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CHAPTER 1. INTRODUCTION

This guide describes two different adjustment processes that can be used with pedestrian and
bicyclist data:

e Seasonal adjustment.
e Crowdsourced data scaling.

Both adjustment processes and their purpose are introduced in the following paragraphs.

SEASONAL ADJUSTMENT

The first adjustment process is seasonal adjustment, which is applied to short-duration counts
that are collected during a specific month of the year. Seasonal adjustment annualizes the short-
duration counts, such that the resulting adjusted count value is a better estimate of the annual
average daily traffic (AADT). A similar adjustment process is also used for short-duration motor
vehicle counts that are collected on specific days and specific months.

Chapter 2 in this guide provides monthly adjustment factors for both pedestrian and bicyclist
count data, which is recommended for use with all short-duration count data that include at least
seven days of data. The monthly adjustment factors are based on continuous count data collected
from 17 different permanent counter locations in Austin, Dallas, Houston, Plano, and San
Antonio. Appendix A includes numerous charts that illustrate the month-of-year, time-of-day,
and day-of-week traffic patterns at these permanent counter locations.

CROWDSOURCED DATA SCALING

The second adjustment process described in Chapter 3 is crowdsourced data scaling, which is
applied to crowdsourced bicyclist data samples that are collected from GPS-enabled
smartphones. Because the crowdsourced data represent only a sample of the total bicyclists, the
number of samples must be scaled or expanded to estimate the total number of bicyclists.

Researchers developed the crowdsourced data scaling process by comparing crowdsourced data
samples to actual ground counts at 100 locations throughout Texas. The sample rates varied
considerably among the locations, and explanatory variables were tested to determine what
variables had the strongest influence on the crowdsourced data sample rate. Researchers then
developed simplified equations that included the most influential variables.

Chapter 3 describes the resulting crowdsourced data scaling process that estimates average
annual daily bicyclists (AADB) using the number of crowdsourced data samples, the functional
class of the bicyclist travel facility, and the density of high-income households near the bicyclist
travel facility.






CHAPTER 2. SEASONAL ADJUSTMENT FACTORS

Seasonal adjustment factors are used to process short-duration traffic counts to more accurately
estimate AADT, one of the most common traffic count statistics. For example, if bicyclist counts
are collected during a month when fewer bicyclists are riding, the collected bicyclist counts
should be adjusted up to better represent annual average bicycling levels. Similarly, if pedestrian
counts are collected during a month when more people are walking, these collected pedestrian
counts should be adjusted down to better represent annual average walking levels. Traffic count
analysts routinely use seasonal adjustment factors to annualize motor vehicle counts, as
recommended in the Federal Highway Administration’s Traffic Monitoring Guide (TMG)
(FHWA 2016).

Researchers developed pedestrian and bicyclist seasonal adjustment factors using the methods
outlined in the 2016 edition of the TMG. For non-motorized traffic, these methods are detailed in
pages 4-25 through 4-32 (Section 4.4). The factor development methods for non-motorized
traffic are very similar to those for motorized traffic detailed on pages 3-16 through 3-30
(Section 3.2.1). In general, the method is outlined as follows:

1. Create a summary of traffic count patterns from continuous counters: Develop
month-of-year, day-of-week, and time-of-day summary charts.

2. ldentify distinct traffic patterns: Examine charts to identify which continuous counters
are most similar or dissimilar.

3. Classify continuous counters into unique factor groups: Combine continuous counter
locations into unique factor groups.

4. Calculate average adjustment factors from each factor group: Calculate average
adjustment factors that can be applied to short-duration counts.

In Step 1, researchers created numerous charts to display pedestrian and bicyclist count patterns
separately by time-of-day, day-of-week, and month-of-year (see Appendix A). These charts were
created for all 17 permanent counters that had at least one full calendar year of complete and
valid count data.

In Steps 2 and 3, researchers examined the pedestrian and bicyclist count patterns for each
available count location, and classified each location into one of these factor groups as listed in
the 2016 TMG:

e Commuter and work/school-based trips: typically have the highest peaks in the morning
and evening.

e Recreation/utilitarian: may peak only once daily or be evenly distributed throughout the
day.

e Mixed trip purposes (both commuter and recreation/utilitarian): have varying levels of
these two different trip purposes, or may include other miscellaneous trip purposes.



