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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

To improve the quality and effectiveness of the Texas surface transportation system, it is 

important to be able to predict where and when prolonged congestion will start and how it will 

spread, as well as to track atypical events and estimate their evolution. Artificial intelligence (AI) 

approaches provide a unique opportunity to estimate precise congestion measures by utilizing 

data from agency-owned sensors, third-party providers, and big enterprise data. 

In this study, researchers at Texas A&M Transportation Institute (TTI), working with researchers 

at Texas State University (TXST) and Texas Southern University (TSU), aimed to mitigate the 

current research gap by conducting two major project phases. These researchers are defined as 

the TTI team in this report. The first phase confirmed the validity of commercial data sources for 

planning and operations, while the second phase involved understanding which AI 

models/algorithms are the most suitable for addressing Texas Department of Transportation 

(TxDOT) needs based on desirable use cases and data availability. The TTI team determined the 

suitable congestion measures and developed the AI models and associated workflows to 

determine whether it is sustainable to train, test, and validate the AI techniques. Moreover, the 

TTI team achieved its research goals by conducting a comprehensive analysis; documenting the 

commercial big data platforms, datasets, and appropriate AI algorithms; and creating a robust 

prototype tool to foster return on investment and reduce freeway congestion. 

1.2 PROJECT GOAL AND RESEARCH TASKS 

The TTI team outlined three goals for this study, which are summarized as follows: 

• Determine the available big data platforms and big datasets that are adaptable for existing 

datasets. 

• Reduce freeway congestion on the selected congested freeways using the insights gleaned 

from AI-based models. 

• Minimize the amount of time and resources required to reduce freeway congestion. 

In order to achieve the project goals, TTI conducted five major tasks, summarized as follows: 

• Review of Big Data Platforms and Innovative Dataset: To perform the sub-tasks in 

this task, the TTI team conducted an extensive review of the existing literature and data 

platforms/sources, such as commercial big datasets and big data platforms; explored 

robust AI algorithms to perform big data modeling in the field of congestion reduction; 

determined crucial factors (including, but not limited to, land use, weather, facility 

environment, and demographic information) associated with freeway congestion; 

explored AI and explainable/trustworthy AI frameworks for prototype application; and 

selected noteworthy practices by other state departments of transportation (DOTs) or 

agencies. 

• Big Data Validation and Novel Application Identification: The TTI team explored the 

available big data platforms (identified in Task 2) to determine the best-fit platforms and 

datasets for the application of AI in detecting, forecasting, and managing freeway 
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congestion. Since a need for joining multiple datasets exists, the TTI team examined the 

suitability of the existing datasets. Then, the TTI team developed a data product (P3) by 

providing detailed documentation of the validation procedures.  

• Key Performance Metrics and AI-based Big Data Modeling: In this task, the TTI 

team formulated key performance metrics to provide TxDOT with better situational 

awareness of traffic conditions along the corridor to enable more informed decisions on 

what strategies to deploy to optimize corridor management. Team members developed AI 

techniques using explainable AI methods to make the results interpretable for the users. 

• Prototype Application Development: Based on the modeling and exploratory results in 

Task 4, the TTI team developed an interactive map-based prototype decision support tool 

(https://txdot.shinyapps.io/0_7131/) that can estimate and visually illustrate the status of 

freeway congestion. The decision support tool can visually illustrate the congestion 

profile of the roadway segments, ranked from high congestion to low congestion.  

• Guideline Development: The TTI team developed a guideline document that synthesizes 

the key findings and recommendations from the research.  

1.3 REPORT ORGANIZATION 

The remaining chapters of this report cover the following: 

• Chapter 2: Information Review—an overview of big data providers, associated 

innovative datasets, and AI platforms for freeway congestion reduction. 

• Chapter 3: Survey—the development of a survey questionnaire to learn more about state 

DOT practices in big data usage in freeway congestion reduction. 

• Chapter 4: Big Data Validation—review of novel big data applications within traffic 

management, traffic forecasting and modeling, and real-time reliability monitoring-

oriented systems. 

• Chapter 5: Novel Application Identification—identification of general trends in 

congestion performance measures, the application of AI strategies and big data sources in 

traffic demand modeling, and the use of predictive analytics for real-time travel time 

reliability monitoring of nonrecurring congestion.  

• Chapter 6: Key Performance Metrics—suggestions of several congestion performance 

measures and their associated analysis procedures. 

• Chapter 7: Forecasting Using Artificial Intelligence—forecasting of suitable 

congestion measures within Texas.  

• Chapter 8: Guidelines and Specifications—development of a geographic information 

system (GIS)-based prototype decision support tool that can estimate and visually 

illustrate the status of freeway congestion.  

• Chapter 9: Conclusions and Recommendations—summary of the results of this 

project.  

 

https://txdot.shinyapps.io/0_7131/
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CHAPTER 2: INFORMATION REVIEW 

2.1 INTRODUCTION 

This chapter provides a synthesis of big data providers, associated innovative datasets, and AI 

platforms for freeway congestion reduction. To develop the synthesis, the TTI team gathered and 

reviewed relevant documentation such as websites, state DOT websites, big data platforms, 

journal articles, research reports, guidebooks, and handbooks.  

2.2 BIG DATA PROVIDERS 

In the last decade, many transportation agencies have begun using data that are collected, 

aggregated, and resold by commercial third-party big data providers. These providers generate 

passive data since the data are created as a result or byproduct of other processes. Some of the 

major technologies behind the passive data sources are Bluetooth devices searching for receivers 

to connect with; automotive drivers and other road users such as motorcyclists, bicyclists, and e-

scooter riders either using or turning on a global positioning system (GPS); cellular phones 

connected with network towers; and individual smartphone users with their location service 

turned on. Individual users reveal their position in space at a defined point in time via any of 

these technologies, and big data providers trace and aggregate these data points and sell these 

data to the agencies. 

The information available in these data are different than the data from active data collection 

methodologies and systems used by the DOTs. Those active data collection efforts include 

manual traffic counts or automatic counters, travel time studies using probe vehicles, household 

travel surveys, and vehicle intercept surveys. The major issue with active data collection is the 

coverage and frequency. Active data collection is very costly, and the data collection efforts are 

very limited. By leveraging passive data, it is possible to supplement or even replace the 

conventional active data collection efforts. 

The TTI team conducted an internet search of available big data providers and AI platforms that 

were found to be in use or within potential use of public sector transportation agencies and state 

DOTs. The TTI team used two primary factors in the review of the platforms: (a) whether they 

provide an AI analytical and predictive modeling component, and (b) whether they have spatial 

and temporal data visualizations on the platform or a big data set based in real time and 

applicable within a transportation systems management and operations setting for traffic 

detection. Table 1 lists 14 vendor services containing predictive AI analytics and/or data 

visualization components that may be applicable to planning and operations functions within a 

big data model. Additionally, seven AI platforms were identified that have the potential to 

support big data automation routines and workflow processes in traffic management congestion.  

Most of the 14 services use algorithms to fuse various mixtures of mobile, traffic signal sensor, 

and connected vehicle (CV) data as documentation for historic traffic congestion patterns and 

root sources to predict likely geospatial changes in traffic congestion over a given route or 

segment in the short, medium, and long term. The larger majority offer a dashboard or cloud-

based data visualization service to view the transportation network, with about half focusing on 

municipal clients and the other half working with municipal, regional, and state clients. These 
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algorithms include look-ahead predictive algorithms—in the case of INRIX XD™, reinforcement 

learning (RL) and machine learning (ML)—and deep learning algorithms, as in the case of 

DeepDrive, TrafficLink/Miovision, and UrbanLogiq. Workflow output processes from these 

services include application programming interface (API), internal intelligent transportation 

system (ITS) infrastructure automation routines, and cloud-based dashboards. 

Table 1. Big Data Providers, Products, and Clients.  

Platforms Vendor Solution 
AI Analytics/ 

Planning 

Data 

visualizations/ 

Operations 

Clients Link 

Surtrac Rapid Flow 

Technologies 

Optimizing 

traffic 

signals; route 

casting 

collecting 

origin 

destination 

(OD) and 

volume from 

mobile or CV 

sources; 

predictive 

modeling. 

AI Analytics 

uses video, 

radar, and loop 

sensor feeds 

along with 

RouteCast 

connections. 

Real-time 

dashboard 

available with 

API outputs. 

Oriented to 

municipalities—

City of 

Pittsburgh and 

state agencies 

among clients. 

https://www.r

apidflowtech.

com/surtrac  

DeepDrive University of 

California, 

Berkeley 

Adaptive 

traffic signal 

control. 

RL algorithm 

method that 

uses simulated 

traffic, not real-

world data. 

None. No clients are 

listed. 

https://deepdr

ive.berkeley.

edu/project/a

daptive-

traffic-signal-

control-

based-deep-

reinforcemen

t-learning  

PTV 

Optima 

PTV group Congestion 

detection and 

traffic 

prediction. 

AI analytic 

forecasting 

applying data 

fusion tailored 

to available 

sources (INRIX 

XD, local 

signal sensors, 

etc.). 

Modular AI data 

fusion platform 

for real-time 

congestion 

management and 

response 

planning. 

No U.S. clients https://www.

ptvgroup.co

m/en/solution

s/products/pt

v-optima/  

https://www.rapidflowtech.com/surtrac
https://www.rapidflowtech.com/surtrac
https://www.rapidflowtech.com/surtrac
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://deepdrive.berkeley.edu/project/adaptive-traffic-signal-control-based-deep-reinforcement-learning
https://www.ptvgroup.com/en/solutions/products/ptv-optima/
https://www.ptvgroup.com/en/solutions/products/ptv-optima/
https://www.ptvgroup.com/en/solutions/products/ptv-optima/
https://www.ptvgroup.com/en/solutions/products/ptv-optima/
https://www.ptvgroup.com/en/solutions/products/ptv-optima/
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Platforms Vendor Solution 
AI Analytics/ 

Planning 

Data 

visualizations/ 

Operations 

Clients Link 

TrafficLink 

and Scout 

Miovision Temporary 

and 

permanent 

roadside unit 

detection and 

counts 

system. 

ML algorithm 

to identify 

congestion 

issues based on 

historic and 

real-time traffic 

signal-based 

multimodal 

volume data, 

turning 

movement 

counts, 

bike/ped. 

counts. No 

freeway 

mentions. No 

modeling/fore-

casting. 

Real-time visual 

platform for 

incident 

detection and 

congestion 

management. 

Municipal 

deployments in 

City of Austin, 

TX, Waterloo, 

ON 

https://miovis

ion.com/traffi

clink  

Waycare 

Platform 

Waycare Modular 

predictive AI 

analytics 

platform 

fusing real-

time historic 

traffic data, 

speed sensor 

data, and 

aggregated 

CV data. 

Planning for 

transportation 

systems 

management 

and operations 

(TSMO) 

through 

forecasting 

system crashes. 

Integrates with 

Traffic 

Management 

Center (TMC) 

for real-time 

platform-driven 

solutions in 

safety service 

patrol 

communications 

to TMCs and CV 

data ingestion 

that reveals 

queue formations 

and potential 

incidents as they 

occur. 

Regional 

Transportation 

Commission of 

Southern 

Nevada, 

California DOT, 

Nevada DOT 

https://www.r

ekor.ai/wayc

are  

https://miovision.com/trafficlink
https://miovision.com/trafficlink
https://miovision.com/trafficlink
https://www.rekor.ai/waycare
https://www.rekor.ai/waycare
https://www.rekor.ai/waycare
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Platforms Vendor Solution 
AI Analytics/ 

Planning 

Data 

visualizations/ 

Operations 

Clients Link 

StreetLight 

Insight 

StreetLight 

Data 

Fusing 

mobile-

source data 

through AI 

and 

CUBIQ/SDK

s-based apps 

(recently 

changing). 

AI and big data 

visualization 

platform of 

historic mobile 

phone-based 

trip counts. 

Not applicable. DOTs: 

Arizona, 

California, 

Florida, Iowa, 

Kansas, 

Louisiana, 

Maine, 

Maryland, New 

York, Virginia, 

Washington, 

West Virginia, 

Wisconsin 

https://www.

streetlightdat

a.com/how-

it-works/  

Strava 

Metro 

Strava Representativ

e sample of 

bicycle and 

pedestrian 

data for 

modeling, 

forecasting, 

and planning 

purposes. 

Downloadable, 

geo-referenced 

bicycle and 

pedestrian 

forecasting and 

planning data in 

a web platform 

and 

visualization 

dashboard. 

Not applicable. Nebraska DOT  https://metro.

strava.com/  

https://www.streetlightdata.com/how-it-works/
https://www.streetlightdata.com/how-it-works/
https://www.streetlightdata.com/how-it-works/
https://www.streetlightdata.com/how-it-works/
https://metro.strava.com/
https://metro.strava.com/
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Platforms Vendor Solution 
AI Analytics/ 

Planning 

Data 

visualizations/ 

Operations 

Clients Link 

Waze for 

Cities 

Waze Event 

detection and 

archived data 

set with 

speed, 

volume, and 

nonrecurring 

incidents 

from 2017 

on. 

Archived data 

provided 

through Google 

Cloud with 

BigQuery data 

warehouse tool 

and data 

visualization 

tool (Data 

Studio). 

Data streaming 

to TMC and 511 

sites for traffic 

incident 

detection. 

Alabama DOT, 

Georgia DOT, 

TxDOT, Florida 

DOT, California 

Department of 

Transportation 

(Caltrans), 

District of 

Columbia, 

Wisconsin DOT, 

Tennessee DOT, 

Iowa DOT, 

Kentucky 

Transportation 

Cabinet (TC), 

Louisiana 

Department of 

Transportation 

and 

Development 

(DODT), Maine 

DOT, 

Massachusetts 

DOT, Nebraska 

DOT, New 

Hampshire 

DOT, Oregon 

DOT, 

Pennsylvania 

DOT, Utah 

DOT, Virginia 

DOT 

https://wazeo

pedia.waze.c

om/wiki/US

A/Waze_for_

Cities  

https://wazeopedia.waze.com/wiki/USA/Waze_for_Cities
https://wazeopedia.waze.com/wiki/USA/Waze_for_Cities
https://wazeopedia.waze.com/wiki/USA/Waze_for_Cities
https://wazeopedia.waze.com/wiki/USA/Waze_for_Cities
https://wazeopedia.waze.com/wiki/USA/Waze_for_Cities
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Platforms Vendor Solution 
AI Analytics/ 

Planning 

Data 

visualizations/ 

Operations 

Clients Link 

XD INRIX Real-time 

and 

predictive 

traffic data 

service and 

platform. 

Traffic speed 

data download 

along with 

immediate 

forecast 

estimations (not 

capable of 

accounting for 

long-term 

volume trends). 

INRIX XD 

platform 

provides data in 

real time to 

various TSMO 

functions for 

detection and 

response in 

operations. 

Connecticut 

DOT, Indiana 

DOT, Iowa 

DOT, Arizona 

DOT, Louisiana 

DOTD, 

Maryland DOT, 

Michigan DOT, 

Nebraska 

Department of 

Revenue (DOR), 

New Jersey 

DOT, New 

Mexico DOT, 

Oklahoma DOT, 

Pennsylvania 

DOT, Rhode 

Island DOT, 

South Dakota 

DOT, Utah 

DOT, Wisconsin 

DOT 

https://inrix.c

om/wp-

content/uploa

ds/2016/09/I

NRIX-XD-

Monitoring-

Brochure.pdf  

Comma.ai Comma.ai Edge-

computing AI 

on-board 

units (OBU) 

to convert 

level 1 

automated 

driving 

systems 

(ADS) 

vehicles to 

level 2. 

No data 

platform or 

related 

analytics 

products 

available. 

No data platform 

or related outputs 

are available on 

the market.  

None https://comm

a.ai  

Aimsun Aimsun Predictive 

modeling and 

AI platform.  

Predictive 

modeling. 

Real-time traffic 

management and 

data 

visualizations. 

North Carolina 

DOT, Florida 

DOT, New York 

City  

https://www.

aimsun.com/r

eal-time-

transportation

-

management/  

https://inrix.com/wp-content/uploads/2016/09/INRIX-XD-Monitoring-Brochure.pdf
https://inrix.com/wp-content/uploads/2016/09/INRIX-XD-Monitoring-Brochure.pdf
https://inrix.com/wp-content/uploads/2016/09/INRIX-XD-Monitoring-Brochure.pdf
https://inrix.com/wp-content/uploads/2016/09/INRIX-XD-Monitoring-Brochure.pdf
https://inrix.com/wp-content/uploads/2016/09/INRIX-XD-Monitoring-Brochure.pdf
https://inrix.com/wp-content/uploads/2016/09/INRIX-XD-Monitoring-Brochure.pdf
https://inrix.com/wp-content/uploads/2016/09/INRIX-XD-Monitoring-Brochure.pdf
https://comma.ai/
https://comma.ai/
https://www.aimsun.com/real-time-transportation-management/
https://www.aimsun.com/real-time-transportation-management/
https://www.aimsun.com/real-time-transportation-management/
https://www.aimsun.com/real-time-transportation-management/
https://www.aimsun.com/real-time-transportation-management/
https://www.aimsun.com/real-time-transportation-management/
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Platforms Vendor Solution 
AI Analytics/ 

Planning 

Data 

visualizations/ 

Operations 

Clients Link 

UrbanLogiq UrbanLogiq Data fusion 

service with 

cloud 

platform. 

Application of 

ML and deep 

learning AI 

analytics for 

forecasts and 

projections 

Cloud platform 

delivers data 

visualizations for 

planning and 

traffic analysis 

purposes- not 

real-time traffic 

detection. 

TxDOT https://urbanl

ogiq.com/traf

fic/  

ClearMobil-

ity™ 

Platform 

Iteris, Inc. Cloud-based 

platform with 

real-time data 

fusion 

engine, and 

Software-as-

a-Service 

(SaaS) or 

API delivery 

methods. 

AI analytics.  Traffic 

operations and 

real-time 

detection 

alongside data 

visualizations 

that can be 

exported to third-

party 

applications. 

Montana, 

Minnesota, 

Nebraska, North 

Dakota, South 

Carolina, West 

Virginia, 

Wisconsin 

https://www.i

teris.com/cle

armobilitypla

tform 

Secure Data 

Commons 

United States 

Department 

of 

Transporta-

tion 

(USDOT) 

Archive and 

data analytics 

web platform 

with raw and 

curated data 

sets from 

Waze and 

other 

partners. 

Planning and 

forecasting 

analytics. 

Not applicable.  https://www.t

ransportation.

gov/data/secu

re/conducting

-analysis 

2.3 AI PLATFORMS 

AI has the potential to solve problems that are hard for traditional methods to address, and 

various AI methods have achieved state-of-the-art performances in speech recognition, visual 

object recognition, object detection, and many other domains. Some AI-based methods even 

surpass human-level performance on some specific problems. Because of increasing population, 

number of vehicles, and mobility demands, improving the safety, efficiency, and sustainability of 

the transportation system remains a challenge. Subsequently, traditional methods may not be able 

to fully address these issues. To overcome these issues, an increasing number of studies have 

applied AI-based methods to solve complicated transportation problems, including traffic signal 

control, traffic prediction, microscopic traffic modeling, and autonomous driving. In this section, 

a brief review of recent studies that utilized AI-based methods is presented (Wang et al., 2019). 

Well-designed platforms or systems possess the capability to effectively leverage vast 

transportation datasets and advanced AI methods. This section provides a succinct review of 

existing transportation data/AI platforms aimed at mitigating traffic congestion. For the detection 

https://urbanlogiq.com/traffic/
https://urbanlogiq.com/traffic/
https://urbanlogiq.com/traffic/
https://www.iteris.com/clearmobilityplatform
https://www.iteris.com/clearmobilityplatform
https://www.iteris.com/clearmobilityplatform
https://www.iteris.com/clearmobilityplatform
https://www.transportation.gov/data/secure/conducting-analysis
https://www.transportation.gov/data/secure/conducting-analysis
https://www.transportation.gov/data/secure/conducting-analysis
https://www.transportation.gov/data/secure/conducting-analysis
https://www.transportation.gov/data/secure/conducting-analysis
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and prediction of traffic congestion, PTV Optima stands out by offering the ability to forecast 

traffic conditions for the upcoming hour (PTV, 2022). Furthermore, the Miovision TrafficLink 

platform was specifically developed to empower traffic engineers in creating more responsive 

and efficient traffic networks (Miovision, 2020). In the realm of predictive insights and proactive 

traffic management optimization, Waycare is at the forefront, shaping the future of urban 

mobility. It achieves this by enabling cities to gain complete control over their roadways through 

the utilization of in-vehicle data and municipal traffic information (Waycare, 2022). Meanwhile, 

Aimsun has established itself as a leader in traffic prediction software and services (Siemens, 

2022). With fully integrated software packages, Aimsun complements the Intelligent 

Transportation Systems (ITS) portfolio by simulating future traffic flows. This supports both 

offline strategic transportation planning and real-time mobility management. Adding to this array 

of platforms, the Digital Roadway Interactive Visualization and Evaluation Network (DRIVE-

Net) serves as a transportation data storage, management, and visualization platform. This 

platform facilitates extensive online data sharing, visualization, modeling, and analysis 

capabilities (Ma et al., 2011). In addition to the aforementioned systems, the URBANLOGIQ 

platform plays a pivotal role by aggregating diverse datasets, including traffic counts, weather 

data, infrastructure details, and crash statistics. This empowers cities to gain a comprehensive 

understanding of movement patterns and congestion dynamics (URBANLOGIQ, 2022).  

The seven AI platforms listed in Table 2 help to illustrate some of the hardware and software 

architecture and system requirements for traffic planning and operations. For example, roadside 

and signal-based sensor systems in the field have the potential to be updated with edge-

computing Internet of Things (IoT) components across a variety of system platforms (e.g., 

TensorFlow, Intel, NVIDIA) that can upgrade limited real-time traffic data into expansive big 

data that are capable of generating additional insights and traffic management automation 

routines. Beyond roadside units, mobile-based data can be incorporated into edge-computing 

infrastructure-based developments through the use of open, modular AI platform networks such 

as ONNX that are capable of fusing edge-computing, mobile, and CV data into a big data model 

supporting both operations and planning functions. In this way, AI platforms driven by a system 

engineering plan and clear systems needs requirements can take a modular approach and 

combine both mobile and infrastructure-based components. 

Much of the heavier lifting in big data systems development and deployment, based on internet 

findings, comes from expanding the use of big data from planning functions into congestion 

detection and traffic operations functions. As a result, many AI platform services out of the 

seven provide a catalog of potential applications as templates that may work in the realm of 

roadway and multimodal traffic management congestion along with TSMO automation in 

traveler information service distribution, traffic incident management, and real-time ITS 

optimization and fleet management systems.
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Table 2. Key AI Platforms.  

Platforms Vendor Solution AI Analytics Data Visualization Link 

C3.ai C3.ai 

Suite of AI applications, 

development platforms, and 

standards/specifications. No 

DOT or public sector 

transportation agencies listed as 

clients. 

Reliability suite of 

applications provide asset-

based historic, real-time, and 

predictive analytics. 

Data visualization for 

current asset conditions and 

automated incident response 

enabler applications. 

https://c3.ai/products/c3-

ai-reliability/  

NVIDIA 

Metropolis 
NVIDIA 

Application catalog, 

development framework, and AI 

platform for smart cities. 

Focuses on computer vision but 

may have congestion analysis 

applications within catalog. 

Applications for predictive 

analytics across edge, mobile, 

and infrastructure. 

Data visualization 

applications for traffic 

operations. 

https://resources.nvidia.co

m/en-us-metropolis-

smart-cities/gtcfall20-

a21335  

Wejo Neural 

Edge 
Wejo 

Third-party data aggregator for 

connected vehicle (CV) and 

autonomous vehicle (AV). 

Predictive analytics. Data visualizations. 

https://www.wejo.com/pr

ess/wejo-announces-wejo-

neural-edge-processing-

platform-streamlining-

connected-vehicle-data-

and-driving-autonomous-

vehicle-reality-forward  

Waymo Open 

Dataset 
Waymo 

Limited (six non-Texas cities) 

processed but disparate open 

data set of high-resolution AV 

sensor data (lidar, camera, 

radar). 

Planning analytics may be 

derived, but it is not prepared 

for use. 

Data visualizations yes, but 

not for use in operations and 

detection. 

https://waymo.com/open/

data/motion/  

Open Open AI 

Catalog of TensorFlow deep 

reinforcement learning (DRL) 

algorithm implementations. 

Predictive analytics possible 

from DRL implementations. 

Data visualizations and 

traffic detection automation 

potential from DRL 

implementations. 

https://www.sciencedirect

.com/science/article/pii/S

2590198221001317  

https://c3.ai/products/c3-ai-reliability/
https://c3.ai/products/c3-ai-reliability/
https://resources.nvidia.com/en-us-metropolis-smart-cities/gtcfall20-a21335
https://resources.nvidia.com/en-us-metropolis-smart-cities/gtcfall20-a21335
https://resources.nvidia.com/en-us-metropolis-smart-cities/gtcfall20-a21335
https://resources.nvidia.com/en-us-metropolis-smart-cities/gtcfall20-a21335
https://www.wejo.com/press/wejo-announces-wejo-neural-edge-processing-platform-streamlining-connected-vehicle-data-and-driving-autonomous-vehicle-reality-forward
https://www.wejo.com/press/wejo-announces-wejo-neural-edge-processing-platform-streamlining-connected-vehicle-data-and-driving-autonomous-vehicle-reality-forward
https://www.wejo.com/press/wejo-announces-wejo-neural-edge-processing-platform-streamlining-connected-vehicle-data-and-driving-autonomous-vehicle-reality-forward
https://www.wejo.com/press/wejo-announces-wejo-neural-edge-processing-platform-streamlining-connected-vehicle-data-and-driving-autonomous-vehicle-reality-forward
https://www.wejo.com/press/wejo-announces-wejo-neural-edge-processing-platform-streamlining-connected-vehicle-data-and-driving-autonomous-vehicle-reality-forward
https://www.wejo.com/press/wejo-announces-wejo-neural-edge-processing-platform-streamlining-connected-vehicle-data-and-driving-autonomous-vehicle-reality-forward
https://www.wejo.com/press/wejo-announces-wejo-neural-edge-processing-platform-streamlining-connected-vehicle-data-and-driving-autonomous-vehicle-reality-forward
https://waymo.com/open/data/motion/
https://waymo.com/open/data/motion/
https://www.sciencedirect.com/science/article/pii/S2590198221001317
https://www.sciencedirect.com/science/article/pii/S2590198221001317
https://www.sciencedirect.com/science/article/pii/S2590198221001317
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Platforms Vendor Solution AI Analytics Data Visualization Link 

Yunex Traffic 

Digital Labs 

Yunex 

Traffic/Siemens 

Mindsphere 

Mindsphere IOT PaaS AI 

platform using data fusion of 

infrastructure, fleet, and third-

party traffic data for traffic 

management. 

AI analytics. 
Data visualization, API-

driven operations response. 

https://www.yunextraffic.

com/global/en/portfolio/ai

-and-digital-solutions/ai-

based-traffic-and-city-

mobility-solutions 

ONNX.ai and 

Runtime 

ONNX 

(developed by 

Facebook and 

Microsoft) 

Open neural network (NN) AI 

model development and 

optimization standard with file 

conversion mechanism across 

file types from the plethora of 

proprietary edge systems, mobile 

systems, and computer vision 

systems.  

AI architecture/groundwork 

for interoperable AI analytics 

and planning/forecasting 

applications relying on edge 

computing as well as data 

fusion needs. 

AI architecture/groundwork 

for automation routines with 

data visualization in traffic 

operations and detection 

https://onnx.ai/about.html 

https://www.yunextraffic.com/global/en/portfolio/ai-and-digital-solutions/ai-based-traffic-and-city-mobility-solutions
https://www.yunextraffic.com/global/en/portfolio/ai-and-digital-solutions/ai-based-traffic-and-city-mobility-solutions
https://www.yunextraffic.com/global/en/portfolio/ai-and-digital-solutions/ai-based-traffic-and-city-mobility-solutions
https://www.yunextraffic.com/global/en/portfolio/ai-and-digital-solutions/ai-based-traffic-and-city-mobility-solutions
https://www.yunextraffic.com/global/en/portfolio/ai-and-digital-solutions/ai-based-traffic-and-city-mobility-solutions
https://onnx.ai/about.html
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2.4 BIG DATA SOURCES  

In particular, the review focused on studies conducted with Bluetooth receivers, GPS devices, 

and mobile device data (MDD) obtained through cellular networks and location-based services 

embedded in smartphone applications. The review considered the specific applications of the 

data products seen within the literature and the sample size reported or inferred within the 

reviewed studies and summarized the success or failure of the attempted applications. The 

review also contains a summary of the underlying technologies, including inferred and known 

sources of bias or incompleteness (see Table 3). 

The collective efforts of the many researchers compiled in this document show that each 

technology has its own particular strengths and weaknesses. In general, Bluetooth excels in 

projects of a temporary nature, such as construction corridor planning, as well as targeted cordon 

studies that focus on the entry and exit of individuals within a selected perimeter. Bluetooth can 

be permanently installed and is often used in real-time applications, such as travel time 

prediction on highways. Bluetooth falls short in its ability to obtain the true origin and 

destination of individual trips. GPS technology is highly accurate and precise and therefore 

excels in studies that require individual route traces, such as network construction and travel time 

studies. Due to the lower penetration of GPS devices across an unbiased population, the 

technology may be unable to identify wider behavioral information. By contrast, the widespread 

proliferation of MDD promises a wider and less biased view of population travel patterns, 

although the aggregation of data from multiple sources and the coarse temporal resolution of 

these data limits the precision of studies conducted at small scales. 

2.4.1 Bluetooth 

Bluetooth is a short-range, radio-based communication protocol that permits pairs of 

authenticated devices to send out limited amounts of data to each other, with one device referred 

to as the transmitter and the other referred to as the receiver. Applications of this technology 

include wireless headphones that connect with mobile telephones or mobile telephones that 

connect with in-car audio and information systems. Bluetooth technology originated in the late 

1990s, and it has been under continuous development ever since. Bluetooth 1.0 was released in 

1999 with a maximum range of 33 ft. Currently, Bluetooth 5.0+ has an extreme maximum 

transmission range of around 780 ft based on the signal processing technology used, and 

individual Bluetooth devices may or may not have the power necessary to transmit over the 

maximum range (Macfarlane and Copley, 2020). 

When enabled, Bluetooth devices are continually emitting and searching for Bluetooth signals. 

Bluetooth receiver units are set up by the DOT or its contractors, and transportation analysts 

have exploited this feature of Bluetooth technology to conduct many transportation studies.  

2.4.2 Global Positioning System 

GPS was originally developed as military technology used to find precise targets and aid military 

vehicles in navigation. Today, with the right combination of weather, atmospheric conditions, 

and receiver technology, it is possible for the public to have precise location information. By 

triangulating the signals reflected from multiple GPS satellites, GPS-enabled devices can 

accurately locate their positions anywhere on Earth independent of local infrastructure or data 
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connectivity. This has made GPS an attractive technology for in-car position and navigation 

systems in consumer and commercial vehicles and for managing fleet operations (Macfarlane 

and Copley, 2020). 

Commercial providers of GPS services such as TomTom, HERE, and INRIX can acquire the 

locations and timestamps of devices on their networks by tracking GPS equipment placed in 

vehicles and, in some cases, data collected through MDD. In some instances, cellular phone 

navigation apps use location-based services or other mobile device-locating features in addition 

to GPS information. 

2.4.3 Mobile Device Data 

In recent years, most people in the United States carry a smart phone device as a matter of habit, 

utility, and convenience. Some other smart wearable devices include smart watches, fitness 

trackers, and music players, which are usually connected to data networks to provide services to 

their users. For real-time services, these devices require location services to be turned on so that 

the users can get real-time updates about location, weather, and nearby interests. Even before the 

proliferation of these smart devices and location services, cellular phones sent data to and from 

towers that are in space. Over the last few years, many private big data vendors have improved 

techniques to collect, aggregate, and sell data from cellular towers and location-based services.  

Table 3. Key Data Sources. 

Data 

Source 
Advantages Disadvantages Big Data Companies 

Bluetooth 

• Short-duration event data  

• Real-time estimates  

• Accurate relative to 

receivers  

• Gaining traces through a 

cordon is difficult  

• Require hardware setup 

• Blyncsy  

• BlueTOAD 

(Iteris) 

GPS 

• High precision 

• True OD data  

• Continuous ping rates  

• Average travel time 

(TTAve) and speed data  

• Separate travel time and 

speed data for passenger 

cars and trucks  

• Low penetration rates  

• May cause 16 ft error in 

clear conditions  

• Fleet vehicle origins are 

often biased  

• HERE 

Technologies  

• INRIX  

• TOM TOM 

• Wejo  

• OtoNomo 

• Waze 

MDD 

• True O-D data  

• Large sample sizes  

• More opportunity for 

tracking active modes and 

mode differentiation  

• Lack of intermediate trace 

data.  

• Lower accuracy  

• AirSage  

• Citilabs  

• Replica—

Sidewalk Labs  

• StreetLight Data  

2.5 REVIEW OF STATE DOT PRACTICES 

Congestion is a major and challenging issue for urban transportation systems, and reducing 

congestion has become complex in regard to traffic analysis and the emerging growth of 
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transportation data and technologies. In recent years, there has been growing interest among 

highway transportation agencies and state DOTs to supplement traditional traffic data collection 

with new data collection practices and to use those data to analyze, forecast, and reduce traffic 

congestion. The majority of state DOTs have started adopting data initiatives since the inception 

of the USDOT Safety Data Initiative and are launching pilot projects. In addition, a few states 

started creating their own databases to store and analyze transportation data, whereas other states 

utilized the products of big data vendors and service companies such as StreetLight, INRIX, 

Iteris, Waycare, and Wejo to create, store, and use traffic data.  

