

Test Report No. 440592

DEVELOP GUIDELINES FOR INSPECTION, REPAIR, AND USE OF PORTABLE CONCRETE BARRIERS—VOLUME 2: CRASH REPORT COOPERATIVE RESEARCH PROGRAM

Texas Department of Transportation https://tti.tamu.edu/documents/0-7059-R1-Vol2.pdf

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Roadside Safety & Physical Security Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

		reclinical Report Documentation Fage
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/TX-22/0-7059-R1-Vol2		
4. Title and Subtitle		5. Report Date
DEVELOP GUIDELINES FOR IN	SPECTION, REPAIR, AND USE	Submitted: July 2022
OF PORTABLE CONCRETE BAR	RIERS—VOLUME 2: CRASH	6. Performing Organization Code
REPORT		
7. Author(s)		8. Performing Organization Report No.
Chiara Silvestri-Dobrovolny, Willia	m J. L. Schroeder, and	Report 0-7059-R1-Vol2
Darrell L. Kuhn		
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas A&M Transportation Institute	e Proving Ground	
3135 TAMU		11. Contract or Grant No.
College Station, Texas 77843-3135	Project 0-7059	
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Texas Department of Transportation	1	Technical Report:
Research and Technology Implement	ntation Office	October 2019–December 2021
125 E 11 th Street		14. Sponsoring Agency Code
Austin, TX 78701-2483		
15. Supplementary Notes		
Project sponsored by the Texas Dep	artment of Transportation and the Fe	deral Highway Administration.
Project Title: Develop Guidelines for	or Inspection, Repair, and Use of Port	table Concrete Barriers
Name of Contacting Representative	: Tom Schwerdt	
URL: https://tti.tamu.edu/document	s/0-7059-R1-Vol2.pdf	

16. Abstract

The purpose of the tests reported herein was to assess the performance of the damaged portable concrete barrier according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials *Manual for Assessing Safety Hardware (MASH)*, Second Edition. The crash tests were performed in accordance with *MASH* Test 3-11, which involves a 2270P vehicle weighing 5000 lb impacting the longitudinal barrier while traveling at 62 mi/h and 25 degrees.

This report provides details on the damaged portable concrete barriers, the crash tests and results, and the performance assessment of the damaged portable concrete barriers for *MASH* Test Level 3 (TL-3) longitudinal barrier evaluation criteria.

The damaged portable concrete barriers met the performance criteria for *MASH* TL-3 longitudinal barriers.

		-		
17. Key Words	18. Distribution Statement			
Portable Concrete Barrier (PCB), Longitudinal		No restrictions. This document is available to the		
Barrier, MASH		public through NTIS:		
		National Technical Information Service		
		Alexandria, Virginia 22312		
		http://www.ntis.gov		
19. Security Classif. (of this report)	nis page)	21. No. of Pages	22. Price	
Unclassified Unclassified			96	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

DEVELOP GUIDELINES FOR INSPECTION, REPAIR, AND USE OF PORTABLE CONCRETE BARRIERS—VOLUME 2: CRASH REPORT

by

Chiara Silvestri-Dobrovolny, Ph.D. Research Scientist Texas A&M Transportation Institute

William J. L. Schroeder Research Engineering Associate Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 0-7059-R1-Vol2 Project 0-7059 Project Title: Develop Guidelines for Inspection, Repair, and Use of Portable Concrete Barriers

> Contract No.: 0-7059 Test No.: 440592-01/440592-02 Test Date: 2021-12-01/2021-12-08

Sponsored by the Texas Department of Transportation and the Federal Highway Administration

Submitted: July 2022

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was sponsored by the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of FHWA or TxDOT. This report does not constitute a standard, specification, or regulation.

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article tested.

REPORT AUTHORIZATION

DocuSigned by: Bill Griffith

Bill L. Griffith, Research Specialist Deputy Quality Manager — DocuSigned by: Danell Luhr

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

DocuSigned by:

Matthew Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

DocuSigned by: St D

Chiara Silvestri-Dobrovolny, Ph.D. Associate Research Scientist

ACKNOWLEDGMENTS

This project was sponsored by TxDOT and FHWA. The authors thank the project manager, Tom Schwerdt, and the members of the Project Monitoring Committee: Christopher Lindsey and Ken Mora from the Design Division, Jennifer Vorster from the Dallas District, Matthew Herbstritt from the Childress District, and Teresa Michalk from the Materials and Tests Division.

TABLE OF CONTENTS

			age
List of Fi	-		
List of Ta			
Chapter		Introduction	
Chapter		System Details	
2.1.	Test A	rticle and Installation Details	3
2.2.	Design	Modifications during Tests	7
2.3.	Materia	al Specifications	7
Chapter	3.	Test Requirements and Evaluation Criteria	9
3.1.	Crash 7	Fest Performed/Matrix	9
3.2.	Evalua	tion Criteria	9
Chapter	4.	Test Conditions	11
4.1.	Test Fa	acility	11
4.2.	Vehicle	e Tow and Guidance System	11
4.3.	Data A	cquisition Systems	11
4.3.1		ehicle Instrumentation and Data Processing	
4.3.2		nthropomorphic Dummy Instrumentation	
4.3.3		notographic Instrumentation Data Processing	
Chapter		MASH Test 3-11 (Crash Test No. 440592-1)	
5.1.		esignation and Actual Impact Conditions	
5.2.		er Conditions	
5.3.		ehicle	
5.4.		escription	
5.5.		e to Test Installation	
5.6.	U	e to Test Vehicle	
5.7.	U	ant Risk Factors	
5.8.	1	ımmary	
Chapter		MASH Test 3-11 (Crash Test No. 440592-2)	
6.1.		esignation and Actual Impact Conditions	
6.2.		er Conditions	
6.3.		ehicle	
6.4.		escription	
6.5.		to Test Installation	
6.6.		e to Test Vehicle	
6.7.	-	ant Risk Factors	
6.8.	1	immary	
Chapter		Summary and Conclusions	
7.1.		ment of Test Results	
7.2.		isions	
Referenc		510115	
APPENI		Details on Damaged Portable Concrete Barriers	
APPENI		Supporting Certification Documents	
		MASH Test 3-11 (Crash Test No. 440592-1)	
C.1.		e Properties and Information	
U.1.	v emere		05

C.2.	Sequential Photographs	66
	Vehicle Angular Displacements	
	Vehicle Accelerations	
APPENI	DIX D. MASH Test 3-11 (Crash Test No. 440592-2)	73
D.1	Vehicle Properties and Information	73
D.2.	Sequential Photographs	76
D.3.	Vehicle Angular Displacements	79
D.4.	Vehicle Accelerations	80