TTI’s preliminary analysis identified the following number of permanent counter locations in
each factor group:

e Commuter and work/school-based trips: one location for pedestrians, one different
location for bicyclists.

e Recreation/utilitarian: five locations for pedestrians, two locations for bicyclists.

e Mixed trip purposes: 11 locations for pedestrians, 10 locations for bicyclists.

Since the statewide pedestrian and bicyclist count database currently includes only short-duration
counts of at least seven days (including at least one day of each day of the week), the seasonal
adjustment would only need to account for the month of year and not the day of week. Therefore,
researchers further analyzed the preliminary factor groups by examining the month-of-year
patterns. In looking at these seasonal patterns, researchers concluded that the month-of-year
patterns were quite similar, even among different factor groups (Figure 1). To simplify the
seasonal adjustment process, TTI combined all analyzed permanent count locations in the three
factor groups to create month-of-year count adjustment factors (Figure 2).

Station Name .Y

Average of Monthly Factor
2.5

15

Type of Count .Y
Factor Group -Y

Bicycles - Mixed

Bicycles - Recreational

0.5

0
January  February March April May June July August  September October November December

Month ~

Figure 1. Chart Illustrating Similar Seasonal Patterns for Different Factor Groups.
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Figure 2. Month-of-Year Count Adjustment Factors for Short-Duration Counts.

To apply these adjustment factors, the seven-day average daily traffic (ADT) volume is
multiplied by the factor corresponding to the travel mode and month of short-duration counts.
For example, if a seven-day ADT in July for pedestrians is 100 persons, then the annualized
ADT (or AADT) is 100x107 percent, or 107 pedestrians. Similarly, if a seven-day ADT in April
for bicyclists is 50, then the AADT is 50%86 percent, or 43 bicyclists.






CHAPTER 3. CROWDSOURCED DATA SCALING
INTRODUCTION

Traffic volumes are fundamental for evaluating transportation systems, regardless of travel
mode. A lack of counts for non-motorized modes poses a challenge for practitioners developing
and managing multimodal transportation facilities, whether they want to evaluate transportation
safety, potential need for infrastructure changes, or to answer other questions about how and
where people bicycle and walk. This chapter shows how to take advantage of new data sources
that provide a limited and biased sample of trips, then combine them with traditional counts to
estimate bicycle travel volumes across most of the state of Texas.

Crowdsourcing uses a broad pool of individuals through an online platform that aggregates and
formats the information for a specific use. In this case, bicyclist travel is crowdsourced through a
smartphone-based app called Strava, used by bicyclists who want to record and compare their
trips. The company aggregates these trips onto a transportation system network, processes them
for privacy, and then re-sells the information as a crowdsourced traffic data product, available in
many places around the globe. However, only a small portion of all bicyclists use the app, and
this proportion varies across time and space. For instance, researchers found 3-9 percent of
bicycle trips counted on trails in Austin used Strava at the time of the count (Griffin and Jiao
2015a), but this proportion varies in different contexts and over time (Jestico et al. 2016; Conrow
et al. 2018).

Researchers developed a method to scale crowdsourced bicycle trips by using limited on-ground
count data and other factors, resulting in a relatively simple process to estimate bicycle travel
using crowdsourced data, combined with the functional class of a network segment from Open
Street Map data, and household income from American Community Survey data.

OVERVIEW: DEVELOPING FACTORS TO SCALE CROWDSOURCED BICYCLE
VOLUMES

Researchers explored several different approaches to leverage crowdsourced data from Strava
Metro to estimate bicycle volumes across the state, focusing on data that practitioners can
regularly obtain and implement their own estimates following this guide. Therefore, researchers
limited the data used to Strava Metro’s standard data product, the Texas Department of
Transportation’s (TxDOT’s) Roadway Inventory, and American Community Survey data.
Researchers also kept to standard statistical analysis methods, focusing on linear regression. The
result is a relatively simple model, using crowdsourced bicyclist trips as a main input, along with
functional classification of a transportation segment, and nearby high-income residential areas
(see Appendix B for details about model development).

