

Guidance for TxDOT Innovative Intersections

Product 0-7036-P2

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

sponsored by the Federal Highway Administration and the Texas Department of Transportation https://tti.tamu.edu/documents/0-7036-P2.zip

Guidance for TxDOT Innovative Intersections

Project 0-7036 Research Findings and Guidelines

Literature Review

- Benefits of innovative intersections
- Types of innovative intersections
- Comparing different alternatives
- What else should be considered?

Benefits

Safety Benefits

Reducing the

number of

conflicting

points

Reducing the number of signal phases (more green time vs amber and red)

Need for less right of way

Capacity Benefits

Reduced emissions resulted from reduced delay

Types of Innovative Intersections

U-Turn-Based

- Median U-Turns (MUTs)
- Restricted Crossing U-Turns (RCUTs)
- J-Turn Intersections

Crossover-Based

- Displaced Left-Turns (DLTs)
- Diverging Diamond Interchanges (DDIs)

• Other

- Quadrant Roadway (QRs)
- Jughandle Intersections
- Continuous Green T Intersections (CGTs)
- Offset T Intersections
- Single Point Urban Interchanges (SPUIs)

Types of U-Turn Based Intersections

Source to all figures: Source: Chrysler et al.

Source: FIIWA DDI Informational Guide - Exhibit 1-1

Types of Other Innovative Intersections

QR Intersections with Left Turn

Source: Hughes et al

Types of Other Innovative Intersections

Which One is Bette How to choose one design over another?

Design Selection

- Single MOEs
 - Queue Estimation Models
 - Delay Models (HCS)

- Multi Objective Models
 - FHWA's ICE tool
 - Stage1: Scoping (short listing possible alternatives)
 - Stage2: Alternative Selection
 - Other states' ICE tools
 - Various research and state tools

Pedestrians and Bicyclists at Innovative Intersections, NCHRP 948

- NCHRP Report 948 used design flag method to evaluated each alternative for 20 conditions
 - NO FLAG: no unusual concern about that aspect of the pedestrian or bicyclist movement
 - YELLOW FLAG: concern that that aspect of the movement could be inconvenient or uncomfortable
 - RED FLAG: concern that that aspect of the movement could lead to more crashes

TxDOT Innovative Intersections

SAFETY REVIEW

Safety Review

- Identified crashes (using CRIS) within the boundary area of the innovative intersection
- Determined top conflict areas within the innovative intersection boundaries
- Investigated if or how specific features of the innovative intersection are associated with the crashes

Setting Study Site Limits for Crash Selection

- Identify the boundary limits based on intersection type
- Determine study limit using stopping sight distance (based on posted speed limit) upstream of boundary point

Filtering Crashes

- Crash data divided into five groups:
 - During period
 - Before period
 - After period
 - Prior to before period
 - More that 3 years after
- Removing crashes at neighboring intersections
- At DDIs and DLTs: remove freeway crashes

Crash Exploratory Analysis

					Crashes in	
	Crashes in	Months in	Crashes in	Months in	Recent	Months in
Intersection	Before Period	Before Period	After Period	After Period	Period ¹	Recent Period
DDI_AU	18	36	10	11	NA ²	NA
DDI_CS	97	36	9	8	NA	NA
DDI_EP	5	36	48	36	30	28
DDI_RR	80	36	151	36	50	13
DDI_TC ³	0	NA	2	36	1	10
DLT_AU1	75	36	62	36	34	27
DLT_AU2	77	36	73	36	65	27
DLT_CP	64	36	104	36	NA	NA
DLT_SA	539	36	55	6	NA	NA
DLT_SM1	117	36	122	36	95	30
DLT_SM2	145	36	172	36	103	28
MUT_AU	9	36	19	36	44	29
MUT_CS	33	36	6	16	NA	NA
RCUT_AU	55	36	59	36	5	12
Grand Total	1315	36	892	Varies	429	Varies

Hot Spots within Diverging Diamond Intersections

DDI El Paso (48 crashes)

DDI Round Rock (151 crashes) Back of queue potential issue

Hot Spots within Restricted Crossing U-Turn Intersection

RCUT Austin (59 crashes)

Hot Spots within Displaced Left-Turn Intersections

Crash Severity

Severity	DDI Before	DDI After	DLT Before	DLT After	MUT Before	MUT After	RCUT Before	RCUT After
Α	3%	1%	1%	1%	2%	4%	0%	0%
В	16%	15%	11%	14%	21%	8%	15%	0%
С	22%	15%	20%	18%	7%	12%	20%	14%
К	1%	1%	0%	0%	2%	0%	0%	0%
0	58%	68%	67%	66% 🤇	67%	76%	65%	86%
Grand Total	100%	100%	100%	100%	100%	100%	100%	100%