LIST OF FIGURES

	Page
Figure 2.1. Damaged Portable Concrete Barriers prior to Test No. 440592-1	4
Figure 2.2. Damaged Portable Concrete Barriers prior to Test No. 440592-2.	5
Figure 2.3. Details on Damaged Portable Concrete Barriers	6
Figure 3.1. Target CIP for MASH TL-3 Test No. 440592-1 on Damaged Portable	
Concrete Barriers.	9
Figure 3.2. Target CIP for MASH TL-3 Test No. 440592-2 on Damaged Portable	
Concrete Barriers.	9
Figure 5.1. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for	
Test No. 440592-1, Front View.	16
Figure 5.2. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for	
Test No. 440592-1, Rear View	
Figure 5.3. Test Vehicle before Test No. 440592-1, Front View.	17
Figure 5.4. Test Vehicle before Test No. 440592-1, Front View Close-Up	18
Figure 5.5. Damaged Portable Concrete Barriers after Test No. 440592-1	
Figure 5.6. Test Vehicle after Test No. 440592-1.	
Figure 5.7. Interior of Test Vehicle after Test No. 440592-1	24
Figure 5.8. Summary of Results for Test No. 440592-1, Sequential Test Pictures	29
Figure 5.9. Summary of Results for Test No. 440592-1, Summary Drawing.	30
Figure 5.10. Summary of Results for MASH Test 3-11 on Damaged Portable Concrete	
Barriers, Test No. 440592-1	31
Figure 6.1. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for	
Test No. 440592-2, Front View.	34
Figure 6.2. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for	
Test No. 440592-2, Rear View	34
Figure 6.3. Test Vehicle before Test No. 440592-2, Front View.	
Figure 6.4. Test Vehicle before Test No. 440592-2, Front View Close-Up	
Figure 6.5. Damaged Portable Concrete Barriers after Test No. 440592-2	
Figure 6.6. Test Vehicle after Test No. 440592-2.	
Figure 6.7. Interior of Test Vehicle after Test No. 440592-2.	
Figure 6.8. Summary of Results for Test No. 440592-2, Sequential Test Pictures	
Figure 6.9. Summary of Results for Test No. 440592-2, Summary Drawing.	48
Figure 6.10. Summary of Results for MASH Test 3-11 on Damaged Portable Concrete	
Barriers, Test No. 440592-2	
Figure A.1. Layout Drawing for Test No. 440592-1.	
Figure A.2. Layout Drawing for Test No. 440592-2.	
Figure A.3. Detailed Drawing for Barriers Used during Testing.	
Figure A.4. Detailed Drawing of Connections for Barriers Used during Testing.	
Figure B.1. Concrete Report.	
Figure C.1. Vehicle Properties for Test No. 440592-1.	
Figure C.2. Exterior Crush Measurements for Test No. 440592-1	
Figure C.3. Occupant Compartment Measurements for Test No. 440592-1	
Figure C.4. Sequential Photographs for Test No. 440592-1 (Overhead and Frontal Views)	
Figure C.5. Sequential Photographs for Test No. 440592-1 (Rear View)	68

Figure C.6. Vehicle Angular Displacements for Test No. 440592-1	. 69
Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 440592-1	
(Accelerometer Located at Center of Gravity).	. 70
Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 440592-1 (Accelerometer	
Located at Center of Gravity).	. 70
Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 440592-1 (Accelerometer	
Located at Center of Gravity).	. 71
Figure D.1. Vehicle Properties for Test No. 440592-2	. 73
Figure D.2. Exterior Crush Measurements for Test No. 440592-2.	. 74
Figure D.3. Occupant Compartment Measurements for Test No. 440592-2	. 75
Figure D.4. Sequential Photographs for Test No. 440592-2 (Overhead and Frontal Views)	. 76
Figure D.5. Sequential Photographs for Test No. 440592-2 (Rear View)	. 78
Figure D.6. Vehicle Angular Displacements for Test No. 440592-2.	. 79
Figure D.7. Vehicle Longitudinal Accelerometer Trace for Test No. 440592-2	
(Accelerometer Located at Center of Gravity).	. 80
Figure D.8. Vehicle Lateral Accelerometer Trace for Test No. 440592-2 (Accelerometer	
Located at Center of Gravity).	. 80
Figure D.9. Vehicle Vertical Accelerometer Trace for Test No. 440592-2 (Accelerometer	
Located at Center of Gravity).	. 81

LIST OF TABLES

]	Page
Table 2.1. Concrete Strength.	7
Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3	
Longitudinal Barriers	
Table 3.2. Evaluation Criteria Required for MASH Testing	10
Table 5.1. Impact Conditions for MASH 3-11, Test No. 440592-1	15
Table 5.2. Exit Parameters for MASH 3-11, Test No. 440592-1.	15
Table 5.3. Weather Conditions for Test No. 440592-1	17
Table 5.4. Vehicle Measurements for Test No. 440592-1.	18
Table 5.5. Events during Test No. 440592-1.	19
Table 5.6. Barrier Movement of Damaged Portable Concrete Barrier, Test No. 440592-1	22
Table 5.7. Damage to Damaged Portable Concrete Barrier, Test No. 440592-1	22
Table 5.8. Occupant Compartment Deformation, Test No. 440592-1	
Table 5.9. Damage to Vehicle, Test No. 440592-1.	
Table 5.10. Occupant Risk Factors for Test No. 440592-1.	
Table 5.11. Summary of Results for Test No. 440592-1, General Information, Impact and	
Exit Conditions.	27
Table 5.12. Summary of Results for Test No. 440592-1, Occupant Risk, Vehicle and Test	
Article Damage.	28
Table 6.1. Impact Conditions for MASH 3-11, Test No. 440592-2.	33
Table 6.2. Exit Parameters for MASH 3-11, Test No. 440592-2.	
Table 6.3. Weather Conditions for Test No. 440592-2	35
Table 6.4. Vehicle Measurements for Test No. 440592-2.	36
Table 6.5. Events during Test No. 440592-2.	37
Table 6.6. Barrier Movement of Damaged Portable Concrete Barrier, Test No. 440592-2	
Table 6.7. Damage to Damaged Portable Concrete Barrier, Test No. 440592-2.	
Table 6.8. Occupant Compartment Deformation, Test No. 440592-2	43
Table 6.9. Damage to Vehicle, Test No. 440592-2.	
Table 6.10. Occupant Risk Factors for Test No. 440592-2.	44
Table 6.11. Summary of Results for Test No. 440592-2, General Information, Impact and	
Exit Conditions.	45
Table 6.12. Summary of Results for Test No. 440592-2, Occupant Risk, Vehicle and Test	
Article Damage.	46
Table 7.1. Performance Evaluation Summary for MASH Test 3-11 on Damaged Portable	
Concrete Barrier, Test No. 440592-1	52
Table 7.2. Performance Evaluation Summary for MASH Test 3-11 on Damaged Portable	
Concrete Barrier, Test No. 440592-2	52
Table 7.3. Assessment Summary for MASH TL-3 Tests on Damaged Portable Concrete	
Barriers	53

	SI <u>* (MODE</u> R	N METRIC) CONV	ERSION FACTORS	
	APPROXI	MATE CONVERSI	ONS TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
•	in the second	LENGTH		
in	inches	25.4	millimeters	mm
ft .	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
inO	aguara inchas	AREA	aquara millimatora	~~~
in2	square inches	645.2	square millimeters	mm2
ft2	square feet	0.093	square meters	m2
yd2	square yards	0.836	square meters	m2
ac mi2	acres	0.405	hectares	ha km2
mz	square miles	2.59 VOLUME	square kilometers	KIIIZ
fl oz	fluid ounces	29.57	milliliters	mL
		3.785	liters	L
gal ft3	gallons cubic feet	0.028	cubic meters	m3
yd3	cubic yards	0.765	cubic meters	m3
yuu	NOTE: volumes greater tha			115
	NOTE. Volumes greater that	MASS	WITHTING	
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	y kg
T	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
		EMPERATURE (exac		ing (or t)
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8	00.0.00	· ·
	FOF	RCE and PRESSURE	E or STRESS	
lbf	poundforce	4.45	newtons	Ν
lbf/in2	poundforce per square inch		kilopascals	kPa
		MATE CONVERSION		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm2	square millimeters	0.0016	square inches	in2
m2	square meters	10.764	square feet	ft2
m2	square meters	1.195	square yards	yd2
ha	hectares	2.47	acres	ac
km2	Square kilometers	0.386	square miles	mi2
		VOLUME		
mL	milliliters	0.034	fluid ounces	oz
L	liters	0.264	gallons	gal
m3	cubic meters	35.314	cubic feet	ft3
m3	cubic meters	1.307	cubic yards	yd3
-		MASS		
g	grams	0.035	ounces	0Z
kg Ma (or "t")	kilograms	2.202	pounds	lb T
Mg (or "t")	megagrams (or "metric ton"	,	short tons (2000lb)	Т
°C	Celsius			°F
0		1.8C+32	Fahrenheit	r
N		RCE and PRESSURE 0.225		lbf
N	newtons		poundforce	
kPa	kilopascals	0.145	poundforce per square inch	lb/in2

Chapter 1. INTRODUCTION

The purpose of the tests reported herein was to assess the performance of Texas Department of Transportation (TxDOT) damaged portable concrete barriers according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)*, Second Edition (1). The crash tests were performed in accordance with *MASH* Test 3-11.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

Each installation consisted of seven 30-ft long, 32-inch tall, F-shape barriers connected end to end with JJ hook connections, for a total length of 210 ft 6 inches. For both tests, the barrier segments were specifically selected based on their existing damage modes, which included concrete spalling, concrete cracks, and segment connection deformations.