Researchers found that functional classification, or the type of roadway or trail segment, is a key
factor for estimating total use with crowdsourced data. This makes sense because Strava is



marketed toward a recreation/fitness-oriented user base, and researchers expected these users to
more often choose off-street paths based on previous research (Griffin and Jiao 2015b).
Therefore, researchers expected Strava data to represent a relatively smaller proportion of users
on urban arterial streets, where bicyclists may ride more often for work or shopping, rather than
recreational trips logged using Strava. Researchers included functional classification (called
CLAZZ in Open Street Map or FUN-SYS in TxDOT’s Road-Highway Inventory Network
[RHINO] data) to characterize the type of infrastructure on a given segment in the models.
Researchers found that the model using the Open Street Map classification (also used in the
Strava Metro product) had a lower mean absolute percentage error (29 percent versus 38 percent
for RHINO). Therefore, researchers decided to use the CLAZZ variable instead of FUN-SYS as
the roadway functional classification variable.

Income plays a role in the proportion of bicyclists logging trips on Strava, though it is less
important in the model than Strava activity or functional classification. Smartphones may be
more available for higher-income users, and the fitness-oriented nature of Strava users may
further result in higher use among those with more disposable income and time (Leao et al.
2017). Preliminary model testing showed the number of households with income more than
$200,000 a year was positively associated to the number of bicycle trips recorded on Strava.

Functional class of infrastructure, Strava activity, and household income form the basis of the
model to estimate total bicycle trip volumes. Refer to project report 0-6927-R1 and Appendix B
for additional description of the study methodology.

STEPS TO ESTIMATE BICYCLE TRAFFIC WITH CROWDSOURCED DATA

This section describes how to estimate total bicycle traffic, by combining crowdsourced counts
from Strava Metro with functional classification and nearby household income. To illustrate the
process, this section includes data from the Walnut Creek Trail North of Jain Lane in Austin,
Texas. The input data for the estimate includes the annual number of bicyclist activities logged
via Strava in both directions (TACTCNT = 16,271), the density of households with more than
$200,000 income in the given block group (Household Density; = 0), and the functional
classification (CLAZZ;= Cycleway).

Step 1 — Record Annual Daily Strava Bicyclist Activities

TxDOT has access to Strava Metro data starting in summer 2016, and later, subject to annual
contract review, viewable on a web-based interface,* or with geospatial datasets for analysis in
geographic information system (GIS) software. Strava activity data are available through
Strava’s Dataviewer (http://metro-

static.strava.com/dataView/TEXAS/201607 201706/RIDE/#5/31.215/-101.239), and in GIS

1 July 2016-June 2017 Strava Metro data viewable at http://metro-
static.strava.com/dataView/TEXAS/201607_201706/RIDE/#5/31.215/-101.239
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shapefiles. In the Strava Dataviewer, data are displayed as annual roll-ups of activities, i.e. the
total Strava activities are pooled for a given point or linear segment during the entire year. In GIS
shapefiles, Strava provides activity count data at different geographies (streets, intersections,
areas), and time periods (i.e. annual, monthly, hourly), described further in the current Strava
Metro Comprehensive User Guide that is provided with the company’s data deliveries. In Strava
data, segments are referred to as edges and are assigned a unique identifier. In our example, the
edge ID of Walnut Creek Trail is 1644966. The bicyclist activity for the Strava edges can be
found in the following files:

e Annual roll-up: texas_201607_201706_ride_rollup_total.csv
e Monthly roll-up: texas_201607_201706_ride_rollup_month_2016_7_total.shp

e Weekday of Month roll-up:
texas_201607_201706_ride_rollup_month_2016_7 weekday.shp

e Weekend of Month roll-up:
texas_201607_201706_ride_rollup_month_2016_7 weekend.shp

Strava activity are available for both directions of travel (total activity count, TACTCNT), for
default direction of travel (activity count, ACTCNT) and for reverse direction of travel (reverse
activity count, RACTCNT). Strava does not report the name of the travel direction. The default
direction can be identified by using the arrow symbols in ArcGIS.

After selecting the Strava segment (edge) for analysis, review Strava activities on nearby links to
check for accuracy problems. Previous research showed that Strava data “had some routes that
were double- or triple-counted because of GPS assignment errors” (Wang et al. 2017). If
adjacent segments inexplicably change volumes, use the volume that most closely matches the
other nearby links.

If using the annual roll-up data, divide the total activity counts (TACTCNT) by 365 to estimate
average daily Strava bicycle traffic (AADB Strava). If monthly, divide TACTCNT by 30 or the
actual number of days in the recorded month. If weekly, divide TACTCNT by 7 to estimate daily
traffic. Finally, round to the nearest integer.