More than a 9-point increase in PDO crashes in after period (i.e., fewer severe crashes

Movement

Movement	DDI Before	DDI After	DLT Before	DLT After	MUT Before	MUT After	RCUT Before	RCUT After
Left Turn (LR)	31%	4%	29%	19%	12%	4%	2%	0%
Left/Right (LT-RT)	0%	0%	0%	0%	0%	0%	0%	0%
Right Turn (RT)	3%	2%	8%	9%	2%	12%	2%	0%
Straight	66%	94%	63%	72%	86%	84%	96%	100%
Grand Total	100%	100%	100%	100%	100%	100%	100%	100%

 \rightarrow Reduction in percent of left-turn crashes in the after period.

Crash Type

Crash Type	DDI Before	DDI After	DLT Before	DLT After	MUT Before	MUT After	RCUT Before	RCUT After
Angle	15%	5%	15%	20%	7%	16%	4%	0%
Head-on	27%	2%	16%	14%	0%	4%	2%	0%
Other	0%	0%	0%	0%	0%	0%	0%	0%
Rear-end	12%	19%	10%	12%	7%	8%	31%	34%
Sideswipe	34%	55%	52%	43%	21%	20%	51%	51%
Single Vehicle	11%	20%	7%	11%	64%	52%	13%	15%
Grand Total	100%	100%	100%	100%	100%	100%	100%	100%

→ Reduction in percent of head-on crashes in the after period for DDI

Summary

- Visual analysis: most crashes occurred at the center of the intersection
- Factors that contributed to crashes more in the after period were:
 - Vehicle changing lanes
 - Attention diverted from driving
 - Slowing/stopping for traffic
- Key findings of safety analysis:
 - Reduction in the percent of left-turn crashes
 - Severity of the crashes reduced (higher percentage of crashes occurring in the after period were non-injury crashes)

TxDOT Innovative Intersections

RCUTs Field Study and Simulation

Identify Field Study Locations

- Focusing on RCUTs
 - Want to know tradeoffs with regards to distances between main intersection and U-turn intersections
- Limited sites in Texas
- Identified 2 good sites in North Carolina

US-74 & Sardis Church Road North Carolina

US-74 & Faith Church Road North Carolina

U-turn (1 lane, 1100 ft NW)

NC-IT: Hwy 74 & Faith Church Rd

U-turn (1 lane: 1150 ft SE)

Google Earth

THE OF STREET

Field Data Collection & Reduction

- Data collection used drone mounted cameras, 2 vendors
 - Challenges with weather
 - Challenges with covering the full length of the corridor
 - One vendor tried to use 5 drones simultaneously, recording perpendicular
 - Other vendor used 2 drones recording at an angle
- Field data used to calibrate simulation model

Changed Lane?	Approach Lana	Donarturalana	Vehicl	Grand Total	
Changed Lane?	Approach Lane	Departure Lane	Truck	Passenger Car	Granu Iotai
	2	5	0	1	1
Yes	Э	6	0	1	1
	4	5	0	3	3
		6	0	46	46
		7	0	10	10
Yes Total			0	61	61
Grand Total			7	438	445

Movement	Articulate Truck	Box Truck	Passenger Car	Pickup Truck	Work Van	Grand Total
W-WB-Th	664	393	11176	520	264	13017
W-WB-U	1	2	584	1	1	589
E-EB-Th	228	446	7655	119	419	8867
E-EB-U	6	14	46	1	3	70

Simulation

- Several simulation models developed to investigate effects of spacing
- Key parameters were modified to create different scenarios.

Main Models:	For each model:
No RCUT	• Major road volume (vpd): 10000, 15000, and 20000
• 425 ft	• Minor road volume (vpd): 2000, 4000, 6000, 8000,
• 700 ft	10000, 12000, 14000
• 1000 ft	• Left-turn percent: 10, 20 or 30 percent
• 1500 ft	• Truck percent: 5, 22, or 35 percent, or heavy truck
• 2000 ft	percent: 2.5, 5.5, or 8.75%

Average Corridor Speed by Distance between Main Intersection and U-turn

Average Speed by Path and Distance between Main Intersection and U-Turn

Summary

 Simulation found spacing of 2000 ft between main intersection and U-turn intersections to have highest speeds; although spacing of 1000 ft or 1500 ft was within 5 mph

Alternative Intersections

- We are seeing more use in Texas
- Are associated with fewer left-turn crashes / national research are finding overall crash reductions
- Select design features are important, for example:
 - Spacing between main intersection and U-turn intersections
 - Use of loons at U-turn intersections

For more...

https://tti.tamu.edu/documents/0-7036-R1.pdf