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CHAPTER 1: 
INTRODUCTION 

BACKGROUND 

Traffic-related accidents are detrimental to the U.S. economy. The National Highway 

Traffic Safety Administration (NHTSA 2014) indicated that the total cost due to traffic crashes 

in 2014 was estimated at $242 billion. Traffic-related accidents occur due to three major 

factors—road conditions, driver behavior, and vehicle factors (Noyce et al. 2005). In 2014, more 

than 6 million traffic collisions occurred in the United States, and the number of fatalities was 

32,675, in addition to 2.338 million traffic-related injuries (NHTSA 2014). Previous research 

showed that 15 to 18 percent of total crashes occurred on wet pavements (Smith 1977; Federal 

Highway Administration [FHWA] 1990). The crashes on wet pavements are related to 

inadequate pavement skid resistance, which causes vehicles to skid. Henry and Wambold (1992) 

found a good correlation between skid numbers and wet-pavement crashes when tested with 

smooth tires. The number of wet-pavement accidents can be greatly reduced by conducting 

frequent skid measurements in order to ensure an adequate level of skid resistance of pavements 

(Rizenbergs et al. 1972). 

The friction between pavement surface and vehicle tires is related to the macrotexture 

and microtexture of pavement surface. The macrotexture of asphalt pavement is dependent on 

aggregate gradation, while the microtexture is dependent on aggregate shape characteristics 

(Masad et al. 2010; Kassem et al. 2012, 2013). Aggregates with angular shape and rough texture 

provide a higher level of skid resistance compared to aggregates with a smooth surface (Kassem 

et al. 2012, 2013). In addition, pavement surfaces with high macrotexture provide higher skid 

resistance than do those with low macrotexture (Masad et al. 2010; Kassem et al. 2012, 2013).  

Henry (1986) studied the effect of vehicle speed on pavement friction. The results 

showed that skid resistance decreases with speed. Aggregates are polished with frequent traffic 

applications. Some aggregates become smoother than others, resulting in low skid resistance. 

Shafii (2009) discussed the effect of rubber temperature on skid resistance of asphalt pavement. 

The results showed that the skid resistance decreases as the temperature of the rubber increases. 

Other factors that affect skid resistance include pavement surface grooving and bleeding. The 
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skid resistance decreases with the bleeding of asphalt binders on the surface (Sullivan 2005), 

while it is improved with surface grooving (Pasindu et al. 2010).  

There are several studies that attempted to develop prediction models for skid resistance 

of asphalt pavements. Ahammed and Tighe (2007) developed procedures to estimate skid 

resistance of concrete pavements as a function of concrete compressive strength, traffic level, 

and pavement texture. Kowalski (2007) developed a laboratory testing procedure to characterize 

pavement friction by determining the polishing rate and terminal friction value. Researchers at 

the Texas A&M Transportation Institute (TTI) developed prediction models for skid resistance 

of asphalt pavement (Masad et al. 2010; Kassem et al. 2012, 2013). These models describe the 

skid resistance of asphalt pavements as a function of aggregate characteristics, mixture gradation, 

and traffic levels.  

PROBLEM STATEMENT 

Pavement skid resistance is primarily a function of the surface texture, which includes 

both microtexture and macrotexture. Macrotexture is an overall asphalt mixture characteristic 

that provides surface drainage paths for water to drain from the contact area between the tire and 

pavement. Microtexture is primarily an aggregate surface characteristic that provides a rough 

surface, which in turn disrupts the continuity of the water film and produces frictional resistance 

between the tire and pavement by creating intermolecular bonds. In the Texas Department of 

Transportation (TxDOT) Research Project 0-5627, researchers (Masad et al. 2010) developed a 

method to predict asphalt pavement skid resistance based on inputs including aggregate texture 

before and after polishing, gradation of asphalt mixture, and traffic levels. Although the 0-5627 

research team conducted extensive field testing on hot mix asphalt (HMA) surfaces, the evaluation 

of surface-treatment skid resistance was limited to the analyses of corresponding data from the 

Pavement Management Information System (PMIS) database. There is need for further testing so 

that the HMA asphalt prediction model can be tailored to the skid prediction model of surface 

treatment so that the skid prediction model can be validated at a wide variety of conditions and for 

more asphalt mixture types.  

TxDOT sponsored a follow-up study, Research Project 0-6746, for TTI to further 

investigate the results from the previous research study, Research Project 0-5627. There was also 
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a need for revising the traffic model to incorporate the effect of truck traffic and lane distribution 

of traffic at different highway configurations.  

OBJECTIVES  

The objectives of this study were to: 

1. Investigate and examine surface and friction characteristics of about 35 test sections 

of asphalt mixtures and 35 test sections of surface-treated roads in Texas. The test 

sections covered a wide range of mixtures and aggregate types used in Texas. 

2. Validate and revise the skid prediction model for HMA; develop a prediction model 

for skid resistance of seal coat surfaces; and incorporate an improved method of 

traffic analysis, lane distribution of traffic data, and the effect of the percentage of 

truck traffic. 

RESEARCH TASKS 

The above objectives were achieved by conducting the following tasks. 

Task 1: Conduct Literature Search  

A literature search was conducted to develop an up-to-date documentation of the 

following topics:  

• Pavement surface characteristics that affect skid resistance.  

• Methods used to measure macrotexture and microtexture of asphalt pavements. 

• Test methods used to measure pavement friction. 

• Methods used to measure aggregate resistance to abrasion and polishing.  

• Attempts to predict friction or skid resistance of flexible pavements. 

Task 2: Design Experiment and Select Field Test Sections 

The objective of Task 2 was to develop an experimental design to validate and revise the 

existing skid model for HMA pavements and expand the existing model or develop a new skid 

model for seal coat surfaces. Under this task, the researchers selected HMA and seal coat test 

sections for field testing. These test sections covered a wide range of asphalt mixture types, seal 

coat sizes, aggregate sources, traffic levels, and environmental conditions. 



4 

Task 3: Conduct Field and Laboratory Testing 

Under this task, the measurements of pavement macrotexture and microtexture were 

collected on the selected sections using the circular texture meter (CTMeter) and dynamic 

friction tester (DFT). Also, the skid number was measured using a skid trailer. In the laboratory, 

the aggregate texture and angularity was quantified at different time durations of polishing in the 

Micro-Deval test using the aggregate image measurement system (AIMS). Additionally, the 

information about the mix design of HMA and seal coat size was obtained. Seal coat slabs from 

three different highways were cut from the roadway and were subjected to polishing at the lab 

using a three-wheel polisher and taking periodic measurements of texture and friction.  

Task 4: Refine and Validate Skid Prediction Model for HMA 

Under this task, the skid prediction model for HMA developed by Masad et al. (2010) 

was revised to accommodate a wide range of conditions. The skid prediction model describes the 

skid resistance of asphalt pavements as a function of aggregate characteristics, mixture gradation, 

and traffic level. The aggregate texture and angularity were quantified using AIMS, and 

parameters were developed to describe the resistance of aggregates to abrasion and polishing. 

Also, parameters were developed to describe aggregate gradation. Researchers used statistical 

methods to develop a prediction model for skid number, and the predicted values were compared 

to the measured ones in the field.  

Task 5: Develop a Skid Prediction Model for Seal Coat Surfaces 

Under this task, researchers developed a skid prediction for seal coat surfaces. The skid 

resistance of seal coat depends on the same parameters as that of HMA, including aggregate size, 

aggregate shape characteristics (angularity and texture), and traffic level. Three seal coat grades 

(Grade 3, Grade 4, and Grade 5) were used and examined in the seal coat test sections. Each 

grade stands for a different aggregate size, with Grade 3 being the coarsest. As with HMA, 

researchers developed parameters to describe aggregate shape characteristics and its resistance to 

abrasion and polishing. In addition, analytical tools were used to describe the macrotexture of the 

seal coat test sections. Statistical methods were used to develop a prediction skid model for the 

skid number of seal coat, and the predicted skid values were compared to the measured ones in 

the field.  
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Task 6: Modify Desktop Application for Skid Prediction  

Under this task, a previously developed Excel-based macros tool called Skid Analysis of 

Asphalt Pavement (SAAP) was modified in order to (a) accommodate improved asphalt mix skid 

prediction model, (b) accommodate new seal coat prediction model, and (c) make the application 

more user friendly. SAAP was originally developed as an Excel-based macros tool. Researchers 

extracted some of the codes and wrote new codes in an Access-based application using Visual 

Basic Application (VBA) language. Using the inputs from the user, this standalone Windows-

based application is capable of calculating the predicted skid numbers automatically. The output 

of the program, charts, and data will be presented to the user, and the user can print, save, or 

modify the information.  

Task 7: Document Findings 

This task entailed the documentation of research efforts, results, and recommendations of 

this study.  

REPORT ORGANIZATION  

Research efforts and outcomes are documented in seven chapters and four appendices of 

this report. Chapter 1 provides an introduction and background of the research project, including 

the problem statement and objectives, research tasks, and report organization. Chapter 2 provides 

a literature review on skid resistance, including factors affecting skid resistance, pavement 

frictional surface characteristics, test methods used to measure pavement friction, and previous 

attempts to predict friction or skid resistance of flexible pavements. Chapter 3 discusses the 

research plan and describes various tests conducted in the field and laboratory. Chapter 4 

presents the model development of the skid resistance of HMA based on the collected data from 

the field and laboratory. Chapter 5 presents the model development of the skid resistance of seal 

coat surfaces. Chapter 6 documents the effort to automate the calculation of skid numbers using a 

desktop application. It also shows the step-by step procedures of how to use the software. 

Finally, Chapter 7 summarizes the main findings of this study and provides recommendations for 

future studies. Appendices document the laboratory and field test results and the flow charts used 

in the automated calculation of skid numbers for both surface types. 





7 

CHAPTER 2: 
LITERATURE REVIEW 

INTRODUCTION 

Skid resistance is a key component in road safety. Skid resistance depends on several 

factors, including pavement surface characteristics, tire material properties, and environmental 

conditions. Several laboratory and field methods are used to characterize the parameters that 

affect the skid resistance of asphalt pavements and determine the skid level in the field 

(Kennedy et al. 1990). These methods and parameters are discussed in this section.  

DEFINITION OF SKID RESISTANCE  

Pavement friction is the force that resists the relative motion between a vehicle tire and a 

pavement surface. Skid resistance is an essential factor that prevents vehicles from sliding and 

reduces the stopping distance (Noyce et al. 2005). Figure 1 shows the friction force and the 

surface characteristics affecting skid resistance. 

