TTI: 0-6990

MASH TL-3 TRANSITION BETWEEN MEDIAN GUARDRAIL AND MEDIAN CONCRETE BARRIER

Test Report 0-6990-R1

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/0-6990-R1.pdf

1. Reprint No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-21/0-6990-R1 3. Recipient's Catalog No. 3. Recipient's Catalog No. AND MEDIAN CONCRETE BARRIER 5. Report Date Published: June 2021 7. Author(s) Akram Y. Abu-Odeh, Nathan D. Schulz, Maysam Kiani, , Ariel Sheil, Wanda L. Menges, William Schroeder, Bill L. Griffith, and 8. Performing Organization Report No. 0. Performing Organization Rue and Address 10. Work Unit No. (TRAIS) 7. exas A&M Transportation Institute 11. Commet or Grant No. The Exas A&M University System 10. Work Unit No. (TRAIS) 7. Spacerity No. 11. Commet or Grant No. 7. Spacerity No. 11. Commet or Grant No. 7. Spacerity No. 11. Commet or Grant No. 7. Spacerity No. 11. Spacerity Code 12. Spacerity Notes 13. Type of Report and Period Covered Technical Report: 7. Spacerity Notes 13. Spacerity Code 7. Stappent Date 14. Spacerity Notes 7. Spacerity Notes 13. Spacerity Notes 7. Spacerity Notes 13. Spacerity Notes 7. Spacerity Notes 14. Spacerity Spacerity Notes 7. Spacerity Notes 14. Spacerity Spacerity Spacerity Spacerity Hardware (MASH) <				l echnical Rep	ort Documentation Page	
4. Title and Subbility 5. Report Date: MASH TL-3 TRANSITION BETWEEN MEDIAN GUARDRAIL 6. Performing Organization Code AND MEDIAN CONCRETE BARRIER 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Akram Y. Abu-Odeh, Nathan D. Schulz, Maysam Kiani, , Ariel Sheil, 8. Performing Organization Report No. 9. Performing Organization Name and Address 10. Work Uait No. (TRAIS) Texas A&M Transportation Institute 11. Contract or Grant No. Project 0-69900 11. Contract or Grant No. College Station, Texas 77843-3135 11. Contract or Grant No. Texas Department of Transportation 13. Type of Report and Period Covered Research and Technology Implementation Office 28 performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project 0.6990-R1.pdf 16. Abstract 11. Compliant transition between a median guardrail and median concrete barrier, and th text the design according to MASH TL-3 crash testing guidelines. The design was developed using finite element computer simulations.	1. Report No. FHWA/TX-21/0-6990-R1	2. Government Accession	n No.	3. Recipient's Catalog No.).	
AND MEDIAN CONCRETE BARRIER 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Akram Y. Abu-Odeh, Nathan D. Schulz, Maysam Kiani, , Ariel Sheil, Wanda L. Menges, William Schroeder, Bill L. Griffith, and 8. Performing Organization Report No. 9. Performing Organization Name and Address Texas A&M Transportation Institute 10. Work Unit No. (TRAIS) 11. Contract or Grant No. College Station, Texas 77843-3135 10. Work Unit No. (TRAIS) 12. Separatiment of Transportation 	4. Title and Subtitle MASH TL-3 TRANSITION BETW	EEN MEDIAN GI	JARDRAIL	5. Report Date Published: June 2021		
7. Author(s) 8. Performing Organization Report No. Akram Y. Abu-Odeh, Nathan D. Schulz, Maysam Kiani, , Ariel Sheil, Wanda L. Menges, William Schroeder, Bill L. Griffith, and 8. Performing Organization Report No. 9. Performing Organization Name and Address Texas A&M University System College Station, Texas 77843-3135 10. Work Unit No. (TRAIS) 12. Sepresoning Agency Name and Address Texas Department of Transportation Research and Technology Implementation Office 12. Supprementary Notes 11. Tommact or Grant No. Project 0-6990 13. Supprementary Notes 13. Type Report and Period Covered Texas 78701-2483 13. Type Report and Period Covered Technical Report: September 2018–December 20 14. Sponsoring Agency Code 15. Supprementary Notes 13. Supprementary Notes 13. Type Report and Period Covered Technical Report: September 2018–December 20 14. Sponsoring Agency Code 15. Supprementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Development of MASH Test Level 3 (TL-3) Compliant Transition between Median Guardr: and Median Concrete Barrier URL: http://tti.tamu.edu/documents/0-6990-R1.pdf 16. Abstract The purpose of this research was to develop a Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) compliant transition between a median guardrail and median concrete barrier, and th test the design according to MASH TL-3 crash tests and results, and the performance assessment of the median transition system, the crash tests and results, and the performance assessement of the media	AND MEDIAN CONCRETE BAR	RIER		6. Performing Organizati	on Code	
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas A&M Transportation Institute 11. Contract or Grant No. The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 13. Type of Report and Period Covered Texas Department of Transportation 13. Type of Report and Period Covered Research and Technology Implementation Office 13. Type of Report and Period Covered 125. E. 11th Street 14. Sponsoring Agency Code Austin, Texas 77801-2483 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code Project Title: Development of MASH Test Level 3 (TL-3) Compliant Transition between Median Guardr: and Median Concrete Barrier 10. Abstract The purpose of this research was to develop a Manual for Assessing Safety Hardware (MASH) 16. Abstract Test Level 3 (TL-3) compliant transition between a median guardrail and median concrete barrier, and th test the design according to MASH TL-3 crash testing guidelines. The design was developed using finite element computer simulations. This report provides details on the computer simulations, the Texas Department of Transportation (TxDOT) median transition met the performance criteria for MASH TL-3 transitions. 17. Key Words 18. Distribution Statement 17. Key Words 18. Distribution Statement 1	^{7. Author(s)} Akram Y. Abu-Odeh, Nathan D. Sch Wanda L. Menges, William Schroed Darrell L. Kuhn	hulz, Maysam Kiaı ler, Bill L. Griffith	ni, , Ariel Sheil, , and	8. Performing Organizati Report 0-6990-R	on Report No. 1	
The Texas A&M University System College Station, Texas 77843-3135 11. Contract or Grant No. Project 0-6990 12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Implementation Office 125 E. 11th Street Austin, Texas 78701-2483 13. Type of Report and Period Covered Technical Report: September 2018–December 20 14. Sponsoring Agency Code 15. Supplementary Noes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. 14. Sponsoring Agency Code Project Title: Development of MASH Test Level 3 (TL-3) Compliant Transition between Median Guardra and Median Concrete Barrier URL: http://tit.tamu.edu/documents/0-6990-R1.pdf 16. Abstract The purpose of this research was to develop a Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) compliant transition between a median guardrail and median concrete barrier, and th test the design according to MASH TL-3 crash testing guidelines. The design was developed using finite element computer simulations. This report provides details on the computer simulations, the Texas Department of Transportation (TxDOT) median transition met the performance criteria for MASH TL-3 transitions. 17. Key Words Longitudinal Barrier, Concrete Median Barrier, Transition, W-beam, Median Guardrail, Crash 18. Distribution Statement No restrictions. This document is available to the public through NTIS: National Technical Hoffmantion Service	9. Performing Organization Name and Address Texas A&M Transportation Institute	e		10. Work Unit No. (TRA	IS)	
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation September 2018–December 20 Research and Technology Implementation Office September 2018–December 20 125 E. 11th Street 14. Sponsoring Agency Code Austin, Texas 78701-2483 14. Sponsoring Agency Code 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Development of MASH Test Level 3 (TL-3) Compliant Transition between Median Guardra and Median Concrete Barrier URL: http://tti.tamu.edu/documents/0-6990-R1.pdf 16. Abstract The purpose of this research was to develop a Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) compliant transition between a median guardrail and median concrete barrier, and th test the design according to MASH TL-3 crash testing guidelines. The design was developed using finite element computer simulations. This report provides details on the computer simulations, the Texas Department of Transportation (TxDOT) median transition met the performance criteria for MASH TL-3 transitions. 17. Key Words 18. Distribution Statement Longitudinal Barrier, Concrete Median Barrier, Transition, W-beam, Median Guardrail, Crash 18. Distribution Statement No restrictions. This document is available to the public through NTIS: National Technical Information	The Texas A&M University System College Station, Texas 77843-3135	l		11. Contract or Grant No. Project 0-6990		
125 E. 11th Street 14. Sponsoring Agency Code 125 E. 11th Street 14. Sponsoring Agency Code 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Development of MASH Test Level 3 (TL-3) Compliant Transition between Median Guardra and Median Concrete Barrier URL: http://tit.tamu.edu/documents/0-6990-R1.pdf 16. Abstract The purpose of this research was to develop a Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) compliant transition between a median guardrail and median concrete barrier, and th test the design according to MASH TL-3 crash testing guidelines. The design was developed using finite element computer simulations. This report provides details on the computer simulations, the Texas Department of Transportation (TxDOT) median transition system, the crash tests and results, and the performance assessment of the median transition for MASH TL-3 transition evaluation criteria. The TxDOT median transition met the performance criteria for MASH TL-3 transitions. 17. Key Words Longitudinal Barrier, Concrete Median Barrier, Transition, W-beam, Median Guardrail, Crash Testing. Roadside Safety 18. Distribution Statement No restrictions. This document is available to the public through NTIS: Transition, W-beam, Median Guardrail, Crash Testing. Roadside Safety	12. Sponsoring Agency Name and Address Texas Department of Transportation Research and Technology Implement	n ntation Office		13. Type of Report and Pe Technical Report September 2018-	eriod Covered I: -December 2020	
15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Development of MASH Test Level 3 (TL-3) Compliant Transition between Median Guardr. and Median Concrete Barrier URL: http://tti.tamu.edu/documents/0-6990-R1.pdf 16. Abstract The purpose of this research was to develop a Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) compliant transition between a median guardrail and median concrete barrier, and th test the design according to MASH TL-3 crash testing guidelines. The design was developed using finite element computer simulations. This report provides details on the computer simulations, the Texas Department of Transportation (TxDOT) median transition system, the crash tests and results, and the performance assessment of the median transition for MASH TL-3 transition evaluation criteria. 17. Key Words 18. Distribution Statement 18. Distribution Statement No restrictions. This document is available to the public through NTIS: 17. Key Words 18. Distribution Statement 17. Key Words 18. Distribution Statement 17. Key Words 18. Distribution Statement 17. Key Words 18. Distribution	125 E. 11th Street Austin Texas 78701-2483			14. Sponsoring Agency C	lode	
17. Key Words 18. Distribution Statement 18. Distribution Statement No restrictions. This document is available to the public through NTIS:	Project performed in cooperation wi Administration. Project Title: Development of <i>MASI</i> and Median Concrete Barrier URL: http://tti.tamu.edu/documents/ 16. Abstract	th the Texas Depar H Test Level 3 (TL /0-6990-R1.pdf	-3) Compliant Tra	tation and the Fede	ral Highway edian Guardrail	
This report provides details on the computer simulations, the Texas Department of Transportation (TxDOT) median transition system, the crash tests and results, and the performance assessment of the median transition for MASH TL-3 transition evaluation criteria. The TxDOT median transition met the performance criteria for MASH TL-3 transitions. 17. Key Words Longitudinal Barrier, Concrete Median Barrier, Transition, W-beam, Median Guardrail, Crash Testing Boadside Safety	The purpose of this research Test Level 3 (TL-3) compliant trans test the design according to <i>MASH</i> T element computer simulations.	was to develop a <i>M</i> ition between a me IL-3 crash testing g	Manual for Assessin dian guardrail and guidelines. The des	ng Safety Hardwar median concrete b ign was developed	e (MASH) arrier, and then using finite	
17. Key Words 18. Distribution Statement Longitudinal Barrier, Concrete Median Barrier, No restrictions. This document is available to the public through NTIS: Testing, Roadside Safety National Technical Information Service	This report provides details on the computer simulations, the Texas Department of Transportation (TxDOT) median transition system, the crash tests and results, and the performance assessment of the median transition for <i>MASH</i> TL-3 transition evaluation criteria.				ransportation ent of the	
17. Key Words18. Distribution StatementLongitudinal Barrier, Concrete Median Barrier, Transition, W-beam, Median Guardrail, Crash18. Distribution Statement No restrictions. This document is available to the public through NTIS: National Technical Information Service	The TxDOT median transition met the performance criteria for MASH TL-3 transitions.					
17. Key Words18. Distribution StatementLongitudinal Barrier, Concrete Median Barrier, Transition, W-beam, Median Guardrail, Crash18. Distribution StatementTesting Roadside Safety18. Distribution StatementNo restrictions. This document is available to the public through NTIS:National Technical Information Service						
Alexandria, Virginia	^{17. Key Words} Longitudinal Barrier, Concrete Median Barrier, Transition, W-beam, Median Guardrail, Crash Testing, Roadside Safety		18. Distribution Statemen No restrictions. T public through N' National Technic Alexandria, Virgi	t This document is av TIS: al Information Ser inia	vailable to the	
19. Security Classif.(of this report)20. Security Classif.(of this page)21. No. of Pages22. PriceUnclassifiedUnclassified256	19. Security Classif.(of this report) Unclassified	20. Security Classif.(of th Unclassified	is page)	21. No. of Pages 256	22. Price	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

MASH TL-3 TRANSITION BETWEEN MEDIAN GUARDRAIL AND MEDIAN CONCRETE BARRIER

by

Akram Y. Abu-Odeh Research Scientist Texas A&M Transportation Institute

Nathan D. Schulz Assistant Research Scientist Texas A&M Transportation Institute

Maysam Kiani Assistant Research Engineer Texas A&M Transportation Institute

Ariel Sheil Research Assistant Texas A&M Transportation Institute

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

William Schroeder Engineering Research Associate Texas A&M Transportation Institute

Bill L. Griffith Research Specialist Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

> Report 0-6990-R1 Project 0-6990

Project Title: Development of *MASH* Test Level 3 (TL-3) Compliant Transition between Median Guardrail and Median Concrete Barrier

> Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

> > Published: June 2021

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation. This report is not intended for construction, bidding, or permit purposes. The researcher in charge of the project was Akram Y. Abu-Odeh, Ph.D. The United States Government and the State of Texas does not endorse products or manufacturers. Trade or manufacaturers' names appear herein solely because they are considered essential to the object of this report.

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

REPORT AUTHORIZATION

_	D٥	cu	Signe	d	by:
~		,	~		<u> </u>

Bill Griffifle _44A122CB271845B...

Bill L. Griffith, Research Specialist Deputy Quality Manager

---- DocuSigned by:

Matt Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

DocuSigned by:
Danell Kuhr
D4CC23E85D5B4E7.

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

DocuSigned by:
De
- Alta
6066AE1BB17D407.

Akram Y. Abu-Odeh, Ph.D. Research Scientist

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas A&M Transportation Institute, TxDOT, and FHWA. The TxDOT project manager for this research was Wade Odell, Research and Technology Implementation. Technical support and guidance were provided by Christopher Lindsey, Jon Ries, and Geetha Chandar. The authors acknowledge and appreciate their assistance and feedback throughout the project.

The authors acknowledge the computational resources and support provided by Texas A&M High Performance Research Computing (http://hprc.tamu.edu/). Additionally, the authors acknowledge ANSYS LST for providing the explicit finite element code LS-DYNA.

TABLE OF CONTENTS

List of Fi	igures	xi
List of T	ables	٢V
Chapter	1: Background	1
1.1	Introduction	1
1.2	Problem	1
1.3	Background	2
1.4	Objective/Scope of Research	2
1.5	Research Structure	3
Chapter	2: Literature Review	5
2.1	Crash Tested Hardware	5
2.	.1.1 MASH Test 3-21 on Nested W-beam with Rub Rail	5
2.	.1.2 MASH Test 3-11 on 27-inch W-beam Median Barrier	6
2.	.1.3 MASH Test 3-11 on TxDOT 31-inch W-beam Median Barrier	7
2.	.1.4 NCHRP Report 350 TL-3 Median Barrier Transition 1	11
2.	.1.5 MASH 3-21 Stacked W-beam Guardrail Transition	12
2.	.1.6 MASH 3-21 Modified TxDOT Thrie-Beam Transition	15
2.	.1.7 MASH TL-3 W-beam to Thrie-Beam Stiffness Transition	17
2.	1.8 MASH TL-3 W-beam to Thrie-Beam Transition with Curb1	8
2.2	State Standard Hardware (Not Crash Tested)1	9
2.	2.1 Florida DOT	20
2.	2.2 Massachusetts DOT	20
2.	2.3 New Hampshire DOT	21
2.	2.4 New Jersey DOT	22
2.	2.5 Utah DOT	23
Chapter	3: Simulation	25
3.1	Design	25
3.2	Development of Design Concepts	29
3.	2.1 Asymmetric Concepts	29
3.	2.2 Symmetric Concepts	34
3.3	Asymmetric Median Transition Simulations	36
3.	3.1 MASH Test 3-20 at Downstream Transition	38
3.	3.2 MASH Test 3-20 at Middle Transition	39
3.	.3.3 MASH Test 3-20 at Upstream Transition	10
3.	.3.4 MASH Test 3-21 at Downstream Transition	11
3.	.3.5 MASH Test 3-21 at Middle Transition	12
3.	.3.6 MASH Test 3-21 at Upstream Transition	13
3.4	Symmetric Median Transition	14
3.5	Conclusions	17

TABLE OF CONTENTS (CONTINUED)

4.1 Test Article and Installation Details 49 4.2 Design Modifications during Tests 49 4.3 Material Specifications 49 4.4 Soil Conditions 51 4.5 Concrete Strength 52 Chapter 5: Test Requirements and Evaluation Criteria 53 5.1 Crash Test Matrix 53 5.2 Evaluation Criteria 54 Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 60 Concrete Barrier 61 7.1 Test Designation and Actual Impact Conditions 61 7.4 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 62 7.5 Damage to Test Installation 62 62 7.5 Damage to Test Installation 62 7.6 Occupant Risk Factors 64 78	Chapter	4: System Details	. 49
4.2 Design Modifications during Tests 49 4.3 Material Specifications 49 4.4 Soil Conditions 51 4.5 Concrete Strength 52 Chapter 5: Test Requirements and Evaluation Criteria 53 5.1 Crash Test Matrix 53 5.2 Evaluation Criteria 54 Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.3 Data Acquisition Systems 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to Concrete Barrier Concrete Barrier 61 7.2 7.3 Test Designation and Actual Impact Conditions 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 MASH Test 3-21 (Crash Test No. 469900-0	4.1	Test Article and Installation Details	. 49
4.3 Material Specifications 49 4.4 Soil Conditions 51 4.5 Concrete Strength 52 Chapter 5: Test Requirements and Evaluation Criteria 53 5.1 Crash Test Matrix 53 5.2 Evaluation Criteria 54 Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.8 Results and Con	4.2	Design Modifications during Tests	. 49
4.4 Soil Conditions 51 4.5 Concrete Strength 52 Chapter 5: Test Requirements and Evaluation Criteria 53 5.1 Crash Test Matrix 53 5.2 Evaluation Criteria 54 Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Daruage to Test Vehicle 64 7.6 Occupant Risk Factors 64 7.6 Coccupant Risk Factors <td>4.3</td> <td>Material Specifications</td> <td>. 49</td>	4.3	Material Specifications	. 49
4.5 Concrete Strength	4.4	Soil Conditions	51
Chapter 5: Test Requirements and Evaluation Criteria 53 5.1 Crash Test Matrix 53 5.2 Evaluation Criteria 54 Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 Concrete Barrier 61 61 7.2 Weather Conditions 61 7.3 Test Designation and Actual Impact Conditions 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Installation 63 8.1 Test Designation and Actu	4.5	Concrete Strength	. 52
5.1 Crash Test Matrix 53 5.2 Evaluation Criteria 54 Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.6 Damage to Test Installation 63 8.1 <td< td=""><td>Chapter</td><td>5: Test Requirements and Evaluation Criteria</td><td>53</td></td<>	Chapter	5: Test Requirements and Evaluation Criteria	53
5.2 Evaluation Criteria 54 Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 64 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Dawage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 70 Transition to Concrete Barrier 69 8.1 8.1 Test Designation and Actual Impact Conditions 69	5.1	Crash Test Matrix	53
Chapter 6: Test Conditions 57 6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Vehicle 64 7.6 Dacupat Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 69 8.1 Test Designation and Actual Impact Conditions 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Designation and Actual Impact Conditi	5.2	Evaluation Criteria	. 54
6.1 Test Facility 57 6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Vehicle 64 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Description 70 8.5 Damage to Test Vehicle 72	Chapter	6: Test Conditions	57
6.2 Vehicle Tow and Guidance System 57 6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Description 70 8.5 Damage to Test Installation	6.1	Test Facility	. 57
6.3 Data Acquisition Systems 57 6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 69 8.1 Test Designation and Actual Impact Conditions 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Description 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Installation 70 8.7 Descrip	6.2	Vehicle Tow and Guidance System	. 57
6.3.1 Vehicle Instrumentation and Data Processing 57 6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 70 Transition to Concrete Barrier 69 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 70 8.5 Damage to Test Installation 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Installation 70 8.7 Test Description	6.3	Data Acquisition Systems	. 57
6.3.2 Anthropomorphic Dummy Instrumentation 58 6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Designation and Actual Impact Conditions 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 69 8.1 Test Designation and Actual Impact Conditions 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Description 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Installation 70 8.5 Damage to Test Vehicle 72 8.6 Damage to	6	.3.1 Vehicle Instrumentation and Data Processing	. 57
6.3.3 Photographic Instrumentation and Data Processing 59 Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to 61 Concrete Barrier 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Vehicle 61 7.5 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 70 Transition to Concrete Barrier 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Designation and Actual Impact Conditions 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Installation 70 8.7 Occupant Risk Factors 72 8.7 Occupant Risk Factors 72 8.7 O	6	.3.2 Anthropomorphic Dummy Instrumentation	58
Chapter 7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to Concrete Barrier 7.1 Test Designation and Actual Impact Conditions 61 7.1 Test Designation and Actual Impact Conditions 61 7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median Transition to Concrete Barrier 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Vehicle 69 8.4 Test Description 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Installation 70 8.6 Damage to Test I	6	.3.3 Photographic Instrumentation and Data Processing	. 59
Concrete Barrier	Chapter	7: MASH Test 3-21 (Crash Test No. 469900-01-1) on Median Transition to	
7.1Test Designation and Actual Impact Conditions617.2Weather Conditions617.3Test Vehicle617.4Test Description627.5Damage to Test Installation627.6Damage to Test Vehicle647.7Occupant Risk Factors647.8Results and Conclusions65Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median698.1Test Designation and Actual Impact Conditions698.2Weather Conditions698.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Installation708.7Occupant Risk Factors728.7Occupant Risk Factors728.7Occupant Risk Factors728.7Occupant Risk Factors728.7Occupant Risk Factors729.1Test Designation and Actual Impact Conditions759.2Weather Conditions759.1Test Designation and Actual Impact Conditions759.2Weather Conditions759.3Test Vehicle759.4Test Description769.5Descreet to Test Installation769.6Descreet to Test Installation759.7Descreet to Test Installation759.8Test Description759.9Test Description75 <th>Concret</th> <th>e Barrier</th> <th>61</th>	Concret	e Barrier	61
7.2 Weather Conditions 61 7.3 Test Vehicle 61 7.4 Test Description 62 7.5 Damage to Test Installation 62 7.6 Damage to Test Vehicle 64 7.7 Occupant Risk Factors 64 7.8 Results and Conclusions 65 Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median 69 8.1 Test Designation and Actual Impact Conditions 69 8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Installation 70 8.5 Damage to Test Installation 70 8.6 Damage to Test No. 469900-01-3) on Modified Median 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Vehicle 72 8.7 Occupant Risk Factors 72 8.7 Occupant Risk Factors 72 8.7 Occupant Risk Factors 72 8.8 Test Designation and Actual Impact Conditions 75 9.1 Test	7.1	Test Designation and Actual Impact Conditions	61
7.3Test Vehicle617.4Test Description627.5Damage to Test Installation627.6Damage to Test Vehicle647.7Occupant Risk Factors647.8Results and Conclusions65Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified MedianTransition to Concrete Barrier698.1Test Designation and Actual Impact Conditions698.2Weather Conditions8.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle728.7Occupant Risk Factors72Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified MedianTransition to Concrete Barrier759.1Test Designation and Actual Impact Conditions759.1Test Designation and Actual Impact Conditions759.3Test Vehicle759.3Test Vehicle759.4Test Description769.4Test Description759.4Test Description769.5Damage to Test Installation	7.2	Weather Conditions	61
7.4Test Description627.5Damage to Test Installation627.6Damage to Test Vehicle647.7Occupant Risk Factors647.8Results and Conclusions65Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified MedianTransition to Concrete Barrier698.1Test Designation and Actual Impact Conditions698.2Weather Conditions8.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Installation708.7Occupant Risk Factors728.7Occupant Risk Factors72Rapide 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified MedianTransition to Concrete Barrier759.1Test Designation and Actual Impact Conditions759.1Test Designation and Actual Impact Conditions759.2Weather Conditions759.3Test Vehicle759.4Test Description76Description77 </td <td>7.3</td> <td>Test Vehicle</td> <td>61</td>	7.3	Test Vehicle	61
7.5Damage to Test Installation627.6Damage to Test Vehicle647.7Occupant Risk Factors647.8Results and Conclusions65Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified MedianTransition to Concrete Barrier698.1Test Designation and Actual Impact Conditions698.2Weather Conditions698.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle71Occupant Risk Factors727073707470759.171Test Designation and Actual Impact Conditions759.1759.1759.1759.3759.3759.4759.4759.47575757677767677777879747575757677777879747575757677777879797075757575 <t< td=""><td>7.4</td><td>Test Description</td><td>. 62</td></t<>	7.4	Test Description	. 62
7.6Damage to Test Vehicle	7.5	Damage to Test Installation	. 62
7.7Occupant Risk Factors647.8Results and Conclusions65Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified MedianTransition to Concrete Barrier698.1Test Designation and Actual Impact Conditions698.2Weather Conditions698.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle728.7Occupant Risk Factors72Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified MedianTransition to Concrete Barrier759.1Test Designation and Actual Impact Conditions759.1Test Designation and Actual Impact Conditions759.1Test Designation and Actual Impact Conditions759.3Test Vehicle759.4Test Description769.4Test Description769.5Description769.4Test Lest Plating76757775787579757475	7.6	Damage to Test Vehicle	. 64
7.8Results and Conclusions65Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified MedianTransition to Concrete Barrier698.1Test Designation and Actual Impact Conditions698.2Weather Conditions698.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle728.7Occupant Risk Factors72Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified Median759.1Test Designation and Actual Impact Conditions759.1Test Designation and Actual Impact Conditions759.1Test Designation and Actual Impact Conditions759.2Weather Conditions759.3Test Vehicle759.4Test Description769.5Description76	7.7	Occupant Risk Factors	64
Chapter 8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified MedianTransition to Concrete Barrier698.1Test Designation and Actual Impact Conditions698.2Weather Conditions698.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle728.7Occupant Risk Factors72Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified MedianTransition to Concrete Barrier759.1Test Designation and Actual Impact Conditions759.3Test Vehicle759.4Test Description760.5Description760.5Description76	7.8	Results and Conclusions	65
Transition to Concrete Barrier698.1Test Designation and Actual Impact Conditions698.2Weather Conditions698.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle728.7Occupant Risk Factors72Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified MedianTransition to Concrete Barrier759.1Test Designation and Actual Impact Conditions759.2Weather Conditions759.3Test Vehicle759.4Test Description769.5Description769.4Test Description769.59.4Test Description76	Chapter	8: MASH Test 3-21 (Crash Test No. 469900-01-2) on Modified Median	
8.1 Test Designation and Actual Impact Conditions 69 8.2 Weather Conditions 69 8.3 Test Vehicle 69 8.4 Test Description 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Vehicle 72 8.7 Occupant Risk Factors 72 Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified Median 75 9.1 Test Designation and Actual Impact Conditions 75 9.1 Test Designation and Actual Impact Conditions 75 9.2 Weather Conditions 75 9.3 Test Designation and Actual Impact Conditions 75 9.3 Test Vehicle 75 9.4 Test Description 76 9.5 Demoge to Test Installation 76	Transitio	on to Concrete Barrier	. 69
8.2 Weather Conditions 69 8.3 Test Vehicle 69 8.4 Test Description 70 8.5 Damage to Test Installation 70 8.6 Damage to Test Vehicle 72 8.7 Occupant Risk Factors 72 Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified Median Transition to Concrete Barrier 75 9.1 Test Designation and Actual Impact Conditions 75 9.1 Test Designation and Actual Impact Conditions 75 9.3 Test Vehicle 75 9.4 Test Description 76 9.5 Democra to Test Installation 76	8.1	Test Designation and Actual Impact Conditions	. 69
8.3Test Vehicle698.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle728.7Occupant Risk Factors72Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified MedianTransition to Concrete Barrier759.1Test Designation and Actual Impact Conditions759.2Weather Conditions759.3Test Vehicle759.4Test Description769.5Demage to Test Installation76	8.2	Weather Conditions	69
8.4Test Description708.5Damage to Test Installation708.6Damage to Test Vehicle728.7Occupant Risk Factors72Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified MedianTransition to Concrete Barrier759.1Test Designation and Actual Impact Conditions759.2Weather Conditions759.3Test Vehicle759.4Test Description769.5Demographic Test Installation76	8.3	Test Vehicle	69
8.5 Damage to Test Installation 70 8.6 Damage to Test Vehicle 72 8.7 Occupant Risk Factors 72 Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified Median Transition to Concrete Barrier 75 9.1 Test Designation and Actual Impact Conditions 75 9.1 Test Designation and Actual Impact Conditions 75 9.3 Test Vehicle 75 9.4 Test Description 76 9.5 Demographic Test Installation 76	8.4	Test Description	70
8.6 Damage to Test Vehicle	8.5	Damage to Test Installation	.70
8.7 Occupant Risk Factors 72 Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified Median Transition to Concrete Barrier 75 9.1 Test Designation and Actual Impact Conditions 75 9.2 Weather Conditions 75 9.3 Test Vehicle 75 9.4 Test Description 76 9.5 Demographic Test Installation 76	8.6	Damage to Test Vehicle	.72
Chapter 9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified Median Transition to Concrete Barrier	8.7	Occupant Risk Factors	.72
Transition to Concrete Barrier	Chapter	9: MASH Test 3-20 (Crash Test No. 469900-01-3) on Modified Median	
9.1 Test Designation and Actual Impact Conditions 75 9.2 Weather Conditions 75 9.3 Test Vehicle 75 9.4 Test Description 76 9.5 Demographic Test Installation 76	Transiti	on to Concrete Barrier	.75
9.2 Weather Conditions 75 9.3 Test Vehicle 75 9.4 Test Description 76 9.5 Demoge to Test Installation 76	9.1	Test Designation and Actual Impact Conditions	75
9.3 Test Vehicle 75 9.4 Test Description 76 9.5 Demoge to Test Installation 76	9.2	Weather Conditions	.75
9.4 Test Description	9.3	Test Vehicle	75
0.5 Demoge to Test Installation 70	9.4	Test Description	.76
9.) Damage to Test Installation	9.5	Damage to Test Installation	.76