A few states (for example, Massachusetts) use geographic information system (GIS)-based 

platforms to monitor traffic data in the form of Keyhole Markup Language (KML) layers and 

shapefiles, as well as Excel-based (CSV) files. Those public data include average daily traffic 

(ADT) and annual average daily traffic (AADT), which are based on traffic count stations. Other 

states, such as Indiana, maintain their own dataset and provide updates on the traffic data on a 

daily basis. Those data include ADT, AADT, speed, and volume, along with analytical graphs 

such as the traffic volume index and speed graphs. In some cases, they may include data related 

to CVs. The data obtained from those public databases, as well as private data vendors, can be in 

the format of raw data (which requires processing) or refined data.  

To analyze traffic data for sustainable mobility and solve transportation-related problems, some 

states have—in addition to maintaining their own dataset—database platforms, whereas a few 

states have started initiatives to utilize external private platforms for big data in the refined 

format. Private companies such as StreetLight, INRIX, Iteris, Waycare, and Wejo collect and 

analyze raw data and provide the states with refined data (which are more convenient than raw 

data) for use by the agencies. These data are not available for free to the public. It should be 

noted that although private companies emphasize the reliability and high quality of the data they 

provide, it is recommended to validate the data using multiple techniques. Many states use both 

their own databases and the databases by vendors, which helps them to have a wide range of 

mobility and traffic data from pedestrian data, bicycle volume data, vehicular data, and weather 

data.  

Figure 1 shows the state market distribution of big databases and platforms. The information was 

collected by a thorough review of the literature, searching the news for stories relevant to the 

topic of the research project, visiting the state highway agencies, and disseminating from the 

private vendor webpages. From the figure, it can be seen that INRIX, StreetLight, and Iteris are 

widely used by different states for their transportation and mobility data.  
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Figure 1. State Market Distribution of Big Databases and Platforms. 

There are some states that use more than one database or platform. For example, Caltrans not 

only has its own database but also utilizes the data from the private vendors StreetLight and 

Waycare. Figure 2 shows the states that have more than one database or platform.  

 
Figure 2. Usage of Big Data Providers by States.  

From the figure, it can be seen that a few states use only one database (e.g., Indiana, Michigan, 

and New Jersey) but the majority of states employ more than one database to analyze their traffic 

and forecast and reduce congestion. Table 4 lists the big databases used by the state DOTs for 

freeway congestion reduction.  
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Table 4. Big Databases Used by the State DOTs.  

State Region Agency Public Big Databases 
Private Big 

Databases 

Alabama South Alabama DOT 
NPMRDS, TMAS, ALDOT 

Databases 
NA 

Alaska West Alaska DOT 
NPMRDS, TMAS, Alaska DOT 

Databases 
NA 

Arizona West Arizona DOT 
NPMRDS, TMAS, ADOT 

Databases 

StreetLight 

Data 

Arkansas South Arkansas DOT 

NPMRDS, TMAS, 

iDriveArkansas, ARDOT 

Databases 

NA 

California West Caltrans 
NPMRDS, TMAS, Caltrans 

Databases 

StreetLight 

Data, Waycare 

Colorado West Colorado DOT 
NPMRDS, TMAS, CDOT 

Databases 
NA 

Connecticut Northeast Connecticut DOT 
NPMRDS, TMAS, CTDOT 

Databases 
INRIX  

Delaware Northeast Delaware DOT 
NPMRDS, TMAS, DelDOT 

Databases 
NA 

Florida South Florida DOT 
NPMRDS, TMAS, FDOT 

Databases 
StreetLight 

Georgia South Georgia DOT 
NPMRDS, TMAS, GDOT 

Databases 
Iteris, Inc. 

Hawaii West Hawaii DOT 
NPMRDS, TMAS, HIDOT 

Databases 
NA 

Idaho West 

Idaho 

Transportation 

Department (TD) 

NPMRDS, TMAS, ITD 

Databases 
NA 

Illinois Midwest Illinois DOT 
NPMRDS, TMAS, IDOT 

Databases 
NA 

Indiana Midwest Indiana DOT 
NPMRDS, TMAS, INDOT 

Databases 
INRIX 

Iowa Midwest Iowa DOT 
NPMRDS, TMAS, IOWADOT 

Databases 
NA 

Kansas Midwest Kansas DOT 
NPMRDS, TMAS, KDOT 

Databases 
Iteris, Inc. 

Kentucky South Kentucky TC 
NPMRDS, TMAS, KYTC 

Databases 
NA 

Louisiana South Louisiana DOTD 
NPMRDS, TMAS, La DOTD 

Databases 

INRIX, 

Streetlight 

Maine Northeast Maine DOT 
NPMRDS, TMAS, MaineDOT 

Databases 
NA 

Maryland Northeast Maryland DOT 
NPMRDS, TMAS, MDOT 

Databases 

INRIX, 

StreetLight  

Massachusetts Northeast 
Massachusetts 

DOT 

NPMRDS, TMAS, MassDOT 

Databases 
NA 

Michigan Midwest Michigan DOT 
NPMRDS, TMAS, MDOT 

Databases 
INRIX  
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State Region Agency Public Big Databases 
Private Big 

Databases 

Minnesota Midwest Minnesota DOT 
NPMRDS, TMAS, MnDOT 

Databases 
Iteris, Inc. 

Mississippi South Mississippi DOT 
NPMRDS, TMAS, MDOT 

Databases 
NA 

Missouri Midwest Missouri DOT 
NPMRDS, TMAS, MoDot 

Databases 
NA 

Montana West Montana DOT 
NPMRDS, TMAS, MDT 

Databases 
Iteris, Inc. 

Nebraska Midwest Nebraska DOT 
NPMRDS, TMAS, NDOT 

Databases 

INRIX, 

Strava, Iteris, 

Inc. 

Nevada West Nevada DOT 
NPMRDS, TMAS, NDOT 

Databases 
NA 

New 

Hampshire 
Northeast 

New Hampshire 

DOT 

NPMRDS, TMAS, NHDOT 

Databases 
NA 

New Jersey Northeast New Jersey DOT 
NPMRDS, TMAS, NJDOT 

Databases 
INRIX 

New Mexico West New Mexico DOT 
NPMRDS, TMAS, NMDO 

Databases 
INRIX 

New York Northeast New York DOT 
NPMRDS, TMAS, NYCDOT 

Databases 
NA 

North 

Carolina 
South 

North Carolina 

DOT 

NPMRDS, TMAS, NCDOT 

Databases 
NA 

North Dakota Midwest North Dakota DOT 
NPMRDS, TMAS, NDDOT 

Databases 
Iteris, Inc. 

Ohio Midwest Ohio DOT 
NPMRDS, TMAS, ODOT 

Databases 
NA 

Oklahoma South Oklahoma DOT 
NPMRDS, TMAS, ODOT 

Databases 
INRIX 

Oregon West Oregon DOT 
NPMRDS, TMAS, ODOT 

Databases 
NA 

Pennsylvania Northeast Pennsylvania DOT 
NPMRDS, TMAS, PennDOT 

Databases 
INRIX 

Rhode Island Northeast Rhode Island DOT 
NPMRDS, TMAS, DOTRI 

Databases 
INRIX 

South 

Carolina 
South 

South Carolina 

DOT 

NPMRDS, TMAS, SCDOT 

Databases 
Iteris, Inc. 

South Dakota Midwest South Dakota DOT 
NPMRDS, TMAS, SDDOT 

Databases 
INRIX 

Tennessee South Tennessee DOT 
NPMRDS, TMAS, TNDOT 

Databases 
NA 

Texas South TxDOT 
NPMRDS, TMAS, TxDOT 

Databases 

Waze, Wejo, 

INRIX, Strava 

Utah West Utah DOT 
NPMRDS, TMAS, UDOT 

Databases 
INRIX 

Vermont Northeast 

Vermont Agency 

of Transportation 

(VTrans) 

NPMRDS, TMAS, VTRANS 

Databases 
NA 
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State Region Agency Public Big Databases 
Private Big 

Databases 

Virginia South Virginia DOT 
NPMRDS, TMAS, VDOT 

Databases 
NA 

Washington West 
Washington State 

DOT 

NPMRDS, TMAS, WSDOT 

Databases 
NA 

West Virginia South 
West Virginia 

DOT 

NPMRDS, TMAS, WVDOT 

Databases 
Iteris, Inc. 

Wisconsin Midwest Wisconsin DOT 
NPMRDS, TMAS, WisDOT 

Databases 
Iteris, Inc. 

Wyoming West Wyoming DOT 
NPMRDS, TMAS, WYDOT 

Databases 
NA 

Note: NA = not available, meaning information “not available” from internet search. It does not necessarily mean 

that these DOTs do not use private big databases.  

2.6 CHAPTER SUMMARY 

This chapter provided a comprehensive synthesis of big data providers, associated datasets, and 

AI platforms aimed reducing freeway congestion. The analysis was based on an extensive review 

of various documentation sources, such as websites, state DOT websites, research reports, 

journal articles, guidebooks, and handbooks. The chapter explored passive data generated by 

commercial third-party providers, such as Bluetooth devices, GPS-enabled devices, cellular 

phones, and smartphones with location services. It emphasized the advantages of passive data 

overactive data collection methodologies used by DOTs and highlights the potential benefits of 

using passive data to supplement or replace active data collection efforts. Last, it reviewed state 

DOT practices in adopting data initiatives and utilizing big databases and platforms to analyze 

and forecast traffic for effective freeway congestion reduction. 
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CHAPTER 3: SURVEY 

3.1 INTRODUCTION 

The TTI team developed a survey questionnaire to learn more about state DOT practices 

regarding big data usage in freeway congestion reduction. The survey contained the following 

sections: data collection, data analysis and methods, big data platforms, reports and guidance 

documents, lessons learned, and future needs. This survey had conditional logic built in to allow 

agencies to skip over nonapplicable questions. The final survey questionnaire is provided in 

Appendix A. The TTI team developed a list of 60 DOT contact persons as potential survey 

participants. The request to complete the survey was sent to the selected contact persons. As of 

February 26, 2022, the TTI team had received 14 responses. Out of these 14 responses, 6 

responses were discarded due to incomplete submission. The agencies that completed the survey 

are listed below: 

• Colorado DOT. 

• Arizona DOT. 

• North Carolina DOT. 

• Wisconsin DOT. 

• Georgia DOT. 

• Pennsylvania DOT. 

• Kansas DOT. 

• New Hampshire DOT. 

3.2 SURVEY ANALYSIS 

Survey respondents were asked about the big data providers’ data that they use the most to aid in 

freeway congestion reduction. The majority of the responding agencies used INRIX and Waze as 

their main sources. Some of the agencies have also started to use Streetlight and Wejo data (see 

Figure 3). Participant agencies also mentioned other data vendors such as HERE, 

Intelight/Maxview, WayCare, TomTom, and Drakewell.  

 
Figure 3. Big Data Providers.  
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Survey respondents were asked about the types of information they collect with the use of big 

data. All of the participant agencies used big data sources for the following four tasks (see 

Figure 4): 

• Measuring travel time. 

• Collecting real-time information. 

• Managing incidents. 

• Reducing incident clearance time. 

Agencies also determine congestion measures and distribute emergency alerts and crisis 

information by using information from big data sources.  

 
Figure 4. Type of Information Collected from Big Data Providers.  

When asked about the types of information by different data vendors, the majority of the 

responses indicated that either INRIX or Waze data are mostly used for these tasks (see Table 5).  

Table 5. Big Data Providers by Type of Information.  

Type of Information INRIX AirSage Waze Streetlight Strava Others 

Congestion measures 50 — — — — — 

Travel time 50 — — — — — 

Incident management 25 — 13 — — — 

Incident clearance time 25 — — — — — 

Real-time information 38 — 63 — — — 

Emergency alert and crisis 

information 
25 — 13 — — — 

Other (specify below) 50 — — — — — 

Note: Dash indicates not applicable  

The participants were also asked about the types of data they collect from big data sources. 

Incident information, short-duration traffic volume data, and traffic crash data are the key data 

types according to the participant responses (see Figure 5). Other data types are weather data, 
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traffic volume by vehicle type, speed by vehicle type, travel time by vehicle type, and social 

media feed. One of the participants mentioned, “Overall travel times along with congestion 

monitoring via Google maps, cameras, physical traffic detectors, and probe data populate and 

confirm congestion locations. We typically do not mitigate reoccurring congestion.”  

 
Figure 5. Data Types Used by the Participant Agencies.  

The participants were asked about whether the collection of these data is continuous or 

occasional. The majority of the responses indicated that the data collection is continuous (see 

Table 6).  

Table 6. Type of Data Collection by Periods.  

Type of Information Continuous Once a week Once a month 
Once a 

year 
Others 

Traffic volume data 88 — 12 12 — 

Traffic volume data by vehicle type 63 — 12 12 — 

Travel time 100 — 12 — — 

Speed 88 — 12 — — 

Travel time by vehicle type — — 25 — — 

Other (specify below) 25 — 25 12 — 

The cloud platforms used by the survey participants are Amazon AWS, Microsoft Azure, and 

Google Cloud (see Figure 6). Around one-fourth of the participants mentioned that they do not 

use cloud platforms.  
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Figure 6. Cloud Platforms Used by the Participant Agencies. 

The most used analytical platforms are Power BI and Tableau (see Figure 7). Around 38 percent 

of participants mentioned that they do not use any analytical platforms. Similarly, around 

67 percent of the participants mentioned that they do not use any enterprise software. However, 

when asked about DOT-maintained dashboards, 63 percent of the participants mentioned that 

state DOTs maintain an interactive congestion dashboard. 

 
Figure 7. Analytics Platforms Used by the Participant Agencies.  
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3.3 CHAPTER SUMMARY 

As discussed in this chapter, the TTI team conducted a survey to explore the use of big data by 

state DOTs to reduce freeway congestion. The survey was sent to 60 DOT contact persons, and 

14 responses were received. The main big data sources used by the agencies were INRIX and 

Waze, with some also using Streetlight and Wejo data. The collected data primarily served tasks 

like measuring travel time, real-time information, incident management, and incident clearance 

time. INRIX and Waze were also the top choices for specific types of information. Key data 

types collected included incident information, short-duration traffic volume data, and traffic 

crash data. Most data collection was continuous, and Amazon AWS, Microsoft Azure, and 

Google Cloud were commonly used cloud platforms. The preferred analytical platforms were 

Power BI and Tableau. While some agencies did not provide responses on lessons learned and 

future plans, a few mentioned successes like adaptive ramp metering and incident response units 

for reducing congestion, as well as challenges related to data governance and bandwidth 

limitations. 
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CHAPTER 4: BIG DATA VALIDATION 

4.1 INTRODUCTION 

This chapter presents research findings of novel big data applications within traffic management, 

traffic forecasting and modeling, and real-time, reliability monitoring-oriented systems 

developed by state and federal agencies. The goal of this review was to identify noteworthy 

practices and tools that could be transferable at TxDOT. To collect the information presented 

herein, the TTI team conducted a series of activities in the following order: 

• Conducted a big data validation case study using Wejo data. 

• Developed a dataset for Texas freeways using Road-Highway Inventory Network Offload 

(RHiNO), National Performance Management Research Data Set (NPMRDS), and 

TxDOTs’s Crash Records Information System (CRIS) data. 

4.2 BIG VALIDATION DATA CASE STUDY: WEJO 

CVs are rapidly becoming the new paradigm of road transport and are widely believed to 

positively influence transportation safety, efficiency, and sustainability. CVs represent the 

unification of various connectivity technologies, enabling vehicles to communicate with other 

vehicles, transportation infrastructures, and the cloud to achieve the goal of self-driving. 

Although most commercially available vehicles are still far from completely automating the 

driving task, most of them already can monitor the driving environment and vehicle movements 

through vehicular sensors. Many world-leading auto manufacturers, such as Toyota™, General 

Motors™, BMW™, Tesla™, and others, have ramped up the production of CVs, which will 

increase access and transmission of vehicular sensors’ data to the cloud. Many automotive data 

companies have also emerged to facilitate the use of CV data, such as Wejo, Otonomo, Smartcar, 

Vinili, and CarAlgo. These data companies bridge the data providers (auto manufacturers) with 

data users by ingesting, aggregating, and normalizing the raw CV data and delivering the 

enriched and organized datasets to end users. 

The CV data are collected from vehicles, thereby directly reflecting the dynamics of traffic 

mobility. CV data show great superiority in data quality, volume, consistency, and richness over 

traditional mobility data sources, making them promising data sources for monitoring urban 

mobility dynamics. For example, Wejo, as a leading CV data start-up, provides high sampling 

rates and multidimensional vehicle movements and driving events (e.g., hard braking, hard 

acceleration, and speeding) data. This data platform is currently partnered with multiple world-

leading auto manufacturers and has collected data from millions of vehicles, with a sampling rate 

of 3 seconds per waypoint. Each waypoint describes the timestamp, location, and movement-

related information (e.g., speed and heading) of a vehicle’s trajectory. Wejo claims that its CV 

data products can access over 90 different vehicular sensors and cover 95 percent of road 

networks in the United States, with about 12 billion data points collected every day at its best 

temporal resolution of every 3 seconds. This preliminary database development also 

demonstrates that Wejo data have good spatiotemporal coverage in urban regions of Texas.  

Note that Wejo mostly collected CV data from passenger vehicles and not from commercial 

motor vehicles (CMVs). However, the driving behavior of both passenger vehicles and CMVs 
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would be affected similarly by shockwaves while traversing work zones. Therefore, the TTI 

team assumed that Wejo CV data can be effectively leveraged to characterize driving behavior 

for both passenger vehicles and CMVs. To support this assumption, Figure 8 shows how Wejo 

data reveal changes in driving behavior, such as hard-braking events, reductions in speed, and 

lane changes due to a lane closure that is causing congestion and forcing vehicles to move from 

the right lane to the left lane of the roadway.  

 
Figure 8. Changes in Driving Behavior Due to Lane Closure. 

In this project, the TTI team used the CV movement data provided by Wejo to generate variables 

characterizing the speed variation. The CV data were reprocessed by Wejo and delivered to the 

Azure Cloud storage account. The data were organized in the Apache Parquet format. The TTI 

team used an online big data analytics platform, Azure Databricks™, to process the big CV 

dataset. Azure Databricks supports the latest version of Apache Spark™, which allows its users to 

seamlessly integrate with any open-source libraries and quickly establish a fully managed 

Apache Spark environment. The TTI team primarily used Apache Sedona™ to load, partition, 

process, and spatially analyze the big CV data and used other open-source libraries (e.g., 

Datashader) to visualize the large dataset. To calculate the desired parameters, the unique 

dataPointIds within each segment that contained data for 365 consecutive days were selected. 

Table 7 provides a list of variables for congestion measures using Wejo data, along with their 

definitions. In the table, n represents the number of unique dataPointIds within each segment, vi 
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represents speed of the vehicle, v̅ represents the average speed, v85 represents the 85th percentile 

speed for the segment (speed that is greater than 85 percent of the data points), v50 represents the 

50th percentile (median) speed, v93 represents the 93rd percentile speed for the segment (speed 

that is greater than 93 percent of the data points), v07 represents the 7th percentile speed for the 

segment (speed that is greater than 7 percent of the data points), and ai represents the 

acceleration of the vehicle. To obtain the stop_freq variables, whenever a vehicle speed went 

down from above 5 miles per hour (mph) to below 5 mph it was counted as a stop. Then, the 

number of stops was divided by the segment length and the number of unique journeys in that 

segment. 

Table 7. Developed Congestion Measures Using Wejo Data. 

Variable Definition 

Mean_spd 
Average Speed =  

1

n
∑vi

n

i=1

 

Variance_spd 
Sample variance of speeds =

1

n − 1
∑(vi

2 − v̅2)

n

i=1

 

Percentile_83_spd 85th percentile of speeds 

Percentile_93_spd 93rd percentile of speeds 

RMS_spd 

Root mean square of speeds = √
1

n
∑vi

2

n

i=1

 

Diff_to_mean Difference to mean speed = v85 − v̅ 

Coeff_upper_speed  

Coefficient of upper speed =
v85 − v50

v50
 

SI Skewness index = 2 ×
v93 − v50

v93 − v07
 

Acc_noise Acceleration noise or root mean square of acceleration

= √
1

n
∑ai

2

n

i=1

 

Stop_freq Stop frequency: number of stops per trip per mile 

The final dataset can be retrieved from the following link: https://tti-

my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-

N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y. 

4.3 DATABASE PREPARATION 

The work for Texas State data with the Roadway Inventory annual data, the NPMRDS speed 

measure, and crash events count mainly includes five major parts: (1) preparation of 

https://tti-my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y
https://tti-my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y
https://tti-my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y
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homogeneous roadway segments, (2) conflation of the segment dataset with the NPMRDS 

dataset, (3) speed measure calculation, (4) crash and point events assignment, and (5) final 

combination process. The freeway is considered the type of roadway investigated in this study. 

The detailed steps are described in the following sections. 

4.3.1 Preparation of Homogenous Roadway Safety Segments 

A based layer was created to extract roadways based on the functional classification. A data 

conflation method was applied to prepare the base layers. In Part 1, there are two data conflation 

steps to prepare the based layers based on the original Roadway Inventory annual data. First, all 

interstate roadways were selected by setting “F_SYSTEM” = 1. Second, an additional segment 

identification variable was added. The original Roadway Inventory annual data used 

“RIA_RTE_ID” to identify the road segments. However, it contains both digits and characters of 

different lengths. To make the further conflation steps easier, a “RouteID” variable was created 

by giving a unique value for each “RIA_RTE_ID” number. The “RouteID” starts at 1 and ends at 

1361. If multiple segments have the same “RIA_RTE_ID”, they will have the same “RouteID” 

as well (see Figure 9).  

 
Figure 9. Illustration of RouteID. 
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4.3.2 Conflation of the Segment Dataset with the NPMRDS Dataset 

In this step, the TTI team integrated two linear systems (NPMRDS and segment polyline files) to 

enable segment-based analysis with speed measures. This study used two formats of segment 

files: (a) roadway linework without roadway characteristics (i.e., RouteID), and (b) roadway 

linework with roadway characteristics (i.e., roadway segments created in the first step). In the 

former file, each route is a continuous polyline in the GIS database, and it includes only the basic 

information for the route (e.g., route name, beginning, and end mileposts). In the latter file, 

routes are split into various numbers of homogeneous segments with roadway assets or features 

(e.g., functional class, lane, shoulder, posted speed limit [PSL], presence of rumble strips, and 

lighting situation). 

The conflation work considered the 2017 Texas NPMRDS file and the homogeneous segment 

file created from the Roadway Inventory annual data in the first step. The TTI team used two 

software packages (ArcGIS and R) to conflate these databases. The following steps were taken in 

this task. 

4.3.2.1. Step 1: Divide the NPMRDS File by Direction 

In this step, the TTI team divided the NPMRDS file into two files: positive and negative. The 

direction of the NPMRDS segments is determined by the TMC name: (a) “+” or “P” indicates 

positive, and (b) “−” or “N” indicates negative (see Figure 10 and Figure 11).  

 
Figure 10. Step 1 (Roadway Segment and NPMRDS Linework). 
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Figure 11. Example of a Route and an NPMRDS TMC Segment. 

4.3.2.2. Step 2: Locate NPMRDS Segments along with Roadway Routes 

In this step, the TTI team used one direction of NPMRDS files as the input feature and roadway 

route linework without roadway characteristics as the input route feature and then located the 

NPMRDS segments on the roadway routes. The event table generated from the locating process 

was exported as a CSV file. Each direction of NPMRDS was located separately (see Figure 12).  

 
Figure 12. Step 2 (Locating NPMRDS Segments along Roadway Routes). 



 

33 

4.3.2.3. Step 3: Refine the Event Table  

In Step 2, the two files (i.e., NPMRDS and Routes) were located based on spatial relationships. 

A few segments were mismatched in the process. Step 3 eliminated the mismatched events based 

on the roadway information and spatial matching results. In the refined event table, each 

NPMRDS segment had a route name and beginning and end mileposts relative to the roadway 

route linework.  

4.3.2.4. Step 4: Create the Final Table  

The TTI team refined the event table and roadway linework with roadway characteristics. In this 

step, the association between NPMRDS segments and roadway segments with roadway 

characteristics was created based on the route name and mileposts. For each roadway segment, 

the data from NPMRDS segments were collected. The information included the TMC name and 

the effective length ratio of the TMC matching with the roadway segment (see Table 8). 

Table 8. Step 4 (Roadway Segments with NPMRDS Information). 

RouteID Unique ID Beg MP End MP TMC Effective Ratio 

92 2 15280.1 16871.3 114+05423 0.041 

92 3 16871.3 18564.8 114+05423 0.043 

92 4 60632.2 61160.4 114+05420 0.078 

92 4 60632.2 61160.4 114+05421 0.001 

92 5 58192.9 60630.6 114+05421 0.108 

92 6 67278.1 67471.1 114P05419 0.049 

92 7 67471.1 68624.31 114P05419 0.291 

Similar steps were taken for the conflation of the roadway routes, segments, and NPMRDS in the 

negative direction. The current data conflation work is limited to the quality of the original 

Roadway Inventory database data as well as the NPMRDS dataset. For example, if a roadway 

feature is missing in the Roadway Inventory data, the feature will be shown as “NA” or “0” in 

the final conflated dataset. A few segments had two or more entries in the attribute table, and the 

information contradicted each other.  

4.3.3 Speed Measure Calculation 

The TTI team downloaded 5 years of speed measure data (2017 to 2021) from NPMRDS by 

using the TMC number from Step 2. First, the TTI team developed an R code to summarize the 

5-year speed measure for each TMC name. Speed measures used in this study are listed in 

Table 9. 
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Table 9. Speed Measure Variables and Definitions. 

Attribute Name Definition 

SpdAve Average speed determined for the year using all data 

SpdStd Standard deviation (STD) of speed determined for year using all data 

Spd85 85th percentile speed determined for the year using all data 

PSL Posted speed limit 

SpdAveDay Average speed determined for year (hour > 5 and hour < 18) using all data 

SpdStdDay STD of speed determined for year (hour > 5 and hour < 18) using all data 

SpdAveNight 
Average speed determined for year (hour > 17 and hour < 24 and hour > −1 and 

hour < 6) using all data 

SpdStdNight 
STD of speed determined for year (hour > 17 and hour < 24 and hour > −1 and 

hour < 6) using all data 

SpdAveMTWT Average speed determined for year (Mon., Tues., Wed., and Thurs.) using all data 

SpdStdMTWT STD of speed determined for year (Mon., Tues., Wed., and Thurs.) using all data 

SpdAveFSS Average speed determined for year (Fri., Sat., and Sun.) using all data 

SpdStdFSS STD of speed determined for year (Fri., Sat., and Sun.) using all data 

SpdFFAve 
Average speed determined for year using speed data where 5-min speed is > PSL 

(or PSL+5 or +10) 

SpdFF85 
85th percentile speed determined for year using speed data where 5-min speed is > 

PSL (or PSL+5 or +10) 

In Part 2, it is known that each roadway segment has both negative and positive TMC names, 

and for some roadway segments, there is more than one negative or positive TMC name. This 

situation leads to each roadway segment having more than one set of speed measure data. The 

TTI team developed another R code to calculate the weighted average of all the speed measure 

attributes for each unique roadway segment. The original speed measure file was merged with 

the roadway segments with the NPMRDS information file created in Part 2. Then, the speed 

measure data were grouped by “unique id” and the weighted average values of all speed measure 

attributes in Table 9 were calculated based on the effective ratio of each TMC. Note that the 

weighted average calculation methods for “SpdStd,” “SpdStdDay,” “SpdStdNight,” 

“SpdStdMTWT,” and “SpdStdFSS” are different from other speed measure attributes.  

Equation 1 was applied to the following speed measurement variables: “SpdStd,” “SpdStdDay,” 

“SpdStdNight,” “SpdStdMTWT,” and “SpdStdFSS.” 

𝐴 = √∑ (𝑤𝑖𝑠𝑖)
2

𝑛

𝑖
 (1) 

Where,  

𝐴: Aggregated speed measurement variable. 

𝑛: Number of unique TMC names of a RHiNO segment. 
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𝑤𝑖: Normalized effective ratio of the ith TMC name of a RhiNO segment. 

𝑠𝑖 : the speed measurement value of the ith TMC name a RhiNO segment. 

Equation 2 was applied to the following speed measurement variables: “SpdAve,” “Spd85,” 

“RefSpd,” “SpdAveDay,” “SpdAveNight,” “SpdAveMTWT,” “SpdAveFSS,” “SpdFFAve,” and 

“SpdFF85.” 

𝐴 = ∑ 𝑤𝑖𝑠𝑖

𝑛

𝑖
 (2) 

Where,  

𝐴: Aggregated speed measurement variable. 

𝑛: Number of unique TMC names of a RHiNO segment. 

𝑤𝑖: Normalized effective ratio of the ith TMC name of a RHiNO segment. 

𝑠𝑖 : the speed measurement value of the ith TMC name a RHiNO segment 

Moreover, three new columns were added—“num_tmc_n,” “num_tmc_p,” and “ratio_tmc_n_p.” 

“Num_tmc_n” indicates the number of negative TMC for each “unique id,” “num_tmc_p” 

indicates the number of positive TMC for each “unique id,” and “ratio_tmc_n_p” indicates the 

ratio between the sum of negative TMCs’ “Effective Ratios” and the sum of positive TMCs’ 

“Effective Ratios.” 

The speed measurements were summarized based on the above explanation and added to the 

based layer prepared in the first step. Columns 208 to 277 in the final shapefile represent the 

speed measurements for each year ordered from 2017 to 2021. Columns 278 to 291 represent the 

speed measurements for all years combined. The detailed field definition of speed measurement 

for 2017 is shown in Table 10. For the remaining years, the naming criteria are the same.  
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Table 10. Speed Measure Variables for 2017 in the Final Shapefile. 

Field Name Definition 

SpdAve17 Average speed determined for 2017 

SpdStd17 STD of speed determined for 2017 

Spd85_17 85th percentile speed determined for 2017 

PSL_17 PSL for 2017 

SpdAveD17 Average speed during daytime determined for 2017 

SpdStdD17 STD of speed during daytime determined for 2017 

SpdAveN17 Average speed during nighttime determined for 2017 

SpdStdN17 STD of speed during nighttime determined for 2017 

AveMTWT17 Average speed determined for 2017 (Mon Tues Wed Thurs) 

StdMTWT17 STD of speed determined for 2017 (Mon Tues Wed Thurs) 

AveFSS17 Average speed determined for 2017 (Fri Sat Sun) 

StdFSS17 STD of speed determined for 2017 (Fri Sat Sun) 

SpdFFAve17 Average speed determined for 2017 using speed data where 5-min speed is > 

PSL (or PSL+5 or +10) 

SpdFF85_17 85th percentile speed determined for 2017 using speed data where 5-min speed 

is > PSL (or PSL+5 or +10) 

4.3.4 Crash and Point Events Assignment 

The TTI team downloaded Texas crash data from 2017 to 2021. The crash events shape files 

contain a large amount of information, including crash date, crash severity, and the latitude and 

longitude of the crash events. The TTI team first applied the near feature tool in ArcMap (see 

Figure 13) to assign crash events to roadway segments that were created in Part 1. Each crash 

was assigned an attribute named “Near_FID.” “Near_FID” stands for the Feature Identifier (FID) 

number (roadway segment corresponding row number starting from 0 in the crash characteristics 

file) of the roadway segment on which the crash event happened. Here, the TTI team chose 30 ft 

as the threshold to determine if a crash event happened on a roadway segment, which means that 

the crash event is assigned to this specific roadway segment only if a crash event is within 30 ft 

of the roadway segment. If a crash event cannot be assigned to any roadway segment, its 

“Near_FID” attribute is equal to −1. The TTI team filtered out the crash events whose 

“Near_FID” equaled −1 because they cannot relate to any roadway segments. Note that in the 

Roadway Inventory annual data, all the different types of roadbeds were classified in 

“RDBD_ID” variables. The crash events should not be assigned to the centerline/single roadbed 

(i.e., “RDBD_ID” = “KG”). Therefore, before assigning crash events, all the centerline/single 

roadbed segments were excluded by filtering out “RDBD_ID” = “KG.” 

After crash events were assigned to roadway segments for both 2017 and 2018, the TTI team 

summarized the total number of crashes that happened on each roadway segment based on crash 

severity. The crash severity levels range from 0 to 5. The detailed severity explanations of levels 

are shown in Table 11. The crash types are categorized as single vehicle (SV) or multiple vehicle 

(MV). Therefore, for each “NearFID” number, the TTI team summarized 30 new columns 



 

37 

named “S7_0”, “S17_1” … “M21_5”, and “M21_5” (see Table 12). For example, the column 

“S17_1” indicates the number of severity level 1 crashes that happened during 2017 with the 

crash type of single vehicles. 

 
Figure 13. Near (Analysis) Tool. 

Table 11. Scales of Crash Severity Levels. 

CRASH_SEV_ID Description Scale 

0 Unknown O 

1 Incapacitating Injury A 

2 Non-Incapacitating B 

3 Possible Injury C 

4 Fatal K 

5 Not Injured O 
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Table 12. Crash Summary for Each “Near_FID” (Partially Displayed Example). 

NEAR_FID S17_0 S17_1 M21_3 M21_4 M21_5 

1 0 0 0 0 0 

4 0 0 0 0 3 

8 0 0 0 0 0 

9 0 0 0 0 0 

10 0 0 0 0 2 

11 0 0 0 0 0 

15 0 0 0 0 0 

17 0 0 0 0 1 

20 0 0 0 0 1 

21 0 0 0 2 4 

22 0 0 0 0 1 

25 0 0 1 1 4 

Note: only the first two columns (S17_0 and S17_1) and last three columns (i.e., M21_3, M21_3, and M21_4) are 

displayed.  

To make future analysis easier, additional columns were added based on different statistical 

methods. All the crashes were categorized as “F” and “I,” where “F” is equivalent to severity 

level 4 in Table 11. The summarization of severity 1, 2, and 3 represents “I.” In total, 54 

additional columns were added to the data (explained in Table 13).  
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Table 13. Additional Summarization Columns Explanation. 

