orleans, LA San Diego, CA Minn-St. Paul, MN Nashville, TN Orlando, FL Albuquerque, NM Columbus, OH Philadelphia, PA Cincinnati, OH	21 21 20 20 20 19 18 18 18 16	31 31 34 34 34 37 38 38 38 40	84 80 84 91 87 89 86 84 86	24 18 18 24 42 35 41 31 24 31
Louisville, KY Cleveland, OH Milwaukee, WI Indianapolis, IN Kansas City, MO Memphis, TN Oklahoma City, OK Salt Lake City, UT El Paso, TX Corpus Christi, TX	16 14 13 12 11 11 11 8 6	40 42 44 45 46 46 46 49 50	91 86 88 92 95 91 94 87 92 95	42 31 40 46 49 42 48 35 46 49
Northeastern Avg Midwestern Avg Southern Avg Southwestern Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	31 19 25 26 39 28 27 59 6		82 87 84 82 75 82 82 82 95 65	

Table 7. Areawide Speeds and Delay per Capita for 1994

One direct effect of congestion is that excess fuel is consumed while vehicles drive in congested traffic conditions. This study estimates the excess fuel consumed from the speeds used in the travel delay estimates. Raus (9) developed an equation for fuel economy that is appropriate for use with areawide speed and travel estimates. Equation 2 is a simple linear relationship between average speed and vehicle fuel efficiency. The speeds for the three congested categories of travel and the uncongested range were used in Equation 2 to estimate fuel economy values for each range. The amount of peak-period travel was combined with the fuel consumption rate for each congested category to estimate the amount of fuel consumed in excess of that which would have been consumed during uncongested travel.

$$\frac{Fuel\ Economy}{(kilometers\ per\ liter)} = 3.74 + 0.11 \frac{Average\ Vehicular\ Speed}{(kilometers\ per\ hour)}$$
Eq. 3

Table 8 shows the annual excess fuel consumed in congested travel within the study areas. Los Angeles and New York had the highest fuel consumption with more than 2 billion liters wasted annually in each urban area. Houston ranked seventh with 587 million liters consumed annually due to congestion. To see the effect of this on the individual motorist, the wasted fuel was divided by the population and eligible drivers. Washington, DC had the most fuel wasted per capita with about 248 liters. This value shows that each person in Washington, DC wastes almost 1 liter of fuel per workday in congested travel. Houston (6th), Dallas (7th), Austin (13th), and Fort Worth (14th) rank in the top 15 urban areas. The Western region had the highest wasted fuel per capita with 164 liters. All other regions were no higher than 129 liters per capita. The impact on individual drivers has San Bernardino-Riverside with the greatest fuel wasted per driver with 316 liters per year. Washington, DC was second with 296 liters per driver. Houston (5th) and Dallas (7th) were the only Texas cities in the top 10. The Western region had the highest average with 207 liters per eligible driver or about 1 wasted liter of fuel per workday. All other regions were under 200 liters per eligible driver.

	Annual Lit	ers of Fuel	Wasted (1	nillion)	Annual Excess Fuel	_	Annual Excess Fuel	
Urban Area	Recurring	Incident	Total	Rank ⁱ	Consumed per Capita (liters)	Rank ²	Consumed per Eligible Driver (liters)	Rank ²
Northeastern Cities Baltimore, MD Boston, MA Hartford, CT New York, NY Philadelphia, PA Pittsburgh, PA Washington, DC Midwestern Cities	78 129 20 802 162 68 307	144 351 41 1,469 217 102 546	222 480 61 2,271 379 170 853	19 8 40 2 12 23 5	105 161 97 134 72 89 248	22 12 25 16 39 32 1	133 193 130 167 91 108 296	22 13 23 15 39 33 2
Chicago, IL Cincinnati, OH Cleveland, OH Columbus, OH Detroit, MI Indianapolis, IN Kansas City, MO Louisville, KY Milwaukee, WI Minn-St. Paul, MN Oklahoma City, OK St. Louis, MO	398 48 59 40 265 24 21 25 35 92 18 92	460 41 47 33 432 47 28 36 89 20 105	858 89 106 73 697 56 68 53 71 181 38 197	4 34 28 36 6 41 39 42 37 21 48 20	111 71 59 74 174 58 52 64 57 83 44 98	21 40 42 38 9 43 45 41 44 35 48 24	144 91 77 93 236 75 66 80 77 104 57 127	21 39 42 38 44 45 41 42 35 48 25
Southern Cities Atlanta, GA Charlotte, NC Ft. Lauderdale, FL Jacksonville, FL Memphis, TN Miami, FL Nashville, TN New Orleans, LA Norfolk, VA Orlando, FL Tampa, FL Southwestern Cities	213 24 52 42 20 146 25 40 36 34 31	234 24 69 53 22 182 28 60 66 45 38	447 48 121 95 42 328 53 100 102 79 69	9 44 25 31 45 13 42 30 29 35 38	186 89 92 120 47 169 86 90 104 83 90	8 32 28 18 47 10 34 30 23 35 30	235 112 111 154 62 215 108 118 129 102 113	9 31 32 19 46 11 33 28 24 36 30
Albuquerque, NM Austin, TX Corpus Christi, TX Dallas, TX Denver, CO El Paso, TX Fort Worth, TX Houston, TX Phoenix, AZ Salt Lake City, UT San Antonio, TX	20 44 155 110 64 250 139 24 54	22 48 4 256 115 11 109 337 114 18 59	42 92 8 411 2255 21 173 587 253 42 113	45 32 50 10 18 49 22 7 16 45 27	77 156 28 187 135 36 139 199 119 119 48 93	37 13 50 7 15 49 14 6 19 46 27	100 196 37 239 167 49 184 261 156 62 124	37 12 50 7 15 49 14 5 17 46 26
Western Cities Honolulu, HI Los Angeles, CA Portland, OR Sacramento, CA San Bernardino-Riv, CA San Fran-Oak, CA San Fran-Oak, CA San Jose, CA Seattle-Everett, WA	35 1,138 49 61 141 137 391 119 176	56 1,331 80 53 165 95 493 140 235	91 2,469 129 114 306 232 884 259 411	33 1 24 26 14 17 3 15 10	131 206 118 94 229 91 228 168 215	17 5 20 26 2 29 3 11 4	155 264 147 123 316 114 279 217 252	18 4 20 27 1 29 3 10 6
Northeastern Avg Midwestern Avg Southern Avg Southwestern Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	223 94 60 80 251 83 130 1,138 4	408 116 75 99 296 118 177 1,469 4	631 210 135 179 547 201 307 2,469 8		129 79 105 111 164 120 114 248 28		160 102 133 143 207 156 145 316 37	

Table 8. Annual Excess Fuel Consumed Due to Traffic Congestion in 1994

Notes: ¹ Rank value of 1 associated with greatest fuel consumption. ² Rank value of 1 associated with greatest fuel consumption per capita.

Table 9 shows the annual amount of fuel wasted due to congestion for certain years from 1982 to 1994. Thirty-six of the 50 urban areas experienced at least a 100 percent increase in the amount of wasted fuel. Indianapolis had the largest increase with 409 percent over the 12-year period. Philadelphia had the smallest increase with only 50 percent. The summary statistics show that the Midwestern, Western, and Southern regions had the highest average growth over the period. Each experienced at least 100 percent growth.

Urban Area	1982	1986	1990	Liters (millio	1993	1994	Percent Change 1982-1994
Indianapolis, IN	11	14	24	27	39	56	409
Salt Lake City, UT	10	14	20	29	34	42	320
Hartford, CT	16	27	45	49	60	61	281
Cleveland, OH	30	43	76	88	98	106	253
Minn-St. Paul, MN	55	94	137	155	170	181	229
Albuquerque, NM	13	20	28	29	34	42	223
Cincinnati, OH	28	35	59	77	85	88	214
San Diego, CA	74	134	230	239	231	232	214
Kansas City, MO	22	28	34	58	65	68	209
El Paso, TX	7	12	13	19	20	21	200
Baltimore, MD	75	127	167	204	216	223	197
Seattle-Everett, WA	139	237	352	392	402	411	196
Sacramento, CA	40	61	91	97	111	115	188
Atlanta, GA	157	268	313	353	409	447	185
Orlando, FL	28 33	44	50	57	70	79 02	182
Austin, TX	33 19	59 23	65 26	67 35	80 43	92 53	179 179
Louisville, KY Memphis, TN	19	23 19	26	35 34	43 37	53 43	169
Corpus Christi, TX	3	4	4	6	7	43 8	169
Ft. Lauderdale, FL	48	68	95	105	111	122	154
Charlotte, NC	19	28	38	44	47	48	153
San Antonio, TX	45	82	84	95	105	113	155
Nashville, TN	22	38	53	52	48	53	141
Portland, OR	54	66	95	116	124	130	141
Columbus, OH	31	40	63	71	72	73	135
San Bernardino-Riv, CA	132	213	268	298	307	307	133
Fort Worth, TX	76	127	133	143	160	173	128
Jacksonville, FL	42	51	74	80	87	94	124
Pittsburgh, PA	77	122	149	154	163	170	121
Washington, DC	390	564	700	800	824	853	119
Norfolk, VA	47	82	99	98	95	102	117
Milwaukee, WI	34	49	62	66	66	71	109
San Jose, CA	126	212	251	265	261	258	105
Chicago, IL	424	622	696	809	821	858	102
Denver, CO	112	144	178	201	221	225	101
Oklahoma City, OK	19	26	28	34	37	38	100
New Orleans, LA	50	83	90	88	90	99	98
Detroit, MI	357	420	539	620	691	697 082	95
San Fran-Oak, CA	454	723	869	858	882	883	94
Miami, FL Tampa, FL	171 36	203 47	291 60	293 65	316 63	328 69	92 92
Tampa, FL Dallas, TX	30 216	352	359	370	376	411	92 90
Phoenix, AZ	133	180	218	245	255	253	90 90
Boston, MA	255	381	453	472	463	479	88
Honolulu, HI	49	61	72	84	91	91	86
Los Angeles, CA	1,370	2,081	2,405	2,466	2,503	2,469	80
St. Louis, MO	118	148	165	167	190	197	67
New York, NY	1,397	1,593	2,018	2,154	2,234	2,271	63
Houston, TX	388	496	518	546	576	586	51
Philadelphia, PA	253	315	348	371	382	379	50
Northeastern Avg	352	447	554	601	620	681	80
Midwestern Avg	96	129	159	184	198	210	116
Southern Avg	58	85	108	115	125	135	133
Southwestern Avg	94	135	147	159	170	179	90
Western Avg	271	421	515	535	546	547	101
Texas Avg	110	162	168	178	189	201	83
Total Avg	154	218	265	285	297	307	98
Maximum Value	1,397	2,081	2,405	2,466	2,503	2,469	409
Minimum Value	3	4	4	6	7	8	50

Table 9. Annual Wasted Fuel Due to Congestion

Source: TTI Analysis and Local Transportation Agency References.

COST OF CONGESTION

Another method of assessing impact is to look at economic factors. Travel delay and wasted fuel can be expressed as costs of congestion. This section presents estimates of this cost in each of the study areas and relates these costs to the persons and vehicles in the area. This chapter also reviews the effort required by urban areas to maintain a constant congestion level using additional roadway construction as the only enhancement.

Additional Capacity

The addition of capacity to alleviate congestion is becoming more difficult and less acceptable in many urban areas, but it is among the tools that are used to address congestion problems. As Table 2 indicates, very few urban areas have been able to sustain the level of roadway construction necessary to maintain a slow congestion growth rate on their major roadway system. Table 10 compares the amount of roadway needed each year to maintain the 1994 congestion level based on the recent traffic growth rate and the amount of roadway constructed over the most recent five years.

The estimate of the annual roadway construction needed to address increasing traffic levels is developed by applying the annual traffic growth rate to the amount of freeway and principal arterial streets. The congestion index is a ratio of traffic volume (demand) to facility length (supply). If the RCI is to remain constant (indicating the same congestion level), system supply has to increase by the same percentage as demand.