TABLE OF CONTENTS (CONTINUED)

9.6	Damage to Test Vehicle	78
9.0 9.7	Occupant Risk Factors	78
Chanter	10. MASH Test 3-21 (Crash Test No. 460000-01-4) on Median Guardrail to	
Modifie	10. MASH Test 3-21 (Clash Test No. 407700-01-4) on Median Guardran to Median Transition	81
10.1	Test Designation and Actual Impact Conditions	81
10.1	Weather Conditions	
10.2	Test Vehicle	81
10.5	Test Description	82
10.5	Damage to Test Installation	82
10.6	Damage to Test Vehicle	
10.7	Occupant Risk Factors	
Chapter	11: MASH Test 3-20 (Crash Test No. 469900-01-5) on Median Guardrail to)
Modifie	l Median Transition	
11.1	Test Designation and Actual Impact Conditions	
11.2	Weather Conditions	
11.3	Test Vehicle	
11.4	Test Description	
11.5	Damage to Test Installation	
11.6	Damage to Test Vehicle	
11.7	Occupant Risk Factors	
Chapter	12: Post Crash Test Simulation Checks	
12.1	Test 3-20 at Upstream Transition	
12.2	Test 3-20 at Middle Transition	
12.3	Test 3-21 at Middle Transition	
Chapter	13: Summary and Conclusions	
13.1	Assessment of Results	
13.2	Conclusions	
Chapter	14: Implementation	107
Referen	Ces	109
Append	ix A. Details on the Transitions	111
A.1	Original Transition Used for Test No. 469900-01-1	111
A.2	Modified Transition Used for Test No. 469900-01-2 through 469900-01-5	135
Append	ix B. Supporting Certification Documents	161
Append	x C. Soil Properties	175
Append	ix D. MASH Test 3-21 (Crash Test No. 469900-01-1)	181
D.1	Vehicle Properties and Information	181
D.2	Sequential Photographs	185
D.3	Vehicle Angular Displacement	188
D.4	Vehicle Accelerations	189

TABLE OF CONTENTS (CONTINUED)

Appendi	ix E. MASH Test 3-21 (Crash Test No. 469900-01-2)	193
E.1	Vehicle Properties and Information	193
E.2	Sequential Photographs	197
E.3	Vehicle Angular Displacement	200
E.4	Vehicle Accelerations	201
Appendi	ix F. MASH Test 3-20 (Crash Test No. 469900-01-3)	205
F.1	Vehicle Properties and Information	205
F.2	Sequential Photographs	208
F.3	Vehicle Angular Displacement	211
F.4	Vehicle Accelerations	212
Appendi	ix G. MASH Test 3-21 (Crash Test No. 469900-01-4)	215
G.1	Vehicle Properties and Information	215
G.2	Sequential Photographs	219
G.3	Vehicle Angular Displacement	222
G.4	Vehicle Accelerations	223
Appendi	ix H. MASH Test 3-20 (Crash Test No. 469900-01-5)	227
H.1	Vehicle Properties and Information	227
H.2	Sequential Photographs	230
H.3	Vehicle Angular Displacement	233
H.4	Vehicle Accelerations	234
Appendi	ix I. Value of Research	237

LIST OF FIGURES

Figure 2.1.W-beam Transition before Testing (2).5Figure 2.2.W-beam Transition after Testing (2).6Figure 2.3.G4(1S) W-beam Median Barrier before MASH Test 3-11 (2).6Figure 2.4.G4(1S) W-beam Median Barrier before MASH Test 3-11 (2).7Figure 2.5.Simulation of MASH Test 3-11 as 2270P Vehicle Vaults over 27-inch Median Barrier (3).7Figure 2.6.Cross-Section of TxDOT 31-inch W-beam Median Barrier (3).8Figure 2.7.TxDOT 31-inch W-beam Median Barrier before Testing (3).8Figure 2.8.Installation after MASH Test 3-10 (Small Car) (3).9Figure 2.9.Installation after MASH Test 3-11 (Pickup Truck) (3).10Figure 2.10.Test Installation Configuration (4).11Figure 2.11.Approach Guardrail Transition, Design No. II (4).12Figure 2.12.Approach Guardrail Transition perism No. II (4).12Figure 2.13.Stacked W-beam Transition after Test (6).13Figure 2.14.Stacked W-beam Transition after Testing (7).16Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7).16Figure 2.18.Rail Deformation after Testing (8).18Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Ouble-Faced Approach Transition (12).22Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.D
Figure 2.2.W-beam Transition after Testing (2).6Figure 2.3.G4(1S) W-beam Median Barrier before $MASH$ Test 3-11 (2).6Figure 2.4.G4(1S) W-beam Median Barrier after $MASH$ Test 3-11 (2).7Figure 2.5.Simulation of $MASH$ Test 3-11 as 2270P Vehicle Vaults over 27-inch Median Barrier (3).7Figure 2.6.Cross-Section of TxDOT 31-inch W-beam Median Barrier (3).8Figure 2.7.TxDOT 31-inch W-beam Median Barrier before Testing (3).8Figure 2.8.Installation after $MASH$ Test 3-10 (Small Car) (3).9Figure 2.9.Installation after $MASH$ Test 3-10 (Small Car) (3).9Figure 2.10.Test Installation Configuration (4).10Figure 2.11.Approach Guardrail Transition, Design No. I (4).12Figure 2.12.Approach Guardrail Transition before Test (6).13Figure 2.13.Stacked W-beam Transition after Testing (7).16Figure 2.14.Stacked W-beam Transition after Testing (7).16Figure 2.15.TxDOT TL-3 Transition after Testing (7).16Figure 2.16.TxDOT TL-3 Transition after Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19with 4-inch Curb (9).2019Figure 2.20.Offset Block Attachment (10).20Figure 2.21.Offset Block Attachment (11).21Figure 2.22.Double-Faced Approach Transition (12).22Figure 2.23.Offset Block Attachment (12).22Figure 2.24.Concrete Barr
Figure 2.3.G4(1S) W-beam Median Barrier before MASH Test 3-11 (2)
Figure 2.4.G4(1S) W-beam Median Barrier after MASH Test 3-11 (2)
Figure 2.5. Simulation of MASH Test 3-11 as 2270P Vehicle Vaults over 27-inch Median Barrier (3). 7 Figure 2.6. Cross-Section of TxDOT 31-inch W-beam Median Barrier (3). 8 Figure 2.7. TxDOT 31-inch W-beam Median Barrier before Testing (3). 8 Figure 2.8. Installation after MASH Test 3-10 (Small Car) (3). 9 Figure 2.9. Installation after MASH Test 3-11 (Pickup Truck) (3). 10 Figure 2.10. Test Installation Configuration (4). 11 Figure 2.11. Approach Guardrail Transition, Design No. I (4). 12 Figure 2.12. Approach Guardrail Transition Design No. II (4). 12 Figure 2.13. Stacked W-beam Transition after Test (6). 13 Figure 2.14. Stacked W-beam Transition Installation before Testing (7). 16 Figure 2.15. TxDOT TL-3 Transition after Testing (7). 17 Figure 2.16. TxDOT TL-3 Transition of Transition Element before Testing (8). 18 Figure 2.19. MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b) 19 Figure 2.20. TL-3 Double-Faced Approach Transition (10). 20 Figure 2.21. Offset Block Attachment (10). 20 Figure 2.22. Doub
Median Barrier (3) .7Figure 2.6.Cross-Section of TxDOT 31-inch W-beam Median Barrier (3) .8Figure 2.7.TxDOT 31-inch W-beam Median Barrier before Testing (3) .8Figure 2.8.Installation after MASH Test 3-10 (Small Car) (3) .9Figure 2.9.Installation after MASH Test 3-11 (Pickup Truck) (3) .10Figure 2.10.Test Installation Configuration (4) .11Figure 2.11.Approach Guardrail Transition, Design No. I (4) .12Figure 2.12.Approach Guardrail Transition before Test (6) .13Figure 2.13.Stacked W-beam Transition after Test (6) .14Figure 2.14.Stacked W-beam Transition after Testing (7) .16Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7) .16Figure 2.18.Rail Deformation after Testing (8) .18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19with 4-inch Curb (9) .19Figure 2.22.Double-Faced Approach Transition (10) .20Figure 2.23.Offset Block Attachment (10) .21Figure 2.24.Concrete Barrier to W-beam Transition (12) .22Figure 2.25.Double-Faced Approach Transition (12) .22Figure 2.26.Bidirectional Beam Guide Rail Details (13) .23Figure 2.25.Double-Faced Approach Transition (12) .22Figure 2.26.Bidirectional Beam Guide Rail Details (13) .23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13) .23
Figure 2.6.Cross-Section of TxDOT 31-inch W-beam Median Barrier (3) .8Figure 2.7.TxDOT 31-inch W-beam Median Barrier before Testing (3) .8Figure 2.8.Installation after $MASH$ Test 3-10 (Small Car) (3) .9Figure 2.9.Installation after $MASH$ Test 3-11 (Pickup Truck) (3) .10Figure 2.10.Test Installation Configuration (4) .11Figure 2.11.Approach Guardrail Transition, Design No. I (4) .12Figure 2.12.Approach Guardrail Transition before Test (6) .13Figure 2.13.Stacked W-beam Transition after Test (6) .14Figure 2.14.Stacked W-beam Transition after Test (6) .14Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7) .16Figure 2.16.TxDOT TL-3 Transition after Testing (7) .17Figure 2.18.Rail Deformation after Testing (8) .18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19with 4-inch Curb (9) .19Figure 2.23.Offset Block Attachment (10) .20Figure 2.24.Concrete Barrier to W-beam Transition (11) .21Figure 2.25.Double-Faced Approach Transition (12) .22Figure 2.26.Bidirectional Beam Guide Rail Details (13) .23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13) .23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14) .24Figure 2.29.Thrie-Beam Attachment to F-shape Median Barrier (13) .24Fi
Figure 2.7.TxDOT 31-inch W-beam Median Barrier before Testing (3).8Figure 2.8.Installation after MASH Test 3-10 (Small Car) (3).9Figure 2.9.Installation after MASH Test 3-11 (Pickup Truck) (3).10Figure 2.10.Test Installation Configuration (4).11Figure 2.11.Approach Guardrail Transition, Design No. I (4).12Figure 2.12.Approach Guardrail Transition, Design No. II (4).12Figure 2.13.Stacked W-beam Transition before Test (6).13Figure 2.14.Stacked W-beam Transition fiter Test (6).14Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7).16Figure 2.16.TxDOT TL-3 Transition after Testing (7).16Figure 2.17.Optimal Configuration of Transition Element before Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19with 4-inch Curb (9).19Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (10).20Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape
Figure 2.8.Installation after MASH Test 3-10 (Small Car) (3) .9Figure 2.9.Installation after MASH Test 3-11 (Pickup Truck) (3) .10Figure 2.10.Test Installation Configuration (4) .11Figure 2.11.Approach Guardrail Transition, Design No. I (4) .12Figure 2.12.Approach Guardrail Transition, Design No. II (4) .12Figure 2.13.Stacked W-beam Transition before Test (6) .13Figure 2.14.Stacked W-beam Transition after Test (6) .14Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7) .16Figure 2.16.TxDOT TL-3 Transition after Testing (7) .17Figure 2.18.Rail Deformation after Testing (8) .18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b) 19Figure 2.20.TL-3 Double-Faced Approach Transition (10) .20Figure 2.21.Offset Block Attachment (10) .21Figure 2.23.Offset Block Attachment (11) .21Figure 2.24.Concrete Barrier to W-beam Transition (12) .22Figure 2.25.Double-Faced Thrie-Beam Attachment (12) .23Figure 2.26.Bidirectional Beam Guide Rail Details (13) .23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13) .23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14) .24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14) .24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Variou
Figure 2.9.Installation after MASH Test 3-11 (Pickup Truck) (3) .10Figure 2.10.Test Installation Configuration (4) .11Figure 2.11.Approach Guardrail Transition, Design No. I (4) .12Figure 2.12.Approach Guardrail Transition, Design No. II (4) .12Figure 2.13.Stacked W-beam Transition before Test (6) .13Figure 2.14.Stacked W-beam Transition after Test (6) .14Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7) .16Figure 2.16.TxDOT TL-3 Transition after Testing (7) .17Figure 2.17.Optimal Configuration of Transition Element before Testing (8) .18Figure 2.18.Rail Deformation after Testing (8) .18Figure 2.20.TL-3 Double-Faced Approach Transition Details (a) without Curb and (b)19with 4-inch Curb (9) .20Figure 2.21.Offset Block Attachment (10) .20Figure 2.22.Double-Faced Approach Transition (12) .22Figure 2.23.Offset Block Attachment (11) .21Figure 2.24.Concrete Barrier to W-beam Transition (12) .22Figure 2.25.Double-Faced Thrie-Beam Attachment (12) .23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13) .23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14) .24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14) .24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14) .24
Figure 2.10.Test Installation Configuration (4)
Figure 2.11.Approach Guardrail Transition, Design No. I (4).12Figure 2.12.Approach Guardrail Transition, Design No. II (4).12Figure 2.13.Stacked W-beam Transition before Test (6).13Figure 2.14.Stacked W-beam Transition after Test (6).14Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7).16Figure 2.16.TxDOT TL-3 Transition after Testing (7).17Figure 2.17.Optimal Configuration of Transition Element before Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24
Figure 2.12.Approach Guardrail Transition, Design No. II (4).12Figure 2.13.Stacked W-beam Transition before Test (6).13Figure 2.14.Stacked W-beam Transition after Test (6).14Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7).16Figure 2.16.TxDOT TL-3 Transition after Testing (7).17Figure 2.17.Optimal Configuration of Transition Element before Testing (8).18Figure 2.18.Rail Deformation after Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).23Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).24Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in
Figure 2.13.Stacked W-beam Transition before Test (6).13Figure 2.14.Stacked W-beam Transition after Test (6).14Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7).16Figure 2.16.TxDOT TL-3 Transition after Testing (7).17Figure 2.17.Optimal Configuration of Transition Element before Testing (8).18Figure 2.18.Rail Deformation after Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).23Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24
Figure 2.14.Stacked W-beam Transition after Test (6)
Figure 2.15.TxDOT TL-3 Transition Installation before Testing (7).16Figure 2.16.TxDOT TL-3 Transition after Testing (7).17Figure 2.17.Optimal Configuration of Transition Element before Testing (8).18Figure 2.18.Rail Deformation after Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19with 4-inch Curb (9).19Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).23Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24
Figure 2.16.TxDOT TL-3 Transition after Testing (7).17Figure 2.17.Optimal Configuration of Transition Element before Testing (8).18Figure 2.18.Rail Deformation after Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).23Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24
Figure 2.17.Optimal Configuration of Transition Element before Testing (8).18Figure 2.18.Rail Deformation after Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b)19Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).23Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24
Figure 2.18.Rail Deformation after Testing (8).18Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b) with 4-inch Curb (9).19Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24
Figure 2.19.MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b) with 4-inch Curb (9)
with 4-inch Curb (9)19Figure 2.20TL-3 Double-Faced Approach Transition (10)20Figure 2.21Offset Block Attachment (10)20Figure 2.22Double-Faced Approach Transition (11)21Figure 2.23Offset Block Attachment (11)21Figure 2.24Concrete Barrier to W-beam Transition (12)22Figure 2.25Double-Faced Thrie-Beam Attachment (12)22Figure 2.26Bidirectional Beam Guide Rail Details (13)23Figure 2.27Thrie-Beam Attachment to F-shape Median Barrier (13)23Figure 2.28F-shape Concrete Barrier to Guardrail Transition (14)24Figure 2.29Thrie-Beam Attachment to F-shape Barrier in Various Sections (14)24Figure 3.12370P FE Vabialo Model with Detailed Tires25
Figure 2.20.TL-3 Double-Faced Approach Transition (10).20Figure 2.21.Offset Block Attachment (10).20Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 3.1.2270P FE Vabiala Model with Detailed Tires.25
Figure 2.21.Offset Block Attachment (10)
Figure 2.22.Double-Faced Approach Transition (11).21Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 3.1.2270P FE Vabialo Model with Detailed Tires.25
Figure 2.23.Offset Block Attachment (11).21Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 3.1.2270P FE Vabiala Model with Detailed Tires.25
Figure 2.24.Concrete Barrier to W-beam Transition (12).22Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 3.1.2270P FE Vabialo Model with Detailed Tires.25
Figure 2.25.Double-Faced Thrie-Beam Attachment (12).22Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 3.1.2370P FE Vabiala Model with Detailed Tires.25
Figure 2.26.Bidirectional Beam Guide Rail Details (13).23Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13).23Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14).24Figure 2.29.Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).24Figure 3.12270P FE Vabiala Model with Detailed Tires.25
Figure 2.27.Thrie-Beam Attachment to F-shape Median Barrier (13)
Figure 2.28.F-shape Concrete Barrier to Guardrail Transition (14)
Figure 2.29. Thrie-Beam Attachment to F-shape Barrier in Various Sections (14)
Figure 2.1 2270D FE Vahiala Model with Datailad Tiras 25
Figure 5.1. 2270F FE venicle would with Detailed Tiles
Figure 3.2. Right: Post Type A (W8×13×90); Left: Post Type B (W6×8.5×72)26
Figure 3.3. FE Model of Stacked W-beam Transition Barrier System
Figure 3.4. Stacked W-beams Option 1
Figure 3.5. W-beam to Single-Slope CMB Adaptor
Figure 3.6. W-beam End Shoe
Figure 3.6.W-beam End Shoe.31Figure 3.7.Stacked W-beams Option 2.32
Figure 3.6.W-beam End Shoe.31Figure 3.7.Stacked W-beams Option 2.32Figure 3.8.W-beam to F-shape.33
Figure 3.6.W-beam End Shoe.31Figure 3.7.Stacked W-beams Option 2.32Figure 3.8.W-beam to F-shape.33Figure 3.9.Thrie Beam to F-shape.34

LIST OF FIGURES (CONTINUED)

Figure 3.11.	W-beam to F-shape Option 2.	. 36
Figure 3.12.	Asymmetric Median Transition Design.	. 37
Figure 3.13.	Computer Model of Asymmetric Transition	. 37
Figure 3.14.	Transition Regions for MASH Evaluation.	. 38
Figure 3.15.	Impact Location for First Simulation at Downstream Transition	. 38
Figure 3.16.	Impact Location for First Simulation at Middle Transition	. 39
Figure 3.17.	Impact Location for First Simulation at Upstream Transition	. 40
Figure 3.18.	Impact Location for First Simulation at Downstream Transition	. 41
Figure 3.19.	Impact Location for First Simulation at Middle Transition	. 42
Figure 3.20.	Impact Location for First Simulation at Upstream Transition	. 43
Figure 3.21.	Computer Model of Symmetric Transition	. 44
Figure 3.22.	MASH Test 3-21 on Symmetric Design	. 45
Figure 3.23.	Pickup Truck Rollover after Impact.	. 45
Figure 3.24.	RAM Pickup Truck Model.	46
Figure 3.25.	RAM Pickup Truck Impact with Symmetric Transition	46
Figure 3.26.	RAM Pickup Truck after Impact with Symmetric Transition.	. 47
Figure 4.1.	Overall Details on Median Barrier Transition.	50
Figure 4.2.	Median Barrier Transition prior to Testing	.51
Figure 7.1.	Transition/Test Vehicle Geometrics for Test No. 469900-01-1.	61
Figure 7.2.	Test Vehicle before Test No. 469900-01-1	. 62
Figure 7.3.	Transition after Test No. 469900-01-1.	. 63
Figure 7.4.	Test Vehicle after Test No. 469900-01-1.	. 64
Figure 7.5.	Summary of Results for MASH Test 3-21 on Median Transition	. 66
Figure 8.1.	Modified Transition/Test Vehicle Geometrics for Test No. 469900-01-2	. 69
Figure 8.2.	Test Vehicle before Test No. 469900-01-2	.70
Figure 8.3.	Modified Transition after Test No. 469900-01-2.	.71
Figure 8.4.	Test Vehicle after Test No. 469900-01-2.	. 72
Figure 8.5.	Interior of Vehicle after Test No. 469900-01-2.	. 72
Figure 8.6.	Summary of Results for MASH Test 3-21 on Modified Median Transition	. 74
Figure 9.1.	Transition/Test Vehicle Geometrics for Test No. 469900-01-3.	.75
Figure 9.2.	Test Vehicle before Test No. 469900-01-3	.76
Figure 9.3.	Transition after Test No. 469900-01-3.	. 77
Figure 9.4.	Test Vehicle after Test No. 469900-01-3.	. 78
Figure 9.5.	Interior of Vehicle after Test No. 469900-01-3.	. 78
Figure 9.6.	Summary of Results for MASH Test 3-20 on Modified Median Transition	. 80
Figure 10.1.	Transition/Test Vehicle Geometrics for Test No. 469900-01-4.	. 81
Figure 10.2.	Test Vehicle before Test No. 469900-01-4	. 82
Figure 10.3.	Transition after Test No. 469900-01-4.	. 83
Figure 10.4.	Test Vehicle after Test No. 469900-01-4.	. 84
Figure 10.5.	Interior of Vehicle after Test No. 469900-01-4.	. 84
Figure 10.6.	Summary of Results for MASH Test 3-21 on Modified Median Transition	. 86
Figure 11.1.	Transition/Test Vehicle Geometrics for Test No. 469900-01-5.	. 87

LIST OF FIGURES (CONTINUED)

Figure 11.2.	Test Vehicle before Test No. 469900-01-5	88
Figure 11.3.	Transition after Test No. 469900-01-5.	89
Figure 11.4.	Test Vehicle after Test No. 469900-01-5.	90
Figure 11.5.	Interior of Vehicle after Test No. 469900-01-5.	90
Figure 11.6.	Summary of Results for MASH Test 3-20 on Modified Median Transition	92
Figure 12.1.	Impact Location for First Simulation at Upstream Transition	93
Figure 12.2.	Small Car Vehicle after Crash Test.	94
Figure 12.3.	Median Rail after Crash Test.	95
Figure 12.4.	Impact Location for First Simulation at Middle Transition	95
Figure 12.5.	Impact Location for First Simulation at Middle Transition	96
Figure D.1.	Sequential Photographs for Test No. 469900-01-1 (Overhead and Frontal Views).	185
Figure D.2.	Sequential Photographs for Test No. 469900-01-1 (Rear View)	187
Figure D.3.	Vehicle Angular Displacements for Test No. 469900-01-1.	188
Figure D.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-1	
C	(Accelerometer Located at Center of Gravity).	189
Figure D.5.	Vehicle Lateral Accelerometer Trace for Test No. 469900-01-1	
C	(Accelerometer Located at Center of Gravity).	190
Figure D.6.	Vehicle Vertical Accelerometer Trace for Test No. 469900-01-1	
-	(Accelerometer Located at Center of Gravity).	191
Figure E.1.	Sequential Photographs for Test No. 469900-01-2 (Overhead and Frontal	
	Views).	197
Figure E.2.	Sequential Photographs for Test No. 469900-01-2 (Rear View)	199
Figure E.3.	Vehicle Angular Displacements for Test No. 469900-01-2.	200
Figure E.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-2	
	(Accelerometer Located at Center of Gravity).	201
Figure E.5.	Vehicle Lateral Accelerometer Trace for Test No. 469900-01-2	
	(Accelerometer Located at Center of Gravity).	202
Figure E.6.	Vehicle Vertical Accelerometer Trace for Test No. 469900-01-2	
	(Accelerometer Located at Center of Gravity).	203
Figure F.1.	Sequential Photographs for Test No. 469900-01-3 (Overhead and Frontal	
-	Views).	208
Figure F.2.	Sequential Photographs for Test No. 469900-01-3 (Rear View)	210
Figure F.3.	Vehicle Angular Displacements for Test No. 469900-01-3.	211
Figure F.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-3	
	(Accelerometer Located at Center of Gravity).	212
Figure F.5.	Vehicle Lateral Accelerometer Trace for Test No. 469900-01-3	
-	(Accelerometer Located at Center of Gravity).	213
Figure F.6. V	ehicle Vertical Accelerometer Trace for Test No. 469900-01-3	
	(Accelerometer Located at Center of Gravity).	214

LIST OF FIGURES (CONTINUED)

Figure G.1.	Sequential Photographs for Test No. 469900-01-4 (Overhead and Frontal	
-	Views).	219
Figure G.2.	Sequential Photographs for Test No. 469900-01-4 (Rear View)	221
Figure G.3.	Vehicle Angular Displacements for Test No. 469900-01-4.	222
Figure G.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-4	
	(Accelerometer Located at Center of Gravity).	223
Figure G.5.	Vehicle Lateral Accelerometer Trace for Test No. 469900-01-4	
	(Accelerometer Located at Center of Gravity).	224
Figure G.6.	Vehicle Vertical Accelerometer Trace for Test No. 469900-01-4	
	(Accelerometer Located at Center of Gravity).	225
Figure H.1.	Sequential Photographs for Test No. 469900-01-5 (Overhead and Frontal	
	Views).	230
Figure H.2.	Sequential Photographs for Test No. 469900-01-5 (Rear View)	232
Figure H.3.	Vehicle Angular Displacements for Test No. 469900-01-5.	233
Figure H.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-5	
	(Accelerometer Located at Center of Gravity).	234
Figure H.5.	Vehicle Lateral Accelerometer Trace for Test No. 469900-01-5	
	(Accelerometer Located at Center of Gravity).	235
Figure H.6.	Vehicle Vertical Accelerometer Trace for Test No. 469900-01-5	
	Accelerometer Located at Center of Gravity)	236
Figure I.1.	Value of Research for TxDOT Project 0-6990.	238