Code Description 

S17F S17_4 

S17FI S17_1 +S17_2+S17_3+S17_4 

S17All S17F + S17FI 

M17F M17_4 

M17FI M17_1 +M17_2+M17_3+M17_4 

M17All M17F + M17FI 

F17 S17F+ M17F 

FI17 S17FI+ M17FI 

All17 S17All+ M17All 

All21 S21All+ M21All 

SV_TF S17F+ S18F+ S19F+ S20F+ S21F 

SV_TFI S17FI+ S18FI+ S19FI+ S20FI+ S21FI 

SV_Tall S17All+ S18 All + S19 All + S20 All + S21 All 

MV_TF M17F+ M18F+ M19F+ M20F+ M21F 

MV_TFI M17FI+ M18FI+ M19FI+ M20FI+ M21FI 

MV_Tall M17All+ M18 All + M19 All + M20 All + M21 All 

F SV_TF+ MV_TF 

FI SV_TFI+ MV_TFI 

All SV_Tall+ MV_Tall 

4.3.5 Final Combination Process 

In Part 1, the TTI team created the file for roadway segments with roadway characteristics, and 

each unique roadway segment was assigned a “unique id.” In Part 2, the TTI team conflated the 

segment dataset with the NPMRDS dataset in four steps. In Part 3, the speed measure was 

calculated for each “unique_id,” then the speed measure file was joined to the roadway 

characteristics file by “unique_id.” In Part 4, the TTI team assigned crash events to each 

roadway segment. The number of crash events was summarized by crash severity level for each 

“Near_FID.” In this case, “Near_FID” indicates the corresponding roadway segment’s row 

number (starting from 0) in the roadway characteristics file from Part 1. Thus, in order to connect 

“unique_id” with “Near_FID,” the TTI team added a new column, “Near_FID,” to the roadway 

characteristics file. Because in R the row number starts from 1, “Near_FID” equals “row number 

– 1” in calculations. Then, the crash events file was joined to the roadway characteristics file by 

“Near_FID.”. Finally in Part 5, the TTI team combined all the data processed in the previous 

parts. 

The final dataset can be retrieved from the following link: https://tti-

my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-

N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y. 

https://tti-my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y
https://tti-my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y
https://tti-my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EngdaEI8phJHg_R-N0CDPYkByspNdGCyj-mk2zjkGaHu3g?e=PIlR5Y
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4.4 CHAPTER SUMMARY 

This chapter presents the findings of the big data validation and development of a comprehensive 

dataset for model development. A big data validation case study using Wejo data and the 

development of a dataset for Texas freeways using roadway inventory, NPMRDS, and CRIS 

data were undertaken. For the big data validation case study, the TTI team used the CV 

movement data provided by Wejo to generate variables characterizing the speed variation. Five 

major steps were taken to prepare the dataset for Texas freeways: the preparation of 

homogeneous roadway segments, the conflation of the segment dataset with the NPMRDS 

dataset, the speed measure calculation, the crash and point events assignment, and the final 

combination process. 
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CHAPTER 5: NOVEL APPLICATION IDENTIFICATION 

5.1 INTRODUCTION 

The TTI team searched available state DOT records from 2010–2022 within the Transportation 

Research Board TRID research database to document state congestion mitigation measures and 

related efforts to identify general trends in relation to the following: 

• Congestion performance measures and related data sources. 

• Application of AI strategies (e.g., ML, natural language process) and big data sources 

within predictive and dynamic traffic demand modeling. 

• Use of predictive analytics across operational regimes within real-time, travel time 

reliability monitoring of nonrecurring congestion. 

This review included 108 research reports, guides, plans, special studies, and 

deployment/development case studies.  

5.2 CONGESTION MEASURES 

Each state measures certain performance aspects to determine the effectiveness of its traffic 

congestion reduction efforts. Table 14 shows all congestion measures applied in the review 

documentation. 
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Table 14. Congestion Measures. 

Delay Reliability System Congestion 

• Travel Time Index 

• Travel Time Delay 

(total or per capita) 

• Maximum Throughput 

Travel Time Index 

(MT3I) 

• Annual Cost of Vehicle 

Delay 

• Annual Hours of 

Vehicle Delay  

• Annual Hours of 

Person Delay  

• Vehicle Hours of Delay 

(VHD) 

• Delay per User 

• Percent Lane Miles 

Delayed (<85% posted 

speed)  

• Vehicle Delay per 

Capita 

• Planning Time Index (PTI 95) 

• Reliability Index 

• TTAve 

• Median Travel Time (50th 

percentile) 

• Buffer Index (BI) 

• Planning Travel Time 

• Semivariance Measure 

• Level of Travel Time 

Reliability (LOTTR) 

• Work Zone Impact Ratio 

• Prediction Interval 

• Historical Travel Time Ratio 

(HTTR) 

• Cumulative Volume 

Distribution Function 

• Cumulative Travel Time 

Distribution Function  

• Duration of Congestion 

• Commute Congestion Cost 

• Percent of Weekdays When Average Travel 

Speeds Are Below 36mph  

• Percent of Freeway Miles Below 45 mph (stop-

and-go conditions) in AM or PM Peak 

• Percent Lane Miles Congested (<70% Posted 

Speed) 

• AM and PM Percent of Miles of Directional 

Congestion 

• Annual Peak Spreading Factor (Stability of 

Proportion of 24-Hour Traffic Volume that 

Occurs During Peak Hours)  

• 24-hour Volume-to-Capacity Ratio 

• Average Peak Travel Time 

• MT3I 

• Volume/Service Flow Ratio (VSF) 

• Capacity for Vehicles per Hour 

• Historical Volume Ratio (HVR) 

• K-Cluster Travel Time-Based Traffic Profile 

• K-Cluster Volume-Based Traffic Profile 

Figure 14 shows the count of 22 select congestion measures in use out of the 38 identified 

measures referenced in the novel applications search. Delay is the most common measure of 

congestion, followed by the travel time index and the buffer time index (BTI).  
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Figure 14. Count of Congestion Measures Identified in Novel Applications Search. 

5.3 DATA TYPES 

Figure 15 displays the count of data types in use by states for congestion analyses and predictive 

congestion analytics. The most common factors are volume and speed data, followed by crash 

and weather.  

 
Figure 15. Count of Datasets Identified in Novel Applications Search. 
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5.4 METHODS AND APPLICATION 

Figure 16 identifies the types and counts of analytic methods and applications used on a 

recurring basis across the various research, case studies, and congestion performance measure 

programs. K-Means cluster analyses, regression analyses, and random forests (RFs) were the top 

three types of novel applications applied to congestion measure studies and efforts tied to 

forecasting congestion related to recurring and nonrecurring sources of congestion. Factors 

accounted for within these approaches typically included weather, demographics, peak spread, 

crashes, work zones, and special events. Much of the focus was on achieving a solid balance 

between linkages of spatial networks with the potential for temporal and semantic information to 

be included in the predictive capabilities. 

 
Figure 16. Count of Analysis Methods Identified in Novel Applications Search. 

Figure 17 shows the distribution of use of novel applications within state DOT activities related 

to planning, operations, or both. Planning takes up the majority of novel applications. 
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Figure 17. Novel Application of Congestion Predictive Analytics to Planning, Operations, 

or Both. 

Figure 18 indicates the count of activities across states, internationally, and academic findings of 

a novel applications search involving congestion performance measures, traffic forecasting 

analytics, and the use of big data in congestion analyses. Leaders in the deployment of novel 

applications include California, Florida, Minnesota, and international sites predominantly located 

in China. 

 
Figure 18. Count of Activities across States, International, and Academic Findings in Novel 

Applications Search. 
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5.5 STATE EVALUATION PRACTICES AND TOOLS 

The search of TRID database records for state DOT publication sources between 2010 and 2022 

resulted in finding important insights identified through searches of keywords and titles that 

included but were not limited to the following: 

• Congestion Performance Indicators. 

• Congestion Performance Metrics. 

• Traffic Congestion Forecast. 

• Big Data. 

• Traffic Congestion Forecast and Performance Measures. 

• Reliability Measures. 

• Traffic Congestion Measures. 

• Travel Time Measures. 

Eleven states reported formulas and methods for analyzing traffic congestion and applying big 

data sources and ML/AI-derived analytics to current or future efforts to update their programs. 

The TTI team focused on states that published sources of research, program activities, 

congestion reporting analyses, and associated methods and applications. Table 15 lists these 

states along with the methods and applications used. Overall, the table indicates that travel time 

and speed-related variables are the most used congestion measures. Some of the studies also 

utilized reliability-related indices, such as travel time reliability, and PTI as congestion measures. 

Some studies also integrated weather and roadway-related factors in their congestion analysis. 

Considering the number of studies, Florida is the leader in the development of novel applications 

with the highest number of congestion analyses, followed by California and Minnesota. Table 15 

also shows that a wide variety of methodologies were applied to conduct the congestion analysis, 

ranging from traditional statistical models, such as regression and correlation analysis, to more 

advanced data mining, ML, and AI-based methods, such as XGBoost, CatBoost (CB), and neural 

networks (NNs). 
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Table 15. Novel Big Data Applications. 

State/ 

Region/ 

Agency 

Study Congestion Measures Method/Application 

Alabama 
(Isukapati and 

List, 2016) 

(1) Duration of congested 

hours of speeds at or below 

45mph, (2) 70th percentile 

speed differential, 

(3) Congestion index 

(weighted congestion hours 

normalized by IH length) 

Utilized TMC-based probe-speed data (vendor 

unlisted). 

Arizona 
(McLellan, 

2013) 

Peak hour traffic congestion 

reduction 

Utilized regression analysis within a simulation 

model to predict or forecast congestion levels 

stemming from new freeway segments. 

California 

(Bento, 2021) Travel time  Applied regression analysis. 

(Duvvuri and 

Pulugurtha, 

2021a) 

(1) TTAve, (2) PTI, (3) 

Travel time index, (4) BTI 
Applied Pearson correlation coefficient analysis. 

(Kim and 

Moon, 2022) 

(1) Congestion-free travel 

time in minutes, 

(2) Congestion delay, (3) 

Peak congestion delay 

Developed a model of trip scheduling under peak 

congestion to construct California commuters’ 

travel time profiles. 

(Liu and 

Shetty, 2021) 

None (strictly focused on 

testing large data sets on 

four different crash 

prediction methods) 

Conducted exploratory analysis, correlation 

analysis, and feature extraction for the period of 

the day and location of crashes. Cleaned crash 

data using the synthetic minority oversampling 

technique to balance the dataset by duplicating 

the minority data from the minority population. 

Tested the predictive capabilities of multiple 

linear regression, Decision Tree, Random Forest, 

and XG Boost models on both congestion and 

crash outcomes. Additionally, developed a 

framework for the integration of real-time 

environmental conditions to enhance a smart 

transportation system's capabilities, enabling 

integration at the level of a Decision Support 

System (DSS).. 

(Molan et al., 

2020) 

Freeway efficiency (ratio of 

VMT to vehicle hours 

traveled [VHT]) 

Calculated the annual average of freeway 

efficiency using performance measurement 

system (PeMS) data from 2012 to 2017. 

(Pozdnoukhov, 

2018) 
Travel times 

Application of input-output hidden Markov 

model (IOHMM) and long short-term memory 

(LSTM) models drawing on locational data to 

create activity-based travel demand model. 

(Seeherman 

and Anderson, 

2017) 

Flow (volume/5 minutes) Applied regression analysis. 
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State/ 

Region/ 

Agency 

Study Congestion Measures Method/Application 

(Varaiya, 2008) Travel time delay 

Developed an algorithm to systematically test 

and optimize ramp metering strategies in 

proximity to freeway bottlenecks. 

(Zhang, 2008) 
(1) TTAve, (2) Hours of 

delay 

Calibrated the DynaSmart analysis, modeling, 

and simulation (AMS) model using travel times, 

speeds, and delay data obtained from the PeMS 

platform. 

Florida 

(Brewer et al., 

2003a) 

(1) Travel speed, (2) 

Weather 

Developed the Final Work Plan to guide the 

overall sequence of activities and management 

approach for the model deployment, which 

identifies all of the organizations involved in the 

model deployment as well as contractual and 

other working arrangements in them and 

addresses systems engineering and software 

acquisition practices to be followed. It also 

included a project schedule of all model 

deployment tasks. 

(Brewer et al., 

2003b) 

(1) Travel speed, (2) 

Weather 

Developed the Florida model, which can 1) 

expand and integrate existing data collection and 

monitoring system; 2) collect and share data; 

3) use the data operationally to improve 

transportation system security, safety, reliability, 

and performance; and 4) distribute the data to the 

traveling public. 

(Elefteriadou et 

al., 2010) 

(1) Travel time reliability, 

(2) Hourly demand, 

(3) Expected frequency of 

congestion for each hour 

Aimed to (a) refine the previously developed 

framework and travel time estimation models to 

evaluate the impacts of ITS applications on 

travel time reliability, (b) continue to assess the 

use of field data across Florida to refine the 

current model, and (c) apply the refined model to 

the entire strategic intermodal system (SIS) 

freeway system. 

(Elefteriadou et 

al., 2013) 
Travel time reliability 

Developed a CORSIM model estimating more 

accurate travel time in arterials than previous 

models. 

(Elefteriadou et 

al., 2012) 

(1) Travel time reliability, 

(2) Travel time index, 3) PTI 

Proposed a framework for considering travel 

time reliability in a multimodal context. 

Arterial travel time estimation models were 

developed using the simulation program 

CORSIM, considering a total of 1200 scenarios.  

A spreadsheet similar to that previously 

developed for freeway sections was developed to 

obtain travel time reliability measures along 

arterials based on the results of the developed 

travel time estimation models. 
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State/ 

Region/ 

Agency 

Study Congestion Measures Method/Application 

(Elefteriadou 

and Xu, 2007) 
Travel time reliability 

Reported travel time reliability for freeways 

through Florida; developed a preliminary 

framework for reporting travel time reliability on 

arterials. 

(Gan et al., 

2016) 

(1) Excess fatalities, 

(2) Number of excess 

injuries, (3) Volume-to-

capacity ratio, (4) AADT per 

lane, (5) Truck volume per 

lane, (6) Truck percent and 

delay 

Updated the existing performance measures for 

highway projects and developed visual mapping 

tools for Congestion Management Process 

system. 

(Hadi et al., 

2016) 

(1) Travel time reliability, 

(2) Tolling price, (3) Travel 

delay, (4) Queue length 

Developed a multi-resolution modeling 

framework for use in support of agency analyses 

and modeling of congestion impacts and 

advanced strategies. 

Estimated origin-destination demand matrices 

diversion models due to work zones. 

Dynamic traffic assignment (DTA) modeling. 

Mesoscopic and microscopic models. 

(Lawphongpani

ch and Yin, 

2012) 

(1) Road pricing, (2) Vehicle 

miles traveled (VMT) fee 

Found nonlinear road pricing by different 

impacts. 

(Lee and Jin, 

2020) 

(1) Travel time reliability, 

(2) market accessibility, (3) 

intermodal connectivity, 

(4) ADT, (5) VMT, (6) VHT 

Produced a standard benefit-cost analysis and 

metrics for the wider economic benefits. 

(Moses, 2015) 
(1) Peak hour traffic, (2) 99th 

percentile hourly volume 

Analyzed 24-hour peaking relationship to 

various traffic performance measures. Proposed 

models to estimate future changes in traffic 

volumes that are used by transportation planners 

to determine if the peak period is expected to 

spread. 

(Stevanovic 

and Mitrovic, 

2019a) 

(1) HVR, (2) Travel time 

index, (3) HTTR, 

(4) Cumulative volume 

distribution function, 

(5) Cumulative travel time 

distribution function, 

(6) Volume-based traffic 

profile (K-Cluster), (7) 

Travel time-based traffic 

profile, (8) Volume 

prediction 

Developed a modular framework that 

operationalizes performance measures using AI 

and predictive analytics, machine vision, and 

more. The framework includes ready examples 

and applies techniques like K-Means clustering 

to real-time and archived data sources to present 

Traffic Management Center TMC-relevant 

performance measures for operational and 

planning use. It also employs machine learning 

algorithms such as support vector regression 

(SVR) and pattern matching to predict travel 

times and volumes.. 

(Washburn and 

Ko, 2007) 
Level of service (LOS) 

Found the determinants of LOS perceived by 

truck mode users and measured their relative 
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importance based on which truck LOS 

estimation. 

Georgia 

(Amekudzi-

Kennedy et al., 

2020) 

(1) Travel time reliability, 

(2) Total delay, (3) Delay 

per mile, (4) Travel time 

index, (5) PTI 

Identified effective practices for TSMO at the 

strategic, programmatic, and tactical levels via 

the TSMO Capability Maturity Model. 

Developed a tool for calculating transportation 

system performance metrics. 

Developed a tool to analyze and report on 

transportation system performance. 

(Hunter et al., 

2012) 

(1) Real-time freeway 

information, (2) Travel time 

Integrated real-time data streams with an arterial 

simulation to support an arterial performance 

monitoring system. 

(Southworth 

and Gillett, 

2011) 

(1) Travel time, (2) 

Monetary travel cost, (3) 

Regional accessibility, (4) 

Average truck speed, (5) 

Corridor PTI, (6) Corridor 

BTI, (7) Estimated daily 

costs of traffic delay in the 

corridor, (8) Estimated cost 

of travel time variability in 

the corridor, (9) A corridor 

per mile delay cost index, 

(10) Typical trucks’ speed 

on major truck route 

connectors 

Provided quantitative evidence of how well the 

system is performing and whether travel 

conditions have been improving or getting worse 

over time. 

Offered useful benchmarks against which the 

success of the transportation planning process 

can be assessed and possibly redirected when a 

particular trajectory needs adjustment. 

Idaho 

(Idaho 

Transportation 

System: 2008 

Performance 

Report, 2009) 

Cracking index 

Provided the reader with an accurate and useful 

review of the historical and current condition of 

Idaho’s roads, bridges, and railroad crossings, 

with a goal to eventually provide information on 

several other facilities, such as pedestrian and 

bicycle systems, public transit, and congestion. 

Illinois 
(Sriraj et al., 

2017) 

Integration of transportation 

congestion and reliability 

Took a broad look at transportation integration 

by providing an understanding of the different 

dimensions of integration as defined in the 

literature, followed by a scan of various best 

practices of integration/mobility case studies to 

provide a basis for understanding the significant 

issues associated with achieving improved 

mobility through integration. 

Indiana 
(Achillides and 

Bullock, 2004) 

(1) Travel speed, (2) Traffic 

volume, (3) Vehicle length 

Examined several quality control issues; 

recommendations for improving construction 

and configuration procedures were proposed. 

Documented several simple performance metrics 

that transportation agencies can use to assess the 
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quality of traffic data and sustain that quality 

over time. 

(Martchouk et 

al., 2010a) 

(1) Travel time, (2) Travel 

time reliability 

Proposed three models: an autoregressive model 

to predict individual vehicle travel times on a 

freeway segment; a duration model to provide 

insights into how one can predict the probability 

of a car’s duration of time on a roadway segment 

changing over time; and a seemingly unrelated 

regression equation model to predict travel time 

and travel time variability. 

(Ong et al., 

2010) 
Pavement quality 

Investigated the inherent variability of the 

automated data collection processes and 

proposed guidelines for an automated data 

collection quality management program in 

Indiana. 

(Paleti et al., 

2014) 

(1) Demand volume, 

(2) Travel time saving, 

(3) TTAve, (4) Ramp 

metering 

Implemented the high occupancy vehicle (HOV) 

lane strategy, which led to improved traffic flow 

conditions on the HOV lanes; however, it also 

exacerbated congestion on the general-purpose 

lanes. The HOV lane strategy was economically 

unfeasible due to the low HOV volume on these 

lanes. The reversible lane and ramp metering 

strategies were found to be economically feasible 

with positive net present values (NPVs), with the 

NPV for the reversible lane strategy being the 

highest. 

(Peeta et al., 

2011) 

Stability, consistency, 

and convergence of traffic 

assignment algorithms 

Developed an enhanced transportation planning 

framework by augmenting the sequential four-

step planning process with post-processing 

techniques. 

Kentucky 

(Chen, 2010) 

(1) Travel time index, (2) 

PTI, (3) Percentage of travel 

under congestion (PTC), (4) 

BI 

Calculated travel time index, PTI, PTC, and BI 

for freeways within the traffic response and 

incident management assisting the river cities 

(TRIMARC) coverage. 

Explored the potential correlation between the 

reliability measures and incident characteristics. 

(Chen et al., 

2015) 

(1) Travel time index, 

(2) PTI, (3) BI, (4) Annual 

hours of delay, (5) PTC 

Evaluated private sector speed data and their use 

in generating travel time-based performance 

measures. 

Created a mechanism to integrate these speed 

data with networks maintained by Kentucky TC 

and Kentucky. 

Met with metropolitan planning organizations to 

facilitate congestion management and travel 

model improvement. 
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Generated performance measures, including 

travel time index, PTI, BI, annual hours of delay, 

and PTC. 

(Chen and 

Zhang, 2017) 

(1) Travel time index, 

(2) PTI, (3) BI, (4) Annual 

hours of delay, (5) PTC 

Evaluated datasets at selected locations in 

previous studies to better understand their 

characteristics. Further, a procedure was 

developed to calculate system performance 

measures established by the Federal Highway 

Administration’s (FHWA’s) final rule on system 

performance measures to assist KYTC in its 

preparation process. 

(Chen and 

Zhang, 2015) 

(1) VSF, (2) Peak hour 

congestion 

Determined that VSF calculated by the Highway 

Performance Monitoring System software had 

limitations that cannot reflect variations in travel 

time (or speed). The future of VSF as the sole 

measure of congestion performance should be 

evaluated. 

Louisiana 
(Schneider et 

al., 2019) 

A census of all crashes that 

happened within 5 miles of 

the work zone (before, 

within, and after) during 

active project dates 

Provided a review of current work zone crash 

reporting practices in the United States in general 

and specifically in Louisiana. 

Maryland 

(Haghani et al., 

2014) 
Travel time reliability 

Found that some travel time reliability measures 

are more sensitive to the data source than others, 

and performance measures for HOV and general 

purpose lanes must be calculated separately. 

(Kim et al., 

2017) 
Incident duration 

Developed an innovative transferability 

assessment method that allows the construction 

of a new system to take advantage of existing 

Incident Detection and Prediction Models 

(IDPMs) embedded knowledge in order to 

circumvent the demanding expertise and efforts 

needed for data quality control and calibration of 

IDPMs’ prediction rules from many incident 

records. 

Michigan 

(Crawford et 

al., 2011) 

(1) Travel demand, 

(2) Benefit-cost ratio 

Created A Michigan Toolbox for Mitigating 

Traffic Congestion to be a useful desk reference 

for practitioners and an educational tool for 

elected officials acting through public policy 

boards to better understand the development, 

planning, and implementation of congestion 

mitigation strategies. 

(Kassens-Noor 

et al., 2022) 

(1) Travel time, (2) Travel 

reliability, (3) Speed volume 

relationship 

Investigated the performance, safety, and public 

perceptions of the US-23 Flex route. 
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Minnesota 

(Kwon and 

Park, 2018) 
Travel time reliability 

Developed a computerized Travel Time 

Reliability Measurement System (TTRMS), 

which can automate the time-consuming process 

of gathering and managing data from multiple 

sources and calculating various types of 

reliability measures under user-specified 

conditions for given corridors. 

(Kwon et al., 

2022) 

(1) Travel time reliability, 

(2) Traffic flow 

performance, (3) 

Vulnerability index 

Estimated and analyzed the travel time reliability 

and traffic flow performance trends of the 

freeway corridors in the Twin Cities metro area 

of Minnesota. 

(Kwon, 2020a) 

Detector health system 

classified into four classes: 

healthy, tolerable, impaired, 

and nonfunctional 

Implemented a detector health system as a client-

server model in which a relational database 

became the center of the server. A client 

software program called detHealth_app.exe was 

developed that provided retrieval and 

visualization of various health parameters along 

with detector or station volumes. 

(Kwon, 2020b) 

(1) Vehicle length, (2) 

Speed, (3) Traffic volume 

and occupancy 

Integrated these classification data into the 

existing traffic flow analysis (TFA) volume data, 

which could save cost and time for TFA in the 

future using existing classification data. The TTI 

team also integrated the real-time monitoring and 

control (RTMC) speed data for the locations 

where it was available. 

(Liao, 2018) 
(1) Travel time reliability, 

(2) Truck delay 

Recommended a framework for truck data 

collection and analysis to better understand the 

relationships between truck traffic and 

congestion during rush hours. 

(Metropolitan 

Freeway 

System 2013 

Congestion 

Report, 2014) 

AM and PM percent of miles 

of directional congestion 

Identified locations that are over capacity, 

project planning, resource allocation (e.g., 

RTMC equipment and incident management 

planning), construction zone planning, and 

department performance measures reporting. 

(Minnesota 

Tolling Study 

Report Modern 

Tolling 

Practices and 

Policy 

Considerations, 

2018) 

(1) Tolling rate, (2) Traffic 

volume 

Analyzed three distinct areas of tolling. Any 

implementation of tolling requires a balanced 

approach that aligns the goals and objectives of 

the project with the needs of the users and the 

transportation network. 

(Morris and 

Parikh, 2022) 

(1) Travel demand, (2) 

Traffic volume, (3) Traffic 

occupancy, (4) Speed 

Researched the level of VMT. Looked at the 

relationship between VMT and congestion at the 

corridor level to assess the sensitivity of 
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congestion on specific roadways to changes in 

travel demand. 

(Twin Cities 

Metro Freight 

Initiative: 

Performance 

Management 

Framework, 

2011) 

(1) Safety, (2) Mobility, 

(3) Environmental quality, 

(4) LOS, (5) Congestion, 

(6) Travel time reliability, 

(7) Economic development 

Built the Twin Cities Metro Freight Initiative 

Performance Management Framework to balance 

competing goals and objectives, (e.g., safety, 

mobility, environmental quality) and set 

priorities among alternative actions to resolve 

freight issues. 

Nebraska 

(Sharma and 

Ahsani, 2019) 

(1) Travel time delay, 

(2) Travel time reliability 

Identified hotspots, the unusually high-risk zones 

in a spatiotemporal space containing traffic 

congestion that occurs on almost all game days. 

Identified the factors affecting the sizes of 

hotspots and other parameters. 

Applied the Dynamic Bayesian Network’s 

approach to forecast the start times and locations 

of hotspot clusters. 

(Sharma et al., 

2016, p. 1) 

(1) Travel time delay, 

(2) Travel time reliability 

Developed real-time crash risk prediction models 

for the studied road section. A sensitivity 

analysis was conducted on different models and 

different temporal and spatial windows to 

estimate/predict crash risk. 

Nevada 

(Jensen et al., 

2019) 
Cost savings measure 

Developed an AV Feasibility Study Framework 

by the TTI team to allow NDOT to apply the 

following decision-making framework not only 

to this study but also to any future AV roadway 

studies: (1) Identify potential AV developer 

partners; (2) Review AV Developer Product 

Roadmap; (3) Identify mutually beneficial use 

cases; (4) Determine physical and intelligent 

transportation system infrastructure needs; 

(5) Identify suitable Nevada corridor; and 

(6) Estimate benefits of use cases. 

(Tian et al., 

2020) 

(1) The attainability of ideal 

progression, (2) The 

attainability of user 

satisfaction  

Developed a quality of signal timing 

performance measure methodology for arterial 

operation, which may have great potential for 

enhancing agencies’ capabilities of cost-

effectively monitoring the quality of arterial 

signal timing, proactively addressing signal 

timing issues, and reporting the progress and 

outcomes in a timely, concise, and intuitive 

manner. 

New Jersey 
(Balgowan, 

1987) 

(1) Forecast accuracy, 

(2) Forecast reliability, 

(3) Forecast effectiveness, 

(4) Expansibility, 

Evaluated the accuracy, reliability, effectiveness, 

expansibility, and additional potential benefits of 

the moisture, forest, and ice early warning 

system and indicated that the system is effective 
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(5) Additional potential 

benefits 

as an early warning system. It appears that 

utilization of the system should result in a 

reduction of snow and ice-related accidents. 

New York 

(Fu, 1993) System reliability 

Presented an important-sampling method for the 

first-order problem of reliability analysis of 

structural systems, which has a failure domain 

defined by linear or linearized functions. 

(List et al., 

2008) 

(1) Traffic delay, (2) Traffic 

incident 

Aimed for the following: 1) The development of 

New York City input data for the New York 

City’s application of the New York State DOT’s 

delay prediction model (congestion needs 

analysis model [CNAM]), and 2) Investigation of 

the published literature identifying 

models/methods that could improve the CNAM 

approach for estimating nonrecurring delay. 

North 

Carolina 

(Cunningham 

et al., 2016) 

(1) Travel time, (2) Route 

VHD, (3) Life cycle cost 

Produced a sound foundation for evaluating 

ramp metering outcomes on which the state can 

build a ramp metering program that is both 

sustainable and efficient. 

(Pulugurtha et 

al., 2017) 
Travel time reliability 

Aimed to 1) review various definitions of travel 

time reliability proposed by researchers and 

practitioners in the past, 2) estimate and assess 

the differences in the performance measures to 

recommend the most appropriate and viable 

measures, 3) define and identify travel time 

reliability thresholds based on additional costs 

incurred to motorists, and 4) monetize reliability 

based on the recommended definition to assess 

the impact of transportation alternatives for use 

by the North Carolina DOT. 

(Williams et 

al., 2013) 

(1) Travel time, (2) Traffic 

volume, (3) Traffic mobility, 

(4) Travel time reliability 

Delivered a robust and validated algorithm for 

estimating route travel times from segment travel 

times, a decision framework, and accompanying 

models for estimating (a) volume, (b) VMT, (c) 

system delay in the absence of direct volume 

observation, and (d) a preliminary framework for 

project lifecycle mobility value estimation. 

(Williams et 

al., 2016) 

(1) Freeway service, (2) 

Benefit-cost 

Provided a solution that enables criteria-based 

selection and prioritization of future incident 

management assistance patrol (IMAP) system 

expansion. 

Ohio 
(Chinnam et 

al., 2010) 

(1) Traffic 

volume/density/pattern/states 

(2) Traffic state transitions, 

(3) Traffic interaction 

Proposed three major milestone goals: Milestone 

#1: Data collection for MI-OH road network 

structure and historical incident data form 

MDOT, ODOT, and other agencies using 

ArcGIS software; Milestone #2: Developing road 
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between links, (4) Traffic 

incident clearance pattern 

network models representative of major freight 

transportation routes; and Milestone #3: 

Developing a static re-routing optimization 

model and implementation for a limited set of 

scenarios. 

(Coifman and 

Ponnu, 2018) 

(1) Travel speed, (2) Speed 

index 

Pursued several objectives: 1) assessing the 

performance of the current system, 2) ensuring 

good performance from a traffic responsive 

metering system, 3) investigating the operation 

of the coordinated ramp metering system, and 4) 

working with ODOT to improve the performance 

of the ramp metering system. 

(Zwahlen and 

Oner, 2006) 

(1) Interarrival time, 

(2) Service time, (3) Travel 

delay 

Aimed to improve driver guidance and 

delineation cues for drivers in work zones to 

minimize delays and improve safety in the work 

zone and to thoroughly measure all traffic before 

and through the work zone. 

Oklahoma 

(Najumudeen 

and Bin, 2020) 

(1) Speed turbulent 

occurrences, (2) Traffic flow 

Covered several traffic accident-based analyses, 

methodology of analyses, model training, and 

model validation and demonstrated the best 

possible approach for acquiring and preparing 

necessary data from NPMRDS for use with 

supervised learning and RNN model training to 

execute near real-time accident detection. 

(Refai et al., 

2017) 
Travel time 

Presented research detailing the use of the first 

version of the NPMRDS, which comprised 

highway vehicle travel times used for computing 

performance measurements in Oklahoma. 

(Saidi, 2020) Travel time 

Used a dataset from the Oklahoma DOT to 

compare the accuracy of statistical and machine 

learning approaches to predicting travel time. 

Oregon 
(Monsere et al., 

2008) 

(1) Travel time delay, 

(2) VMT, (3) Vehicle hours 

traveled, (4) Ramp queues 

Conducted before and after comparisons, 

comparing pre-timed plans with dynamic smart 

work zone and road network management 

(SWARM) ramp metering. Utilized simple 

queuing theory calculations based on manual 

timestamps for vehicle departures, which were 

validated using cameras.. 

Pennsylvania 
(Yao and Qian, 

2021) 

(1) Travel time index, (2) 

PTI (95th percentile), 

(3) Congestion duration 

Applied tweet2traffic social computing model to 

perform neural language modeling, sentiment 

analysis, and correlation analysis of work and 

sleep patterns derived from a bounded Pittsburgh 

region population on Twitter and travel demand 

on the morning after. Using a clustered learning 

structure making use of ordered spatiotemporal 

congestion patterns on freeways, the team 
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forecast morning commute congestion using 

tweeting profiles extracted by 5 a.m. on the day 

of, taking tweet congestion peak data from the 

night prior up to midnight for analysis purposes. 

Rhode Island 

(“Rhode Island 

Statewide 

Model 

Update,” 2016) 

Congestion measures not 

listed 

Integrated state travel demand model with 

performance measure database through 

TransCAD. 

Tennessee 
(Baroud et al., 

2021) 

Congestion conditions (ratio 

of Free-Flow Speed in 

INRIX minus current speed) 

Used K-Means Algorithm to group segments 

into distinct clusters that are generalizable 

together for associated machine learning models 

for each cluster. RF with 250 decision trees; NNs 

using a sequential architecture and fully 

connected layers (3 hidden layers) and ReLU 

activation function for all hidden layers. RF and 

NN outperform naive models, logistic regression, 

and zero-inflated Poisson regression models. 