For example, Indianapolis would require an additional 64 lane-kilometers of freeway and 78 lanekilometers of principal arterial streets *every year* to maintain the 1994 congestion level with 4.86 percent annual growth in daily VKT between 1990 and 1994. During this five-year period, only an average of 24 lane-kilometers of freeway and 48 lane-kilometers of principal arterial street were added annually. This gave Indianapolis an annual deficit of 40 lane-kilometers of freeway and 30 lane-kilometers of principal arterial streets.

		ng (1994) ne-km	Average Annual		Freeway e-km		Prin. Art. e-km		ane-km ficiency
Urban Area	Fwy	Prin. Art.	VKT Growth (%) ¹	Needed	Added ²	Needed	Added ²	Fwy	Prin. Art.
Detroit, MI	2,954	7,124	4.83	143	38	344	211	105	133
Orlando, FL	1,047	1,932	6.78	71	24	131	52	47	79
New York, NY	10,151	12,478	1.59	162	163	199	76	-1	123
Kansas City, MO	2,520	1,819	5.22	132	83	95	28	49	67
Atlanta, GA	3,462	3,413	7.25	251	177	247	221	74	26
Washington, DC	2,705	3,832	3.27	89	62	125	52	27	73
Nashville, TN	1,079	1,570	6.97	75	72	109	14	3	95
Cincinnati, OH	1,586	1,344	4,44	70	32	60	6	38	54
San Antonio, TX	1,594	1,827	4.93	79	66	90	18	13	72
Minn-St. Paul, MN	2,496	1,996	4.42	110	28	88	97	82	-9
Baltimore, MD	2,230	2,777	2.99	67	54	83	26	13	57
Indianapolis, IN	1,320	1,610	4.86	64	24	78	48	40	30
Phoenix, AZ	1,208	5,394	3.22	39	50	173	93	-11	80
Denver, CO	1,610	3,043	2.79	45	46	85	16	-1	69
Houston, TX	3,623	3,623	3.43	124	133	124	48	-9	76
Fort Worth, TX	1,811	1,666	4.92	89	42	82	66	47	16
Dallas, TX	2,930	3,091	3.18	93	44	98	85	49	13
Ft. Lauderdale, FL	1,167	2,029	5.13	60	50	104	58	10	46
Seattle-Everett, WA	2,093	2,681	2.68	56	36	72	36	20	36
Cleveland, OH	1,932	1,876	2.44	47	20	46	18	27	28
Memphis, TN	757	1,723	6.85	52	32	118	87	20	31
Philadelphia, PA	2,785	5,313	1.96	55	89	104	20	-34	84
Louisville, KY	1,038	1,014	5.35	56	22	54	44	34	10
Columbus, OH	1,352	1,047	3.13	42	16	33	16	26	17
Pittsburgh, PA	1,884	3,019	2.62	49	68	79	22	-19	57
Los Angeles, CA	8,903	20,206	0.74	66	121	149	58	-55	91
Boston, MA	2,447	4,685	1.33	33	0	62	60	33	2
Austin, TX	869	829	6.07	53	36	50	34	17	16
Jacksonville, FL	837	2,174	3.99	33	28	87	60	5	27
Charlotte, NC	531	966	4.49	24	12	43	26	12	17
Salt Lake City, UT	877	797	5.95	52	14	47	56	38	-9
Miami, FL	1,071	3,775	3.28	35	24	124	109	11	15
St. Louis, MO	2,793	3,220	2.07	58	18	67	81	40	-14
El Paso, TX	604	1,409	2.54	15	10	36	16	5	20
Oklahoma City, OK	1,191	1,409	4.22	50	8	60	78	42	-18
Corpus Christi, TX	370	612	5.87	22	18	36	18	4	18
Sacramento, CA	1,312	2,045	3.42	45	26	70	68	19	2
Hartford, CT	990	1,079	2.23	22	14	24	14	8	10
Honolulu, HI	644 024	411	5.10	33	24	21	12	9	9
Norfolk, VA	934	1,240	3.55	33	46	44	14	-13	30
Portland, OR	1,006	1,127	4.54	46	28	51	54	18	-3
San Jose, CA	1,980	2,222	1.73	34	28	39	34	6	5
Tampa, FL	564	1,288	4.55	26	20	59	56	6	3
Chicago, IL	4,162	8,654	4.07	169	64	352	449	105	-97
Milwaukee, WI	974	1,900	2.75	27	4	52	70	23	-18
New Orleans, LA	668	1,191	3.87	26	22	46	46	4	0
Albuquerque, NM	403	1,369	3.54	14	12	48	52	2	-4
San Bernardino-Riv, CA	1,554	3,421	1.89	29	28	65	74	1	-9
San Diego, CA	2,818	2,858	0.40	11	10	11	26	1	-15
San Fran-Oak, CA	3,945	3,800	0.42	17	24	16	44	-7	-28

Table 10. Illustration of Annual Capacity Increase Required to Prevent Congestion Growth

Notes: ¹ Average annual growth rate of freeway and principal arterial streets between 1990 and 1994. ² Average lane-kilometers added annually from 1990 to 1994.

The amount of additional capacity required for freeway and principal arterial street systems makes it apparent that the construction of additional roadway as the sole alternative to alleviate congestion is not being used in many urban areas. Regardless of whether the majority of an area's travel is served by the freeway or principal arterial street system, roadway construction must be combined with a range of other improvements and programs to address the needs of severely congested corridors.

Cost Analysis

Many variables are used to analyze congestion cost in this study. Some of these cost variables fluctuate with price trends. The variables—fuel cost, commercial vehicle operating cost, and the average cost of time—are updated annually to reflect the change in these costs. Appendix B of Volume 1 of this report contains a more detailed discussion of the calculation of cost. Estimates of vehicle-hours of delay and liters of wasted fuel should be used to analyze congestion trends since congestion costs reflect changes in the price per hour or liter, as well as changes in the transportation situation in an urban area.

Table 11 shows the component and total congestion costs for each urban area. In 1994, the total cost of congestion for the urban areas studied was approximately \$53 billion. This represents a four percent increase in the cost of congestion since 1993 (\$51 billion). The increase in the value of time rate was 2.4 percent, and average fuel costs averaged about a 4 percent decrease in the 50 study areas. Studywide averages indicate that delay accounted for approximately 90 percent of an urban area's congestion cost. The average cost burden placed on urban areas in 1994 due to delay was \$960 million, compared to \$910 million in 1993.

Fourteen urban areas had total congestion costs exceeding \$1 billion. Of the seven urban areas studied in Texas, only two, Houston (7th) and Dallas (11th), ranked in this highest group. Congestion in the Texas urbanized areas resulted in a cost of approximately \$4.8 billion, a nine percent increase from 1993 congestion costs.

	Annual Cost Due to Congestion (\$ millions)						
Urban Area	Delay	Fuel	Total	Rank			
Los Angeles, CA	7,790	830	8,620	1			
New York, NY	7,140	760	7,900	2 3			
San Fran-Oak, CA	2,760	300	3,060	3			
Chicago, IL	2,720	280	3,000	4			
Washington, DC	2,690	270	2,960	5			
Detroit, MI	2,210	210	2,420	6 7			
Houston, TX	1,830	170	2,000	7			
Boston, MA	1,500	150	1,650	8			
Atlanta, GA	1,400	130	1,530	9			
Seattle-Everett, WA	1,280	140	1,420	10			
Dallas, TX	1,280	130	1,410	11			
Philadelphia, PA	1,220	120	1,340	12			
Miami, FL	1,050	110	1,160	13			
San Bernardino-Riv, CA	960	110	1,070	14			
San Jose, CA	810	90	900	15			
Phoenix, AZ	800	90	890	16			
Denver, CO	710	80	790	18			
San Diego, CA	710	80	790	18			
Baltimore, MD	700	80	780	19			
St. Louis, MO	620	60 60	680	20			
Minn-St. Paul, MN	570	60	630	21			
Pittsburgh, PA	550	50	600	22			
Fort Worth, TX	540	50	590	23			
Portland, OR	400	50	450	24			
Ft. Lauderdale, FL	380	40	420	25			
Sacramento, CA	360	40	400	26			
San Antonio, TX	350	40	390 260	27			
Cleveland, OH	330	30	360	28			
Norfolk, VA	320	30	350	29			
New Orleans, LA	310	30	340	30			
Honolulu, HI	290 200	40	330	32			
Jacksonville, FL	300 290	30 20	330	32 33			
Austin, TX	290	20 20	310 300	33 34			
Cincinnati, OH	280	20	270	34			
Orlando, FL Columbus, OU	230	20 20	250	35 36			
Columbus, OH Kansas City, MO	230	20	230	38			
Milwaukee, WI	220	.20	240	38			
Tampa, FL	220	20	240 240	38			
Hartford, CT	190	20	240 210	40			
Indianapolis, IN	170	20	190	40 42			
Louisville, KY	170	20	190	42			
Nashville, TN	170	20	190	42			
Charlotte, NC	150	20	170	44			
Albuquerque, NM	130	20	150	46			
Memphis, TN	130	20	150	46			
Salt Lake City, UT	130	20	150	46			
Oklahoma City, OK	120	10	130	48			
El Paso, TX	60	0	60	49			
Corpus Christi, TX	20	0	20	50			
Northeastern Avg	2,000	210	2,210				
Midwestern Avg	650	60	710				
Southern Avg	430	40	470				
Southwestern Avg	560	60	620				
Western Avg	1,710	180	1,890				
Texas Avg	620	60	680				
Total Avg	960	100	1,060				
Maximum Value	7,790	830	8,620				
Minimum Value	20	0	20				

Source: TTI Analysis.

.

Table 12 illustrates the estimated cost of congestion per capita and eligible driver. Viewing congestion costs in relation to population and eligible drivers provides an estimate of the effects of congestion on the individual, which might be thought of as the "congestion tax" on residents of urban areas. San Bernardino-Riverside had the highest per eligible driver cost (\$1,100 per driver), while Washington, DC had the highest per capita cost (\$860 per person). Houston had the highest values of any of the urban areas in Texas in both categories with a per driver cost of \$390 and a per capita cost of \$680.

Table 13, which illustrates the rankings of urban areas by the roadway congestion index, annual per capita, and per eligible driver costs shows the individual relationships of the "congestion tax" estimates to roadway congestion index. The rankings of the cost estimates are fairly consistent with just 12 urban areas occupying the top 10 positions in the three categories. The individual cost components should be more closely related to the roadway congestion index values, which is also a measure of the impact of congestion on individuals. When compared with the roadway congestion index rankings, only two urban areas, Chicago and San Diego, are ranked in the top 10 in the RCI but not in either of the unit cost categories.

Table 14 displays the 1993 and 1994 rankings of the RCI values and the congestion costs per capita. The change during the past year can be seen in the cost and RCI rankings. Seven urban areas changed their RCI rankings by more than one position. Of these seven, only two moved their overall rankings higher between 1993 and 1994 (Salt Lake City and St. Louis).