For the first test (440592-1), Barrier 3 was selected due to a large 6-mm wide crack located on the field side of the installation that ran vertically 246 inches downstream from the joint of barriers 2 and 3. The downstream JJ hook on barrier 2 was bent 8 degrees. The upstream JJ hook on barrier 3 was not damaged, and the downstream JJ hook was bent 12 degrees. The upstream JJ hook on barrier 4 was not damaged.

For the second test (440592-2), spalling was manufactured by Texas A&M Transportation Institute (TTI) personnel on the traffic side toe of barriers 3 and 4 at their joint. Each had a spall measuring approximately $3\frac{3}{4}$ inches wide $\times 13$ inches high $\times 2$ inches deep. At the same joint on the field side, the toe of barrier 4 was intentionally spalled and measured approximately 24 inches wide $\times 5$ inches high $\times 2$ inches deep. The JJ hooks at the joint of barriers 2 and 3 were not damaged. The downstream JJ hook on barrier 3 was bent 19 degrees, and the upstream JJ hook of barrier 4 was bent 15 degrees.

Figure 2.1 and Figure 2.2 show pictures of the F-shape barriers before testing. Figure 2.3 shows a drawing of the test layout. Appendix A provides further details on the damaged portable concrete barriers. Drawings were provided by the TTI Proving Ground, and construction was performed by TTI Proving Ground personnel.

(a)

(b)

(c)

(d)

(e) (f) Figure 2.1. Damaged Portable Concrete Barriers prior to Test No. 440592-1.

(a)

(b)

(c)

(d)

(e)

Figure 2.2. Damaged Portable Concrete Barriers prior to Test No. 440592-2.

Q:\Accreditation-17025-2017\EIR-000 Project Files\440592 - TXDOT cracked F-shape - Chiara\Drafting, 440592\440592-1 Drawing

Figure 2.3. Details on Damaged Portable Concrete Barriers.

2.2. DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase.

2.3. MATERIAL SPECIFICATIONS

Appendix B provides material documents for the materials used to install/construct the damaged portable concrete barriers. Table 2.1 shows the average compressive strengths of the concrete.

Location	Design Strength (psi)	Avg. Strength (psi)	Detailed Location
Barrier 3 ^a	3600	7270	Core taken from barrier 3 after test 440592-1
Barrier 4	3600	8210	Core taken from barrier 4 after test 440592-1
Barrier 3 ^a	3600	5740	Core taken from barrier 3 after test 440592-2

 Table 2.1. Concrete Strength.

^a These were not the same barrier; they were the barriers labeled barrier 3 for each respective test.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED/MATRIX

Table 3.1 shows the test conditions and evaluation criteria for *MASH* Test Level 3 (TL-3) for longitudinal barriers. The target critical impact points (CIPs) for each test were determined using the information provided in *MASH* Section 2.2.1 and Section 2.3.2. Figure 3.1 and Figure 3.2 show the target CIP for *MASH* Test 3-11 on the damaged portable concrete barriers.

Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3
Longitudinal Barriers.

Figure 3.1. Target CIP for *MASH* TL-3 Test No. 440592-1 on Damaged Portable Concrete Barriers.

Figure 3.2. Target CIP for *MASH* TL-3 Test No. 440592-2 on Damaged Portable Concrete Barriers.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2.2 and 5.1 of *MASH* were used to evaluate the crash tests reported herein. Table 3.2 provides detailed information on the evaluation criteria.

Evaluation Factors	Eva	MASH Test	
Structural AdequacyA.Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.		11	
	D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	11
Occupant Risk	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	11
	H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s. Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 10 ft/s, or maximum allowable value of 16 ft/s.	11
	I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	11

 Table 3.2. Evaluation Criteria Required for MASH Testing.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

4.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the testing utilizing the 2270P vehicles, each vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

4.3. DATA ACQUISITION SYSTEMS

4.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a 16-channel Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCOTM 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rateof-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ±1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the data from the TDAS Pro to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration (RA). TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system, with the initial position and orientation being initial impact. Rate of rotation data are measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

4.3.2. Anthropomorphic Dummy Instrumentation

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the tests.

4.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

• One overhead with a field of view perpendicular to the ground and directly over the impact point.

- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the damaged portable concrete barriers. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 5. MASHTEST 3-11 (CRASH TEST NO. 440592-1)

5.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

Table 5.1 and Table 5.2 provide details on the *MASH* impact conditions for this test, and Figure 5.1 and Figure 5.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	61.8
Impact Angle (deg)	25	±1.5°	25.2
Vehicle Inertial Weight (lb)	5000	±110 lb	5025
Impact Severity (kip-ft)	106	≥106 kip-ft	116.3
Impact Location	13.8 ft \pm 1 ft upstream of the center of the joint between barriers 3 and 4	±1 ft	13.9 ft upstream of the center of the joint between barriers 3 and 4

Table 5.2. Exit Parameters for MASH 3-11, Test No. 440592-1.

Exit Parameter	Measured	
Speed (mi/h)	53.3	
Trajectory (deg)	7	
Heading (deg)	18	
Brakes applied post impact (s)	Brakes not applied	
Vehicle at rest position	203 ft downstream of impact point 10 ft to the field side 85° left	
Comments:	Vehicle remained upright and stable. Vehicle crossed exit box 77 ft downstream from loss of contact. Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.	

Figure 5.1. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for Test No. 440592-1, Front View.

Figure 5.2. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for Test No. 440592-1, Rear View.

5.2. WEATHER CONDITIONS

Table 5.3 provides the weather conditions for Test No. 440592-1

Date of Test	December 1, 2021 AM
Temperature (°F)	67
Relative Humidity (%)	88
Wind Direction (deg)	175
Vehicle Traveling (deg)	350
Wind Speed (mi/h)	4

 Table 5.3. Weather Conditions for Test No. 440592-1.

5.3. TEST VEHICLE

Figure 5.3 and Figure 5.4 show the 2016 RAM 1500 used for the crash test. Table 5.4 shows the vehicle measurements. Figure C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 5.3. Test Vehicle before Test No. 440592-1, Front View.

Figure 5.4. Test Vehicle before Test No. 440592-1, Front View Close-Up.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Curb Weight (lb)	5000	N/A	5083
Gross Static ^a (lb)	5000	±110	5025
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	59.6
CG above Ground ^{c,d} (inches)	28	≥28	28.6

Table 5.4. Vehicle Measurements for Test No. 440592-1.

Note: N/A = not applicable.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum center of gravity (CG) height requirement.

5.4. TEST DESCRIPTION

Table 5.5 lists events that occurred during Test No. 440592-1. Figures C.4 and C.5 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events	
0.0000	Vehicle impacts the installation	
0.0413	Upstream end of barrier 3 begins to lift	
0.0430	Vehicle begins to redirect	
0.0475	Large preexisting crack on backside of barrier begins to expand	
0.0810	Front passenger side tire lifts off pavement	
0.1090	Rear passenger side tire lifts off pavement	
0.1940	Vehicle travels parallel with installation	
0.4150	Vehicle loses contact with the barrier	
0.5540	Front driver side tire makes contact with pavement	
0.8690	Front passenger side tire makes contact with pavement	

Table 5.5. Events during Test No. 440592-1.