 

Figure 1. Friction Force and Surface Characteristics (Noyce et al. 2005). 

Pavement skid resistance may slightly increase right after construction due to wearing of 

asphalt binders that coat the rocks at the pavement surface. Skid resistance decreases as the 

surface aggregates are polished under traffic. The polishing action affects the microtexture and 

macrotexture of pavement surface (Flintsch et al. 2005; Forster 1989).  
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PAVEMENT SURFACE CHARACTERISTICS  

Pavement texture and its friction is a key component of road safety (Mahone 1975). The 

skid resistance of asphalt pavements is affected by the macrotexture and microtexture of the 

pavement surface. In wet conditions, water acts as a lubricant between the tires and pavement 

surface, leading to reduced friction (Dahir 1978). The macrotexture of pavement is dependent on 

aggregate gradation, compaction level, and mixture design, while the microtexture is dependent 

on aggregate shape characteristics (Crouch et al. 1995). The texture is a property related to the 

surface that describes the interaction between the tires and pavement surface (Henry 2000). 

Texture is classified into several categories based on its wavelength, as presented in Table 1. 

Table 1. Classification of Pavement Texture (Henry 2000). 
Texture Classification Relative Wavelength 

Microtexture λ < 0.5 mm 
Macrotexture 0.5 mm < λ < 50 mm 
Megatexture 50 mm < λ < 500 mm 

Roughness/Smoothness 500 mm < λ <50 m 
  

Henry (2000) demonstrated the distinction between macrotexture and microtexture, as 

shown in Figure 2. Macrotexture describes the irregularities of pavement surface. It is important 

in assisting water drainage from a pavement’s surface. In addition, it contributes to the hysteresis 

component of the friction (Dahir 1979). Pavement macrotexture is affected by the nominal 

maximum aggregates size. Mixtures with a nominal aggregate size of 9.5 mm or 12.5 mm 

provide a macrotexture below 0.5 mm (Wagner et al. 2004). Asphalt mixtures with coarse 

aggregate gradation usually have a higher macrotexture than asphalt mixtures with fine aggregate 

gradation. Rough surface texture contributes to a high level of skid resistance; however, it may 

increase noise and vibration (Ivey et al. 1992). Microtexture is dependent on aggregate 

characteristics and contributes to skid resistance on both wet and dry conditions (Crouch et al. 

1995; Dunford 2013; Flintsch et al. 2005). 
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Figure 2. Schematic of Microtexture and Macrotexture (Henry 2000). 

Megatexture is associated with the noise and rolling resistance and is affected by 

pavement surface deformation such as potholes and ruts. The roughness is caused by the 

deformation due to traffic loading and has adverse effects on the ride and drainage quality 

(Dunford 2013). Megatexture and roughness adversely affect pavement ride quality, while 

macrotexture and microtexture are considered significant factors affecting the skid resistance of 

asphalt pavements (Descornet 1989).  

Skid resistance has two mechanisms—adhesion and hysteresis— as shown in Figure 3. 

These two mechanisms are highly affected by pavement macrotexture and microtexture (Tang et 

al. 2016). Adhesion develops due to the direct contact between the tires and pavement surface, 

especially in areas with high local pressure (Cairney 1997). Pavement microtexture is significant 

to the adhesion component that originates from molecular bonds between stone and rubber. In 

addition, pavement macrotexture contributes to the hysteresis component of the friction (Ivey et 

al. 1992). Hysteresis develops due to energy dissipation caused by the deformation of the tire’s 

rubber around bulges and depressions in the pavement surface (Cairney 1997).  
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Figure 3. Key Mechanisms of Tire-Pavement Friction (Hall et al. 2009). 

EFFECTS OF PAVEMENT SURFACE CHARACTERISTICS ON SKID RESISTANCE 

Adhesion and microtexture affect skid resistance at all speeds, and they have prevalent 

influence at speeds below 30 mph. Hysteresis and macrotexture have little significance at low 

speeds; however, macrotexture is an essential factor for safety in wet conditions as speed 

increases (Galambos et al. 1997).  

Hogervorst (1974) has shown that the reduction in skid resistance is associated with 

vehicle speed, and it depends on pavement microtexture and macrotexture (Figure 4). Results of 

that study showed that skid resistance decreased with an increase in vehicle speed, and 

pavements with coarse and rough surface provide better skid resistance than ones with fine and 

polished surfaces.  
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Figure 4. Change in Pavement Friction with Speed (after Hogervorst 1974). 

Hall et al. (2009) indicated that microtexture locates the magnitude of skid resistance, 

while macrotexture controls the slope of the skid resistance reduction as the speed increases 

(Figure 5). Macrotexture affects the pavement friction at high speed by reducing the friction-

speed slope, but it has little influence on friction at low speed. On the other hand, microtexture 

defines the level of friction (Hall et al. 2009; Rose et al. 1970; Gallaway et al. 1972).  

 
Figure 5. Effect of Microtexture/Macrotexture on Pavement Friction (Hall et al. 2006). 

ASPHALT SEAL COAT TREATMENT 

The seal coat, or chip seal, is widely used as a preventive maintenance treatment and is 

considered a relatively inexpensive pavement surface treatment. It can be used effectively on 
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roads with both high and low traffic levels (TxDOT 2003). Similar to HMA surfaces, the 

macrotexture and microtexture of seal coat surface have significant contributions to the skid 

resistance. The macrotexture of pavement surface is affected by the aggregate size and its 

embedment into the binder. Immoderate embedment may reduce the skid resistance of seal coat 

(Krugler et al. 2012; Roque et al. 1991). In addition, aggregate polishing due to traffic reduces 

the skid resistance, and the rate of skid reduction depends on the aggregate shape characteristics 

(Masad et al. 2010; Rezaei et al. 2011). The seal coat surface treatments (Grade 3 and Grade 4) 

provided higher skid resistance compared to asphalt concrete-surfaced pavements (Type C), but 

the skid resistance of the surface treatments may decrease significantly once its macrotexture 

decreases (Masad et al. 2010).  

AGGREGATE PROPERTIES AFFECTING PAVEMENT FRICTION 

This section discusses the aggregate properties that affect pavement friction.  

Hardness and Mineralogy 

The hardness of aggregate affects the aggregate resistance to wear, and it can be 

measured using the hardness test. This test measures the resistance of aggregate surface to 

scratching on a scale from 1 to 10. Hardness values higher than 6 for hard minerals and 3 to 5 for 

soft minerals are recommended to ensure acceptable pavement frictional performance (Dahir and 

Henry 1978). 

Polish Resistance 

This term refers to the ability of the aggregate to maintain its microtexture after it is 

subjected to repeated traffic loadings. The most common methods used to evaluate the polish 

resistance include the polished stone value (PSV) test and the acid insoluble residue (AIR) 

test (Hall et al. 2009). In the PSV test, the aggregate is polished by an accelerated polishing 

machine, and then the aggregate surface friction is measured using a British pendulum (Masad et 

al. 2007). The AIR test is performed to measure the noncarbonate ingredients of the aggregates, 

which contribute to aggregate resistance. Values of 30 to 35 for the PSV test and 50 to 70 

percent for the AIR test are recommended to ensure sufficient frictional resistance (Hall et al. 

2009).  
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Abrasion Resistance 

Abrasion resistance refers to the ability of aggregates to resist mechanical degradation. 

The Micro-Deval and Los Angeles (LA) abrasion tests are used to evaluate the abrasion 

resistance of the aggregates (Hall et al. 2009). The Micro-Deval test consists of a container with 

small steel balls, and the aggregate, with the presence of water, is polished in the rotating 

container (Kassem et al. 2012). Also, the LA abrasion test is used to measure the coarse 

aggregate resistance to degradation by inserting the aggregate into the LA abrasion device and 

when the large still ball impacts the aggregates inside the rotating drum (American Association 

of State Highway and Transportation Officials [AASHTO] T96). Values of losses less than 17 to 

20 percent for the Micro-Deval test and 35 to 45 percent for the LA abrasion test are 

recommended to provide sufficient frictional resistance (Hall et al. 2009). 

Angularity, Texture, and Form  

Aggregate shape characteristics, including angularity, texture, and form (Figure 6), are 

essential parameters in pavement skid resistance. The coarse and angular aggregates provide 

higher pavement friction than flat and elongated aggregates (Prowell et al. 2005). Also, an 

aggregate with a rough surface provides higher friction than an aggregate with a smooth surface 

(Kassem et al. 2013). The AIMS is used to quantify aggregate shape characteristics (Masad et al. 

2010). Also, there are other methods, including laser-based aggregate analysis systems, computer 

particle analyzers, multiple ratio shape analyses, and VDG-40 video graders, that are used to 

perform the same function.  

 
Figure 6. AIMS Aggregate Shape Characteristics. 
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Soundness 

Soundness of aggregates can be defined as the ability of aggregates to resist degradation 

due to climatic and environmental factors such as thawing, freezing, wetting, and drying. The 

soundness is quantified using the magnesium sulfate soundness test by quantifying the loss 

percentage of aggregates after cycles of hydration-dehydration. Loss percentages ranging from 

10 percent to 20 percent are typical and provide sufficient frictional performance (Hall et al. 

2009). 

FRICTION/SKID RESISTANCE MEASURING DEVICES 

There are several devices that are used to measure skid resistance in the field, and some 

of them can be used in the field and laboratory. These devices rely on different measuring 

principles, and some of them measure peak friction while others measure values close to peak 

friction (Henry 2000). This section discusses common devices used in measuring friction and the 

skid resistance of pavements.  

Locked-Wheel Skid Trailer 

A locked-wheel skid trailer can be used to measure pavement friction (Burchett and 

Rizenbergs 1980). The coefficient of friction is measured by the locked-wheel device and 

reported as a skid number (SN) (Gargett 1990). The SN is calculated using Equation 2.1.  

 SN = (F / N) ∗100 (2.1) 

where 

SN = skid number. 

F = friction force. 

N = normal (vertical) load on the test tire. 

The skid trailer (Figure 7) is an appropriate method in terms of accuracy and safety. 

However, the data cannot be collected continuously, and the skid trailer does not have the ability 

to measure the low friction accurately (Burchett et al. 1980). When using the skid trailer, water is 

sprayed in front of the left wheel, and the left wheel is locked while the truck is traveling at a 

certain speed (e.g., 50 mph for Texas). The friction force that resists the rotation of the tire is 

measured (Masad et al. 2010).  
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Figure 7. Locked-Wheel Skid Trailer. 