	Congestion Cost			
Urban Area	Per Eligible Driver (dollars)	Per Capita (dollars)		
Northeastern Cities				
Baltimore, MD	460	360		
Boston, MA	660	550		
Hartford, CT	450	340		
New York, NY	580	460		
Philadelphia, PA Pittsburgh, PA	320 380	250 310		
Washington, DC	1,030	860		
Midwestern Cities	1,000	800		
Chicago, IL	500	390		
Cincinnati, OH	310	240		
Cleveland, OH	260	200		
Columbus, OH	320	250		
Detroit, MI Indianapolis IN	820 250	600		
Indianapolis, IN Kansas City, MO	230	200 180		
Louisville, KY	250	220		
Milwaukee, WI	260	200		
Minn-St. Paul, MN	360	290		
Oklahoma City, OK	200	150		
St. Louis, MO	440	340		
Southern Cities	800	640		
Atlanta, GA Charlotte, NC	380	310		
Ft. Lauderdale, FL	380	320		
Jacksonville, FL	540	420		
Memphis, TN	210	160		
Miami, FL	760	600		
Nashville, TN	370	300		
New Orleans, LA	410 440	310 350		
Norfolk, VA Orlando, FL	350	290		
Tampa, FL	400	320		
Southwestern Cities	,	520		
Albuquerque, NM	350	270		
Austin, TX	670	530		
Corpus Christi, TX	130	90		
Dallas, TX	810 580	640 470		
Denver, CO El Paso, TX	170	470 120		
Fort Worth, TX	630	480		
Houston, TX	890	680		
Phoenix, AZ	550	420		
Salt Lake City, UT	210	160		
San Antonio, TX Western Cities	420	320		
Honolulu, HI	550	470		
Los Angeles, CA	920	720		
Portland, OR	510	410		
Sacramento, CA	430	330		
San Bernardino-Riv, CA	1,100	790		
San Diego, CA San Fran-Oak, CA	390 960	310 790		
San Fran-Oak, CA San Jose, CA	750	580		
Seattle-Everett, WA	870	740		
Northeastern Avg	550	450		
Midwestern Avg	350	270		
Southern Avg	460	360		
Southwestern Avg	490	380		
Western Avg	720	570		
Texas Avg	530	410		
Total Avg	500 1,100	390 860		
Maximum Value Minimum Value	1,100	860 90		
	J.5U	<u>1 90</u>		

Table 12. Estimated Unit Costs of Congestion in 1994

Northeastern Cities Baltimore, MD2122Boston, MA1812Vision, MA1812	
Baltimore, MD2122Boston, MA1812	
Boston, MA 18 12	22
	13
	23
Hartford, CT 41 24 New York, NY 11 17	
	15
Philadelphia, PA 24 38	38
Pittsburgh, PA 47 30	31
Washington, DC 2 1	2
Midwestern Cities	
Chicago, IL 5 21	21
Cincinnati, OH 24 40	40
Cieveland, OH 27 42	42
Columbus, OH 36 38	38
Detroit, MI 7 9	7
Indianapolis, IN 43 42	44
Kansas City, MO 48 45	45
Louisville, KY 36 41	41
Milwaukee, WI 27 42	42
Minn-St. Paul, MN 26 35	35
Oklahoma City, OK 46 48	48
St. Louis, MO 30 24	24
Southern Cities	24
Atlanta, GA 10 7	9
Charlotte, NC 38 30	31
Ft. Lauderdale, FL 29 27	31
	19
······································	46
Miami, FL 4 9	10
Nashville, TN 35 34	34
New Orleans, LA 14 30	28
Norfolk, VA 41 23	24
Orlando, FL 45 35	36
Tampa, FL 19 27	29
Southwestern Cities	
Albuquerque, NM 30 37	36
Austin, TX 32 13	12
Corpus Christi, TX 50 50	50
Dallas, TX 16 7	8
Denver, CO 19 15	15
El Paso, TX 49 49	49
Fort Worth, TX 32 14	14
Houston, TX 13 6	5
Phoenix, AZ 16 18	17
Salt Lake City, UT 38 46	46
San Antonio, TX 43 27	27
Western Cities	-
Honolulu, HI 12 15	17
Los Angeles, CA 1 5	4
Portland, OR 14 20	20
Sacramento, CA 21 26	26
San Bernardino-Riv, CA 9 2	1
San Diego, CA 8 30	30
San Fran-Oak, CA 3 2	3
San Jose, CA 21 11	11
San Jose, CA 21 11 Seattle-Everett, WA 6 4	6

Table 13. 1994 Rankings of Urban Area by Estimated Impact of Congestion

	Roadway Congestion Index			Congestion Cost per Capita (\$)		Annual Congestion Cost (\$ millions)		
Urban Area	1993 Value	1994 Value	1993 Rank	1994 Rank	1993	1994	1993	1994
Northeastern Cities								
Baltimore, MD	1.04	1.06	22	21	350	360	730	770
Boston, MA	1.07	1.08	17	18	520	550	1,560	1,650
Hartford, CT	0.93	0.93	35	41	330	340	200	210
New York, NY	1.15	1.15	11	11	450	460	7,600	7,900
Philadelphia, PA	1.04	1.05	22	24	250	250	1.320	1,330
Pittsburgh, PA	0.82	0.83	46	47	290	310	560	600
Washington, DC	1.41	1.43	2	2	820	860	2,790	2,960
Midwestern Cities				_				_,
Chicago, IL	1.26	1.28	5	5	370	390	2,790	2,990
Cincinnati, OH	1.03	1.05	25	24	220	240	280	300
Cleveland, OH	0.98	1.00	28	27	180	200	320	360
Columbus, OH	0.93	0.95	35	36	250	250	240	250
Detroit, MI	1.23	1.24	6	7	590	600	2,340	2,420
Indianapolis, IN	0.89	0.92	44	43	130	200	130	190
Kansas City, MO	0.78	0.80	48	48	160	180	210	230
Louisville, KY	0.93	0.95	35	36	180	220	140	180
Milwaukee, WI	1.00	1.00	27	27	180	200	220	250
Minn-St. Paul, MN	1.02	1.04	26	26	270	290	570	620
Oklahoma City, OK	0.86	0.85	45	46	150	150	120	130
St. Louis, MO	0.96	0.98	30	30	320	340	640	680
Southern Cities								
Atlanta, GA	1.16	1.18	10	10	590	640	1,360	1,530
Charlotte, NC	0.92	0.94	40	38	310	310	160	170
Ft. Lauderdale, FL	0.98	0.99	28	29	290	320	370	420
Jacksonville, FL	0.96	0.97	30	32	380	420	300	330
Memphis, TN	0.93	0.94	35	38	140	160	120	150
Miami, FL	1.32	1.32	4	4	560	600	1,090	1,160
Nashville, TN	0.93	0.96	35	35	270	300	160	180
New Orleans, LA	1.09	1.11	15	14	270	310	300	340
Norfolk, VA	0.92	0.93	40	41	330	350	320	350
Orlando, FL	0.82	0.86	46	45	250	290	230	270
Tampa, FL	1.06	1.07	20	19	290	320	220	240
Southwestern Cities	0.00	0.00	20	20	220		100	1.50
Albuquerque, NM	0.96	0.98	30	30	220	270	120	150
Austin, TX	0.95	0.97	33	32	470	530	270	310
Corpus Christi, TX	0.75	0.76	50 17	50 16	80 590	90	20	30
Dailas, TX	1.07	1.09	17	16 19	590 460	640	1,250	1,400
Denver, CO	1.07	1.07	17 49	19 49		470	750	790 70
El Paso, TX Fort Worth TY	0.77	0.78 0.97	33	49 32	120 440	120 480	70 530	70 590
Fort Worth, TX	0.95		33 12	32 13	440 660	480 680	1,920	2,000
Houston, TX Phoenix A7	1.13 1.08	1.12 1.09	12	15	420	420	870	2,000 890
Phoenix, AZ Salt Lake City, UT	0.92	0.94	40	38	130	420	110	140
San Antonio, TX	0.92	0.94	40	43	290	320	350	390
Western Cities	0.71	5.72	-r <i>u</i>		~/0	240	550	
Honolulu, HI	1.13	1.13	12	12	450	470	310	320
Los Angeles, CA	1.54	1.52	1	1	710	720	8,540	8,620
Portland, OR	1.11	1.11	14	14	390	410	420	450
Sacramento, CA	1.04	1.06	22	21	310	330	380	400
San Bernardino-Riv, CA	1.21	1.20		9	790	790	1,040	1,070
San Diego, CA	1.21	1.21	8	8	300	310	770	790
San Fran-Oak, CA	1.33	1.33	3	3	780	790	2,980	3,060
San Jose, CA	1.05	1.06	21	21	580	580	880	890
Seattle-Everett, WA	1.23	1.25	6	6	720	740	1,350	1,420

•

Source: TTI Analysis and Local Transportation Agency References.

Effects of Congestion

Traffic congestion is a fact of life in most metropolitan areas. It affects both individual travelers and commercial shippers. Commuters consider traffic congestion when they make a decision about where to live. Congestion causes travelers to choose different routes to and from work and shopping. Departure times are adjusted to account for lost time due to heavy traffic conditions. Extra time is often allotted when making a trip to account for the variability in the travel time to reach a destination. All of these factors have a value that ultimately adds to the "price tag" associated with congestion.

Shippers select locations for their warehouses and stores based on several considerations, one of which is accessibility. Traffic congestion also affects inventory decisions. If trucks cannot deliver goods in a reliable fashion, companies may have to retain more inventory than would normally be the case. Companies pass along the costs associated with these decisions to the consumer. So, everyone shares these additional costs; prices reflect the additional cost of moving goods and providing services through and between the cities.

Land use choices also have direct effects on the transportation network. The placement of large suburban activity centers along minor arterial streets designed to carry persons on local trips rather than longer distance commute trips have placed a tremendous strain on much of the suburban roadway networks in many cities. Transit and carpool use in many of these areas is relatively low due to the low density and cheap, available parking.

In addition to population growth, the land area of these urban areas continues to extend further from the traditional city. These increases in population and urban area size continue to have adverse effects on traffic congestion.

Congestion Growth

Table 2 shows that congestion levels have risen an average of more than 22 percent between 1982 and 1994 (just under two percent per year). Many cities have experienced a much greater increase in congestion during this time, including two with greater than three percent per year. Of the 50 cities in the study, only two (Houston and Phoenix) have lower congestion levels in 1994 than in 1982. Table 8 shows the annual hours of delay experienced in traffic by each driver have increased from 19 hours in 1982 to 34 hours in 1994 (79 percent increase). Not one city has seen a decrease in the delay experienced by drivers during this 13 year period.

Despite these increases in congestion, some statistics have shown that travel times to work have remained fairly constant or have dropped slightly in the 1980s and 1990s (5). This is not contradictory to findings of this research study. The shorter work travel times are due to the fact that more homes and jobs are located in the suburbs. This shift in the location of both employees and jobs creates more suburb-to-suburb trips. While these suburban roadways are relatively uncongested in the beginning of the development cycle, they become increasingly congested as the area is more successful in attracting business. More of these "edge cities" are reaching this point in the development cycle.

Figure 4 illustrates the relationship between congestion level (represented by roadway congestion index values) and population. The populations have been divided into four categories: less than 0.9 million, 0.9 million to 1.7 million, 1.7 million to 2.5 million, and greater than 2.5 million. Figure 5 shows the congestion levels generally associated with these four population ranges. A city with a population of about 1.5 million persons would expect to have a congestion level of less than 1.25, well beyond the undesirable congestion threshold of 1.0. In general, as the population of an area increases, congestion levels in the area grow also.

Figure 4. Population and Congestion Level from 1982 to 1994

Figure 5. Population Ranges and Congestion Level

Figure 6 shows the relationship that exists between congestion level and population density. The relationship illustrates that the more dense urban areas have higher congestion levels. This graph is simplistic in nature and does not account for many factors that are highly correlated with population density. One such factor is the development age of the each urban area. Many of the northeastern cities were developed long before cities began to rely on the automobile and roadway networks to move people and goods. Some of these urban areas have been able to implement effective transit services, thus helping to keep their congestion levels slightly lower than in some of the more recently developed cities. Another factor is the actual size of the urban area. Some of the areas in the study are very large and require a significant roadway system to handle the mobility needs of the area. In these larger areas, it would be very difficult to handle the urban mobility with transit as the sole means of transportation because of the very large amount of surface area that the transit would have to serve. Because of reasons such as these, little emphasis is placed on the density of urban areas as a predictor of congestion level.

Congestion Solutions

In the past, solutions to congestion involved massive amounts of funding that were put into largescale construction projects. Adding new roadways and widening older ones was seen as the way to solve the problem. In most cities, this new roadway capacity was quickly filled with additional traffic, and the old problems of congestion returned.

"Edge cities" developed and continue to develop around many of the large metropolitan areas. As these cities grew and attracted more persons and businesses, the problem of traffic congestion would follow. The solutions to these congestion problems became increasingly difficult with limited transit availability as compared to other activity centers in the metropolitan areas. Cheap and available parking in these areas was usually expected and added to the use of personal automobiles to make work commutes.

Figure 6. Population Density and Congestion Level from 1982 to 1994

Other trends have had an effect on traffic congestion. These include economic depression and population loss. In the past, when a city experienced economic depression, fewer trips were made on the roadways and traffic congestion reductions were observed. Many times economic depression resulted in a decline in population as persons moved to other cities to find jobs. This caused congestion to increase slowly or even to decrease slightly. Obviously, most business leaders do not consider a recession as an acceptable cure to congestion problems.

Investments to relieve congested roadways are taking some new forms. There will continue to be expenditures to add capacity to either existing roadways or in the construction of new facilities. There are also many projects and programs aimed at managing the existing system better. This is being done with operational improvements, such as intelligent transportation systems, traffic signal coordination, incident detection and response, transportation system management, and many others. In addition to managing the roadway network, more emphasis is being placed on the transit systems to provide commuters with options other than private vehicles for their daily commute. Efforts are also underway with travel demand management projects to attempt to modify driver travel patterns by changing departure times or reducing trip frequency during the most congested travel time. These projects all attempt to relieve congestion by utilizing the existing roadway network and land use patterns.