Texas 

(Chaudhary et 

al., 2018) 

(1) Travel time index, 

(2) Average number of 

congested peak hours (total 

congestion counts stop/go 

traffic durations when 

speeds are below 50 mph 

threshold; severe congestion 

duration counts are made for 

links or segments below 30 

mph), (3) PTI 

Used a DTA and microscopic models to analyze 

benefits of ramp metering in the Dallas area. 

(Lomax et al., 

2013a) 

(1) Travel time index, (2) 

Peak period delay, (3) Hours 

of congested road, (4) BTI 

Developed spreadsheet using project-specific 

calculations of speed and volume to develop 

congestion measures. 

(Pandey and 

Juri, 2018a) 

(1) BI, (2) PTI, (3) STD, 

(4) Coefficient of variation 

Cleaned and processed NPMRDS data for the 

San Antonio region using R and Javascript K-

means clustering to identify typical days. mean 

absolute percentage error (MAPE) and mean 

absolute error (MAE) were used to evaluate the 

quality of clustering and machine learning 

applications. 

(Schrank et al., 

2019) 

(1) Travel delay, (2) Annual 

PERSON Delay, (3) Annual 

delay per auto commuter, 

(4) Travel time index, 

(5) Commuter stress index, 

(6) PTI, (7) Time of 

congestion, (8) Wasted fuel 

Conflated highway volume segmentation with 

INRIX speed segmentation, data cleaning, and 

congestion measure calculation. 

(Shelton et al., 

2020) 

(1) Travel time reliability, 

(2) Average vehicle delay 

Developed Mesoscopic model in Houston, El 

Paso, Austin, El Paso/Juarez, and Dallas-Fort 
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(seconds), (3) Total vehicle 

delay (hours) 

Worth areas using DTA to estimate benefits of 

freight investments. 

Utah 

(Liu and Chen, 

2017) 

(1) Frequency of 

Congestion, (2) Travel time 

distribution at 15th, 50th, 

and 85th percentiles, (3) 

Vehicle hours traveled, (4) 

Incident-induced delay 

Estimated incident-induced delay through pattern 

matching of historic incidents, speeds, and 

volumes, and K-nearest neighbor (KNN) 

method. 

(Swanson and 

Culp, 2022) 

(1) BTI, (2) 

Volume/capacity 

Filtered nonrecurring congestion to forecast BTI 

on recurring congestion only for freeways. 

Regression analysis was used to connect BTI 

with volume to capacity ratio (V/C). 

(Zhang et al., 

2020) 
Average speed  

Developed hybrid  XGBoost, RF, and Artificial 

Neural Network (ANN) for traffic predictive 

analytics. 

(Zlatkovic and 

Zhou, 2017) 
Travel time reliability 

Used methods and tools to address limitations in 

construction analysis for pavement rehabilitation 

strategies QuickZone and VISUM, piecing them 

together while developing an open-source 

Google Maps/Google Earth interface for 

scenario-based traffic simulation analysis of 

work zones, with a DTA hosting input data from 

traffic sensors online. It also developed a 

decision support tool for advanced travel demand 

management in daily practice. 

Virginia 

(Dutta and 

Fontaine, 2020) 
Crash frequency 

Developed crash prediction models using a 

negative binomial form and a Zero-Inflated 

Negative Binomial (ZINB) form through a 

generalized linear model and by using GLMM 

models within a “glmmTMB” package that used 

a template model builder in R statistical 

software. 

(Fontaine and 

Miller, 2012) 

(1) Mean travel time, (2) 

Total travel time, (3) Delay, 

(4) BTI, (5) PTI 

Applied microscopic traffic simulation models 

(VISSIM, PARAMICS) to predict ATM 

treatment benefits after preliminary sketch 

analyses indicated ATM strategy is likely to be 

successful. 

(Miller, 2012) 

(1) Annual peak spreading 

factor (stability of proportion 

of 24-hour traffic volume 

that occurs during peak 

hours), (2) 24-hour volume-

to-capacity ratio 

Analyzed variance on an entire data set to 

determine which variables had greatest potential 

to explain variability in K-factors; an annual K-

Factor was developed, and models were 

developed to forecast a K-factor with simple 

correlation analysis to confirm model results. 

(X. Zhang et 

al., 2021a) 

(1) LOTTR (50th, 80th, and 

90th percentiles), 

(2) Variance and STD, 

Used linear quantile mixed models (LQMM) and 

gaussian random fields (GRF) models to 

estimate 50th, 80th, and 90th percentile travel 
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(3) BTI, (4) PTI (95th 

percentile), (5) Travel time 

index, (6) Percent on-time 

travel, (7) Misery index 

times to quantify the effects of travel time 

reliability impact factors and predict reliability 

measures. All data mapped to TMS and TMC 

match segments on the network using the 

Schrank conflation approach through a “Spatial 

Join” function in ArcGIS. 

Washington 
(Hallenbeck et 

al., 2015) 

(1) Average hourly freight 

delay, (2) Travel time 

reliability, (3) average 

hourly vehicle delay, (4) 

Frequency of congestion 

Compared speeds from WSDOT sensors to 

NPMRDS to evaluate accuracy and identify 

issues. 

 
(Hendricks et 

al., 2016) 
Maximum throughput 

Used highway segment analysis program that  

contains a mobility analysis screening tool in 

macros Excel spreadsheet format that computes 

segment performance to determine whether a 

travel demand management strategy should be 

prioritized because it delivers congestion 

reduction. 

 
(Wang et al., 

2010) 

(1) Average incident 

duration (in minutes), (2) 

Incident-induced delay 

Applied deterministic queuing theory to predict 

impacts upstream from incidents downstream. 

 
(Wang et al., 

2016) 

(1) Throughput productivity, 

(2) Maximum throughput, 

(3) Duration of congestion, 

(4) Commute congestion 

cost, (5) Hours of travel 

delay, (6) Annual hours of 

vehicle delay, (7) Annual 

cost of vehicle delay, (8) 

Median travel time (50th 

percentile), (9) TTAve, 

(10) MT3I, 11) Percent of 

weekdays when average 

travel speeds are below 

36mph 

Used DRIVE-Net web-based data fusion-driven 

archive that functions as a real-time DSS with 

digital roadway mapping element that can 

perform travel time reliability estimation, 

predictive modeling, and visualization functions.  

 

(The 2010 

Congestion 

Report, 2010) 

(1) Lane miles of state 

highway system congested 

(70% of posted speed), 

(2) Percent of state highway 

system congested, (3) Total 

VHD (times when speeds 

drop below 85% of posted 

speed), (4) Average peak 

travel time, (5) 95% Reliable 

travel time, (6) MT3I, 

(7) Percent days speeds 

at/below 35mph, (8) Vehicle 

Analyzed Statewide planning data. 
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State/ 

Region/ 

Agency 

Study Congestion Measures Method/Application 

throughput, (9) Lost 

throughput productivity, (10) 

Average incident clearance 

time 

Wisconsin 
(Srivastava et 

al., 2018a) 

(1) Travel time, (2) 

Reliability rating (% of trips 

at < 1.33 freeways), (3) PTI, 

(4) Travel time index (80th 

percentile), (5) Semistandard 

deviation, (6) Percentage 

trips with space mean speed 

less than 50, 45 and/or 

30mph, (7) STD, (8) Misery 

index 

Developed predictive models using regression 

modeling to estimate work zone reliability 

measures based on the baseline reliability 

USDOT 

(Fan and Chen, 

n.d.) 
TTAve 

Applied XG Boost to predict travel time and 

compare against ground truth travel times. 

(Qiu and Fan, 

2021) 
Travel times 

Tested XG Boost and RF methods on traffic 

forecasting. 

(Establishing 

Monitoring 

Programs for 

Travel Time 

Reliability, 

2014) 

(1) Travel time index, 

(2) PTI, 80th and 95th 

percentile, (3) SV 

Integrated variables from nonrecurring event 

data into the segment and route-level travel time 

data to determine effects on speeds and travel 

times. Used the Monte Carlo model with 

incidence matrices to estimate probability 

distribution functions for various time periods of 

the day over 1 year to determine (a) the extent of 

travel time rate variances and impact of 

congestion when no nonrecurring event exists, 

(b) the impact of nonrecurring events, and (c) the 

consistency that exists within observations for 

the same operating condition. 

(Sobolewski et 

al., 2014) 

(1) Travel time, (2) VMT, 

(3) Delayed Vehicle Hours 

Reconfigured various data types into a macros-

enabled Excel spreadsheet to fit the 5-minute bin 

recommendation. The analysis tool referenced 

the TTRMS database with all the associated 

records. It is a macro-enabled spreadsheet that 

produces basic travel time reliability measures 

such as cumulative density function curves, 

reliability indices, and more. 

International 
(Cao et al., 

2022) 

(1) Average speed, 

(2) Average occupancy, (3) 

Total volume 

Compared multi-head self-attention 

spatiotemporal graph convolutional network 

(MSASGCN) to other models using MAE, root 

mean squared error (RMSE), and MAPE to 

estimate potential for forecasting/predicting 

traffic flow and congestion. PyTorch deep 

learning framework applied in MSASGCN 

model development. 
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State/ 

Region/ 

Agency 

Study Congestion Measures Method/Application 

(Petalas et al., 

2017) 
Delay 

Fused multiple forecast models, including RF, 

autoregressive integrated moving average 

(ARIMA), and a social data miner using natural 

language processing (NLP)-based architecture 

using linear regression experiments within a 

singular traffic forecasting application.  

(Yang et al., 

2022) 
Traffic speed 

Applied spatiotemporal deepwalk gated recurrent 

neural network (ST-DWGRU) model that 1) 

incorporates non-Euclidean topological 

relationship of the road network through 

clustering or convolutional neural network 

(CNN) to explore spatial correlation and 

temporal correlation; 2) incorporates semantic 

information such as factoring in roadway 

incidents; and 3) does it all simultaneously for 

real-time use in operations and planning. 

(Zhang et al., 

2022) 
Travel time 

Applied adaptive graph learning algorithm 

(AdapGL) to NNs to acquire spatial 

dependencies between PeMS sensors through a 

novel parameterized graph learning module for 

improved travel time forecasting.  

(Zhou et al., 

2019) 
Average speed 

Applied spatial-temporal deep tensor NN to 

mitigate the influence of manually stacking 

traffic detectors on the prediction results and to 

open up traffic forecasting to probe data inputs. 

(Kang et al., 

2020) 
TTAve 

Applied a hybrid EDMCN-XG Boost model to 

predict travel times on a roadway network in 

Guiyang, China. 

(Liu and Tan, 

2021) 

(1) Traffic speed, (2) Traffic 

flow 

Surveyed GNN applications, data needs, data 

sources, and measures suitable for forecasting 

volume, speed, and crash analytics. 

5.6 NOVEL APPLICATION CASE STUDY: COMPUTER VISION 

The TTI team, in collaboration with InfraSix, developed a comprehensive plan for extracting 

highly accurate traffic flow data based on ML and AI. Initially, InfraSix conducted a proof-of-

concept study to develop and test a fully functional ML algorithm based on the YOLO V5 

architecture to perform vehicle detection, tracking, and counting from closed-circuit television 

(CCTV) traffic cameras available from open data sources. The main purpose of this proof-of-

concept was to demonstrate the feasibility of utilizing CCTV camera footage to train and test ML 

algorithms and then to accurately detect multiple vehicle classifications, including cars, 

motorbikes, trucks, buses, etc. Each of the detected vehicles were then tracked with a unique 

classification ID to get accurate counts of each. Additionally, an Excel file in CSV format was 

exported once the algorithm had been run on CCTV video footage, which contains the 

timestamp, vehicle ID, and confidence of the detections from the video. The main purpose of this 
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CSV file is to make it possible to utilize the ML algorithm results as input parameters for 

calculating traffic counts, speed, headroom, and related traffic identifiers. Using these metrics, 

numerous traffic-related variables can be introduced to explain and predict traffic patterns. This 

information can then be used by the DOT for decision-making regarding both short-term and 

long-term solutions or provisions. Note that the proof-of-concept study can be extended to 

develop traffic algorithms that can generate and optimize highly reliable traffic data. Using this 

database, a complete series of both expected and unexpected variables can be run against the 

traffic data to provide an incredibly rich view of traffic patterns that can be used to conduct the 

following tasks for TxDOT: 

• Selecting and evaluating best data sources and preparing them to be “AI Ready.” 

• Gathering real-time CCTV camera analytics from multiple cameras located statewide. 

• Extracting useful analytics and metrics from the ML and computer vision based model 

outputs from sources such as traffic cams and data from other third-party sensors and 

sources. 

• Developing an interactive, user-friendly GIS-based dashboard to visualize and work with 

collected and analyzed data. 

• Post-processing analyzed results to predict choke points in traffic based on present 

video/imagery input and build a database to support predictive analytics in the long term 

to enable efficient highway planning practices. 

Figure 19 presents screenshots from the working system. As can be seen from the figure, the 

system can detect, count, and classify vehicles with good accuracy. 
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Figure 19. Vehicle Counts Using Computer Vision. 

The first step in identifying and counting vehicles was a proof-of-concept based on ML to 

recognize vehicles, identify the vehicle class, and provide a micro perspective of traffic flow. 

The next step of this project was to provide a clear and quantifiable understanding of cause and 

effect and look at the impact of variables on traffic patterns on a larger or macro scale by 

potentially using thousands of cameras across the state. These cause/effect scenarios will be 

highly beneficial to TxDOT for planning, prioritizing, and decision-making to improve the 

safety, mobility, and operation of Texas highways. Note that the project can be extended to 

determine and analyze the following variables:  
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• Vehicle speed. 

• Average speed. 

• Vehicle headway. 

In addition, the extracted data from the newly developed algorithm can be integrated with the 

following variables related to roadway and weather conditions, driver demographics, crash 

events, driver distraction, and roadway geometry:  

• Day of week (weekdays, weekends, etc.). 

• Time of day (peak hour, off-peak hour, etc.). 

• After a vehicle crash (fender bender to multiple units assisting). 

• After an immobilized vehicle stops (flat tire, out of gas, etc.). 

• Stopped vehicles inside or outside or in the traffic lanes. 

• Range of weather conditions (sunny, cloudy, rain, snow, fog, etc.). 

• Range of lighting conditions (daytime, dawn, dusk, nighttime, etc.). 

• Road condition, closed lanes, cones, lane switches, presence of construction equipment. 

• Number of lanes, merging traffic. 

• Use of cell phones, texting, and navigation. 

A complete and accurate understanding of traffic counts, speed, and headway is critical for an in-

depth understanding of the causal effect of crashes. As a proof-of-concept, the TTI team 

developed a working system for collecting traffic data based on the ML algorithm. The 

developed algorithm will be further enhanced to improve the accuracy and to make it capable of 

proving information in real time. There is potential in building a platform for conducting the 

actual cause/effect research. The platform development can contain writing scripts (code), 

integration, and testing, and then the workflow can be established so that the TxDOT traffic 

analysis team has all of the tools and data needed to run the analytics. The platform can be used 

to identify the largest variations in traffic flow, determine which cameras expose the biggest 

issues, isolate the variables, and determine a single or multivariable cause and effect.  

5.7 CHAPTER SUMMARY 

Chapter 5 focused on identifying trends in congestion performance measures and related data 

sources, the application of AI strategies and big data sources within predictive and dynamic 

traffic demand modeling, and the use of predictive analytics across operational regimes within 

real-time, travel time reliability monitoring of nonrecurring congestion. The literature search 

showed that the most common congestion measure was delay. It was also found that volume and 

speed data are the most common data sources used, and K-Means cluster analyses, regression 

analyses, and CB were the top three types of novel applications applied to congestion measure 

studies. Planning was shown to be most novel application within state DOT activities. In 

addition, leaders in the deployment of novel applications include California, Florida, Minnesota, 

and international sites that are predominantly located in China. To extract accurate traffic flow 

data, the TTI team, in collaboration with InfraSix, developed a computer-vision-based novel 

approach.  
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CHAPTER 6: KEY PERFORMANCE METRICS  

6.1 INTRODUCTION 

The development of congestion performance measures, especially for freeways, has become a 

major area of interest for transportation and planning agencies due to the demands of the public 

and state legislation. Federal transportation authorization legislation is emphasizing freeway 

performance monitoring, especially with regard to system operation and management. However, 

the development of appropriate congestion measures that can truly benefit practitioners, 

agencies, and road users faces many challenges. Therefore, these measures are not being 

integrated into the transportation decision-making process and have not yet become standard 

practices. Many transportation professionals have been using the Highway Capacity Manual 

(HCM) for defining the quality of traffic flow largely tied to the LOS concept. However, the 

LOS may not necessarily measure the nature and extent of the congestion. Therefore, it is 

essential to develop more detailed and meaningful congestion performance measures for 

freeways than HCM-based levels of service to describe the effects of operational strategies. 

Keeping these research needs in mind, this study suggests several congestion performance 

measures and reports on associated analysis procedures. 

6.2 TYPE OF PERFORMANCE MEASURE USED BY AGENCIES 

Transportation agencies use both outcome and output measures to define congestion 

performance measures. Outcome measures are defined based on the physical quantity of the 

items, the scale or scope of activities, and the efficacy of converting resources into usable 

products, whereas output measures are defined based on the quality of service the transportation 

agencies provide to transportation users. The operating and planning agencies generally apply 

derivatives of speed, travel time, and delay to develop outcome performance measures. For 

instance, the travel time index is a common performance measure adopted by the agencies. 

Although the use of the LOS as a freeway performance measure is decreasing, many operating 

and planning agencies still use this matrix. However, performance measures related to reliability 

have become more popular in recent years. Although these metrics are usually formulated for 

short segments or at key locations, many agencies are leveraging and extending these concepts 

for multiple freeway routes of extended lengths. Output performance measures are used mainly 

by operating agencies for the operation of field equipment, such as sensors and cameras, and for 

activities related to incident management.  

6.3 BASIC PRINCIPLES OF FREEWAY PERFORMANCE MEASUREMENT 

In order to develop effective performance measures appropriate for a particular freeway, some 

basic principles need to be followed by transportation and planning agencies. The NCHRP 

Project 3-68 has reported several basic principles for the successful development of freeway 

performance measures, as listed in Table 16 (Margiotta et al., 2007).  
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Table 16. Basic Principles for Freeway Performance Monitoring. 

Principle Description 

Principle 1  
Mobility performance measures must be based on the measurement or 

estimation of travel time.  

Principle 2  Measure where you can—model everything else. 

Principle 3  
Multiple metrics should be used to report freeway performance, especially for 

mobility. 

Principle 4 

Traditional HCM-based performance measures for mobility (i.e., V/C and 

LOS) should not be ignored but should serve as supplementary, not primary 

measures of performance in most cases. 

Principle 5  
Both vehicle- and person-based performance measures of throughput are 

useful and should be developed, depending on the application. 

Principle 6  
Both quality-of-service (outcome) and activity-based (output) performance 

measures are required for freeway performance monitoring. 

Principle 7  
Activity-based (output) measures should be chosen so that improvements in 

them can be linked to improvements in quality-of-service measures. 

Principle 8 
Customer satisfaction measures should be included with quality-of-service 

measures for monitoring freeway performance. 

Principle 9  

The measurement of travel time reliability is a key aspect of freeway 

performance measurement, and reliability measures should be developed and 

applied. 

Principle 10  

Three dimensions of freeway mobility/congestion should be tracked with 

mobility performance measures: source of congestion, temporal aspects, and 

spatial detail. 

Principle 11 
Communication of freeway performance measurement should be done with 

graphics that resonate with a variety of technical and nontechnical audiences. 

Principle 12 

Continuity should be maintained in performance measures across applications 

and time horizons; the same performance measures should be used for trend 

monitoring, project design, forecasting, and evaluations. 

6.4 RECOMMENDED FREEWAY PERFORMANCE MEASURES 

The TTI team conducted a comprehensive literature review to determine the best possible 

freeway congestion performance measures for TxDOT to develop appropriate strategies for 

optimum corridor management. It was found that most of the measures are derivatives of speed 

and travel time. For instance, TxDOT has developed a simple but robust metric called the Texas 

congestion index (TCI), which indicates the amount of additional time a road user needs for a 

particular trip (Texas A&M Transportation Institute, 2020). TCI is defined as the ratio of the 

actual travel time for a trip to the time required to complete the same trip in free-flow conditions. 

The free-flow travel time can be calculated using the 85th percentile speed at night when there is 
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no obstruction in flow due to congestion. The PTI is another effective congestion measure 

reported by TxDOT (Texas A&M Transportation Institute, 2020). The PTI represents the 

reliability of travel time and indicates the total travel time that needs to be planned for a trip. The 

PTI is defined as the ratio of the 95th percentile travel time to the free-flow travel time. For 

example, a PTI value of 2 indicates that a trip that requires 20 minutes in light traffic would need 

40 minutes in current conditions. From a system manager’s perspective, PTI indicates how much 

worse a system can perform relative to the free flow. This measure can be beneficial for 

individual commuters as well as for truck drivers when planning urgent trips. 

Another interesting performance matrix is the peak spreading K-factor reported by the Virginia 

DOT (VDOT) (Miller, 2022). The K-factor is defined as the proportion of the 24-hour traffic 

volume that occurs during the peak hour. With an increase in traffic, the K-factors may decrease. 

Motorists may change their travel departure times to slightly before or after the peak period in 

response to increasing traffic congestion, and this behavioral response is known as peak 

spreading. The peak spreading K-factor can be effectively leveraged by practitioners to estimate 

travel demand and resulting transportation performance.  

WSDOT has developed several congestion performance matrices, including average peak travel 

time, MT3I, and duration of congestion. The average peak travel time of a corridor is defined as 

the mean of travel time during the peak 5-minute intervals for all weekdays of a whole year. The 

MT3I is the ratio of the average peak travel time to the maximum throughput speed travel time. 

The duration of congestion is calculated by summing up all the travel time during which the 

speed of that corridor dropped below 45 mph.  

In recent years, freeway congestion performance measures based on the concept of reliability 

have been growing in importance. Travel time reliability indicates the level of consistency in 

travel over time and is calculated by observing the trend in travel time over a significant amount 

of time. This measure is beneficial for planning trips and selecting routes effectively. Travel time 

reliability can be affected by either recurrent or nonrecurrent variability or congestion. Although 

the main cause of recurrent congestion is insufficient capacity, nonrecurrent congestion mainly 

occurs due to unexpected traffic events, such as accidents, inclement weather, and construction. 

Many simple yet meaningful performance measures to define travel time reliability representing 

both recurrent and nonrecurrent variability can be found in the literature. For example, the 

Indiana DOT reported two measures, namely travel window and percent variation, as measures 

of travel time reliability (Martchouk et al., 2010b). The travel window provides a range of travel 

time that might be required to complete a trip and is calculated by adding and subtracting the 

STD from the TTAve. Similarly, the percent variation is defined by the ratio of TTAve to the 

STD. These performance measures are beneficial for professionals in communicating the extent 

of reliability; however, they might not be useful to individual travelers because of the challenges 

they might face in applying the concept to their own travel time. Another interesting form of 

reliability is the BI, which indicates the amount of additional time that a traveler needs to 

consider on top of their usual travel time to complete a trip on time. To determine BI, first the 

difference between the 95th percentile travel time and the mean travel time is calculated, and 

then the resulting difference is divided by the mean travel time. A single value of BI is usually 

reported for a corridor to represent the overall corridor reliability. In addition, the variation of BI 

during the times of day can provide important insights for improving corridor operations. A list 

of performance measures is reported in Table 17, and the recommended measures are highlighted 
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in bold. Many agencies have developed more sophisticated performance measures to monitor 

freeway congestion, as listed in Appendix A. Some of these measures require more detailed data 

resolution and continuous surveillance and planning data; however, they might not necessarily 

provide additional value compared to the measures reported in Table 17.  

Table 17. Recommended Congestion Performance Measures and Associated Formulas. 

Performance 

Metric 
Equation Source 

TCI 𝑇𝑒𝑥𝑎𝑠 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

𝐹𝑟𝑒𝑒−𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

 

TxDOT  

(Texas A&M 

Transportation 

Institute, 2020) 

PTI 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 =

95𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

𝐹𝑟𝑒𝑒−𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

 

TxDOT  

(Texas A&M 

Transportation 

Institute, 2020) 

Peak 

Spreading K-

Factor 

𝐾 − 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐾𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

𝐴𝐴𝐷𝑇
× 100% 

K-factor refers to the stability of the proportion of 24-hour traffic 

volume that occurs during peak hours 

Virginia DOT  

(Miller, 2022) 

Average Peak 

Travel Time 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 =  

𝑇𝑟𝑖𝑝 𝑙𝑒𝑛𝑔𝑡ℎ

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑5−𝑚𝑖𝑛
 

Washington 

State DOT 

(Wang et al., 

2013) 

MT3I 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛𝑑𝑒𝑥(𝑀𝑇3𝐼)

=  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑃𝑒𝑎𝑘 5−𝑚𝑖𝑛 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑀𝑎𝑥.𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑠𝑝𝑒𝑒𝑑
 

Washington 

State DOT 

(Wang et al., 

2013) 

Duration of 

Congestion 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

=  ∑(𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑒𝑑𝑠

< 45 𝑚𝑝ℎ) 

Washington 

State DOT 

(Wang et al., 

2013) 

Statistical 

Indices of 

Reliability 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑊𝑖𝑛𝑑𝑜𝑤

= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 

± 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 (𝑃𝑉𝑇𝑇)

=
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
× 100% 

Different speed measures: SpdAve, SpdStds, and Spd85s.  

Indiana DOT 

(Martchouk et 

al., 2010b) 

BI 𝐵𝑢𝑓𝑓𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 (𝐵𝐼) =  
𝑇𝑇95% − 𝑇𝑀𝑒𝑎𝑛

𝑇𝑇𝑀𝑒𝑎𝑛
 

TxDOT  

(Pandey and 

Juri, 2018b) 
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6.5 CHAPTER SUMMARY 

Chapter 6 reviewed key performance metrics used by different agencies. It covered types of 

performance measures used by different agencies, including output and outcome measures and 

the basic principles of freeway performance measurement. Finally, the recommended freeway 

performance measures were discussed, including the TCI, the PTI, the peak spreading K-factor, 

and travel time reliability. 
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CHAPTER 7: FORECASTING USING ARTIFICIAL INTELLIGENCE 

7.1 DATA DESCRIPTION 

The present study aimed to forecast suitable congestion measures within Texas. The dataset 

utilized for the analysis comprises a total of 28,684 rows of freeway segments. Out of these 

segments, 23,318 segments, or 81.28 percent of total data, have valid congestion-related 

information recorded for the respective road segments. Conversely, there is a lack of congestion-

related information for the remaining 18.72 percent of the road segments within the dataset. 

7.1.1 Congestion Performance Measures 

The current study focused on four congestion performance measures in the analysis of freeway 

segment speeds within Texas: SpdAve, SpdStd, Spd85, and percent variation of travel time 

(PVTT). The speed information utilized for this analysis was collected over a period of 5 years 

(2017–2021). Descriptive statistics for these congestion measures are presented in Table 18, 

which differentiates between rural and urban freeway segments and various PSLs of 65 mph, 70 

mph, 75 mph, and an ALL category, which represents all PSLs. The third column of the table 

indicates the number of samples under each land use (i.e., rural and urban) and PSL. For each 

land use and PSL combination, the table presents descriptive statistics for the four congestion 

measures. The statistics include the minimum and maximum values, the mean, and the STD. For 

example, in the rural category with a PSL of 65, the sample size is 49. The SpdAve values for 

this sample range from 57.576 to 66.404, with a mean of 64.122 and a STD of 3.112. The SpdStd 

values range from 3.698 to 7.185, with a mean of 5.844 and a STD of 0.907, and the Spd85 

values range from 61.152 to 70.972, with a mean of 68.87 and a STD of 3.067. In this chapter, 

predictive models will be developed to estimate road segment speeds based on land use, and 

more granular models will be developed that consider different PSLs. 
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Table 18. Sample Descriptive Statistics for Dependent Variables. 

Land 

Use 

PSL 

(mph) 

Sample 

Size 

Dependent 

Variables 
Min Max Mean STD 

Rural 

65 49 

SpdAve 57.576 66.404 64.122 3.112 

SpdStd 3.698 7.185 5.844 0.907 

Spd85 61.152 70.972 68.87 3.067 

PVTT 1.329 85.440 23.437 25.012 

70 4502 

SpdAve 60.76 69.727 67.411 1.222 

SpdStd 1.769 8.819 3.976 1.108 

Spd85 65.7 74.21 70.39 1.247 

PVTT 0.503 99.978 24.651 24.368 

75 5470 

SpdAve 61.539 71.904 69.028 1.077 

SpdStd 1.834 8.708 4.586 0.954 

Spd85 67.678 77 73.2 1.762 

PVTT 0.701 99.796 24.666 24.510 

ALL 10037 

SpdAve 38.055 71.904 68.249 1.616 

SpdStd 1.769 8.819 4.32 1.076 

Spd85 44.49 77 71.89 2.212 

PVTT 0.503 99.978 24.569 24.386 

Urban 

65 1300 

SpdAve 39.764 65.363 55.713 5.311 

SpdStd 2.257 20.447 8.09 3.354 

Spd85 53 70.5 62.4 2.657 

PVTT 2.329 93.299 31.937 22.882 

70 8700 

SpdAve 37.937 69.128 62.641 3.818 

SpdStd 1.807 20.62 6.575 2.73 

Spd85 57.757 76 67.453 2.096 

PVTT 0.567 99.308 31.269 22.995 

75 3164 

SpdAve 48.262 70.934 65.361 3.487 

SpdStd 2.45 18.224 5.922 2.149 

Spd85 61 77.851 70.439 2.18 

PVTT 1.555 99.955 31.086 24.832 

ALL 13281 

SpdAve 16.319 70.934 62.488 4.949 

SpdStd 1.807 20.62 6.578 2.743 

Spd85 29.5 77.851 67.575 3.289 

PVTT 0.567 99.955 31.168 23.458 

Note: STD = standard deviation. 

7.1.2 Independent Variables 

Table 19 provides descriptive statistics for a set of independent variables of freeway segments 

that are used to predict congestion measures. The data conflation steps were detailed in the 

previous deliverables. This study utilized multi-source data (data from NPMRDS, INRIX, and 

Wejo) to collect congestion-related information. After doing a variable importance analysis, the 

following key variables were considered for the AI modeling: 
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• Number of lanes (num_lanes), which ranges from 1 to 4 lanes with a mean of 2.292 lanes 

and a STD of 0.71 lanes across all segments. 

• Jobs within 45 minutes auto travel time, time decay (network travel time) (d5ar), which 

ranges from 0 to 900 jobs, with a mean of 350.401 and a STD of 93.389. 

• AADT (adt_adj), which ranges from 8 to 117,230, with a mean of 25,218.638 and a STD 

of 15,828.853 across all segments. 

• Median width (med_wid), which ranges from 0 to 455 ft, with a mean of 52.566 ft and a 

STD of 35.441 ft across all segments. 

• K-factor (k_fac), which ranges from 4.9 to 26.7, with a mean of 9.581 and a STD of 

1.717 across all segments. 

• Length of the section (len_sec), which ranges from 0.004 to 10.408 miles, with a mean of 

0.843 miles and a STD of 1.31 miles across all segments. 

• Daily vehicle miles traveled (dvmt), which ranges from 0.288 to 459,376.1, with a mean 

of 19,537.897 and a STD of 35,184.667 across all segments. 

• Total number of crashes over a 5-year period (five_year_crashes), which ranges from 0 to 

249, with a mean of 5.065 and a STD of 10.257 across all segments. 

The table also separates the statistics for each variable based on the PSL of the road segments. Of 

the segments, 4,502 segments have a PSL of 70 mph, and 5,470 segments have a PSL of 75 mph. 

The mean and STD of the variables differ between different PSLs.  



 

74 

Table 19. Variable Statistics of Rural Roads. 

PSL 

(mph) 

Sample 

Size 

Independent 

Variable 
Min Max Mean STD 

65 49 

med_wid 4 52 31.143 11.993 

num_lanes 2 4 2.245 0.656 

d5ar 250 300 278.694 22.75 

adt_adj 15255 63802 51054.98 19933.411 

k_fac 7.3 14 9.79 1.466 

len_sec 0.017 3.693 0.96 1.141 

dvmt 494.824 144849.3 39955.265 46480.154 

five_year_crashes 0 89 11.571 17.272 

70 4502 

med_wid 0 455 48.449 36.15 

num_lanes 1 4 2.23 0.547 

d5ar 0 900 349.665 88.314 

adt_adj 8 117230 32706.692 16815.601 

k_fac 5.1 25 9.627 1.519 

len_sec 0.005 10.408 0.864 1.361 

dvmt 1.276 459376.1 25661.631 44852.951 

five_year_crashes 0 249 6.525 12.768 

75 5470 

med_wid 0 455 56.173 34.592 

num_lanes 1 4 2.343 0.818 

d5ar 0 785 351.795 97.588 

adt_adj 10 79854 18846.172 11426.181 

k_fac 4.9 26.7 9.536 1.862 

len_sec 0.004 9.38 0.826 1.269 

dvmt 0.288 238098.7 14342.768 23115.816 

five_year_crashes 0 108 3.807 7.229 

ALL 10037 

med_wid 0 455 52.566 35.441 

num_lanes 1 4 2.292 0.71 

d5ar 0 900 350.401 93.389 

adt_adj 8 117230 25218.638 15828.853 

k_fac 4.9 26.7 9.581 1.717 

len_sec 0.004 10.408 0.843 1.31 

dvmt 0.288 459376.1 19537.897 35184.667 

five_year_crashes 0 249 5.065 10.257 

Table 20 provides the independent variable descriptive statistics of all urban roads. Of the 13,281 

urban road segments, 87,000 roads have a PSL equal to 70 mph. For example, for urban roads 

with a PSL of 65, the median width (med_wid) ranges from 0 to 350, with a mean value of 

16.685 and a STD of 20.975. The number of lanes (num_lanes) ranges from 1 to 6, with a mean 

value of 2.967 and a STD of 1.107. Similarly, for each variable, the range (minimum and 

maximum), mean, and STD values are displayed in the table. 
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Table 20. Variable Statistics of Urban Roads. 