Side Force Devices 

Side force devices are used to measure pavement side friction on runways and highways. 

Figure 8 shows an example of the side device. As in the skid trailer test, a small amount of water 

is sprayed in front of the wheel, and the side force at 40 mph is recorded (Gargett 1990). The 

side force method is used to determine the ability of vehicles to maintain control, especially on 

curves (Henry 2000). 

 
Figure 8. Side Force Device (Hall et al. 2009). 
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Fixed Slip Devices 

The fixed slip system is used to measure the friction between tires and pavements, and 

anti-lock brakes are considered. Figure 9 shows a fixed slip device. This method is used 

essentially at airports (Putov et al. 2016). The device can maintain at most 20 percent of firm 

slip, and the friction force between the surface and tire can be calculated after subjecting a 

vertical load to the tire. The advantage of using the fixed slip device is that it can be operated 

continuously without excessive wear on the tires (Henry 2000).  

 
Figure 9. Fixed Slip Device (Putov et al. 2016). 

Variable Slip Devices 

The variable slip device is another device that measures the frictional force when the tire 

is taken through a predetermined set of slip ratios (Figure 10). The result of dividing the 

longitudinal force by the vertical force is the slip friction number (SFN). The SFN is reported by 

using slip speeds between zero and the assigned speed (Henry 2000). 
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Figure 10. Variable Slip Friction Testing Device (Putov et al. 2016). 

Dynamic Friction Tester 

The dynamic friction tester (DFT) is used to measure the coefficient of friction. This 

device consists of a circular disk with three rubber pads (Figure 11). The circular disk rotates up 

to 100 km/h. Once the disk reaches the specified speed, the disk is lowered to the pavement 

surface, and the coefficient of friction is measured as the speed of the rotating disk gradually 

decreases (Saito et al. 1996; Henry 1986). The pavement microtexture is quantified by the value 

of the coefficient of friction at 20 km/h (DFT20).  

 
Figure 11. Dynamic Friction Tester. 

THE INTERNATIONAL FRICTION INDEX  

The Permanent International Association of Road Congress (PIARC) developed a unified 

equation for the international friction index (IFI) to determine the surface friction of a pavement 

(Rado et al. 1995). It incorporates parameters that describe the microtexture and macrotexture of 



18 

a pavement, as presented in Equation 2.2. The macrotexture is described by mean profile depth 

(MPD) measured by CTMeter, while the microtexture is quantified by the coefficient of friction 

measured using DFT at 20 km/h (DFT20) (Wambold et al. 1995; Henry 2000).  

 IFI= 0.081+0.732∗ DFT20 ∗ exp (−40
𝑆𝑆𝑝𝑝

) (2.2) 

 S𝑝𝑝 = 14.2 + 89.7MPD (2.3) 

where 

IFI = international friction index. 

𝑆𝑆𝑝𝑝= speed constant parameter. 

MPD = mean profile depth. 

PAVEMENT TEXTURE MEASUREMENTS 

There are several methods used for quantifying the macrotexture of asphalt pavements. 

These methods include the CTMeter, the sand patch method, the outflow meter, and laser-based 

(or electro-optic) technique (Hall et al. 2009). 

CTMeter Device 

This device is used to measure the MPD in the field and laboratory (Figure 12). The 

device has a charge-coupled, laser displacement sensor attached to an arm mounted to the device. 

The arm rotates in a circle with a diameter of 28.4 cm. The laser sensor can collect 1,024 data 

points per round. The average MPD is calculated and reported according to the American 

Society for Testing and Materials (ASTM) E2157.  
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Figure 12. CTMeter Device. 

Sand Patch Method 

The sand patch test is used to quantify the macrotexture of pavement surface by 

measuring the mean texture depth (MTD) in accordance with ASTM E1845. The sand patch 

method includes a brush for cleaning the surface, a cup and spreading tool to distribute the sand, 

and a scale tape (Figure 13). An amount of 100 grams of sand is used in each test. The sand 

sample should pass through a No. 30 sieve and be retained in a No. 50 sieve (Sarsam and Al 

Shareef 2015). The sand is spread in a circle on the pavement surface, and the diameter of the 

circle is measured. The MTD is measured using Equation 2.4 as a function of sand volume and 

the diameter of the sand patch (ASTM 2009). 

 MTD = 4 V
3.14 D2

 (2.4) 

where 

MTD = mean texture depth (mm). 

D = average diameter of sand patch circle (cm).  

V = sand volume (cm3), (weight of sand / density of sand). 



20 

 
Figure 13. Sand Patch Method (Sarsam et al. 2015). 

Stereo Photogrammetric Technique 

This technique is based on a three-dimensional (3D) measurement of pavement surface 

texture. The 3D images provide an indication of physical changes to the pavement surface that 

cannot be accurately quantified using two-dimensional (2D) profiles. The changes in the 

aggregate surface due to the polishing process can be observed and quantified using 3D 

measurements (Dunford 2013). Stereo photogrammetry relies on taking various images from 

different angles in order to estimate the 3D coordinates of a point. The close range 

photogrammetry is a version of stereo photogrammetry that uses an ordinary camera to take 

various images from different angles to construct the 3D profile. Previous research demonstrated 

that this technique can be used to quantify the macrotexture, microtexture, and megatexture 

(McQuaid et al. 2014). Figure 14 shows the pavement 3D image obtained from stereo 

photogrammetric techniques. 
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Figure 14. 3D Pavement Surface from Stereo Photogrammetric Technique (Mustaffar et al. 
2004). 

AGGREGATE RESISTANCE TO POLISHING  

Aggregates with good resistance to polishing retain their microtexture for a longer period 

of time than do aggregates with poor resistance to polishing and abrasion. The LA abrasion test 

is used to measure the coarse aggregate resistance to degradation (West et al. 2001; Fülöp et al. 

2000). Despite the British pendulum test being widely used to predict the frictional properties of 

aggregates, researchers indicated that this test has a high level of variability (Dahir and Henry 

1979; Fwa et al. 2004). 

The Micro-Deval polishing device was found to be a good alternative to the LA abrasion 

test (Prowell et al. 2005). The aggregates are typically polished in the Micro-Deval for 105 min 

and 180 min (Al Rousan 2005). Another study (Mahmoud and Masad 2007) recommended using 

the AIMS to measure the aggregate characteristics after subjecting the aggregates to polishing in 

the Micro-Deval test. Although there were some developments regarding new tests, there was 

only slight progress in terms of developing models that can estimate the skid resistance of 

pavement (Mahmoud et al. 2007).  

Polishing the pavement surface due to frequent traffic applications is the main cause of 

skid resistance reduction. Using aggregates with good resistance to polishing and abrasion 

provides pavements with higher friction (Kassem et al. 2013).  
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EFFECT OF PAVEMENT DETERIORATION ON SKID RESISTANCE 

Luis and Hess (2010) conducted a study to evaluate the correlation between pavement 

roughness and skid resistance. They used a skid trailer to measure the skid number of different 

pavement test sections. These test sections were selected to have comparable surface 

characteristics in terms of macrotexture and microtexture but different levels of roughness. The 

analytical investigation demonstrated that sections with comparable surface characteristics but 

different roughness levels had different skid numbers. The researchers concluded that a high 

level of roughness provides low skid numbers; in addition, the roughness should be considered in 

pavement safety evaluation. Conversely, Fuentes (2009) studied the correlation between the 

international roughness index and skid resistance, and the results did not provide enough 

evidence on the effect of roughness on skid resistance. 

The excessive binder in the mixture reduces the void content and causes bleeding. 

Bleeding is defined as excessive asphalt film on the road surface. Skid resistance decreases due 

to the loss of macrotexture and microtexture caused by bleeding and coating the aggregate 

particles with excessive asphalt binders. Surface treatments may increase the asphalt binder at 

the surface, causing bleeding and hence reducing skid resistance (Kane et al. 2009). 

DEVELOPING SKID RESISTANCE MODELS 

There have been several attempts for developing prediction models for friction and skid 

resistance of asphalt pavements. This section discusses some of these attempts.  

Masad et al.’s (2007) Model 

Masad et al. (2007) developed a new method to evaluate the change in the asphalt 

pavement skid resistance depending on aggregate texture, properties of mixtures, and 

environmental conditions. This method relies on the use of the Micro-Deval test and AIMS to 

evaluate the resistance of aggregates to polishing and abrasion. Aggregates retained in a No. 4 

sieve (4.75 mm) were considered due to the significant effects of coarse aggregates on skid 

resistance compared to fine aggregates. The measurements of aggregate texture were obtained 

using AIMS at different time durations of polishing in the Micro-Deval (15, 30, 60, 75, 90, 105, 
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and 180 min), as shown in Figure 15. Figure 15 demonstrates the change in aggregate texture at 

three different levels (4, 5, and 6). Each level stands for a different aggregate size.  

 

 

 
Figure 15. AIMS Texture Index versus Time in the Micro-Deval Test for (A) Texture Level 

4, (B) Texture Level 5, and (C) Texture Level 6. 
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In the field, they examined nine pavement sections. These selected sections had different 

aggregate types (siliceous, sandstone, and quartzite) and mix design (CMHB-C, Superpave, and 

Type C). The skid number was measured on the shoulder and on the outside lane. In the 

laboratory, test slabs were prepared using different aggregate types and different mixture types. 

The analysis of variance (ANOVA) was conducted at a significance level of 0.05 to investigate 

the effect of both aggregate and mix type on the skid number. The results demonstrated that the 

aggregate type was a significant factor (P-value < 0.05), while the mix type was not statistically 

significant (P-value = 0.089). The mix type had been considered an essential factor affecting the 

skid resistance; however, the mixes used in this study did not significantly contribute to skid 

resistance. The SPSS software was used to fit Equation 2.5 in order to quantify the change in 

texture due to polishing in the Micro-Deval tests. Table 2 presents an example of the obtained 

regression coefficients. 

 Texture (t) = a + b × exp (−c × t) (2.5) 

Table 2. Aggregate Texture Regression Coefficients. 