Another option is an attempt to change land use patterns in ways that will allow for vehicle use reductions. Some of these efforts will be to create more dense or compact development patterns and to infill existing urban land currently unused or underutilized by mixing jobs, shops, and homes. In these efforts to redevelop existing urban lands, there are efforts to make street patterns more conducive to transit, walking, and bicycle use. This will allow for easier and more effective transit service and bring persons closer to their jobs, thus reducing the need for automobiles to reach their work destination.

Many of these policy and program choices reflect an acceptance of congestion. For some combination of funding, public support, environmental, and quality of neighborhood reasons many cities are selecting ways to address or manage rather than eliminate congestion. The broad

spectrum of actions, many of which are not directly reflected in the data reported here, and the different congestion goals of urbanized areas should be considered when analyzing the results of this study.

--

REFERENCES

- Lomax, Timothy J., Dennis L. Christiansen, and A. V. Fitzgerald. Texas Transportation Institute, "Estimates of Relative Mobility In Major Texas Cities," Research Report 323-1F, 1982.
- 2 Lomax, Timothy J. Texas Transportation Institute, "Relative Mobility In Texas Cities, 1975 to 1984," Research Report 339-8, 1986.
- 3 Lomax, Timothy J., Diane L. Bullard, and James W. Hanks, Jr. Texas Transportation Institute, "The Impact Of Declining Mobility In Major Texas and Other U.S. Cities," Research Report 431-1F, 1988.
- 4 Lomax, Timothy J., Dave Schrank, and Shawn Turner. Texas Transportation Institute, "Urban Roadway Congestion—1982 to 1992," Research Report 1131-7, September 1995.
- 5 Vincent, Mary Jayne, et al. 1990 Nationwide Personal Transportation Survey-Urban Travel Patterns. FHWA-PL-94-01B, Comsis Corp., Silver Spring, Maryland, June 1994.
- 6 Federal Highway Administration. "Highway Performance Monitoring System," 1982 to 1993 Data. FHWA-M 5600.1B, August 1993.
- 7 United States General Accounting Office. "Traffic Congestion: Trends, Measures, and Effects," Washington, D.C., 1989.
- 8 Richardson, Harry W., and Peter Gordon. 1990 Nationwide Personal Transportation Survey Databook—Volume 2. FHWA-PL-94-010B, Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1994.
- 9 Raus, J. "A Method for Estimating Fuel Consumption and Vehicle Emissions on Urban Arterials and Networks," FHWA-TS-81-210, April 1981.
- 10 Chui, Margaret K., and William E. McFarland. "The Value of Travel Time: New Estimates Developed Using a Speed Choice Model," Research Report 396-2F, Texas Transportation Institute, January 1987.
- 11 "Private Truck Counsel of America Cost Index Survey," Houston Post, July 6, 1987.
- 12 Morris, D. E., and Michael Ogden. "Houston-Galveston Regional Transportation Study," Texas Transportation Institute, January 1990.
- 13 American Automobile Association-Heathrow, Florida, "Fuel Gauge Report," 1993.

- 14 U.S. Department of Commerce, Bureau of the Census. Statistical Abstract of the United States 1994. Washington, D.C., 1994.
- 15 Texas State Department of Highways and Public Transportation. "Permanent Automatic Traffic Recorder Data—1950-1984."
- 16 Lindley, Jeffrey A. "Quantification of Urban Freeway Congestion and Analysis of Remedial Measures," FHWA-RD-87-052, October 1986.

APPENDIX A

SYSTEM LENGTH AND TRAVEL CHARACTERISTICS

Travel and System Length Statistics

Previous TTI research (3,4) used daily vehicle-kilometers of travel (daily VKT) per lane-kilometer of freeway and principal arterial street as indicators of urban congestion levels. The previous studies established the values of 13,000 daily VKT per freeway lane-kilometer and 5,000 daily VKT per principal arterial street lane-kilometer as the thresholds for undesirable congestion levels. Briefly, when areawide freeway travel volumes exceed an average of 13,000 daily VKT per lanekilometer, undesirable levels of congestion occur. The corresponding level of service is reached on principal arterial streets when travel volumes average 5,000 daily VKT per lane-kilometer. More information is available on the development of the methodology in Volume 2.

This section presents comparisons of mobility within geographic regions and between individual urban areas using daily VKT per lane-kilometer statistics.

Freeway Travel and Distance Statistics

Table A-1 summarizes areawide freeway operating statistics. The urban areas are ranked according to the primary congestion indicator, daily VKT per lane-kilometer. Twenty-four urbanized areas exceeded the 13,000 daily VKT per lane-kilometer level indicating areawide congested conditions on the freeway systems. Six of these areas have experienced congested freeway systems since 1982. An additional 12 urban areas studied have daily VKT per lane-kilometer values within 10 percent of the 13,000 level. Urban areas with travel demands in this range would only have to experience moderate to slight increases in travel demands over a few years to cause their freeway systems to operate under congested conditions. The summary statistics at the bottom of Table A-1 show average daily VKT per lane-kilometer values by geographic region. Every region, except the Western (affected by the California cities) and Northeastern regions, has daily VKT per lane-kilometer values below the 13,000 level.

r					
	Daily VKT ¹		Avg. No.	Daily VKT/	
Urban Area	(000)	Lane-Kilometers	Lanes ²	Lane-Kilometer ³	Rank⁴
	······				
Los Angeles, CA	181,930	8,900	8.20	20,430	1
Washington, DC	49,310	2,700	5.40	18,230	2
San Fran-Oak, CA	68,960	3,940	6.80	17,480	3
Seattle-Everett, WA	34,290	2,090	6.00	16,380	4
Chicago, IL	67,820	4,160	5.70	16,300	2
Detroit, MI	47,660	2,950	6.00	16,130	4 5 6 7
San Bernardino-Riv, CA	24,960 17,030	1,550 1,070	7.20 5.50	16,060 15,900	8
Miami, FL San Diego, CA	44,800	2,820	7.60	15,900	8
Atianta, GA	53,130	3,460	6.40	15,350	10
Houston, TX	53,070	3,620	6.40	14,650	11
Boston, MA	35,020	2,450	5.90	14,310	12
Dallas, TX	41,380	2,930	6.00	14,120	13
Honolulu, HI	9,020	640	5.30	14,000	14
New York, NY	141,800	10,150	5.70	13,970	15
Phoenix, AZ	16,740	1,210	5.80	13,870	16
Portland, OR	13,910	1,010	5.20	13,820	17
San Jose, CA	27,170	1,980	6.70	13,720	18
Cincinnati, OH	21,690	1,590	5.70	13,680	19
Baltimore, MD	30,270	2,230	5.50	13,570	20
Denver, CO	21,690	1,610	5.30	13,480	21
Minn-St. Paul, MN	33,330	2,500	5.00	13,350	22
New Orleans, LA	8,870	670	5.80	13,280	23
Sacramento, CA	17,110	1,310	7.00	13,040	24
Milwaukee, WI	12,560	970	5.60	12,890	25
Tampa, FL	7,250	560	5.00	12,860	26
Cleveland, OH	24,810	1,930	4.90	12,840	27
Ft. Lauderdale, FL	14,970	1,170	5.50	12,830	28 29
Jacksonville, FL	10,500 22,280	840 1,810	4.80 5.90	12,540 12,300	29 30
Fort Worth, TX Austin, TX	10,590	870	5.60	12,300	31
Columbus, OH	16,380	1,350	5.90	12,110	32
Philadelphia, PA	33,680	2,790	5.10	12,090	33
St. Louis, MO	33,170	2,790	5.70	11.870	34
Salt Lake City, UT	10,350	880	5.70	11,800	35
Louisville, KY	12,240	1,040	4.60	11,780	36
Albuquerque, NM	4,700	400	5.10	11,680	37
San Antonio, TX	18,560	1,590	5.40	11,640	38
Charlotte, NC	6,170	530	4.30	11,610	39
Indianapolis, IN	15,300	1,320	5.50	11,590	40
Nashville, TN	12,480	1,080	4.90	11,570	41
Hartford, CT	11,370	990	5.60	11,490	42
Memphis, TN	8,690	760	5.40	11,490	42
Norfolk, VA	9,780	930	4.70	10,470	44
Oklahoma City, OK	12,480	1,190	5.20	10,470	44
Orlando, FL	10,830	1,050	5.00	10,350	46
El Paso, TX	6,150	600	5.30	10,190	47
Kansas City, MO	25,160 3,470	2,520 370	4.60 5.50	9,990 9,370	48 49
Corpus Christi, TX Pittsburgh, PA	15,170	1,880	4.30	8,050	
rmoourgii, rA	15,170	1,000	JV	0,000	50
Northeastern Avg	45,230	3,310	5.36	13,100	
Midwestern Avg	26,880	2,030	5.37	12,750	
Southern Avg	14,520	1,100	5.21	12,570	
Southwestern Avg	19.000	1,450	5.64	12,300	
Western Avg	46,910	2,690	6.67	15,650	
Texas Avg	22,210	1,690	5.73	12,060	
Total Avg	28,600	2,000	5.62	13,180	
Maximum Value	181,930	10,150	8.20	20,430	
Minimum Value	3,470	370	4.30	8,050	

Table A-1. 1994 Freeway System Length and Travel Volume

Notes: ¹ Daily vehicle-kilometers of travel. ² Average number of lanes.

³ Daily vehicle-kilometers of travel per lane-kilometer of freeway.

⁴ Rank value of 1 associated with most congested condition. Ranked by daily VKT/lane-kilometer.

Source: TTI Analysis and Local Transportation Agency References.
Principal Arterial Street Travel and System Length Statistics

Table A-2 shows the operating characteristics of the principal arterial street system for each urban area included in this study. As in Table A-1, Table A-2 ranks urban areas by travel per lane-kilometer and contains regional summary statistics. In 1994, 45 of the urban areas studied experienced daily VKT per lane-kilometer levels exceeding 5,000. Of the 50 study areas, 26 have had travel demands exceeding 5,000 daily VKT per lane-kilometer since 1982.

The summary statistics show that all the regional averages exceed the 5,000 daily VKT per lanekilometer level. In contrast to the freeway values, the arterial street statistics indicate more congested operation on the arterial street systems in this study. The regional average travel demand on principal arterial street systems increased between one and two percent from 1993 levels in the Northeastern, Southern, and Southwestern regions. The regional average travel demands showed smaller decreases in the Midwestern and Western regions (less than 1 percent).

Travel Delay

Tables A-3 and A-4 show the recurring and incident hours of delay by congestion level. These two tables give a more detailed look at the delay previously shown in Table 6. These two tables show the types and severity of delay and facility on which it occurs. Table A-3 shows these values for the freeway facilities in the 50 urban areas. This table shows which levels of congestion contain the greatest amount of delay within recurring and incident delay types. Table A-4 shows this same information for the principal arterial street systems in the 50 urban areas.