PSL 

(mph) 

Sample 

Size 
Variable Min Max Mean STD 

65 1300 

med_wid 0 350 16.685 20.975 

num_lanes 1 6 2.967 1.107 

d5ar 0 750 295.08 120.899 

adt_adj 85 240182 104736.288 59490.065 

k_fac 6.6 25.5 10.239 1.258 

len_sec 0.007 1.908 0.223 0.262 

dvmt 15.98 303772.7 21276.402 30313.316 

five_year_crashes 0 674 37.376 70.839 

70 8700 

med_wid 0 350 23.836 27.188 

num_lanes 1 7 2.958 1.055 

d5ar 0 800 315.425 115.208 

adt_adj 85 272758 91240.487 56909.504 

k_fac 6.1 32.3 10.108 1.089 

len_sec 0.003 3.703 0.306 0.413 

dvmt 2.168 558809.8 25169.835 40257.738 

five_year_crashes 0 1567 29.422 62.39 

75 3164 

med_wid 0 350 31.662 29.083 

num_lanes 1 7 2.803 1.073 

d5ar 0 800 322.594 118.948 

adt_adj 33 272758 73607.344 63419.184 

k_fac 6.1 23.7 9.95 1.362 

len_sec 0.006 3.733 0.35 0.482 

dvmt 5.39 558809.8 22176.565 37984.209 

five_year_crashes 0 960 27.216 69.228 

ALL 13281 

med_wid 0 350 24.917 27.535 

num_lanes 1 7 2.919 1.065 

d5ar 0 800 314.798 116.9 

adt_adj 33 272758 87998.081 59419.215 

k_fac 6.1 32.3 10.085 1.18 

len_sec 0.003 3.733 0.308 0.419 

dvmt 2.168 558809.8 23925.894 38739.149 

five_year_crashes 0 1567 29.583 64.802 

7.2 METHODOLOGY 

7.2.1 Artificial Intelligence Algorithms 

7.2.1.1. Random Forest (RF) 

RF, a supervised ML algorithm, utilizes a bootstrap sampling method to generate a random 

number of samples from the original training data to produce new training sample sets by 
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building a decision tree that is developed on the new training data (Hefner et al., 2014). RF iw 

comprised of a decision tree and bagging framework in which each of the trees is independent of 

the other (Liaw and Wiener, 2002). While developing the decision tree, RF does not carry out 

any pruning. Although as a single tree the prediction accuracy is not high, the combination 

generates high probability measures of the whole prediction (Xu and Luo, 2021). 

The approach is based on two basic steps: (1) the formation of the forest and (2) the process of 

decision-making. For the prediction, the operation process of RF is to divide the training samples 

into n samples at random, construct n Classification and Regression Tree decision trees, and 

determine the classification results according to the simple voting method. The prediction results 

are the mean values of n leaf nodes; that is, the simple average values of the prediction results of 

multiple decision trees are taken as the prediction results. The operation process of the RF 

algorithm is shown in Figure 20.  

 
Figure 20. RF Algorithm (Xu and Luo, 2021). 

The margin function in CB is given by Equation 3 (Breiman, 2001). 

mg(X, Y ) =  avk I(hk (X) =  Y ) − max
j≠Y

avk I(hk (X) =  j) (3) 

Where, 

h1 (x), h2 (x), . . ., hk (x) are ensembles of classifiers,  

𝑋, and 𝑌 are random vectors, and  

𝐼 is the indicator function. 
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The margin function evaluates the difference in the average number of votes between the right 

class that exceeds the average vote for all other classes. A larger margin indicates a higher level 

of confidence in the classification (Breiman, 2001). The error generalization is given by 

Equation 4. 

PE∗ = PX,Y (mg(X, Y )  <  0) (4) 

Where, 𝑋, 𝑌 indicates that the probability is over the 𝑋, 𝑌 space. 

This study used the Python ML library scikit-learn function 

“sklearn.ensemble.RandomForestRegressor” to utilize this algorithm.  

7.2.1.2. Gradient Boosting (GB)  

The GB method was proposed by Friedman (Friedman, 2001; Friedman and Meulman, 2003). 

GB is commonly known as multiple additive trees and is a unique improvement in data mining 

and an enhancement on top of decision trees, which uses stochastic GB (Friedman, 2001). 

Boosting is a technique used to boost the accuracy of a learning algorithm by combining multiple 

models that have low error rates. In addition, combining multiple models into an ensemble 

makes them perform better. 

Figure 21 shows a flow chart of the GB ML method. The ensemble classifiers consist of a set of 

weak classifiers. The weights of the incorrectly predicted points are increased in the next 

classifier. The final decision is based on the weighted average of the individual predictions (T. 

Zhang et al., 2021). A GB model can be viewed as a series expansion approximating the true 

functional relationship. The algorithm for the GB model is described in Equation 5 (De’ath, 

2007; Hastie et al., 2009). 

f(x) = ∑fn(x)

n

= ∑βng(x, γn)

n

 (5) 

Where x is a set of predictors and f(x) is the estimate of the response variable. g(x, γn) are single 

decision trees with the parameter γn signaling the split variables. Coefficients βn (n = 1,2,...,n) 

determine how each single tree is joined together. Values of βn depend on the minimization of a 

specified loss function, L(yi,f(xi)). Prediction performance is measured by a loss function such as 

deviance. A numerical optimization method named functional gradient descent was proposed by 

(Friedman, 2001). The algorithm to initialize f0(x) is given below: 

1. For n = 1,2,3,…m (number of trees) 

a. For i = 1 to m (number of observations), calculate the residuals 

ỹin = − [
∂L(yi, f(xi))

∂f(xi)
]
f(x)=fm−1(x)

 

b. Fit a decision tree to �̃�𝑖𝑛to estimate γn 

c. Estimate βn by minimizing L(yi,fn − 1(xi) + βng(x,γn)) 

d. Update fn(x) = fn − 1(x) + βng(x, γn) 

2. Calculate  
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f(x) = ∑fn(x)

n

 

 
Figure 21. Flowchart for Gradient Boosting (T. Zhang et al., 2021). 

The tree building process adds trees iteratively till all results are best fit, which leads to 

overfitting. In that scenario, trained models perform well only on trained data and have low 

prediction accuracy with other datasets. To avoid overfitting, the model is also tested by fitting a 

test dataset. Iterative training will stop when the performance of the model reaches a point at 

which the model predicts well for both the training and test dataset. Regularization parameters 

help overcome overfitting and improve model performance. These parameters have two 

components: (1) learning rate and (2) tree complexity. The learning rate decides how quickly the 

model is updated or improved after each stage. The learning rate ranges from 0.0001 to 1.0. A 

learning rate with lower value benefits in minimizing the loss function, but it needs more data on 

trained trees and time to run the model (De’ath, (2007). Values closer to 1.0 will need less 

training data efforts but result in overfitting and poor performance. Tree complexity describes the 

number of nodes per single simple tree. The simplest tree is a tree with two nodes, with only one 

split (Hastie et al., 2009). Both the learning rate and tree complexity rate are balanced to avoid 

the overfitting issue.  

The GB regression model is implemented in a Python ML library named scikit-learn by using the 

function “sklearn.ensemble.GradientBoostingRegressor.”  

7.2.1.3. K-Nearest Neighbor (KNN) 

The KNN algorithm was originally a classification algorithm proposed by Cover and Hart 

(1967). In recent years, it has been widely used as a nonparametric regression method. The basic 

algorithm process of KNN can be summarized as follows: the target value is predicted using 

state vectors that are in turn constructed using historical and current data. Using Euclidean 
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distance between the present state vector and each previous state vector, k historical moments 

with the smallest distances are selected as the KNN. The prediction result of the target time can 

be obtained by calculating the average value of k neighbors at the next time point. Figure 22 

illustrates the detailed process of KNN.  

KNN is commonly known as sample-based learning. This algorithm is a useful data mining 

technique that allows past data samples to be used with known output values to estimate an 

unknown output value of a new data sample. Instead of making generalized assumptions, the 

algorithm compares new problem sets with those sets seen in the test and stored in memory. The 

most important advantage of the neighbor algorithm is that it can adapt its model to large 

amounts of data. KNN estimates a value or class for a new sample while calculating distances or 

similarities with previous training examples. The value is found by calculating the distances from 

each point in the KNN master data set to a point in the test data, of which the core value is 

unknown. Thus, neighbors are calculated by selecting the k number of observations with the 

closest distance. This method uses Euclidean distance, which is formulated in Equation 6 for 

points i and j when calculating distances (Çavuşoğlu and Kaçar, 2019).  

d(i, j) =  √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2

𝑝

𝑘=1

 (6) 

Where i and j are data points on the graph. The KNN approach, using K = 3, is illustrated in 

Figure 22, which is a simple situation with six blue observations and six orange observations. On 

the left side of Figure 22, a test observation at which a predicted class label is desired is shown as 

a black cross. The three closest points to the test observation are identified, and it is predicted 

that the test observation belongs to the most commonly occurring class, in this case blue. On the 

left side of Figure 22, the KNN decision boundary for this example is shown in black. The blue 

grid indicates the region in which a test observation will be assigned to the blue class, and the 

orange grid indicates the region in which it will be assigned to the orange class. 
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Figure 22. KNN Approach Using K = 3 (James et al., 2021). 

In Figure 23, the black curve indicates the KNN decision boundary on the data, using K = 10. 

The Bayes decision boundary is shown as a purple dashed line. The KNN and Bayes decision 

boundaries are very similar. The KNN regression model is implemented in a Python ML library 

scikit-learn with the function “sklearn.neighbors.KNeighborsRegressor.”  

 
Figure 23. KNN Approach Using K  = 10 (James et al., 2021). 

7.2.1.4. Support Vector Regression (SVR)  

SVR is a supervised ML model derived from a support vector machine (SVM) (Smola and 

Schölkopf, 2004; Vapnik, 2000). SVR’s approach is quite similar to SVM, although it has a few 

minor updates (Yang et al., 2017). SVR maps the original data nonlinearly and analyzes the 
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linear regression problem in advanced dimensional feature space (Figure 24). SVR first arranges 

the initial input data nonlinearly and solves the problem in linear regression on a higher 

dimensional feature space. Thus, SVR creates a function to describe a nonlinear relationship.  

 
Figure 24. SVR Approach (Özdoğan-Sarıkoç et al., 2023). 

The regression function is defined by the following equation (Özdoğan-Sarıkoç et al., 2023). 

𝑓(𝑥)  =  ∑(𝜕𝑖
− − 𝜕𝑖

+) 𝐾 (𝑥𝑖,𝑥𝑗) + 𝑏

𝑛

𝑖=1

 
(7) 

Where K(xi, xj) is the kernel function. In this study, the kernel functions tested were radial basis 

function, polynomial, and linear kernels, which are shown in Equation 8. 

Linear Kernel ∶  K (xi, xj)  =  x. xi  

Polynomial Kernel ∶  K (xi, xj)  =  (γ(x. xi) + b)d (8) 

Radial Basis Function Kernel =  K (xi, xj)  =  exp(−
‖x − xi‖

2σ2
)  

 

Where 𝛾 is the structural parameter in the radial basis function and polynomial kernel, 𝜈 

represent the residuals, and d is the degree of the polynomial term.  

7.2.1.4. Artificial Neural Network (ANN) 

ANNs are modeled to mimic the human brain and can be defined as a computational model that 

performs simulation analysis on structural and functional parts of biological NNs. The creation 

of an ANN model is dependent on the type of data used. ANNs are artificially intelligent 

predictive models capable of efficient prediction of parameters. They are also a computing model 

created to mimic the human brain and nervous systems of the human body. ANNs are regarded 

as superior models to classical models because they can effectively simulate intelligence. ANNs 

are data-driven and contain several numbers of operational elements connected to each other 

called neurons (Mohamed, 2013; Pirouzmand and Kazem Dehdashti, 2015).  
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ANNs are made up of different types of layers—the input layer, the hidden layer, and the output 

layer, as shown in Figure 25. ANN models are models that can learn, save, and train appropriate 

input and output parameters that can be missed from experimental training and testing 

procedures of the ANN model (Elsafi, 2014; Mattar et al., 2015). ANN learning operations occur 

when the weights related to the correlations are appropriately regulated; due to this regulation, 

the real output and the input will be well correlated. ANNs are significant artificial intelligent 

models that are also called nonparametric regression models. ANNs have been applied over the 

years to find solutions to complex life problems by developing a prediction and classification 

model for uncertain situations (Azizi and Ahmadloo, 2016; Mia and Dhar, 2016; Nasr et al., 

2012). An ANN is a suitable option over classical models due to its prediction accuracy (Chiteka 

and Enweremadu, 2016). 

 

Figure 25. ANNs (Olayode et al., 2021).  

ANNs are made up of three layers called the input, hidden, and output layers. The node of the 

bias in the input layer of the ANN model is written in Equation 9. 

𝑋𝐻 = ∑𝑊ℎ𝑗𝑖𝑗 + 𝑊ℎ𝑏𝑏𝑖

𝑗 𝑛

𝑗 1

 

(9) 

Where, XH represents the inputs in the ANN model. 𝑊ℎ𝑗
 is the weight in between the input layer 

and the hidden layer; 𝑊ℎ𝑏
 is the weight between the hidden layer and the bias node; 𝑏 is the 

input layer, and it is called a bias node; and 𝑖 is the input node of the ANN model. 

Mathematically, XH is used after applying the activation function. Several researchers have used 

various activation functions to predict and understand the relationships between input and output 

variables (Ghumman et al., 2011; Illias et al., 2016). 

7.2.1.5. CatBoost (CB)  
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CB is an ML method derived from a gradient boosting decision tree (GBDT), and it was 

proposed by engineers of Yandex in 2017 (Prokhorenkova et al., 2018). Figure 26 illustrates the 

architecture of a CB model. GB is a powerful ML technique, capable of solving problems with 

heterogeneous features, noisy data, and complex dependencies.  

 
Figure 26. CatBoost (Alcolea et al., 2020). 

Compared to other GBDT algorithms, CB has the following advantages: First, categorical data 

are handled well by CB. Traditional GBDT algorithms can replace categorical features with 

corresponding average label values. In decision trees, node splitting is done based on average 

label value. This method is called Greedy Target-based Statistics, which is defined by 

Equation 10 (Prokhorenkova et al., 2018). 

∑ [xj,k = xi,k]Yi
p
J=1

∑ [xj,k = xi,k]
n
j=1

 
(10) 

When considering a dataset of observations D = {Xi, Yi} i = 1, …, n, if a permutation is σ = 

(σ1,..., σn), 𝑥𝜎𝑝,𝑘
 is substituted with:  

∑ [𝑥𝜎𝑗,𝑘
= 𝑥𝜎𝑗,𝑘

] 𝑌𝜎𝑗
 +  𝒶𝑃

𝑝=1
𝑗=1

∑ [𝑥𝜎𝑗,𝑘
= 𝑥𝜎𝑗,𝑘

]  +  𝒶
𝑝=1
𝑗=1

 

(11) 

Where p is a prior value, and 𝒶 is the weight of the prior value. This method contributes to 

reducing the noise obtained from the low frequency category.  

Second, CB combines multiple categorical features. CB uses a greedy way to combine all 

categorical features and their combinations in the current tree with all categorical features in the 

dataset. Third, gradient bias is overcome by CB. GBDT generates a weak learner in each 

iteration, and each learner is trained based on the gradient of the previous learner, and the 

accumulation of classified results of all learners provides the output (Friedman, 2002). The final 

learned model might be overfit because there will be biased pointwise gradient estimation. CB 

uses a new method to change the gradient estimation method in the classic algorithm, which is 

named ordered boosting. This method can overcome prediction shifts caused by gradient bias 

and further enhance the generalization ability of the model (Prokhorenkova et al., 2018).  
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To obtain an unbiased gradient estimation, CB trains a separate model Mi for each sample Xi. 

The model Mi is trained with a training set that does not contain sample Xi. Mi is used to obtain a 

gradient estimation of the sample. Furthermore, this gradient will be used to train the base 

learner for the final model.  

7.2.2 Evaluation Criteria 

7.2.2.1. Mean Absolute Error  

Absolute error represents the amount of error in a prediction and is defined by the difference 

between the predicted value and the true value. The mean absolute error (MAE) is the average of 

all absolute errors and is defined by Equation 12. The scale or unit of the MAE is the same as the 

original data and therefore can be named as a scale-dependent accuracy measure (Willmott and 

Matsuura, 2005). The MAE has only nonnegative values since absolute values are considered 

and therefore can avoid mutual cancellation of the positive and negative errors. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑃𝑖 − 𝑂𝑖|

𝑛

𝑖=1

  (12) 

Where 𝑛 is the number of errors or sample size, and 𝑂𝑖 and 𝑃𝑖 are the true value and predicted 

value of the 𝑖th observation, respectively. 

7.2.2.2. Mean Squared Error  

Mean squared error (MSE) is calculated by averaging the square of all errors and defined by 

Equation 13. The lower the MSE value, the better the performance of the prediction models. 

Higher error values are penalized more than the lower ones due to the nature of the square 

function, and therefore for outliers, MSE will become much larger than MAE (Botchkarev, 

2018). Also, the unit of MSE is different than the original data.  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)

2

𝑛

𝑖=1

  (13) 

Where 𝑛 is the number of errors or sample size, and 𝑂𝑖 and 𝑃𝑖 are the true value and predicted 

value of the 𝑖th observation, respectively. 

7.2.2.3. Root Mean Squared Error  

Root mean squared error is defined as the square root of the average of the square of all of the 

errors, as described in Equation 14. RMSE is always nonnegative, and a lower value indicates a 

good fit for the data. In general, a lower RMSE is better than a higher one. Although RMSE is a 

good performance evaluation matrix, it cannot be used to compare between variables since it is a 

scale-dependent matrix (Christie and Neill, 2022).  
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)

2

𝑛

𝑖=1

  (14) 

Where 𝑛 is the number of errors or sample size, and 𝑂𝑖 and 𝑃𝑖 are the true value and predicted 

value of the 𝑖th observation, respectively. 

7.3 RESULTS AND ANALYSIS 

7.3.1 Model Selection Results 

In this study, a variety of regression models were utilized to predict road congestion measures. 

Because PVTT is the only travel time-related performance measures among the four congestion 

measures, this section shows the model performance results for only speed-related measures. The 

final tool development will consider all four congestion performance measures for data 

visualization. The RandomForestRegressor, GradientBoostingRegressor, KNeighborsRegressor, 

SVR, and MLPRegressor packages from the Scikit-learn library and the CatBoostRegressor 

package from the CB library were used to conduct the regression. Table 21 presents the final 

optimized parameters for each model. The RF model has an optimized parameter of n_estimators 

= 500, max_depth = 8, and random_state = 0. The GB model has an optimized parameter of 

n_estimators = 1000, max_depth = 8, learning_rate = 0.01, and random_state = 0. The KNN 

model has an optimized parameter of n_neighbors=50 and weights ='distance'. The SVR model 

has an optimized parameter of C = 1 and epsilon = 0.1. The Multilayer Perceptron (ANN) model 

has an optimized parameter of activation = 'tanh', solver = 'lbfgs', max_iter = 1000. The 

CatBoostRegressor model has an optimized parameter of iterations=5000, learning_rate = 0.1, 

and depth = 8. In the model selection process, only the different types of land use were 

considered. 

Table 21. Parameters Used for Each Model. 

Models Optimized Parameters 

RF n_estimators = 500, max_depth = 8, random_state = 0 

GB n_estimators = 1000, max_depth = 8, learning_rate = 0.01, random_state = 0 

KNN n_neighbors = 50,weights = 'distance' 

SVR C=1, epsilon = 0.1 

ANN Activation = 'tanh', solver = 'lbfgs', max_iter = 1000 

CB Iterations = 5000, learning_rate = 0.1, depth = 8 

Table 22 presents the results of model selection for urban roads in terms of MAE, MSE, and 

RMSE. The dependent variables used are SpdAve, SpdStd, and Spd85. The table compares the 

performance of various models, including RandomForestRegressor, GradientBoostingRegressor, 

KNeighborsRegressor, Support Vector Regressor, Multilayer Perceptron Regressor, and 

CatBoostRegressor, with two sets of independent variables: “with crash” or “without crash.” It 

can be observed that CB performed the best among all models, followed by GB and the rest of 

the models. Additionally, it can be seen that the modeling accuracy is higher when the number of 

crashes is removed from the modeling process. However, for the purpose of recurrent and 
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nonrecurrent congestion performance measure predictions, both approaches (with and without 

consideration of crash data) will be applied to the tool development phase.  

Table 22. Model Selection Results of Urban Freeways. 

Dependent 

Variables 
Consideration Model MAE MSE RMSE 

SpdAve 

Considering crash  

as independent  

variables 

RF 2.055 9.615 3.101 

GB 1.521 6.138 2.478 

KNN 2.778 17.248 4.153 

SVR 3.197 23.346 4.832 

ANN 3.343 21.553 4.643 

CB 1.451 5.870 2.423 

Not considering  

crash as  

independent  

variables 

RF 2.043 9.271 3.045 

GB 1.488 5.832 2.415 

KNN 2.715 16.951 4.117 

SVR 3.196 23.341 4.831 

ANN 3.839 26.082 5.107 

CB 1.400 5.896 2.428 

SpdStd 

Considering crash  

as independent  

variables 

RF 1.361 3.483 1.866 

GB 1.092 2.482 1.576 

KNN 1.567 4.864 2.206 

SVR 1.751 6.190 2.488 

ANN 1.868 6.240 2.498 

CB 1.041 2.396 1.548 

Not considering  

crash as  

independent  

variables 

RF 1.359 3.475 1.864 

GB 1.083 2.474 1.573 

KNN 1.546 4.835 2.199 

SVR 1.751 6.191 2.488 

ANN 1.968 6.716 2.592 

CB 1.011 2.362 1.537 

Spd85 

Considering crash  

as independent  

variables 

RF 1.382 4.370 2.091 

GB 1.032 2.872 1.695 

KNN 1.865 7.633 2.763 

SVR 2.180 10.083 3.175 

ANN 2.152 9.021 3.004 

CB 0.979 2.673 1.635 

Not considering  

crash as  

independent  

variables 

RF 1.378 4.321 2.079 

GB 1.016 2.902 1.704 

KNN 1.828 7.537 2.745 

SVR 2.179 10.083 3.175 

ANN 2.430 10.791 3.285 

CB 0.935 2.674 1.635 

Note: Best modeling results under each scenario are in bold fonts. 
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For rural freeways, the test results of each model are presented in Table 23. The results present a 

similar trend to urban freeways: CB performed the best, and the modeling accuracy is higher 

when the number of crashes is removed from the modeling process. 

Table 23. Model Selection Results of Rural Freeways. 

Dependent  

Variables 
Consideration Model MAE MSE RMSE 

SpdAve 

Considering crash  

as independent  

variables 

RF 0.472 0.694 0.833 

GB 0.356 0.603 0.776 

KNN 0.582 1.477 1.215 

SVR 0.830 2.199 1.483 

ANN 0.923 2.390 1.546 

CB 0.355 0.560 0.748 

Not considering  

crash as  

independent  

variables 

RF 0.471 0.700 0.837 

GB 0.354 0.607 0.779 

KNN 0.577 1.493 1.222 

SVR 0.830 2.198 1.483 

ANN 0.917 2.354 1.534 

CB 0.335 0.577 0.760 

SpdStd 

Considering crash  

as independent  

variables 

RF 0.548 0.585 0.765 

GB 0.386 0.335 0.579 

KNN 0.561 0.684 0.827 

SVR 0.780 1.069 1.034 

ANN 0.776 1.094 1.046 

CB 0.367 0.318 0.564 

Not considering  

crash as  

independent  

variables 

RF 0.547 0.584 0.764 

GB 0.376 0.328 0.573 

KNN 0.556 0.685 0.828 

SVR 0.779 1.069 1.034 

ANN 0.792 1.107 1.052 

CB 0.348 0.299 0.547 

Spd85 

Considering crash  

as independent  

variables 

RF 0.619 1.083 1.040 

GB 0.389 0.552 0.743 

KNN 0.712 1.665 1.290 

SVR 1.170 2.867 1.693 

ANN 1.224 3.007 1.734 

CB 0.374 0.524 0.724 

Not considering  

crash as  

independent  

variables 

RF 0.615 1.057 1.028 

GB 0.379 0.536 0.732 

KNN 0.704 1.672 1.293 

SVR 1.170 2.867 1.693 

ANN 1.269 3.165 1.779 

CB 0.355 0.543 0.737 

Note: Best modeling results under each scenario are in bold fonts. 
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7.3.1.1. CatBoost Modeling Results 

Table 24 presents the results of a CB model applied to predict speed-related congestion measures 

(SpdAve, SpdStd, Spd85) for two different land use types (rural and urban) at ALL PSL levels 

and three different PSL levels (65, 70, and 75).  

The R-squared values are a measure of how well the model explains the variance in the target 

variable and range from 0 to 1, with higher values indicating a better fit. In this table, the R-

squared values for all models are above 0.662, with some models having values above 0.9, 

indicating that these models have a good fit to the data. 

The MAE, MSE, and RMSE are measures of the model’s prediction accuracy, with lower values 

indicating better performance. Generally, the MAE, MSE, and RMSE results for the models in 

the table indicate good prediction accuracy, with values that are relatively low compared to the 

range of the target variable. 

It is also worth noting that the prediction accuracy seems to improve when building the models 

based on different PSL levels, which suggests that the PSL level may be a useful cluster or 

filtering option for speed-related congestion measures. Additionally, the results suggest that the 

performance of the model is better for rural freeways than for urban freeways, which might be 

due to differences in the characteristics of the data between the two land use types. 
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Table 24. CatBoost Modeling Results.  

Land 

Use 

PSL 

(mph) 

Dependent 

Variables 
MAE MSE RMSE R2 

Rural 

65 

SpdAve 0.234 0.103 0.322 0.983 

SpdStd 0.406 0.385 0.621 0.897 

Spd85 0.199 0.102 0.319 0.981 

70 

SpdAve 0.237 0.162 0.403 0.890 

SpdStd 0.269 0.192 0.438 0.852 

Spd85 0.237 0.150 0.388 0.903 

75 

SpdAve 0.330 0.307 0.554 0.716 

SpdStd 0.336 0.291 0.539 0.697 

Spd85 0.386 0.446 0.668 0.857 

ALL 

SpdAve 0.325 0.427 0.653 0.844 

SpdStd 0.330 0.246 0.496 0.784 

Spd85 0.354 0.424 0.651 0.915 

Urban 

65 

SpdAve 1.619 6.481 2.546 0.767 

SpdStd 1.352 3.870 1.967 0.654 

Spd85 0.851 1.428 1.195 0.785 

70 

SpdAve 1.137 3.436 1.854 0.760 

SpdStd 0.989 2.189 1.480 0.693 

Spd85 0.705 1.239 1.113 0.717 

75 

SpdAve 0.836 2.015 1.420 0.825 

SpdStd 0.739 1.333 1.155 0.702 

Spd85 0.655 1.079 1.039 0.762 

ALL 

SpdAve 1.449 7.323 2.706 0.733 

SpdStd 1.028 2.452 1.566 0.689 

Spd85 0.974 3.418 1.849 0.713 

7.3.2 Model Performance 

Figure 27 and Figure 28 show the scatter plots of observed and predicted congestion 

performance measures for different subsets based on PSLs. The linear trends of the majority of 

the models indicate that AI models are well suited for determining the predicted values. One of 

the major contributions of this project is determining congestion measures for the freeway 

segments with no historical speed or congestion-related information.  
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(a) SpdAve (PSL = 65 mph) 

 

(b) SpdStd (PSL = 65 mph) 

 

(c) Spd85 (PSL = 65 mph) 

 

(d) SpdAve (PSL = 70 mph) 

 

(e) SpdStd (PSL = 70 mph) 

 

(f) Spd85 (PSL = 70 mph) 

 

(g) SpdAve (PSL = 75 mph & Up) 

 

(h) SpdStd (PSL = 75 mph & Up) 

 

(i) Spd85 (PSL = 75 mph & Up) 

 

(j) SpdAve (PSL = All) 

 

(k) SpdStd (PSL = All) 

 

(l) Spd85 (PSL = All) 

Figure 27. Rural Freeway Model Performances.  
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(a) SpdAve (PSL = 65 mph) 

 

(b) SpdStd (PSL = 65 mph) 

 

(c) Spd85 (PSL = 65 mph) 

 

(d) SpdAve (PSL = 70 mph) 

 

(e) SpdStd (PSL = 70 mph) 

 

(f) Spd85 (PSL = 70 mph) 

 

(g) SpdAve (PSL = 75 mph & Up) 

 

(h) SpdStd (PSL = 75 mph & Up) 

 

(i) Spd85 (PSL = 75 mph & Up) 

 

(j) SpdAve (PSL = All) 

 

(k) SpdStd (PSL = All) 

 

(l) Spd85 (PSL = All) 

Figure 28. Urban Freeway Model Performances.  
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7.3.3 Explainable AI 

7.3.3.1. Shapley Additive exPlanations  

The Shapley Additive exPlanations (SHAP) approach explains the outcomes from the XGBoost 

model. ML techniques are sometimes known as “black boxes” since it is difficult to understand 

how each individual variable affects the results of the model. The SHAP method uses a game-

theoretic approach to estimate the individual contribution of each feature to the model prediction. 

This method can be used to explain tree-based ML models. Equation 15 can be used to determine 

the Shapley value of a feature i for any certain prediction:  

𝜙𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]

𝑇

𝑆⊆𝐹\{𝑖}

 (15) 

Where, 

𝜙𝑖 : Shapley value of feature 𝑖; 
𝑆 : a possible feature subset; 

|𝑆| : feature counts in subset 𝑆; 

𝐹 : the set of all features; 
|𝐹| : feature counts in set 𝐹; 

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}): model prediction based on the features in subset 𝑆 and feature 𝑖; and 

𝑓𝑆(𝑥𝑆): model prediction based on subset 𝑆 features. 

Here, 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆) is the distinction between a model prediction generated only using 

features from subset S and a model prediction made using features from subset 𝑆 and feature 𝑖. 
This variation may illustrate how the inclusion of feature 𝑖 alters the model’s prediction results. 

The weighted average of all differences across all potential subsets is used to calculate the 

Shapley value of a certain characteristic for any given forecast.  

To interpret the significance of each feature in the CB model, SHAP was used. The SHAP 

summary pattern of the SpdAve model is shown in Figure 29 for rural freeways. Each 

explanatory variable has been ranked according to its influence on the model’s predictions. A 

higher level of feature importance implies that the parameter has a significant impact on the 

measures of SpdAve. The top factors for rural freeways are traffic volume (adt_adj), jobs within 

45 minutes auto travel time, k-factor, and median width.  
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Figure 29. SHAP Plot for Rural Freeways.  

The explainability of the key factors are shown in Figure 30 as partial dependence plots (PDPs). 

These plots indicate the effect of values in each independent variable on the congestion 

measures, such as SpdAve. Variables such as dvmt, segment length (len_sec), and crashes (all) 

have minimum impact on the congestion measures. However, traffic volume (adt_adj), jobs 

within 45 minutes auto travel time, k-factor, and median width show an association with 

congestion measures. The positive and negative association of these factors depend on different 

clusters of SpdAves.  
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Figure 30. Partial Dependence Plots for Rural Freeways.  

The SHAP summary pattern of the SpdAve model is shown in Figure 31 for urban freeways. 

Each explanatory variable has been ranked according to its influence on the model’s predictions. 

A higher level of feature importance implies that the parameter has a significant impact on the 

measures of SpdAve. The top factors for urban freeways are traffic volume (adt_adj), median 

width, jobs within 45 minutes auto travel time, k-factor, and number of lanes.  
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Figure 31. SHAP Plot for Urban Freeways.  

The explainability of the key factors are shown in Figure 32 as PDPs. These plots indicate the 

effect of values in each independent variable on the congestion measures, such as SpdAve. 

Variables such as dvmt and segment length (len_sec) have minimum impact on the congestion 

measures. The number of crashes is associated with a lower SpdAve. However, traffic volume 

(adt_adj), jobs within 45 minutes auto travel time, median width, and lane numbers show an 

association with urban roadway SpdAve measures. The positive and negative association of 

these factors depend on different clusters of SpdAves.  
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Figure 32. Partial Dependence Plots for Urban Freeways.  

7.4 CHAPTER SUMMARY 

Chapter 7 covered congestion measure forecasting using AI algorithms with a brief introduction 

to each algorithm. Model selection and model performances were discussed. It was shown that 

the CB model  demonstrated better performance compared to other AI models. Finally, 

explainable AI was applied to provide interpretation of the final models. 
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CHAPTER 8: GUIDELINES AND SPECIFICATIONS 

8.1 INTRODUCTION 

The TTI team developed a GIS-based prototype decision support tool that can estimate and 

visually illustrate the status of freeway congestion. The decision support tool visually illustrates 

the congestion profile of the roadway segments (the interactive table can be used to select the 

most congested roadways based on different congestion measures). The GIS web-tool then color-

codes the congestion level of each highway segment. The tool also has data exporting (e.g., CSV 

file) features. This tool can be useful for state and local transportation safety decision-makers in 

identifying the segments with the highest and lowest risk from the roadway networks under their 

supervision. 

8.2 GUIDELINE ON TOOL USAGE 

Figure 33 shows the interface of the opening page of the interactive tool. The tool was developed 

using open-source software R and the Shiny platform. The interactive web-based GIS decision 

support tool can be accessed at: https://txdot.shinyapps.io/0_7131/. The interface requires a login 

and password to open the tool in the web browser. This tab provides the core features of the tool. 