In this case, 16,271 Strava trips were found on our example segment of the Southern Walnut
Creek Trail in Austin, resulting in an average annual daily bicyclist estimate of 45.

Annual TACTCNTw ainut Creek
365

= 44,57 = 45

AADB Stravay qimut creek =



Step 2 - Identify Segment Functional Classification and Select Equation

Each of the seven functional classifications in Open Street Map has a different relationship to
total use, given Strava activities and the number of nearby households with annual income over
$200,000.

Functional Classification (CLAZZ in Strava Metro’s network data from Open Street Map)

Highway, primary (15) AADB; = 63 x (exp(AADB Strava;))°°%8(exp(Household > 200K ;))?-002
Highway, secondary (21) AADB; = 13 x (exp(AADB Strava;))°°%®(exp(Household > 200K ;))?-002
Highway, tertiary (31) AADB; = 22 x (exp(AADB Strava;))°°%8(exp(Household > 200K ;))?-002

Highway, residential (32) AADB; = 17 x (exp(AADB Strava;))°°%®(exp(Household > 200K ;))?002

Highway, path (72) AADB; = 72 x (exp(AADB Strava;))°°3®(exp(Household > 200K ;))?:002
Cycleway (81) AADB; = 62 X (exp(AADB Strava;))%38(exp(Household > 200K ;))?002
Footway (91) AADB; = 28 x (exp(AADB Strava;))°°%®(exp(Household > 200K ;))?:002

Since the Walnut Creek example is a Cycleway, researchers chose the following equation:

AADBwainut creek = 62 X (exp(AADB Stravay qinut Creek))o'o38 X

(exp(Household > 200K wainut creek))**"
Step 3 - Plug in Values to Excel

Insert the daily count of Strava trips (45), and the number of high-income households (0), and the
equation becomes:

AADByainut creek = 62 X (exp(45))**%® (exp(0))**%?
To write this equation in Excel, enter the following in a spreadsheet cell:
=62*(EXP(45)"0.038)*(EXP(0)"0.002)
Average Annual Daily Bicyclist traffic at Walnut Creek = 343

The results show that the predicted number of bicycles on this segment is equal to 343.
Calculation of lower and upper prediction intervals for AADB are 272 and 412 respectively.
Additional detail on prediction interval calculation is provided in Appendix B. Note that the
observed counts are 304 at this trail, indicating that the AADB model predicted the ground count
at this location relatively accurately.
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Step 4 — Review Results

Finally, review these results against local knowledge and reasonableness. There are several
reasons why this model might over-or-under predict bicycle traffic. Strava use itself may be
particularly high or low in a certain area. It might over-estimate such if a major event was routed
through the area during the Strava sampling period; or under-estimate if Strava use is particularly
low. Researchers expect higher fluctuations in rural areas with lower overall Strava use, as
compared with urban areas.

Changes in segment classification over time, such as upgrading a street from a tertiary to
secondary segment, could significantly impact bicycle traffic estimation values. Similarly, any
errors in the classification will expand error of the traffic estimate. High-income households have
a relatively minor, yet statistically significant, role in scaling Strava activities to estimate totals.
However, there may be areas that do not respond to residential income in an average manner,
such as bicycling loops in large parks. Use of the route in the park may be rather homogenous,
but nearby residential income could skew traffic estimates when they do not, in practice, impact
bicycling rates.

This traffic estimation technique is designed to work even with zero Strava activities, since the
input data used counts at some low-activity-bicycling locations throughout the state. Table 1 can
be used to review against estimates with low Strava activity levels.

Table 1. Estimated Annual Bicycle Traffic Given Strava Activity and Roadway Class.