5.5. DAMAGE TO TEST INSTALLATION

Major cracking and spalling were observed at the downstream scupper of barrier 3. There was a significant amount of exposed rebar, which was severed by the impact of the test vehicle. The existing cracks before impact ranged in size from 0.1 mm to 6 mm, and post impact, they were between 0.1 mm and 108 mm. The main crack of concern, which was located on the field side of the third barrier 246 inches downstream from the joint of barriers 2 and 3, widened from 6 mm to 108 mm, and a secondary crack extending from the main crack widened from 2.5 mm to 102 mm. The JJ hook on the downstream end of barrier 2 bent 2 degrees, and the JJ hook on the upstream end of barrier 3 bent 13 degrees. The JJ hook on the downstream end of barrier 4 bent 34 degrees.

Figure 5.5 shows images of the damage to the test article. Table 5.6 and Table 5.7 list the barrier movement and the damage caused, respectively.

(a)

(b)

Figure 5.5. Damaged Portable Concrete Barriers after Test No. 440592-1.

(c)

(d)

Figure 5.5. Damaged Portable Concrete Barriers after Test No. 440592-1 (Continued).

Joint/Barrier	Movement D/S (inches)	Movement U/S (inches)	Movement T/S (inches)	Movement F/S (inches)	Comments
1	7			2	
1/2	6 ¹ / ₂		3		
2/3	7			7	
3/4				59	Barrier 3 was lifted 4 ¹ / ₂ inches
4/5		4	$3^{1}/_{2}$		—
5/6		3/4		1	—
6/7		1			
7		¹ / ₂		1	

 Table 5.6. Barrier Movement of Damaged Portable Concrete Barrier, Test No. 440592-1.

Note: D/S = Downstream, U/S = Upstream, T/S = Traffic Side, F/S = Field Side. A dash indicates "none."

Table 5.7. Damage to	Damaged Porta	able Concrete B	arrier. Test No	. 440592-1.
I ubic ciri Dumuge to	Dumugeu I or a		unitery reserve	

Test Parameter	Measured
Permanent Deflection/Location	61 inches toward field side, 100.5 inches upstream from the joint of barriers 3 and 4
Dynamic Deflection	61 inches toward field side
Working Width ^a and Height	85 inches, at a height of 3 inches

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.
5.6. DAMAGE TO TEST VEHICLE

Figures C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements. Figure 5.6 shows damage to the test vehicle exterior, and Figure 5.7 shows damage inside the test vehicle. Table 5.8 lists the occupant compartment intrusion measurements, and Table 5.9 lists damage to the vehicle.

(a)

(b)

Figure 5.6. Test Vehicle after Test No. 440592-1.

(a)

(D) Figure 5.7. Interior of Test Vehicle after Test No. 440592-1.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	\leq 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	\leq 12.0 inches	0 inches
Side Front Panel	\leq 12.0 inches	1 inch
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤ 12.0 inches	1 inch

 Table 5.8. Occupant Compartment Deformation, Test No. 440592-1.

Table 5.9. Damage to Vehicle, Test No. 440592-1.

Side Windows	Side windows remained intact
Maximum Exterior Deformation	12 inches in the left plane at the front corner at bumper height
VDS	11LFQ5
CDC	11FLEW3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, left headlight, left front fender, left front tire and rim, left front door, left rear door, left cab corner, left rear quarter fender, left rear tire and rim, left taillight, tailgate, and rear bumper were damaged.

5.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 5.10. Figure C.6 in Appendix C.3 shows the vehicle angular displacements, and Figures C.7 through C.9 in Appendix C.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	12.3	0.0983 s on left side of interior
OIV, Lateral (ft/s)	≤40.0	21.5	0.0983 s on left side of interior
Ridedown, Longitudinal (g)	≤20.49	5.0	0.1262–0.1362 s
Ridedown, Lateral (g)	≤20.49	12.6	0.2338–0.2438 s
Theoretical Head Impact Velocity (THIV) (m/s)	N/A	7.7	0.0953 s on left side of interior
Acceleration Severity Index (ASI)	N/A	1.6	0.0528–0.1028 s
50-ms MA Longitudinal (g)	N/A	-6.6	0.0141–0.0641 s
50-ms MA Lateral (g)	N/A	11.8	0.0276–0.0776 s
50-ms MA Vertical (g)	N/A	-3.8	1.0732–1.1232 s
Roll (deg)	≤75	17	0.6751 s
Pitch (deg)	≤75	16	0.6976 s
Yaw (deg)	N/A	61	1.0994 s

 Table 5.10. Occupant Risk Factors for Test No. 440592-1.

5.8. TEST SUMMARY

Table 5.11, Table 5.12, Figure 5.8, Figure 5.9, and Figure 5.10 summarize the results for Test No. 440592-1.

General	Test Agency	Texas A&M Transportation Institute		
Information	Test Standard Test No.	MASH Test 3-11		
	TTI Test No.	440592-1		
	Test Date	2021-12-01		
Test Article	Туре	Portable Concrete Barrier		
	Name	Damaged Portable Concrete Barrier		
	Installation Length	210 ft, 6 inches		
	Material or Key Elements	Seven F-Shaped Concrete Barriers		
	Foundation Type/Condition	Concrete Apron, Dry		
Test Vehicle	Type/Designation	2270P		
	Make and Model	2016, RAM 1500		
	Curb	5083 lb		
	Test Inertial	5025 lb		
	Dummy	N/A		
	Gross Static	5025 lb		
Impact	Speed	61.8 mi/h		
Conditions	Angle	25.2 degrees		
	Location	13.9 ft upstream from the centerline of the joint between barrier 3 and 4		
	Impact Severity	116.3 kip-ft		
Exit Conditions	Speed	53.3 mi/h		
	Exit Trajectory/Heading	7 degrees/18 degrees		

Table 5.11. Summary of Results for Test No. 440592-1, General Information, Impact and
Exit Conditions.

Occupant Risk	Longitudinal OIV	12.3 ft/s		
Values	Lateral OIV	21.5 ft/s		
	Longitudinal RDA	5.0 g		
	Lateral RDA	12.6 g		
	THIV	7.7 m/s		
	ASI	1.6		
Max. 0.050-s Average	Longitudinal	-6.6 g		
	Lateral	11.8 g		
	Vertical	-3.8 g		
Post-ImpactStopping DistanceTrajectory		203 ft downstream, 10 ft on field side		
Vehicle Stability	Maximum Roll Angle	17°		
	Maximum Pitch Angle	16°		
	Maximum Yaw Angle	61°		
	Vehicle Snagging	No indication of snagging		
	Vehicle Pocketing	No indication of pocketing		
Test Article	Dynamic	61 inches		
Deflections	Permanent	61 inches		
	Working Width	85 inches		
	Height of Working Width	3 inches		
Vehicle Damage	VDS	11LFQ5		
	CDC	11FLEW3		
	Max. Exterior Deformation	12 inches at left front bumper		
	Max. Occupant Compartment Deformation	1 inch at left kick panel area, and 1 inch at lower left front door		

 Table 5.12. Summary of Results for Test No. 440592-1, Occupant Risk, Vehicle and Test

 Article Damage.

(a) 0.000 s

(b) 0.100 s

Figure 5.8. Summary of Results for Test No. 440592-1, Sequential Test Pictures.

(c) 0.200 s

(d) 0.300 s

Figure 5.8. Summary of Results for Test No. 440592-1, Sequential Test Pictures (Continued).

Figure 5.9. Summary of Results for Test No. 440592-1, Summary Drawing.