Urban Area	Daily VKT ^I (000)	Lane- Kilometers	Avg. No. Lanes ²	Daily VKT/ Lane-Kilometer ³	Rank ⁴
Washington, DC	29,790	3,830	4.00	7,770	1
Honolulu, HI	3,120	410	3.80	7,610	
Miami, FL	27,610	3,780	4.60	7,310	2
New York, NY	89,680	12,480	3.40	7,190	2 3 4 5 6 7 8
			3.90		4
Chicago, IL	59,570	8,650		6,880	2
New Orleans, LA	8,090	1,190	4.20	6,790	0
Portland, OR	7,570	1,130	3.50	6,710	7
Philadelphia, PA	35,420	5,310	3.30	6,670	8
Los Angeles, CA	134,270	20,210	4.10	6,650	9
Norfolk, VA	8,170	1,240	3.50	6,590	10
St. Louis, MO	20,490	3,220	3.60	6,360	11
Tampa, FL	8,080	1,290	3.80	6,280	12
Pittsburgh, PA	18,930	3.020	3.20	6,270	13
	12,800	2.040	4.20	6,260	13
Sacramento, CA					
San Fran-Oak, CA	23,670	3,800	4.00	6,230	15
Detroit, MI	43,500	7,120	4.50	6,110	16
Nashville, TN	9,500	1,570	3.50	6,050	17
Atlanta, GA	20,530	3,410	3.80	6,010	18
Denver, CO	18,110	3,040	3.90	5,950	19
Seattle-Everett, WA	15,900	2.680	3.50	5,930	20
Baltimore, MD	16,180	2,780	4.10	5,830	21
Louisville, KY	5,880	1,010	3.70	5,790	22
					22 23
Minn-St. Paul, MN	11,500	2,000	3.50	5,760	23
Salt Lake City, UT	4,590	800	4.00	5,760	23
Hartford, CT	6,150	1,080	3.80	5,700	25 26
Austin, TX	4,700	830	4.20	5,670	26
Albuquerque, NM	7,680	1,370	4.00	5,610	27
Phoenix, AZ	29,980	5,390	4.30	5,560	28
Columbus, OH	5,800	1,050	3.50	5,540	29
San Diego, CA	15,780	2,860	3.50	5,520	30
Charlotte, NC	5,300	970	3.30	5,480	31
Dallas, TX	16,950	3,090	4.90	5,480	31
	9,050	1,670	4.20	5,430	33
Fort Worth, TX			3.00		33
Cleveland, OH	10,100	1,880		5,390	
Memphis, TN	9,290	1,720	4.60	5,390	34
San Antonio, TX	9,760	1,830	3.60	5,340	36
Oklahoma City, OK	7,490	1,410	3.40	5,310	37
Cincinnati, OH	7,120	1,340	3.50	5,300	38
San Jose, CA	11,710	2,220	4.20	5,270	39
Indianapolis, IN	8,450	1,610	3.80	5,250	40
Orlando, FL	10,140	1,930	3.80	5,250	40
San Bernardino-Riv, CA	17,950	3,420	4.20	5,250	40
Houston, TX	18,900	3,620	4.50	5,220	43
Milwaukee, WI	9,820	1,900	3.40	5,170	43
	10,380	2,030	4.50		44 45
Ft. Lauderdale, FL				5,120	
Kansas City, MO	9,050	1,820	3.60	4,970	46
Boston, MA	22,940	4,690	2.50	4,900	47
Jacksonville, FL	10,550	2,170	3.90	4,850	48
Corpus Christi, TX	2,750	610	4.10	4,500	49
El Paso, TX	5,470	1,410	4.30	3,890	50
Northeastern Avg	31,300	4,740	3.47	6,330	
Midwestern Avg	16,560	2,750	3.62	5,650	
Southern Avg	11,600	1,940	3.95	5,920	
Southwestern Avg	11,630	2,150	4.18	5,310	
Western Avg	26,970	4,310	3.89	6,160	
	9,660	1,870	4.26	5,080	
Texas Avg	18.320	3,000			
Total Avg			3.84	5,820	
Maximum Value	134,270	20,210	4.90	7,770	
Minimum Value	2,750	410	2.50	3,890	1

Table A-2. 1994 Principal Arterial Street System Length and Travel Volume¹

Notes: ¹ Daily vehicle-kilometers of travel.

² Average number of lanes.

³ Daily vehicle-kilometers of travel per lane-kilometer of freeway.

⁴ Rank value of 1 associated with most congested condition. Ranked by daily VKT/lane-kilometer.

Source: TTI Analysis and Local Transportation Agency References

	Recu	urring Vehicle	e-Hours of De	lay ^ı	In	cident Vehicle	-Hours of De	lay ⁱ
Urban Area	Moderate	Heavy	Severe	Total	Moderate	Неаvy	Severe	Total
Northeastern Cities Baltimore, MD Boston, MA	5,390 9,360	9,930 7,340	21,460 49,400	36,780 66,100	12,410 32,770	22,840 25,700	49,350 172,910	84,600 231,380
Hartford, CT	1,710	3,640	3,340	8,690	4,610	9,840	9,020	23,470
New York, NY	77,570	117,960	123,700	319,230	193,920	294,910	309,250	798,080
Philadelphia, PA Pittsburgh, PA Washington, DC Midwestern Cities	8,940 1,960 15,970	9,080 4,470 29,110	13,240 5,470 100,030	31,260 11,900 145,110	18,780 5,680 35,130	19,070 12,980 64,040	27,800 15,870 220,070	65,650 34,530 319,240
Chicago, IL	15,150	26,170	134,320	175,640	18,180	31,410	161,190	210,780
Cincinnati, OH	6,880	11,990	9,310	28,180	5,500	9,590	7,450	22,540
Cleveland, OH	8,370	9,770	14,640	32,780	5,860	6,840	10,250	22,950
Columbus, OH	1,720	4,690	14,520	20,930	1,210	3,290	10,170	14,670
Detroit, MI	16,510	7,070	75,720	99,300	36,310	15,550	166,580	218,440
Indianapolis, IN	5,030	3,040	2,040	10,110	7,550	4,560	3,060	15,170
Kansas City, MO	3,600	1,830	3,440	8,870	11,150	5,680	10,680	27,510
Louisville, KY	1,260	1,370	4,820	7,450	1,390	1,510	5,310	8,210
Milwaukee, WI	3,460	4,110	6,820	14,390	3,460	4,110	6,820	14,390
Minn-St. Paul, MN	10,120	8,900	26,790	45,810	9,110	8,010	24,110	41,230
Oklahoma City, OK St. Louis, MO Southern Cities	2,000 6,150	1,930 11,940	90 13,940	4,020 32,030	2,190 7,380	2,120 14,330	100 16,730	4,410 38,440
Atlanta, GA Charlotte, NC Ft. Lauderdale, FL	6,470 3,000 4,430	33,970 2,500 11,530 7,080	72,840 1,950 6,520	113,280 7,450 22,480	7,120 2,400 6,640 5,340	37,360 2,000 17,300	80,130 1,560 9,790	124,610 5,960 33,730
Jacksonville, FL Memphis, TN Miami, FL Nashville, TN	3,560 2,080 4,560 3,160	7,080 3,040 6,890 2,600	2,540 910 32,030 3,170	13,180 6,030 43,480 8,930	2,290 6,840 3,470	10,610 3,340 10,330 2,850	3,810 1,000 48,040 3,480	19,760 6,630 65,210 9,800
New Orleans, LA	1,530	11,720	3,950	17,200	2,750	21,090	7,110	30,950
Norfolk, VA	3,210	7,530	3,710	14,450	8,030	18,830	9,260	36,120
Orlando, FL	3,860	2,410	8,310	14,580	5,790	3,610	12,460	21,860
Tampa, FL	410	750	5,230	6,390	610	1,130	7,840	9,580
Southwestern Cities Albuquerque, NM Austin, TX Corpus Christi, TX	970 3,690 840	1,620 8,660 210	2,460 13,050 740	5,050 25,400 1,790	1,070 4,060 930	1,780 9,530 230	2,710 14,360 820	5,560 27,950 1,980
Dallas, TX	13,020	31,820	46,130	90,970	23,440	57,270	83,030	163,740
Denver, CO	5,160	14,020	30,350	49,530	5,160	14,020	30,350	49,530
El Paso, TX	1,620	2,640	1,250	5,510	1,780	2,900	1,370	6,050
Fort Worth, TX	5,740	14,020	20,320	40,080	10,330	25,230	36,580	72,140
Houston, TX	15,660	43,210	95,700	154,570	21,930	60,490	133,980	216,400
Phoenix, AZ	7,930	8,760	27,060	43,750	3,170	3,500	10,820	17,490
Salt Lake City, UT	2,190	3,560	6,530	12,280	1,320	2,140	3,920	7,380
San Antonio, TX Western Cities Honolulu, HI Los Angeles, CA	2,700 2,440 26,900	9,230 4,690 56,760	19,120 11,360 529,880	31,050 18,490 613,540	2,970 4,400 32,280	10,160 8,440 68,110	21,030 20,440 635,850	34,160 33,280 736,240
Portland, OR	3,960	5,380	12,890	22,230	7,920	10,760	25,770	44,450
Sacramento, CA	5,410	11,370	5,020	21,800	3,250	6,820	3,010	13,080
San Bernardino-Riv, CA	6,410	16,480	51,370	74,260	7,690	19,780	61,650	89,120
San Diego, CA	25,630	23,720	32,570	81,920	15,380	14,230	19,540	49,150
San Fran-Oak, CA	21,750	47,170	165,910	234,830	28,280	61,320	215,690	305,290
San Jose, CA	7,990	15,510	44,310	67,810	9,590	18,610	53,180	81,380
Seattle-Everett, WA	5,980	28,010	68,890	102,880	8,370	39,220	96,450	144,040
Northeastern Avg	17,270	25,940	45,240	88,450	43,330	64,200	114,900	222,430
Midwestern Avg	6,690	7,730	25,540	39,960	9,110	8,910	35,200	53,220
Southern Avg	3,300	8,180	12,830	24,310	4,660	11,680	16,770	33,110
Southwestern Avg	5,410	12,520	23,880	41,810	6,920	17,020	30,820	54,760
Western Avg	11,830	23,230	102,470	137,530	13,020	27,480	125,730	166,230
Texas Avg	6,180	15,680	28,050	49,910	9,350	23,690	41,600	74,640
Total Avg	8,070	14,220	38,980	61,270	13,140	22,390	57,630	93,160
Maximum Value	77,570	117,960	529,880	725,410	193,920	294,910	635,850	1,124,680
Minimum Value	410	210	90	710	610	230	100	940

Table A-3. Freeway and Expressway Recurring and Incident Vehicle-Hours of Daily Delay for 1994

Notes: ¹ Delay calculated based on vehicular speed in Table B-1.

Source: TTI Analysis.