 
 

The results showed that aggregate type has a significant effect on skid resistance. Gravel 

provided less skid resistance than sandstone and quartzite. Pavement sections constructed with 

sandstone provided higher skid resistance than quartzite. The aggregate gradation was not found 

to have a significant effect on skid resistance.  
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Masad et al.’s (2010) Model 

Masad et al. (2010) conducted a study that included measurements in the field and 

laboratory. In the laboratory, several slabs with different asphalt mixtures and aggregate types 

were prepared and tested. Three mixture designs (Type C, Type D, and porous friction course 

[PFC]) were evaluated. These mix designs were found to provide different frictional 

performance in the field. The mixtures were prepared and compacted in a special metal mold 

using a vibrator roller compactor, as shown in Figure 16a. The minimum slab size required to 

conduct the skid resistance measurements by the CTMeter and DFT was 17.75 inches by 

17.75 inches. The slabs’ dimensions were 60 inches by 26 inches. The researchers evaluated the 

friction at three different locations on a single test slab (Figure 16b). A three-wheel polisher 

(Figure 16c) was used to polish the test slabs, and the measurements of the friction and mean 

profile depth were collected using the DFT and the CTMeter (Figure 16d) after different 

polishing cycles (5,000, 10,000, 20,000, 35,000, 50,000, 75,000, and 100,000). The British 

pendulum test and the sand patch method were also used in this study in a similar fashion. 

Aggregate texture and angularity were measured before and after different time intervals 

of polishing in the Micro-Deval. Figure 17 shows the change in the texture index before and after 

subjecting the aggregates to polishing and abrasion in the Micro-Deval. It shows that the selected 

aggregates provided different resistance to polishing. The effect of aggregate type on the 

pavement skid resistance was investigated among the prepared slabs. The results demonstrated a 

high correlation between the aggregate properties and the mixture frictional characteristics. The 

aggregate characteristics affecting the skid resistance were the British pendulum value, the initial 

texture measured by AIMS, the terminal texture after Micro-Deval measured by AIMS, and the 

coarse aggregate acid insolubility value. 
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(a) Walk-Behind Roller Compactor 

 
(b) Laboratory Test Slabs 

 
(c) NCAT Polisher 

 
(d) DFT and CTMeter Measurements 

Figure 16. Laboratory Experiments in the TxDOT (Masad et al. 2010). 

 
Figure 17. Aggregate Texture before and after Micro-Deval and Percent Change (Masad et 

al. 2010). 
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Masad et al. (2010) found that the change in the calculated IFI (Equation 2.2) with the 

polishing cycles based on the MPD and DFT20 measurements can be described by Equation 2.6.  

 IFI (N) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 ∗  𝑒𝑒(−𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚∗𝑁𝑁) (2.6) 

where 

amix: terminal IFI value for the mix. 

amix + bmix: initial IFI value for the mix. 

cmix: rate of change in IFI for the mix. 

N: number of polishing cycles in the laboratory. 

Figure 18 shows an example of the change in IFI with polishing cycles and the regression 

constants of Equation 2.6. Based on the laboratory stage, Masad et al. (2010) developed a model 

to predict the initial friction, terminal friction, and rate of change in IFI as a function of 

aggregate characteristics measured with the AIMS system and aggregate gradation parameters. 

This model can be used to select the proper aggregate type to provide adequate skid resistance. 

Equations 2.7 to 2.9 represent the developed model. 

 

Figure 18. An Example of IFI vs. Polishing Cycles (Kassem et al. 2013). 

 
 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =  18.422+𝜆𝜆
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  (2.7) 
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 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.4984 ∗ ln�5.656 ∗ 10−4�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎� + 5.846 ∗ 10−2𝜆𝜆 − 4.985 ∗
10−2𝑘𝑘� + 0.8619  (2.8) 

 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 0.765 ∗  𝑒𝑒
�−7.297∗10

−2

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎
�
  (2.9) 

where 

 amix = terminal IFI value for the mix. 

 amix + bmix = initial IFI value for the mix. 

 cmix = rate of change in IFI for the mix. 

 AMD = aggregate texture after Micro-Deval. 

 aagg + bagg = aggregate initial texture using texture model. 

 cagg = aggregate texture rate of change using texture model. 

 κ = shape factor of Weibull distribution used to describe aggregate gradation. 

 λ = scale factor of Weibull distribution used to describe aggregate gradation. 

 
The data collected in the laboratory were compared to skid values measured in the field 

for the same asphalt mixtures. Masad et al. (2010) developed a system to predict the skid number 

of asphalt mixtures as a function of traffic level. Input parameters required for this model 

included aggregate texture measured using AIMS before and after polishing in Micro-Deval, 

aggregate gradations, and traffic data. A computer program called SAAP was developed to 

execute the steps needed to calculate the skid resistance of asphalt pavements as a function of 

time (or cumulative traffic). Figure 19 summarizes the steps needed to predict the skid number 

according to Masad et al. (2010).  
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(1) Program Interface 

 
(2) Aggregate Gradation Input 

 
(3) Manual Aggregate 

Gradation 

 
(4) AIMS Texture Data Input 

 
(5) Texture Data Points Select 

 
(6) Texture Measurement 

 
(7) Input MPD Value 

 
(8) Traffic Data Input 

 
(9) Analysis Type 

 
(10) Skid Number vs. Years 

 
(11) Classification Setting 

 
(12) Classification Sample 

Figure 19. Steps Needed to Predict Skid Number SAAP in TxDOT Project No. 0-5627. 

Wu et al.’s (2012) Model 

Wu et al. (2012) developed a new model to estimate skid resistance based on 12 mixtures 

with various mix types and aggregate sources. The aggregates included sandstone and siliceous 

limestone, and four mix types were evaluated (19-mm Superpave Level 2 mix, 12.5-mm 
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Superpave Level 2 mix, stone mastic asphalt [SMA], and PFC. The selection of the aggregates 

was based on the mixture construction in Louisiana. The Micro-Deval was used to polish the 

prepared slabs according to AASHTO T327-05. Also, the British pendulum number was 

measured according to AASHTO T278 and T279. Additionally, the macrotexture and 

microtexture of the prepared slabs were measured using the CTMeter and DTF after different 

polishing cycles. The model presented in Equation 2.10 was developed as a function of the MPD 

and the DFT at 20 km/h. The model estimates the friction number at 60 km/h. The researchers 

also demonstrated that aggregates with low skid resistance can be blended with good quality 

aggregates in order to achieve adequate skid resistance. 

 F60 = 0.081 + 0.732 DFN20 ∗ exp −40
14.2+89.7MPD

 (2.10) 

where 

F60 = friction number at 60 km/h. 

MPD = mean profile depth. 

DFN20 = friction at 20 km/h. 

Kassem et al.’s (2013) Model 

Kassem et al. (2013) conducted a study to validate the IFI models developed by Masad et 

al. (2010). Squared-shaped slabs were prepared in the laboratory using three different types of 

aggregates (Limestone 1, Limestone 2, and sandstone), and four asphalt mixture designs 

(Type F, Type C, SMA, and PFC) were evaluated. A total number of 12 asphalt mixtures were 

prepared, and two slabs of each mixture were tested. A total number of 24 slabs were tested in 

this study. The laboratory slabs were prepared using a linear kneading compactor (Figure 20a). 

The size (20 inches by 20 inches) of the prepared slabs was adequate for friction and mean 

profile depth measurements. A three-wheel polishing device was used to polish the test slabs at 

5,000, 10,000, 30,000, 50,000, and 100,000 cycles (Figure 20b). 

Aggregate texture and angularity were measured using the AIMS system at different time 

durations of polishing in the Micro-Deval. Figure 21 shows the percent weight loss of test 

aggregates. Sandstone had the highest texture index and lowest weight loss, while Limestone 1 

had the lowest texture index and highest percent weight loss. The AIMS (Figure 22) was used to 
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measure the texture and angularity before and after polishing time durations of the Micro-Deval 

test.  

 
(a) Preparing Slabs using Linear Kneading 

Compactor 

 
(b) Polishing Test Slabs using TTI Polisher 

Figure 20. Test Slabs Preparation and Polishing (Kassem et al. 2013). 

 
 (a) Weight Loss of Micro-Deval Abrasion 

Test 

 
 (b) Texture Index Measured using AIMS 

Figure 21. Texture Index and Weight Loss Results (Kassem et al. 2013). 
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Figure 22. AIMS System (Kassem et al. 2013). 

The measurements of friction and macrotexture were conducted using the DFT and 

CTMeter after different polishing cycles. Then, the IFI was calculated based on the measured 

MPD and DFT at 20 km/h. Figure 23 shows the IFI versus polishing cycles. The IFI of 

Limestone 1 test slabs reached the terminal value after only 30,000 cycles, while the sandstone 

reached the terminal value after 100,000 cycles. Also, the terminal IFI value of the sandstone is 

higher than the terminal value of Limestone 1. The sandstone had rough texture with better 

abrasion resistance than Limestone 1. The findings also indicated that the coarse mixtures had 

better friction than the fine mixtures. The results demonstrated a high correlation between the 

measured and predicted IFI after considering aggregate texture and angularity indices in the 

developed model. Equations 2.11, 2.12, and 2.13 present the developed models.  



33 

 
(a) Limestone 1 Test slabs 

 
(b) Sandstone Test slabs 

 
Figure 23. Texture Index and Weight Loss Results (Kassem et al. 2013). 

 amix =  47.493+λ
307.071−0.003(AMD)2

  (2.11) 

 amix + bmix = 0.308 ∗ ln �1.438∗(aTX+bTX)+46.893∗λ+333.491∗k
2.420∗(aGA+bGA)

� + 1.008 (2.12) 

 Cmix = 0.052 + 2.284 ∗ 10−14 ∗ e�
0.523
CTX

� + 2.008 ∗ 10−47 ∗ e�
1.708
CGA

�
 (2.13) 

where 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = terminal IFI. 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = initial IFI. 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = rate of change in IFI. 

λ, k = scale and shape parameters of Weibull distribution. 

AMD = the texture after 150 min in Micro-Deval. 

𝑎𝑎𝑇𝑇𝑇𝑇, 𝑏𝑏𝑇𝑇𝑇𝑇 = regression constants for texture. 

 𝑎𝑎𝐺𝐺𝐺𝐺, 𝑏𝑏𝐺𝐺𝐺𝐺 = regression constants for angularity. 

SUMMARY 

The skid resistance of pavement surface is affected by its surface texture properties. 