	Contraction of the				Test Ageney	Tanag	A P-M Tuona	nontation Institute (TTI)	
			Test Agency Test Standard/Test No.			Texas A&M Transportation Institute (TTI) MASH 2016, Test 3-11			
						440592-1			
	Sta Sta	Cash Carlos	TTI Project No. Test Date			2021-12-01			
			TEST ARTICLE			2021-12-01			
	-12	TIVE.	TESTA	KIIGLE	Туре	Portable Concrete Barrier			
		and the second second			Name	Damaged Portable Concrete Barrier			
Summer and the second second	-	-			Length	210 ft 6 inches			
0.0	00 s				Key Materials		aped Concre	ete Barriers	
0.000 5			Soil Type and Condition			Concrete Apron, Dry			
				EHICLE			1	5	
				Ту	pe/Designation	2270P			
		S. C. Man		Year, M	lake and Model	2016 F	AM 1500		
- in the		· A The		C	urb Weight (lb)	5083			
- 1	125			Iner	tial Weight (lb)	5025			
	2				Dummy (lb)	N/A			
and the second second		-		(Gross Static (lb)	5025			
0.10	00 s		IMPAC		TIONS				
				Impa	ct Speed (mi/h)	61.8			
	10 Mar 10			Imp	act Angle (deg)	25.2			
	X		Impact Location				upstream fro n barriers 3	om the centerline of the j and 4	oint
		and the state	Impact Severity (kip-ft)			116.3			
and an and the		A The	EXIT CONDITIONS						
			Exit Speed (mi/h)			53.3			
			Trajectory/Heading Angle (deg)			7/18			
		-	Exit Box Criteria			e crossed ex			
0.20	00 s			Stoppin	ng Distance (ft)		downstream the field sid		
			TEST A	RTICLE	DEFLECTIONS	3			
			Dynamic (inches)		61				
		Spirit Parts			manent (inches)	61			
		AN CONTRACT	Working Width / Height (inches)			85/3			
		- Jack	VEHICL	E DAMA					
- the			VDS		11LFQ5				
			CDC		11FLEW3				
		and the second second		Max. Ext. Deformation (inches)		12, Left Front Bumper			
0.3	00 s	1.	Max Occupant Compartment Deformation (inches)		1, Left Kick Panel Area; 1, Lower Left Front Door			nt Door	
			00	CUPAN	T RISK VALUE	S			
Long. OIV (ft/s)	12.3	Long. Rided				ng. (g)	-6.6	Max Roll (deg)	17
Lat. OIV (ft/s)	21.5	Lat. Ridedov	wn (g) 12.6 Max 50-ms Lat		t. (g)	11.8	Max Pitch (deg)	16	
THIV (m/s)	7.7	ASI		1.6	Max 50-ms Ve	rt. (g)	-3.8	Max Yaw (deg)	61
15.6 13.9 Impact Angle		Heading Angle – Exit Angle – 20 – Exit Angle Box	203'			10'			
Impact Angle		Exit Angle	203'			10'		Conversion for the second seco	

Figure 5.10. Summary of Results for *MASH* Test 3-11 on Damaged Portable Concrete Barriers, Test No. 440592-1.

Chapter 6. MASHTEST 3-11 (CRASH TEST NO. 440592-2)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

Table 6.1 and Table 6.2 provide details on the *MASH* impact conditions for this test, and Figure 6.1 and Figure 6.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	60.4
Impact Angle (deg)	25	±1.5°	24.9
Vehicle Inertial Weight (lb)	5000	±110 lb	5064
Impact Severity (kip-ft)	106	≥106 kip-ft	109.5
Impact Location	4.3 ft upstream of the center of the joint between barriers 3 and 4	±1 ft	4.3 ft upstream of the center of the joint between barriers 3 and 4

Table 6.2. Exit Parameters for MASH 3-11, Test No. 440592-2.

Exit Parameters	Measured
Speed (mi/h)	Out of view (not measurable)
Trajectory (deg)	Out of view (not measurable)
Heading (deg)	Out of view (not measurable)
Brakes applied post impact (s)	2.9
Vehicle at rest position	440 ft downstream of impact point95 ft to the traffic side of the installation30° right
Comments:	Vehicle remained upright and stable. Vehicle crossed the exit box ^a 131 ft downstream from loss of contact.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 6.1. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for Test No. 440592-2, Front View.

Figure 6.2. Damaged Portable Concrete Barriers/Test Vehicle Geometrics for Test No. 440592-2, Rear View.

6.2. WEATHER CONDITIONS

Table 6.3 shows the weather conditions for Test No. 440592-2.

Date of Test	December 8, 2021 AM
Temperature (°F)	67
Relative Humidity (%)	82
Wind Direction (deg)	196
Vehicle Traveling (deg)	350
Wind Speed (mi/h)	1

 Table 6.3. Weather Conditions for Test No. 440592-2.

6.3. TEST VEHICLE

Figure 6.3 and Figure 6.4 show the 2016 RAM 1500 used for the crash test. Table 6.4 shows the vehicle measurements. Table D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.

Figure 6.3. Test Vehicle before Test No. 440592-2, Front View.

Figure 6.4. Test Vehicle before Test No. 440592-2, Front View Close-Up.

Test Parameter	MASH	Allowed Tolerance	Actual Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Curb Weight (lb)	5000	N/A	4990
Gross Static ^a (lb)	5000	±110	5064
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	60.8
CG above Ground ^{c,d} (inches)	28	≥28	28.3

 Table 6.4. Vehicle Measurements for Test No. 440592-2.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy. ^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.4. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test No. 440592-2. Figures D.2 and D.3 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacts the installation
0.0410	Vehicle begins to redirect
0.0425	Crack begins to form on field side of barrier 4 near joint 3–4
0.0790	Front passenger side tire lifts off pavement
0.1440	Rear passenger side tire lifts off pavement
0.2340	Vehicle travels parallel with installation
0.5910	Front passenger side tire makes contact with the pavement

Table 6.5. Events during Test No. 440592-2.

6.5. DAMAGE TO TEST INSTALLATION

There was significant spalling at the upstream end of barrier 4 and a small amount near its scupper. The existing cracks before impact ranged in size from 0.1 mm to 0.15 mm, and post impact, they were between 0.1 mm and 3 mm. The existing spall on the field side toe of barrier 4 increased in size from 24 inches wide \times 5 inches high \times 2 inches deep to 24 inches wide \times 32 inches high \times 8.6 inches deep. There was no additional spalling on the traffic side at the joint of barriers 3 and 4. The JJ hook on the downstream end of barrier 2 bent 4 degrees, and the JJ hook on the upstream end of barrier 3 bent 5 degrees. The JJ hook on the downstream end of barrier 4 bent 10 degrees.

Table 6.6 and Table 6.7 describe the barrier movement and damage, respectively, to the damaged portable concrete barriers. Figure 6.5 shows the damage to the damaged portable concrete barriers.

Joint/Barrier	Movement D/S (inches)	Movement U/S (inches)	Movement T/S (inches)	Movement F/S (inches)	Comments
1	6		$1^{1}/_{2}$		—
1/2	6			2	—
2/3	$7^{1}/_{2}$		31/4		—
3/4				56	
4/5		$1^{1}/_{2}$		4.5	
5/6		$1^{1}/_{2}$		2	
6/7		1			
7		1			

Table 6.6. Barrier Movement of Damaged Portable Concrete Barrier, Test No. 440592-2.

Note: D/S = Downstream, U/S = Upstream, T/S = Traffic Side, F/S = Field Side. A dash indicates "none."

Test Parameter	Measured
Permanent Deflection/Location	56 inches toward field side at the joint between barriers 3 and 4
Dynamic Deflection	56 inches toward field side
Working Width ^a and Height	79.9 inches, at a height of 3 inches

Table 6.7. Damage to Damaged Portable Concrete Barrier, Test No. 440592-2.