Strava Highway, Highway, Highway, Highway, Highway, Cycleway Footway

Sample primary secondary tertiary residential path (72) (81) (91)
Counts (15) (21) (31) (32)
63 13 22 17 72 63 28
76 16 26 21 87 76 34
10 92 19 32 26 105 92 41
20 134 29 46 37 153 135 59

SUMMARY AND CAVEATS OF USING AADB ESTIMATION MODELS

To develop the AADB models, researchers have used the ground counts collected from 100
count stations. The ground counts were mainly collected from urban areas and shared use paths.
Moreover, as indicated earlier, Strava uses Open Street Map (OSM) as the basemap. OSM
classifies the roadways into 22 categories or CLAZZ (Appendix C). The sites used in this study
only represent 7 CLAZZ categories. Although the model goodness of fit measures are within
acceptable range (i.e. 29% error margin, and 70% accuracy level), the researchers suggest that
the practitioners take caution when implementing these models to estimate the bicycle counts on
rural segments and CLAZZs that are not included in this study. Appendix C provides further

11



guidelines how the AADB model can be used to estimate the AADB counts for the roadway
functional classes that were not included in the modelling process.

12
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APPENDIX B. DEVELOPMENT OF PROCEDURES FOR

CROWDSOURCED DATA SCALING

SELECTION OF MOST INFLUENTIAL VARIABLES

Researchers compiled a list of potentially important variables that can help to explain the

relationships between the observed bicycle counts and Strava activity. Table 2 depicts the list of

variables and data sources considered for the analysis.

Table 2. List of Variables Considered for the Analysis.

Strava Manual American Community RHINO
Survey

Edge ID Location ID Total Population Street Name
Functional Class City Male Population Highway Class
(CLAZZ) Station Name Male Population, in VVarious | Functional System
Activity Latitude Age Groups Rural / Urban
Reverse Activity Longitude Female Population Current ADT
Weekend Ratio (both Station ID (both Female Population, in K-Factor (Peak
directions of travel) directions of travel) Various Age Groups Hour)

Morning Ratio (both
directions of travel)
Year

Day

Hour

University (School)
Present (0.5 miles
radius)

Functional
Classification
Facility Type

Posted Speed Limit
National Highway
System
Nonmotorized Facility
Width

Nonmotorized Facility
Buffer Width

Street Width

Parking

Pavement Type
Pavement Condition
ADA Ramps

Street Lighting

Street Traffic Volume
(ADT)

Transit

Total: Households

Number of Households with

Income:

e $10,000
$10,000 to $14,999
$15,000 to $19,999
$20,000 to $24,999
$25,000 to $29,999
$30,000 to $34,999
$35,000 to $39,999
$40,000 to $44,999
$45,000 to $49,999
$50,000 to $59,999
$60,000 to $74,999
$75,000 to $99,999
$100,000 to
$124,999
e $125,000to0
$149,999
e $150,000 to
$199,999

e > $200,000

Mode to Work:

e Taxicab
e Motorcycle
e Bicycle

ADT Combined
Left Shoulder
Width

Left Shoulder
Type

Right Shoulder
Width

Right Shoulder
Type

Median Width
Median Type
Number of Lanes
Surface Width
Left Curb

Right Curb




Strava Sample Percentile Groups
Strava sample percentages refer to the ratio of Strava sample to observed bicycle counts:

Strava Sample;
Strava Sample Percentage; = Bicycle Counts X 100%
i

Table 3 shows the descriptive statistics of Strava sample percentages for all locations.

Table 3. Descriptive Statistics of Strava Sample Percentages.

Percentage Strava Sample Min Max | Mean | St.D.
Travel Direction 1 0% 63% 5% 9%
Travel Direction 2 0% 55% 4% 8%

Average Sample Percentage 0% 59% 5% 8%

Researchers categorized the Strava percentages into five groups, based on the percentiles. Table
4 reports the number of locations per percentile groups.

Table 4. Number of Locations per Percentile Groups.

Strava Percentile Group Number of
Locations
Group 1 Less than 5% 73
Group 2 Equal and more than 5% and less than 10% 15
Group 3 Equal to or more than 10% and less than 15% 4
Group 4 Equal to or more than 15% and less than 20% 2
Group 5 Equal to or more than 20% 6
Total Number of Locations 153

Selection of Most Influential Factors

To select the most influential factors affecting the relationship between Strava activity and
ground counts researchers used the Strava percentile groups and conducted the data mining
analysis. For this purpose, researchers used Random Forest tool that helps to determine the most
important variables based on two criteria:
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e Mean Decrease Accuracy.
e Mean Decrease Gini.?

The initial analysis results indicate that the household income and demographic variables are
very influential (Figure 36). However, since there are too many variables included in this
category, researchers decided to include only the most important variables. These are:

e Household income > $200K.
e Males 35-49.
e Females 21-34.