On the top of the page, the second tab (0-7131 Tool) contains the GIS-based interactive tool. The 

data and associated codes are located in a OneDrive Folder.  

 
Figure 33. Interface of the 0-7131 Tool Opening Page. 

Figure 34 shows the interface of the GIS-based interactive tool. The tool has three major 

sections: (1) the top left section has the interactive GIS-based map, (2) the top right section has 

several drop-down panels for different spatial and temporal clusters, and (3) the bottom section 

contains the interactive table with key geometric, demographic, and final congestion measures. 

https://txdot.shinyapps.io/0_7131/
https://tti-my.sharepoint.com/:f:/g/personal/s-das_tti_tamu_edu/EtFJLMjyeg1MuyxAZfdkdwkBm3whFdj_-NwvHSsV1PNgRQ?e=Ci3WSW
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Figure 34. Interface of the Web-Based GIS Interactive Tool. 

The tool contains a dashboard with various drop-down lists of steps to provide congestion 

measures at the segment level. Users have the flexibility of selecting several options. The tool 

has the following drop-down and selection options (see Figure 34): 

• Districts (All Districts, Individual District). 

• County (All Counties, Individual County display after selection of the district). 

• Year (All Years [2018–2021] or 2018, 2019, 2020, and 2021 individually). 

• Season (All Seasons or Fall, Winter, Spring, and Summer individually). 

• Day of the week (All Days, or Weekends or Weekdays).  

• Hours (All Hours or Daytime, Nighttime, Morning Peak, Evening Peak, and Other 

individually). 

• Congestion Measures (SpdAve, SpdStd, Spd85, TTAve, Standard Deviation of Travel 

Time [TTStd], and PVTT). 

The AI-based estimated congestion measures on the segment will be displayed based on the 

selection of different drop-down panels and the selection of the congestion measure. The 

estimates are graphically displayed on a color-coded map (yellow indicates a low number and 

red indicates a high number), and the selected segments are displayed in the bottom section of 

the tool in an interactive table. The selected data are also available for download. The users need 

to follow a few simple steps: 
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• Select options from drop-down panels. 

• Click “Refresh Map” (will take some time to load the map and associated data). 

• Zoom in/out (segments have a hovering option that shows important features of the 

segment). 

• Click “Download Data” to download the data in CSV format. 

8.3 GENERAL GUIDELINES 

The users can use the tool to develop segments of interest based on the following congestion 

measures: 

• SpdAve. 

• SpdStd. 

• Spd85. 

• TTAve. 

• TTStd. 

• PVTT. 

The development of AI-based predictive models forms the basis of this research, which is aimed 

at analyzing the year-by-year variation of congestion on Texas freeways. These models utilize 

historical data to forecast and understand the changing congestion patterns over time. By 

studying the trends and fluctuations, valuable insights into the dynamics of congestion can be 

obtained. 

The subsequent section of this research investigates the identification of segments of interest 

based on the PVTT metric. PVTT is calculated as the percentage derived from the STD and 

mean of travel time measures, and it provides a comprehensive measure of the variation in travel 

times. The top segments of interest are determined by ranking the PVTT values according to two 

key factors: land use (urban and rural freeways) and PSLs. By examining these factors 

individually, a more nuanced understanding of congestion patterns and their relationship to 

specific contexts can be achieved. 

The segmentation based on land use considers both urban and rural freeways and recognizes the 

distinct characteristics and challenges associated with each type of roadway. Additionally, the 

segmentation based on PSLs provides valuable insights into how different speed limits impact 

congestion. By focusing on specific speed limit categories such as 65 mph, 70 mph, 75 mph, and 

80 mph, researchers can analyze the relationship between speed limits and congestion levels.  

8.3.1 Segments of Interest Based on 2018 Data 

Figure 35 presents a comprehensive heatmap utilizing data from 2018 that depicts the segments 

with estimated PVTT measures. The heatmap provides a visual representation of the congestion 

levels experienced across various segments. To provide further granularity, Figure 35 is 

subdivided into Figure 35(a), 35(b), and 35(c), which focus on different regions, namely Texas 

as a whole, Dallas, and Houston, respectively. In each of the subfigures, the segments are color-

coded based on their PVTT measures. The color gradient ranges from lighter shades to darker 

shades of red, with darker red colors indicating higher PVTT measures. This color scheme 
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allows for a quick and intuitive understanding of the congestion levels present in the respective 

regions. 

 

(a) Texas 

  
(b) Dallas (c) Houston 

Figure 35. Estimated PVTT Measures Using 2018 Data. 

8.3.1.1. Rural Freeways 

Table 25 to Table 28 list the top 10 segments using 2018 data based on the high estimated PVTT 

values on rural freeways with different PSLs. Unique id (unique_id) indicates the segment 

identification. Some operational properties (highway name, or “hwy,” district, number of lanes, 

AADT, and segment length, or “ln_miles”) are listed in the table. Six congestion measures 

(SpdAve, SpdStd, Spd85, TTAve, TTStd, and PVTT) are listed as the specifications of 

congestion measures for these segments. The interactive tool can be used to develop a 
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comprehensive list of all segments and it can utilize both spatial and temporal features. PVTT 

measures are higher on 75 mph and 70 mph rural freeways than on 80 mph and 65 mph rural 

freeways. The segments with high PVTT measures are mostly in Dallas, Houston, and Waco 

Districts (75 mph and lower). The majority of 80 mph rural freeways with higher PVTT values 

are in the Lubbock District. All segments listed in Table 25 to Table 28 are rural two-lane 

freeways.  

Table 25. Top 10 Segments with High Estimated PVTT Values on 80-mph Rural Freeways 

Based on 2018 Data. 

# 
Unique 

_id 
Hwy District Lanes AADT 

Ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 32736 IH0040 Amarillo 2 13315 0.968 63.88 8.71 70.43 19.25 6.2 49.3 

2 18311 IH0027 Lubbock 2 10445 0.828 68.7 5.77 74.22 226.29 62.47 28.1 

3 20028 IH0027 Lubbock 2 10440 2.004 68.7 5.77 74.22 226.29 62.47 28.1 

4 21088 IH0027 Lubbock 2 10440 0.504 68.7 5.77 74.22 226.29 62.47 28.1 

5 20027 IH0027 Lubbock 2 10440 2.004 68.7 5.77 74.22 226.29 62.47 28.1 

6 18755 IH0027 Lubbock 2 10445 0.11 68.7 5.77 74.22 226.29 62.47 28.1 

7 22312 IH0027 Lubbock 2 10445 2.148 68.7 5.77 74.22 226.29 62.47 28.1 

8 22544 IH0027 Lubbock 2 10440 1.074 68.7 5.77 74.22 226.29 62.47 28.1 

9 22313 IH0027 Lubbock 2 10445 2.148 68.7 5.77 74.22 226.29 62.47 28.1 

10 9715 IH0010 San Angelo 2 9574 0.146 69.19 5.63 74 70.77 17.71 25.02 

Table 26. Top 10 Segments with High Estimated PVTT Values on 75-mph Rural Freeways 

Based on 2018 Data. 

# 
Unique 

_id 
Hwy District Lanes AADT 

Ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 16264 IH0020 Dallas 2 50696 0.358 65.92 8.22 69.5 71.97 70.09 97.39 

2 17172 IH0020 Dallas 2 50696 0.29 65.92 8.22 69.5 71.97 70.09 97.39 

3 17449 IH0020 Dallas 2 50696 0.204 65.92 8.22 69.5 71.97 70.09 97.39 

4 14684 IH0020 Dallas 2 50696 1.426 65.87 8.24 69.47 70.85 68.2 95.89 

5 17391 IH0020 Dallas 2 50696 0.242 65.91 8.02 69.42 86.8 75.21 90.05 

6 15819 IH0020 Dallas 2 50696 0.472 66.25 7.93 69.75 52.38 48.27 89.03 

7 11754 IH0020 Dallas 2 50696 0.126 66.25 7.93 69.75 52.38 48.27 89.03 

8 13603 IH0020 Dallas 2 50696 0.206 66.25 7.93 69.75 52.38 48.27 89.03 

9 13394 IH0020 Dallas 2 50696 0.288 66.12 7.88 69.65 56.82 49.44 86.13 

10 15346 IH0020 Dallas 2 44151 0.334 66.71 7.48 69.99 34.92 28.7 82.2 
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Table 27. Top 10 Segments with High Estimated PVTT Values on 70-mph Rural Freeways 

Based on 2018 Data. 

# 
Unique 

_id 
Hwy District Lanes AADT 

Ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 32436 IH0045 Bryan 2 40913 0.602 62.14 8.83 66.5 54.62 52.28 95.72 

2 32179 IH0045 Bryan 2 40913 0.12 62.14 8.83 66.5 54.62 52.28 95.72 

3 5725 IH0010 Houston 2 56083 0.044 62.2 8.44 66.47 140.67 126.76 90.11 

4 7911 IH0010 Houston 2 56083 0.03 62.2 8.44 66.47 140.67 126.76 90.11 

5 8511 IH0010 Houston 2 56083 0.044 62.2 8.44 66.47 140.67 126.76 90.11 

6 9164 IH0010 Houston 2 56083 0.044 62.2 8.44 66.47 140.67 126.76 90.11 

7 5404 IH0010 Houston 2 56083 0.046 62.2 8.44 66.47 140.67 126.76 90.11 

8 6643 IH0010 Houston 2 50409 0.054 62.2 8.44 66.47 140.67 126.76 90.11 

9 10507 IH0010 Houston 2 56083 0.016 62.2 8.44 66.47 140.67 126.76 90.11 

10 31227 IH0045 Bryan 2 44811 0.158 62.47 8.53 66.5 19.62 17.54 89.4 

Table 28. Top 10 Segments with High Estimated PVTT Values on 65-mph Rural Freeways 

Based on 2018 Data. 

# 
Unique 

_id 
Hwy District Lanes AADT 

Ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 7400 IH0010 Beaumont 2 45439 0.056 59.54 7.71 63.5 112.87 79.81 70.71 

2 5837 IH0010 Beaumont 2 45439 0.054 59.54 7.71 63.5 112.87 79.81 70.71 

3 21161 IH0035 Waco 2 63306 0.034 59.71 7.72 63.94 8.18 4.53 55.4 

4 26631 IH0035 Waco 2 62624 0.122 61.8 6.08 64.98 17.63 8.68 49.22 

5 17957 IH0035 Waco 2 62624 0.118 62.35 6.96 65.5 172.61 84.67 49.05 

6 19146 IH0035 Waco 2 62624 4.626 62.35 6.96 65.5 172.61 84.67 49.05 

7 19147 IH0035 Waco 2 62624 4.626 62.35 6.96 65.5 172.61 84.67 49.05 

8 27617 IH0035 Waco 2 62624 4.624 62.35 6.96 65.5 172.61 84.67 49.05 

9 23963 IH0035 Waco 2 62624 0.126 62.35 6.96 65.5 172.61 84.67 49.05 

10 27616 IH0035 Waco 2 62624 4.624 62.35 6.96 65.5 172.61 84.67 49.05 

8.3.2.1. Rural Freeways 

Table 29 to Table 32 list the top 10 segments using 2018 data based on the high estimated PVTT 

values on urban freeways with different PSLs. The segments with high PVTT measures (PSL 

higher than 65 mph) are mostly in the Dallas and Houston Districts. Locations with higher PVTT 

values on 65 mph urban freeways are in the El Paso District. Examining the number of lanes on 

these urban freeways reveals a range from 2 to 5, which implies a diversity in roadway capacity 

and potentially varying levels of congestion in different segments. The number of lanes plays a 

crucial role in determining the capacity of a roadway to handle traffic volume. Generally, a 

higher number of lanes suggests a greater potential for accommodating vehicles and facilitating 

smoother traffic flow. However, this does not guarantee immunity from congestion since other 

factors such as merging points, interchanges, and bottlenecks can still impact travel time 

variability. 
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Table 29. Top 10 Segments with High Estimated PVTT Values on 80-mph Urban Freeways 

Based on 2018 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 34527 IH0069 Houston 4 139504 0.64 62.71 12.52 71.42 86.3 90.47 100.53 

2 29786 IH0045 Houston 4 208346 0.208 49.54 18.7 66.65 39.91 37.96 94.8 

3 32067 IH0069 Houston 5 220338 1.54 56.5 16.15 68.28 69.89 67.4 93.46 

4 37524 IH0635 Dallas 4 202743 0.052 62.29 16.34 74 322.25 293.82 91.18 

5 36430 IH0635 Dallas 4 178097 0.052 62.29 16.34 74 322.25 293.82 91.18 

6 35264 IH0635 Dallas 4 178097 0.152 62.29 16.34 74 322.25 293.82 91.18 

7 30010 IH0045 Houston 4 208346 1.06 50.55 18.13 66.69 23.59 22.28 90.68 

8 30158 IH0045 Houston 4 221319 0.064 63.27 14.38 74 449.54 406.18 90.36 

9 34093 IH0045 Houston 4 160783 0.268 66.29 10.31 72.55 48.94 59.15 88.76 

10 32670 IH0045 Houston 4 193601 1.572 66.29 10.31 72.55 48.94 59.15 88.76 

Table 30. Top 10 Segments with High Estimated PVTT Values on 75-mph Urban Freeways 

Based on 2018 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 30187 IH0069 Houston 5 220338 0.155 49.33 20.87 66.61 67.1 75.58 112.57 

2 34335 IH0069 Houston 5 220338 0.49 49.33 20.87 66.61 67.1 75.58 112.57 

3 34075 IH0069 Houston 5 220338 0.18 49.33 20.87 66.61 67.1 75.58 112.57 

4 34598 IH0069 Houston 5 220338 0.21 54.55 16.86 66.95 76.74 86.1 107.08 

5 26829 IH0035W Fort Worth 2 64697 0.022 61.49 14.16 68.77 25.52 26.59 104.19 

6 37432 IH0610 Houston 3 167951 0.87 48.08 21.51 65.42 7.65 7.5 99.97 

7 15890 IH0020 Dallas 2 50696 0.166 65.57 8.8 69.32 59.86 59 98.56 

8 16402 IH0020 Dallas 2 61768 2.482 65.57 8.8 69.32 59.86 59 98.56 

9 13465 IH0020 Dallas 2 61768 0.222 65.57 8.8 69.32 59.86 59 98.56 

10 16173 IH0020 Dallas 2 50696 0.218 65.57 8.8 69.32 59.86 59 98.56 
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Table 31. Top 10 Segments with High Estimated PVTT Values on 70-mph Urban Freeways 

Based on 2018 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 22286 IH0035 Austin 2 178313 0.044 43.84 20.55 63 13.8 16.72 121.08 

2 28971 IH0035 Austin 2 178313 0.046 43.84 20.55 63 13.8 16.72 121.08 

3 9289 IH0010 
San 

Antonio 
4 69363 0.104 62.37 11.91 68.41 25.46 29.14 114.45 

4 33866 IH0069 Houston 4 138890 0.044 45.41 21.07 63 1.92 2.16 112.22 

5 29843 IH0069 Houston 4 91710 0.088 45.41 21.07 63 1.92 2.16 112.22 

6 26032 IH0035 Austin 3 138205 1.455 58.85 11.71 65.47 7.52 8.19 108.94 

7 32200 IH0045 Houston 3 208346 0.249 50.6 17.37 63.5 74.26 78.69 105.96 

8 30994 IH0045 Houston 3 156215 0.096 50.6 17.37 63.5 74.26 78.69 105.96 

9 31528 IH0045 Houston 3 156215 0.033 50.6 17.37 63.5 74.26 78.69 105.96 

10 34272 IH0069 Houston 4 139504 0.068 48 19.52 63.86 165.8 169.81 102.42 

Table 32. Top 10 Segments with High Estimated PVTT Values on 65-mph Urban Freeways 

Based on 2018 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 7574 IH0010 El Paso 3 131725 0.36 55.55 12.23 62.46 127.76 141.47 110.73 

2 5176 IH0010 El Paso 3 131725 0.309 55.55 12.23 62.46 127.76 141.47 110.73 

3 6309 IH0010 El Paso 4 131725 0.264 55.55 12.23 62.46 127.76 141.47 110.73 

4 9228 IH0010 El Paso 3 131725 0.207 55.55 12.23 62.46 127.76 141.47 110.73 

5 9079 IH0010 El Paso 3 131725 1.344 55.55 12.23 62.46 127.76 141.47 110.73 

6 25361 IH0035 Austin 3 129685 0.075 38.06 21.19 60.5 14.68 14.28 97.31 

7 6671 IH0010 El Paso 2 102990 0.05 54.65 9.12 60.71 27.69 25.51 95.17 

8 6972 IH0010 El Paso 2 102990 0.058 54.65 9.12 60.71 27.69 25.51 95.17 

9 10225 IH0010 El Paso 2 102990 0.272 54.65 9.12 60.71 27.69 25.51 95.17 

10 10531 IH0010 El Paso 2 102990 0.056 54.65 9.12 60.71 27.69 25.51 95.17 

8.3.2 Segments of Interest Based on 2019 Data 

The heatmap in Figure 36 illustrates the estimated PVTT measures for different segments using 

data from 2019. Specifically, Figure 36(a), 36(b), and 36(c) present color-coded segments 

representing the PVTT measures for Texas, Dallas, and Houston, respectively. 
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(a) Texas 

  
(b) Dallas (c) Houston 

Figure 36. Estimated PVTT Measures Using 2019 Data.  
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8.3.2.1. Rural Freeways 

Using 2019 data, Table 33 to Table 36 list the top 10 segments based on the high estimated 

PVTT values on rural freeways with different PSLs. It is seen that high PVTT measures are 

primarily concentrated in the districts of Houston, with one notable exception being 65 mph rural 

freeways. The Houston Districts experience elevated PVTT values, indicating a higher degree of 

travel time variability and potential traffic congestion. Notably, when considering rural freeways, 

the PVTT values differ based on the PSLs. In the case of 65 mph rural freeways, the PVTT 

values are relatively lower than other rural freeways with higher PSLs. In terms of lane 

configurations, most rural freeways typically consist of two lanes, excluding rural freeways with 

a PSL of 65 mph. The prevalence of two-lane rural freeways implies a relatively narrower 

roadway capacity, which may contribute to potential traffic congestion during peak periods or 

under high traffic demand. Additionally, recognizing the impact of speed limits on PVTT values 

underscores the potential benefits of adjusting speed limits on rural freeways to improve travel 

time consistency and reduce congestion. Moreover, considering the number of lanes on rural 

freeways aids in assessing the capacity limitations and identifying potential areas for 

infrastructure enhancements or lane expansions. 

Table 33. Top 10 Segments with High Estimated PVTT Values on 80-mph Rural Freeways 

Based on 2019 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 8563 IH0010 Yoakum 2 56083 0.128 61.28 11.48 66.76 199.24 215.11 107.97 

2 8778 IH0010 Houston 2 56083 0.376 59.83 9.37 64.72 141.3 134.01 94.96 

3 5404 IH0010 Houston 2 56083 0.046 60.3 9.85 65.45 151.27 141.16 93.32 

4 6643 IH0010 Houston 2 50409 0.054 60.3 9.85 65.45 151.27 141.16 93.32 

5 9874 IH0010 Yoakum 2 49711 0.56 65.12 9.12 69.35 33 28.36 85.36 

6 8061 IH0010 Houston 2 56083 0.702 60.59 8.54 65.11 150.55 121.23 82.58 

7 5348 IH0010 Houston 2 50409 0.896 60.19 8.39 64.76 109 91 80.75 

8 8958 IH0010 Houston 2 50409 0.306 61.92 7.81 65.94 65.43 48.36 73.91 

9 10212 IH0010 Houston 2 50409 0.088 61.92 7.81 65.94 65.43 48.36 73.91 

10 9483 IH0010 Houston 2 50409 0.142 61.92 7.81 65.94 65.43 48.36 73.91 
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Table 34. Top 10 Segments with High Estimated PVTT Values on 75-mph Rural Freeways 

Based on 2019 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 5922 IH0010 Yoakum 2 56083 0.206 61.28 11.48 66.76 199.24 215.11 107.97 

2 6702 IH0010 Houston 2 56083 0.06 61.28 11.48 66.76 199.24 215.11 107.97 

3 7499 IH0010 Houston 2 56083 0.182 61.28 11.48 66.76 199.24 215.11 107.97 

4 5319 IH0010 Houston 2 56083 0.146 61.28 11.48 66.76 199.24 215.11 107.97 

5 7210 IH0010 Houston 2 56083 0.186 61.28 11.48 66.76 199.24 215.11 107.97 

6 7000 IH0010 Houston 2 56083 0.252 61.28 11.48 66.76 199.24 215.11 107.97 

7 15123 IH0020 Dallas 2 31705 0.434 61.13 14.92 71.42 48.65 57.22 106.69 

8 6494 IH0010 El Paso 2 15879 1.616 67.18 11.16 74.17 264.06 18.93 99.17 

9 6447 IH0010 Houston 2 56083 0.436 59.36 8.89 63.98 131.33 126.87 96.6 

10 8225 IH0010 Houston 2 56083 0.436 59.83 9.37 64.72 141.3 134.01 94.96 

Table 35. Top 10 Segments with High Estimated PVTT Values on 70-mph Rural Freeways 

Based on 2019 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 5628 IH0010 Houston 2 56083 0.25 61.28 11.48 66.76 199.24 215.11 107.9 

2 9066 IH0010 Houston 2 56083 0.06 59.36 8.89 63.98 131.33 126.87 96.6 

3 10817 IH0010 Houston 2 50409 0.402 59.36 8.89 63.98 131.33 126.87 96.6 

4 11023 IH0010 Houston 2 50409 0.22 59.83 9.37 64.72 141.3 134.01 94.96 

5 7387 IH0010 Houston 2 56083 0.06 59.83 9.37 64.72 141.3 134.01 94.96 

6 5264 IH0010 Houston 2 56083 0.378 59.83 9.37 64.72 141.3 134.01 94.96 

7 9259 IH0010 Houston 2 56083 0.576 59.83 9.37 64.72 141.3 134.01 94.96 

8 6031 IH0010 Houston 2 50409 0.38 59.83 9.37 64.72 141.3 134.01 94.96 

9 9995 IH0010 Houston 2 56083 0.592 59.83 9.37 64.72 141.3 134.01 94.96 

10 5725 IH0010 Houston 2 56083 0.044 60.3 9.85 65.45 151.27 141.16 93.32 
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Table 36. Top 10 Segments with High Estimated PVTT Values on 65-mph Rural Freeways 

Based on 2019 Data. 

# 

uniq

ue 

_id 

hwy district lanes AADT 
ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 
1694

9 
IH0020 Dallas 2 31705 0.128 64.14 8.32 68.99 230.44 90.69 39.36 

2 
1642

2 
IH0020 Brownwood 2 19142 0.562 68.24 4.94 71.94 93.45 23.64 25.49 

3 9647 IH0010 Beaumont 3 55080 0.741 66.68 3.18 68.75 140.33 33.63 23.73 

4 6680 IH0010 El Paso 2 15100 0.468 62.36 5.76 67 44.37 9.87 22.24 

5 9407 IH0010 San Angelo 4 9705 11.228 69.56 5.46 74.22 175.41 35.43 20.21 

6 8405 IH0010 Odessa 4 7770 0.692 69.92 5.91 74.74 359.42 70.71 19.62 

7 8284 IH0010 Yoakum 2 28582 0.258 68.43 3.67 70.99 143.81 28.08 19.53 

8 
1634

1 
IH0020 Odessa 2 20700 3.764 69.25 4.67 72.46 110.64 21.63 19.44 

9 5442 IH0010 Beaumont 3 55080 3.549 67.64 3.08 69.74 47.34 9.54 19.16 

10 
1178

5 
IH0020 Abilene 2 19056 2.418 69.15 4.11 72.65 32.27 5.13 15.68 

8.3.2.2. Urban Freeways 

Using 2019 data, Table 37 to Table 40 list the top 10 segments based on the high estimated 

PVTT values on urban freeways with different PSLs. Primarily, the segments exhibiting high 

PVTT measures are concentrated in districts encompassing major metropolitan areas such as 

Dallas, Houston, Waco, Austin, and El Paso, which indicates that these urban regions face 

considerable challenges in terms of travel time variability and potential traffic congestion. 

Furthermore, an analysis of the number of lanes on urban freeways demonstrates a range of two 

to four lanes. This variation in lane capacity suggests differing levels of roadway infrastructure 

and potential implications for traffic flow. Although freeways with more lanes generally have a 

higher potential for accommodating vehicles and facilitating smoother traffic movement, 

congestion can still occur due to other factors such as bottlenecks, interchanges, or inadequate 

merging points. 
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Table 37. Top 10 Segments with High Estimated PVTT Values on 80-mph Urban Freeways 

Based on 2019 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 20632 IH0035 Waco 3 77498 0.048 63.29 9.57 67.5 27.14 26.12 96.27 

2 15730 IH0020 Dallas 3 44293 1.944 64.88 12.24 72.99 67.97 59.68 92.12 

3 20504 IH0035 Austin 3 129685 0.066 40.85 19.31 60.98 23.21 21.14 82.69 

4 2489 IH0030 Dallas 2 10710 0.324 47.29 15.81 59 19.65 16.01 81.47 

5 10938 IH0010 El Paso 3 131725 2.16 59.8 7.97 64.16 106.87 84.61 76.96 

6 27399 IH0035W 
Fort 

Worth 
2 79171 0.07 56.98 16.31 67.63 26.91 20.35 75.64 

7 14261 IH0020 Dallas 4 141084 0.84 62.9 7.81 66.72 39.39 30.78 73.78 

8 13339 IH0020 Dallas 4 122147 2.064 65.49 6.26 68.34 54.24 41.71 70.24 

9 7674 IH0010 Beaumont 2 59091 0.298 60.47 6.29 64.5 24.2 16.86 68.9 

10 9796 IH0010 
San 

Antonio 
2 69363 0.83 53.57 15.26 64.94 172.98 119 68.79 

Table 38. Top 10 Segments with High Estimated PVTT Values on 75-mph Urban Freeways 

Based on 2019 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 17607 IH0020 Dallas 3 44293 1.125 63.8 19.05 76.22 60.45 103.68 160.65 

2 19344 IH0035 Laredo 3 43529 0.039 30.77 17.26 50 14.99 16.58 110.62 

3 11024 IH0010 Houston 3 70110 0.03 60.55 14.1 67.5 31.02 33.11 106.74 

4 7574 IH0010 El Paso 3 131725 0.36 58.84 10.41 64 115.19 121.37 105.36 

5 9079 IH0010 El Paso 3 131725 1.344 58.84 10.41 64 115.19 121.37 105.36 

6 17990 IH0035 Waco 3 115484 0.405 54.09 14.86 65 45.63 46.23 101.3 

7 15167 IH0020 Dallas 3 44293 1.011 64.5 13.23 73.26 42.47 52.26 97.3 

8 18835 IH0035 Waco 3 115484 0.141 54.28 14.5 64.24 22.17 20.17 92.32 

9 20972 IH0035 Waco 3 115484 0.36 54.35 14.45 64.28 21.73 19.78 92.22 

10 4976 IH0010 
San 

Antonio 
2 159210 0.076 50.13 14.66 60.17 26.64 24.09 90.42 
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Table 39. Top 10 Segments with High Estimated PVTT Values on 70-mph Urban Freeways 

Based on 2019 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 15405 IH0020 Dallas 2 30029 0.016 59.5 21.15 74 58.47 100.56 171.99 

2 13633 IH0020 Dallas 3 44293 2.046 64.38 17.15 75.64 88.57 99.13 144.54 

3 7031 IH0010 Houston 3 99077 0.15 57.08 17.04 66.47 92.49 119.11 128.79 

4 14922 IH0020 Dallas 4 122147 0.048 63.85 9.18 67.5 157.19 181.15 115.25 

5 12571 IH0020 Dallas 4 143152 0.5 63.31 10.12 67.94 44.22 48.36 109.35 

6 15784 IH0020 Dallas 4 141084 0.84 63.31 10.12 67.94 44.22 48.36 109.35 

7 15107 IH0020 Dallas 4 141084 0.136 63.31 10.12 67.94 44.22 48.36 109.35 

8 13767 IH0020 Dallas 2 30029 0.032 61.02 15.2 71.5 46.01 58.04 109.13 

9 5383 IH0010 Houston 3 70110 0.051 60.55 14.1 67.5 31.02 33.11 106.74 

10 8257 IH0010 Houston 3 70110 0.057 60.55 14.1 67.5 31.02 33.11 106.74 

Table 40. Top 10 Segments with High Estimated PVTT Values on 65-mph Urban Freeways 

Based on 2019 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 12417 IH0020 Dallas 4 143152 0.248 63.31 10.12 67.94 44.22 48.36 109.35 

2 3729 IH0002 Pharr 3 59774 0.057 54.83 12.32 64 30.76 26.09 84.8 

3 20351 IH0035 Austin 3 129685 0.102 41.16 19.24 60.97 69.56 59.42 83.7 

4 21063 IH0035 Austin 3 129685 0.927 41.69 18.76 61.07 47.2 40.23 83.27 

5 18193 IH0035 Waco 3 48755 2.283 64.42 12.51 73.87 78.78 89.22 81.96 

6 17215 IH0020 Dallas 4 149140 0.196 63.26 11.54 69 76.59 61.42 80.2 

7 22048 IH0035 Laredo 3 43529 0.147 37.28 14.24 52.3 12.32 11.01 78.46 

8 8096 IH0010 
San 

Antonio 
2 69363 0.114 56 14.46 65 131.68 103.31 78.45 

9 8333 IH0010 El Paso 3 131725 2.115 59.8 7.97 64.16 106.87 84.61 76.96 

10 18821 IH0035 
San 

Antonio 
2 164373 0.7 53.1 12 61.93 14.65 11.61 76.27 

8.3.3 Segments of Interest Based on 2020 Data 

The heatmap in Figure 37 depicts the segments and their estimated PVTT measures using data 

from 2020. Figure 37(a), 37(b), and 37(c) illustrate the color-coded segments representing PVTT 

measures for Texas, Dallas, and Houston, respectively. 
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(a) Texas 

  
(b) Dallas (c) Houston 

Figure 37. Estimated PVTT Measures Using 2020 Data. 
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8.3.3.1. Rural Freeways 

Using 2020 data, Table 41 to Table 44 list the top 10 segments based on the high estimated 

PVTT values on rural freeways with different PSLs. The districts of Odessa, Yoakum, Houston, 

and Waco emerge as the dominant districts for rural freeways, with PSLs of 80 mph, 75 mph, 70 

mph, and 65 mph, respectively. This distribution of dominant districts raises questions about the 

underlying factors contributing to these patterns. Factors such as geographic location, population 

density, economic activities, and transportation infrastructure development may play significant 

roles in determining the speed limits set for rural freeways in these districts. Furthermore, it is 

noteworthy that most rural freeways, regardless of the PSL, consist of two lanes. This 

observation indicates a relatively limited roadway capacity for accommodating traffic volume on 

these rural freeways, which can have implications for traffic flow and congestion levels, 

particularly during peak travel periods or when faced with high traffic demand. 