^a Per MASH, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

(a)

(b)

Figure 6.5. Damaged Portable Concrete Barriers after Test No. 440592-2.

(c)

(d)

Figure 6.5. Damaged Portable Concrete Barriers after Test No. 440592-2 (Continued).

6.6. DAMAGE TO TEST VEHICLE

Figures D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements. Figure 6.6 shows exterior damage to the test vehicle, and Figure 6.7 shows damage inside the test vehicle. Table 6.8 lists the occupant compartment intrusion measurements, and Table 6.9 lists damage to the vehicle.

(a)

(b)

Figure 6.6. Test Vehicle after Test No. 440592-2.

(a)

(b)

Figure 6.7. Interior of Test Vehicle after Test No. 440592-2.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	\leq 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	8.5 inches
Floor Pan/Transmission Tunnel	\leq 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	1 inch
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	1 inch

 Table 6.8. Occupant Compartment Deformation, Test No. 440592-2.

Table 6.9. Damage to Vehicle, Test No. 440592-2.

Side Windows	Side windows remained intact
Maximum Exterior Deformation	14 inches in the left plane at the front corner at bumper height
VDS	11LFQ5
CDC	11FLEW3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, left headlight, left front tire and rim, left front upper and lower control arms, left tire rod, left front quarter fender, left front door, left front toe panel, left rear door, left rear cab corner, left rear quarter fender, left rear taillight, and rear bumper were damaged.

6.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.10. Figure D.6 in Appendix D.3 shows the vehicle angular displacements, and Figures D.7 through D.9 in Appendix D.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	19.6	0.0969 s on left side of interior
OIV, Lateral (ft/s)	≤40.0	23.1	0.0969 s on left side of interior
Ridedown, Longitudinal (g)	≤20.49	5.1	0.0969–0.1069 s
Ridedown, Lateral (g)	≤20.49	9.9	0.2710–0.2810 s
THIV (m/s)	N/A	9.1	0.0946 s on left side of interior
ASI	N/A	1.6	0.0543–0.1043 s
50-ms MA Longitudinal (g)	N/A	-9.2	0.0407–0.0907 s
50-ms MA Lateral (g)	N/A	12.3	0.0356–0.0856 s
50-ms MA Vertical (g)	N/A	-3.3	0.0136–0.0636 s
Roll (deg)	≤75	14	0.4738 s
Pitch (deg)	≤75	11	0.6330 s
Yaw (deg)	N/A	40	1.0316 s

Table 6.10. Occupant Risk Factors for Test No. 440592-2.

6.8. TEST SUMMARY

Table 6.11, Table 6.12, Figure 6.8, Figure 6.9, and Figure 6.10 summarize the results for Test No. 440592-2.

General	Test Agency	Texas A&M Transportation Institute		
Information	Test Standard Test No.	MASH Test 3-11		
	TTI Test No.	440592-2		
	Test Date	2021-12-08		
Test Article	Туре	Portable Concrete Barrier		
	Name	Damaged Portable Concrete Barrier		
	Installation Length	210 ft 6 inches		
	Material or Key Elements	Seven F-Shaped Concrete Barriers		
	Foundation Type/Condition	Concrete Apron, Dry		
Test Vehicle	Type/Designation	2270P		
	Make and Model	2016, RAM 1500		
	Curb	4990 lb		
	Test Inertial	5064 lb		
	Dummy	N/A		
	Gross Static	5064 lb		
Impact	Speed	60.4 mi/h		
Conditions	Angle	24.9 degrees		
	Location	4.3 ft upstream from the centerline of the joint between barrier 3 and 4		
	Impact Severity	109.5 kip-ft		
Exit Conditions	Speed	Out of view (Not measurable)		
	Exit Trajectory/Heading	Out of view (Not measurable)		

Table 6.11. Summary of Results for Test No. 440592-2, General Information, Impact and	
Exit Conditions.	

Occupant Risk	Longitudinal OIV	19.6 ft/s		
Values	Lateral OIV	23.1 ft/s		
	Longitudinal RDA	5.1 g		
	Lateral RDA	9.9 g		
	THIV	9.1 m/s		
	ASI	1.6		
Max. 0.050-s Average	Longitudinal	-9.2 g		
	Lateral	12.3 g		
	Vertical	-3.3 g		
Post-Impact Trajectory	Stopping Distance	440 ft downstream, 95 ft on traffic side		
Vehicle Stability	Maximum Roll Angle	14°		
	Maximum Pitch Angle	11°		
	Maximum Yaw Angle	40°		
	Vehicle Snagging	No indication of snagging		
	Vehicle Pocketing	No indication of pocketing		
Test Article	Dynamic	56 inches		
Deflections	Permanent	56 inches		
	Working Width	79.9 inches		
	Height of Working Width	3 inches		
Vehicle Damage	VDS	11LFQ5		
	CDC	11FLEW3		
	Max. Exterior Deformation	14 inches at left front bumper		
	Max. Occupant Compartment Deformation	8½ inches, left toe pan area		

 Table 6.12. Summary of Results for Test No. 440592-2, Occupant Risk, Vehicle and Test

 Article Damage.

(a) 0.000 s

(b) 0.100 s

Figure 6.8. Summary of Results for Test No. 440592-2, Sequential Test Pictures.

(c) 0.200 s

(d) 0.300 s

Figure 6.9. Summary of Results for Test No. 440592-2, Summary Drawing.

	CONTRACTOR OF				Test Ageney	Taxaa	P-M Tuonon	ostation Institute (TTI)	
				T+ C+	Test Agency ndard/Test No.		^	ortation Institute (TTI)	
					TI Project No.	440592	2016, Test 3-	11	
	- Alla	and south		1	-	2021-12-08			
	Î.	A	TEST AR		Test Date	2021-12	2-08		
		1· V - / - 1	TESTAR	HOLE	Tuno	Dortabl.	e Concrete B	orrior	
and the second sec	-				Type Name			Concrete Barrier	
formation of the second		The second second			Length	210 ft 6		oncrete Barrier	
0.00	0 6				Key Materials		ped Concret	Barriers	
0.00	0.3				and Condition		e Apron, Dr		
			TEST VE		and Condition	Concret	e Apioli, Di	y	
//) ····					e/Designation	2270P			
	-	- Charles	Year, Make and Model				AM 1500		
				,	rb Weight (lb)	4990	101 1500		
					ial Weight (lb)	5064			
The state of the s	-			mert	Dummy (lb)	N/A			
and the second s		a state		G	ross Static (lb)	5064			
0.10	0 s		IMPACT			2001			
0.10	0.3				t Speed (mi/h)	60.4			
					ct Angle (deg)	24.9			
		C. Martin		1	0 (0,		stream of th	e center of the joint betw	reen
		P. T. 图示		In	npact Location	barriers		e center of the joint betw	cen
		and the same		Impact Se	everity (kip-ft)	109.5			
	A in	- A mark	EXIT COM	DITION	S				
- 4	21.5		Exit Speed (mi/h)			Out of view (not measurable)			
			Trajectory/Heading Angle (deg)			Out of view (not measurable)			
		· · · · · · · · · · · · · · · · · · ·	Exit Box Criteria			Vehicle	crossed exit	angle box	
			Stopping Distance		440 ft d	ownstream o	f impact point		
0.20	0 s			Stop	bping Distance	95 ft to	the traffic sid	de of the installation	
			TEST AR	TICLE D	EFLECTIONS				
	ALC: N			,	namic (inches)	56			
	10-16-1	A VE SER	Permanent (inches)			56			
		and the second			leight (inches)	79.9/3			
	NA.	- Falant	VEHICLE	DAMAG					
- 9	1		VDS			11LFQ:			
	AB		CDC			11FLEV			
			Max. Ex	kt. Deforn	nation (inches)	14, at L	eft Front Bu	mper	
and the second s			Max		Compartment	8½. Lef	t Toe Pan A	ea	
0.30	0 s				nation (inches)				
				CUPAN	T RISK VALU	ES			
Long. OIV (ft/s)	19.6	Long. Ride	edown (g)	5.1	Max 50-ms Lo		-9.2	Max Roll (deg)	14
Lat. OIV (ft/s)	23.1	Lat. Rided	own (g)	9.9	Max 50-ms La	-	12.3	Max Pitch (deg)	11
THIV (m/s)	9.1	ASI	1.6 Max 50-ms Vert. (g)			ert. (g)	-3.3	Max Yaw (deg)	40
	-	101	440°		•			(#1)51 Bor #/Type X Joint I Connection	
	4.3'		And Heading Angle						
	- TIM	ינבר			Á				
Impact Angle	-Impact Path	Evit Ar	ngle Box						
Y	impact Faul	- LXII AI	1910 DOX		95'				
								(≺⁻᠇┼ᡕ╌╲)	
								(+5) R Bors (Typ)	