LIST OF TABLES

Table 3.1.	Sequential Comparison of Full-Scale Crash Test and Computer Simulation	27			
Table 3.2	Sequential Comparison of Full-Scale Crash Test and Computer Simulation	. 21			
Table 5.2.	(Overhead View)	. 28			
Table 3.3.	Comparison of Occupant Risk Values for Crash Test and Computer				
	Simulation.	. 29			
Table 3.4.	Occupant Risk Comparison for MASH Test 3-20 at Downstream				
	Transition.	. 39			
Table 3.5.	Occupant Risk Values for MASH Test 3-20 at Middle Transition.				
Table 3.6.	Occupant Risk Values for MASH Test 3-20 at Upstream Transition				
Table 3.7.	Occupant Risk Values for <i>MASH</i> Test 3-21 at Downstream Transition				
Table 3.8.	Occupant Risk Values for MASH Test 3-21 at Middle Transition				
Table 3.9.	Occupant Risk Values for MASH Test 3-21 at Upstream Transition.	. 44			
Table 5.1.	Test Conditions and Evaluation Criteria Specified for MASH TL-3				
	Transition.	. 53			
Table 5.2.	Evaluation Criteria Required for MASH TL-3 Transitions	. 55			
Table 7.1.	Events during Test No. 469900-01-1	. 62			
Table 7.2.	Occupant Risk Factors for Test No. 469900-01-1.	. 65			
Table 8.1.	Events during Test No. 469900-01-2.	. 70			
Table 8.2.	Occupant Risk Factors for Test No. 469900-01-2.	. 73			
Table 9.1.	Events during Test No. 469900-01-3.	. 76			
Table 9.2.	Occupant Risk Factors for Test No. 469900-01-3.	. 79			
Table 10.1.	Events during Test No. 469900-01-4.	. 82			
Table 10.2.	Occupant Risk Factors for Test No. 469900-01-4.	. 85			
Table 11.1.	Events during Test No. 469900-01-5.	. 88			
Table 11.2.	Occupant Risk Factors for Test No. 469900-01-5.	. 91			
Table 12.1.	Occupant Risk Comparison for Test 3-20 at Upstream Transition	. 94			
Table 12.2.	Occupant Risk Comparison for Test 3-20 at Middle Transition	. 96			
Table 12.3.	Occupant Risk Comparison for Test 3-21 at Middle Transition	. 97			
Table 13.1.	Performance Evaluation Summary for MASH Test 3-21 on Median				
	Transition to Concrete Barrier.	100			
Table 13.2.	Performance Evaluation Summary for MASH Test 3-21 on Modified				
	Median Transition to Concrete Barrier.	101			
Table 13.3.	Performance Evaluation Summary for MASH Test 3-20 on Modified				
	Median Transition to Concrete Barrier.	102			
Table 13.4.	Performance Evaluation Summary for MASH Test 3-21 on Median				
	Guardrail to Modified Median Transition	103			
Table 13.5.	Performance Evaluation Summary for MASH Test 3-20 on Median				
	Guardrail to Modified Median Transition	104			
Table 13.6.	Assessment Summary for MASH TL-3 Tests on Modified Median				
	Transition.	105			

LIST OF TABLES (CONTINUED)

Table C.1.	Summary of Strong Soil Test Results for Establishing Installation				
	Procedure	175			
Table C.2.	2. Test Day Static Soil Strength Documentation for Test No. 469900-01-1				
Table C.3.	Test Day Static Soil Strength Documentation for Test No. 469900-01-2 177				
Table C.4.	Test Day Static Soil Strength Documentation for Test No. 469900-01-3				
Table C.5.	Test Day Static Soil Strength Documentation for Test No. 469900-01-4 179				
Table C.6.	Test Day Static Soil Strength Documentation for Test No. 469900-01-5				
Table D.1.	Vehicle Properties for Test No. 469900-01-1				
Table D.2.	Measurements of Vehicle Vertical Center of Gravity (CG) for				
	Test No. 469900-01-1.	182			
Table D.3.	Exterior Crush Measurements of Vehicle for Test No. 469900-01-1	183			
Table D.4.	Occupant Compartment Measurements of Vehicle for Test No. 469900-				
	01-1	184			
Table E.1.	Vehicle Properties for Test No. 469900-01-2	193			
Table E.2.	Measurements of Vehicle Vertical CG for Test No. 469900-01-2	194			
Table E.3.	Exterior Crush Measurements of Vehicle for Test No. 469900-01-2	195			
Table E.4.	Occupant Compartment Measurements of Vehicle for Test No. 469900-				
	01-2	196			
Table F.1.	Vehicle Properties for Test No. 469900-01-3	205			
Table F.2.	Exterior Crush Measurements of Vehicle for Test No. 469900-01-3	206			
Table F.3.	Occupant Compartment Measurements of Vehicle for Test No. 469900-				
	01-3	207			
Table G.1.	Vehicle Properties for Test No. 469900-01-4.	215			
Table G.2.	Measurements of Vehicle Vertical CG for Test No. 469900-01-4	216			
Table G.3.	Exterior Crush Measurements of Vehicle for Test No. 469900-01-4	217			
Table G.4.	Occupant Compartment Measurements of Vehicle for Test No. 469900-				
	01-4	218			
Table H.1.	Vehicle Properties for Test No. 469900-01-5	227			
Table H.2.	Exterior Crush Measurements of Vehicle for Test No. 469900-01-5	228			
Table H.3.	Occupant Compartment Measurements of Vehicle for Test No. 469900-				
	01-5	229			

SI* (MODERN METRIC) CONVERSION FACTORS									
APPROXIMATE CONVERSIONS TO SI UNITS									
Symbol	When You Know	Multiply By	To Find	Symbol					
LENGTH									
in	inches	25.4	millimeters	mm					
ft	feet	0.305	meters	m					
yd	yards	0.914	meters	m					
mi	miles	1.61	kilometers	km					
		AREA		0					
in ²	square inches	645.2	square millimeters	mm ²					
ft ²	square feet	0.093	square meters	m²					
yd²	square yards	0.836	square meters	m²					
ac	acres	0.405	nectares	ha km²					
mi ²	square miles		square kilometers	KM					
floz	fluid ounces		milliliters	ml					
	allons	29.57	liters	1					
ft ³	cubic feet	0.028	cubic meters	∟ m ³					
vd ³	cubic vards	0.765	cubic meters	m ³					
۶a	NOTE: volumes of	reater than 1000L	shall be shown in m ³						
		MASS							
oz	ounces	28.35	arams	a					
lb	pounds	0.454	kilograms	ka					
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")					
	TEMPE	RATURE (exac	t degrees)	• • •					
°F	Fahrenheit	5(F-32)/9	Celsius	°C					
		or (F-32)/1.8							
	FORCE a	and PRESSURE	or STRESS						
lbf	poundforce	4.45	newtons	N					
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa					
	APPROXIMATI	E CONVERSION	S FROM SI UNITS						
Symbol	When You Know	Multiply By	To Find	Symbol					
		LENGTH							
mm	millimeters	0.039	inches	in					
m	meters	3.28	feet	ft					
m	meters	1.09	yards	yd					
km	kilometers	0.621	miles	mi					
2		AREA		• 2					
mm ²	square millimeters	0.0016	square inches	IN ²					
m^2	square meters	10.764	square verde	It ²					
ha	square meters	2 47		yu-					
km ²	Square kilometers	0 386	square miles	mi ²					
ml	milliliters	0.034	fluid ounces	07					
L	liters	0.264	gallons	gal					
m ³	cubic meters	35.314	cubic feet	ft ³					
m ³	cubic meters	1.307	cubic yards	yd ³					
MASS									
g	grams	0.035	ounces	oz					
kg	kilograms	2.202	pounds	lb					
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000lb)	Т					
	TEMPERATURE (exact degrees)								
°C	Celsius	1.8C+32	Fahrenheit	°F					
	FORCE a	and PRESSURE	or STRESS						
N	newtons	0.225	poundforce	lbf					
	kilonascals	0 145	poundforce per square inch	lb/in ²					

*SI is the symbol for the International System of Units

CHAPTER 1: BACKGROUND

1.1 INTRODUCTION

The Texas Department of Transportation (TxDOT) is in the process of implementing roadside safety hardware on Texas highways in compliance with the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware* (*MASH*) (1). The focus is to enhance safety on Texas highways. TxDOT currently has a *MASH* Test Level 3 (TL-3) compliant double-faced guardrail in use. However, this system needs end termination or connectivity adapters to other barriers. The connectivity between the median guardrail and the median concrete barrier is the transition section. This transition must be *MASH* compliant. There is a safety need to develop a *MASH*-compliant transition between the double-faced median guardrail and the median concrete barrier. Thus, in this study, the Texas A&M Transportation Institute used finite element computer simulations and full-scale crash testing to develop and evaluate a double-faced median guardrail for MASH TL-3 compliance.

1.2 **PROBLEM**

Transition sections are commonly used to connect a flexible guardrail system to a more rigid barrier (i.e., concrete parapet). The purpose of the transition is to gradually change the stiffness of the rail section so a vehicle impacting the flexible approach rail does not snag severely on the end of the stiffer barrier (2). The change in stiffness is generally accomplished through a combination of changing post strength and spacing, and/or increasing the guardrail stiffness.

Transition elements are subject to two crash tests according to AASHTO *MASH*. The two tests are *MASH* Tests 3-20 and 3-21, which consist of the small car vehicle and pickup truck vehicle, respectively. Both tests consist of an impact speed of 62 mi/h and impact angle of 25 degrees. The critical impact point is dependent on the design of the system. Figure 1.1 shows an example of a transition system with impact configurations.

As specified in *MASH* Section 2.2.1.1, two impact regions should be considered for transitions that connect a flexible system to a rigid system. The testing agency should conduct the tests at locations upstream of the rigid system and upstream of the flexible system.

TEST 20, 21, and 22

Figure 1.1. MASH Crash Test Impact Configuration for Transition Element (1).

1.3 BACKGROUND

Current guidance regarding the testing and evaluating of barrier transitions is contained in the second edition of *MASH*, which was published in 2016 (1). The crash testing guidelines present matrices for vehicular tests that are defined in terms of vehicle type, impact conditions (i.e., speed and angle), and impact location. *MASH* further prescribes how to assess the performance of a safety feature based on occupant risk, structural adequacy, exposure to workers and pedestrians who may be in the debris path resulting from the impact, and post-impact condition of the vehicle.

Some of the primary concerns associated with a median barrier transition between a W-beam and a rigid barrier correspond to the desired overlap length of the guardrail and the rigid barrier, the size and spacing of the transition posts, and the availability of a rub rail and/or curb. The considerable difference between two barrier type stiffnesses could result in vehicle snagging, pocketing, and/or occupant risk due to vehicle instability. TTI researchers determined that a proper transition system to connect these systems was necessary since a crashworthy median barrier stiffness transition is currently unavailable.

1.4 OBJECTIVE/SCOPE OF RESEARCH

The purpose of this research study was to develop a *MASH* TL-3 compliant transition between a median guardrail and median concrete barrier, and test the design according to *MASH* crash testing guidelines. Finite element computer simulations were utilized to aid in the design of a median transition. Full-scale crash testing was performed to assess the safety performance of the double-faced W-beam median barrier transition to the concrete parapet according to the safety performance evaluation guidelines included in *MASH* for TL-3. Data obtained from these crash tests were analyzed, and the results were utilized to guide the project conclusions and

recommendations. Additionally, implementation guidance for the new transition system was developed.

1.5 RESEARCH STRUCTURE

Multiple tasks were included in this research project. A literature review, computer simulations, and full-scale crash testing were performed to accomplish the project objectives. The tasks are listed below:

- Task 1: Project Management and Research Coordination.
- Task 2: Literature Review and Design Constraint Development.
- Task 3: Simulation and Design Development.
- Task 4: Full-Scale Crash Testing.

CHAPTER 2: LITERATURE REVIEW^{*}

2.1 CRASH TESTED HARDWARE

2.1.1 MASH Test 3-21 on Nested W-beam with Rub Rail

MASH Test 3-21 was conducted on the Pennsylvania Department of Transportation (PennDOT) W-beam transition (2). The W-beam transition consists of two nested 12-gauge W-beam guardrails blocked out from the end of a concrete parapet. The transition also has a flared-back rub rail. TTI constructed 16.4 ft of Pennsylvania standard bridge parapet from details provided by PennDOT. Figure 2.1 shows the transition prior to testing.

A 2007 Chevrolet Silverado pickup, traveling at an impact speed of 62.8 mi/h, impacted the W-beam transition 8.6 ft upstream from the end of the concrete parapet at an impact angle of 25.7 degrees. Damage to the W-beam transition is shown in Figure 2.2. Maximum dynamic deflection during the test was 3.8 inches. The W-beam transition met the criteria specified in *MASH*.

Figure 2.1. W-beam Transition before Testing (2).

^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

Figure 2.2. W-beam Transition after Testing (2).

2.1.2 MASH Test 3-11 on 27-inch W-beam Median Barrier

Bullard et al. conducted *MASH* Test 3-11 on a G4(1S) W-beam median barrier that was a 27-inch-tall, strong steel post, W-beam median barrier (Figure 2.3) (2). A 2007 Chevrolet Silverado pickup, traveling at an impact speed of 64 mi/h, impacted the double-faced W-beam median barrier at an impact angle of 25.1 degrees. Maximum dynamic deflection during the test was 23.2 inches, and the median barrier did not meet the criteria specified in *MASH* (Figure 2.4).

Figure 2.3. G4(1S) W-beam Median Barrier before MASH Test 3-11 (2).

Figure 2.4. G4(1S) W-beam Median Barrier after MASH Test 3-11 (2).

2.1.3 MASH Test 3-11 on TxDOT 31-inch W-beam Median Barrier

To develop and evaluate a *MASH* TL-3 31-inch W-beam median barrier, researchers evaluated the previously failed *MASH* Test 3-11 on the G4(1S) W-beam median barrier and simulated the vaulting phenomena of the vehicle in computer simulations (Figure 2.5) (3).

Figure 2.5. Simulation of *MASH* Test 3-11 as 2270P Vehicle Vaults over 27-inch Median Barrier (3).

The new 31-inch median barrier consisted of 12-gauge W-beam guardrails attached to 6-ft-long W6×8.5 steel posts spaced 6 ft 3 inches on center. The W-beam guardrails were offset from the posts using wood blockouts nominally 6 inches wide \times 8 inches deep \times 14 inches high.

The height of the TxDOT W-beam median barrier test installation was 31 inches. The length of need for the installation was 106 ftThe total overall test installation length was 156 ft. Figure 2.6 provides a cross-section of the TxDOT 31-inch W-beam median barrier. Photographs of the completed installation are shown in Figure 2.7. The constructed W-beam median barrier with rail splices offset from the posts and 8-inch offset blocks (AASHTO Designation SGM06a) was successfully crash tested in accordance with *MASH* (Figure 2.8 and Figure 2.9) (*3*).

Figure 2.6. Cross-Section of TxDOT 31-inch W-beam Median Barrier (3).

Figure 2.7. TxDOT 31-inch W-beam Median Barrier before Testing (3).

Figure 2.8. Installation after MASH Test 3-10 (Small Car) (3).

Figure 2.9. Installation after MASH Test 3-11 (Pickup Truck) (3).

2.1.4 NCHRP Report 350 TL-3 Median Barrier Transition

Soyland et al. developed and crash tested two approach guardrail transitions for use with single-slope concrete median barriers (CMBs) at the Midwest Roadside Safety Facility (MwRSF) (4). The transition was built with 10-gauge thrie-beam guardrails and supported by nine W6×9 steel posts. A single-slope connector connected the thrie beam to the single-slope CMB, and structural spacer blocks were employed to use with the thrie-beam guardrail transition.

Figure 2.10 through Figure 2.12 show the test installation configuration and the two designs used for full-scale crash tests.

Figure 2.10. Test Installation Configuration (4).

The first crash test of the approach guardrail transition, shown in Figure 2.11, failed due to excessive occupant compartment deformation. Following that crash test, the transition and the single-slope CMB end section were redesigned by flattening the upper slope at the end of the CMB from 2:1 to 8:1; removing the thrie-beam backup plates; shortening the steel single-slope connector plate; shortening the bottom section of the structural tube, thrie-beam, spacer blocks; providing a negative slope at the top of the structural tube, thrie-beam, spacer blocks; and reducing the height of the thrie-beam post above the ground by increasing the embedment depth. The safety performance of the redesigned approach guardrail transition attached to a single-slope CMB (shown in Figure 2.12) was determined to be acceptable according to TL-3 of the National Cooperative Highway Research Program (NCHRP) Report 350 criteria (5).

Figure 2.11. Approach Guardrail Transition, Design No. I (4).

Figure 2.12. Approach Guardrail Transition, Design No. II (4).

2.1.5 MASH 3-21 Stacked W-beam Guardrail Transition

In 2016, Dobrovolny investigated the crashworthiness of a stacked W-beam guardrail transition design for use with a 31-inch guardrail system according to *MASH* Test 3-21

evaluation criteria (6). The overall length of the test installation was 100 ft 8 inches. The installation was comprised of a 31-inch-tall 12-gauge W-beam guardrail attached to a 32-inch-tall, 16-ft-long cast-in-place concrete bridge deck parapet wall on the downstream end. Additionally, a nested 12-gauge W-beam rub rail was installed between grade and the upper W-beam from post 13 to the concrete parapet. Figure 2.13 and Figure 2.14 show the installation before and after the test, respectively. Due to the vehicle rollover, the stacked W-beam transition did not meet specifications for *MASH* Test 3-21 (6).

Figure 2.13. Stacked W-beam Transition before Test (6).

Figure 2.14. Stacked W-beam Transition after Test (6).

2.1.6 MASH 3-21 Modified TxDOT Thrie-Beam Transition

In 2013, Arrington et al. evaluated the impact performance of a modified TxDOT thriebeam transition to a rigid concrete barrier without a curb element below the transition rail (7). The test was performed in accordance with *MASH* guidelines following the impact conditions for Test 3-21.

The modified thrie-beam transition without curb failed to meet *MASH* TL-3 requirements due to rollover of the vehicle. There were indications of wheel snagging on the end of the concrete parapet that may have contributed to the destabilization of the vehicle. The researchers suggested the following to improve the system:

- Placing a short curb at the end of the parapet to prevent wheel snagging.
- Increasing the blockout depth at the end of the parapet to reduce snagging.
- Strengthening the posts in the nested section of the guardrail.

Figure 2.15 and Figure 2.16 show the transition installation before and after testing, respectively (7).

Figure 2.15. TxDOT TL-3 Transition Installation before Testing (7).

Figure 2.16. TxDOT TL-3 Transition after Testing (7).

2.1.7 MASH TL-3 W-beam to Thrie-Beam Stiffness Transition

Researchers at MwRSF developed a W-beam to thrie-beam stiffness transition to connect the Midwest Guardrail System (MGS) to a previously approved thrie-beam approach guardrail transition to a bridge rail. BARRIER VII computer simulation modeling, in combination with post-in-soil bogie tests, was used to evaluate multiple transition configurations (8). The optimal configuration was the shortest design to successfully eliminate excessive pocketing and wheel snag (Figure 2.17).

Three full-scale crash tests were conducted, and following the successful containment and redirection of both the ½-ton quad cab pickup truck (2270P) and the small car (1100C) test vehicles, the safety performance of the stiffness transition between the MGS and a thrie-beam approach guardrail transition system, including an asymmetrical guardrail element, was determined to be acceptable according to the TL-3 evaluation criteria specified in *MASH* (Figure 2.18).

Figure 2.17. Optimal Configuration of Transition Element before Testing (8).

Figure 2.18. Rail Deformation after Testing (8).

2.1.8 MASH TL-3 W-beam to Thrie-Beam Transition with Curb

In 2014, researchers at MwRSF developed a W-beam to thrie-beam stiffness transition with a 4-inch-tall concrete curb to connect the 31-inch MGS to a previously approved thrie-beam approach guardrail bridge transition system (9).

Three full-scale crash tests were conducted according to TL-3 safety standards provided in *MASH*. During the first test, the 1100C small car extended and wedged under the rail and contacted posts while traversing the curb. Subsequently, the W-beam rail ruptured at a splice

location. A repeat of *MASH* Test 3-20 was performed on an updated design that used a 12-ft 6-inch long, nested W-beam rail segment upstream from the W-beam to thrie-beam transition element. The 1100C small car was successfully contained and redirected. During *MASH* Test 3-21, a 2270P pickup truck was successfully contained and redirected. Following the crash testing program, the system was deemed acceptable according to the TL-3 safety performance criteria specified in *MASH*. Figure 2.19 shows details on the recommended transition system with and without a curb tested for this project (9).

Figure 2.19. MGS to Thrie-Beam Stiffness Transition Details (a) without Curb and (b) with 4-inch Curb (9).

2.2 STATE STANDARD HARDWARE (NOT CRASH TESTED)

The following are the median transition barrier systems in various state department of transportation (DOT) standard drawings. The listed hardware is not crash tested under *MASH*.

2.2.1 Florida DOT

Figure 2.20 shows a double-faced approach transition from Florida DOT (FDOT) standard plans (*10*). The transition consists of a 12-gauge 12-ft 6-inch nested W-beam, a 10-gauge 6-ft 3-inch asymmetrical W-beam to thrie-beam transition, and a 12-gauge thrie-beam panel nested with a 25-ft panel (half of the 25-ft panel is overlapped with the concrete parapet). Trimmed offset blocks have been used for attaching the overlapped thrie-beam panel to the concrete barrier. The shape of the offset block depends on the rigid barrier cross-section (Figure 2.21).

Figure 2.20. TL-3 Double-Faced Approach Transition (10).

Figure 2.21. Offset Block Attachment (10).

2.2.2 Massachusetts DOT

Similar to FDOT standard plans, Figure 2.22 shows a double-faced approach transition from Massachusetts DOT (MassDOT) standard drawings (11). The transition consists of a

12-gauge 12-ft 6-inch nested W-beam, a 10-gauge 6-ft 3-inch asymmetrical W-thrie transition, and a 12-gauge thrie-beam panel nested with a 25-ft panel (half of the 25-ft panel is overlapped with the F-shape concrete median barrier). Trimmed offset blocks have been used for attaching the overlapped thrie beam to the concrete barrier. The shape of the offset block depends on the distance from the concrete barrier and the overlapped thrie beam (Figure 2.23). Availability of a curb or rub rail is not mentioned in this system.

Figure 2.23. Offset Block Attachment (11).

2.2.3 New Hampshire DOT

Figure 2.24 shows a double-faced approach transition with the symmetrical W-beam to W-thrie-beam transition from New Hampshire DOT (NHDOT) standard plans (12). The transition consists of a 12-gauge 6-ft 3-inch W-beam, a 10-gauge 6-ft 3-inch symmetrical W-thrie transition, and a 12-gauge 25-ft nested thrie-beam panel. The only overlapped part of the guardrail system is the 28-inch end shoe. The shape of the concrete parapet at the connection section is transitioned to vertical for direct attachment of the rail to the concrete barrier

(Figure 2.25). This system does not have a rub rail; however, there is a 4-inch curb along the thrie-beam section.

Figure 2.24. Concrete Barrier to W-beam Transition (12).

Figure 2.25. Double-Faced Thrie-Beam Attachment (12).

2.2.4 New Jersey DOT

Figure 2.26 and Figure 2.27 show a double-faced approach transition with the symmetrical W-beam to W-thrie-beam transition from New Jersey DOT (NJDOT) standard construction details (13). The transition consists of a standard W-beam, a 6-ft 3-inch symmetrical W-thrie transition, and a 12-ft 6-inch nested thrie-beam panel. The only overlapped part of the guardrail system is the end shoe. The shape of the concrete parapet at the connection section is modified for direct attachment of the rail to the concrete barrier (Figure 2.27). This system does not have a curb; however, there is a rub rail added to the transition system on the approaching traffic side.

Figure 2.26. Bidirectional Beam Guide Rail Details (13).

GUTTER LINE

4°

ELEVATION

L₿

2.2.5 Utah DOT

FINISH

ROADWAY

DACH PRESENT)

LP

Figure 2.28 shows a double-faced W-beam approach transition from Utah DOT (UDOT) standard drawings (14). The transition consists of a standard W-beam that is nested in the attachment section to the New Jersey style barrier (half of the 12-ft 6-inch rail is overlapped with the concrete barrier). Modified blocks are used to line up the guardrail and rub rail to the concrete barrier (Figure 2.29).

L,^A

Figure 2.29. Thrie-Beam Attachment to F-shape Barrier in Various Sections (14).

CHAPTER 3: SIMULATION^{*}

3.1 DESIGN

Before running finite element (FE) simulations on the design concepts for the median barrier transition, it was necessary to validate the behavior of the pickup truck vehicle model with a similar barrier system. The researchers developed a detailed FE model of the stacked W-beam transition system to calibrate the model based on previous full-scale crash tests. The pickup truck vehicle model incorporated a recently developed detailed tire model. Figure 3.1 shows the vehicle model with the detailed tires.

Figure 3.1. 2270P FE Vehicle Model with Detailed Tires.

There were two types of posts in the barrier model. Post types A and B were W8×13 and W6×8.5 steel sections, respectively. The post elements were comprised of different thicknesses to accurately capture the shape of the wide flange sections (Figure 3.2). Figure 3.3 shows the vehicle and the 31-inch stacked W-beam transition system.

^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

Figure 3.2. Right: Post Type A (W8×13×90); Left: Post Type B (W6×8.5×72).

Figure 3.3. FE Model of Stacked W-beam Transition Barrier System.

The simulation was conducted with the same impact conditions as the crash test. The FE vehicle model impacted the system at a speed of 64.3 mi/h and an angle of 25.0 degrees. The impact point was 6.3 ft upstream of the beginning of the concrete parapet, which is the same as the full-scale crash test.

Table 3.1 and Table 3.2 show a comparison of sequential gut and overhead images from the crash test and simulation at various times during the impact event.

Time (s)	Full-Scale Crash Test	Time (s)	Computer Simulation
0.000		0.000	
0.150		0.150	
0.300		0.300	
0.450		0.450	

Table 3.1. Sequential Comparison of Full-Scale Crash Test and Computer Simulation(Gut View).

Time (s)	Full-Scale Crash Test	Time (s)	Computer Simulation
0.000		0.000	
0.150		0.150	
0.300		0.300	
0.450		0.450	

 Table 3.2. Sequential Comparison of Full-Scale Crash Test and Computer Simulation (Overhead View).

In addition to comparing sequential time events for the full-scale crash tests and computer simulation, the research team also compared occupant risk values. Table 3.3 shows a comparison of the occupant risk values from full-scale crash tests and computer simulation. The occupant risk values determined from the computer simulation were comparable to those observed in the crash test.

	Full-Scale Crash Test	Computer Simulation
Longitudinal OIV (m/s)	5.9	6.2
Lateral OIV (m/s)	9.1	8.5
Longitudinal ORA (g)	-5.6	-3.7
Lateral ORA (g)	-15.0	-10.3
Roll (deg.)	87.2	87.2
Pitch (deg.)	4.9	-14.1
Yaw (deg.)	-84.8	-46.9

Table 3.3. Comparison of Occupant Risk Values for Crash Test and ComputerSimulation.

Note: OIV = occupant impact velocity; ORA = occupant ridedown acceleration.

The research team validated the performance of the vehicle and barrier model against the previously tested stacked W-beam transition crash test. The vehicle model and barrier component models were utilized in the predictive simulations performed to analyze new design concepts.

3.2 DEVELOPMENT OF DESIGN CONCEPTS

Several design concepts that considered various design variables were developed. Drawings were developed for the top six design concepts and presented to the sponsor for consideration. Based on the traffic flow on both sides of the median transition barrier, two different systems were considered in this research: asymmetric traffic flow concepts and symmetric traffic flow concepts.

3.2.1 Asymmetric Concepts

3.2.1.1 Stacked W-beams Option 1

This transition system is comprised of two stacked W-beams, with the top row of W-beams nested, as shown in Figure 3.4. This schematic shows the configuration for the stacked W-beams to a modified single-slope CMB transition. The parapet end is tapered at its connection to the guardrail. Furthermore, a vertical face to accommodate the bottom W-beam end shoe is implemented in the parapet.

Figure 3.4. Stacked W-beams Option 1.

The top W-beams on both traffic sides are nested and overlapped on the single-slope CMB through the W-beam end shoe and adaptor, shown in Figure 3.5 and Figure 3.6, respectively. At the upstream end of the lower W-beam, the rail is flared behind the post to help mitigate wheel snagging during impact.

Figure 3.5. W-beam to Single-Slope CMB Adaptor.

Figure 3.6. W-beam End Shoe.

3.2.1.2 Stacked W-beams Option 2

This transition system is comprised of two stacked W-beams, with the top row of W-beams nested, as shown in Figure 3.7. This schematic shows the configuration for the stacked W-beams to single-slope CMB transition. A W-beam adaptor and end shoe are used for attachment of the W-beam to the parapet. At the upstream end of the lower W-beam, the rail is flared between the post flanges to prevent possible wheel snagging during impact. The main advantage of this system compared to Option 1 is less modification for the concrete parapet. Furthermore, the bottom W-beam section is cut off to fit between the post 6 flanges, so no special treatment of the rail end may be necessary.

Figure 3.7. Stacked W-beams Option 2.

3.2.1.3 W-beam to F-shape

This asymmetric W-beam to F-shape transition consists of nested W-beam rails on both traffic sides and a rub rail at the bottom, as shown in Figure 3.8. In this system, the W-beams are modified (bent, twisted, etc.) to attach to the parapet directly through the end shoes (without adaptors). The rub rail is connected to posts 1–4 with modified blockouts and is flared on the upstream end behind post 6.

Figure 3.8. W-beam to F-shape.