Providing adequate macrotexture and microtexture are essential requirements for pavement to 

ensure high skid resistance at all speeds. Skid resistance is mainly associated with aggregate 
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characteristics and gradation. Additionally, recent studies showed that the Micro-Deval and 

AIMS are proper test methods for measuring the resistance of aggregates to abrasion and 

polishing. In order to improve the safety on highway pavements, the researchers have developed 

several models to predict the skid resistance as a function of aggregate characteristics, mix 

design, and traffic level. These models need to be validated with additional data that cover a 

wide range of variables and parameters. In addition, these models should be extended to predict 

the skid resistance of surface treatments such as seal coat.  
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CHAPTER 3: 
TESTING AND DATA COLLECTION 

The researchers measured the frictional characteristics and skid numbers on a number of 

HMA and seal coat test sections in Texas. All field measurements were made by the researchers 

at TTI. In addition, the aggregate shape characteristics were either measured in the laboratory or 

obtained from the TxDOT database by the researchers. In this study, 35 test sections of HMA 

and 35 seal coat test sections were examined. Four seal coat test sections were excluded due to 

excessive bleeding. This chapter discusses the research plan and the field and laboratory testing. 

SELECTION OF THE FIELD SECTIONS 

The researchers identified and selected 35 test sections of HMA and 35 test sections with 

seal coat. During the selection of test sections, the research team made an effort to include 

surfaces with wide varieties of mixture gradations, aggregate sources, and climatic zones of 

Texas. Focus was given to identifying test sections with higher traffic levels so that the team 

could observe higher polishing within a relatively short time. Another important criterion of test 

sections’ selection was to find existing sections with a history of skid measurement under 

TxDOT’s annual network-level pavement evaluation program. TxDOT does not collect network-

level skid data for all the roads every year. Typically, major highways (i.e., interstate highways) 

with higher traffic level are tested more frequently than other highways (i.e., farm-to-market 

roads). The annual skid testing frequency varies among different districts of TxDOT. Table 3 

provides detailed information about the HMA test sections. This information includes the 

location of the test sections, section identification (ID), construction date, testing date, and 

number of lanes. The test sections of asphalt mixtures included different mixture types (SMA-C, 

SMA-D, SMA-F, CMHB-F, Type C, Type D, TOM, PFC, CMHB-C, and CAM), different 

aggregate types (limestone, gravel, granite, sandstone, dolomite, rhyolite, traprock, and 

quartzite), different years of construction (2004 to 2013), and were distributed across Texas 

(ATL, AUS, BMT, BRY, ODA, SAT, YKM, HOU, LRD, PHR, and LFK districts of TxDOT).  

Table 4 provides the same information for the seal coat test sections. The test sections of 

seal coat included different grade types (Grade 3, Grade 4, and Grade 5), different aggregates 

(limestone, gravel, traprock, sandstone, dolomite, rhyolite, LRA, and lightweight), different 
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coating conditions (pre-coated and virgin), different years of construction (2009 to 2013), and 

also were distributed across Texas (ATL, BMT, ODA, SAT, YKM, LRD, PHR, LFK, BRY).  

Table 3. HMA Test Sections. 

District Section ID CTM DFT Test 
Date 

Construction 
Date 

Days 
between 

Construction 
and Field 
Testing 

Lane Description 

Atlanta 

IH 30_ATL_SMA_ 12/20/2013 7/1/2010 1268 Two lanes each way, 
divided 

US 59_ATL_CMHB-F_FM 
2792 12/18/2013 8/1/2005 3061 Two lanes each way, 

divided 
US 59_ATL_TY D_TRM 
310 12/18/2013 6/1/2011 931 Two lanes each way, 

divided 
US 59_ATL_TY D_SHELBY 
CO LINE 12/18/2013 4/1/2011 992 Two lanes each way, 

divided 

US 271_ATL_CMHB-
F_CAMP 12/20/2013 6/1/2008 2028 Undivided, two lanes 

each way with turn lane 

Austin 

IH 35 TOM Mix_AUS 8/28/2014 7/1/2011 1154 Three lanes each way, 
divided 

RM 3238_AUS_TOM 8/28/2014 7/1/2013 423 Undivided, one lane 
each way 

US71_AUS_TOM 8/27/2014 7/1/2013 422 Two lanes each way, 
divided 

Beaumont 

IH10_BMT_SMA-D 9/30/2013 7/1/2009 1552 Two lanes each way, 
divided 

SH 82_BMT_SMA-D 9/30/2013 4/1/2013 182 Undivided, two lanes 
each way with turn lane 

SL 207_BMT_TY D 10/2/2013 5/1/2013 154 Undivided, one lane 
each way 

US 69_BMT_PFC 9/30/2013 9/1/2011 760 Two lanes each way, 
divided 

US 90_BMT_SMA-D 9/30/2013 5/1/2013 152 Undivided, two lanes 
each way with turn lane 

Bryan 

IH 45_BRY_TY C 10/2/2014 8/25/2008 2229 Two lanes each way, 
divided 

IH 45_BRY_PFC 10/2/2014 8/17/2009 1872 Two lanes each way, 
divided 

SH 6_BRY_NEW PFC 10/2/2014 9/28/2011 1100 Two lanes each way, 
divided 

SH 6_BRY_OLD PFC 10/2/2014 6/21/2007 2660 Two lanes each way, 
divided 

Laredo 
IH 35_LRD_SMA_WEBB 7/24/2013 6/1/2008 1879 Three lanes each way, 

divided 
IH 35_LRD_SMA-
C_LASALLE 7/24/2013 6/1/2004 3340 Two lanes each way, 

divided 

Lufkin 

US 
59_LFK_PFC_Nacodoches 8/16/2013 6/1/2013 76 Two lanes each way, 

divided 

SH 7_LFK_TY D_Houston 8/16/2013 5/1/2013 107 Undivided, one lane 
each way 
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Table 3. HMA Test Sections (Continued) 

District Section ID CTM DFT Test 
Date 

Construction 
Date 

Days 
between 
Construction 
and Field 
Testing 

Lane Description 

Odessa 

IH 20_ODA_SP-C_Martin 10/8/2013 9/1/2012 402 Two lanes each way, 
divided 

IH 20_ODA_SP-
D_Midland_2012 10/8/2013 6/1/2012 494 Two lanes each way, 

divided 
IH 20_ODA_SP-
D_Midland_2013 10/8/2013 6/1/2013 129 Two lanes each way, 

divided 

US 385_ODA_CMHB-F 10/7/2013 10/1/2005 2928 Two lanes each way, 
divided 

IH 20_ODA_PFC_2004 10/8/2013 6/1/2004 3416 Two lanes each way, 
divided 

San 
Antonio 

IH 10_SAT_SMA-
D_BEXAR 3/10/2014 4/1/2012 708 Two lanes each way, 

divided 

IH 10_SAT_TY C_BEXAR 3/10/2014 3/1/2009 1835 Two lanes each way, 
divided 

IH 37_SAT_PFC_BEXAR 3/10/2014 6/1/2013 282 Two lanes each way, 
divided 

YKM 
IH 10_YKM_TY D_AUSTIN 5/23/2013 7/1/2011 692 Two lanes each way, 

divided 
SH 36_YKM_TY 
D_AUSTIN 5/23/2013 7/1/2006 2518 Undivided, one lane 

each way 

PHARR 

US 77_PHR_TY 
D_Kennedy 2/20/2014 2/1/2013 384 Two lanes each way, 

divided 
US 281_PHR_TY 
D_Hidalgo 2/20/2014 8/1/2011 934 Two lanes each way, 

divided 

Houston 

SH 6 Bwp 2-1, Wp 2-1 
Middle 6/20/2013 7/1/2005 2911 Two lanes each way, 

divided 

SH 6 Bwp 2-1 Bottom 6/20/2013 7/1/2005 2911 Two lanes each way, 
divided 
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Table 4. Selected Sections for Seal Coat. 

District Section ID CTM DFT Test 
Date 

Construction 
Date 

Days between 
Construction 

and Field 
Testing 

Pharr 

US 77_PHR_GR3_Cameron 2/20/2014 5/1/2013 295 

US 281_PHR_GR3_Hidalgo 2/21/2014 5/1/2011 1027 

US 281_PHR_GR3_Brooke_TRM 752 2/21/2014 5/1/2011 1027 

US 281_PHR_GR3_Brooke_TRM 722 2/21/2014 9/1/2011 904 

Dallas-FW 

US 377_FTW_GR3_Hood 11/18/2014 7/1/2010 1601 

US 377_FTW_GR3_Tarrant 11/18/2014 7/1/2011 1236 

SH 199_FTW_GR3_Parker 11/18/2014 7/1/2010 1601 

Brownwood 

US 67_BWD_GR4_Coleman 10/9/2014 7/1/2010 1561 

US 67_BWD_GR4_Brown 10/9/2014 7/1/2011 1196 

US 183_BWD_GR4_Eastland 10/9/2014 7/1/2012 830 

US 377_BWD_GR4_Brown 10/9/2014 7/1/2012 830 

San Antonio 

US 90_SAT_GR4_Bexar 3/11/2014 6/1/2013 283 

FM 1518_GR3_Bexar 3/11/2014 6/1/2013 283 

SH 16_SAT_GR4_Atascosa_TRM 626 3/12/2014 6/1/2012 649 

SH 16_SAT_GR 4_Atascosa_TRM 642 3/12/2014 6/1/2012 649 

YKM SH 36_YKM_GR 3_Austin 5/23/2013 8/1/2008 1756 

Lufkin 

US 59_LFK_GR3_Angelina 8/5/2013 6/1/2010 1161 

US 69_LFK_GR4_Angelina 8/5/2013 6/1/2012 430 

US 287_LFK_GR4_Trinity 8/16/2013 6/1/2013 76 

FM 2213_LFK_GR5_San Augustine 8/26/2014 6/1/2012 816 

US 59_LFK_GR4_Shelby 8/26/2014 6/1/2012 816 

Odessa 

LP 338_ODA_GR4_Ector 10/7/2013 6/1/2012 493 

US 385_ODA_GR4_Crane 10/7/2013 6/1/2009 1589 

US 385_ODA_GR4_Ector 10/7/2013 6/1/2010 1224 

Beaumont 

SH 82_BMT_GR4_Jefferson 10/1/2013 9/1/2010 1126 

FM 365_BMT_GR4_Jefferson 10/1/2013 7/1/2013 92 

FM 105_BMT_GR4_Orange 10/2/2013 7/1/2013 93 

Atlanta 

US 80_ATL-GR4_Harrison 12/19/2013 6/1/2012 566 

US 59_ATL_GR3_Cass_RG_TRM238 12/19/2013 6/1/2013 201 

SH 77_ATL_GR4_Cass_TRM 745_SS 12/19/2013 6/1/2012 566 

SH 77_ATL_GR4_Cass_TRM 720_RG 12/19/2013 6/1/2013 201 
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MEASUREMENTS OF FRICTION CHARACTERISTICS 

Field testing primarily included measurements of friction using the DFT, MPD using the 

CTMeter, and skid numbers using the TxDOT’s skid trailer. Figure 24 shows a layout of the test 

section used by the TTI researchers when taking CTMeter and DFT measurements in the field. 