Figure 6.10. Summary of Results for *MASH* Test 3-11 on Damaged Portable Concrete Barriers, Test No. 440592-2.

Chapter 7. SUMMARY AND CONCLUSIONS

7.1. ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* Test 3-11, which involved two tests, on the damaged portable concrete barriers. Table 7.1 and Table 7.2 provide an assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-3 longitudinal barriers.

7.2. CONCLUSIONS

Table 7.3 shows that the damaged portable concrete barriers met the performance criteria for *MASH* Test 3-11.

Table 7.1. Performance Evaluation Summary for MASH Test 3-11 on Damaged Portable Concrete Barrier, Test No. 440592-1.

Evaluation Factors	Eva	Evaluation Criteria						
Structural Adequacy	А.	A. The damaged portable concrete barrier contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 60.9 inches.						
Occupant Risk	D.	No detached elements, fragments, or other debris from the transition was present to penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. Maximum occupant compartment deformation was 1.0 inch in the left kick panel area.	Pass					
	F.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 17 degrees and 16 degrees.	Pass					
	H.	Longitudinal OIV was 12.3 ft/s, and lateral OIV was 21.5 ft/s.	Pass					
	I.	Longitudinal occupant RA was 5.0 g, and lateral occupant RA was 12.6 g.	Pass					

Table 7.2. Performance Evaluation Summary for MASH Test 3-11 on Damaged Portable Concrete Barrier, Test No. 440592-2.

Evaluation Factors	Eva	Evaluation Criteria						
Structural Adequacy	А.	The damaged portable concrete barrier contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 56 inches.						
	D.	No detached elements, fragments, or other debris from the transition was present to penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. Maximum occupant compartment deformation was 8.5 inches in the left front toe pan area.	Pass					
Occupant Risk	F.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 14 degrees and 11 degrees.	Pass					
	H.	Longitudinal OIV was 19.6 ft/s, and lateral OIV was 23.1 ft/s.	Pass					
	I.	Longitudinal occupant RA was 5.1 g, and lateral occupant RA was 9.9 g.	Pass					

Evaluation Factors	Evaluation Criteria	Test No. 440592-1	Test No. 440592-2
Structural Adequacy	А	S	S
Occupant Risk	D	S	S
	F	S	S
	Н	S	S
	Ι	S	S
Result	Pass/Fail	Pass	Pass

Table 7.3. Assessment Summary for MASH TL-3 Tests on Damaged Portable Concrete Barriers.

Note: S = Satisfactory.

REFERENCES

1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.

APPENDIX A. DETAILS ON DAMAGED PORTABLE CONCRETE BARRIERS

Figure A.1. Layout Drawing for Test No. 440592-1.

Figure A.2. Layout Drawing for Test No. 440592-2.

Figure A.3. Detailed Drawing for Barriers Used during Testing.

Figure A.4. Detailed Drawing of Connections for Barriers Used during Testing.

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

Concrete Co Report Numb Service Dat Report Date Task:	A1171057.0219 12/16/21 01/03/22 PO# 440592									6198 Imp College S	crial Loop Station, TX 3767 Reg	77845-576:	5
Client							Project						
Attn: Gary TTI Busine 3135 TAMI	ss Office						Riverside C Riverside C Bryan, TX Project Nun		57				
Material Info							Sample Int	ormation					
Specified Str Specified Len Mix ID:							Placement D Date Tested Sampled By: Drill Direc	12/15/2		т	ime: 0000		
Nominal Maxir	0						Date Core O Date Ends Tr Moisture Co	rim 12/	15/21 15/21		ime: 0000 ime: 0000 STM C-42		
Laboratory I	est Data	Cored	Trim	Capped	D		L		Com	Comp.		Danald	Treed
Core ID	Location	Length (in)	Length (in)	Length (in)	Diam. (in)	Area (sq in	Length / Diam. Ra	Max Loa (lbs)	Corr. Facto	Strength (psi)	Fractu Type	Densit (pcf)	Tested By
1 Barrier		9.12 9.36	4.58	4.58	4.00	12.57 12.57	1.15	100780	0.906	7270	3	·	JEW JEW

Comments

Services: Terracon Rep.: Cullen Turney Reported To Contractor: Report Distribution: (1) Texas Transportation Institute, Gary Gente

Start/Stop: 0800-1300 Reviewed By: 1h Alexander Dunigan Project Manager

Test Met

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to

(1) Texas

Griffith

Transportation

Institute, Bill

CR6004.11-1

Figure B.1. Concrete Report.

Page 1 of 1

APPENDIX C. MASH TEST 3-11 (CRASH TEST NO. 440592-1)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date: 2	2021-12-1	Test No.:	440592	2-1	VIN No.:	1	C6RR6G8	64205
Year:	2016	Make	RAM		Model:			
Tire Size:	265/70 R 17	7		Tire I	nflation Pre	essure:	3	5 psi
Tread Type:	Highway				Odo	meter: 1	58475	
Note any dan	hage to the ve	ehicle prior to te	est: None					
 Denotes ad 	celerometer	location				-		
NOTES: No			ł				\square	
				(Ī
Engine Type:	V-8		A M — ^{WHEEL}			<u> </u>		
Engine CID:	5.7 L					\rightarrow		WHEEL TRACK
Transmission	Туре:	_			J. M.	-4	-TEST INERTIAL (2. M.
Auto FWD		Manual		_ ▲Q	1			
			P					
Optional Equi None	ipment:		1	E		-	0	В
Dummy Data				FK.		╉ <u></u> ╉	=(m)	
Type:	NONE		<u> </u>			Lvt	-s	
Mass: Seat Positio	n [.]	0 lb		< F►-	н — н	L _G -e		D
Ocal i Osilio				↓ •	M		V M	
Geometry:	inches	40.00				-c		
A 78. B 74.		40.00	к	20.00 30.00	. P_	3.0 30.5		J <u>26.75</u> √ 30.25
B <u>(4.</u> C 227.		59.58	L M	68.50	. Q R	18.0		√ <u>30.25</u> ∧⁄ 59.5
D 44.		11.75	N	68.00	s –	13.0		x 79
E 140.	50 J	27.00	0	46.00	. – – Т	77.0		
Wheel Cen Height Fr		14.75 Clea	Wheel Well arance (Front)		6.00		Frame - Front	12.50
Wheel Cen Height R	iter	4 4 75	Wheel Well arance (Rear)		9.25	Bottom	Frame t - Rear	22.50
		:13 inches; E=148 ±12 i		es; G = > 28 in				
GVWR Ratin	gs:	Mass: Ib	<u>Curb</u>		Test	Inertial	<u>C</u>	Bross Static
	3700	Mfront		958		2894		2894
	3900	M _{rear}		125		2131		2131
Total 6	5700	M _{Total}	50	083 (Allowable F	Range for TIM and	5025 I GSM = 5000 I	b ±110 lb)	5025
Mass Distrib	ution: LF	1456	RF: 1	438	LR:	1122	RR:	1009
			INI		LIN		- INN.	