3.2.1.4 Thrie-Beam to F-shape

The thrie-beam to F-shape system consists of nested thrie beams on both traffic sides attached to a modified F-shape parapet (Figure 3.9). The F-shape barrier is tapered and modified to a vertical shape for direct attachment of the thrie-beam end shoes. A curb is utilized on one traffic side.

Figure 3.9. Thrie Beam to F-shape.

3.2.2 Symmetric Concepts

3.2.2.1 W-beam to F-shape Option 1

This transition system is comprised of nested W-beams in both traffic directions along with rub rails on each side (Figure 3.10). The W-beams are modified (bent, twisted, etc.) to attach to the parapet directly through the end shoes. The rub rails are attached to the end face of the parapet using brackets, and at the upstream end, they are bent down, forming a turndown for both sides of traffic. A 2-inch-thick blockout is placed behind the rub rails for posts 1 through 6.

Figure 3.10. W-beam to F-shape Option 1.

3.2.2.2 W-beam to F-shape Option 2

Similar to Option 1, this transition system is comprised of nested W-beams in both traffic directions along with rub rails on each side, as shown in Figure 3.11. The W-beams are modified (bent, twisted, etc.) to attach to the parapet directly through the end shoes. The rub rails are attached to the end face of the parapet using brackets. The difference in this system and Option 1 is that the rub rails are flared inward and secured next to post 6 on the upstream end.

Figure 3.11. W-beam to F-shape Option 2.

3.3 ASYMMETRIC MEDIAN TRANSITION SIMULATIONS

The selected design was an asymmetric transition with stacked W-beam rails attached to a single-slope concrete parapet. Figure 3.12 shows a sketch of the transition design.

A computer model was developed for the asymmetric transition design and is shown in Figure 3.13. Computer simulations were conducted at various locations along the transition to evaluate the performance of the system and to determine critical impact locations. *MASH* Tests 3-20 and 3-21 were conducted for each transition region. This particular transition system consisted of three transition regions, which were each evaluated. The first region consisted of the transition from the median guardrail system with nested W-beams and quarter post spacing to the rigid parapet. The second region consisted of the transition from the median guardrail with nested W-beams and half post spacing to the median guardrail with nested W-beams and quarter post spacing. The third region consisted of the transition from the standard TxDOT median guardrail system to the median guardrail with nested W-beams and half post spacing. Figure 3.14 shows the three transition regions.

Figure 3.12. Asymmetric Median Transition Design.

Figure 3.13. Computer Model of Asymmetric Transition.

Figure 3.14. Transition Regions for MASH Evaluation.

3.3.1 MASH Test 3-20 at Downstream Transition

Four simulations were conducted to investigate the critical impact point for the section that transitioned from guardrail quarter post spacing to a rigid concrete parapet. The first simulation was conducted with the vehicle impacting 8.5 ft upstream of the end of the rigid concrete parapet. Figure 3.15 shows the vehicle at impact with the system. The other three simulations were conducted with the impact location shifted 2 ft downstream for each iteration.

Figure 3.15. Impact Location for First Simulation at Downstream Transition.

To determine the critical impact location, the occupant risk values were calculated for each simulation and compared. Table 3.4 shows the occupant risk values for the four simulations. The impact location of 8.5 ft upstream of the end of the rigid concrete parapet resulted in the highest OIV and is near the MASH limit of 12.0 m/s. The impact location of 4.5 ft upstream of the end of the rigid concrete parapet had a slightly higher ORA value but is well below the MASH limit of 20 g's. Thus, the impact location of 8.5 ft upstream of the end of the rigid parapet was determined to be the critical impact location since the OIV value is close to the MASH limit. No additional simulations were performed upstream of the 8.5 ft impact location as this would be moving into the next transition region.

	8.5 ft upstream	6.5 ft upstream	4.5 ft upstream	2.5 ft upstream
Longitudinal OIV (m/s)	9.6	9.3	9.1	9.0
Lateral OIV (m/s)	10.1	9.3	9.8	9.7
Longitudinal ORA (g)	8.9	7.1	10.9	8.9
Lateral ORA (g)	10.0	7.9	6.9	7.5
Roll (deg.)	6.0	5.5	7.0	9.3
Pitch (deg.)	5.2	8.1	8.3	7.9
Yaw (deg.)	45.1	93.6	61.6	50.8

Table 3.4. Occupant Risk Comparison for MASH Test 3-20 at Downstream Transition.

3.3.2 MASH Test 3-20 at Middle Transition

Four simulations were conducted to investigate the critical impact point for the section that transitioned from guardrail half post spacing to guardrail quarter post spacing. The first simulation was conducted with the vehicle impacting 3.5 ft upstream of the centerline of the last post in the quarter post spacing section. Figure 3.16 shows the vehicle at impact with the system. The other three simulations were conducted with the impact location shifted 2 ft upstream for each iteration.

Figure 3.16. Impact Location for First Simulation at Middle Transition.

To determine the critical impact location, the occupant risk values were calculated for each simulation and compared. Table 3.5 shows the occupant risk values for the four simulations. The impact location of 7.5 ft upstream of the centerline of the last post in the quarter post spacing section resulted in the highest ORA and was determined to be the critical impact location.

	3.5 ft upstream	5.5 ft upstream	7.5 ft upstream	9.5 ft upstream
Longitudinal OIV (m/s)	9.4	9.9	10.5	10.8
Lateral OIV (m/s)	9.2	9.4	7.1	8.5
Longitudinal ORA (g)	8.5	12.0	29.7	17.0
Lateral ORA (g)	6.4	8.3	10.5	12.3
Roll (deg.)	6.0	27.6	30.2	33.2
Pitch (deg.)	4.9	6.2	6.7	5.8
Yaw (deg.)	49.9	54.9	65.6	31.6

Table 3.5. Occupant Risk Values for MASH Test 3-20 at Middle Transition.

3.3.3 MASH Test 3-20 at Upstream Transition

Three simulations were conducted to investigate the critical impact point for the section that transitioned from guardrail regular post spacing to guardrail half post spacing. The first simulation was performed with the impact point 2.0 ft upstream of the centerline of the last post in the half post spacing section. Figure 3.17 shows the vehicle at impact with the system. The other two simulations were conducted with the impact location shifted 2 ft upstream for each iteration.

Figure 3.17. Impact Location for First Simulation at Upstream Transition.

To determine the critical impact location, the occupant risk values were calculated for each simulation and compared. Table 3.6 shows the occupant risk values for the three simulations. All of the simulations resulted in ORA values exceeding the MASH limit of 20 gs. The current vehicle model does not allow any failure of the suspension components or joints. In full-scale crash testing, it is likely that some of these components would fail and reduce the high ORA values seen in the simulations. For the purposes of selecting the critical impact location, the impact location of 2.0 ft upstream of the centerline of the last post in the half post spacing section was determined to be the critical impact location as it had the highest ORA value.

	2.0 ft upstream	4.0 ft upstream	6.0 ft upstream
Longitudinal OIV (m/s)	9.9	12.9	14.4
Lateral OIV (m/s)	7.1	6.6	5.8
Longitudinal ORA (g)	34.4	25.3	27.8
Lateral ORA (g)	9.6	9.5	7.9
Roll (deg.)	34.1	31.3	3.7
Pitch (deg.)	6.7	9.7	12.8
Yaw (deg.)	33.8	56.8	88.8

 Table 3.6. Occupant Risk Values for MASH Test 3-20 at Upstream Transition.

3.3.4 MASH Test 3-21 at Downstream Transition

Three simulations were conducted to investigate the critical impact point for the section that transitioned from guardrail quarter post spacing to a rigid concrete parapet. The first simulation was conducted with the vehicle impacting 4.0 ft upstream of the end of the rigid concrete parapet. Figure 3.18 shows the vehicle at impact with the system. The other two simulations were conducted with the impact location shifted 2 ft upstream for each iteration.

Figure 3.18. Impact Location for First Simulation at Downstream Transition.

To determine the critical impact location, the occupant risk values were calculated for each simulation and compared. Table 3.7 shows the occupant risk values for the three simulations. The impact location of 8.0 ft upstream of the end of the rigid concrete parapet resulted in rollover of the truck and was determined to be the critical impact location. The current Silverado vehicle model has been observed to have an overly stiff rear suspension system, which sometimes leads to overpredicting roll angles. Additional simulations were performed with a preliminary Dodge Ram pickup truck model and no rollover was observed.

	4.0 ft	6.0 ft	8.0 ft
	upstream	upstream	upstream
Longitudinal OIV (m/s)	5.5	5.5	5.4
Lateral OIV (m/s)	8.5	8.4	8.3
Longitudinal ORA (g)	3.8	3.7	5.7
Lateral ORA (g)	14.1	11.7	10.2
Roll (deg.)	29.8	65.5	161.5
Pitch (deg.)	9.1	8.9	6.5
Yaw (deg.)	33.1	58.3	74.9

Table 3.7. Occupant Risk Values for MASH Test 3-21 at Downstream Transition.

3.3.5 MASH Test 3-21 at Middle Transition

Four simulations were conducted to investigate the critical impact point for the section that transitioned from guardrail half post spacing to guardrail quarter post spacing. The first simulation was conducted with the vehicle impacting 5.0 ft upstream of the centerline of the last post in the quarter post spacing section. Figure 3.19 shows the vehicle at impact with the system. The other three simulations were conducted with the impact location shifted 2 ft upstream for each iteration.

Figure 3.19. Impact Location for First Simulation at Middle Transition.

To determine the critical impact location, the occupant risk values were calculated for each simulation and compared. Table 3.8 shows the occupant risk values for the four simulations. The impact location of 6.0 ft upstream of the centerline of the last post in the quarter post spacing section resulted in rollover of the pickup truck and was determined to be the critical impact location.

	4.0 ft upstream	6.0 ft upstream	8.0 ft upstream	10.0 ft upstream
Longitudinal OIV (m/s)	5.5	5.5	5.5	5.3
Lateral OIV (m/s)	8.5	8.6	7.9	7.4
Longitudinal ORA (g)	6.9	7.6	8.1	4.9
Lateral ORA (g)	12.8	10.2	11.0	11.7
Roll (deg.)	73.7	104.6	55.7	24.2
Pitch (deg.)	7.7	6.7	10.1	9.6
Yaw (deg.)	65.5	71.1	54.5	41.7

Table 3.8. Occupant Risk Values for MASH Test 3-21 at Middle Transition.

3.3.6 MASH Test 3-21 at Upstream Transition

Three simulations were conducted to investigate the critical impact point for the section that transitioned from guardrail regular post spacing to guardrail half post spacing. The first simulation was performed with the impact point 3.0 ft upstream of the centerline of the last post in the half post spacing section. Figure 3.20 shows the vehicle at impact with the system. The other two simulations were conducted with the impact location shifted 2 ft upstream for each iteration.

Figure 3.20. Impact Location for First Simulation at Upstream Transition.

To determine the critical impact location, the occupant risk values were calculated for each simulation and compared. Table 3.9 shows the occupant risk values for the three simulations. The impact location of 7.0 ft upstream of the centerline of the last post in the half post spacing section resulted in the highest ORA and was determined to be the critical impact location. No additional simulations were performed upstream of the 7.0 ft impact location as this would be moving into the standard median guardrail region.

	3.0 ft upstream	5.0 ft upstream	7.0 ft upstream
Longitudinal OIV (m/s)	6.9	9.2	7.7
Lateral OIV (m/s)	6.8	6.3	5.1
Longitudinal ORA (g)	9.5	10.8	18.6
Lateral ORA (g)	9.5	9.4	8.5
Roll (deg.)	19.3	48.0	5.5
Pitch (deg.)	13.9	8.5	10.8
Yaw (deg.)	40.0	54.0	43.4

 Table 3.9. Occupant Risk Values for MASH Test 3-21 at Upstream Transition.

3.4 SYMMETRIC MEDIAN TRANSITION

A modified transition design that consisted of a median guardrail system with W-beam rub rail on both sides of the system was developed. The rub rails were connected to the face of the concrete parapet at one end and were connected together at the other end with a spacer tube.

A computer model was developed for the symmetric transition design and is shown in Figure 3.21. Computer simulations were conducted at the downstream transition from the median guardrail to the concrete parapet. *MASH* Test 3-21 was performed to evaluate the symmetric design. *MASH* Test 3-20 was not considered with the symmetric transition design since the pickup truck impact was shown to be more critical in the previous simulations. No other changes were made to the system details, so it was not necessary to reevaluate the middle and upstream transition sections.

Figure 3.21. Computer Model of Symmetric Transition.

Computer simulations were conducted to evaluate the symmetric design according to *MASH* Test 3-21 evaluation criteria. The same pickup truck computer model used for the asymmetric design was used to evaluate the symmetric design. Figure 3.22 shows the vehicle at impact. The impact location was 8 ft upstream of the end of the parapet.

Figure 3.22. MASH Test 3-21 on Symmetric Design.

The computer simulation resulted in rollover of the pickup truck. Figure 3.23 shows the pickup truck after impact with the symmetric transition design.

Figure 3.23. Pickup Truck Rollover after Impact.

A modification was made to the pickup truck to allow failure of the tire joints, thus allowing release of the tire during impact. A simulation was performed with the updated vehicle model to evaluate the potential for rollover. In the simulation, the pickup truck tire released during initial impact, but the truck still rolled over.

A RAM 1500 pickup truck model was recently developed by Center for Collision Safety and Analysis (CCSA) and released to the roadside safety community for use in computer simulations. This vehicle model has been shown to have more realistic suspension characteristics than the Chevy Silverado pickup truck model. Thus, the research team proceeded with integrating the RAM 1500 computer model with the median transition system model. Figure 3.24 shows the RAM pickup truck model, and Figure 3.25 shows the pickup truck model prior to impact with the median transition.

Figure 3.24. RAM Pickup Truck Model.

Figure 3.25. RAM Pickup Truck Impact with Symmetric Transition.

The computer simulation with the RAM vehicle model impacting the symmetric transition resulted in improved vehicle behavior, and no rollover of the vehicle occurred. Figure 3.26 shows the vehicle after impact.

Figure 3.26. RAM Pickup Truck after Impact with Symmetric Transition.

3.5 CONCLUSIONS

After computer simulations showed a reasonable chance of passing the *MASH* 3-21 test with the RAM pickup truck model, full-scale crash testing was initiated to evaluate the symmetric transition design experimentally.

CHAPTER 4: SYSTEM DETAILS

4.1 TEST ARTICLE AND INSTALLATION DETAILS

The installation consisted of a double-sided, 31-inch-tall W-beam median guardrail attached to a concrete terminal barrier via W-beam terminal connectors. A second 17-inch-high W-beam section rub rail was installed just below the guardrail on both sides for a distance of approximately 14 ft upstream of the concrete terminal barrier. The total length of the installation was 95 ft $11^{7}/_{16}$ inches. The W-beam medial guardrail was installed on both sides of 72-inch-long wide flange guardrail posts and terminated on the downstream end with a <u>simple</u> terminal that provides anchorage functionality to the system. The rails were offset from the posts by W-beam blockouts.

4.2 DESIGN MODIFICATIONS DURING TESTS

Modifications were made to the system after the first crash test (Test No. 469900-01-1). A description of the modifications can be found in Section 7.8. Also, Figure 7.6 presents overall information on the modified transition system, and Figure 7.7 provides photographs of the modified installation. Appendix A2 provides further details on the modified median barrier transition.

4.3 MATERIAL SPECIFICATIONS

Appendix B provides material certification documents for the materials used to install/construct the median barrier transition.

TR No. 0-6990-R1

0: Mocreditation-17025-2017/EIR-000 Project Files/469900-TXDOT-Median Transition/-01 (Drafting, 469900/2020-06-02/469900 Drawing

Figure 4.1. Overall Details on Median Barrier Transition.

50

2021-06-11

Figure 4.2. Median Barrier Transition prior to Testing.

4.4 SOIL CONDITIONS

The test installation was installed in standard soil meeting AASHTO standard specifications for "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses," designated M147-65(2004), Grade B.

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the median barrier transition for full-scale crash testing, two standard 6-ft-long W6×16 posts were installed in the immediate vicinity of the median barrier transition, using the same fill materials and installation procedures that were used in the standard

dynamic test (see Table C.1 in Appendix C for establishment of minimum soil strength properties in the dynamic test performed in accordance with *MASH* Appendix B).

As determined in the tests shown in Appendix C, Table C.1, the minimum post load required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, was 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation).

On the day of Test No. 469900-01-1, June 18, 2020, load on the post at deflections of 5 inches, 10 inches, and 15 inches was 7222 lbf, 8131 lbf, and 8989 lbf, respectively. Table C.2 in Appendix C shows that the strength of the backfill material in which the transition was installed met minimum requirements.

For Test No. 469900-01-2 on August 13, 2020, the loads on the post were 7070 lbf, 7575 lbf, and 8080 lbf at 5 inches, 10 inches, and 15 inches. Table C.3 in Appendix C shows that the strength of the backfill material in which the transition was installed met minimum requirements.

For Test No. 469900-01-3 on August 25, 2020, the loads on the post were 8333 lbf, 9191 lbf, and 10,101 lbf at 5 inches, 10 inches, and 15 inches. Table C.4 in Appendix C shows that the strength of the backfill material in which the transition was installed met minimum requirements.

For Test No. 469900-01-4 on September 28, 2020, the loads on the post were 8282 lbf, 9249 lbf, and 9595 lbf at 5 inches, 10 inches, and 15 inches. Table C.5 in Appendix C shows that the strength of the backfill material in which the transition was installed met minimum requirements.

For Test No. 469900-01-5 on October 5, 2020, the loads on the post were 9090 lbf, 10,505 lbf, and 11,060 lbf at 5 inches, 10 inches, and 15 inches. Table C.6 in Appendix C shows that the strength of the backfill material in which the transition was installed met minimum requirements.

4.5 CONCRETE STRENGTH

Concrete for the steel-reinforced parapet/barrier and foundation slab was specified as TxDOT Class C (3600 psi). On June 18, 2020, the compressive concrete strengths for the parapet/barrier and the foundation slab averaged 4947 psi at 52 days and 4847 psi at 31 days. Appendix B provides additional information.
CHAPTER 5: TEST REQUIREMENTS AND EVALUATION CRITERIA

5.1 CRASH TEST MATRIX

Table 5.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for transitions. Figure 5.1 through Figure 5.4 show the target critical impact points (CIPs) for each crash test per the previous failed single sided stacked w-beam transition for the first test and a combination of simulations and engineering judgment for the other tests. As specified in *MASH* Section 2.2.1.1, two impact regions should be considered for transitions that connect a flexible system to a rigid system. For this particular transition system, three impact regions were considered: (a) the transition from median guardrail with rub rail and quarter post spacing to median guardrail with rub rail and quarter post spacing to median guardrail with rub rail and quarter post spacing to median guardrail with rub rail and quarter post spacing to median guardrail with rub rail and quarter post spacing is spacing.

The CIPs were determined using the results from the computer simulations presented in Chapter 3 and the information provided in *MASH* Section 2.2.1 and Section 2.3.2. The first test (*MASH* 3-21) CIP was selected based on a known failed test for a single-sided, stacked W-beam transition. The optional *MASH* 3-20 test at the transition from the median guardrail with rub rail to the concrete parapet was not conducted since it is not as critical as the other regions' CIP for the small car test. This transition region has more surface area than the other regions and does not have room for tire-to-post interaction due to the presence of the W-beam rub rail.

Table 5.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3Transition.

Tost Anticle	Test Designation	Test Vehicle	Impact Conditions		Freelanding Criteria
Test Article			Speed	Angle	Evaluation Criteria
Tuonaition	3-20	1100C	62 mi/h	25	A, D, F, H, I
Transition	3-21	2270P	62 mi/h	25	A, D, F, H, I

Plan View

Figure 5.3. Target CIP for *MASH* Test 3-21 on Median Guardrail to Modified Median Transition.

Figure 5.4. Target CIP for *MASH* Test 3-20 on Median Guardrail to Modified Median Transition.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 6 presents brief descriptions of these procedures.

5.2 EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2 and 5-1 of *MASH* were used to evaluate the crash tests reported herein. The test conditions and evaluation criteria required for

MASH TL-3 transitions are listed in Table 5.1, and a detailed explanation of the evaluation criteria is included in Table 5.2. An evaluation of the crash test results is presented in Chapter 13.

Evaluation Factors	Evaluation Criteria				
Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			
	D.	D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or preserved undue hazard to other traffic, pedestrians, or personnel in a work zone.			
		Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.			
Occupant Risk	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			
	Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.			
	Ι.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.			

Table 5.2. Evaluation Criteria Required for MASH TL-3 Transitions.

CHAPTER 6: TEST CONDITIONS

6.1 TEST FACILITY

The full-scale crash tests reported herein were performed at TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on the Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The site selected for construction and testing of the median barrier transition was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

6.2 VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site (no sooner than 2 s after impact), after which the brakes were activated, if needed, to bring the test vehicle to a safe and controlled stop.

6.3 DATA ACQUISITION SYSTEMS

6.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, onboard data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axes of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rateof-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

6.3.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side (side opposite of impact for sign supports) of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional. However, it is recommended that a dummy be used when testing "any longitudinal barrier with a height greater than or equal to 33 inches." Use of the dummy in the 2270P vehicle is recommended for tall rails to evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact

performance evaluation. Since the rail height of the concrete parapet to which the median barrier transitioned was 42 inches, a dummy was placed in the front seat of the 2270P vehicle on the impact side and restrained with lap and shoulder belts.

6.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One placed overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed behind the installation at an angle.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the median barrier transition. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

CHAPTER 7: MASH TEST 3-21 (CRASH TEST NO. 469900-01-1) ON MEDIAN TRANSITION TO CONCRETE BARRIER

7.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-21 involves a 2270P vehicle weighing 5000 lb \pm 110 lb impacting the CIP of the transition at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-21 on the transition to the concrete median barrier was 6.3 ft \pm 1 ft upstream of the end of the concrete parapet. Figure 5.1 and Figure 7.1 depict the target impact setup.

Figure 7.1. Transition/Test Vehicle Geometrics for Test No. 469900-01-1.

The 2270P vehicle weighed 5002 lb, and the actual impact speed and angle were 63.3 mi/h and 25.1 degrees. The actual impact point was 6.3 ft upstream of the end of the concrete parapet. Minimum target impact severity (IS) was 106 kip-ft, and actual IS was 121 kip-ft.

7.2 WEATHER CONDITIONS

The test was performed on the morning of June 18, 2020. Weather conditions at the time of testing were as follows: wind speed: 11 mi/h; wind direction: 167 degrees (vehicle was traveling at a heading of 330 degrees); temperature: 87°F; relative humidity: 63 percent.

7.3 TEST VEHICLE

Figure 7.2 shows the 2014 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5002 lb, and its gross static weight was 5167 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 29.5 inches. Tables D.1 and D.2 in Appendix D.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.2. Test Vehicle before Test No. 469900-01-1.

7.4 TEST DESCRIPTION

Table 7.1 lists events that occurred during Test No. 469900-01-1. Figures D.1 and D.2 in Appendix D.2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle bumper impacts transition
0.027	Vehicle begins to redirect
0.106	Left front tire leaves pavement
0.121	Left rear tire leaves pavement
0.195	Rear right bumper contacts transition
0.208	Vehicle travels parallel with barrier
0.360	Vehicle loses contact with transition while traveling at 49.5 mi/h, a
	trajectory angle of 4.2 degrees, and a vehicle heading angle of 8.4 degrees
0.561	Right front corner of vehicle contacts pavement

Table 7.1. Events during Test No. 469900-01-1.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied after the vehicle exited the test site, and the vehicle subsequently came to rest on its right side 218 ft downstream of the impact point and 50 ft toward the traffic lanes.

7.5 DAMAGE TO TEST INSTALLATION

Figure 7.3 shows the damage to the transition. The rail was scuffed and deformed at the site of impact. There was no movement noted on posts 1 through 13. Post 14 was pushed back 1/4 inch. Posts 15 and 16 were both pushed back 1/2 inch, and posts 17 and 18 were pushed back 1 inch. The soil at post 19 was disturbed. At the single-sloped blockouts holding the rail away

from the concrete barrier, the rail was pushed against the barrier. Working width^{*} was 33.3 inches, and height of working width was 28.5 inches. Maximum dynamic deflection during the test was 3.3 inches.

Figure 7.3. Transition after Test No. 469900-01-1.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

7.6 DAMAGE TO TEST VEHICLE

Figure 7.4 shows the damage sustained by the vehicle. The front bumper, radiator and support, right frame rail, right and left upper and lower control arms, right front tire and rim, sway bar, right front floor pan, right front door and window glass, right rear door, right exterior cab corner, right rear exterior bed, right rear tire and rim, and rear bumper were damaged. The windshield was cracked, radiating from the right lower corner upward and inward across the entire windshield. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 16.0 inches in the front and side planes at the right front corner at bumper height. Maximum occupant compartment deformation was 7.0 inches in the right front firewall and the kick panel area. Tables D.3 and D.4 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Before being uprighted

After being uprighted Figure 7.4. Test Vehicle after Test No. 469900-01-1.

7.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 7.2. Figure 7.5 summarizes these data and other pertinent information from the test. Figure D.3 in Appendix D.3 shows the vehicle

angular displacements, and Figures D.4 through D.6 in Appendix D.4 show accelerations versus time traces.

Occupant Risk Factor	Value	Time	
OIV			
Longitudinal	21.0 ft/s	at 0,1052 s on right side of interior	
Lateral	25.9 ft/s	at 0.1052 s on right side of interior	
Ridedown Accelerations			
Longitudinal	11.6 g	0.1052–0.1152 s	
Lateral	12.4 g	0.2410–0.2510 s	
Theoretical Head Impact Velocity (THIV)	10.0 m/s	at 0.1025 s on right side of interior	
Acceleration Severity Index (ASI)	1.4	0.0853–0.1353 s	
Maximum 50-ms Moving Average			
Longitudinal	-8.9 g	0.0793–0.1293 s	
Lateral	-11.7 g	0.0461–0.0961 s	
Vertical	-3.0 g	0.0183–0.0683 s	
Maximum Roll, Pitch, and Yaw Angles			
		@ 1.2982 s (vehicle rolled 90°	
Roll	53°	after end of data collection)	
Pitch	18°	0.6146 s	
Yaw	70°	2.0000 s	

 Table 7.2. Occupant Risk Factors for Test No. 469900-01-1.

7.8 **RESULTS AND CONCLUSIONS**

Due to rollover of the pickup truck, the design failed to redirect the vehicle in a safe and stable manner. To improve the performance of the system, several modifications were made to the transition system. First, the lower W-beam rail was attached to the end face of the concrete parapet with a steel bracket. This was done by moving the lower W-beam rail toward the post line via reducing the size of the wood blocks. Thus, the modified design has no W-beam terminal connector for the lower rail.

Second, an extra post was added upstream of the quarter spacing region to smooth the stiffness transition between the half-spaced posts and the quarter-spaced posts where the rub-rail terminates. Third, a vertical taper was added to the toe at the end of the concrete barrier parapet.

Figure 7.6 presents overall information on the median transition, and Figure 7.7 provides photographs of the installation. Appendix A2 provides further details on the modified median barrier transition.

TR No. 0-6990-R1

General Information

Test Agency T	Fexas A&M Transportation Institute (TTI)	
Test Standard Test No A	MASH Test 3-21	
TTI Test No 4	69900-01-1	
Test Date 2	2020-06-18	
Test Article		lr
ТуреТ	Fransition	E
Name M	Median Transition	
Installation Length 9	95 ft 11 ⁷ / ₁₆ inches	
Material or Key Elements S	Steel W-beam guardrail and posts,	С
C	concrete barrier with steel rebar	
Soil Type and Condition A	ASHTO M147-65, Grade B soil	
(0	crushed limestone)	
Test Vehicle		
Type/Designation 2	2270P	
Make and Model 2	2014 RAM 1500 pickup truck	
Curb 4	1947 lb	N
Test Inertial 5	5002 lb	
Dummy 1	65 lb	
Gross Static 5	5167 lb	

Impact Conditions	
Speed	63.3 mi/h
Angle	25.1°
Location/Orientation	6.3 ft upstream of end of parapet
Impact Severity	121 kip-ft
Exit Conditions	
Speed	49.5 mi/h
Trajectory/Heading Angle	4.2°/8.4°
Occupant Risk Values	
Longitudinal OIV	21.0 ft/s
Lateral OIV	25.9 ft/s
Longitudinal Ridedown	11.6 g
Lateral Ridedown	12.4 g
THIV	10.0 m/s
ASI	1.4
Max. 0.050-s Average	
Longitudinal	-8.9 q
Lateral	-11.7 a
Vertical	-3.0 g
Longitudinal Lateral Vertical	-8.9 g -11.7 g -3.0 g

Post-Impact Trajectory

Stopping Distance	. 218 ft downstream 50 ft twd traffic
Vehicle Stability	
Maximum Roll Angle	. 53°
Maximum Pitch Angle	. 18°
Maximum Yaw Angle	. 70°
Vehicle Snagging	. Yes
Vehicle Pocketing	. No
Test Article Deflections	
Dynamic	. 3.3 inches
Permanent	. Undetermined
Working Width	. 33.3 inches
Height of Working Width	. 28.5 inches
Vehicle Damage	
VDS	. 01RFQ5
CDC	. 01FREW4
Max. Exterior Deformation	. 16.0 inches
OCDI	. RF0020000
Max. Occupant Compartment	
Deformation	. 7.0 inches

Figure 7.5. Summary of Results for MASH Test 3-21 on Median Transition.