MeanDecreaseAccuracy MeanDecreaseGini

Avg

AvgActivity -

o)
<)

T
II
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ol
(0]

T
I

Male_35.49 -

T
i

T
o

o
il

House200K -

Iii g

T
o

T
i

FacTyp -

T
OI

=
D
o-I

5 10 15 0 1 2 2 4 5
Importance Importance

Figure 36. Initial List of Important Variables.

After conducting the data mining analysis for the second time, by keeping only the most
important American Community Survey (ACS) variables in the Random Forest Tool, researchers
identified the list of most influential variables as follows (Figure 37):

e Strava sample (Strava).
e Male 35-49 (ACS).

2 Mean Decrease Gini (MDG) refers to a process to select variables in large datasets based on a Random Forest
method. A higher importance factor for a variable indicates greater influence on an outcome variable, in this case,
bicycle counts.
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e Household income of $200K (ACS).

e Functional System, CLAZZ (Strava/OSM).
e Number of Lanes (RHINO).

e Facility Type (Manual).

MeanDecreaseAccuracy MeanDecreaseAccuracy

AvgActivity - AvgActivity -

Male_35.49-
Male_35.48-

House. 200K -

House 200K -

MUM_LANES -

CLAZZ -
FUN_SY3-

o -

5 10 15 20
Importance

!
5 10 15
Importance

a) If both CLAZZ and FUN_SYS b) If only CLAZZ included
included

= -

Figure 37. Final List of Important Variables.

The CLAZZ variable indicates the roadway class. In this study, the researchers have used the
ground counts collected from some of the roadway class types. However, Texas Strava
shapefiles include other roadway classes that were not included in the study. Table 5 indicates
the list of the roadway classes included in the Texas Strava (OSM) shapefiles, their definitions,
default speeds and allowed transportation types (Source: Strava User Guide). The table also
shows which of these roadway class types were included in the data analysis. The last column
shows the corresponding roadway class types that can be used as a surrogate for the missing
roadway classes. Note that the _link tags refer to the ramps and channelization. Since this
roadway class was not included in the data analysis the coefficient for this category is zero.
Moreover, the CLAZZ codes 43 and 74 have not been defined in the User Guide although they
were included in the Texas Strava map. The coefficient for these types will also be equal to zero.
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Table 5. CLAZZ Definitions.

CLAZZ Definition Default | Approximate Allowed Included | Compatible
Codes in Speed Speed in Transportation in the CLAZZ
Texas (KMH) MPH Type Model Code

OSM
11 Highway, motorway 120 75 Car No 15
12 Highway, 30 20 Car No NA**
motorway_link*
13 Highway, trunk 90 60 Car No 15
14 Highway, trunk_link* 30 20 Car No NA**
15 Highway, primary 70 45 Car Yes 15
16 Highway, 30 20 Car No NA**
primary_link*
21 Highway, secondary 60 40 Car Yes 21
22 Highway, 30 20 Car No NA**
secondary_link*

31 Highway, tertiary 40 25 Car, Bike Yes 31
32 Highway, residential 50 30 Car, Bike Yes 32
41 Highway, road 30 20 Car, Bike No 31
42 Highway, unclassified, 30 20 Car, Bike No 31
43 Not Defined 0 No

51 Highway, service 5 5 Car, Bike No 91/81
62 Highway, pedestrian 5 5 Bike, Foot No 91
63 Highway, living_street 7 5 Car, Bike, Foot No 91
71 Highway, track 10 10 Bike, Foot No 72
72 Highway, path 10 10 Bike, Foot Yes 72
73 Highway, bridleway 10 10 Bike, Foot No 72
74 Not Defined 0 No

81 Highway, cycleway 15 10 Bike Yes 81
91 Highway, footway 5 5 Foot Yes 91

*The _link tags are used to identify slip roads/ramps and “channelized" (physically separated) at-grade turning
lanes connecting the through carriageways/through lanes of highways to other roadways of all types. _link tags
should also be used for physical channelization of turning traffic lanes at traffic signal junctions and in roundabout

designs that physically separate a specific turn from the main roundabout (Source:

https://wiki.openstreetmap.org/wiki/Highway link).
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MODEL ESTIMATION RESULTS

After identifying the most important variables, researchers developed travel demand models to
estimate the impact of these variables on the observed bicycle counts. Researchers developed
two sets of models using:

e Strava and ACS databases (Model 1).
e Strava, ACS and RHINO databases (Model 2).