Figure C.1. Vehicle Properties for Test No. 440592-1.

Date:	2021-12-01	Test No.:	440592-1	VIN No.:	1C6RR6GS164205
Year:	2016	Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable					
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	$X1+X2$ _					
< 4 inches	2					
≥ 4 inches						

Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

G		Direct I	Direct Damage								
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C_5	C_6	±D
1	AT FT BUMPER	18	12	36							18
2	SAME	18	12	60							76
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Figure C.2. Exterior Crush Measurements for Test No. 440592-1.

Date:	2021-12-01	Test No.:	440592-1	VIN No.:	1C6RR6GS164205
Year:	2016	Make:	RAM	Model:	1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

DEF		N MEASUR	EMENT
	Before	After (inches)	Differ.
A1	65.00	65.00	0.00
A2	63.00	63	0.00
A3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
B3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	57.5	1
E2	63.50	64.5	1
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00

37.50

25.00

37.50

25.00

OCCUPANT COMPARTMENT

Figure C.3. Occupant Compartment Measurements for Test No. 440592-1.

L

J*

0.00

0.00

C.2. SEQUENTIAL PHOTOGRAPHS

Figure C.4. Sequential Photographs for Test No. 440592-1 (Overhead and Frontal Views).

0.300 s

0.500 s

Figure C.4. Sequential Photographs for Test No. 440592-1 (Overhead and Frontal Views) (Continued).

0.600 s

0.300 s 0.700 s Figure C.5. Sequential Photographs for Test No. 440592-1 (Rear View).

C.3. VEHICLE ANGULAR DISPLACEMENTS

Figure C.6. Vehicle Angular Displacements for Test No. 440592-1.

C.4. VEHICLE ACCELERATIONS

Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 440592-1 (Accelerometer Located at Center of Gravity).

Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 440592-1 (Accelerometer Located at Center of Gravity).

Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 440592-1 (Accelerometer Located at Center of Gravity).

APPENDIX D. MASHTEST 3-11 (CRASH TEST NO. 440592-2)

D.1 VEHICLE PROPERTIES AND INFORMATION

Date: 2	021-12-8	Test No.:	44059	2-2	VIN No.	100	SRR6FT3C	SS10751
Year:	2016	Make:	RAN	Λ	Model	:		
Tire Size:	265/70 R 17			Tire I	nflation Pre	essure: _	35	psi
Tread Type:	Highway				Odd	ometer: <u>1</u>	11318	
Note any dam	nage to the ve	hicle prior to to	est: <u>None</u>					
 Denotes ad 	celerometer l	ocation.]	◀X ◀₩►I	-		
NOTES: No	ne		1		7T		<u> </u>	
Engine Type: Engine CID:	V-8 5.7 L		A M WHEEL					
Transmission	Туре:		<u> </u>		-V-re-		-TEST INERTIAL C.	_
Auto FWD	or L	Manual						
Optional Equi			P —					
None			<u>↑</u>	5			°	
Dummy Data:			Ŭ J-Î I-I	-17'(G			HQ)4	
Type: Mass:	NONE	0 lb	·	F	U_	L _G L _v Ł	S	
Seat Positio					•	-E		
Geometry:	inches			¥:	M FRONT		▼ M rear	
A 78.5		40.00	К	20.00	Р	— с — <u>3</u> .0	0 U	26.75
в 74.	00 G	28.25		30.00		30.5	0 V	30.25
C 227.	50 H	60.84	M	68.50	R	18.0	<u> </u>	/ 60.8
D 44.0	00 <u> </u>	11.75	N	68.00	s	13.0	<u>0 x</u>	79
E140.		27.00	0	46.00	_ т_	77.0		
Wheel Cen Height Fro		14.75 Clea	Wheel Well arance (Front)		6.00	Bottom Height		12.50
Wheel Cen Height Re		14.75 Cle	Wheel Well arance (Rear)		9.25	Bottom Heiaht	Frame - Rear	22.50
-		13 inches; E=148 ±12 i	. ,	nes; G = > 28 ir	nches; H = 63 ±4 i	-		=67 ±1.5 inches
GVWR Rating	gs:	Mass: Ib	<u>Curk</u>	2	<u>Test</u>	<u>Inertial</u>	<u>G</u>	oss Static
	700	Mfront		2923		2871		2871
	900	M _{rear}		2067		2193		2193
Total 6	700	M _{Total}		1990 (Allowable	Range for TIM and	5064) +110 lb)	5064
Mass Distrib Ib	ution: LF:	1470	RF:	1401	LR:	1074	RR:	1119

Date:	2021-12-08	_ Test No.:	440592-2	VIN No.:	1C6RR6FT3GS10751
Year:	2016	Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable

End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2						
< 4 inches	2 =						
\geq 4 inches							

Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

(mar)(f) -		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C_5	C_6	±D
1	AT FT BUMPER	15	12	36							18
2	SAME	15	14	60							72
	Measurements recorded										
	√ inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 440592-2.

Γ

Date:	440592-2	_ VIN No.:	IN No.: 1C6RR6FT3GS10751		
Year:2016 Make:	RAM	Model:	1500		
		OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT			
		Before	After (inches)	Differ.	
J E1 E2 E3 E4	A1	65.00	65.00	0.00	
	A2	63.00	63	0.00	
	АЗ	65.50	65.50	0.00	
	B1	45.00	45.00	0.00	
	B2	38.00	38.00	0.00	
B1-3 B4-6 D1-3 C1-3 C1-3	B3	45.00	45.00	0.00	
	B4	39.50	39.50	0.00	
	в5	43.00	43.00	0.00	
	B6	39.50	39.50	0.00	
	C1	26.00	17.5	8.5	
	 C2	0.00	0.00	0.00	
	C3	26.00	26.00	0.00	
	D1	11.00	11.00	0.00	
B2,5 B1,4 B3,6 E1-4 J	D2	0.00	0.00	0.00	
	D3	11.50	11.50	0.00	
	E1	58.50	59.5	1	
	E2	63.50	64.5	1	
	E3	63.50	63.50	0.00	
	E4	63.50	63.50	0.00	
	F	59.00	59.00	0.00	
	G	59.00	59.00	0.00	
	Н	37.50	37.50	0.00	
*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.	· I	37.50	37.50	0.00	
	J*	25.00	21.5	3.5	

Figure D.3. Occupant Compartment Measurements for Test No. 440592-2.

D.2. SEQUENTIAL PHOTOGRAPHS

0.300 s Figure D.4. Sequential Photographs for Test No. 440592-2 (Overhead and Frontal Views).

Figure D.4. Sequential Photographs for Test No. 440592-2 (Overhead and Frontal Views) (Continued).

0.300 s 0.700 s Figure D.5. Sequential Photographs for Test No. 440592-2 (Rear View).

D.3. VEHICLE ANGULAR DISPLACEMENTS

Figure D.6. Vehicle Angular Displacements for Test No. 440592-2.

D.4. VEHICLE ACCELERATIONS

Figure D.7. Vehicle Longitudinal Accelerometer Trace for Test No. 440592-2 (Accelerometer Located at Center of Gravity).

Figure D.8. Vehicle Lateral Accelerometer Trace for Test No. 440592-2 (Accelerometer Located at Center of Gravity).

Figure D.9. Vehicle Vertical Accelerometer Trace for Test No. 440592-2 (Accelerometer Located at Center of Gravity).