Figure 7.6. Overall Details on Modified Median Barrier Transition.

Figure 7.7. Modified Median Barrier Transition prior to Testing.

CHAPTER 8: MASH TEST 3-21 (CRASH TEST NO. 469900-01-2) ON MODIFIED MEDIAN TRANSITION TO CONCRETE BARRIER

8.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-21 involves a 2270P vehicle weighing 5000 lb \pm 110 lb impacting the CIP of the transition at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-21 on the modified transition to the concrete median barrier was 6.3 ft \pm 1 ft upstream of the end of the concrete parapet. Figure 5.1 and Figure 8.1 depict the target impact setup.

Figure 8.1. Modified Transition/Test Vehicle Geometrics for Test No. 469900-01-2.

The 2270P vehicle weighed 5008 lb, and the actual impact speed and angle were 61.9 mi/h and 24.7 degrees. The actual impact point was 6.6 ft upstream of the end of the concrete parapet. Minimum target IS was 106 kip-ft, and actual IS was 112 kip-ft.

8.2 WEATHER CONDITIONS

The test was performed on the morning of August 13, 2020. Weather conditions at the time of testing were as follows: wind speed: 9 mi/h; wind direction: 211 degrees (vehicle was traveling at a heading of 330 degrees); temperature: 90°F; relative humidity: 67 percent.

8.3 TEST VEHICLE

Figure 8.2 shows the 2014 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5008 lb, and its gross static weight was 5173 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.8 inches. Tables E.1 and E.2 in Appendix E.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 8.2. Test Vehicle before Test No. 469900-01-2.

8.4 TEST DESCRIPTION

Table 8.1 lists events that occurred during Test No. 469900-01-2. Figures E.1 and E.2 in Appendix E.2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle impacts transition
0.106	Left front tire begins to lift off the pavement
0.119	Left rear tire lifts off pavement
0.214	Right rear corner of vehicle contacts transition
0.448	Vehicle begins to redirect
0.468	Right front corner of vehicle returns to pavement
0.590	Vehicle travels parallel with transition
0.761	Vehicle loses contact with the transition traveling at 45.9 mi/h, a
	trajectory angle of 5.3 degrees, and a heading angle of 12.8 degrees

Table 8.1. Events during Test No. 469900-01-2.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 3.25 s after impact. After loss of contact with the barrier, the vehicle came to rest 224 ft downstream of the impact point and 9 ft toward the field side.

8.5 DAMAGE TO TEST INSTALLATION

Figure 8.3 shows the damage to the modified transition. The rail was scuffed and deformed at the site of impact. The maximum permanent deformation of the system was 2.75 inches at post 18. There was no movement noted on posts 1 through 13. The following gaps in the soil were noted at the front of these posts: 0.25 inches at post 14, 0.5 inches at post 15, 0.75 inches at posts 16 and 17, and 1 inch at post 18. The soil appeared to be disturbed at posts

19 and 20. No movement or cracking was noted on the concrete barrier. Working width^{*} was 33.0 inches, and height of working width was 28.7 inches. Maximum dynamic deflection during the test was 5.4 inches, and maximum permanent deformation was 2.75 inches.

Figure 8.3. Modified Transition after Test No. 469900-01-2.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

8.6 DAMAGE TO TEST VEHICLE

Figure 8.4 shows the damage sustained by the vehicle. The front bumper, grill, hood, radiator and support, right front fender, right upper and lower control arms, right front tire and rim, right A-post, right front door and window glass, right front floor pan, right rear door, right rear cab corner, right rear exterior bed, right rear rim, right taillight, and rear bumper were damaged. The windshield sustained stress cracking initiating from the right lower corner of the windshield upward and inward. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 16.0 inches in the front plane at the right front corner at bumper height. Maximum occupant compartment deformation was 5.5 inches in the right front firewall area. Figure 8.5 shows the interior of the vehicle after the test. Tables E.3 and E.4 in Appendix E.1 provide exterior crush and occupant compartment measurements.

Figure 8.4. Test Vehicle after Test No. 469900-01-2.

Figure 8.5. Interior of Vehicle after Test No. 469900-01-2.

8.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 8.2. Figure 8.6 summarizes these data and other pertinent information from the test. Figure E.3 in Appendix E.3 shows the vehicle angular displacements, and Figures E.4 through E.6 in Appendix E.4 show accelerations versus time traces.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	20.7 ft/s	at 0 1055 s on right side of interior
Lateral	25.6 ft/s	at 0.1055 s on right side of interior
Ridedown Accelerations		
Longitudinal	7.1 g	0.1055–0.1155 s
Lateral	7.3 g	0.2665–0.2765 s
THIV	10.5 m/s	at 0.1091 s on right side of interior
ASI	1.7	0.0685–0.1185 s
Maximum 50-ms Moving Average		
Longitudinal	-9.3 g	0.0517–0.1017 s
Lateral	-12.7 g	0.0428–0.0928 s
Vertical	-2.4 g	0.0236–0.0736 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	37°	0.7477 s
Pitch	44°	1.4255 s
Yaw	42°	5.0000 s

 Table 8.2. Occupant Risk Factors for Test No. 469900-01-2.

General Information		Impact Conditions		Post-Impact Trajectory	
Test Agency	Texas A&M Transportation Institute (TTI)	Speed6	61.9 mi/h	Stopping Distance	224 ft downs
Test Standard Test No	MASH Test 3-21	Angle 2	24.7°		9 ft twd field
TTI Test No	469900-01-2	Location/Orientation6	6.6 ft upstream of	Vehicle Stability	
Test Date	2020-08-13		end of parapet	Maximum Roll Angle	37°
Test Article		Impact Severity1	112 kip-ft	Maximum Pitch Angle	44°
Туре	Transition	Exit Conditions		Maximum Yaw Angle	42°
Name	Modified Median Transition	Speed 4	45.9 mi/h	Vehicle Snagging	No
Installation Length	95 ft 11 ⁷ / ₁₆ inches	Trajectory/Heading Angle 5	5.3°/12.8°	Vehicle Pocketing	No
Material or Key Elements	Steel W-beam guardrail and posts, steel	Occupant Risk Values		Test Article Deflections	
	rebar reinforced concrete barrier	Longitudinal OIV2	20.7 ft/s	Dynamic	5.4 inches
Soil Type and Condition	AASHTO M147-65, Grade B soil (crushed	Lateral OIV2	25.6 ft/s	Permanent	2.75 inches
	limestone)	Longitudinal Ridedown 7	7.1 g	Working Width	33.0 inches
Test Vehicle		Lateral Ridedown	7.3 g	Height of Working Width	28.7 inches
Type/Designation	2270P	THIV 1	10.5 m/s	Vehicle Damage	
Make and Model	2014 RAM 1500 pickup truck	ASI 1	1.7	VDS	01RFQ5
Curb	5089 lb	Max. 0.050-s Average		CDC	01FREW4
Test Inertial	5008 lb	Longitudinal	-9.3 g	Max. Exterior Deformation	16.0 inches
Dummy	165 lb	Lateral	-12.7 g	OCDI	RF0021200
Gross Static	5173 lb	Vertical	-2.4 g	Max. Occupant Compartment	
				Deformation	5.5 inches

Figure 8.6. Summary of Results for MASH Test 3-21 on Modified Median Transition.

CHAPTER 9: MASH TEST 3-20 (CRASH TEST NO. 469900-01-3) ON MODIFIED MEDIAN TRANSITION TO CONCRETE BARRIER

9.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-20 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the CIP of the transition at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-20 on the section transitioning from median guardrail with half post spacing to median guardrail with quarter post spacing and rub rail was 21.5 inches upstream of the centerline of post 13. Figure 5.2 and Figure 9.1 depict the target impact setup.

Figure 9.1. Transition/Test Vehicle Geometrics for Test No. 469900-01-3.

The 1100C vehicle weighed 2420 lb, and the actual impact speed and angle were 62.9 mi/h and 25.2 degrees. The actual impact point was 20.7 inches upstream of the centerline of post 13. Minimum target IS was 51 kip-ft, and actual IS was 58 kip-ft.

9.2 WEATHER CONDITIONS

The test was performed on the afternoon of August 25, 2020. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind direction: 48 degrees (vehicle was traveling at a heading of 330 degrees); temperature: 97°F; relative humidity: 44 percent.

9.3 TEST VEHICLE

Figure 9.2 shows the 2015 Nissan Versa used for the crash test. The vehicle's test inertia weight was 2420 lb, and its gross static weight was 2585 lb. The height to the lower edge of the vehicle bumper was 7.0 inches, and height to the upper edge of the bumper was 22.25 inches. Table F.1 in Appendix F.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 9.2. Test Vehicle before Test No. 469900-01-3.

9.4 TEST DESCRIPTION

Table 9.1 lists events that occurred during Test No. 469900-01-3. Figures F.1 and F.2 in Appendix F.2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle impacts transition
0.018	Post 13 deflects toward field side
0.043	Vehicle begins to redirect
0.045	Right front tire contacts end of rub rail
0.177	Vehicle travels parallel with transition
0.338	Vehicle loses contact with transition while traveling at 46.6 mi/h, a
	trajectory angle of 6.3 degrees, and a heading angle of 12.7 degrees

Table 9.1. Events during Test No. 469900-01-3.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 3.25 s after impact, and the vehicle subsequently came to rest 198 ft downstream of the impact point and 27 ft toward the field side of the transition.

9.5 DAMAGE TO TEST INSTALLATION

Figure 9.3 shows the damage to the transition. The soil was disturbed at posts 11 through 18, and there was scraping and scuffing on the rail. The end cap of the bottom rail was pushed toward the field side, and the rail detached from posts 14 and 15. The blockout at post 13 was

slightly crushed on the bottom of the downstream side. Working width^{*} was 32.1 inches, and height of working width was 28.5 inches. Maximum dynamic deflection during the test was 5.2 inches, and maximum permanent deformation was 1.25 inches.

Figure 9.3. Transition after Test No. 469900-01-3.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

9.6 DAMAGE TO TEST VEHICLE

Figure 9.4 shows the damage sustained by the vehicle. The front bumper, grill, hood, radiator and support, right front fender, right front strut and tower, right front tire and rim, right lower control arm, right A-post, right front door and window glass, right front floor pan, right rear door, right rear quarter panel, and rear bumper were damaged. The windshield was cracked, radiating from the right lower corner upward and inward across the entire windshield, with some separation in the laminate due to vehicle body flex (not from contact with transition). No fuel tank damage was observed. Maximum exterior crush to the vehicle was 12.0 inches in the front plane at the right front corner at bumper height. Maximum occupant compartment deformation was 4.5 inches in the right front kick panel area. Figure 9.5 shows the interior of the vehicle after the test. Tables F.2 and F.3 in Appendix F.1 provide exterior crush and occupant compartment measurements.

Figure 9.4. Test Vehicle after Test No. 469900-01-3.

Figure 9.5. Interior of Vehicle after Test No. 469900-01-3.

9.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 9.2. Figure 9.6 summarizes these data and other pertinent information from the test. Figure F.3 in Appendix F.3 shows the vehicle

angular displacements, and Figures F.4 through F.6 in Appendix F.4 show accelerations versus time traces.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	23.6 ft/s	at 0,0000 s on right side of interior
Lateral	26.2 ft/s	
Ridedown Accelerations		
Longitudinal	5.5 g	0.1002–0.1102 s
Lateral	14.7 g	0.0931–0.1031 s
THIV	11.5 m/s	at 0.0954 s on right side of interior
ASI	2.1	0.0567–0.1067 s
Maximum 50-ms Moving Average		
Longitudinal	-11.8 g	0.0384–0.0884 s
Lateral	-15.5 g	0.0290–0.0790 s
Vertical	-2.7 g	0.0756–0.1256 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	6°	1.4913 s
Pitch	3°	0.5802 s
Yaw	47°	0.6658 s

 Table 9.2. Occupant Risk Factors for Test No. 469900-01-3.

08

Figure 9.6. Summary of Results for MASH Test 3-20 on Modified Median Transition.

Dummy 165 lb Gross Static 2585 lb Lateral..... -15.5 g Vertical..... -2.7 g

OCDI..... RF0000000

Deformation 4.5 inches

Max. Occupant Compartment

CHAPTER 10: MASH TEST 3-21 (CRASH TEST NO. 469900-01-4) ON MEDIAN GUARDRAIL TO MODIFIED MEDIAN TRANSITION

10.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-21 involves a 2270P vehicle weighing 5000 lb \pm 110 lb impacting the CIP of the transition at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-21 on the section transitioning from median guardrail with half post spacing to median guardrail with quarter post spacing and rub rail was 24.5 inches \pm 12 inches upstream of the centerline of post 13. Figure 5.3 and Figure 10.1 depict the target impact setup.

Figure 10.1. Transition/Test Vehicle Geometrics for Test No. 469900-01-4.

The 2270P vehicle weighed 5025 lb, and the actual impact speed and angle were 62.2 mi/h and 25.0 degrees. The actual impact point was 25.6 inches upstream of the centerline of post 13. Minimum target IS was 106 kip-ft, and actual IS was 116 kip-ft.

10.2 WEATHER CONDITIONS

The test was performed on the morning of September 28, 2020. Weather conditions at the time of testing were as follows: wind speed: 17 mi/h; wind direction: 354 degrees (vehicle was traveling at a heading of 330 degrees); temperature: 73°F; relative humidity: 42 percent.

10.3 TEST VEHICLE

Figure 10.2 shows the 2017 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5025 lb, and its gross static weight was 5190 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.00 inches. The height to the vehicle's center of gravity was 29.0 inches. Tables G.1 and G.2 in Appendix G.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 10.2. Test Vehicle before Test No. 469900-01-4.

10.4 TEST DESCRIPTION

Table 10.1 lists events that occurred during Test No. 469900-01-4. Figures G.1 and G.2 in Appendix G.2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle impacts transition
0.044	Vehicle begins to redirect
0.138	Left front tire and left rear tire lift off pavement
0.208	Vehicle travels parallel with transition
0.222	Right rear quarter panel contacts transition
0.387	Vehicle loses contact with transition while traveling at 45.5 mi/h, a
	trajectory angle of 7.5 degrees, and a heading angle of 13.4 degrees

Table 10.1. Events during Test No. 469900-01-4.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 3.75 s after impact. After loss of contact with the barrier, the vehicle came to rest 342 ft downstream of the impact point and 17 ft toward the field side.

10.5 DAMAGE TO TEST INSTALLATION

Figure 10.3 shows the damage to the transition. The soil was disturbed at post 10. There was a ¹/₄-inch gap in the soil on the traffic side of post 11, and it was leaning back 2 degrees from vertical. There was a ⁵/₈-inch gap in the soil on the traffic side of post 12, and it was leaning back 3 degrees from vertical. There was a ¹/₂-inch gap on the traffic side and a 1-inch gap on the field side of post 13, and it was leaning back 5 degrees from vertical. The blockout for post 13 was rotated clockwise. There was a 1-inch gap in the soil on the field side of both posts 14 and 15. Post 14 was leaning back 5 degrees and post 15 was leaning back 4 degrees from vertical. The blockout for post 15 was broken and rotated as well. Post 16 was leaning back 3 degrees and

post 17 was leaning back 3 degrees from vertical. Post 18 was leaning back 3 degrees and posts 19 and 20 were leaning back 1 degree from vertical. The rub rail was deformed from post 14 through post 16, and the top rail was deformed between posts 12 and 14, with scuffing on both rails running the length of contact. Working width^{*} was 36.5 inches, and height of working width was 28.5 inches. Maximum dynamic deflection during the test was 9.8 inches, and maximum permanent deformation was 5.5 inches.

Figure 10.3. Transition after Test No. 469900-01-4.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

10.6 DAMAGE TO TEST VEHICLE

Figure 10.4 shows the damage sustained by the vehicle. The front bumper, grill, hood, radiator and support, right front fender, right frame rail, right upper and lower control arms, right front tie rod and sway bar, right front tire and rim, right front floor pan, right front and rear doors, right rear cab corner, right rear exterior bed, and rear bumper were damaged. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 16.0 inches in the side plane at the right front corner at bumper height. Maximum occupant compartment deformation was 4.0 inches in the right front firewall/toe pan/floor pan/kick panel area. Figure 10.5 shows the interior of the vehicle after the test. Tables G.3 and G.4 in Appendix G.1 provide exterior crush and occupant compartment measurements.

Figure 10.4. Test Vehicle after Test No. 469900-01-4.

Figure 10.5. Interior of Vehicle after Test No. 469900-01-4.

10.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 10.2. Figure 10.6 summarizes these data and other pertinent information from the test. Figure G.3 in Appendix G.3 shows the vehicle angular displacements, and Figures G.4 through G.6 in Appendix G.4 show accelerations versus time traces.

Occupant Risk Factor	Value	Time	
OIV			
Longitudinal	21.0 ft/s	at 0,1120 s on right side of interior	
Lateral	25.3 ft/s	at 0.1129 s on right side of interior	
Ridedown Accelerations			
Longitudinal	10.8 g	0.1168–0.1268 s	
Lateral	12.1 g	0.1175–0.1275 s	
THIV	9.8 m/s	at 0.1102 s on right side of interior	
ASI	1.4	0.0944–0.1444 s	
Maximum 50-ms Moving Average			
Longitudinal	-9.1 g	0.0778–0.1278 s	
Lateral	-11.0 g	0.0776–0.1276 s	
Vertical	2.4 g	0.2731–0.3231 s	
Maximum Roll, Pitch, and Yaw Angles			
Roll	33°	0.6231 s	
Pitch	8°	0.5299 s	
Yaw	49°	0.9256 s	

Table 10.2. Occupant Risk Factors for Test No. 469900-01-4.

TR No. 0-6990-R1

General Information		Impact Conditions		Post-Impact Trajectory	
Test Agency	Texas A&M Transportation Institute (TTI)	Speed	62.2 mi/h	Stopping Distance	342 ft downstream
Test Standard Test No	MASH Test 3-21	Angle	25.0°		17 ft twd field side
TTI Test No	469900-01-4	Location/Orientation	25.6 inches	Vehicle Stability	
Test Date	2020-09-28		upstream of post 13	Maximum Roll Angle	33°
Test Article		Impact Severity	116 kip-ft	Maximum Pitch Angle	8°
Туре	Transition	Exit Conditions		Maximum Yaw Angle	49°
Name	Modified Median Transition	Speed	45.5 mi/h	Vehicle Snagging	No
Installation Length	95 ft 11 ⁷ / ₁₆ inches	Trajectory/Heading Angle	7.5°/13.4°	Vehicle Pocketing	No
Material or Key Elements	Steel W-beam guardrail and posts, steel	Occupant Risk Values		Test Article Deflections	
2	rebar reinforced concrete barrier	Longitudinal OIV	21.0 ft/s	Dynamic	9.8 inches
Soil Type and Condition	AASHTO M147-65, Grade B soil (crushed	Lateral OIV	25.3 ft/s	Permanent	5.5 inches
21	limestone)	Longitudinal Ridedown	10.8 g	Working Width	36.5 inches
Test Vehicle	,	Lateral Ridedown	12.1 g	Height of Working Width	28.5 inches
Type/Designation	2270P	THIV	9.8 m/s	Vehicle Damage	
Make and Model	2017 RAM 1500 pickup truck	ASI	1.4	VDS	01RFQ5
Curb	5059 lb	Max. 0.050-s Average		CDC	01FREW4
Test Inertial	5025 lb	Longitudinal	-9.1 g	Max. Exterior Deformation	16.0 inches
Dummy	165 lb	Lateral	-11.0 a	OCDI	RF0011000
Gross Static	5190 lb	Vertical	2.4 a	Max. Occupant Compartment	
			5	Deformation	4 0 inches

Figure 10.6. Summary of Results for MASH Test 3-21 on Modified Median Transition.

CHAPTER 11: MASH TEST 3-20 (CRASH TEST NO. 469900-01-5) ON MEDIAN GUARDRAIL TO MODIFIED MEDIAN TRANSITION

11.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-20 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the CIP of the transition at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-20 on the section transitioning from median guardrail to median guardrail with half post spacing and nested W-beam was 11 inches \pm 12 inches upstream of the centerline of post 10. Figure 5.4 and Figure 11.1 depict the target impact setup.

Figure 11.1. Transition/Test Vehicle Geometrics for Test No. 469900-01-5.

The 1100C vehicle weighed 2424 lb, and the actual impact speed and angle were 63.0 mi/h and 25.0 degrees. The actual impact point was 9.6 inches upstream of the centerline of post 10. Minimum target IS was 51 kip-ft, and actual IS was 57 kip-ft.

11.2 WEATHER CONDITIONS

The test was performed on the morning of October 5, 2020. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 146 degrees (vehicle was traveling at a heading of 330 degrees); temperature: 73°F; relative humidity: 73 percent.

11.3 TEST VEHICLE

Figure 11.2 shows the 2014 Nissan Versa used for the crash test. The vehicle's test inertia weight was 2424 lb, and its gross static weight was 2589 lb. The height to the lower edge of the vehicle bumper was 7.0 inches, and height to the upper edge of the bumper was 22.25 inches. Table H.1 in Appendix H.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 11.2. Test Vehicle before Test No. 469900-01-5.

11.4 TEST DESCRIPTION

Table 11.1 lists events that occurred during Test No. 469900-01-5. Figures H.1 and H.2 in Appendix H.2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle contacts transition
0.017	Posts 11 and 10 begin to deflect toward field side
0.043	Post 12 begins to deflect toward field side
0.048	Vehicle begins to redirect
0.054	Front right tire of vehicle contacts post 11
0.172	Vehicle travels parallel with transition
0.301	Vehicle loses contact with transition while traveling at 45.2 mi/h, a
	trajectory angle of 9.9 degrees, and a heading angle of 7.3 degrees

Table 11.1. Events during Test No. 469900-01-5.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 2.8 s after impact, and the vehicle subsequently came to rest 246 ft downstream of the impact point and 121 ft toward the traffic lanes.

11.5 DAMAGE TO TEST INSTALLATION

Figure 11.3 shows the damage to the transition. There was no movement noted from posts 1 through 7 and from post 15 until the end of the installation. The soil was disturbed at posts 8 and 9. Post 10 had a ³/₄-inch gap in the soil on the traffic side of the post, had a ¹/₂-inch gap on the field side, and was leaning back 2 degrees from vertical. Post 11 had a 1-inch gap on the field side, was deformed, and was leaning back 7 degrees from vertical. The blockout for post 11 was also rotated slightly, and the tire from the vehicle was captured between posts 11 and 12. Post 12 had a 1¹/₄-inch gap on the traffic side, had a 1-inch gap on the field side, and was
leaning back 4 degrees from vertical. Post 13 had a 1-inch gap on the field side and was leaning back 2 degrees from vertical. Post 14 had a ¹/₄-inch gap on the field side of the post. There was some minor deformation and scuffing of the rail at impact. Working width* was 36.0 inches, and height of working width was 28.5 inches. Maximum dynamic deflection during the test was 10.6 inches, and maximum permanent deformation was 4.9 inches.

Figure 11.3. Transition after Test No. 469900-01-5.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

11.6 DAMAGE TO TEST VEHICLE

Figure 11.4 shows the damage sustained by the vehicle. The front bumper, hood, radiator and support, right front fender, right front strut and tower, right front tire and rim, right control arm, right A-post, right front and rear doors, right front floor pan, right rear quarter panel, and rear bumper were damaged. The windshield sustained stress cracks radiating inward and upward from the right lower corner. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 10.0 inches in the front and side planes near bumper height. Maximum occupant compartment deformation was 4.0 inches in the right front kick panel area and at hip height across the door panels. Figure 11.5 shows the interior of the vehicle after the test. Tables H.2 and H.3 in Appendix H.1 provide exterior crush and occupant compartment measurements.

Figure 11.4. Test Vehicle after Test No. 469900-01-5.

Figure 11.5. Interior of Vehicle after Test No. 469900-01-5.

11.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk and are shown in Table 11.2. Figure 11.6 summarizes these data and other pertinent information from the test. Figure H.3 in Appendix H.3 shows the vehicle angular displacements, and Figures H.4 through H.6 in Appendix H.4 show accelerations versus time traces.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	24.0 ft/s	at 0,0062 s on right side of interior
Lateral	27.9 ft/s	at 0.0902 s on right side of interior
Ridedown Accelerations		
Longitudinal	4.9 g	0.1120–0.1220 s
Lateral	10.3 g	0.1054–0.1154 s
THIV	10.5 m/s	at 0.0938 s on right side of interior
ASI	1.8	0.0616–0.1116 s
Maximum 50-ms Moving Average		
Longitudinal	−11.7 g	0.0450–0.0950 s
Lateral	−12.9 g	0.0460–0.0960 s
Vertical	-2.3 g	0.1641–0.2141 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	12°	0.8916 s
Pitch	7°	0.9403 s
Yaw	47°	0.9161 s

Table 11.2. Occupant Risk Factors for Test No. 469900-01-5.

TR No. 0-6990-R1

92

Gross Static 2589 lb

Figure 11.6. Summary of Results for MASH Test 3-20 on Modified Median Transition.

Vertical.....-2.3 g

Max. Occupant Compartment

Deformation 4.0 inches

CHAPTER 12: POST CRASH TEST SIMULATION CHECKS*

To further verify the performance of the symmetric median transition design after fullscale crash testing, additional computer simulations were conducted with the small car vehicle model and pickup truck vehicle model at different impact locations. For the small car vehicle model, the two upstream transition sections were investigated. For the pickup truck vehicle model, the second upstream transition section was investigated. The initial simulations replicated the impact point of the previous crash tests. Additional simulations were conducted at 3 ft upstream of the impact location and 3 ft downstream of the impact location to give a reasonable account of performance variation outside the 1-ft *MASH* tolerance of the actual CIP.

12.1 TEST 3-20 AT UPSTREAM TRANSITION

Three simulations were conducted to analyze the performance of the median barrier transition system for the section that transitioned from guardrail regular post spacing to guardrail half post spacing. The first simulation was performed with the impact point 10 ft upstream of the centerline of the last post (post 14) in the quarter post spacing section. Figure 12.1 shows the vehicle at impact with the system. The other two simulations were conducted with the impact location shifted 3 ft downstream and 3 ft upstream.

Figure 12.1. Impact Location for First Simulation at Upstream Transition.

To analyze the performance of the system, the occupant risk values were calculated for each simulation and compared. Table 12.1 shows the occupant risk values for the three simulations. The actual crash test CIP was reflective of the highest combined severity of the CIP at 13 ft upstream of the referenced post 14 in the table.

^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

	7.0 ft upstream	10.0 ft upstream	13.0 ft upstream
Longitudinal OIV (m/s)	9.7	9.4	10.1
Lateral OIV (m/s)	8.9	8.1	8.1
Longitudinal ORA (g)	11.1	15.1	18.5
Lateral ORA (g)	8.1	15.3	11.7
Roll (deg.)	27.2	34.3	35.9
Pitch (deg.)	5.7	7.8	8.3
Yaw (deg.)	83.3	75.4	29.3

 Table 12.1. Occupant Risk Comparison for Test 3-20 at Upstream Transition.

12.2 TEST 3-20 AT MIDDLE TRANSITION

The researchers noted during one of the crash tests with the small car vehicle that the impact tire released while snagging on a post. Figure 12.2 shows the vehicle after the crash test, and Figure 12.3 shows the tire stuck in the median transition system.

Figure 12.2. Small Car Vehicle after Crash Test.

Figure 12.3. Median Rail after Crash Test.

In order to capture this phenomenon in the computer simulations, the small car tire model was modified to allow failure of the tire joints and release during severe snagging events. The simulations discussed below incorporated this modified small car model, and one of the simulations resulted in the tire releasing during impact with the median transition system.

Three simulations were conducted to analyze the performance of the median barrier transition system for the section that transitioned from guardrail half post spacing to guardrail quarter post spacing. The first simulation was conducted with the vehicle impacting 5 ft upstream of the centerline of the last post in the quarter post spacing section (post 14). Figure 12.4 shows the vehicle at impact with the system. The other two simulations were conducted with the impact location shifted 3 ft downstream and 3 ft upstream.