	Rec	urring Vehic	le-Hours of De	elay ¹	Inc	ident Vehicle-	Hours of Del	ay ¹
Urban Area	Moderate	Heavy	Severe	Total	Moderate	Heavy	Severe	Total
Northeastern Cities Baltimore, MD Boston, MA Hartford, CT New York, NY Philadelphia, PA Pittsburgh, PA	2,860 4,240 1,490 12,580 6,420 6,650	2,700 6,520 2,300 32,100 20,320 4,630	17,230 20,600 2,790 246,910 70,050 30,880	22,790 31,360 6,580 291,590 96,790 42,160	3,150 4,660 1,640 13,830 7,060 7,310	2,970 7,170 2,530 35,310 22,350 5,090	18,950 22,660 3,070 271,610 77,050 33,960	25,070 34,490 7,240 320,750 106,460 46,360
Washington, DC Midwestern Cities Chicago, IL Cincinnati, OH Cleveland, OH Columbus, OH Detroit, MI Indianapolis, IN Kansas City, MO Louisville, KY Milwaukee, WI Minn-St. Paul, MN Oklahoma City, OK St. Louis, MO	9,900 16,730 1,530 2,230 1,510 5,890 1,680 1,560 1,290 990 2,040 1,480 8,890	14,810 37,710 1,700 4,750 2,510 13,270 3,200 1,930 3,580 3,600 2,300 3,010 9,720	64,670 76,210 3,430 5,570 87,280 2,810 3,580 7,250 7,470 18,860 5,380 19,580	89,380 130,650 6,660 10,790 9,590 106,440 7,690 7,070 12,120 12,060 23,200 9,870 38,190	10,890 18,410 1,680 2,450 1,660 6,480 1,850 1,720 1,420 1,090 2,240 1,630 9,770	16,290 41,480 1,870 5,230 2,760 14,600 3,520 2,120 3,940 3,960 2,530 3,310 10,690	71,130 83,840 3,770 4,190 6,130 96,010 3,100 3,930 7,970 8,220 20,750 5,910 21,540	98,310 143,730 7,320 11,870 10,550 117,090 8,470 7,770 13,330 13,270 25,520 10,850 42,000
Southern Cities Atlanta, GA Charlotte, NC Ft. Lauderdale, FL Jacksonville, FL Memphis, TN Miami, FL Nashville, TN New Orleans, LA Norfolk, VA Orlando, FL Tampa, FL	4,170 1,170 3,040 3,530 2,880 4,940 2,080 2,570 960 690 1,800	7,850 2,690 4,120 5,180 2,730 9,380 4,480 3,150 2,630 1,810 3,800	36,230 7,210 9,750 9,860 3,860 57,340 3,590 7,240 8,770 8,780 13,030	48,250 11,070 16,910 18,570 9,470 71,660 10,150 12,960 12,360 11,280 18,630	4,580 1,280 3,340 3,880 3,170 5,430 2,290 2,830 1,060 760 1,980	8,630 2,960 4,530 5,700 3,000 10,320 4,930 3,460 2,890 1,990 4,180	39,850 7,930 10,720 10,850 4,250 63,080 3,950 7,970 9,640 9,650 14,330	53,060 12,170 18,590 20,430 10,420 78,830 11,170 14,260 13,590 12,400 20,490
Southwestern Cities Albuquerque, NM Austin, TX Corpus Christi, TX Dallas, TX Denver, CO El Paso, TX Fort Worth, TX Houston, TX Phoenix, AZ Salt Lake City, UT San Antonio, TX Western Cities	2,230 1,660 490 5,230 4,460 390 2,790 3,620 13,730 2,130 1,900	5,470 2,630 370 6,230 4,160 300 2,590 13,490 25,700 1,940 2,340	2,570 2,840 210 12,490 26,390 1,050 2,570 14,080 24,770 1,540 5,100	10,270 7,130 1,070 23,950 35,010 1,740 7,950 31,190 64,200 5,610 9,340	2,450 1,820 540 5,750 4,910 430 3,070 3,980 15,100 2,350 2,090	6,010 2,890 400 6,850 4,580 330 2,840 14,840 28,270 2,140 2,570	2,820 3,130 230 13,740 29,030 1,160 2,830 15,490 27,240 1,700 5,610	11,280 7,840 1,170 26,340 38,520 1,920 8,740 34,310 70,610 6,190 10,270
Honolulu, HI Los Angeles, CA Portland, OR Sacramento, CA San Bernardino-Riv, CA San Diego, CA San Fran-Oak, CA San Jose, CA Seattle-Everett, WA	$1,240 \\ 26,260 \\ 1,550 \\ 2,420 \\ 8,150 \\ 1,640 \\ 2,960 \\ 3,750 \\ 3,620$	750 63,380 6,610 4,500 9,450 10,300 6,430 4,470 7,560	6,090 168,220 6,970 18,210 15,200 6,130 49,010 12,970 18,760	8,080 257,860 15,130 25,130 32,800 18,070 58,400 21,190 29,940	1,370 28,880 1,710 2,660 8,960 1,800 3,260 4,120 3,990	830 69,720 7,270 4,950 10,400 11,320 7,070 4,920 8,320	6,700 185,040 7,670 20,040 16,720 6,740 53,910 14,270 20,640	8,900 283,640 16,650 27,650 36,080 19,860 64,240 23,310 32,950
Northeastern Avg Midwestern Avg Southern Avg Southwestern Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	6,300 3,820 2,530 3,510 5,730 2,300 4,160 26,260 390	11,910 7,270 4,350 5,930 12,610 3,990 7,940 63,380 300	64,730 20,100 15,060 8,510 33,510 5,480 25,100 246,910 210	82,940 31,190 21,940 17,950 51,850 11,770 37,200 336,550 900	6,930 4,200 2,780 3,860 6,300 2,530 4,580 28,880 430	13,100 8,000 4,780 6,520 13,870 4,390 8,740 69,720 330	71,200 22,110 16,570 9,360 36,860 6,030 27,610 271,610 230	91,230 34,310 24,130 19,740 57,030 12,950 40,930 370,210 990

Table A-4. Principal Arterial Street Recurring and Incident Vehicle-Hours of Daily Delay for 1994

Notes: ¹ Delay calculated based on vehicular speed in Table B-1.

Source: TTI Analysis.

APPENDIX B

ESTIMATION OF CONGESTION COST

Estimation of Congestion Cost

The cost of congestion in each area is estimated using the Highway Performance Monitoring System database and several factors developed from studies of urban travel speeds and traffic volume. This Appendix summarizes the constant values and the variables used to estimate travel delay and fuel consumption costs resulting from traffic congestion.

Cost Estimate Constants

Congestion cost estimates are prepared with the following values held constant for all 50 areas.

- Occupancy-1.25 persons per vehicle. This value is representative of most urban travel during peak travel periods. Occupancy levels are slightly higher near major activity centers and lower in the suburbs.
- Working days per year-250. Weekends and holidays, when congestion levels drop dramatically, are not considered in the conversion from average daily to annual estimates.
- Average cost of time-\$11.00 per person-hour (10).¹

The concept of time valuation used in this study is that people demonstrate a value that they place on time by their actions. Using a toll facility, making frequent lane changing maneuvers, close headway driving, or using residential streets to bypass a congested arterial are behaviors that could lead to accidents or traffic citations but that also may be perceived as time-saving actions. These are the types of characteristics that are included in the value of time used in this study, rather than a wage-based value that might estimate the value to society from time spent in congestion.

• Commercial vehicle operating cost—\$1.46 per kilometer (<u>11</u>). The congestion impact on cargo is not measured in this cost component, but on the value of the vehicle and driver.

¹Referenced value of \$8.00/hr in 1985 adjusted with the Consumer Price Index to value used for 1994 wage rate.

- Vehicle types—95 percent passenger and 5 percent commercial. While the truck percentage is significantly higher in some corridors, this is a good estimate for most urban areas during the peak periods.
- Vehicle speeds—Illustrated in Table B-1. An analysis of traffic volume per lane and peakperiod travel speed resulted in the speed estimates used in the delay estimates.

These constants were applied to all study areas consistently for the cost estimate calculations.

			Congested Daily VKT ^{1,2}					
Functional Class	Parameters	Uncongested	Moderate	Heavy	Severe			
Freeway/Expressway	ADT/Lane	Under 15,000	15,000 - 17,500	17,501 - 20,000	Over 20,000			
	Speed (kph) ³	97	61	53	48			
Principal Arterial Streets	ADT/Lane	Under 5,750	5,750 - 7,000	7,001 - 8,500	Over 8,500			
	Speed (kph) ³	56	45	40	37			

Table B-1. Congested Daily Vehicle-Kilometers of Travel by Average Annual Daily Traffic per Lane Volumes

Note: ¹ Assumes congested freeway operation when ADT/Lane exceeds 15,000.

² Assumes congested principal arterial street operations when ADT/lane exceeds 5,750.

³ Represent a "soft" conversion from miles per hour

Source: TTI Analysis and Houston-Galveston Regional Transportation Study (Volume 2, Appendix B) (12)

Cost Estimate Variables

In addition to the derived constants, five urbanized area/state specific variables were identified and used in the congestion cost estimate calculations. Table B-2 illustrates these variables.

	Daily Vehicle Kil	ometers of Travel	5		
Urban Area	Freeway (000)	Prin. Art. St. (000)	State Average Fuel Cost, (\$/liter)	Population (000)	Eligible Drivers (000)
Northeastern Cities					
Baltimore, MD	30,270	16,180	0.32	2,130	1,680
Boston, MA	35,020	22,940	0.31	2,990	2,490
Hartford, CT	11,370	6,150	0.35	630	470
New York, NY	141,800	89,680	0.33	17,010	13,590
Philadelphia, PA Pittsburgh, PA	33,680 15,170	35,420 18,930	0.31 0.31	5,250 1,910	4,160 1,580
Washington, DC	49,310	29,790	0.32	3,450	2,880
Midwestern Cities	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,,,,,	0.02	5,150	2,000
Chicago, IL	67,820	59,570	0.32	7,700	5,970
Cincinnati, OH	21,690	7,120	0.31	1,260	970
Cleveland, OH	24,810	10,100	0.31	1,810	1,380
Columbus, OH	16,380	5,800	0.31	1,000	790
Detroit, MI Indianapolis, IN	47,660 15,300	43,500 8,450	0.29 0.29	4,010 970	2,950 750
Kansas City, MO	25,160	9,050	0.28	1,320	1,030
Louisville, KY	12,240	5,880	0.29	830	660
Milwaukee, WI	12,560	9,820	0.31	1,240	930
Minn-St. Paul, MN	33,330	11,500	0.31	2,180	1,730
Oklahoma City, OK	12,480	7,490	0.28	850	660
St. Louis, MO Southern Cities	33,170	20,490	0.28	2,000	1,550
Atlanta, GA	53,130	20,530	0.28	2,400	1,900
Charlotte, NC	6,170	5,300	0.30	540	430
Ft. Lauderdale, FL	14,970	10,380	0.32	1,320	1,100
Jacksonville, FL	10,500	10,550	0.32	790	610
Memphis, TN	8,690	9,290	0.30	910	690
Miami, FL	17,030	27,610	0.32	1,940	1,530
Nashville, TN New Orleans, LA	12,480 8,870	9,500 8,090	0.30 0.31	620 1,110	490 840
Norfolk, VA	9,780	8,170	0.30	990	790
Orlando, FL	10,830	10,140	0.32	950	780
Tampa, FL	7,250	8,080	0.32	760	610
Southwestern Cities	1 200	- (00	0.00		
Albuquerque, NM	4,700 10,590	7,680 4,700	0.33 0.30	540 590	420 470
Austin, TX Corpus Christi, TX	3,470	2,750	0.30	300	220
Dallas, TX	41,380	16,950	0.30	2,200	1,720
Denver, CO	21,690	18,110	0.33	1,680	1,350
El Paso, TX	6,150	5,470	0.30	580	420
Fort Worth, TX	22,280	9,050	0.30	1,240	940
Houston, TX Phoenix, AZ	53,070 16,740	18,900 29,980	0.30 0.34	2,940 2,130	2,250 1,620
Salt Lake City, UT	10,350	4,590	0.34	880	680
San Antonio, TX	18,560	9,760	0.30	1,210	910
Western Cities					
Honolulu, HI	9,020	3,120	0.43	700	590
Los Angeles, CA Portland, OR	181,930 13,910	134,270 7,570	0.34 0.35	12,000 1,100	9,350 880
Sacramento, CA	17,110	12,800	0.33	1,220	880 930
San Bernardino-Riv, CA	24,960	17,950	0.34	1,220	970
San Diego, CA	44,800	15,780	0.34	2,550	2,030
San Fran-Oak, CA	68,960	23,670	0.34	3,870	3,170
San Jose, CA Seattle-Everett, WA	27,170 34,290	11,710 15,900	0.34 0.33	1,540 1,910	1,190 1,630
		31,300	0.32	4,770	· ·
Northeastern Avg Midwestern Avg	45,230 26,880	16,560	0.32	4,770 2,100	3,840 1,610
Southern Avg	14,520	11,600	0.31	1,120	890
Southwestern Avg	19,000	11,630	0.31	1,300	1,000
Western Avg	46,910	26,970	0.35	2,910	2,300
Texas Avg	22,210	9,660	0.30	1,290	990
Total Avg	28,600	18,320 134,270	0.31 0.43	2,230	1,750
Maximum Value Minimum Value	181,930 3,470	2,750	0.43	17,010 300	13,590 220
	L				

Table B-2. 1994 Congestion Cost Estimate Variables

Source: TTI Analysis and Local Transportation Agency References.

Daily Vehicle-Kilometers of Travel

The daily vehicle-kilometers of travel (VKT) is the average daily traffic (ADT) of a section of roadway multiplied by the length (in kilometers) of that section of roadway. This allows the daily volume of all urban facilities to be represented in terms that can be quantified and utilized in cost calculations. Daily VKT was estimated for the freeways and principal arterial streets located in each study urbanized area. These estimates originate from the HPMS database and other local transportation data sources and are presented in a previous section of this report.

Fuel Costs

Statewide average fuel cost estimates were obtained from 1994 data published by the American Automobile Association (AAA) (13). These data represent the average reported fuel cost for 1994. Values for different fuel types used in motor vehicles, i.e., diesel and gasoline, did not vary enough to be reported separately. Therefore, an average rate for fuel was used in cost estimate calculations.

Population

Population data were obtained from the combination of 1990 U.S. Census Bureau estimates and 1994 population estimates reported in the Federal Highway Administration's Highway Performance Monitoring System (HPMS).

Eligible Drivers

The number of eligible drivers for each area was obtained using the population estimate derived above, along with estimates of the percentage of population 16 years of age and older taken from the Statistical Abstract of the United States (14).