The CTMeter device was used to measure the MPD, while the DFT was used to measure the 

coefficient of friction at different speeds (20, 40, 60, and 80 km/h). During testing, the CTMeter 

and DFT devices were always positioned in the left wheel path of the outside lane. Six locations 

were tested in each section. Two locations were on the shoulder, and four locations were on the 

outer lane. Two DFT and six CTMeter readings were performed at each location. In some cases, 

where there was no shoulder, the researchers took CTMeter and DFT measurements between the 

wheel path to represent the initial skid values.  

Figure 25 shows typical field operations at different locations and districts in Texas. 

Figure 26 shows an example of DFT measurements on a seal coat test section. One can notice, as 

expected, that the shoulder had a higher coefficient of friction (Mu) compared to wheel path 

(WP) and between wheel paths (BWP). Note that the area between wheel paths also experiences 

some polishing due to vehicle lane changes and wheel wandering. The coefficient of friction 

between wheel paths was close to the coefficient of friction at the shoulder. Figure 27 shows an 

example of DFT measurements for a Type D asphalt mixture test section. The shoulder had 

higher friction value compared to the wheel path because the latter experienced frequent 

polishing under traffic.  

Measurements of macrotexture and friction were conducted on the outer lane since the 

skid number was measured by the skid trailer at the outside lane (in case of multiple lanes) on the 

left wheel path. Also, the outer lane experiences a higher polishing rate because most trucks and 

more vehicles use this lane.  
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Figure 24. Layout of Measurement Section. 

 

 

Figure 25. Collecting Field Measurements. 



41 

 
Figure 26. DFT Measurements for Seal Coat Test Section (IH-35-LRD-NP-COT-

S_SealCoat). 

 
Figure 27. DFT Measurements for Type D Asphalt Mix Test Section (SH-36-

HMA_TypeD). 

The results of the field testing on seal coat showed fair correlation between the MPD 

measured using the CTMeter and the coefficient of friction at 80 km/h (DFT80) measured using 

DFT, as shown in Figure 28. This relationship demonstrates that higher macrotexture (higher 

seal coat grade) would provide better friction. The researchers calculated the IFI using the mean 

profile depth and friction obtained from the field according to Equation 3.1. 
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where  

MPD = mean profile depth measured using the CTMeter. 

DFT20 = coefficient of friction at 20 km/h measured using DFT. 

The researchers found good correlation between the IFI (Equation 3.1) and DFT80 

measured using the DFT, as shown in Figure 29. 

 
Figure 28. Correlation between MPD and Coefficient of Friction at 80 km/h (DFT80) for 

Seal Coat Test Sections. 
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Figure 29. Correlation between IFI and Coefficient of Friction at 80 km/h (DFT80) for Seal 

Coat Test Sections. 

The results of the field testing on asphalt mixture test sections showed no correlation 

between MPD measured using the CTMeter and DFT80 measured using DFT, as shown in Figure 

30. However, fair correlation was found between IFI and DFT80, as shown in Figure 31.  

 
Figure 30. Correlation between MPD and Coefficient of Friction at 80 km/h (DFT80) for 

Hot Mix Asphalt Test Sections. 
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Figure 31. Correlation between IFI and DFT80 for Hot Mix Asphalt Test Sections. 

The fair correlation observed between IFI and DFT80 is expected since the IFI is a 

function of DFT20, and DFT20 has typically good correlation with DFT80. The main purpose of 

presenting Figure 29, Figure 31, Figure 32, and Figure 33 is to demonstrate the range of values 

for both IFI and DFT80 in HMA and seal coat surfaces. Figure 32 shows the IFI versus DFT80 

measured using DFT for some seal coat test sections (blue data points) and asphalt mixture test 

sections (red data points) examined in this project. It can be seen from Figure 32 that, in general, 

the seal coat had higher friction compared to asphalt mixtures. However, the seal coat had a 

wider range of friction values compared to asphalt mixtures. Figure 33 shows the surface 

conditions of some of the examined asphalt mixture. The PFC had higher macrotexture and 

friction than the Type D mixture.  
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Figure 32. Correlation between IFI and DFT80 for Hot Mix Asphalt and Seal Coat Test 
Sections and Pavement Surface Condition for Seal Coat Test Sections. 
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Figure 33. Correlation between IFI and DFT80 for Hot Mix Asphalt and Seal Coat Test 
Sections and Pavement Surface Condition for Asphalt Mixture Test Sections. 

AGGREGATE CHARACTERIZATION  

Under this subtask, the researchers used the AIMS and Micro-Deval devices to measure 

an aggregate’s resistance to polishing and abrasion. The AIMS was used to quantify the 

aggregate’s texture and angularity before and after polishing by the Micro-Deval apparatus. 

Figure 34 illustrates the procedure followed in this study for measuring aggregate texture and 

angularity and its resistance to polishing and abrasion. Both the texture and angularity of 

aggregates decrease over time when polished in the Micro-Deval test. The loss of texture can be 

described using only three data points: texture measured before the Micro-Deval test, texture 

measured after 105 min, and texture measured after 180 min of polishing in the Micro-Deval 

test. Figure 35 shows an example of loss in aggregate texture and angularity as a result of Micro-

Deval abrasion and polishing of virgin aggregates.  
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Mahmoud et al. (2007) and Kassem et al. (2013) suggested using Equations 3.3 and 3.4 

to describe the change in aggregate texture and angularity as a function of polishing time in 

Micro-Deval: 

 TX (t) = 𝑎𝑎𝑇𝑇𝑇𝑇 + 𝑏𝑏𝑇𝑇𝑇𝑇 ∗  𝑒𝑒(−𝐶𝐶𝑇𝑇𝑇𝑇∗𝑡𝑡) (3.3) 

 GA (t) = 𝑎𝑎𝐺𝐺𝐺𝐺 +  𝑏𝑏𝐺𝐺𝐺𝐺 ∗  𝑒𝑒(−𝐶𝐶𝐺𝐺𝐺𝐺∗𝑡𝑡) (3.4) 

where 

TX (t) = change in texture as a function of time (min). 

𝑎𝑎𝑇𝑇𝑇𝑇, 𝑏𝑏𝑇𝑇𝑇𝑇, 𝐶𝐶𝑇𝑇𝑇𝑇 = aggregate texture regression constants. 

 t = polishing time in Micro-Deval. 

GA (t) = change in angularity as a function of time (min). 

𝑎𝑎𝑇𝑇𝑇𝑇, 𝑏𝑏𝑇𝑇𝑇𝑇, 𝐶𝐶𝑇𝑇𝑇𝑇 = aggregate angularity regression constants. 

 t = polishing time in Micro-Deval. 
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Figure 34. Procedure for Measuring Aggregate Texture and Its Resistance to Polishing. 
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Figure 35. Loss in Aggregate Texture and Angularity as a Result of Micro-Deval Abrasion 

and Polishing of Virgin Aggregates. 

AGGREGATE GRADATION PARAMETERS 

Masad et al. (2010) indicated that aggregate gradation is a fundamental factor that affects 

skid resistance. Masad et al. (2010) and Kassem et al. (2013) used the cumulative two-parameter 

Weibull distribution (Equation 3.5) to describe the aggregate gradation. The Weibull distribution 

function (Equation 3.5) is used to fit the aggregate size distribution, and both scale (λ) and shape 

(κ) parameters were used to quantify the aggregate gradation.  

 F (x, λ, κ) = 1-𝑒𝑒−(𝑚𝑚𝜆𝜆)𝜅𝜅 (3.5) 

where  

 x = aggregate size in millimeters. 

 λ, κ = scale and shape parameters of Weibull distribution. 

SKID NUMBER MEASUREMENTS 

Skid number data used in this study were obtained from two sources: TxDOT’s annual 

network-level data collection and TTI’s project level measurement. Each year, TxDOT 

periodically measures the skid number for all its highways, although at different intervals for 
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different highways. The research team obtained the data from TxDOT’s PMIS database. 

TxDOT’s PMIS database typically stores the skid number data for each of the PMIS sections, 

which are typically 0.5 mile long. The length of test sections included in this study varied from 

2 miles to a little over 15 miles. TxDOT measures the skid number using a skid trailer with a 

smooth tire according to ASTM E 274’s “Standard Test Method for Skid Resistance of Paved 

Surfaces Using a Full-Scale Tire.” The left tire is locked to measure the skid number at 50 mph 

(80 km/h). The skid number is measured at the outside lane (in case of multiple lanes) on the left 

wheel path. The pavement sections are typically classified after 5 years of service based on the 

measured skid number by a skid trailer at 50 mph, as presented in Table 5.  

Table 5. Aggregate Classification Based on the SN. 

Aggregate Class SN Values 
High SN(50) ≥ 30 

Medium 21 ≤ SN(50) < 30 

Low SN(50) < 21 
 

The SN can be measured as a function of IFI and speed constant parameter, according to 

Equation 3.6 (ASTM E 274).  

 
PSeSNIFI

20

)50(01.0925.0045.0 ××+=  (3.6) 

where 

SN(50) = skid number measured by a smooth tire at 50 mph (80 km/h). 

IFI = international friction index. 

𝑆𝑆𝑝𝑝 = speed constant parameter. 

Figure 36 shows measuring the skid number using the skid trailer. When using the skid 

trailer, water is sprayed in front of the left wheel and the left wheel is locked while the truck is 

traveling at a certain speed (e.g., 50 mph in Texas). The friction force that resists the rotation of 

the tire is measured (Masad et al. 2010). 
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Figure 36. Locked-Wheel Skid Trailer. 

DATA COLLECTION 

Besides the field testing, the researchers made significant effort in collecting relevant 

data from different districts, divisions, and databases. Some of the data collection efforts were 

made during the selection of test sections and others were made throughout the duration of this 

research project. Following paragraphs will briefly describe the data collection process for the 

three major components of data used in this study.   

Skid from PMIS 

Majority of the skid data used in this study was obtained from TxDOT’s PMIS database. 

TxDOT collects the skid data of its entire highway network annually, albeit at different 

frequencies based on highway types. Some districts collects skid data more often than others. 