Figure 12.4. Impact Location for First Simulation at Middle Transition.

To analyze the performance of the system, the occupant risk values were calculated for each simulation and compared. Table 12.2 shows the occupant risk values for the three

simulations. The actual crash test CIP was reflective of the highest combined severity of the CIP at 5 ft upstream of the referenced post 14 in the table.

	2.0 ft	5.0 ft	8.0 ft
	upsiteani	upstream	upsiteani
Longitudinal OIV (m/s)	7.4	8.0	6.9
Lateral OIV (m/s)	9.9	10.0	8.8
Longitudinal ORA (g)	2.9	5.1	7.5
Lateral ORA (g)	11.5	7.5	9.3
Roll (deg.)	7.6	6.8	10.0
Pitch (deg.)	7.1	4.9	5.0
Yaw (deg.)	45.3	55.7	67.9

Table 12.2. Occupant Risk Comparison for Test 3-20 at Middle Transition.

12.3 TEST 3-21 AT MIDDLE TRANSITION

Three simulations were conducted to analyze the performance of the median barrier transition system for the section that transitioned from guardrail half post spacing to guardrail quarter post spacing. The first simulation was conducted with the vehicle impacting 5.0 ft upstream of the centerline of post 14 in the quarter post spacing section. Figure 12.5 shows the vehicle at impact with the system. The other two simulations were conducted with the impact location shifted 3 ft downstream and 2 ft upstream.

Figure 12.5. Impact Location for First Simulation at Middle Transition.

To analyze the performance of the system, the occupant risk values were calculated for each simulation and compared. Table 12.3 shows the occupant risk values for the three simulations. The actual crash test CIP was reflective of the relatively highest combined severity of the CIP at 5 ft upstream of the referenced post 14 in the table. Although all simulation occupant risk values were below the preferred limit, the highest ORA of 11.2 g was calculated at the referenced 5-ft CIP along with a relatively higher angular roll angle.

	2.0 ft	5.0 ft	7.0 ft
	upstream	upstream	upstream
Longitudinal OIV (m/s)	7.1	7.2	7.2
Lateral OIV (m/s)	7.4	7.3	7.3
Longitudinal ORA (g)	8.6	11.2	10.3
Lateral ORA (g)	10.7	10.0	11.1
Roll (deg.)	8.5	11.8	7.0
Pitch (deg.)	5.6	5.3	4.6
Yaw (deg.)	43.8	50.9	46.3

Table 12.3. Occupant Risk Comparison for Test 3-21 at Middle Transition.

These simulations confirmed that the actual CIP selections were the most critical given the calculated occupant risk criteria.

CHAPTER 13: SUMMARY AND CONCLUSIONS

13.1 ASSESSMENT OF RESULTS

The crash tests reported herein were performed in accordance with *MASH* TL-3. An assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-3 transitions is provided in Table 13.1 through Table 13.5.

During the first *MASH* Test 3-21 on the transition, the 2270P vehicle rolled onto its right side. To improve the performance of the system, several modifications were made to the transition system. First, the lower W-beam rail was terminated and attached to the end of the concrete parapet with a steel bracket. Second, one post was added to the quarter spacing line of posts. Third, a vertical taper was added to the toe at the end of the concrete parapet.

The results for the crash tests performed on the modified system are shown in Table 13.2 through Table 13.5.

13.2 CONCLUSIONS

Table 13.6 shows that the new TxDOT median transition performed acceptably as a *MASH* TL-3 transition.

Table 13.1. Performance Evaluation Summary for MASH Test 3-21 on Median Transition to Concrete Barrier.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469900-01-1	Test Date: 2020-06-18
	MASH Test 3-21 Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
<i>A</i> .	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The median transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the transition was 3.3 inches.	Pass
Occ	eupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation	Pass
	compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH	was 7.0 inches in the right front firewall and the kick panel area	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle rolled onto its right side. Maximum roll and pitch angles were 90° and 18°.	Fail
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 21.0 ft/s, and lateral OIV was 25.9 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal occupant ridedown acceleration was 11.6 g, and maximum lateral occupant ridedown acceleration was 12.4 g.	Pass

TR No. 0-6990-R1

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469900-01-2	Cest Date: 2020-08-13
	MASH Test 3-21 Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The modified median transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the transition was 5.4 inches.	Pass
<u>Occ</u>	zupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation	Pass
	compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	was 5.5 inches in the right front firewall area.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 37° and 44° .	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 20.7 ft/s, and lateral OIV was 25.6 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal occupant ridedown acceleration was 7.1 g, and maximum lateral occupant ridedown acceleration was 7.3 g.	Pass

Table 13.2. Performance Evaluation Summary for MASH Test 3-21 on Modified Median Transition to Concrete Barrier.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469900-01-3	Test Date: 2020-08-25
	MASH Test 3-20 Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
Α.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The modified median transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the transition was 5.2 inches.	Pass
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 4.5 inches in the right front kick panel area.	
<i>F</i> .	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6° and 3° .	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 23.6 ft/s, and lateral OIV was 26.2 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal occupant ridedown acceleration was 5.5 g, and maximum lateral occupant ridedown acceleration was 14.7 g.	Pass

Table 13.3. Performance Evaluation Summary for MASH Test 3-20 on Modified Median Transition to Concrete Barrier.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469900-01-4	Test Date: 2020-09-28
	MASH Test 3-21 Evaluation Criteria	Test Results	Assessment
<u>Stru</u> A.	<u>actural Adequacy</u> Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The modified median transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the transition was 9.8 inches.	Pass
<u>Occ</u> D.	 <u>cupant Risk</u> Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix F of MASH 	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the right front firewall/toe pan/floor pan/kick panel area	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 33° and 8°.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 21.0 ft/s, and lateral OIV was 25.3 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal occupant ridedown acceleration was 10.8 g, and maximum lateral occupant ridedown acceleration was 12.1 g.	Pass

Table 13.4. Performance Evaluation Summary for MASH Test 3-21 on Median Guardrail to Modified Median Transition.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 469900-01-5	Test Date: 2020-10-05
	MASH Test 3-20 Evaluation Criteria	Test Results	Assessment
<u>Stru</u> A.	<u>actural Adequacy</u> Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The modified median transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the transition was 10.6 inches.	Pass
<u>Occ</u> D.	<u>cupant Risk</u> Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present undue hazard to others in the area. Maximum occupant compartment deformation was 4.0 inches in the right front kick panel area and at hip height across the door panels.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 12° and 7° .	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 24.0 ft/s, and lateral OIV was 27.9 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal occupant ridedown acceleration was 4.9 g, and maximum lateral occupant ridedown acceleration was 10.3 g.	Pass

Table 13.5. Performance Evaluation Summary for MASH Test 3-20 on Median Guardrail to Modified Median Transition.

Fyaluation	Fyaluation	Median I	Barrier to		
Factors	Criteria	Test No. 469900-01-2	Test No. 469900-01-3	Test No. 469900-01-4	Test No. 469900-01-5
Structural Adequacy	А	S	S	S	S
	D	S	S	S	S
Occupant	F	S	S	S	S
Risk	Н	S	S	S	S
	Ι	S	S	S	S
Test No.		MASH Test 3-21	MASH Test 3-20	MASH Test 3-21	MASH Test 3-20
Pass/Fail		Pass	Pass	Pass	Pass

Table 13.6. Assessment Summary for MASH TL-3 Tests on Modified Median Transition.

Note: S = Satisfactory.

CHAPTER 14: IMPLEMENTATION*

The new TxDOT median guardrail transition to a concrete parapet has been evaluated through full-scale crash testing per *MASH* TL-3 crash tests. This system is ready for implementation as a transition between a crashworthy median W-beam guardrail and a *MASH* TL-3 crashworthy median concrete barrier while maintaining the connectivity details tested in this research effort, and the concrete taper implemented in the crash-tested design. Furthermore, it is recommended that the lower W-beam end be fully covered by the vertical face of the concrete barrier.

Following the procedures outlined in TxDOT's University Handbook, the researchers assessed the potential value of TxDOT Research Project 0-6990. Table I.1 in Appendix I shows economic variables considered in developing the VOR, sources of these variables, and the description of economic based calculations used.

^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware,* Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- D. L. Bullard, Jr., R. P. Bligh, W. L. Menges, and R. Haug. Volume I: Evaluation of Existing Roadside Safety Hardware Using Updated Criteria—Technical Report. Final Report for NCHRP Project 22-14(03), Texas A&M Transportation Institute, College Station, TX, 2010.
- A. Y. Abu-Odeh, R. P. Bligh, M. L. Mason, and W. L. Menges. *Development and Evaluation of a MASH TL-3 31-in. W-Beam Median Barrier*. Test Report No. 9-1002-12-8, Texas A&M Transportation Institute, College Station, TX, January 2014.
- K. Soyland, R. K. Faller, J. C. Holloway, and D. L. Sicking. *Development and Testing of* an Approach Guardrail Transition to a Single Slope Concrete Median Barrier. Report No. TRP-03-47-95, Missouri Highway and Transportation Department, Jefferson City, MO, 1995.
- H. E. Ross, D. L. Sicking, R. A. Zimmer, and J. D. Michie. *Recommended Procedures* for the Safety Performance Evaluation of Highway Features. National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, DC, 1993.
- 6. C. S. Dobrovolny. *Full-Scale MASH Crash Testing of Stacked W-beam Transition for 31inch Guardrail*. Test Report No. 604581-1, Texas A&M Transportation Institute, College Station, TX, May 2016.
- D. R. Arrington, R. P. Bligh, and W. L. Menges. MASH Test 3-21 on TL-3 Thrie Beam Transition without Curb. Report No. FHWA/TX-13/9-1002-12-3, Texas A&M Transportation Institute Proving Ground, College Station, TX, 2013.
- S. K. Rosenbaugh, K. A. Lechtenberg, R. K. Faller, D. L. Sicking, R. W. Bielenberg, and J. D. Reid. *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*. Report No. TRP-03-210-10, Midwest States Regional Pooled Fund Program, Lincoln, NE, 2010.
- B. J. Winkelbauer, J. G. Putjenter, S. K. Rosenbaugh, K. A. Lechtenberg, R. W. Bielenberg, R. K. Faller, and J. D. Reid. *Dynamic Evaluation of MGS Stiffness Transition with Curb*. Report No. TRP-03-291-14, University of Nebraska-Lincoln, Midwest Roadside Safety Facility, Lincoln, NE, 2014.
- *10.* FDOT. Standard Plans for Road and Bridge Construction. 2017. <u>http://www.fdot.gov/design/standardplans/current/default.shtm</u>.
- MassDOT. Construction Standard Details. 2017.
 <u>https://www.mass.gov/files/documents/2018/01/16/ConstructionStandardDetails2017102</u>
 <u>1.pdf</u>.
- 12. NHDOT. Highway Design Detail Sheets. 2012. https://www.nh.gov/dot/org/projectdevelopment/highwaydesign/detailsheets/index.htm.
- *13.* NJDOT. Standard Construction Details. 2016. <u>https://www.state.nj.us/transportation/eng/CADD/v8/pdf/StandConstDetails.pdf</u>.
- *14.* UDOT. Standard Drawings for Road and Bridge Construction. 2017. <u>https://www.udot.utah.gov/main/uconowner.gf?n=31730514811123516</u>.

APPENDIX A.

DETAILS ON THE TRANSITIONS

2021-06-11

Rectangular Guardrail Washer between Terminal Connector and Nut or Bolt head.

2020-06-17

Sheet 3 of 8 Transition-Plan

Drawn by GESWVS Scale 1:60

113

117

T:\Draffing Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Guardrail Bolt

2021-06-11

2021-06-11

2021-06-11

2021-06-11

Q: Accreditation-17025-2017/EIR-000 Project Files/469900-TXDOT-Median Transition-01/Drafting, 469900/re-design option 4/469900 Drawing

TR No. 0-6990-R1

135

TR No. 0-6990-R1

9c. All rebar dimensions are to center of bar unless

otherwise indicated by "cvr" (cover). All rebar is grade 60.

2021-03-29

Project #469900 Modified Median Rail Transition

Scale 1:12 Sheet 9 of 10 Concrete Cross Section

Drawn by GES

TR No. 0-6990-R1

144

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Guardrail Bolt

TR No. 0-6990-R1

SUPPORTING CERTIFICATION DOCUMENTS APPENDIX B.

対 裕 二 酚 授 符 肖 艮 六 前 LIN YU ENTERPRISE CO., LTD.

TEL: 886-7-6331696

469900

2014-11-20

TEST REPORT

CUSTOMER:		KANEBRII	DGE CO	ORPORATION	J	
DESCRIPTION:		GRADE 5 I	HEX CO	DUPLING NU	T	
ORDER NO:		332134				
PI NO:		201409231				
INVOICE NO:		IN-2014111	32			
LOT NO:		201409231-	-001			1.363
PART NO:	0	874020NCU	JP5			
HEAT NO:		345035				
DIMENSION:		7/8 – 9 x 2-	1/2			
INSPECTION ITE	М	STANDA	RD	ACTUA	L	REMARK
ACROSS FLATS		31.35-31.	75	31.40-31.	56	
THICKNESS		62.71-64.	29	63.43-64.	05	
GO GAGE		7/8-9 21	3	ACCEP	Г	
NO GO GAGE		7/8-9 21	3	ACCEP	Г	
APPEARANCE		TRIVALENT ZINC	(CR3)	ACCEP	Г	
					5	
JUDGE: AC	CEPT					
Q. C. CHIEF	740	MAS CHEN	INSP	ECTOR	120	MA CHANG

豐早	ai a	ur II	RT	が斉照	13	多	■放射 (出 T	生污 廠 EST C	杂暨 證 ERTI	品 明 FIC	質證 書) ATE	明			OF TE FA		-1 + 7 702, 0 TAILH <04)2 <04)2	FASTLE Y & Elanou Roa UNG KSIDA. 5565101 5566955	D, HOU TAIW	1382. LI SEILUNC, UN, ROC
A FEN	G H:	SIN SI	工廠股	份存限公	ગ				011 80	2010	D RAP	8	834270)7	接明書 CERTIFICAT 交運日 SIIFPING	的 Alter Alter	23684 2014	0857-001 /06/23	2014	4/07/11
6.8 K	11	S G35	07 SWRC	CHIOA CN			ALS & R PRODUCT				DOMA		2 (12)0	TENIC	CERTIFICAT		2014	/07/15	· 1	10 E I
及現格 能	TER	AL DES 教量	CRIP.	推建	拉力故 降伏YP	★ TENS	11.8	CI	Si	In	PS	Ni Ni	Cr	Mo	CU	A1	00013	B	4	AT T A SHIPPING
A. A	ΔΠ. (α)	(bd1.) 1 2 4 8 13 16 16 10 10 10 10 10 10 10 10 10 10	(kg) 1949 3892 7808 15613 25343 31154 3921 19586 15644 1957 19586 5821 5870 11742 7833 19599 19422 3883	IIEAT NO 344807 344807 344807 344807 344807 344807 344805 344807 344805 344807 344805 344653 344653 34553 345035 3450505 3450505 3450505 3450505 3450505 345050505050505050505050	X-12x	Zich Zi s Hicking	2%2	8 13 10 10 10 10 10 10 10 10 10 10	10 MAX 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5	30 60 34 34 34 34 34 34 33 35 33 35 35 32 33 35 32 33 34 34 34 32 32 32 32 32 32 32 32 32 32 32 32 32	30 WAX W 9 9 9 9 9 9 9 9 10 10 10 10 10 14 8 8 8 8 8 8 8 8 8 8 9 9	AX 44 4 4 4 6 6 8 4 8 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	x 4 4 4 4 4 4 4 4 3 3 4 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5	55566	KAX 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	MIN 322 332 332 332 332 332 332 332 332 332				RU. D3627012 D35227014 D3522904 D3626081 D3626040 D3701006 D3701006 D3702022 D3703033 D3703033 D3709025 D3709025 D3709107 D3709107 203709120 203709120 203711037
AL: ARI:		1	04 BUNDL	ES S	202, 991	kgs.	之景末				WITH		×÷	金研: NAGE	WELLER R				*	È.L.

CMC S 1919 To Knoxvi	TEEL TENNE ennessee Ave Ile TN 37921-	SSEE enue 2686	CERTIFIED MILL TES For additional coj 830-372-8771	ST I pies	REPORT are a s call	We hereby cert ccurate and con Jim Quality Assura	tify that the test res form to the reporte 	sults presented here d grade specification 7
HEAT NO.:7007262 SECTION: REBAR 13MM (#4) 20' GRADE: ASTM A615-18e1 Gr 420 ROLL DATE: MELT DATE: 01/26/2020 Cert. No.: 83013877 / 007262L130	0'' 420/60)/60	S CM O L 106 D Col US T 979 O	IC Construction Svcs College Stati 650 State Hwy 30 Illege Station TX 77845-7950 9 774 5900	S H I P T O	CMC Construction Svc 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	s College Stati	Delivery#: 830138 BOL#: 73462873 CUST PO#: 84345 CUST P/N: DLVRY HS / HE/ DLVRY PCS / HE/	377 59 AT: 2004.000 LB AT: 150 EA
Characteristic	Value		Characteristic		Value		Characteristic	Value
C Mn P S Si Cu Cr Ni Mo V Sn Yield Strength test 1 Yield Strength test 1 Yield Strength test 1 Tensile Strength test 1 Tensile Strength 1 (metric) Elongation Gage Lgth test 1 Elongation Gage Lgth 1(metri Bend Test 1	0.29% 0.56% 0.010% 0.049% 0.17% 0.31% 0.04% 0.09% 0.011% 0.003% 0.009% 90.1ksi 621MPa 105.4ksi 727MPa 12% 8IN 200mm Passed		Rebar Deformation Avg. Sp Rebar Deformation Avg. He Rebar Deformation Max. (baci igh Gap	0.330IN 0.039IN 0.113IN	The Following is to *Material is fully kill *100% melted and *EN10204:2004 3.1 *Contains no Merce *Contains no Merce *Manufactured in ac of the plant quality *Meets the "Buy An *Warning: This pro- known to the Stat or other reproducti to www.P65Warning	rue of the material repre led colled in the USA compliant repair ny contamination coordance with the latest v y manual nerica" requirements of 23 duct can expose you to cl e of California to cause ca ive harm. For more inform 35 ca aov	sented by this MTR: ersion CFR635.410, 49 CFR 661 remicals which are incer, birth defects ation go

EMARKS :

Page 1 OF 1 03/06/2020 15:38:21

CMC STEEL TEXA 1 STEEL MILL DRI SEGUIN TX 78155-	S CERTIFIED MILL TE VE For additional c 7510 830-372-87	EST REPORT are a opies call 71	We hereby certify that the test results presented here accurate and conform to the reported grade specification Relando A Davila Quality Assurance Manager
HEAT NO.:3094733 SECTION: REBAR 16MM (#5) 20'0'' 420/60 GRADE: ASTM A615-18e1 Gr 420/60 ROLL DATE: 02/17/2020 MELT DATE: 02/08/2020 Cert. No.: 83013837 / 094733A371	S CMC Construction Svcs College Stati O 10650 State Hwy 30 D College Station TX US 77845-7950 7 T 979 774 5900 O 0	i S CMC Construction Svc: H I 10650 State Hwy 30 P College Station TX US 77845-7950 T 979 774 5900 O	s College Stati Delivery#: 83013837 BOL#: 73462793 CUST PO#: 843463 CUST P/N: DLVRY LBS / HEAT: 17520.000 LB DLVRY PCS / HEAT: 840 EA
Characteristic Value	Characteristic	Value	Characteristic Value
Mn 0.86% P 0.013% S 0.043% Si 0.20% Cu 0.28% Cr 0.17% Ni 0.22% Mo 0.0072% V 0.000% Cb 0.001% Sn 0.010% Al 0.000% Yield Strength test 1 64.4ksi Tensile Strength test 1 100.6ksi Elongation test 1 15% Elongation Gage Lgth test 1 8IN Tensile to Yield ratio test1 1.56 Bend Test 1 Paseed	Bend Test Diar	neter 2.188IN	The Following is true of the material represented by this MTR: *Material is fully killed *100% melled and rolled in the USA *EN10204:2004 3.1 compliant *Contains no weld repair *Contains no Mercury contamination *Manufactured in accordance with the latest version of the plant quality manual *Meets the "Buy America" requirements of 23 CFR635.410, 49 CFR 661 *Warning: This product can expose you to chemicals which are known to the State of California to cause cancer, birth defects
			to www.P65Warnings.ca.gov

EMARKS :

TR No. 0-6990-R1

164

2021-06-11

Page 1 OF 1 03/06/2020 12:31:04

CMC ST 1 STEEL SEGUIN	EEL TEXAS - MILL DRIVE TX 78155-7510		CERTIFIED MILL TES For additional coj 830-372-8771	ST F bies	REPORT an call	We hereby cert e accurate and con Quality Assur-	form to the reported grade specification Bolando A Davila ance Manager
HEAT NO.:3093398 SECTION: REBAR 19MM (#6) 20'0 GRADE: ASTM A615-18e1 Gr 420/ ROLL DATE: 12/15/2019 MELT DATE: 12/15/2019 Cert. No.: 83008747 / 093398A619	" 420/60 O /60 L D T O	CMC Const 10650 State College Sta US 77845-7 979 774 590	truction Svcs College Stati e Hwy 30 ation TX '950 00	S H I P T O	CMC Construction S 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	vcs College Stati	Delivery#: 83008747 BOL#: 73455293 CUST PO#: 843000 CUST P/N: DLVRY LBS / HEAT: 2163.000 LB DLVRY PCS / HEAT: 72 EA
Characteristic C Mn P S Si Cu Cr Ni Mo V Cb Sn V Cb Sn Al Yield Strength test 1 Tensile Strength test 1 Elongation test 1 Elongation test 1 Elongation test 1 Bend Test 1	Value 0.44% 0.83% 0.010% 0.047% 0.21% 0.36% 0.11% 0.24% 0.082% 0.000% 0.001% 0.001% 0.001% 0.000% 66.7ksi 106.8ksi 15% 8IN 1.60 Passed		Characteristic Bend Test Diame	əter	Value 3.750IN	The Following is t *Material is fully kil *100% melted and *EN10204:2004 3.1 *Contains no Mercu *Manufactured in ac of the plant qualit *Meets the "Buy An *Warning: This pro- known to the Stat or other reproduct	Characteristic Value rue of the material represented by this MTR: led rolled in the USA compliant repair ury contamination ccordance with the latest version y manual nerica" requirements of 23 CFR635 410, 49 CFR 661 duct can expose you to chemicals which are the of California to cause cancer, birth defects live harm. For more information go

REMARKS :

TR No. 0-6990-R1

165

2021-06-11

Page 1 OF 1 03/03/2020 11:19:54

PERFILES COMERCIALES SIGOSA S.A. DE . C.V.

Certificado de Calidad de Pruebas Físicas y Químicas (Mill Test Report)

M F	formación del Cli ETALS 2 GO echa / Date:03/04/ echa Impresión / F	ente / Client Information : 2020 18:19 PM Print Date:03/04/2020 18:19 PM	alana sara attinan d		1	E. I.				Ord	en / C	Order	6281	0				* 0	cado	/ Cer	tifical	te: B6704	8
ł	SERIE	PRODUCTO	COLADA HEAT	GRADO GRADE	·LE ·YS	·UT ·TS	PE %EL	LE/UT (YS/TS)	С	Mn	Si	Ρ	S	Cu	Cr	Ni	Мо	Sn	۷	Nb	Al	CEQ	
23133733	1201811011050 1201908202019 1201908201057 1202001161008 1201911071019 1202001181048 1202001173003 2202002263008 2202002271059	SOL 2 × 1/4 20ft SOL 2 × 1/4 20ft SOL 2 1/2 × 1/4 20ft ANG 1 1/2 × 1/8 20ft ANG 1 1/2 × 1/8 20ft ANG 1 1/2 × 1/8 20ft SOL 4 × 1/4 20ft SOL 4 × 1/4 20ft SOL 4 × 1/4 20ft	000000182776 000000192173 000000192171 000000192890 000000192890 000000193346 000000193346 000000200324 000000200324	A36/A529-50 A36/A529G50 A36/A529G50 A36/A529-50 A36 A36/A529-50 A36/A529-50 A36/A529-50 A36	54200 54940 56100 53200 51300 52600 53200 56300 56900	71400 76300 76500 75100 73600 77100 75000 79200 78600	30 32 33 30 34 30 30 32 32	0.76 0.72 0.73 0.71 0.7 0.68 0.71 0.71 0.71	.192 .18 .174 .18 .182 .187 .187 .187 .185	.883 .882 .857 .894 .894 .904 .882 .885 .876	.22 .2 .182 .185 .184 .201 .203 .183 .205	.018 .012 .011 .008 .012 .013 .012 .014 .012	.025 .027 .028 .024 .021 .028 .027 .018 .022	.326 .345 .331 .237 .294 .36 .338 .367 .528	.115 .107 .08 .068 .078 .137 .13 .124 .1	.107 .09 .083 .1 .115 .109 .102 .149 .13	.024 .023 .021 .023 .025 .046 .03 .029 .03	.015 .013 .014 .008 .011 .019 .013 .013 .017	.001 .001 .001 .001 .001 .001 .001 .005 .001	.002 .004 .004 .003 .003 .005 .005 .017 .001	.003 .002 .002 .003 .001 .001 .002 .002 .002	.433 .416 .395 .401 .41 .439 .429 .424 .435	

*Las unidades expresadas en L.E. y U.T son en PSI. La composición química esta expresada en % en peso. *The units expressed in L.E and U.T are in PSI. The chemical composition is expressed in % in weight.

Certificamos que el producto aquí descrito, cumple y ha sido fabricado, muestreado, probado e inspeccionado de acuerdo con los requisitos aplicables de la especificación: 2013: ASME SA36;ASME SA-6/SA-6M;A36; 2014: ASTM A6/ A6 M-13;A529 / A529M; ASTM A370 - 12a

We certify that the product above mentioned accomplishes and has been manufactured, sampled, tested and inspected in accordance with applicable requirements of specifications: ASTM A6/ A6 M-13 a (2014); A36; A529 / A529M; ASME SA-6/SA-6M; ASTM A370 - 12a (2014); ASME SA36.

415900

Gerente de Asegu/amiento de Calidad

En SIGOSA, SA DE CV nos comprometemos a satisfacer las expectativas y requerimientos de nuestros clientes, Mediante un sistema de Gestión de Calidad, la mejora continua de nuestros productos, el uso eficiente de los recursos, y la participación individual y de equipo de todo su personal.

FOR-CAL-CAL-001 REV. 4 OCTUBRE 2014.