Table 41. Top 10 Segments with High Estimated PVTT Values on 80-mph Rural Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 7925 IH0010 Beaumont 2 45439 0.104 63.05 7.28 67.11 2.58 1.68 64.93 

2 10691 IH0010 Beaumont 2 45439 0.104 63.05 7.28 67.11 2.58 1.68 64.93 

3 9371 IH0010 
San 

Angelo 
2 12969 0.342 68.9 8.4 74.5 27.33 14.16 51.81 

4 10415 IH0010 
San 

Angelo 
4 12969 0.996 68.9 8.4 74.5 27.33 14.16 51.81 

5 7490 IH0010 
San 

Angelo 
2 12969 0.338 68.9 8.4 74.5 27.33 14.16 51.81 

6 10323 IH0010 Odessa 2 7770 0.074 69.33 6.2 73.99 368.97 150.48 40.78 

7 7063 IH0010 Odessa 2 7770 0.45 69.33 6.2 73.99 368.97 150.48 40.78 

8 7580 IH0010 Odessa 2 7770 0.05 69.33 6.2 73.99 368.97 150.48 40.78 

9 6145 IH0010 Odessa 2 7770 0.882 69.33 6.2 73.99 368.97 150.48 40.78 

10 7730 IH0010 Odessa 2 7770 0.364 69.33 6.2 73.99 368.97 150.48 40.78 

Table 42. Top 10 Segments with High Estimated PVTT Values on 75-mph Rural Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 11044 IH0010 Yoakum 2 40152 0.174 67.04 6.97 70.41 21.49 15.1 70.28 

2 5315 IH0010 Austin 2 32632 0.018 66.63 6.87 70 2.02 1.33 65.78 

3 9874 IH0010 Yoakum 2 49711 0.56 64.78 6 67.85 31.2 18.9 60.41 

4 9535 IH0010 Yoakum 2 49711 1.238 64.14 6.38 67.75 31.68 18.43 58.34 

5 10113 IH0010 Yoakum 2 56083 0.332 64.59 6.49 68.32 48.91 28.17 57.59 

6 10620 IH0010 Yoakum 2 39831 4.122 65.74 6.13 69.5 48.86 26.1 55.86 

7 9315 IH0010 Yoakum 2 56083 3.208 64.27 6.44 68.4 38.73 20.12 52.36 

8 6234 IH0010 Yoakum 2 56083 3.23 64.22 6.41 68.31 44.95 23.08 52.2 

9 19475 IH0027 Lubbock 2 14770 13.074 69.42 8.01 75.47 183.61 93.45 50.91 

10 23216 IH0027 Lubbock 2 14770 13.07 69.42 8.01 75.47 183.61 93.45 50.91 
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Table 43. Top 10 Segments with High Estimated PVTT Values on 70-mph Rural Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 5725 IH0010 Houston 2 56083 0.044 61.61 7.97 65.5 139.91 124.15 88.73 

2 7911 IH0010 Houston 2 56083 0.03 61.61 7.97 65.5 139.91 124.15 88.73 

3 8511 IH0010 Houston 2 56083 0.044 61.61 7.97 65.5 139.91 124.15 88.73 

4 9164 IH0010 Houston 2 56083 0.044 61.61 7.97 65.5 139.91 124.15 88.73 

5 5404 IH0010 Houston 2 56083 0.046 61.61 7.97 65.5 139.91 124.15 88.73 

6 6643 IH0010 Houston 2 50409 0.054 61.61 7.97 65.5 139.91 124.15 88.73 

7 10507 IH0010 Houston 2 56083 0.016 61.61 7.97 65.5 139.91 124.15 88.73 

8 8225 IH0010 Houston 2 56083 0.436 61.86 6.76 65.48 127.92 100.18 77.24 

9 8280 IH0010 Houston 2 56083 0.59 61.86 6.76 65.48 127.92 100.18 77.24 

10 7810 IH0010 Houston 2 56083 0.378 61.86 6.76 65.48 127.92 100.18 77.24 

Table 44. Top 10 Segments with High Estimated PVTT Values on 65-mph Rural Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 7400 IH0010 Beaumont 2 45439 0.056 60.25 6.46 64.47 105.92 58.87 55.58 

2 5837 IH0010 Beaumont 2 45439 0.054 60.25 6.46 64.47 105.92 58.87 55.58 

3 10805 IH0010 
San 

Antonio 
4 16546 0.156 68.14 4.1 71.5 21.08 2.54 12.05 

4 19389 IH0035 Waco 2 62624 0.248 68.04 2.55 69.97 104.8 11.05 10.03 

5 20211 IH0035 Waco 2 62624 0.262 68.04 2.55 69.97 104.8 11.05 10.03 

6 28003 IH0035 Waco 2 62624 0.178 68.04 2.55 69.97 104.8 11.05 10.03 

7 26121 IH0035 Waco 2 62624 0.086 68.04 2.55 69.97 104.8 11.05 10.03 

8 21161 IH0035 Waco 2 63306 0.034 65.22 2.61 67.41 18.78 1.87 9.95 

9 27360 IH0035 Waco 2 62624 1.138 68.06 2.59 69.98 124.95 12.06 9.44 

10 22942 IH0035 Waco 2 62624 0.902 68.07 2.62 69.98 136.52 12.63 9.11 

8.3.3.2. Urban Freeways 

Table 45 to Table 48, using 2020 data, list the top 10 segments based on the high estimated 

PVTT values on urban freeways with different PSLs. Notably, the segments with elevated PVTT 

measures predominantly belong to the Houston, Dallas, and El Paso Districts, indicating 

potential areas of concern in terms of travel time variations. The number of lanes for urban 

freeways ranges from two to five.  
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Table 45. Top 10 Segments with High Estimated PVTT Values on 80-mph Urban Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 32704 IH0069 Houston 5 255714 0.1 56.55 20.67 74 32.15 35.35 109.97 

2 35196 IH0635 Dallas 4 176541 0.044 58.86 20.3 74.23 10.25 10.67 108.91 

3 33835 IH0069 Houston 5 171747 0.095 68.97 11.46 77 320.09 347.6 108.6 

4 32131 IH0045 Houston 4 208346 0.276 60.03 14.22 71.45 45.2 48.89 108.49 

5 34469 IH0045 Houston 4 208346 0.396 60.03 14.22 71.45 45.2 48.89 108.49 

6 29584 IH0045 Houston 3 156215 0.042 55.83 13.83 66.48 65.45 66.95 101.41 

7 30010 IH0045 Houston 4 208346 1.06 56.94 17.12 70.5 29.69 27.93 93.69 

8 30158 IH0045 Houston 4 221319 0.064 68.69 13.69 78 361.21 337.9 93.55 

9 1468 IH0045 Houston 2 9600 0.112 63.29 15.08 74.95 66.67 60.63 90.94 

10 29786 IH0045 Houston 4 208346 0.208 56.44 17.45 70.9 25.63 23.18 89.9 

Table 46. Top 10 Segments with High Estimated PVTT Values on 75-mph Urban Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 29913 IH0069 Houston 3 159452 0.027 59.73 14.71 70 83.78 94.35 112.61 

2 37432 IH0610 Houston 3 167951 0.87 61.76 13.57 70.18 26.27 28.45 108.74 

3 31953 IH0045 Houston 4 173504 0.116 57.12 14.42 67.57 14.74 15.24 104.43 

4 33503 IH0069 Houston 5 220338 0.08 58.69 18.21 71.4 46.26 46.74 102.05 

5 32958 IH0069 Houston 5 220338 0.07 58.69 18.21 71.4 46.26 46.74 102.05 

6 31837 IH0069 Houston 5 220338 0.09 58.69 18.21 71.4 46.26 46.74 102.05 

7 30741 IH0045 Houston 4 208346 0.96 57.79 16.63 70.17 30.18 30.41 101.47 

8 30187 IH0069 Houston 5 220338 0.155 60.21 15.74 71.45 48.89 48.22 101.17 

9 34335 IH0069 Houston 5 220338 0.49 60.21 15.74 71.45 48.89 48.22 101.17 

10 34075 IH0069 Houston 5 220338 0.18 60.21 15.74 71.45 48.89 48.22 101.17 
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Table 47. Top 10 Segments with High Estimated PVTT Values on 70-mph Urban Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 31386 IH0069 Houston 2 24897 0.678 61.18 17.17 73 165.91 189.9 114.46 

2 33936 IH0069 Houston 2 24897 0.174 61.18 17.17 73 165.91 189.9 114.46 

3 33386 IH0069 Houston 2 24897 3.118 61.18 17.17 73 165.91 189.9 114.46 

4 36240 IH0345 Dallas 3 162578 0.474 53.39 15.33 64.15 16.24 18.23 113.15 

5 20632 IH0035 Waco 3 77498 0.048 58.37 11.6 63.98 31.51 35.02 111.15 

6 2443 IH0345 Dallas 2 32463 0.244 53.19 15.27 63.98 17.49 19.4 110.88 

7 2573 IH0345 Dallas 2 32463 0.696 53.19 15.27 63.98 17.49 19.4 110.88 

8 32782 IH0069 Houston 3 159452 0.087 56.63 15.93 67.76 64.15 72.12 109.75 

9 7031 IH0010 Houston 3 99077 0.15 62.96 9.32 66.99 64.62 70.89 109.71 

10 33169 IH0069 Houston 4 159452 0.52 56.52 15.76 67.43 60.57 67.57 108.92 

Table 48. Top 10 Segments with High Estimated PVTT Values on 65-mph Urban Freeways 

Based on 2020 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 10110 IH0010 Houston 3 152983 0.294 56.68 7.58 60.9 16.04 16.78 105.05 

2 35671 IH0110 El Paso 3 32405 0.228 37.49 15.16 52.1 25.06 25.33 104.6 

3 8853 IH0010 Houston 3 152983 0.156 57.15 7.73 61.46 20.37 21.18 103.96 

4 2530 IH0010 El Paso 2 6945 0.388 56.3 13.3 67.81 27.61 34.38 96.16 

5 24990 IH0035E Dallas 4 161151 0.788 57.45 9.62 63.44 20.46 19.35 94.57 

6 38338 IH0110 El Paso 2 32405 0.048 41.82 10.5 50.24 58.39 43.79 93.23 

7 37938 IH0110 El Paso 2 43125 0.266 41.82 10.5 50.24 58.39 43.79 93.23 

8 37703 IH0110 El Paso 2 43125 0.134 41.82 10.5 50.24 58.39 43.79 93.23 

9 25361 IH0035 Austin 3 129685 0.075 44.88 19.07 61.5 27.91 25.92 92.87 

10 37295 IH0345 Dallas 5 162578 0.685 50.65 13.57 60.25 10.52 9.91 88.38 

8.3.4 Segments of Interest Based on 2021 Data 

Figure 38, using 2021 data, depicts a heatmap illustrating the estimated PVTT measures for 

segments. Subsequently, Figure 38(a), 38(b), and 38(c) showcase the color-coded segments, 

representing the PVTT measures for Texas, Dallas, and Houston, correspondingly. 
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(a) Texas 

  

(b) Dallas (c) Houston 

Figure 38. Estimated PVTT Measures Using 2021 Data. 
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8.3.4.1. Rural Freeways 

Table 49 to Table 52, considering the PSLs and utilizing data from 2021, provide an overview of 

the highest estimated PVTT values for the top 10 segments of rural freeways. The analysis 

reveals that the segments with elevated PVTT measures are primarily located within the San 

Angelo, Yoakum, Beaumont, and Waco Districts. It is noteworthy that most rural freeways 

consist of two lanes, indicating a consistent trend across the analyzed areas. 

Table 49. Top 10 Segments with High Estimated PVTT Values on 80-mph Rural Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 7925 IH0010 Beaumont 2 45439 0.104 62.47 8.41 66.78 2.71 2.41 88.87 

2 10691 IH0010 Beaumont 2 45439 0.104 62.47 8.41 66.78 2.71 2.41 88.87 

3 6328 IH0010 San Angelo 2 12691 3.094 74.54 7 80.44 33.69 16.82 50.1 

4 6327 IH0010 San Angelo 2 12691 3.094 74.86 6.7 80.44 29.6 14.05 49.65 

5 9154 IH0010 San Angelo 2 12691 0.038 74.4 6.93 80.47 45.14 22.12 49.01 

6 5715 IH0010 San Angelo 2 11476 0.044 74.4 6.93 80.47 45.14 22.12 49.01 

7 8650 IH0010 San Angelo 2 11476 0.096 74.4 6.93 80.47 45.14 22.12 49.01 

8 11243 IH0010 San Angelo 2 11476 1.004 74.4 6.93 80.46 48.32 23.63 48.99 

9 11015 IH0010 San Angelo 2 12691 0.322 74.64 6.85 80.25 210.06 94.35 44.91 

10 7743 IH0010 San Angelo 2 12691 0.672 74.64 6.85 80.25 210.06 94.35 44.91 

Table 50. Top 10 Segments with High Estimated PVTT Values on 75-mph Rural Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 22843 IH0030 Paris 2 49281 0.038 68.08 6.88 71 21.27 18.73 88.05 

2 9874 IH0010 Yoakum 2 49711 0.56 64.15 8.83 69.57 32.78 26.06 78.6 

3 10113 IH0010 Yoakum 2 56083 0.332 62.08 10.31 68.99 53.8 42.25 78.54 

4 9535 IH0010 Yoakum 2 49711 1.238 63.53 9.23 69.65 33.56 24.83 72.38 

5 6234 IH0010 Yoakum 2 56083 3.23 64.34 7.86 69.28 45.95 30.8 69.22 

6 9315 IH0010 Yoakum 2 56083 3.208 64.34 7.83 69.25 39.64 27.03 69.21 

7 10871 IH0010 Yoakum 2 56083 0.852 63.33 8.79 69.38 52.26 35.92 68.44 

8 9011 IH0010 Yoakum 2 56083 0.326 63.33 8.79 69.38 52.26 35.92 68.44 

9 8719 IH0010 Yoakum 2 56083 0.84 63.33 8.79 69.38 52.8 36.23 68.43 

10 134 IH0020 Tyler 1 886 0.221 71.26 6.1 74.99 24.54 16.41 66.87 
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Table 51. Top 10 Segments with High Estimated PVTT Values on 70-mph Rural Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 19305 IH0035 San Antonio 3 114081 0.06 66.02 8.69 70.5 44.94 42.59 94.77 

2 22638 IH0035 San Antonio 3 112918 0.03 64.6 9.41 69.5 33.69 30.73 91.2 

3 9885 IH0010 Beaumont 2 42114 0.026 67.89 7.09 71.99 61.69 55.44 89.86 

4 11233 IH0010 Beaumont 2 41700 2.688 68.23 7.21 72.25 62.82 53.74 85.62 

5 9135 IH0010 Beaumont 2 41700 2.67 68.23 7.21 72.25 62.82 53.74 85.62 

6 18097 IH0035 San Antonio 3 112918 0.51 67.23 7.89 71.25 42.22 36.09 84.85 

7 19520 IH0035 San Antonio 3 112918 0.621 67.23 7.89 71.25 42.22 36.09 84.85 

8 17819 IH0035 San Antonio 3 112918 0.093 67.23 7.89 71.25 42.22 36.09 84.85 

9 19006 IH0035 Austin 3 117230 0.036 67.48 6.97 70.77 39.47 32.91 83.4 

10 9976 IH0010 Beaumont 2 42114 3.036 68.04 7.05 71.88 41.52 34.74 83.28 

Table 52. Top 10 Segments with High Estimated PVTT Values on 65-mph Rural Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 7400 IH0010 Beaumont 2 45439 0.056 60.84 7.65 65 108.05 74.4 68.85 

2 5837 IH0010 Beaumont 2 45439 0.054 60.84 7.65 65 108.05 74.4 68.85 

3 21161 IH0035 Waco 2 63306 0.034 68.97 5.2 72.88 18.14 8.14 44.85 

4 19389 IH0035 Waco 2 62624 0.248 71.16 5.19 74.75 100.77 16.15 18.78 

5 20211 IH0035 Waco 2 62624 0.262 71.16 5.19 74.75 100.77 16.15 18.78 

6 28003 IH0035 Waco 2 62624 0.178 71.16 5.19 74.75 100.77 16.15 18.78 

7 26121 IH0035 Waco 2 62624 0.086 71.16 5.19 74.75 100.77 16.15 18.78 

8 27360 IH0035 Waco 2 62624 1.138 71.23 5.04 74.75 120.1 20 18.09 

9 22942 IH0035 Waco 2 62624 0.902 71.28 4.95 74.75 131.2 22.21 17.68 

10 17957 IH0035 Waco 2 62624 0.118 71.31 4.89 74.75 139.42 23.85 17.39 

8.3.4.2. Urban Freeways 

Using 2021 data, Table 53 to Table 56 list the top 10 segments based on the high estimated 

PVTT values on urban freeways with different PSLs. The segments with high PVTT measures 

are mostly in the Dallas, Houston, Waco, and El Paso Districts. The number of lanes for urban 

freeways ranges from two to five. Although urban freeways with a PSL of 80 mph exhibit a 

distinct pattern, it is worth noting that the remaining roadways with different speed limits tend to 

display higher PVTT values. 
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Table 53. Top 10 Segments with High Estimated PVTT Values on 80-mph Urban Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 7400 IH0010 Beaumont 2 45439 0.056 60.84 7.65 65 108.05 74.4 68.85 

2 5837 IH0010 Beaumont 2 45439 0.054 60.84 7.65 65 108.05 74.4 68.85 

3 21161 IH0035 Waco 2 63306 0.034 68.97 5.2 72.88 18.14 8.14 44.85 

4 19389 IH0035 Waco 2 62624 0.248 71.16 5.19 74.75 100.77 16.15 18.78 

5 20211 IH0035 Waco 2 62624 0.262 71.16 5.19 74.75 100.77 16.15 18.78 

6 28003 IH0035 Waco 2 62624 0.178 71.16 5.19 74.75 100.77 16.15 18.78 

7 26121 IH0035 Waco 2 62624 0.086 71.16 5.19 74.75 100.77 16.15 18.78 

8 27360 IH0035 Waco 2 62624 1.138 71.23 5.04 74.75 120.1 20 18.09 

9 22942 IH0035 Waco 2 62624 0.902 71.28 4.95 74.75 131.2 22.21 17.68 

10 17957 IH0035 Waco 2 62624 0.118 71.31 4.89 74.75 139.42 23.85 17.39 

Table 54. Top 10 Segments with High Estimated PVTT Values on 75-mph Urban Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 36062 IH0635 Dallas 4 176541 0.224 56.79 17.52 70.9 27.66 31.22 119.07 

2 31953 IH0045 Houston 4 173504 0.116 49.04 20.7 66.8 23.29 26.15 112.02 

3 37008 IH0635 Dallas 4 176541 3.104 56.36 17.9 70.99 45.1 51.05 111.41 

4 32468 IH0045 Houston 3 173504 0.375 50.47 19.54 66.73 17.29 19.36 110.1 

5 36399 IH0635 Dallas 4 176541 0.732 57.42 16.38 70 168.54 157.42 109.63 

6 30187 IH0069 Houston 5 220338 0.155 49.02 22.99 69.26 83.5 90.14 107.94 

7 34335 IH0069 Houston 5 220338 0.49 49.02 22.99 69.26 83.5 90.14 107.94 

8 34075 IH0069 Houston 5 220338 0.18 49.02 22.99 69.26 83.5 90.14 107.94 

9 26829 IH0035W 
Fort 

Worth 
2 64697 0.022 58.45 12.68 66 27.12 29.05 107.12 

10 34598 IH0069 Houston 5 220338 0.21 55.34 17.58 69.14 18.47 20.98 105.29 



 

120 

Table 55. Top 10 Segments with High Estimated PVTT Values on 70-mph Urban Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 36240 IH0345 Dallas 3 162578 0.474 49.44 17.6 63.17 20.03 24.33 122.01 

2 2443 IH0345 Dallas 2 32463 0.244 49.25 17.56 63 21.6 26.06 120.63 

3 2573 IH0345 Dallas 2 32463 0.696 49.25 17.56 63 21.6 26.06 120.63 

4 6771 IH0010 Beaumont 2 42970 0.044 64.67 12.41 73 43.05 49.02 113.86 

5 24925 IH0035W Fort Worth 2 64697 0.064 55.09 15.71 65 117.2 128.31 109.48 

6 36318 IH0610 Houston 5 145124 0.32 53.52 18.66 67 5.83 6.36 109.12 

7 26340 IH0035W Dallas 2 50190 0.098 60.06 14.22 68.94 87.4 95.3 109.04 

8 35915 IH0635 Dallas 4 176541 0.168 56.8 16.26 69.5 59.12 58.62 108.84 

9 38217 IH0635 Dallas 4 176541 0.688 56.65 16.23 69.38 33.54 35.53 108.66 

10 26629 IH0035W Fort Worth 2 142075 0.56 53.73 17.95 66.76 85.03 91.16 107.2 

Table 56. Top 10 Segments with High Estimated PVTT Values on 65-mph Urban Freeways 

Based on 2021 Data. 

# 
unique 

_id 
hwy district lanes AADT 

ln 

_miles 

Spd 

Ave 

Spd 

Std 

Spd 

85 

TT 

Ave 

TT 

Std 
PVTT 

1 24374 IH0035 Laredo 3 43529 0.033 42.11 17.4 59 46.75 58.43 124.98 

2 2530 IH0010 El Paso 2 6945 0.388 34.79 20.27 52.67 99.65 112.53 118.88 

3 35671 IH0110 El Paso 3 32405 0.228 39.23 14.95 52.52 22.94 23.78 108.74 

4 25163 IH0035E Dallas 3 147152 0.06 56.11 13.62 65.19 325.07 349.9 107.64 

5 38338 IH0110 El Paso 2 32405 0.048 48.27 13.83 59.74 46.73 49.82 103.52 

6 37938 IH0110 El Paso 2 43125 0.266 48.27 13.83 59.74 46.73 49.82 103.52 

7 37703 IH0110 El Paso 2 43125 0.134 48.27 13.83 59.74 46.73 49.82 103.52 

8 37295 IH0345 Dallas 5 162578 0.685 47.2 15.68 59.39 12.56 12.87 95.41 

9 1076 IH0010 Houston 1 15500 0.13 47.71 16.95 59.5 77.38 72.29 93.42 

10 24990 IH0035E Dallas 4 161151 0.788 57.3 12.16 65.55 181.76 191.06 91.25 

8.4 CHAPTER SUMMARY 

The developed congestion-related decision support tool incorporates AI-based estimation of 

congestion measures for different segments. Users can access the tool’s drop-down panels to 

select specific segments and choose the congestion measure of interest. Based on this wider 

range of spatial and temporal selections, the tool displays the estimated congestion measures for 

the chosen segments. To enhance the user experience and facilitate easy interpretation, the 

congestion measures are visually represented on a color-coded map. This map utilizes a color 

gradient ranging from yellow (indicating a low congestion number) to red (indicating a high 

congestion number). By observing the map, users can quickly assess the level of congestion in 

different areas and identify segments with varying degrees of traffic congestion. Additionally, 

the tool can assist transportation authorities and planners in identifying congestion hotspots and 

prioritizing infrastructure improvements or targeted traffic management interventions. By 

analyzing the congestion measures for various segments, authorities can allocate resources 
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effectively and implement measures aimed at mitigating congestion and improving overall traffic 

flow. 

In addition to the features of the congestion-related decision support tool, the TTI team also 

conducted an analysis of the top congested segments based on estimated congestion measures 

over multiple years. This analysis provided valuable insights and general guidelines regarding 

segments of interest. The research findings highlight a significant concentration of congestion in 

urban areas, particularly in major cities such as Houston and Dallas. This observation aligns with 

expectations since urban locations with high population densities and extensive transportation 

networks often experience elevated levels of traffic congestion. The presence of numerous 

economic activities, commuting patterns, and population centers in these urban areas contributes 

to the heightened congestion levels. However, it is essential to acknowledge that congestion 

measures exhibit both spatial and temporal variations. Although urban areas generally experience 

higher congestion levels, the specific segments affected by congestion can differ. Factors such as 

road network design, traffic demand, and ongoing construction or maintenance projects can 

influence the localized patterns of congestion within urban areas. Furthermore, the analysis has 

revealed that congestion measures are influenced by PSLs. Different segments with varying 

speed limits may exhibit distinct congestion patterns. For instance, segments with higher PSLs 

may have different congestion dynamics than those segments with lower speed limits. This 

element highlights the importance of considering PSLs as a contributing factor when evaluating 

congestion levels and developing targeted strategies to mitigate congestion. Some general 

observations on rural and urban freeways are listed below: 

• Rural Freeways: 

o The prevalence of dominant districts for rural freeways with different PSLs prompts 

an inquiry into the factors influencing these patterns. Various factors, including 

geographic location, population density, economic activities, and transportation 

infrastructure development, likely contribute to the determination of speed limits in 

these districts. It is crucial to conduct a critical examination of the decision-making 

processes and considerations that led to the establishment of specific speed limits in 

each district. 

o A significant observation to highlight is that most rural freeways, regardless of the 

PSL, are typically designed with two lanes. This characteristic suggests that these 

roadways have a relatively limited capacity to accommodate high volumes of traffic. 

Consequently, this limited capacity can lead to potential challenges in traffic flow and 

increased congestion levels, especially during periods of peak travel or when 

confronted with high traffic demand. 

• Urban Freeways: 

o The capacity of an urban roadway to handle traffic volume is heavily influenced by 

the number of lanes it possesses. A greater number of lanes generally indicates a 

higher potential for accommodating vehicles and promoting smoother traffic flow. 

Nevertheless, it is important to note that having more lanes does not guarantee 

complete immunity from congestion.  

o Various factors such as merging points, interchanges, and bottlenecks can still 

contribute to travel time variability despite the presence of multiple lanes. 

The concentration of segments with high PVTT measures in major metropolitan areas like 

Houston, Dallas, and El Paso prompts a thoughtful examination of the effectiveness of current 
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traffic management strategies and infrastructure development in these regions. It is crucial to 

critically analyze the underlying causes contributing to the observed variations in travel times. 
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CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS  

9.1 INTRODUCTION 

To improve the quality and effectiveness of the Texas surface transportation system, it is 

important to be able to predict where and when prolonged congestion will start and how it will 

spread, as well as to track atypical events and estimate their evolution. AI approaches provide a 

unique opportunity to estimate precise congestion measures by utilizing data from agency-owned 

sensors, third-party providers, and big enterprise data. The TxDOT 0-7131 project envisions 

mitigating the current research gap by conducting two major project phases. The first phase can 

confirm the validity of commercial data sources for planning and operations, while the second 

involves understanding which AI models/algorithms are most suitable for addressing TxDOT 

needs based on desirable use cases and data availability. Furthermore, it is important to analyze 

the required data models and workflows to determine whether it is sustainable to train, test, and 

validate the proposed AI techniques. 

9.2 FINDINGS AND CONCLUSIONS 

To understand state DOT practices in freeway congestion reduction using big data, the TTI team 

developed a survey covering topics such as data collection, analysis, big data platforms, report 

creation, and future needs. The primary insights are as follows: 

• The most used big data sources for freeway congestion reduction are INRIX and Waze, 

with some agencies exploring data from Streetlight, Wejo, and others. 

• Participating agencies universally apply big data to measure travel time, gather real-time 

information, manage incidents, calculate incident clearance times, evaluate congestion 

measures, and broadcast emergency alerts. 

• The agencies typically engage in continuous collection of traffic volume data, incident 

information, and traffic crash data. They largely employ cloud platforms like Amazon 

AWS, Microsoft Azure, and Google Cloud and rely on analytical platforms such as 

Power BI and Tableau. 

In addition, the TTI team conducted an extensive review of state DOT records from 2010–2022. 

The focus was to identify emergent trends in the realm of congestion performance measures, 

applications of AI and big data in traffic demand modeling, and the utilization of predictive 

analytics in monitoring congestion in real time. This review yielded several insightful findings: 

• Delay emerged as the most used congestion measure, with the primary data sources being 

volume and speed metrics. 

• State DOT planning activities primarily employed innovative methodologies like K-

Means cluster analyses, regression analysis, and RF.  

• Leading adopters of these novel applications were found in California, Florida, 

Minnesota, and China. 

The TTI team also developed AI models for forecasting appropriate congestion measures in 

Texas. The model considered four measures of congestion: SpdAve, SpdStd, Spd85, and PVTT. 

ML models such as RF, GB, KNN, SVR, ANN, and CB were deployed. Both scenarios of 
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including and excluding crash data as independent variables were explored. The analysis relied 

on a dataset comprising 28,684 rows of freeway segments. Separate models were constructed for 

rural and urban land use types. The study also integrated explainable AI, specifically SHAP, to 

interpret the modeling outcomes. The primary findings from the forecasting model are as 

follows: 

• In the SpdAve model, CB exhibited superior performance, recording the lowest MAE, 

MSE, and RMSE. 

• CB also outperformed other models in the SpdStd and the Spd85 models. 

• Notably, the prediction accuracy seemed to improve when models were built based on 

different PSL levels, indicating the potential value of PSL levels as clustering or filtering 

options for speed-related congestion measures. 

• Model performance was more efficient for rural freeways than for urban ones, which can 

be possibly attributed to data characteristics varying between the two types of land use. 

• A linear trend was identified between observed and predicted congestion performance 

measures for different subsets based on PSLs. The linearity across most models suggests 

that AI models are well suited for predicting these values. 

• The key factors influencing rural freeways, according to SHAP results, were traffic 

volume, jobs within a 45-minute auto travel time, k-factor, and median width. 

• PDPs for rural freeways showed minimal impact from variables such as VMT traveled, 

segment length, and crashes (all) on the congestion measures. Conversely, traffic volume, 

jobs within a 45-minute auto travel time, k-factor, and median width appeared to 

correlate with congestion measures. 

• The main influencing factors for urban freeways, based on the SHAP results, were traffic 

volume, median width, jobs within a 45-minute auto travel time, k-factor, and the number 

of lanes. 

• For urban freeways, PDPs showed that variables like VMT and segment length had 

minimal impact on the congestion measures, while a higher number of crashes 

corresponded with a lower SpdAve. Traffic volume, jobs within a 45-minute auto travel 

time, median width, and lane numbers were associated with urban roadway SpdAve 

measures. 

The TTI team also developed a prototype decision support tool based on a GIS. This tool 

estimates and visually represents the status of freeway congestion. The tool is designed to 

illustrate the congestion profiles of various roadway segments, thereby assisting transportation 

authorities and planners in identifying congestion hotspots. This identification process aids in 

prioritizing infrastructure improvements or specific traffic management interventions. By 

analyzing congestion measures for various segments, authorities can effectively allocate 

resources and implement measures aimed at reducing congestion and improving overall traffic 

flow. The key findings are as follows: 

• Urban areas, particularly major cities such as Houston and Dallas, experience significant 

congestion due to factors like high population densities, extensive transportation 

networks, and a multitude of economic activities. 
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• Congestion in urban areas is subject to spatial and temporal variations. Different 

segments experience congestion differently due to factors like road network design, 

traffic demand, and ongoing construction or maintenance projects. 

• Congestion measures are influenced by PSLs. Various segments display unique 

congestion patterns based on their respective speed limits. 

• Segments with higher PSLs may have different congestion dynamics than segments with 

lower speed limits, which underscores the importance of considering speed limits when 

assessing congestion levels and formulating mitigation strategies. 

• On rural freeways, the prevalence of districts with varying PSLs invites investigation into 

influencing factors. These factors might include geographic location, population density, 

economic activities, and transportation infrastructure development. 

• Most rural freeways, regardless of the PSL, are designed with only two lanes. This design 

suggests a limited capacity to handle high traffic volumes, which may lead to potential 

congestion, especially during peak travel times or periods of high traffic demand. 

• The capacity of urban roadways to accommodate traffic volumes is significantly 

influenced by the number of lanes. A larger number of lanes typically indicate a higher 

capacity for accommodating vehicles and facilitating smoother traffic flow. 

• Despite having more lanes, urban roadways are not entirely immune to congestion. 

Factors like merging points, interchanges, and bottlenecks can still contribute to 

variability in travel time and congestion. 

9.3 RECOMMENDATIONS 

The following recommendations were developed from this study:  

• Consider INRIX and Waze as primary data sources for freeway congestion reduction. 

Evaluate potential benefits of integrating data from Streetlight and Wejo. 

• Utilize big data to measure travel time, gather real-time information, manage incidents, 

determine incident clearance times, assess congestion measures, and deliver emergency 

alerts. 

• Implement a continuous data collection approach that focuses on traffic volume data, 

incident information, and traffic crash data. 

• Leverage cloud platforms like Amazon AWS, Microsoft Azure, and Google Cloud to 

handle and process the large amounts of collected data. 

• Adapt and adopt leading congestion management methodologies from states like 

California, Florida, and Minnesota, where techniques like K-Means cluster analyses, 

regression analysis, and RF are employed. 

• Apply ML models like CB to predict congestion measures and consider different models 

for rural and urban areas based on the performance differences noted in the study. 

• Pay attention to key influencing factors, such as traffic volume, jobs within a 45-minute 

auto travel time, k-factor, median width, and the number of lanes, when forecasting 

congestion on urban and rural freeways. 

• Evaluate the potential of integrating explainable AI methodologies, such as SHAP, to 

interpret the outcomes of the ML models. This process may help researchers understand 

the influence of various factors on freeway congestion. 
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• Focus on prioritizing infrastructure improvements and targeted traffic management 

interventions in urban areas that experience significant congestion, particularly major 

cities like Houston and Dallas. 

• Implement dynamic traffic management strategies such as variable speed limits and ramp 

metering that adapt to spatial and temporal variations in congestion. 

• Review and adjust speed limits in various segments, considering that higher and lower 

speed limits can influence congestion dynamics differently. 

• Consider the addition of lanes or creation of bypasses on rural freeways that are designed 

with only two lanes to better accommodate high traffic volumes and reduce congestion 

during peak travel times. 

• Identify and improve problematic areas such as merging points, interchanges, and 

bottlenecks in urban roadways, which can contribute to variability in travel time and 

congestion despite the presence of multiple lanes. 

9.4 CHAPTER SUMMARY 

This chapter summarizes the results of this project (TxDOT 0-7131), which was focused on 

improving Texas surface transportation by predicting and mitigating congestion using AI and big 

data. The project aimed to address the research gap through two phases—validating data sources 

and identifying suitable AI models. Findings showed that INRIX and Waze are commonly used 

for congestion reduction, and cloud platforms like Amazon AWS and Microsoft Azure were 

favored for data processing. The study developed AI models to forecast congestion measures; 

notably, the CB model performed well. The team also created a decision support tool based on 

GIS to identify congestion hotspots. Recommendations include using INRIX and Waze, adopting 

leading methodologies, and implementing dynamic traffic management strategies in urban areas. 
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APPENDIX A: SURVEY QUESTIONNAIRE 

Texas A&M Transportation Institute (TTI) is leading research on the application of AI in 

freeway congestion reduction for the Texas Department of Transportation (TxDOT). This survey 

is in support of TxDOT Project 0-7131, Leveraging Artificial Intelligence (AI) Techniques to 

Detect, Forecast, and Manage Freeway Congestion. 

This survey will take approximately 10-15 minutes to complete, and it will allow you to save 

your work and return to finish at a later time. 

This survey is to be completed by DOT Agency staff with knowledge of freeway congestion and 

traffic monitoring, including: 

• Current agency practices of freeway congestion management 

• Datasets used for congestion reduction 

• Big data platforms or servers 

• Dashboard of freeway congestion or similar tools 

This survey should be completed by persons in each Agency. Responses from multiple persons 

in one Agency will be combined. The answers you provide will be synthesized with the 

information collected from other transportation professionals. Your answers will remain 

confidential to the extent allowed or required by law. We greatly appreciate your participation in 

this study. If you have questions, or concerns regarding this study, you may contact the principal 

investigator, Ioannis Tsapakis, at i-tsapakis@tti.tamu.edu. The survey is only open to 

individuals 18 years and older. Your answers may need to be clarified, or further information 

may be collected by TTI.  

1. Do you agree to participate in this survey? 

a. Yes  

b. No → THANK AND TERMINATE 

Agency Information 

1. Participant information 

a. Name: 

c. Professional Title: 

d. Agency Name: 

g. City: 

h. State/Province: 

i. Postal Code: 

j. Country: 

k. Phone Number: 

l. Email Address: 

2. What is the principal task(s) your office focuses on? Please check all that apply. 

a. Congestion measures 

b. Travel time 

https://tti.tamu.edu/
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c. Incident management 

d. Incident clearance time 

e. Real-time information  

f. Emergency alert and crisis information 

g. Other (specify): 

Data Collection 

3. Do you use private vendor data from the following data vendors? Please check all that apply. 

a. INRIX 

b. AirSage 

c. Wejo 

d. Waze 

e. Streetlight 

f. Strava 

g. Twitter 

h. Other (specify): 

i. None 

4. Indicate the type of information your agency acquires via the following major private data 

vendors. Please check all that apply. 