Cost Estimate Calculations

The first step in the cost estimate procedure was to convert daily VKT into vehicle-hours of delay. Vehicle-hours of delay is the basis for the delay and fuel cost calculations. To obtain vehicle-hours of delay, vehicle-kilometers of travel on congested roadways during each peak period were estimated. This was accomplished by the use of two factors.

Highway Performance Monitoring System (HPMS) data were used to determine the percentage of urbanized area daily VKT occurring on congested facilities. Two functional classes, freeways/expressways and principal arterial streets, were considered in the calculation of this factor. The ADT per lane values shown in Table B-1 define congested conditions for these facilities.

Using Table B-1 values, the percentage of daily VKT operating in each of the three congested conditions could be calculated for each functional class. These percentages adjust daily VKT to congested daily VKT, the first step in the process to obtain travel volume that occurs during congested conditions.

The congested daily travel values were adjusted by a factor to represent the percentage of travel occurring in the peak period. This factor was calculated using the Texas Department of Transportation's (TxDOT) 1986 Automatic Traffic Recorder Data (15) for the study areas in Texas. The percentage of ADT occurring during the morning and evening peak periods was estimated using these data. These data indicated that a relatively consistent value of 45 percent of total daily traffic occurred during the peak periods. This factor was applied to all the study areas. The delay estimates do not include midday, weekend, and special event congestion.

Once the daily VKT was converted to peak-period congested vehicle-kilometers of travel (Table B-3), the recurring vehicle-hours of delay were computed (Equation B-1). The peak facility conditions during normal operations cause recurring delay. This value does not include delay resulting from accidents, construction, or maintenance operations.

This calculation was performed for both freeways and principal arterial streets in a study area; the total recurring vehicle-hours of delay is the sum of the two. Table B-4 shows the result of these calculations.

Another type of delay encountered by vehicles is incident delay. This is the delay that results from an accident or disabled vehicle. Incident vehicle-hours of delay vary for each area by facility type, i.e., freeway/expressway or arterial street. For the freeway system in individual study areas, the ratio of recurring to incident delay reported by Lindley (<u>16</u>) was used. The resulting incident delay was calculated using Equation B-2.

An incident will have varying effects on different types of facilities; for the purpose of this study, incident delay for arterial streets is defined as 110 percent of arterial street recurring delay. This incident delay factor was calculated using Equation B-3.

Principal Arterial Street Incident		Principal Artrial Street Recurring			
Vehicle-Hour Delay	=	Vehicle-Hour Delay	x	1.1	Eq. B-3
per Day		per Day			•

		cle-Kilometers Fravel		Peak-Period ^{1,2} ongested Roads	Peak Pe	eriod Congested	Daily VKT ^{1,3}
Urban Area	Freeway (000)	Prin.Art.St. (000)	Freeway (%)	Prin.Art.St. (%)	Freeway (000)	Prin.Art.St. (000)	Freeway & Prin.Art.St. (000)
Northeastern Cities Baltimore, MD Boston, MA Hartford, CT New York, NY Philadelphia, PA Pittsburgh, PA Washington, DC Midwestern Cities	30,270 35,020 11,370 141,800 33,680 15,170 49,310	16,180 22,940 6,150 89,680 35,420 18,930 29,790	30 45 20 60 25 20 70	40 40 35 85 75 65 85	4,090 7,090 1,020 38,290 3,790 1,360 15,530	2,910 4,130 970 34,300 11,950 5,540 11,390	7,000 11,220 1,990 72,590 15,740 6,900 26,920
Chicago, IL Cincinnati, OH Cleveland, OH Columbus, OH Detroit, MI Indianapolis, IN Kansas City, MO Louisville, KY Milwaukee, WI Minn-St. Paul, MN Oklahoma City, OK St. Louis, MO Southern Cities	67,820 21,690 24,810 16,380 47,660 15,300 25,160 12,240 12,560 33,330 12,480 33,170	59,570 7,120 10,100 5,800 43,500 8,450 9,050 5,880 9,820 11,500 7,490 20,490	60 35 30 20 10 15 30 35 10 25	65 30 35 50 65 30 25 60 35 55 40 60	$18,310 \\ 3,420 \\ 3,910 \\ 2,210 \\ 10,720 \\ 1,380 \\ 1,130 \\ 830 \\ 1,700 \\ 5,250 \\ 560 \\ 3,730 \\ 1,730 $	17,4209601,5901,30012,7201,1401,0201,5502,8501,3505,530	35,740 4,380 5,500 23,450 2,520 2,150 2,410 3,240 8,090 1,910 9,260
Atlanta, GA Charlotte, NC Ft. Lauderdale, FL Jacksonville, FL Memphis, TN Miami, FL Nashville, TN New Orleans, LA Norfolk, VA Orlando, FL Tampa, FL	53,130 6,170 14,970 10,500 8,690 17,030 12,480 8,870 9,780 10,830 7,250	20,530 5,300 10,380 9,290 27,610 9,500 8,090 8,170 10,140 8,080	50 35 40 20 60 20 50 40 35 20	65 60 55 35 70 35 50 40 30 65	$11,950 \\ 970 \\ 2,700 \\ 1,650 \\ 780 \\ 4,600 \\ 1,120 \\ 2,000 \\ 1,760 \\ 1,760 \\ 1,710 \\ 650 $	6,000 1,430 2,340 2,610 1,460 8,700 1,500 1,820 1,470 1,370 2,360	17,960 2,400 5,030 4,260 2,250 13,290 2,620 3,820 3,230 3,230 3,070 3,020
Southwestern Cities Albuquerque, NM Austin, TX Corpus Christi, TX Dallas, TX Denver, CO El Paso, TX Fort Worth, TX Houston, TX Phoenix, AZ Salt Lake City, UT San Antonio, TX	4,700 10,590 3,470 41,380 21,690 6,150 22,280 53,070 16,740 10,350 18,560	7,680 4,700 2,750 16,950 18,110 5,470 9,050 18,900 29,980 4,590 9,760	25 60 15 55 25 45 70 65 30 40	45 50 15 45 55 10 35 50 70 45 30	530 2,860 230 10,240 5,370 690 4,510 16,720 4,900 1,400 3,340	1,560 1,060 190 3,430 4,480 250 1,430 4,250 9,440 930 1,320	$\begin{array}{c} 2,080\\ 3,920\\ 420\\ 13,670\\ 9,850\\ 940\\ 5,940\\ 20,970\\ 14,340\\ 2,330\\ 4,660\\ \end{array}$
Western Cities Honolulu, HI Los Angeles, CA Portland, OR Sacramento, CA San Bernardino-Riv, CA San Diego, CA San Fran-Oak, CA San Jose, CA Seattle-Everett, WA	9,020 181,930 13,910 17,110 24,960 44,800 68,960 27,170 34,290	3,120 134,270 7,570 12,800 17,950 15,780 23,670 11,710 15,900	50 75 40 35 70 50 80 60 70	75 55 60 35 60 35 65 55 55	$\begin{array}{c} 2,030\\ 61,400\\ 2,500\\ 2,700\\ 7,860\\ 10,080\\ 24,830\\ 7,340\\ 10,800\end{array}$	$1,050 \\ 33,230 \\ 2,040 \\ 3,170 \\ 4,850 \\ 2,490 \\ 6,920 \\ 2,900 \\ 3,930$	3,080 94,630 4,550 5,860 12,710 12,560 31,750 10,230 14,740
Northeastern Avg Midwestern Avg Southern Avg Western Avg Texas Avg Total Avg Maximum Value Minimum Value	45,230 26,880 14,520 19,000 46,910 22,210 28,600 181,930 3,470	31,300 16,560 11,600 11,630 26,970 9,660 18,320 134,270 2,750	39 30 37 44 59 44 41 80 10	61 46 50 41 57 34 50 85 10	10,170 4,430 2,720 4,620 14,390 5,510 6,690 61,400 230	10,170 4,090 2,820 6,730 1,700 4,800 34,300 190	20,340 8,510 5,540 7,190 21,120 7,220 11,490 94,630 420

Table B-3. 1994 Congested Daily Vehicle-Kilometers of Travel

Notes: 1 Daily vehicle-kilometers of travel.

2 Represents the percentage of daily vehicle-kilometers of travel on each roadway system during the peak period operating on congestion conditions. 3

Daily vehicle-kilometers of travel by peak-period vehicle travel and percent of congested daily VKT.

Source: TTI Analysis and Local Transportation Agency References.

	Peak Per	iod Congested D	aily VKT ¹		ncident ² Delay urring Delay		y Recurring Vehi Hours of Delay	cle ³	D	aily Incident Veh Hours of Delay	
Urban Area	Freeway (000)	Prin.Art.St. (000)	Freeway and Prin. Art. St. (000)	Freeway	Prin.Art.St.	Freeway	Hours of Delay Prin.Art.St.	Total	Freeway	Prin.Art.St.	Total
Northeastern Cities											
Baltimore, MD	4,090	2,910	7,000	2.30	1.10	36,790	22,790	59,580	84,610	25,070	109,680
Boston, MA	7,090	4,130	11,220	3.50	1.10	66,110	31,360	97,460	231,380	34,490	265,870
Hartford, CT	1,020	970	1,990	2.70	1.10	8,690	6,590	15,280	23,470	7,240	30,71
New York, NY	38,290	34,300	72,590	2.50	1.10	319,230	291,590	610,820	798,080	320,750	1118,82
Philadelphia, PA	3,790	11,950	15,740	2.10	1.10	31,260	96,790	128,050	65,660	106,470	172,12
Pittsburgh, PA	1,360	5,540	6,900	2.90	1.10	11,910	42,150	54,060	34,530	46,370	80,90
Washington, DC	15,530	11,390	26,920	2.20	1.10	145,110	89,370	234,490	319,250	98,310	417,56
Midwestern Cities										1	
Chicago, IL	18,310	17,420	35,740	1.20	1.10	175,650	130,660	306,300	210,780	143,720	354,50
Cincinnati, OH	3,420	960	4,380	0.80	1.10	28,180	6,660	34,840	22,550	7,320	29,87
Cleveland, OH	3,910	1,590	5,500	0.70	1.10	32,770	10,790	43,560	22,940	11,870	34,81
Columbus, OH	2,210	1,300	3,520	0.70	1.10	20,940	9,590	30,530	14,660	10,550	25,20
Detroit, MI	10,720	12,720	23,450	2.20	1.10	99,290	106,430	205,730	218,440	117,080	335,52
Indianapolis, IN	1,380	1,140	2,520	1.50	1.10	10,120	7,700	17,820	15,170	8,470	23,65
Kansas City, MO	1,130	1,020	2,150	3.10	1.10	8,870	7,070	15,940	27,500	7,770	35,28
Louisville, KY	830	1,590	2,410	1.10	1.10	7,460	12,120	19,570	8,200	13,330	21,53
Milwaukee, WI	1,700	1,550	3,240	1.00	1.10	14,380	12,070	26,450	14,380	13,280	27,65
Minn-St. Paul, MN	5,250	2,850	8,090	0.90	1.10	45,810	23,200	69,010	41,230	25,520	66,74
Oklahoma City, OK	560	1,350	1,910	1.10	1.10	4,010	9,870	13,880	4,410	10,860	15,27
St. Louis, MO	3,730	5,530	9,260	1.20	1.10	32,040	38,180	70,220	38,440	42,000	80,45
Southern Cities										1	
Atlanta, GA	11,950	6,000	17,960	1.10	1.10	113,280	*48,240	161,530	124,610	53,070	177,68
Charlotte, NC	970	1,430	2,400	0.80	1.10	7,460	11,070	18,520	5,960	12,170	18,14
Ft. Lauderdale, FL	2,700	2,340	5,030	1.50	1.10	22,480	16,910	39,390	33,730	18,600	52,33
Jacksonville, FL	1,650	2,610	4,260	1.50	1.10	13,180	18,580	31,750	19,760	20,430	40,20
Memphis, TN	780	1,460	2,250	1.10	1.10	6,030	9,470	15,500	6,630	10,420	17,05
Miami, FL	4,600	8,700	13,290	1.50	1.10	43,470	71,660	115,130	65,210	78,830	144,03
Nashville, TN	1,120	1,500	2,620	1.10	1.10	8,920	10,160	19,070	9,810	11,170	20,98
New Orleans, LA	2,000	1,820	3,820	1.80	1.10	17,200	12,970	30,160	30,960	14,260	45,22
Norfolk, VA	1,760	1,470	3,230	2.50	1.10	14,450	12,360	26,810	36,130	13,590	49,72
Orlando, FL	1,710	1,370	3,070	1.50	1.10	14,580	11,280	25,860	21,870	12,410	34,27
Tampa, FL	650	2,360	3,020	1.50	1.10	6,390	18,620	25,010	9,590	20,490	30,01