				Cust	omer P	.O.No.:V1	8608-5	2893	M	ill Order No	41.5	Fo	rm TC1: F	Revision	4: Date	e 6 Feb	2019
				Produ	uct Des	cription: AS CS	STM A57 SA G40.2	2-50/M345(18 21(2013) 50W	8)/A709-50/ /350W	/M345(18)	4110	SI	hip Date: ert Date:	26 Nov 26 Nov	26 Nov 19 Cert No: 02 26 Nov 19 (Page 1 of		031223527 of 1)
				Size	0.250	X 06 00 X	¥ 400 (0 (151)				_					
	Tested	Pieces:	T	SIZE.	Tensile	A 90.00 /	A 480.0				24.0.0						
Heat	Piece	Piece Ts	t YS	UTS	%RA	Elong %	Tst	Hardness	Abs. En	erav(FTI B)	Inar	% S	bear	Tet	Tet	Tet	BDIATT
Id	ld	Dimensions Lo	(KSI)	(KSI)		2in 8in	Dir		1 2	3 Avg	1	2 3	Avg	Tmp	Dir	Siz	Tmp %Shr
1064	0307	0.250 (T.L.C)	- 56	77		35	T					2				Tunul	
1064	0308	0.250 (T.L.C)	56	78 78		35	T										
Heat			-			Chem	ical An	alysis			1						
Id	C	Mn P S	Si	Tot AI Se	IA I	Cu Ni	Cr	Mo C	b V	TI N	4						OR
VTITE	D. CONTRA	1.00 1.011 1.001	1.19 1.0	J28 1.02	26 .35	.16	.12	.04 .00	4 .022	.008 .005	58						U
MERCUF OF THI KILLED MTR EN 100% M MATERI PRODUC * E910	NY IS NOT IS PRODUC D STEEL, I N 10204:20 MELTED AND IAL MARKED CTS SHIPPO 064	A METALLURGICAL T. PRODUCED TO A FIN 004 INSPECTION CE D MANUFACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN RTIFICA THE US STERISK PCES:	NT OF T PRACT TE 3.1 A IS PRO 3, LB	THE ST ICE COMPI ODUCED S:	LIANT D FROM CC 9801	NO ME	ERCURY WAS	INTENT	IONALLY A	DDEI	DUR	ING THE	MANUF	ACTUR	E	
MERCUF OF THI KILLED MTR EN 100% M MATERI PRODUC * E910	RY IS NOT IS PRODUC: D STEEL, 1 N 10204:21 MELTED ANN IAL MARKEI CTS SHIPPI 064	A METALLURGICAL' PRODUCED TO A FIN OD4 INSPECTION CE D MANUFACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN RTIFICA THE US STERISK PCES:	NT OF ' PRACT. TE 3.1 A IS PR(3, LB)	THE ST ICE COMPI ODUCED S:	IANT FROM CC 9801	NO ME	ERCURY WAS	INTENT	IONALLY A	DDE	DUR	ING THE	MANUF	ACTUR	Е	
MERCUF OF THI KILLEE MTR EN 100% MATERI PRODUC * E9IC	NY IS NOT IS PRODUC' D STEEL, I N 10204:21 MELTED ANI IAL MARKEI CTS SHIPPI 064	A METALLURGICAL FRODUCED TO A FIN OD4 INSPECTION CE D MANUPACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN RTIFICA THE US STERISK PCES:	NT OF ' PRACT TE 3.1 A IS PR(3, LB:	THE ST ICE COMPI ODUCED S:	JANT D FROM CC 9801	NO ME	ERCURY WAS	5 INTENT	IONALLY A	DDE	DUR	ING THE	MANUF	ACTUR	Е	
MERCUF OF THIJ KILLEI MTR EN 100% N MATERIJ PRODUC * E9IC	KY IS NOT IS PRODUC D STEEL, I N 10204:21 MELTED ANI IAL MARKEI TS SHIPPI 064	A METALLURGICAI PRODUCED TO A FIN DO4 INSPECTION CE D MANUFACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN RTIFICA THE US STERISK PCES:	NT OF ' PRACT. TE 3.1 A IS PRO 3, LB:	THE ST ICE COMPI ODUCED S:	LIANT D FROM CC 9801	NO ME	ERCURY WAS	5 INTENT	IONALLY A	DDEI	DUR	ING THE	MANUF	ACTUR	Е	
MERCUF OF THI KILLEI MTR EN 100% N MATERI PRODUC * E9IC	KY IS NOT IS PRODUC D STEEL, 1 N 10204:21 MELTED ANN IAL MARKE CTS SHIPP 064	A METALLURGICAL' PRODUCED TO A FIN DO4 INSPECTION CE D MANUFACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN RTIFICA THE US STERISK PCES:	NT OF ' PRACT. TE 3.1 A IS PR(3, LB)	THE ST ICE COMPI ODUCED S:	LIANT D FROM CC 9801	NO ME	RCURY WAS	5 INTENT	IONALLY A	DDEC) DUR	ING THE	MANUF	ACTUR	E	
MERCUF OF THIL KILLET MTR EN 100% N MATERJ PRODUC * E9IC	KY IS NOT IS PRODUC D STEEL, 1 N 10204:21 MELTED ANN IAL MARKE CTS SHIPP 064	A METALLURGICAL FRODUCED TO A FIN OD4 INSPECTION CE D MANUPACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN RTIFICA THE US STERISK PCES:	NT OF ' PRACT. TE 3.1 A IS PR(3, LB)	THE ST COMPI ODUCED S:	LIANT D FROM CC 9801	NO ME	RCURY WAS	5 INTENT	IONALLY A	DDEC) DUR	ING THE	MANUF	ACTUR	E	
MERCUF OF THIN KILLER MTR EN MATERI PRODUC * E910	KY IS NOT IS PRODUC D STEEL, I N 10204:2 MELTED ANI IAL MARKE CTS SHIPPI 064	A METALLURGICAL FRODUCED TO A FIN OD4 INSPECTION CE D MANUPACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN THE US STERISK PCES:	NT OF ' PRACT. TE 3.1 A IS PR(3, LB)	THE ST COMPI ODUCED S:	LIANT D FROM CC 9801	NO ME	RCURY WAS	INTENT	IONALLY A	DDEC) DUR	ING THE	MANUF	ACTUR	E	
MERCUP OF THI KILLEI MTR ED 100% P MATERI PRODUC * E910	KY IS NOT IS PRODUC D STEEL, I N 10204:22 MELTED ANN IAL MARKED CTS SHIPP/ 064	A METALLURGICAL' PRODUCED TO A FIN OD4 INSPECTION CE D MANUPACTURED IN D BELOW WITH AN A ED: 0311	E GRAIN RTIFICA THE US STERISK PCES:	NT OF ' PRACT TE 3.1 A IS PRG 3, LB:	THE ST ICE COMPI ODUCEL S:	LIANT D FROM CC 9801	NO ME	RCURY WAS	5 INTENT	IONALLY A	DDEC) DUR	ING THE	MANUF	ACTUR	Ε	
MERCUF OF THI KILLET MTR ED 100% M MATERJ PRODUC * E910	KY IS NOT IS PRODUCT D STEEL, I N 10204:22 MELTED ANN IAIL MARKE CTS SHIPP 064	A METALLURGICAL FRODUCED TO A FIN OO4 INSPECTION CE D MANUPACTURED IN D BELOW WITH AN A ED: 0311	COMPONE E GRAIN THE US STERISK PCES:	NT OF ' PRACT TE 3.1 A IS PR 3, LB	THE ST ICE COMPI ODUCED S:	JIANT D FROM CC 9801	NO ME	RCURY WAS	5 INTENT	IONALLY A	DDEC) DUR	ING THE	MANUF	ACTUR	E	

469200

MATERIAL TEST MEP

Material: 3.5	00x216	5x21'0"0(24	x1).		Material N	o: Kuadocantero		- in: 119A
Sales order:	12078	375			Purchase	Order: 67103-5		J in: USA
Heat No	С	Mn	Ρ	S	Si Al	Cu Ch		
17048101	0.210	0.730	0.007	0.005	0.020 0.035	0.110 0.000	1	Ti B N
Bundle No	PCs	Yield	Ter	nsile	Eln.2in	51000 (L)	10	0.000 0.000 0.007
41658047	24	000000 P	si Ps	i %			lon	CE: 0.36
Material Note: Sales Or.Note	:					600 FM - A 500+ . 1	B (- :	
Material: 3.50 Sales order:	00x216x	<21'0"0(24x	1).		Material No	: R035002162164		in: USA d in: USA
leat No	0		-		Purchase O	rder: 67103-S-		
7048101		Win	Р	S	Si Al	Cu Cb it	· /·	TI D N
7046101	0.210	0.730	0.007	0.005	0.020 0.035	0.110 0.000 0.0	2	0.000 0.000 0.000
sundle No	PCs	Yield	Ten	sile	Eln.2in			0.00. 0.000 0.007
1658048	24	000000 Ps	i Psi	%		ASTM 7.501-	-11 	Cē: 0.36
ales Or.Note:								

46900

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnity specification and contract requirements. Independent of the second sec nat i s with a applicable Institute Page: 4 Of 4 Instate

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

Certified Test Report

Customer: Metals 2 Go	Size: 04.00X04.00 Gauge: 11	Customer Order No: 43043	Customer Part No
Hewitt TX 76643-3044	Date: 04/24/2020	Delivery No: 83577178 Load No: 4297407	Length: 20 FT
	Specification: ASTM A500-13 Gr.B/	с	
	ASTM A500-13 Gr.B/	c	

Heat No	Yield	Tensile	Elongation
	KSI	KSI	% 2 Inch
88854C	54.7	73.8	29.50

Heat No	C	MN	P	S	SI	CU	NI	CR	MO	V
88854C	0.2100	0.7600	0.0140	0.0090	0.0100	0.0500	0.0200	0.0500	0.0100	0.0050

This material was melted & manufactured in the U.S.A. This material meets the Buy America requirement of 23 CFR 635.410. Coil Producing Mill: UNITED STATES STEEL, Granite City, IL

We hereby certify that all test results shown in this report are correct as contained in the records of our company. All testing and manufacturing is in accordance to A.S.T.M. parameters encompassed within the scope of the specifications denoted in the specification and grade tiles above. This product was manufactured in accordance with your purchase order requirements.

This material has not come into direct contact with mercury, any of its compounds, or any mercury bearing devices during our manufacturing process, testing, or inspections.

This material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Tensile test completed using test specimen with 3/4" reduced area.

STEEL VENTURES, LLC dba EXLTUBE

Jorather

45990

Jonathan Wolfe Quality Assurance Manager

PERFILES COMERCIALES SIGOSA S.A. DE . C.V.

Certificado de Calidad de Pruebas Físicas y Químicas (Mill Test Report)

Orden / Order:62810

Información del Cliente / Client Information : METALS 2 GO

Fecha	/ Date:03/04/2020 18:19 PM
Fecha	Impresión / Print Date:03/04/2020 18:19 PM

																	-					
ļ ļ ļ	SERIE	PRODUCTO PRODUCT	COLADA HEAT	GRADO GRADE	·LE ·YS	·UT ·TS	PE %EL	LE/UT (YS/TS)	С	Mn	Si	P	S	Cu	Cr	Ni	Мо	Sn	۷	Nb	Al	CEQ
1	1201811011050	SOL 2 x 1/4 20ft	000000182776	A36/A529-50	54200	71400	30	0.76	.192	.883	.22	.018	.025	.326	.115	.107	.024	.015	.001	.002	.003	.433
2	1201908202019	SOL 2 1/2 x 1/4 20ft	000000192173	A36/A529G50	54940	76300	32	0.72	.18	.882	.2	.012	.027	.345	.107	.09	.023	.013	.001	.004	.002	.416
3	1201908201057	SOL 2 1/2 x 1/4 20ft	000000192171	A36/A529G50	56100	76500	33	0.73	.174	.857	.182	.011	.028	.331	.08	.083	.021	.014	.001	.004	.002	.395
1	1202001161008	ANG 1 1/2 x 1/8 20ft	000000192890	A36/A529-50	53200	75100	30	0.71	.18	.894	.185	.008	.024	.237	.068	.1	.023	.008	.001	.003	.003	.401
5	1201911071019	SOL 2 x 1/4 20ft	000000192909	A36	51300	73600	34	0.7	.182	.894	.184	.012	.021	.294	.078	.115	.025	.011	.001	.003	.001	.41
5	1202001181048	ANG 1 1/2 x 1/8 20R	000000193346	A36/A529-50	52600	77100	30	0.68	.187	.904	.201	.013	.028	.36	.137	.109	.046	.019	.001	.005	.001	.439
	1202001173003	ANG 1 1/2 x 1/8 20ft	00000193343	A36/A529-50	53200	75000	30	0.71	.187	.882	.203	.012	.027	.338	.13	.102	.03	.013	.001	.005	.002	.429
3	2202002263008	SOL 4 x 1/4 20ft	000000200324	A36/A529-50	56300	79200	32	0.71	.18	.885	.183	.014	.018	.367	.124	.149	.029	.013	.005	.017	.002	.424
3	2202002271059	SOL 4 x 1/4 20ft	000000200489	A36	56900	78600	32	0.72	.185	.876	.205	.012	.022	.528	.1	.13	.03	.017	.001	.001	.002	.435

*Las unidades expresadas en L.E. y U.T son en PSI. La composición química esta expresada en % en peso. *The units expressed in L.E and U.T are in PSI. The chemical composition is expressed in % in weight.

We certify that the product above mentioned accomplishes and has been manufactured, sampled, tested and inspected in accordance with applicable requirements of specifications: ASTM A6/ A6 M-13 a (2014), X36; A529 / A529M; ASME SA-6/SA-6M; ASTM A370/- 12a (2014); ASME SA36. Certificamos que el producto aquí descrito, cumple y ha sido fabricado, muestreado, probado e inspeccionado de acuerdo con los requisitos aplicables de la especificación: 2013: ASIME SA36;ASIME SA-6/SA-6Mi/A36; 2014: ASTM A6/ A6 M-13;A529 / A529M; ASTM A370 – 12a Gerente de Aseguramiénto de Calidad . . 7 1

En SIGOSA, SA DE CV nos comprometemos a satisfacer las expectativas y requerimientos de nuestros clientes, Mediante un sistema de Gestión de Calidad, la mejora continua de nuestros productos, el uso eficiente de los recursos, y la participación individual y de equipo de todo su personal.

FOR-CAL-CAL-001 REV. 4 OCTUBRE 2014.

Certificado / Certificate: B67048

41990

			Customer	PONe 1/11	0000 0	2002	14110				1				
			Product De	cription: 45	50U8-5	2893	Mill Ord	er No. 4	1-58570	08-01	Shipp	ing Ma	nifest:	HT126646	
			, roudet bu	CS.	A G40.	21(2013) 50W	1350W	10)	0	Cert Date:	26 Nov 26 Nov	19 C 19 (F	ert No: Page 1 c	031223527 if 1)	
			Size: 0.25	X 96.00 X	(480.	0 (IN)									
Tested	Pleces:		Tensiles:					Ch	arpy In	pact Tests					
Heat Piece Id Id	Piece Tst Dimensions Loc	YS (KSI)	UTS %RA (KSI)	Elong % 2in 8in	Tst Dir	Hardness	Abs. Energy(F 1 2 3 A	TLB) vg 1	% 3	Shear 3 Avg	Tst Tmp	Tst Dir	Tst Siz	BDWTT Tmp %Shr	
064 0307	0.250 (T.L.C)	56 7	7	35	Т								(mm)		
064 0308	0.250 (T.L.C)	57 7 56 7	7 '8	36 35	T										
Heat		00 1	0	Chem	ical An	alvais	I								
ld C	Mn P S	Si To	t AI Sol AI	Cu Ni	Cr	Mo C	ь v ті	N						ORC	
* E9I064	0311 P	CES:	3, LBS:	9801											

46900

MATERIAL TEST NEP

Material: 3.5	500x21	6x21'0"0(2	24x1).			Material	No: Ru		***** **********	
Sales order: Heat No	1207	875			_ 1	urchase	Order:	07103-S		in: USA √in: UGA
		ivin	Р	S	Si	AI	Cu	Ch		
17048101	0.210	0.730	0.007	0.005	0.020	0.025		00 ,	· ·	TI B N
Bundle No	PCs	Yield -	Te	ensile	EIn	.2in	0.110	0.000 0.5	10	0.000 0.000 0.007
41658047	24	000000	Psi P	si %					ion	CE: 0.36
Material Note Sales Or.Note	:							ASTM ASOU-	B¢~:	uniters and a state of a
Material: 3.50 Sales order:	12078	×21'0"0(24	4x1).		N Pt	laterial N Irchase	lo: R03 Order: (5002162100 37103-5-		in: USA d in: USA
icat No	C	Mn	P	S	Si	AL	Cu	()h		
7048101	0.210	0.730	0.007	0.005	0.020	0.000		GD 18	15	TI B N
undla No	PCs	Yield	Ten	sile	Eln :	0.035	0.110	0.000 0.0	ЭС	0.002 0.000 0.007
1658048	24	000000	Psi Ps	i %				ASTM 7.500-	4 1 192	Cē: 0.36
ales Or.Note:								Cb i Ti B 0.000 0.000 0.000 0.000 0.000 inn CE: 0.3 0.000 0.000 int USA CE: 0.3 002162100 in: USA d in: USA 7103-5: Ch d'in: USA d in: USA 0.000 0.000 0.000 0.000 0.000 0.000 SYMI / 501- 72 0.36 72 0.36		
								······································		

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnier: specification and contract requirements. Under the under the tracter of the material furnier: Institute of the material furnier: Property of the tracterial furnier: Property o

1

with applicable

i Institute

inati in t

.

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

Certified Test Report

Customer: Metals 2 Go	Size: 04.00X04.00 Gauge: 11	Customer Order No: 43043	Customer Part No.		
Hewitt TX 76643-3044	Date: 04/24/2020	Delivery No: 83577178 Load No: 4297407	Length: 20 FT		
	Specification: ASTM A500-13 Gr.B	/C			

Heat No	Yield KSI		Tensile	Elongation % 2 Inch	1					
88854C	54.7		73.8	29.50						
Heat No 88854C	C 0.2100	MN 0.7600	P 0.0140	S 0.0090	SI 0.0100	CU 0.0500	NI 0.0200	CR 0.0500	MO 0.0100	V 0.0050

This material was melted & manufactured in the U.S.A. This material meets the Buy America requirement of 23 CFR 635.410. Coil Producing Mill: UNITED STATES STEEL, Granite City, IL

We hereby certify that all test results shown in this report are correct as contained in the records of our company. All testing and manufacturing is in accordance to A.S.T.M. parameters encompassed within the scope of the specifications denoted in the specification and grade tiles above. This product was manufactured in accordance with your purchase order requirements.

This material has not come into direct contact with mercury, any of its compounds, or any mercury bearing devices during our manufacturing process, testing, or inspections.

This material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Tensile test completed using test specimen with 3/4" reduced area.

STEEL VENTURES, LLC dba EXLTUBE

foratherholf

Jonathan Wolfe Quality Assurance Manager

. 60.

APPENDIX C.

SOIL PROPERTIES

 Table C.1. Summary of Strong Soil Test Results for Establishing Installation Procedure.

Table C.2. Test Day Static Soil Strength Documentation for Test No. 469900-01-1.

Date	2020-06-18 for Test No. 469900-01-1
Test Facility and Site Location	TTI Proving Ground—3100 SH 47, Bryan, TX
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and Sieve Analysis.	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

Table C.3. Test Day Static Soil Strength Documentation for Test No. 469900-01-2.

177

Date	2020-08-13 for Test No. 469900-01-2
Test Facility and Site Location	TTI Proving Ground—3100 SH 47, Bryan, TX
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and Sieve Analysis.	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

Table C.4. Test Day Static Soil Strength Documentation for Test No. 469900-01-3.

Date	2020-08-25 for Test No. 469900-01-3
Test Facility and Site Location	TTI Proving Ground—3100 SH 47, Bryan, TX
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and Sieve Analysis.	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

Table C.5. Test Day Static Soil Strength Documentation for Test No. 469900-01-4.

TR No. 0-6990-R1

Date	2020-09-28 for Test No. 469900-01-4
Test Facility and Site Location	TTI Proving Ground—3100 SH 47, Bryan, TX
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and Sieve Analysis.	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

179

Table C.6. Test Day Static Soil Strength Documentation for Test No. 469900-01-5.

180

Date	2020-10-05 for Test No. 469900-01-5
Test Facility and Site Location	TTI Proving Ground—3100 SH 47, Bryan, TX
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and Sieve Analysis.	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

APPENDIX D. MASH TEST 3-21 (CRASH TEST NO. 469900-01-1)

D.1 VEHICLE PROPERTIES AND INFORMATION

Table D.1. Vehicle Properties for Test No. 469900-01-1.

Date: 20	020-6-18	Test No.:	469900-	-01-1	VIN No.:	10	6RR6GT6ES	5287251
Year:	2014	Make	RAM	Λ	Model:		1500	
Tire Size:	265/70 R 17			Tire I	Inflation Pre	ssure:	35	psi
Tread Type:	Highway				Odo	meter: _	120140	
Note any dam	age to the ve	hicle prior to t	est: <u>None</u>					
 Denotes acc 	selerometer l	ocation			▲X	-		
NOTES Nor	ne		1					
			. [
Engine Type:	V-8		A M -		+	<u> </u>		т й Т I I
Engine CID:	5.7L		· • •	6	-			WHEEL TRACK
Transmission	Type: or F	1 Manual					-TEST INERTIAL C. M.	
								•
Optional Equip	oment:		P					
None			· · ·		the set	∙ ∙ ¶;		
Dummy Data:	50th Perc	entile				Y Y A	-Ψ-	FK L
Mass:	10	65 lb		← F →	⊷н_→		-s -s	-
Seat Position	IMPACT	SIDE			M	- E	▼ M	
Geometry:	inches			-	FRONT	— C ———	REAR	-
A78.5	<u>60</u> F	40.00	К	20.00	- ^P -	3.0	<u> </u>	26.75
B	<u>G</u>	29.50	. L	30.00	_ Q _	30.5	V = 00	30.25
C <u>227.5</u>	<u>ю</u> Н	60.44	M	68.50	_ R	18.0	<u>00</u> W	
D 44.0		11.75		68.00	_ <u>s</u> _	13.0	<u>x X</u>	/9.00
E 140.0	PU J	27.00	 Wheel Well	46.00	- ' -		JU Frame	
Height Fro	nt	14.75 Cle	arance (Front)		6.00	Height	t - Front	12.50
Height Re	er ar	14.75 Cle	earance (Rear)		9.25	Heigh	t - Rear	22.50
RANGE LIMIT: A=78	±2 inches; C=237 ±	13 inches; E=148 ±12	inches; F=39 ±3 inch	nes; G = > 28 ir	nches; H = 63 ±4 in	nches; O=43 ±	4 inches; (M+N)/2=6	37 ±1.5 inches
GVWR Rating	s:	Mass: Ib	<u>Curb</u>	2	Test	Inertial	Gro	oss Static
Front <u>37</u>	700	M _{front}	2	2906		2850		2935
Back 39	900	M _{rear}	2	2041		2152		2232
Total 67	<u>′00 </u>	М _{Тоtal}	4	Allowable	Range for TIM and	5002 GSM = 5000	b ±110 lb)	5167

Mass Distribution: LF: <u>1402</u> RF: <u>1448</u> LR: <u>1107</u> RR: <u>1045</u>

lb

Table D.2. Measurements of Vehicle Vertical Center of Gravity (CG) forTest No. 469900-01-1.

Date: 2020	-6-18 T	est No.: _	469900-	01-1	VIN:	1C6RR6G	T6ES28725	51			
Year:20	14	Make:	RAM	1	Model:		1500				
Body Style: _	Quad Cab				Mileage:	120140					
Engine: <u>5.7L</u>	,	V-8		Trans	smission:	Automatic					
Fuel Level:	Empty	Ball	ast: <u>100</u>				(44(0 lb max)			
Tire Pressure: Front: 35 psi Rear: 35 psi Size: 265/70 R 17											
Measured Ve	hicle Wei	ghts: (I	b)								
LF	1402		RF:	1448		Front Axle	: 2850				
LR	1107		RR:	1045		Rear Axle	: 2152				
Left	2509		Right:	2493		Total	: 5002				
						5000 2	: TO ID allowed	1			
V/	heel Base:	140.50	inches	Track: F:	68.50	inches R	: 68.00	inches			
	148 ±12 inch	es allowed			Track = (F+F	R)/2 = 67 ±1.5 inche	s allowed				
Center of Gra	ivity, SAE	J874 Sus	pension M	ethod							
X	60.45	inches	Rear of F	ront Axle	(63 ±4 inches	s allowed)					
Y:	-0.11	inches	Left -	Right +	of Vehicle	e Centerline					
Z	29.50	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)					
Hood Heid	aht:	46.00	inches	Front	Bumper H	leiaht:	27.00	inches			
	43 ±4 i	nches allowed	•			J					
Front Overha	ing:	40.00	inches	Rear	Bumper H	leight:	30.00	inches			
	39 ±3 i	nches allowed									
Overall Leng	gth:	227.50	inches								
	237 ±1	3 inches allow	ed								

Date: 2020-6-18 Test No.: 469900-01-1 VIN No.: 1C6RR6GT6ES287251 Year: 2014 Make: RAM Model: 1500

Table D.3. Exterior Crush Measurements of Vehicle for Test No. 469900-01-1.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable									
End Damage	Side Damage								
Undeformed end width	Bowing: B1 X1								
Corner shift: A1	B2 X2								
A2									
End shift at frame (CDC)	Bowing constant								
(check one)	X1+X2 _								
< 4 inches	2								
\geq 4 inches									

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

~		Direct Damage									
Impact	Plane* of	Width**	Max***	Field	C_1	C ₂	C_3	C_4	C_5	C_6	±D
Number	C-Measurements	(CDC)	Crush	L**							
1	Front plane at bmp ht	26	16	36	-	-	-	-	-	-	-18
2	Side plane at bmp ht	26	16	60	-	-	-	-	-	-	70
	Measurements recorded										
	✓ inches or □ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2020-6-18	Test No.:	469900-01-1	VIN No.:	1C6RR6GT6ES287251
Year:	2014	_ Make:	RAM	_ Model:	1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After	Differ.
		(inches)	
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
A3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
B3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	19.00	-7.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	11.50	0.00
E1	58.50	60.00	1.50
E2	63.50	67.00	3.50
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
I	37.50	37.50	0.00
J*	25.00	18.00	-7.00

D.2 SEQUENTIAL PHOTOGRAPHS

Figure D.1. Sequential Photographs for Test No. 469900-01-1 (Overhead and Frontal Views).

Figure D.1. Sequential Photographs for Test No. 469900-01-1 (Overhead and Frontal Views) (Continued).

0.000 s

0.100 s

0.200 s

0.300 s

Figure D.2. Sequential Photographs for Test No. 469900-01-1 (Rear View).

0.500 s

0.600 s

0.700 s

Figure D.3. Vehicle Angular Displacements for Test No. 469900-01-1.

TR No. 0-6990-R1

188

D.4

VEHICLE ACCELERATIONS

Figure D.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-1 (Accelerometer Located at Center of Gravity).

Figure D.5. Vehicle Lateral Accelerometer Trace for Test No. 469900-01-1 (Accelerometer Located at Center of Gravity).

Figure D.6. Vehicle Vertical Accelerometer Trace for Test No. 469900-01-1 (Accelerometer Located at Center of Gravity).

APPENDIX E. MASH TEST 3-21 (CRASH TEST NO. 469900-01-2)

E.1 VEHICLE PROPERTIES AND INFORMATION

2020-8-13 469900-1-2 1C6RR6GT4ES306606 Test No.: VIN No.: Date: 2014 RAM 1500 Year: Make: Model: 265/70 R 17 Tire Inflation Pressure: 35 psi Tire Size: Odometer: 155404 Tread Type: Highway Note any damage to the vehicle prior to test: None • Denotes accelerometer location. W. NOTES: None M V-8 WHEEL TRACK Engine Type: Engine CID: 5.7 L WHEEL TRACK Transmission Type: TEST INERTIAL C. M Auto Manual or 🗖 FWD 🔽 RWD T 4WD Optional Equipment: 1 None J I-I Dummy Data: К 50th Percentile Type: IJ Ls V 165 Mass: lb Н G Seat Position: IMPACT SIDE F M FRONT M M Geometry: inches 26.75 78.50 40.00 20.00 Ρ 3.00 А F Κ U 74.00 28.80 30.00 30.50 30.25 В G L Q V 227.50 59.30 68.50 18.00 59.30 С Н R Μ W 44.00 11.75 68.00 13.00 79.00 S D I Ν Х 77.00 Е 140.50 J 27.00 Ο 46.00 Т Wheel Center Wheel Well Bottom Frame 14.75 6.00 12.50 Height Front Clearance (Front) Height - Front Wheel Center Wheel Well Bottom Frame 14.75 9.25 22.50 Clearance (Rear) Height - Rear Height Rear RANGE LIMIT: A=78 ±2 inches; C=237 ±13 inches; E=148 ±12 inches; F=39 ±3 inches; G = > 28 inches; H = 63 ±4 inches; O=43 ±4 inches; (M+N)/2=67 ±1.5 inches G\AMP Patings: Mace: Ib Curb Test Inertial Gross Statio

Table E.1. Vehicle Properties for Test No. 469900-01-2.

0 4 4 4 1 4	itaungs.		Wass. 10				rescinential			<u> </u>	033 01410
Front	3700		M _{front}		2962	2962 2893				2978	
Back	3900		M _{rear}		2127			2115			2195
Total	6700		М _{тоtal}		5089		5008				5173
					(Allowable	e Range fo	or TIM ar	nd GSM = 5000 I	b ±110 lb)		
Mass I Ib	Distribution:	LF:	1449	RF:	1444	LF	₹:	1072	RF	२: _	1043

Date: 2020-	-8-13 T	est No.: _	469900	-1-2	VIN:	1C6RR6GT4ES306606				
Year:	14	Make:	RAM	1	Model:	1	500			
Body Style:	Quad Cab				Mileage:	155404				
Engine: <u>5.7</u> L	١	√-8		Trans	smission:	Automatic				
Fuel Level: Empty Ballast: 60 (440 lb max										
Tire Pressure:	Front: <u>3</u>	35 ps	i Rea	ır: <u>35</u>	psi S	Size: 265/70 R	17			
Measured Ve	hicle Wei	ghts: (II	b)							
LF:	1449		RF:	1444		Front Axle:	2893			
LR:	1072		RR:	1043		Rear Axle:	2115			
Left:	2521		Right:	2487		Total:	5008			
						5000 ±	I TO ID allowed			
VVr	neel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches		
	148 ±12 inch	es allowed			Track = (F+F	R)/2 = 67 ±1.5 inches	s allowed			
Center of Gra	vity, SAE	J874 Sus	pension M	ethod						
X :	59.34	inches	Rear of F	ront Axle	(63 ±4 inche	s allowed)				
Y:	-0.23	inches	Left -	Right +	of Vehicle	e Centerline				
Z :	28.80	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)				
Hood Heig	ght:	46.00	inches	Front	Bumper H	eight:	<u>27.00</u> i	nches		
	43 ±4 i	nches allowed								
Front Overha	ng:	40.00	inches	Rear	Bumper H	eight:	30.00 i	nches		
	39 ±3 i	nches allowed								
Overall Leng	,th:	227.50	inches							
	237 ±1	3 inches allow	ed							

Table E.2. Measurements of Vehicle Vertical CG for Test No. 469900-01-2.