The research team made an effort to gather and record the date of skid testing accurately. Based 

on the length of the test section (limits of the project), test section has somewhere 4 to 30 PMIS 

sections. So, for a given year, test sections had 4 to 30 skid data points.  Most cases, the research 

team used the median of these available skid numbers as that sections skid value for that 

particular year. Careful study of this skid data resulted exclusion of some numbers due their 

obvious irregularities. Besides, obtaining skid data from PMIS database, the researchers also 

measured the skid value using TTI’s own equipment to supplement the historical data.      
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Construction Data 

During the selection of test sections the research team made sure that the selected 

sections have necessary information available. The major construction related data gathered 

included data of construction (paving of surface layer), location, project limits, mixture type and 

gradations, seal coat grade, aggregate sources. Sometimes approximate date was determined 

when the exact month of paving was not known. For Example, if the paving was done in Fall of 

2011, the research team entered the date of construction as September 01, 2011. The research 

team also obtained and recorded relevant other construction data from the respective district 

personnel. 

Traffic Data 

 Traffic data obtained for the test sections include AADT, percent truck traffic for 

the entire duration of it service life starting from the year of construction. Other relevant data 

included the number through lanes, whether the highway was divided or undivided, and 

characterization of highway segment whether it was located predominantly rural or urban area. 

AADT obtained from TxDOT’s PMIS database was considered as number of AADT per 

roadbed. Accordingly, AADT for undivided highway was considered as summation of traffic on 

all the lanes in both direction. Whereas, AADT for divided highway was considered as 

summation of traffic for all the lanes in each direction. Average AADTs over the years during 

the test sections’ service life was used for the calculation.  

Most challenging aspect of traffic calculation was the distribution of traffic on design 

lane. Lane distribution factors for both passenger vehicles and truck traffic were considered as 

0.5 for undivided highway with one lane in each direction. There are no available data in 

literature to show the distribution of passenger vehicles and truck traffic on design lane based on 

different multi-lane highway configurations (e.g. number of lanes in one direction) and its 

location in urban or rural area. The research team came with following lane distribution factors 

based on some internal studies done by TxDOT, and some traffic data collected by weigh-in-

motion device under different research projects.        
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SUMMARY  

Chapter 3 discusses the research plan and selection of HMA and seal coat test sections. 

About 35 HMA and 35 seal coat test sections were selected, which were distributed across 

Texas. These test sections, which were in the field, were constructed using different materials 

and mix design and were subject to different traffic levels. The researchers measured the surface 

frictional characteristics of the test sections using DFT and CTMeter; in addition, a skid trailer 

was used to measure the skid number. In the laboratory, the researchers used methods to 

characterize the resistance of test aggregates to abrasion and polishing and quantify the aggregate 

shape characteristics (texture and angularity). These data were used for model developments, as 

discussed in Chapters 4 and 5. This chapter also documents data collection effort.  
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CHAPTER 4: 
DATA ANALYSIS AND RESULTS FOR HOT MIX ASPHALT TEST 

SECTIONS 

Researchers in this study developed a skid prediction model for HMA and seal coat 

surfaces. The prediction models were developed using aggregate properties, field measurements, 

and traffic data. This chapter focuses on the development and validation of a prediction model 

for HMA pavements. Figure 37 shows the flowchart used for developing the predictive models 

for the skid resistance of HMA and seal coat surfaces. This effort included laboratory 

measurements of aggregate shape characteristics and their resistance to abrasion and polishing. 

The researchers used relationships to describe the change in aggregate texture and angularity due 

to abrasion and polishing. They also used mathematical models to describe the aggregate 

gradations for asphalt mixture and seal coat. Statistical methods were used to develop prediction 

models for friction and the skid resistance of HMA. The following subchapters describe how 

model parameters were obtained/measured and how they were used to develop the prediction 

models. 

ANALYSIS OF AGGREGATE GRADATION 

The cumulative two-parameter Weibull distribution was used to describe the aggregate 

gradation, as shown in Equation 3.5. The MATLAB program was used to fit the Weibull 

function to aggregate size distribution. Figure 38 shows an example of Weibull functions for 

various aggregate gradations. The x-axis represents the aggregate size in millimeters, and the 

y-axis represents the cumulative percent passing of the aggregate. The scale (λ) and shape 

parameters (κ) were calculated by fitting the aggregate gradation to the cumulative two-

parameter Weibull distribution. Table 6 presents the scale (λ) and shape (κ) parameters for the 

aggregate gradations for all the mixtures used in developing the HMA skid prediction model. 

The λ parameter varied from 10.95 to 2.899, while the κ parameter varied from 4.30 to 0.69. The 

r-squared values for fitting the Weibull function to the aggregate gradations were between 0.92 

to 0.99. Higher values of λ were associated with coarser aggregate gradations, as presented in 

Figure 38. The research team also calculated these two parameters to describe the shape factor 

for all common mixture gradations used in Texas. Typically, the aggregate gradations running 
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through the middle of the bands (allowed by TxDOT), for given mixture type, was used to 

calculate the default shape parameters.  

 

Figure 37. Flow Chart of the Research Methodology. 

 

Figure 38. Weibull Distribution Function for Different Aggregate Sizes. 
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ANALYSIS OF AGGREGATE TEXTURE AND ANGULARITY  

A total number of 56 different aggregate type/sources were examined in this study. The 

aggregate shape characteristics were measured using the AIMS device for three different levels 

of polishing by the Micro-Deval device: (a) before Micro-Deval (BMD), or without any 

polishing; (b) after 105 min of polishing (AMD105); and (c) after 180 min of polishing 

(AMD180). However, the common practice at TxDOT is to measure the aggregate shape/texture 

characteristics before and after the Micro-Deval abrasion test (0 and 105 min). When developing 

the analytical models, the researchers considered both procedures to describe the change in 

angularity and texture of aggregates due to abrasion and polishing. Figure 39 and Figure 40 show 

examples of change in texture and angularity.  

One can see that the loss of texture and angularity is significant after 105 min of 

polishing in the Micro-Deval. After that amount of time, polishing occurs at a much slower rate. 

Equations 3.3 and 3.4 were used to describe the change in aggregate texture and angularity, 

respectively. Figure 41 and Figure 42 show examples of the change in texture and angularity 

with the Micro-Deval polishing time. Figure 41 and Figure 42 report the regression constants of 

Equations 3.3 and 3.4 for the change in texture and angularity, respectively.  
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Table 6. Scale and Shape Parameters of the Weibull Distribution. 

State Section ID 
Scale 

Parameter, 
λ 

Shape 
Parameter, 

k 

Coefficient 
of 

Correlation, 
R2 

Atlanta 

IH 30_ATL_SMA_ 5.47 1.03 0.94 
US 59_ATL_CMHB-F_FM 2792 5.20 1.11 0.96 
US 59_ATL_TY D_TRM 310 4.34 0.88 0.96 
US 59_ATL_TY D_SHELBY CO 
LINE 4.46 0.88 0.96 
US 271_ATL_CMHB-F_CAMP 5.20 1.21 0.95 

Austin 
IH 35 TOM Mix_AUS 4.96 1.44 0.97 
RM 3238_AUS_TOM 3.13 0.97 0.98 
US71_AUS_TOM 5.49 1.59 0.96 

Beaumont 

IH10_BMT_SMA-D 8.54 1.38 0.94 
SH 82_BMT_SMA-D 8.08 1.07 0.93 
SL 207_BMT_TY D 3.64 0.89 0.97 
US 69_BMT_PFC 10.26 2.45 0.99 
US 90_BMT_SMA-D 8.18 1.18 0.94 

Bryan 

IH 45_BRY_TY C 5.20 0.90 0.99 
IH 45_BRY_PFC 10.60 4.30 0.99 
SH 6_BRY_NEW PFC 10.95 3.23 0.99 
SH 6_BRY_OLD PFC 10.95 3.23 0.99 

Laredo IH 35_LRD_SMA_WEBB 7.96 1.57 0.96 
IH 35_LRD_SMA-C_LASALLE 9.82 1.56 0.95 

Lufkin US 59_LFK_PFC_Nacodoches 10.50 2.83 0.99 
SH 7_LFK_TY D_Houston 5.82 0.83 0.98 

Odessa 

IH 20_ODA_SP-C_Martin 5.10 1.03 0.98 
IH 20_ODA_SP-D_Midland_2012 4.76 0.99 0.98 
IH 20_ODA_SP-D_Midland_2013 4.79 0.97 0.97 
US 385_ODA_CMHB-F 5.39 1.65 0.98 
IH 20_ODA_PFC_2004 5.39 1.65 0.98 

San 
Antonio 

IH 10_SAT_SMA-D_BEXAR 9.37 1.41 0.92 
IH 10_SAT_TY C_BEXAR 5.10 0.73 0.97 
IH 37_SAT_PFC_BEXAR 10.51 2.99 0.99 

YKM IH 10_YKM_TY D_AUSTIN 3.96 0.85 0.96 
SH 36_YKM_TY D_AUSTIN 4.33 0.92 0.98 

Pharr US 77_PHR_TY D_Kennedy 3.96 0.79 0.98 
US 281_PHR_TY D_Hidalgo 3.81 0.77 0.97 

Houston SH 6 Bwp 2-1, Wp 2-1 Middle 4.85 0.93 0.98 
SH 6 Bwp 2-1 Bottom 2.89 0.69 0.96 
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Figure 39. Texture Indices of Sections in San Antonio. 

 

 

Figure 40. Angularity Indices of Sections in San Antonio. 
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Figure 41. Regression Constants for Aggregate Texture. 

 
Figure 42. Regression Constants for Aggregate Angularity. 
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indices (BMD and AMD105), which is the standard practice at TxDOT. Sixteen aggregate 

sources were used in the regression analysis to develop equations to predict initial measurements, 

terminal measurements, and rate of change of texture and angularity. SPSS software was used for 

the regression analysis. Equations 4.1 through 4.5 determine the regression parameters for 

texture loss using two measurements: BMD and BMD105.  

• Texture coefficients: 

 aTX + bTX = 0.999BMD + 0.438 (R2 = 1) (4.1) 

 aTX = 0.864AMD + 14.985 (R2 = 0.949) (4.2) 

 cTX =  0.492+TL
59.506−(7.106 x ARI)

 (R2 = 0.60) (4.3)  

 TL = BMD−AMD
AMD  (4.4) 

 ARI = 
𝐺𝐺𝐴𝐴𝐴𝐴/𝐵𝐵𝐴𝐴𝐴𝐴

1−(𝐺𝐺𝐴𝐴𝐴𝐴
𝐵𝐵𝐴𝐴𝐴𝐴)2

 (4.5) 

where 

 aTX + bTX = initial texture index. 

aTX = terminal texture index. 

cTX = rate of change in texture. 