Type of Information INRIX AirSage Wejo Streetlight Strava Others 

Congestion measures       

Travel time       

Incident management       

Incident clearance time       

Real-time information        

Emergency alert and crisis 

information 

      

Other (specify below)       

List any other relevant information you want to add. 

Enter text in box. 
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5. Indicate what type data your agency collects. Please check all that apply. 

Type of Information Continuous 
Once in a 

week 

Once in a 

month 

Once in a 

year 
Others 

Traffic volume data      

Traffic volume data by vehicle 

type 
     

Travel time      

Speed      

Travel time by vehicle type      

Other (specify below)      

 

List any other relevant information you want to add. 

Enter text in box. 

 

Datasets and Methods 

6. Do you use following data for congestion reduction methods?  

a. Short duration traffic volume data 

b. Traffic volume data by vehicle type 

c. Travel time by vehicle type 

d. Speed by vehicle type 

e. Weather data 

f. Incident information 

g. Traffic crash data 

h. Social media feed 

i. Other (specify): 

 

7. Please add any datasets and variables, which would be effective in congestion reduction 

related matrix development. 

Enter text in box. 
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8. Please provide us information on the application of AI in freeway congestion reduction by 

your agency. If not applicable, please type NA.  

Enter text in box. 

 

9. Please provide us information on applied AI algorithms or relevant report or code in freeway 

congestion reduction by your agency. If not applicable, please type NA. 

Enter text in box. 

 

Big Data Platforms 

10. Do you use any Big Data platforms for your congestion management projects?  

a. AWS 

b. Google Cloud  

c. Microsoft Azure 

d. Other (specify): 

 

11. Do you use any Enterprise Software Platforms for your congestion management projects?  

a. C3.ai 

b. Qubole 

c. Alteryx 

d. SparkCognition 

e. ASAPP 

f. Other (specify): 

 

12. Do you use any Cloud Powered Analytics for your congestion management projects?  

a. Snowflake 

b. Cloudera 

c. Databricks 

d. Other (specify): 

 

13. Does your agency maintain a dashboard to show the congestion-related analytics?  

a. Yes 

b. No. 
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14. [IF Q12=YES] If yes, please provide the link(s). List any other relevant information you 

want to add. 

Enter text in box. 

 

Reports and Guidance Document 

15. Please upload or provide link of any report or guidance document your agency developed on 

freeway congestion reduction. 

Upload link and text box 

 

16. Please upload or provide link of any relevant and noteworthy report or guidance document. 

Upload link and text box 

 

Lessons Learned and Future Needs 

17. What are the congestion reduction goals for your agency over the next 1–3 years? 

Enter text in box. 

 

18. Please describe any lessons learned by your agency that could be useful to other agencies. 

Enter text in box. 

 

19. Please describe any suggestions on improving congestion reduction on freeways in the 

future. 

Enter text in box. 
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20. Please describe any challenges your agency is facing to incorporate big data platforms in 

freeway congestion reduction. 

Enter text in box. 

 

21. Do you know of any peer transportation agencies that may be interested in this survey? 

a. Yes 

b. No → THANK AND TERMINATE 

 

22. Please provide contact information for the peer transportation agency that may be interested 

in this survey. 

a. Agency name:  

b. Contact person name:  

c. Contact email:  

 

23. [FOR SURVEY COMPLETES] Thank you for completing our survey! Your input is greatly 

appreciated. If we need more information or clarification, we may need to contact you in the 

future. Please feel free to contact the principal investigator at s-das@tti.tamu.edu with any 

questions in the meantime.  

 

mailto:s-das@tti.tamu.edu
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APPENDIX B: STATE DOT PERFORMANCE METRICS AND 

FORMULAS 

Congestion performance measures and formulas were listed within reports, guides, and manuals 

of eight states identified during the novel applications search provided in Table 57. This 

appendix provides more information on formulas associated with congestion metrics to ascertain 

potential avenues forward in predictive analytics and AI strategies for traffic congestion 

forecasting. 

Table 57. Congestion Performance Measures and Associated Formulas. 

Performance 

Metric 
Equation DOT 

Delay per 

Mile 

𝐷𝑒𝑙𝑎𝑦 𝑝𝑒𝑟 𝑀𝑖𝑙𝑒

(𝑎𝑛𝑛𝑢𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒)

=

(𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

− 𝐹𝑟𝑒𝑒−𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

) × 𝑉𝑒ℎ𝑖𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒
(𝑣𝑒ℎ𝑖𝑙𝑒𝑠)

× 
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦

(
𝑝𝑒𝑟𝑠𝑜𝑛𝑠
𝑣𝑒ℎ𝑖𝑐𝑙𝑒

)
×

ℎ𝑜𝑢𝑟
60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝑅𝑜𝑎𝑑 𝑀𝑖𝑙𝑒𝑠
 

TxDOT  

(Texas 

A&M 

Transportati

on Institute, 

2020) 

Total Delay 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐷𝑒𝑙𝑎𝑦

(𝑝𝑒𝑟𝑠𝑜𝑛 − 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)

= [
𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
−

𝐹𝑟𝑒𝑒 − 𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒3

(𝑚𝑖𝑛𝑢𝑡𝑒𝑠)
]

×
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠)
×

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦

(𝑝𝑒𝑟𝑠𝑜𝑛𝑠/𝑣𝑒ℎ𝑖𝑐𝑙𝑒)
 

TxDOT  

(Texas 

A&M 

Transportati

on Institute, 

2020) 

Congestion 

Cost 

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =  
𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐶𝑜𝑠𝑡
+ 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑟𝑢𝑐𝑘

𝐶𝑜𝑠𝑡
 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐶𝑜𝑠𝑡

= 

[
 
 
 
 
𝐴𝑛𝑛𝑢𝑎𝑙 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 

𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝐷𝑒𝑙𝑎𝑦
×

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦

(
𝑝𝑒𝑟𝑠𝑜𝑛𝑠
𝑣𝑒ℎ𝑖𝑐𝑙𝑒

)

×
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑃𝑒𝑟𝑠𝑜𝑛 𝑇𝑖𝑚𝑒

(
$𝑋

ℎ𝑜𝑢𝑟) ]
 
 
 
 

         + [

𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑎𝑙𝑙𝑜𝑛𝑠 𝑜𝑓 𝐸𝑥𝑐𝑒𝑠𝑠 𝐹𝑢𝑒𝑙 
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠

×

𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝐺𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒
($𝑌/𝑔𝑎𝑙𝑙𝑜𝑛)

]

 

𝐴𝑛𝑛𝑢𝑎𝑙 

𝑇𝑟𝑢𝑐𝑘 𝐶𝑜𝑠𝑡
=  [

𝐴𝑛𝑛𝑢𝑎𝑙 𝑇𝑟𝑢𝑐𝑘 

𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝐷𝑒𝑙𝑎𝑦
×

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑇𝑖𝑚𝑒

𝑓𝑜𝑟 𝑇𝑟𝑢𝑐𝑘𝑠

($𝑍/ℎ𝑜𝑢𝑟)
]

+ [

𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑎𝑙𝑙𝑜𝑛𝑠
𝑜𝑓 𝐸𝑥𝑐𝑒𝑠𝑠 𝐹𝑢𝑒𝑙

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑇𝑟𝑢𝑐𝑘𝑠
×

𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝐺𝑎𝑙𝑙𝑜𝑛
𝑜𝑓 𝐷𝑖𝑒𝑠𝑒𝑙

($𝑌/𝑔𝑎𝑙𝑙𝑜𝑛) 
]  

TxDOT  

(Texas 

A&M 

Transportati

on Institute, 

2020) 

Throughput 

Productivity 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

= {

1, 𝑠𝑝𝑒𝑒𝑑 ≥ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑠𝑝𝑒𝑒𝑑

1 −
𝑉

𝑉0

, 𝑠𝑝𝑒𝑒𝑑 <  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑠𝑝𝑒𝑒𝑑
 

Where, 𝑉0: 𝑜𝑝𝑡𝑖𝑚𝑢𝑙 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 

𝑉: 5 − 𝑚𝑖𝑛𝑢𝑡𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 

WSDOT 

(Wang et 

al., 2013) 
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Commute 

Congestion 

Cost 

𝐶𝑜𝑚𝑚𝑢𝑡𝑒 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

=  ∑(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 5 𝑚𝑖𝑛

− 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑠𝑝𝑒𝑒𝑑)  × 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 5 𝑚𝑖𝑛

× 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒  

WSDOT 

(Wang et 

al., 2013) 

Hours of 

Travel Delay 

𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑒𝑙𝑎𝑦

= (
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑖𝑙𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑

𝑇𝑟𝑎𝑣𝑒𝑙 𝑠𝑝𝑒𝑒𝑑
) − (

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑖𝑙𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑠𝑝𝑒𝑒𝑑
) 

WSDOT uses maximum throughput speed (85% of PSL) as the threshold in order 

to measure delay relative to a highway’s most efficient operating condition. 

WSDOT 

(Wang et 

al., 2013) 

Annual Hours 

of Vehicle 

Delay 

𝐴𝐻𝐷 =  ∑(𝑀𝑖 / 𝑆𝑖) − (𝑀𝑖  / 𝑆𝑇)

𝑛

𝑖=1

 

Where 𝑖 means the 𝑖th weekday in a year, 𝑛 is the total number of weekdays in a 

year, and correspondingly, 𝑀𝑖  and 𝑆𝑖 are the VMT and travel speed on the 𝑖th 

weekday of the year. 

WSDOT 

(Wang et 

al., 2013) 

Annual Cost 

of Vehicle 

Delay 

𝐶 = (𝐶𝐻 × 𝐶𝑃𝐼𝑐ℎ𝑎𝑛𝑔𝑒) × 𝐻 

Where 𝐶 is the annual cost of vehicle delay, its unit is dollars, 𝐶𝑃𝐼 means 

consumer price index and 𝐶𝑃𝐼𝑐ℎ𝑎𝑛𝑔𝑒 represents the difference in 𝐶𝑃𝐼 between 2 

years, and 𝐻 is the hours of travel delay. 

WSDOT 

(Wang et 

al., 2013) 

BI 
𝐵𝑢𝑓𝑓𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 = [

95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
]

× 100% 

INDOT 

(Martchouk 

et al., 

2010b) 

PTI 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 =  
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝐹𝑟𝑒𝑒 − 𝐹𝑙𝑜𝑤 𝑆𝑝𝑒𝑒𝑑
 

INDOT 

(Martchouk 

et al., 

2010b) 

Misery Index 

𝑀𝑖𝑠𝑒𝑟𝑦 𝐼𝑛𝑑𝑒𝑥

=

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 
𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 20% 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
 

INDOT 

(Martchouk 

et al., 

2010b) 

Chi-Squared 

Statistic 

𝜒2 =
(𝑛 − 1)𝑠2

𝜎0
2  

Where 𝜒2 is the chi-squared statistic. When the ratio of sample variance and 

population variance is near 1, then 𝜒2 statistics will be close to degrees of freedom 

(𝑛 − 1), and the null hypothesis holds. 

1. 𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: 𝐻0: 𝑠0
2 = 𝜎0

2 

2. 𝐴𝑙𝑡𝑒𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: 𝐻𝑎: 𝑠0
2  ≠  𝜎0

2 

Where s2 is the sample variance and σ2 is the population variance 

(to test the magnitude of travel time variance between different runs). 

INDOT 

(Martchouk 

et al., 

2010b) 

Skew-Width 

Measures 

Skew-width measures: 𝜆𝑆𝑘𝑒𝑤  is defined as the ratio of the difference between the 

90th and the 50th percentile travel times to the difference between the 50th and the 

10th percentile travel times. 𝜆𝑉𝑎𝑟  is defined as the ratio of the difference between 

the 90th and the 10th percentile travel times to the 50th percentile travel time. Larger 

magnitudes of 𝜆𝑆𝑘𝑒𝑤  implies higher probability travel times of road to be extreme 

(either high or low). Larger magnitudes of 𝜆𝑉𝑎𝑟  implies a wider distribution of 

travel times with respect to its median (the 50th percentile travel time).  

Caltrans  

(Duvvuri 

and 

Pulugurtha, 

2021b) 
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𝜆𝑆𝑘𝑒𝑤 = 
(90𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 − 50𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

50𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 − 10𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
 

𝜆𝑉𝑎𝑟 = 
(90𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 − 10𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

50𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
 

Delay 

𝐷𝑒𝑙𝑎𝑦 = 𝑉𝐻𝑇 − (𝐶𝑜𝑢𝑛𝑡, 𝑣𝑒ℎ) ∗
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠,𝑚𝑖

𝐹𝑟𝑒𝑒 𝐹𝑙𝑜𝑤 𝑆𝑝𝑒𝑒𝑑,𝑚𝑝ℎ
 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐻𝑜𝑢𝑟𝑠 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 (𝑉𝐻𝑇)

= (𝐶𝑜𝑢𝑛𝑡, 𝑣𝑒ℎ)

∗ (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠,𝑚𝑖)/(𝑆𝑝𝑒𝑒𝑑,𝑚𝑝ℎ) 

ODOT 

(Bertini et 

al., 2008) 

 

BTI 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑢𝑓𝑓𝑒𝑟 𝐻𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑇𝑟𝑖𝑝

= 𝐵𝑢𝑓𝑓𝑒𝑟 𝑇𝑖𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 (𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑) ∗ (𝑉𝑒ℎ𝑖𝑐

− 𝐻𝑜𝑢𝑟𝑠 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑/ 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑇𝑟𝑖𝑝𝑠). 

TxDOT  

(Lomax et 

al., 2013b) 

Median 

Travel Time 

𝜏𝑚𝑒𝑑𝑖𝑎𝑛(𝑡) = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝜏𝑖(𝑡))∀𝑖 

Where 𝜏𝑖(𝑡) is the travel time function observed on the 𝑖th day, representing the 

experienced travel time on the corridor as a function of time of day (𝑡). Similarly, 

𝜏𝑚𝑒𝑑𝑖𝑎𝑛(𝑡) represents the median travel time function obtained by calculating the 

median of travel times observed on all days for that particular time of day.  

TxDOT 

(Pandey 

and Juri, 

2018b) 

Deviation of 

Travel Time 

of an ith Day 

from a 

Typical Day 

The deviation of travel time function of an 𝑖th day from a typical day was 

measured by calculating mean absolute error (𝑀𝐴𝐸𝑖) and root mean square 

(𝑅𝑀𝑆𝑖) error. . 

𝑀𝐴𝐸𝑖 =
∑ |𝜏𝑚𝑒𝑑𝑖𝑎𝑛(𝑡)−𝜏𝑖(𝑡)|𝑡

𝑛
         

𝑅𝑀𝑆𝑖 = √
∑ (𝜏𝑚𝑒𝑑𝑖𝑎𝑛(𝑡)−𝜏𝑖(𝑡))

2
𝑡

𝑛
      

Where n is the number of days being analyzed. For this day-to-day variation 

analysis, all weekdays from Jan 1, 2015, to Aug 31, 2016, were considered, and 

thus the value of 𝑛 is 436. The data were cleaned only using the first level of 

cleaning to retain the outliers occurring during particular days. 

TxDOT 

(Pandey 

and Juri, 

2018b) 

SV 

SV, 𝜎𝑟
2 , is a one-sided variance metric that uses a reference value 𝑟 instead of the 

mean as the basis for the calculation, and only observations 𝑥𝑖 that are greater or 

less than that reference value are used: 

𝜎𝑟
2 =

1

𝑛
∑(𝑥𝑖 − 𝑟)2 𝑎𝑛𝑑 𝜎𝑟 = √𝜎𝑟

2  ∃𝑥𝑖  ≥ 𝑟 

𝑛

𝑖=1

 

To differentiate travel time observations based on reliability from system loading, 

such as congestion, use the SV because the SV is sensitive to how travel times are 

distributed above the minimum value.  

USDOT  

(National 

Academies 

of Sciences, 

Engineering

, and 

Medicine, 

2014) 

Capacity for 

Vehicles per 

Hour * 

𝐵𝑎𝑠𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 2,200 + 10 × (𝐹𝐹𝑆 − 50) 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐵𝑎𝑠𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝐿𝑎𝑛𝑒𝑠 × 𝑓ℎ𝑣 × 𝑃𝐻𝐹 × 𝑓𝑝 × 𝑓𝑔 

Where, 𝐹𝐹𝑆 = Free-flow speed;  

𝑓ℎ𝑣 = the heavy vehicle adjustment factor depending on facility type, vehicle mix, 

and grade; 

𝑃𝐻𝐹 = the peak hour factor, calculated by the ratio of the peak 15-minute flow 

rate to the average hourly flow rate; and  

𝑓𝑝 and 𝑓𝑔 = adjustment factors for driver population and grades provided by 

VDOT’s Traffic Engineering Division. 

VDOT  

(X. Zhang et 

al., 2021b) 

LOTTR* 
𝑇𝑇𝑅𝑀 = 100 × 

∑ 𝑆𝐿𝑖 × 𝐴𝑉𝑖 × 𝑂𝐹𝑗
𝑅
𝑖=1

∑ 𝑆𝐿𝑖 × 𝐴𝑉𝑖 × 𝑂𝐹𝑗
𝑇
𝑖=1

 

Where, 𝑇𝑇𝑅𝑀 = travel time reliability measure;  

VDOT 

(X. Zhang et 

al., 2021b) 
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𝑆𝐿𝑖 = the segment length of interstate (or non-interstate) National Highway 

System (NHS) reporting segment 𝑖; 

𝐴𝑉𝑖 = annual traffic volume of reporting segment 𝑖, calculated as AADT × 

Directional factor × 365 (366 for leap year), where the directional factor is the 

factor splitting AADT by direction with the default value of 0.5; 

𝑂𝐹𝑗 = occupancy factor for vehicles on the NHS within a specified geographic 

area 𝑗 within the state/metropolitan planning area;  

𝑅 = total number of interstate (or non-intertstate) reporting segments with an 

LOTTR value below 1.50 for all four time periods; and 

𝑇 = total number of interstate (or non-interstate) NHS reporting segments. 

Travel Time 

Index  
𝑇𝑇𝐼 =  

𝑀𝑒𝑎𝑛 𝑝𝑒𝑎𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝐹𝑟𝑒𝑒 − 𝑓𝑙𝑜𝑤 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 
 

VDOT 

(X. Zhang et 

al., 2021b) 

VHD  

𝑉𝑒ℎ𝑖𝑐𝑙𝑒 − 𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦

= (𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒)

∗ 𝑉𝑜𝑙𝑢𝑚𝑒 

The four different threshold-based delay measures recommended by the NCHRP 

08-98 are 

• 𝐷𝑒𝑙𝑎𝑦𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤. 

• 𝐷𝑒𝑙𝑎𝑦𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡. 

• 𝐷𝑒𝑙𝑎𝑦𝑀𝑎𝑥𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦. 

• 𝐷𝑒𝑙𝑎𝑦𝑇𝑎𝑟𝑔𝑒𝑡.. 

WSDOT  

(Hallenbeck 

et al., 2015) 

Annual Hours 

of Person 

Delay 

𝐴𝑛𝑛𝑢𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛 𝑑𝑒𝑙𝑎𝑦

=  (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑙𝑎𝑦

× 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠) × 𝑊𝑜𝑟𝑘 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 

WSDOT 

(Hallenbeck 

et al., 2015) 

Delay per 

User 

𝐷𝑒𝑙𝑎𝑦 𝑝𝑒𝑟 𝑢𝑠𝑒𝑟 𝑌𝑒𝑎𝑟;𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟

=
𝐴𝑛𝑛𝑢𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛 𝑑𝑒𝑙𝑎𝑦

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑖𝑙𝑦 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠)
 

WSDOT 

(Hallenbeck 

et al., 2015) 

Percent Lane 

Miles Delayed 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑙𝑎𝑛𝑒 𝑚𝑖𝑙𝑒𝑠 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

=  (
𝐿𝑎𝑛𝑒 𝑚𝑖𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑒𝑑 < 85% 𝑜𝑓 𝑝𝑜𝑠𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑒 𝑚𝑖𝑙𝑒𝑠 𝑟𝑒𝑔𝑖𝑜𝑛

) 

WSDOT 

(Hallenbeck 

et al., 2015) 

Percent Lane 

Miles 

Congested 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑙𝑎𝑛𝑒 𝑚𝑖𝑙𝑒𝑠 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑

=  (
𝐿𝑎𝑛𝑒 𝑚𝑖𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑒𝑑 < 70% 𝑜𝑓 𝑝𝑜𝑠𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑒 𝑚𝑖𝑙𝑒𝑠 𝑟𝑒𝑔𝑖𝑜𝑛

) 

WSDOT 

(Hallenbeck 

et al., 2015) 

Vehicle Delay 

Per Capita 
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑙𝑎𝑦 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 =  (

𝐴𝑛𝑛𝑢𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑙𝑎𝑦 𝑟𝑒𝑔𝑖𝑜𝑛

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛

) 

WSDOT  

(Millar, 

2016) 

Work Zone 

Impact Ratio 
𝑊𝑍 𝑖𝑚𝑝𝑎𝑐𝑡 𝑟𝑎𝑡𝑖𝑜: 𝑊𝑍𝐼𝑅𝑇𝑇𝑅 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑇𝑇𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑊𝑍/𝑇𝑇𝑅𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

WisDOT  

(Srivastava 

et al., 

2018b) 

Prediction 

Interval 

(𝑢𝑡 − 𝑍𝛼/2𝜎𝑡 , 𝑢𝑡 + 𝑍𝛼/2𝜎𝑡) 

Where 𝑢𝑡 is the predicted mean, 𝑍𝛼/2 denotes the standard score corresponding to 

the cumulative probability level of 𝛼/2, and 𝜎𝑡 is the prediction variance from a 

volatility model.  

MDOT  

(Haghani 

and Zhang, 

2015) 
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Performance 

Metric 
Equation DOT 

HVR 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎: 𝐻𝑉𝑅 =  𝑉𝑖,𝑗/𝑉ℎ𝑖,𝑗

𝑑 ;  

Where, 𝑉ℎ𝑖,𝑗

𝑑 —historical volume at time instant i and day d at the microwave 

vehicle detection system (MVDS) station j.  

Description: This performance measure compares the observed and expected 

volume. It quantifies deviations of the current from the historical average volume 

at a particular MVDS station. The historical average is computed based on 1 year 

of past volume data.  

FDOT  

(Stevanovic 

and 

Mitrovic, 

2019b) 

HTTR 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎: 𝐻𝑇𝑇𝑅 =  𝑇𝑇𝑖,𝑗
𝑑 / 𝑇𝑇ℎ𝑖,𝑗

𝑑 ;  

Where, 𝑇𝑇ℎ𝑖,𝑗

𝑑 —historical travel time at time instant 𝑖 along segment 𝑗. 

Description: This performance measure compares the observed and expected 

travel time. It quantifies deviations of the current from the historical travel time 

along a particular segment.  

FDOT 

(Stevanovic 

and 

Mitrovic, 

2019b) 

Cumulative 

Volume 

Distribution 

Function 

Derivation Method: All volumes (𝑉𝑖,𝑗
𝑑 ) at time -𝑖, day -𝑑, at station- 𝑗 will be 

taken into account to construct the cumulative volume distribution function. 

𝐹(𝑣𝑖,𝑗
𝑑 ) shows the probability of having the volume that is less or equal to 𝑣𝑖,𝑗

𝑑  

where 𝑣𝑖,𝑗
𝑑  is the reported (or most recent) volume. 

𝐹(𝑣𝑖,𝑗
𝑑 ) = 𝑃(𝑣𝑖,𝑗

𝑑 ≤ 𝑣𝑖,𝑗
𝑑  |𝑡 = 𝑡𝑖  𝑎𝑛𝑑 𝑠 =  𝑠𝑗|) 

Expected Values: 0.5 +/−0.3 (in the described example it would be slightly less 

than 0.5). 

FDOT 

(Stevanovic 

and 

Mitrovic, 

2019b) 

Cumulative 

Travel Time 

Distribution 

function 

Derivation Method: All travel times (𝑇𝑇𝑖,𝑗
𝑑 ) ) at time -𝑖, day -𝑑, along segment- 𝑗 

will be used to construct the cumulative travel time distribution function. This 

distribution function will be used to compute 𝐹(𝑡𝑡𝑖,𝑗
𝑑 ).  

𝐹(𝑡𝑡𝑖,𝑗
𝑑 ) = P(𝑇𝑇𝑖,𝑗

𝑑  ≤ 𝑡𝑡𝑖,𝑗
𝑑  |𝑡 = 𝑡𝑖  𝑎𝑛𝑑 𝑠 =  𝑠𝑗| )  

Where 𝐹(𝑡𝑡𝑖,𝑗
𝑑 ) shows the probability of having travel time less than or equal to 

𝑡𝑡𝑖,𝑗
𝑑  ; 𝑡𝑡𝑖,𝑗

𝑑  is the observed (or current) travel time.  

FDOT 

(Stevanovic 

and 

Mitrovic, 

2019b) 

K-Cluster-

Based 

Volume-

Based Traffic 

Profile 

Derivation Method: Historical volumes at single MVDS stations are used to 

develop the representative profiles for each cluster. Then, for a current volume 

obtained in real time, the method is assigned to one of the four traffic profiles that 

the observed volume most likely belongs to. 

Output values: {Light Traffic, Moderate Traffic, High Traffic, Peak Traffic} 

Sources RT Hist Frequency Freeway Arterial 

MVDS 
Volume  

(𝑉𝑖𝑗) 

Volume 

𝑉ℎ𝑖,𝑗

𝑑  & 

Thresholds 

𝑉𝑖𝑗—1 min 

𝑉ℎ𝑖,𝑗

𝑑  -15 min 

P-V 

S, C-V/C 

P-V 

S, C-V/C 

 

FDOT 

(Stevanovic 

and 

Mitrovic, 

2019b) 

K-Cluster 

Travel Time-

Based Traffic 

Profile 

Derivation Method: Travel times along a segment is used to develop the 

representative profiles for each cluster. Then, current travel time is assigned to one 

of the four traffic profiles. 

Output values: {Light Traffic, Moderate Traffic, High Traffic, Peak Traffic} 

Sources RT Hist Frequency Freeway Arterial 

RITIS (estimated) 

TT (𝑇𝑇𝑖𝑗) 

𝑇𝑇ℎ𝑖,𝑗

𝑑  & 

Thresholds 

𝑇𝑇𝑖𝑗  – 1 min 

𝑇𝑇ℎ𝑖,𝑗

𝑑  -15 min 

S, C S, C 

 

FDOT 

(Stevanovic 

and 

Mitrovic, 

2019b) 
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Performance 

Metric 
Equation DOT 

ML-Based 

Predicted 

Performance 

Measures 

Description: This PM predicts the volume that might be expected at an MVDS 

station in the next 5–30 minutes (short-term prediction). 

Derivation Method: For given current and past volume data and corresponding 

temporal information (e.g., day and hour), the algorithm performs short-term 

predictions and returns the expected volume for the next 5 to 30 minutes. Various 

predictions methods ranging from moving averages to NNs and SVR will be 

evaluated, and the best performing method will be deployed. 

Inputs: 𝑉𝑖𝑗, 𝑉𝑖−5,𝑗, 𝑉𝑖−10,𝑗, 𝑡𝑖, 𝑑𝑖; 𝑉𝑖𝑗- Volume at time i and station j. t- time, d-day 

Output: 𝑉𝑖+5,𝑗, 𝑉𝑖+10,𝑗.. 𝑉𝑖+30,𝑗 

Sources RT Hist Frequency Freeway Arterial 

MVDS 𝑉𝑖𝑗 𝑉𝑖−5,𝑗, 

𝑉𝑖−10,𝑗.. 

1 min S, C S, C 

 

FDOT 

(Stevanovic 

and 

Mitrovic, 

2019b) 

Note: S = Segment, C = Corridor, P = Point (MVDS station). * Performance metric is for both urban and rural 

facility type. All other performance metrics are only for urban facility type. 
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APPENDIX C: DATA DICTIONARY 

Table 58. Data Dictionary. 

Variable 

Code 
Description 

unique_id Unique id representing individual segment 

hwy Name of the highway 

District District name 

County County name 

ru_f_syste Functional classification 

num_lanes Number of through lanes 

adt_adj Adjusted AADT 

k_fac Peak factor 

d_fac Directional distribution factor 

Trk_aadt_p Truck AADT pct 

dhv Truck design hourly volume pct 

ln_miles The length of the road segment in miles 

tt_1721 TTAve over 5-year period (2017–2021) 

P_WrkAge Percent of population that is working aged 18 to 64 years 

Pct_AO1 Percent of one-car households in CBG 

Workers Count of workers in census block group (CBG) (home location) 

TotEmp Total employment 

D1C Gross employment density (jobs/acre) on unprotected land 

D2A_JPHH Jobs per household 

D3A Total road network density 

D3AAO Network density in terms of facility miles of auto-oriented links per square miles 

D5AR Jobs within 45 minutes auto travel time, time decay 

D5CR Proportional accessibility to regional destinations—Auto: Employment accessibility 

expressed as a ratio of total core based statistical area (CBSA) accessibility 

D5CRI Regional centrality index—Auto: CBG [D5cr] score relative to max CBSA [D5cr] score 

D5CE Proportional accessibility to regional destinations—Auto: Working age population 

accessibility expressed as a ratio of total CBSA accessibility 

D5CEI Regional centrality index—Auto: CBG [D5ce] score relative to max CBSA [D5ce] score 

SpdAve Average speed  

SpdStd Standard deviation of speed 

Spd85 85th percentile speed determined 

PSL Post speed limit 

TTAve Average travel time 

TTStd Standard deviation of travel time 

PVTT Percent variation of travel time 
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APPENDIX D: VALUE OF RESEARCH 

The TTI team conducted a value of research (VOR) analysis of TxDOT Research Project 0-7131 

to produce an estimate of the benefit that the project will likely yield for TxDOT. The temporal 

scope for this analysis is an 11-year period (labeled as years 1–11), starting with the beginning of 

the 2-year project. The value of the project is described in terms of NPV and cost-benefit ratio 

(CBR), which are computed using economic discounting formulas. 

The primary objective of TxDOT Research Project 0-7131 is to reduce congestion of urban and 

rural freeways in Texas. The project developed an interactive tool of congestion forecasting by 

applying AI models. The TTI team focused the VOR analysis on the overall benefits of safety 

and mobility improvement based on the advanced forecasting models and decision-making from 

the tool outcomes. In addition, recommendations from big data and AI platform investigations 

will also be considered benefits. 

METHODOLOGY 

The TTI team used a VOR template provided by TxDOT to compute the NPV and CBR 

measures. The template requires the following items: 

• Project budget: $297,204. 

• Project duration: 2.00 years. 

• Expected value duration: 11 years (convention chosen by TxDOT). 

• Discount rate: 3 percent (default value assumed by TxDOT). 

• Expected value per year: $698,850.00. 

The project’s expected value per year is estimated based on savings obtained from reduced 

crashes. The analysis method is described in the following sections. 

Concept 

To conduct the VOR analysis, the following steps were taken: 

1. Determine the reduced crash frequency by severity by comparing the expected crash 

outcomes from the AI models. 

2. Provide approximation of congestion-related mobility benefits. 

3. Provide approximation of big data and AI platform investigation-related benefits.  

4. Apply the procedure to estimate the expected value of the research. 

Input Data 

The VOR analysis was conducted by randomly selecting 50 miles of urban freeways. The 

calculated benefit for 9 years is $5,293,596.00. 

Crash Cost 

The TTI team derived crash severity distribution proportions from the sample considered in 

TxDOT Research Project 0-7131. These proportions for the following crashes are as follows: 
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• Fatal (K): 1.11 percent. 

• Incapacitating injury (A): 1.11 percent. 

• Non-incapacitating injury (B): 2.22 percent. 

• Possible injury (C): 8.89 percent. 

• Property damage only (PDO): 86.67 percent. 

The TTI team used the following to calculate the benefit from this project: 

• First, the TTI team used crash costs from TxDOT’s Highway Safety Improvement 

Program guideline. The crash value is $3.7 million for K and A crashes. The B crash 

value is $520,000. Second, the National Safety Council values of $155,000 and $51,000 

for C and no injury (O) crashes, respectively, were used. The benefit from crash 

reduction is calculated as $4,938,000.00.  

• The benefit from mobility improvement is considered to be $750,000, and the benefit 

from AI and big data explorations is considered to be $200,000.00. 

Cost 

The TTI team used an annual maintenance cost of $0 for analysis based on the assumption that 

TxDOT would provide the same amount of periodic maintenance and monitoring for the 

reconfigured sites as for the sites in their existing condition. 

RESULTS 

The TTI team conducted the VOR analysis using the SRPW program and obtained an annual 

VOR estimate of $698,850. This value represents the benefit that can be obtained if the results of 

the research project are used to analyze 50 miles of urban freeways. 

Figure 39 summarizes the VOR calculations. The payback period for Research Project 0-7131 is 

0.43 years, and the CBR is 16.30. 

The findings shown in Figure 39 are as follows: 

• The benefits included in the VOR calculations include only those incurred by TxDOT. In 

reality, other agencies (e.g., local and county agencies within Texas and other state 

DOTs) will be able to implement and benefit from the published findings from the 

project. 

• The estimated benefits include crash reduction, mobility improvement, and big data/AI 

platform explorations, based on the assumption of tool and model usage. TxDOT will 

likely receive additional benefits that are more difficult to quantify. 

• The VOR analysis focused on urban freeways. Both rural and urban freeway facilities 

may also realize similar benefits from the application of these project results. The 

estimated VOR, NPV, and CBR would increase if these sites were included in the 

analysis. 
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Figure 39. VOR Analysis Results. 

Project #

Agency: TTI Project Budget 297,204$                  

Project Duration (Yrs) 2.00 Exp. Value (per Yr) 698,850$                  

10 Discount Rate 3%

$5,293,596 4,843,994$               

0.43 16.30
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1 -$170,852

2 -$126,352

3 $698,850

4 $698,850

5 $698,850
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10 $698,850

11 $698,850
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