Date:	2020-8-13	Test No.:	469900-1-2	VIN No.:	1C6RR6GT4ES306606		
Year:	2014	Make:	RAM	Model:	1500		

Table E.3. Exterior Crush Measurements of Vehicle for Test No. 469900-01-2.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable									
End Damage	Side Damage								
Undeformed end width	Bowing: B1 X1								
Corner shift: A1	B2 X2								
A2									
End shift at frame (CDC)	Bowing constant								
(check one)	X1+X2 _								
< 4 inches	2								
\geq 4 inches									

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C_5	C_6	±D
1	Front plane at bmpr ht	18	16	44	-	-	-	-	-	-	18
2	Side plane at bmpr ht	18	15	64	-	-	-	-	-	-	74
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Year:	2014	Make:	RAM	Model:		
			मा <u>न्</u> D	OCCUPANT EFORMATIO	COMPARTI N MEASUR	MENT EMENT
	F			Before	After (inches)	Differ.
	J E1	E2 E3 E	A1	65.00	65.00	0.00
	, j		A2	63.00	63.00	0.00
			₽∟ Аз	65.50	65.50	0.00
			B1	45.00	45.00	0.00
			B2	38.00	38.00	0.00
			ВЗ	45.00	45.00	0.00
		1	B4	. 39.50	39.50	0.00
		B1-3 HA1-3	⁶	43.00	43.00	0.00
		D1-3	B6	39.50	39.50	0.00
		-3-4 (C1	26.00	26.00	0.00
]		 C2	0.00	0.00	0.00
\rightarrow			C3	26.00	20.50	-5.50
			D1	11.00	11.00	0.00
			D2	0.00	0.00	0.00
			D3	11.50	12.75	1.25
_		B25	E1	58.50	61.50	3.00
	⊣ ' B1,4	 B3,6	E2	63.50	68.00	4.50
		- E1_4	E3	63.50	63.50	0.00

Table E.4. Occupant Compartment Measurements of Vehicle for Test No. 469900-01-2.

469900-1-2

VIN No.:

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

2020-8-13

Test No.:

Date:

0.00

0.00

0.00

0.00

-0.50

-5.00

63.50

59.00

59.00

37.50

37.00

20.00

63.50

59.00

59.00

37.50

37.50

25.00

E4 F

G

Н

L

J*

1C6RR6GT4ES306606
E.2 SEQUENTIAL PHOTOGRAPHS

Figure E.1. Sequential Photographs for Test No. 469900-01-2 (Overhead and Frontal Views).

0.300 s

Figure E.1. Sequential Photographs for Test No. 469900-01-2 (Overhead and Frontal Views) (Continued).

0.000 s

0.100 s

0.200 s

0.300 s

0.400 s

0.500 s

0.600 s

0.700 s

Figure E.2. Sequential Photographs for Test No. 469900-01-2 (Rear View).

Figure E.3. Vehicle Angular Displacements for Test No. 469900-01-2.

E.4

VEHICLE ACCELERATIONS

Figure E.6. Vehicle Vertical Accelerometer Trace for Test No. 469900-01-2 (Accelerometer Located at Center of Gravity).

APPENDIX F. MASH TEST 3-20 (CRASH TEST NO. 469900-01-3)

F.1 VEHICLE PROPERTIES AND INFORMATION

Table F.1. Vehicle Properties for Test No. 469900-01-3.

Date:	2020-08-25	Test No.:	469900-01-3	VIN No.:	3N1CN7AF	7FL90859	02		
Year:	2015	Make:	NISSAN	Model:	VERSA				
Tire Infl	ation Pressure: <u>36</u>	PSI	Odometer: <u>10</u>	2957	Tire Size:	P185/65R	15		
Describ	e any damage to the	e vehicle pric	r to test: <u>None</u>						
• Deno	tes accelerometer lo	ocation.							
NOTES	: <u>None</u>		- A M		· • •		N T		
			-						
Engine Engine	Type: <u>4 CYL</u> CID: 161		-				· · · · ·		
	Transmission Type: ↓ Auto or ↓ Manual								
Optiona									
None			-						
Dummy Type: Mass: Seat F	Data: <u>50th Percer</u> <u>165 lb</u> Position: <u>IMPACT SI</u>	ntile Male DE					<u> </u>		
Geome	try: inches			_					
A <u>66.7</u>	<u>0 </u>	50	K <u>12.50</u>	P <u>4.50</u>)	U <u>1</u>	15.50		
B <u>59.6</u>	<u> </u>		L <u>26.00</u>	Q_ <u>24.0</u>	0	V <u>2</u>	21.25		
D 40 5	<u>40 ⊓ 40.</u> 0	0	N 58.50		<u> </u>	VV <u>2</u>	10.70 70.75		
$E = \frac{40.31}{102}$	<u> </u>	25	0 30 50	<u>7.50</u> T_64.5	50	<u> </u>	9.75		
<u>02.</u> Whe	el Center Ht Front 1	1.50	Wheel Cen	 ter Ht Rear 11 5	.0		0 04		
RAN	 NGE LIMIT: A = 65 ±3 inches; C	= 169 ±8 inches; E (M+N)/2 = 59 ±2	= 98 ±5 inches; F = 35 ±4 in inches; W-H < 2 inches or u	ches; H = 39 ±4 inches; O se MASH Paragraph A4.3.2	(Top of Radiator Su	pport) = 28 ±4 ir	nches		
GVWR	Ratings:	Mass: Ib	<u>Curb</u>	Test	Inertial	<u>Gro</u>	<u>ss Static</u>		
Front	1750	M _{front}	1418	1457		1542			
Back	1687	M _{rear}	953	963		1043			
Total	3389	MTotal	2371	2420		2585			
Mass D	istribution:			TIM = 2420 lb ±55 lb Allow	vable GSM = 2585 lb	55 lb			
aı		//4	KF: <u>_683</u>	LK: <u>46</u> ;	3		<u> </u>		

Date:	2020-8-25	Test No.:	469900-01-3	VIN No.:	3N1CN7AP7FL908592	
Year:	2015	– – – – – – – – – – – – – – – – – – –	NISSAN	– – Model:	VERSA	

Table F.2. Exterior Crush Measurements of Vehicle for Test No. 469900-01-3.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable									
End Damage	Side Damage								
Undeformed end width	Bowing: B1 X1								
Corner shift: A1	B2 X2								
A2									
End shift at frame (CDC)	Bowing constant								
(check one)	X1+X2								
< 4 inches	2								
\geq 4 inches									

Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

		Direct I	Direct Damage								
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L***	C1	C_2	C3	C4	C_5	C_6	±D
1	Front plane at bumper ht	14	12	40	-	-	-	-	-	-	68
2	Side plane at bumper ht	14	10	20	-	-	-	-	-	-	15
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2020-8-25	_ Test No.: _	469900-01-	3	VIN No.:	3N1CN7AP7	FL908592
Year:	2015	_ Make: _	NISSAN		Model:	VERSA	
	H-		11	C DE	DCCUPANT FORMATIO	COMPARTI N MEASUR	MENT EMENT
	F				Before	After (inches)	Differ.
	G			A1	75.00	75.00	0.00
		7		A2	74.00	74.00	0.00
<u> </u>				A3	74.00	74.00	0.00
				B1	43.00	43.00	0.00
				B2	37.00	37.00	0.00
	B1, B2, I	B3, B4, B5, B6		В3	43.00	43.00	0.00
				Β4	46.50	46.50	0.00
	A1, A2,	8AB		B5	42.50	42.50	0.00
\neg	D1, D2, & D3 C1, C2,	803 - T		B6	46.50	46.50	0.00
				C1	26.00	26.00	0.00
	-			C2	0.00	0.00	0.00
				C3	26.00	26.00	0.00
				D1	12.50	12.50	0.00
	/			D2	0.00	0.00	0.00
	// 1	İ İ 🔪		D3	10.00	10.00	0.00
	B1 E	32 83		E1	45.00	43.00	-2.00
	- F 18			E2	48.75	53.75	5.00
				F	47.50	44.00	-3.50
				G	47.50	47.50	0.00
				Н	39.00	39.00	0.00
				I	39.00	38.50	0.00
Lateral a	rea across the cab	from		J	48.50	44.00	-4.50
driver's sid	de kick panel to pa	ssenger's side	kick panel.				

Table F.3. Occupant Compartment Measurements of Vehicle for Test No. 469900-01-3.

469900-01-3

2020-8-25

3N1CN7AP7FL908592

F.2 SEQUENTIAL PHOTOGRAPHS

Figure F.1. Sequential Photographs for Test No. 469900-01-3 (Overhead and Frontal Views).

Figure F.1. Sequential Photographs for Test No. 469900-01-3 (Overhead and Frontal Views) (Continued).

0.000 s

0.100 s

0.200 s

0.300 s

Figure F.2. Sequential Photographs for Test No. 469900-01-3 (Rear View).

0.400 s

0.500 s

0.600 s

0.700 s

Figure F.3. Vehicle Angular Displacements for Test No. 469900-01-3.

F.4

VEHICLE ACCELERATIONS

Figure F.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-3 (Accelerometer Located at Center of Gravity).

Impact Angle: 25.2 degrees

TR No. 0-6990-R1

Test Number: 469900-01-3 Test Standard Test Number: *MASH* 3-20 Test Article: Modified Median Transition Test Vehicle: 2015 Nissan Versa Inertial Mass: 2420 lb Gross Mass: 2585 lb Impact Speed: 62.9 mi/h Impact Angle: 25.2 degrees

Figure F.5. Vehicle Lateral Accelerometer Trace for Test No. 469900-01-3 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

APPENDIX G. MASH TEST 3-21 (CRASH TEST NO. 469900-01-4)

G.1 VEHICLE PROPERTIES AND INFORMATION

Table G.1. Vehicle Properties for Test No. 469900-01-4.

Date: 2	2020-9-28	Test No.:	469900	-01-4	VIN No.:	1C6RR6	6GT9HS	549865
Year:	2017	Make	RAN	Л	Model:		1500	
Tire Size:	265/70 R 17			Tire I	nflation Pre	essure:	35 p	osi
Tread Type:	Highway				Odo	meter: <u>9180</u>	5	
Note any dan	hage to the ve	hicle prior to t	est: <u>None</u>					
 Denotes ad 	celerometer l	ocation.			◀X ◀W►I	-		
NOTES: No	ne		*		77			
Engine Type: Engine CID:	V-8 5.7		A M WHEEL TRACK					WHEEL WHEEL
Transmission	Туре:	1 Manual				TEST	INERTIAL C. M.	- <u></u> ,
↓ Auto ↓ FWD	or L	Manual		R PQ				
Optional Equi	ipment:		P					В
Dummy Data Type:	50th perc	entile male					PL	
Seat Positio		DE DE				- E	►	•
Geometry:	inches			Ψ,	M FRONT	G	▼ M rear	-
A 78.	50 F	40.00	к	20.00	P_	3.00	U	26.75
В74.	00 G	29.00	L	30.00	Q	30.50	V	30.25
C227.	<u>50</u> Н	59.60	Μ	68.50	_ R _	18.00	W_	59.60
D44.	<u>00</u> I	11.75	N	68.00	s	13.00	X	79.00
E <u>140.</u>	<u>50</u> J	27.00	<u> </u>	46.00	_ T _	77.00	-	
Wheel Cen Height Fr	ont	14.75 Cle	arance (Front)		6.00	Bottom Fran Height - Fro	ne ont	12.50
Wheel Cen Height Re	iter ear	14.75 Cle	Wheel Well arance (Rear)		9.25	Bottom Fran Height - Re	ne ar	22.50
RANGE LIMIT: A=7	8 ±2 inches; C=237 ±	13 inches; E=148 ±12 i	inches; F=39 ±3 inc	hes; G = > 28 in	nches; H = 63 ±4 ir	nches; O=43 ±4 inche	s; (M+N)/2=67	±1.5 inches
GVWR Ratin	gs:	Mass: Ib	Curt	2	<u>Test</u>	Inertial	<u>Gros</u>	<u>s Static</u>
Front 3	9/UU	Mfront		2903		2893		29/8
Back 3	200	Mrear		2090		2132		ZZ 1Z
i otal 6	07.00	M _{Total}		NCCU (Allowable I	Range for TIM and	OU20 GSM = 5000 lb ±110	lb)	0190
Mass Distrib	ution: LF:	1464	RF:	1429	LR:	1072	RR:	1060

Date: 2020	-9-28 T	est No.: _	469900-	0-01-4 VIN:		1C6RR6GT9HS549865			
Year:20	17	Make:	RAM	1	Model:	1	500		
Body Style:	Quad Cab				Mileage:	91805			
Engine: 5.7	N	√-8		Trans	smission:	Automatic			
Fuel Level:	Empty	Ball	ast : <u>130</u>				(440	lb max)	
Tire Pressure:	Front: <u>a</u>	35 ps	i Rea	r: <u>35</u>	psi S	Size: 265/70 R	17		
Measured Ve	hicle Wei	ghts: (II	b)						
LF:	1464		RF:	1429		Front Axle:	2893		
LR:	1072		RR:	1060		Rear Axle:	2132		
Left:	2536		Right:	2489		Total:	5025		
						5000 ±1	10 lb allowed		
VVr	neel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches	
	148 ±12 inch	es allowed			Track = (F+F	R)/2 = 67 ±1.5 inches	allowed		
Center of Gra	vity, SAE	J874 Sus	pension M	ethod					
X :	59.61	inches	Rear of F	ront Axle	(63 ±4 inches	s allowed)			
Y:	-0.32	inches	Left -	Right +	of Vehicle	e Centerline			
Z:	29.00	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)			
Hood Heir	abt:	46.00	inches	Front	Bumper H	eight [.]	27.00 i	nchos	
nood neig	43 ±4 i	nches allowed		i iont		oigni	<u> 27.00</u> I		
Front Overha	ng:	40.00	inches	Rear	Bumper H	eight:	<u>30.00</u> i	nches	
	39 ±3 inches allowed								
Overall Leng	gth:	227.50	inches						
237 ±13 inches allowed									

Table G.2. Measurements of Vehicle Vertical CG for Test No. 469900-01-4.

Date:	2020-9-28	2020-9-28 Test No.: 469900-01-4		VIN No.:	1C6RR6GT9HS549865
Year:	2017	Make:	RAM	Model:	

Table G.3. Exterior Crush Measurements of Vehicle for Test No. 469900-01-4.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable				
End Damage	Side Damage				
Undeformed end width	Bowing: B1 X1				
Corner shift: A1	B2 X2				
A2					
End shift at frame (CDC)	Bowing constant				
(check one)	$X1+X2$ _				
< 4 inches	2				
≥ 4 inches					

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct I	Direct Damage								
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L***	C_1	C_2	C_3	C4	C ₅	C_6	±D
1	Front plane at bmp ht	14	15	40	-	-	-	-	-	-	14
2	Side plane at bmp ht	14	16	54	-	-	-	-	-	-	74
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2020-9-28	Test No.:	469900-01-4	VIN No.:	1C6RR6GT9	HS549865	
Year: 2017		_ Make:	RAM	Model:	1500		
	71 not	- +		OCCUPANT DEFORMATIC	COMPARTI N MEASUR	MENT EMENT	
	F			Before	After (inches)	Differ.	
		E2 E3	E4	1 65.00	65.00	0.00	
K	G		A	2 63.00	63.00	0.00	
		Н		3 65.50	65.50	0.00	
			B	45.00	45.00	0.00	
			B	2 38.00	38.00	0.00	
			н В;	3 45.00	45.00	0.00	
			B	4 39.50	39.50	0.00	
<i></i>		B1-3 B4		5 43.00	43.00	0.00	
6		-3	B	39.50	39.50	0.00	
$\overline{\Box}$			c c	1 26.00	24.00	-2.00	
	\mathcal{I}		C	2 0.00	0.00	0.00	
	<u> </u>		C	3 26.00	26.00	0.00	
			D	1 11.00	11.00	0.00	
			D	2 0.00	0.00	0.00	
		1	D	3 11.50	9.50	-2.00	
		25	E [,]	1 58.50	59.00	0.50	
	B1,4	B3,6	E:	2 63.50	65.00	1.50	
		1-4	E	3 63.50	63.50	0.00	
			E	4 63.50	63.50	0.00	

Table G.4. Occupant Compartment Measurements of Vehicle for Test No. 469900-01-4.

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

0.00

0.00

0.00

0.00

-4.00

59.00

59.00

37.50

37.50

25.00

F

G

Н

L

J*

59.00

59.00

37.50

37.50

21.00

G.2 SEQUENTIAL PHOTOGRAPHS

Figure G.1. Sequential Photographs for Test No. 469900-01-4 (Overhead and Frontal Views).

0.300 s

Figure G.1. Sequential Photographs for Test No. 469900-01-4 (Overhead and Frontal Views) (Continued).

0.100 s

0.200 s

0.300 s

Figure G.2. Sequential Photographs for Test No. 469900-01-4 (Rear View).

0.400 s

0.500 s

0.600 s

Figure G.3. Vehicle Angular Displacements for Test No. 469900-01-4.

TR No. 0-6990-R1

Figure G.6. Vehicle Vertical Accelerometer Trace for Test No. 469900-01-4 (Accelerometer Located at Center of Gravity).

APPENDIX H. MASH TEST 3-20 (CRASH TEST NO. 469900-01-5)

H.1 VEHICLE PROPERTIES AND INFORMATION

Table H.1. Vehicle Properties for Test No. 469900-01-5.

Date:	2020-10-05	Test No.:	469900-01-5	VIN	No.: <u>3N1CN7A</u>	PXEL838603			
Year:	2014	Make:	NISSAN	Mod	el: <u>VERSA</u>				
Tire Inf	lation Pressure: <u>36</u>	PSI	_ Odometer:	186935	Tire Size:	P185/65R15			
Descrit	be any damage to the	e vehicle pric	or to test: <u>No</u>	ne					
• Den	otes accelerometer lo	ocation.		f = [
NOTES	S: <u>None</u>		— А М — —			•			
			_						
Engine	Type: <u>4 CYL</u>		<u>y </u>	+					
Transn	nission Type:		_	⊸ Q →					
	✓ Auto or ▲ ✓ FWD □ AWD								
Option: None	al Equipment:								
Dumm	y Data:	ntilo Molo		F-F-H-	-s				
Mass	<u>165 lb</u>		_	V	/E				
Seat	Position: <u>IMPACT SI</u>	DE	-		X				
Geome	etry: inches								
A <u>66.7</u>	7 <u>0 </u>	50	K <u>12.50</u>	P	4.50	U <u>15.50</u>			
В <u>59.6</u>	<u> </u>		L <u>26.00</u>	Q	24.00	V <u>21.25</u>			
C <u>175</u>	<u>.40 H 41.</u>	39	M <u>58.30</u>	R	16.25	W <u>41.40</u>			
D <u>40.5</u>	50 l <u>7.0</u>	0	N <u>58.50</u>	S	7.50	X <u>79.75</u>			
E <u>102</u>	. <u>40 J 22.</u>	25	O <u>30.50</u>	Т	64.50				
Whe	eel Center Ht Front _	11.50	Wheel C	Center Ht Rear	11.50	W-H <u>0.01</u>			
RA	NGE LIMIT: A = 65 ±3 inches; C	= 169 ±8 inches; E (M+N)/2 = 59 ±2	= 98 ±5 inches; F = 35 inches; W-H < 2 inches	±4 inches; H = 39 ±4 inc or use MASH Paragraph	thes; O (Top of Radiator Si 1 A4.3.2	upport) = 28 ±4 inches			
GVWR	Ratings:	Mass: Ib	<u>Curb</u>	I	est Inertial	Gross Static			
Front	1750	M _{front}	1451	14	44	1529			
Back	1687	M _{rear}	961	98	0	1060			
Total	3389	M _{Total}	2412	24	24	2589			
			Allow	able TIM = 2420 lb ±55 ll	Allowable GSM = 2585	b ± 55 lb			
Mass I	Distribution:	764							
ai	LF:	/51	K⊢: <u>_693</u> _	LR	. 490	KK: <u>490</u>			

Date:	2020-10-5	Test No.:	469900-01-5	VIN No.:	3N1C7APXEL838603
Year:	2014	Make:	NISSAN	Model:	VERSA

Table H.2. Exterior Crush Measurements of Vehicle for Test No. 469900-01-5.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable						
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	$X1+X2$ _					
< 4 inches	2					
\geq 4 inches						

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

			Direct Damage								
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C_3	C_4	C_5	C_6	±D
1	Front plane at bumper ht	12	10	16	-	-	-	-	-	-	18
2	Side plane at bumper ht	12	10	50	-	-	-	-	-	-	72
	Measurements recorded										
	✓ inches or mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

œ				OCCUPAN	COMPARTMENT
Year:	2014	Make:	NISSAN	Model:	VERSA
Date:	2020-10-5	Test No.:	469900-01-5	VIN No.:	3N1C7APXEL838603

Н~

*Lateral area across the cab from

driver's side kick panel to passenger's side kick panel.

OCCUPANT C	OMPARI	MENT
DEFORMATION	MEASUR	REMENT
B (D.10

Before	After	Differ.
	(inches)	
75.00	75.00	0.00
74.00	74.00	0.00
74.00	74.00	0.00
43.00	43.00	0.00
37.00	37.00	0.00
43.00	43.00	0.00
46.50	46.50	0.00
42.50	42.50	0.00
46.50	46.50	0.00
26.00	26.00	0.00
0.00	0.00	0.00
26.00	26.00	0.00
12.50	12.50	0.00
0.00	0.00	0.00
10.00	9.75	-0.25
48.25	44.25	-4.00
48.75	51.75	3.00
47.50	47.00	-0.50
47.50	47.50	0.00
39.00	39.00	0.00
39.00	39.00	0.00
48.50	44.50	-4.00
	75.00 74.00 74.00 43.00 37.00 43.00 46.50 42.50 46.50 26.00 0.00 26.00 12.50 0.00 10.00 48.25 48.75 47.50 39.00 39.00 48.50	Before After (inches) 75.00 75.00 74.00 74.00 74.00 74.00 74.00 74.00 43.00 43.00 37.00 37.00 43.00 43.00 43.00 43.00 46.50 46.50 42.50 42.50 46.50 26.00 26.00 26.00 12.50 12.50 0.00 0.00 10.00 9.75 48.25 44.25 47.50 47.00 47.50 47.50 39.00 39.00 39.00 39.00 48.50 44.50

H.2 SEQUENTIAL PHOTOGRAPHS

Figure H.1. Sequential Photographs for Test No. 469900-01-5 (Overhead and Frontal Views).

0.300 s

0.100 s

Figure H.1. Sequential Photographs for Test No. 469900-01-5 (Overhead and Frontal Views) (Continued).

0.700 s

0.500 s

0.600 s

0.000 s

0.100 s

0.200 s

0.300 s

0.400 s

0.500 s

0.600 s

0.700 s

Figure H.2. Sequential Photographs for Test No. 469900-01-5 (Rear View).

Figure H.3. Vehicle Angular Displacements for Test No. 469900-01-5.

H.4

VEHICLE ACCELERATIONS

Figure H.4. Vehicle Longitudinal Accelerometer Trace for Test No. 469900-01-5 (Accelerometer Located at Center of Gravity).

234

Figure H.5. Vehicle Lateral Accelerometer Trace for Test No. 469900-01-5 (Accelerometer Located at Center of Gravity).

235

SAE Class 60 Filter

0.5

50-msec average

Z Acceleration at CG

Test Number: 469900-01-5 Test Standard Test Number: MASH 3-20 Test Article: Modified Median Transition Test Vehicle: 2014 Nissan Versa Inertial Mass: 2424 lb Gross Mass: 2589 lb Impact Speed: 63.0 mi/h Impact Angle: 25.0 degrees

2.0

1.5

Figure H.6. Vehicle Vertical Accelerometer Trace for Test No. 469900-01-5 Accelerometer Located at Center of Gravity).

1.0

Time (s)

TR No. 0-6990-R1

-30+-0

APPENDIX I. VALUE OF RESEARCH

The estimated Value of Research (VOR) for this project is summarized in Figure I.1. The economic variables considered in developing the VOR, sources of these variables, and the description of economic based calculations used are described herein.

The National Highway Traffic Safety Administration (NHTSA) published the report "The Economic and Societal Impact of Motor Vehicle Crashes," 2010 (Revised), <u>http://www-nrd.nhtsa.dot.gov/pubs/812013.pdf</u>) that gives an estimate on the societal cost of fatal crashes. In the report, a fatality results in an average discounted lifetime economic cost of \$1.4 million, and an average comprehensive cost of \$9.1 million

Data obtained from TxDOT's Crash Records Information System (CRIS) for the year 2018 indicates that 125 crashes that are for "K – FATAL INJURY" with the filter being set for hit median barrier. Assuming only a small fraction (0.5 fatality) per year is to be saved by this work, the conservative estimates of economic saving would be \$700,000. This is calculated as (societal cost per person) * 0.5 which equals to \$700,000 per year.

Since there is no direct method to estimate the value of this research without actually implementing and monitoring it for the duration of interest, the researchers looked at fatality only without adding to cost of injuries and property damages due to such crashes. Hence, as conservative estimate, the researchers used the discounted economic cost of \$1.4 million to arrive at the annual expected value of this research. With a reduction of 0.50 fatality each year, the annual expected value of this research is \$700,000.

The researchers used a period of 10 years and a discount rate of 5%, which is typical per the TxDOT's University Handbook, to arrive at the benefit-cost ratio of 10 for this research project. The estimated VOR is presented in Figure I.1.

	Project #	0-6990					
TEXAS DEPARTMENT OF TEANSPORTATION	Project Name:	Development of MASH Test Level 3 (TL-3) Compliant Transition between Median Guardrail and Median Concrete Barrier					
	Agency:	тті	Project Budget	\$	415,732		
	Project Duration (Yrs)	2.42	Exp. Value (per Yr)	\$	700,000		
Expected Value Duration (Yrs)		10	Discount Rate		5%		
Economic Value							
Total Savings:	\$ 6,584,268	Net Present Value (NPV): \$		4,189,660			
Payback Period (Yrs):	0.593903	Cost Benefit Ratio (CBR, \$1 : \$): \$		10			

Variable Justification

The savings is an estimate of improved safety of a median barrier system. Discount rate is based on OMB Circular No. A-94. Expected value per year is based on a societal savings of just the K (fatality) type crashes and not accounting for sever injuries property damages. The assumption of 0.5 fatal per year per site. Using "The Economic and Societal Impact of Motor Vehicle Crashes, 2010 (Revised)" estimate for crash fatalities cost to society (\$1.4 million). It is also assumed that each year, 0.5 fatality per year per such rigid object as a conservative assumption from "Texas Motor Vehicle Traffic Crash Facts Calendar Year 2018" sheet. The numebr of fatalities on Texas roadways was 3,652 per the 2018 sheet cited.

Qu	ali	itat	ive	Val	ue
-					

Benefit Area	Value					
Safety	Having a crashworthy median barrier system is essential to protect errant vehicles from crossing into the opposing lane. The crashworthness of the system has to be evaluate per the American Associatin of State Transportation and Highway Officials (AASHTO) Manual for Asseing Safety Hardware (MASH). This project will promote improving system reliability as crashes on not crash worthy median barrier ends or unprotected medians will most likely cause user delays and unforseen costs to the Receiving Agency.					
System Reliability						
Years	Expected Value	Expected Value	Expected Value	NPV		
0	-\$2,434,693	-\$2,434,693	-\$2.43	-\$0.96		
1	\$700,000	-\$1,734,693	-\$1.73	-\$0.32		
2	\$700,000	-\$1,034,693	-\$1.03	\$0.28		
3	\$700,000	-\$334,693	-\$0.33	\$0.86		
4	\$700,000	\$365,307	\$0.37	\$1.41		
5	\$700,000	\$1,065,307	\$1.07	\$1.93		
6	\$700,000	\$1,765,307	\$1.77	\$2.43		
7	\$700,000	\$2,465,307	\$2.47	\$2.90		
8	\$700,000	\$3,165,307	\$3.17	\$3.35		
9	\$700,000	\$3,865,307	\$3.87	\$3.78		
10	\$700,000	\$4,565,307	\$4.57	\$4.19		

Figure I.1. Value of Research for TxDOT Project 0-6990.