Table B-4.	Recurring and	Incident Delay	Relationships	for 1994

	Peak Peri	od Congested Da	aily VKT ¹		ncident ² Delay rring Delay		y Recurring Vehi Hours of Delay	cle ³	D	aily Incident Veh Hours of Delay	
Urban Area	Freeway (000)	Prin.Art.St. (000)	Freeway and Prin. Art. St. (000)	Freeway	Prin.Art.St.	Freeway	Hours of Delay Prin.Art.St.	Total	Freeway	Prin.Art.St.	Total
Southwestern Cities											
Albuquerque, NM	530	1,560	2,080	1.10	1.10	5.040	10,260	15.300	5,550	11,280	16,830
Austin, TX	2,860	1,060	3,920	1.10	1.10	25,400	7,130	32,530	27,940	7,840	35,780
Corpus Christi, TX	230	190	420	1.10	1.10	1,800	1,060	2,860	1.980	1.170	3,150
Dallas, TX	10,240	3,430	13,670	1.80	1.10	90,970	23,940	114,910	163,740	26,340	190,080
Denver, CO	5,370	4,480	9,850	1.00	1.10	49,520	35,010	84,540	49,520	38,520	88,040
El Paso, TX	690	250	940	1.10	1.10	5,500	1,740	7,240	6,050	1,920	7,970
Fort Worth, TX	4,510	1,430	5,940	1.80	1.10	40,080	7,950	48,030	72,140	8,750	80,890
Houston, TX	16,720	4,250	20,970	1.40	1.10	154,570	31,190	185,750	216,390	34,300	250,700
Phoenix, AZ	4,900	9,440	14,340	0.40	1.10	43,750	64,190	107,940	17,500	70,610	88,110
Salt Lake City, UT	1,400	930	2,330	0.60	1.10	12,290	5,620	17,910	7,370	6,180	13,560
San Antonio, TX	3,340	1,320	4,660	1.10	1.10	31,060	9,340	40,390	34,160	10,270	44,430
Western Cities]							
Honolulu, HI	2,030	1,050	3,080	1.80	1.10	18,490	8,090	26,570	33,280	8,890	42,170
Los Angeles, CA	61,400	33,230	94,630	1.20	1.10	613,530	257,850	871,380	736,240	283,640	1,019,870
Portland, OR	2,500	2,040	4,550	2.00	1.10	22,230	15,130	37,360	44,450	16,650	61,100
Sacramento, CA	2,700	3,170	5,860	0.60	1.10	21,810	25,140	46,940	13,080	27,650	40,730
San Bernardino-Riv, CA	7,860	4,850	12,710	1.20	1.10	74,270	32,800	107,060	89,120	36,080	125,200
San Diego, CA	10,080	2,490	12,560	0.60	1.10	81,920	18,060	99,990	49,150	19,870	69,020
San Fran-Oak, CA	24,830	6,920	31,750	1.30	1.10	234,840	58,400	293,230	305,290	64,240	369,520
San Jose, CA	7,340	2,900	10,230	1.20	1.10	67,810	21,190	89,000	81,370	23,310	104,680
Seattle-Everett, WA	10,800	3,930	14,740	1.40	1.10	102,890	29,950	132,830	144,040	32,940	176,980
Northeastern Avg	10,170	10,170	20,340	2,60	1.10	88,440	82,950	171,390	222,420	91,240	313,670
Midwestern Avg	4,430	4,090	8,510	1.30	1.10	39,960	31,190	71,150	53,230	34,310	87,540
Southern Avg	2,720	2,820	5,540	1.50	1.10	24,310	21,940	46,250	33,110	24,130	57,240
Southwestern Avg	4,620	2,580	7,190	1.10	1.10	41,820	17,950	59,760	54,760	19,740	74,500
Western Avg	14,390	6,730	21,120	1.30	1,10	137,530	51,840	189,380	166,230	57,030	223,250
Texas Avg	5,510	1,700	7,220	1.30	1.10	49,910	11,760	61,670	74,630	12,940	87,570
Total Avg	6,690	4,800	11,490	1.50	1.10	61,280	37,210	98,480	93,170	40,930	134,090
Maximum Value	61,400	34,300	94,630	3.50	1.10	613,530	291,590	871,380	798,080	320,750	1,118,820
Minimum Value	230	190	420	0.40	1.10	1,800	1,060	2,860	1,980	1,170	3,150

Table B-4. Recurring and Incident Delay Relationships for 1994 (continued)

Notes: Daily vehicle-kilometers of travel. Represents the percentage of daily vehicle-kilometers of travel on each roadway system during the peak period operating in congested conditions. Percentage of incident delay related to recurring delay. Facility delays as calculated by type and urban area.

Source: TTI Analysis and Local Transportation Agency References

The factor of 1.1 is based on the following assumptions as they relate to delay:

- 1. Arterial street system designs are more consistent from city to city than freeway design;
- The side streets, drives, median openings, and other appurtenances associated with arterial streets allow numerous opportunities to remove incidents from the traveled way; and
- 3. Historical data show the accident rate on arterial streets to be approximately twice that of freeways, but, as stated in the second assumption, there is a greater opportunity to remove the incident from the roadway.

Table B-4 shows the results of the freeway and principal arterial street recurring and incident delay calculations.

Prior to calculating the congestion costs, two other variables were calculated to simplify the cost equations. These variables are the average vehicular speed and the average fuel economy for the vehicles operating in congested conditions. The average vehicular speed is a weighted average of the operating speeds on the facility under consideration and is defined by Equation B-4.

 $[\]frac{Avg. Speed}{(kph)} = \frac{(Frwyspeed^{1}x Peak-Period Frwy VKT) + (PrinArt.Speed^{1}x Peak-Period PrinArt.Str.VKT)}{Total Peak-Period VKT}$ Eq. B-4

¹ Speeds determined by congestion severity (Table B-1).

Congestion Cost

Two cost components can be associated with congestion: delay cost and fuel cost. These costs can be directly related to the vehicle-hours of delay. Table B-5 is a summary of the cost calculations for the component congestion cost per each urbanized area.

The average fuel economy represents the fuel consumption of the vehicles operating in congested conditions. The equation (Equation B-5) is a linear regression applied to a modified version of fuel consumption reported by Raus (2).

Average Fuel Economy =
$$3.74 + \frac{0.11 (Average Vehicular Speed)}{(kph)}$$
 Eq. B-5

Delay Cost

The delay cost is the cost of lost time due to congested roadways. This cost was calculated by Equation B-6.

$$\frac{Annual}{Delay \ Cost} = \frac{Vehicle - Hrs. \ of \ Delay}{Day} x \frac{1.25 \ person}{Vehicle} x \frac{\$10.75}{Hour} x \frac{250 \ Workdays}{Year}$$
Eq. B-6

where: vehicle-hours of delay/day is the combined freeway and principal arterial street representing the city's recurring or incident delay.

This equation is used to separately calculate delay costs resulting from both incident and recurring delays.

		Annual Cos	t Due to Congesti	on (\$ millions)		
Urban Area	Recurring Delay	Incident Delay	Recurring Fuel	Incident Fuel	Total	Rank
Los Angeles, CA	3,590	4,200	380	450	8,620	1
New York, NY	2,520	4,620	270	490	7,900	2
San Fran-Oak, CA	1,220	1,540	130	170	3,060	3
Chicago, IL	1,260	1,460	130	150	3,000	4
Washington, DC	970	1,720	100	170	2,960	5
Detroit, MI	840	1,370	80	130	2,420	6
Houston, TX	780	1,050	70	100	2,000	7
Boston, MA	400 670	1,100 730	40 60	110 70	1,650 1,530	8 9
Atlanta, GA Seattle-Everett, WA	550	730	60	70 80	1,420	10
Dallas, TX	480	800	50	80	1,420	10
Philadelphia, PA	520	700	50	70	1,340	12
Miami, FL	470	580	50	60	1,160	13
San Bernardino-Riv, CA	440	520	50	60	1,070	14
Phoenix, AZ	440	360	50	40	890	16
San Jose, CA	370	440	40	50	900	16
Denver, CO	350	360	40	40	790	18
San Diego, CA	420	290	50	30	790	18
Baltimore, MD	250	450	30	50	780	19
St. Louis, MO	290 200	330 280	30 30	30 30	680 630	20 21
Minn-St. Paul, MN	290 220	280 330	20	30 30	600	21 22
Pittsburgh, PA Fort Worth, TX	200	340	20	30	590	22
Portland, OR	150	250	20	30	450	23
Ft. Lauderdale, FL	160	220	20	20	420	25
Sacramento, CA	190	170	20	20	400	26
San Antonio, TX	170	180	20	20	390	27
Cleveland, OH	180	150	20	10	360	28
Norfolk, VA	110	210	10	20	350	29
New Orleans, LA	120	190	10	20	340	30
Jacksonville, FL	130	170	10	20	330	31
Honolulu, HI	110	180	20 10	20	330	32
Austin, TX Cincinnati, OH	140 150	150 130	10	10 10	310 300	33 34
Orlando, FL	110	140	10	10	270	35
Columbus, OH	130	100	10	10	250	37
Milwaukee, WI	110	110	10	10	240	37
Tampa, FL	100	120	10	10	240	38
Kansas City, MO	70	150	10	10	240	39
Hartford, CT	60	130	10	10	210	40
Indianapolis, IN	70	100	10	10	190	41
Louisville, KY	80	90	10	10	190	43
Nashville, TN Charlene, NC	80 80	90 70	10	10	190	43
Albuquerque NM	80 60	70 70	10 10	10 10	170 150	44 46
Albuquerque, NM Memphis TN	60 60	70 70	10	10	150	46 46
Salt Lake City, UT		60	10	10	150	40
Oklahoma City, OK	60	60	0	10	130	48
El Paso, TX	30	30	ŏ	Ő	60	49
Corpus Christi, TX	10	10	0	Ŏ	20	50
Northeastern Avg	710	1,290	70	130	2,200	
Midwestern Avg	290	360	30	30	710	
Southern Avg	190	240	20	20	470	
Southwestern Avg	250	310	20	30	610	
Western Avg	780	920 270	80	100	1,880	
Texas Avg	260	370	20	40	690	
Total Avg	410	550	40 380	60 490	1,060	
Maximum Value Minimum Value	3,590 10	4,620 10	380	490 0	9,080 20	
winning value	10	10			20	

Table B-5. Co	omponent and To	otal Congestion	Costs by Url	ban Area for 1994
---------------	-----------------	-----------------	--------------	-------------------

Source: TTI Analysis and Local Transportation Agency References.

Fuel Cost

Fuel cost was also related to vehicle-hours of delay per day and speed by Equation B-7 for passenger vehicles and Equation B-8 for commercial vehicles.

$$\frac{Passenger}{Fuel \ Cost} = \frac{\frac{Vehicle-Hrs \ of \ Delay}{Day} \ x \ 95\% \ x \ Avg. \ Speed \ x \ Avg. \ Fuel \ Cost}{Avg. \ Fuel \ Economy} Eq. B-7$$

$$\frac{Commercial}{Fuel \ Cost} = \frac{\frac{Vehicle - Hrs \ of \ Delay}{Day} x \ 5\% \ x \ Avg. \ Speed \ x \ Avg. \ Fuel \ Cost}{Avg. \ Fuel \ Economy} Eq. B-8$$

where: vehicle-hours of delay is the combined value for freeways and principal arterial streets representing either recurring or incident delay.

These calculations were completed for both incident and recurring delay. The respective portions, i.e., incident and recurring, were combined in Equation B-9 to determine the yearly fuel cost due to congestion resulting from incident and recurring delay.

Average Urbanized Area
Fuel Cost = (Passenger Fuel Cost + Commercial Fuel Cost)
$$x \frac{250 \text{ Days}}{\text{Year}}$$
 Eq. B-9

This calculation was done for each study area using the specific area/state fuel cost, peak-period congested daily VKT, and vehicle-hours of recurring and incident delay per day.