Each set of models consists of three models:

e Total Counts.
e Default Direction Counts.
e Reverse Direction Counts.

Hence a total of six models were developed to estimate the annual average daily bicycle (AADB)
counts. Variable Males 35-49 was not included in the final models, since the sign of the variable
kept changing based on the model. Researchers used the Strava Activity (AADB Strava), number
of households with > 200K income (Households > 200K) and CLAZZ variables to develop
Model 1.

Model 1 (CLAZZ)

AADB; = exp(By + p1 X AADB Strava; +
B> X Household > 200K ; + 83 X CLAZZ);)

Where
e AADB; — represents the estimated Annual Average Daily Bicycles at segments/edge i.
e AADB Strava; — represents the Strava sample activity at location i for the given time
period.
e Household > 200K ; — represents the number of households with 200K income
e CLAZZ; — represents the functional system according to Strava/OSM.
e [, — are the coefficient estimates.

Researchers used Strava Activity, number of households with > 200K income, FUN_SYS and
number of lanes to develop Model 2.

Model 2 (FUN_SYS)

AADB; = exp(By + p1 X AADB Strava; +
p> X Household > 200K ; + 3 X FUN_SYS; +
+£, X NUM_LANES;)
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Where
e AADB; — represents the estimated Annual Average Daily Bicycles at segments/edge i.

e AADB Strava; — represents the Strava sample activity at location i for the given time
period.

e Household > 200K ; — represents the number of households with 200K income
e FUN_SYS; — represents the roadway functional system according to RHINO

e NUM_LANES; — represents the number of lanes on the roadway segment.

e [, — are the coefficient estimates.

Table 6 and Table 7 show the estimation results for both models, as well as the goodness of fit
measures (overdispersion parameter and R?).
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PREDICTION ERROR MEASURES

Figure 38 indicates the prediction intervals.
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Figure 38. Prediction Intervals.

In addition to the prediction intervals, researchers calculated three prediction error measures to
test the prediction accuracy of each model.

Mean Absolute Percentage Error

1
MAPE = —Z 100 x
n n

1% -Y
PMy,t PMy,t

PM,,,t

p

Mean Accuracy Error

1 -
MAE = EZJYPMP,t — Vou,e

Mean Squared Error

MSE = %Z (P - yPMp_t)z

n
Where,
n — is the size of the validation data (four months).
Ypum ¢ — IS the performance measures vector for period t, where t = 1,T.
?PMp,t — is the predicted value of the performance measure.
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Table 8 reports the error measures for the two models while Table 9 shows the error measures
for the Strava percentile groups listed in Table 3. Note that in this table the percentages refer to
the error rate and not the accuracy. Hence, the higher the value, the higher the prediction error.
According to the error rates, the prediction power of both models are quite similar. Moreover, the
accuracy is better for the roadway segments where the Strava sample represents 5-15 percent of
bicycle counts (Groups 2 and 3).

Table 8. Relative Accuracy per Strava Percentage Categories.

Prediction Error Measure Model 1 Model 2
(CLAZZ) (RHINO)
Mean Absolute Percentage Error 29% 38%
Mean Squared Error 5855 4836
Mean Absolute Error 41 42

Table 9. Prediction Error per Strava Percentile Groups.

Strava Percentile Groups
P Mea_n AbSOIUte Mean Squared Error Mean Absolute Error
Prediction Error
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
(CLAZZ) (RHINO) (CLAZZ) (RHINO) (CLAZZ) (RHINO)
Group 1 | Strava Ratio < 5%
33% 44% 3066 3500 30 33
Group 2 | 5% < Strava
Ratio < 10% 9.80% 12.50% 5686 7501 59 67
Group 3 | 10% < Strava
Ratio < 15% 9.90% 10.10% 9894 2390 66 103
G 4 | 15% < Strava
I oo < 20% 42% 46% 3557 5154 49 68
Group 5 | 20% < Strava
Ratio 38% 39.70% 38286 1606 104 34
Average
29% 38% 5855 4836 41 42

Table 10 reports the observed and predicted counts and the lower and upper prediction intervals
based on Model 1 (which uses CLAZZ to represent functional class).
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