BMD, AMD = texture index before and after 105 min polishing in Micro-Deval. 

TL, ARI = texture loss and aggregate roughness index, respectively. 

Equations 4.6 through 4.10 determine the regression parameters for angularity change 

based on two measurements: BMD and BMD105.  

• Angularity coefficients: 

  aGA + bGA = 0.999BMD + 2.646 (R2 = 1) (4.6) 

 aGA = 1.237AMD − 699.759 (R2 = 0.95) (4.7)  

 cGA =  1.891+TL
111.658+(1.081 x ARI)

 (R2 = 0.61) (4.8)  
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 TL = BMD−AMD
AMD  (4.9) 

 ARI = 
𝐺𝐺𝐴𝐴𝐴𝐴/𝐵𝐵𝐴𝐴𝐴𝐴

1−(𝐺𝐺𝐴𝐴𝐴𝐴
𝐵𝐵𝐴𝐴𝐴𝐴)2

 (4.10)  

where 

aGA + bGA = initial angularity index. 

aGA = terminal angularity index. 

cGA = rate of change in angularity. 

BMD, AMD = angularity index before and after 105 min polishing in Micro-Deval. 

TL, ARI = Angularity loss and aggregate roughness index, respectively. 

Table 7 presents the regression coefficients of Equations 3.3 and 3.4 that describe the 

change in aggregate texture and angularity for all test aggregates evaluated in HMA test sections.  
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Table 7. Regression Parameters of Aggregate Texture and Angularity. 

State Section ID 
Texture Parameters Angularity Parameters 

    
 

 

Atlanta 

IH 30_ATL_SMA_ 137.71 75.16 0.0200 2008 702.81 0.0190 
US 59_ATL_CMHB-F_FM 
2792 224.32 115.12 0.0190 2292 750.52 0.0292 

US 59_ATL_TY D_TRM 310 218.13 122 0.0220 2267 786 0.0159 
US 59_ATL_TY D_SHELBY 
CO LINE 219.21 120.91 0.0190 2265 786.41 0.0159 

US 271_ATL_CMHB-
F_CAMP 181.81 174.12 0.0175 1902 583.22 0.0273 

Austin 
IH 35 TOM Mix_AUS 226.45 103.27 0.0176 1565.35 1063.03 0.0206 

RM 3238_AUS_TOM 231.39 100.01 0.0173 1545.21 1104.08 0.0208 

US71_AUS_TOM 226.28 103.38 0.0176 1566.02 1061.67 0.0206 

Beaumont 

IH10_BMT_SMA-D 272.21 43.37 0.0180 2587.22 429.82 0.0175 

SH 82_BMT_SMA-D 241.11 136.72 0.0187 2586.64 503.47 0.0178 

SL 207_BMT_TY D 191.83 62.16 0.0230 1919 734 0.0296 

US 69_BMT_PFC 201.37 58.70 0.0172 2110.16 536.56 0.0179 

US 90_BMT_SMA-D 188.64 84.95 0.0177 1607.38 1029.71 0.0204 

Bryan 

IH 45_BRY_TY C 190.07 93.70 0.0181 1825.43 885.69 0.0195 

IH 45_BRY_PFC 129.29 64.01 0.0181 1307.11 1404.99 0.0227 

SH 6_BRY_NEW PFC 230.85 100.36 0.0168 1547.44 1099.53 0.0208 

SH 6_BRY_OLD PFC 230.85 100.36 0.0168 1547.44 1099.53 0.0208 

Laredo 
IH 35_LRD_SMA_WEBB 176.86 64.22 0.0175 1466.88 1254.77 0.0217 
IH 35_LRD_SMA-
C_LASALLE 227.46 216.73 0.0171 1753.70 1118.91 0.0207 

Lufkin US 59_LFK_PFC_Nacodoches 231.84 115.82 0.0230 2300 786.20 0.0163 

SH 7_LFK_TY D_Houston 223.05 77.28 0.0170 2010.51 852.90 0.0193 

Odessa 

IH 20_ODA_SP-C_Martin 238.21 128.42 0.0190 1769 974.71 0.0179 
IH 20_ODA_SP-
D_Midland_2012 219.52 122.51 0.0172 1706 1028 0.0167 

IH 20_ODA_SP-
D_Midland_2013 226.11 116.22 0.0230 1706 1028 0.0167 

US 385_ODA_CMHB-F 282.19 145.36 0.0179 1774.20 993.70 0.0201 

IH 20_ODA_PFC_2004 282.19 145.36 0.0179 1774.20 993.70 0.0201 

San Antonio 
IH 10_SAT_SMA-D_BEXAR 172.96 105.33 0.0185 1252 1344 0.0207 

IH 10_SAT_TY C_BEXAR 133.52 68.87 0.0177 1576; 1083 0.0172 

IH 37_SAT_PFC_BEXAR 231.51 46.65 0.0178 1431 1223 0.0213 

YKM IH 10_YKM_TY D_AUSTIN 137.43 128.24 0.0180 1279 1374 0.0226 

SH 36_YKM_TY D_AUSTIN 66.84 51.81 0.0177 1558 1215 0.0277 

PHARR US 77_PHR_TY D_Kennedy 199.01 110.46 0.0188 2622.42 279.72 0.0166 

US 281_PHR_TY D_Hidalgo 177.10 121.52 0.0160 2615 189.83 0.0197 

Houston 
SH 6 Bwp 2-1, Wp 2-1 Middle 239.40 74.46 0.0172 2612.31 590.57 0.0182 

SH 6 Bwp 2-1 Bottom 239.41 74.46 0.0172 2612.31 590.57 0.0182 

 

𝑎𝑎𝑇𝑇𝑇𝑇 𝑏𝑏𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑇𝑇 𝑎𝑎𝐺𝐺𝐺𝐺 𝑏𝑏𝐺𝐺𝐺𝐺 𝑐𝑐𝐺𝐺𝐺𝐺 
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DEVELOPMENT OF PREDICTIVE MODEL FOR IFI 

Masad et al. (2010) and Kassem et al. (2013) developed IFI prediction models. The 

parameters for the IFI model developed by Masad et al. (2010) (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚), 

presented in Equations 2.7 through 2.9, relied on factors that describe aggregate texture and its 

resistance to abrasion and polishing, aggregate gradation, and number of polishing cycles in the 

laboratory. The parameters for the IFI model (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) developed by 

Kassem et al. (2013), presented in Equations 2.11 through 2.13, used the same factors in addition 

to factors that describe the aggregate angularity. Kassem et al. (2013) demonstrated the measured 

IFI (Equation 2.2) and predicted IFI (Equation 2.6) using the parameters presented in Equations 

2.11 through 2.13; Kassem et al.’s IFI model had better correlation because aggregate angularity 

is considered in addition to aggregate texture.  

In this study, the models proposed by Kassem et al. (2013) were used and calibrated to fit 

the wide range of aggregates examined in this study. The model developed by Kassem et al. 

(2013) was based on a limited number of aggregate types (soft limestone, intermediate 

limestone, and sandstone). The study herein evaluated about 56 different aggregate types. The 

researchers used SPSS software in the IFI model development. Similar to Kassem et al.’s model 

(2013), the IFI model in this study included three analytical models for its parameters (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). The 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 presents the terminal IFI, the 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 presents the initial 

IFI, while 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 presents the rate of change of the IFI. Equations 4.11 through 4.13 show the 

modified models. 

 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =  49.3144+𝜆𝜆
351.289−0.00193(𝐺𝐺𝐴𝐴𝐴𝐴)2

  (4.11) 

 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.33 ∗ ln �1.43757∗(𝑎𝑎𝑇𝑇𝑇𝑇+𝑏𝑏𝑇𝑇𝑇𝑇)+46.8933∗𝜆𝜆+333.491∗𝑘𝑘
2.42031∗(𝑎𝑎𝐺𝐺𝐺𝐺+𝑏𝑏𝐺𝐺𝐺𝐺)

� + 1.00801 (4.12) 

 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 0.018 + 1.654𝐶𝐶𝑇𝑇𝑇𝑇 + 1.346𝐶𝐶𝐺𝐺𝐺𝐺 (4.13) 

where 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = terminal IFI. 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = initial IFI. 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = rate of change in IFI. 

λ, k = scale and shape parameters of Weibull distribution, respectively. 
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AMD = the texture after 150 min in Micro-Deval. 

𝑎𝑎𝑇𝑇𝑇𝑇, 𝑏𝑏𝑇𝑇𝑇𝑇 = regression constants for texture. 

 𝑎𝑎𝐺𝐺𝐺𝐺, 𝑏𝑏𝐺𝐺𝐺𝐺 = regression constants for angularity. 

𝐶𝐶𝑇𝑇𝑇𝑇 = rate of change in texture. 

𝐶𝐶𝐺𝐺𝐺𝐺 = rate of change in angularity. 

Equation 2.6 is a function of the number of polishing cycles in laboratory (N). Since the 

IFI models (Equations 4.11 to 4.13) were revised based on the traffic levels, a relationship 

developed by Masad et al. (2010) was used to convert the traffic level to a corresponding number 

of polishing cycles (N). This relationship is presented in Equation 4.14.  

 N = TMF x 10
1

A+B x cmix+ C
cmix (4.14) 

where 

N = number of polishing cycles in thousands. 

A, B and C = regression coefficients (−0.452, −58.95, 5.843 × 10−6), respectively. 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = rate change in IFI. 

TMF = traffic multiplication factor. 

The TMF is calculated using Equation 4.15: 

 TMF = Days between construction and field testing x adjusted traffic
1000

 (4.15) 

The adjusted traffic is calculated using Equation 4.16. 

 Adjusted traffic = 𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇𝑚𝑚 (100−𝑃𝑃𝑇𝑇𝑇𝑇)𝑚𝑚 𝐴𝐴𝐷𝐷𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇
100

 +  𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇 𝑚𝑚 𝑃𝑃𝑇𝑇𝑇𝑇 x 𝐴𝐴𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚 20 
100

  (4.16) 

where 

AADT = average annual daily traffic for each section. 

𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇 = design lane factor of AADT(depends on number of lanes and urban/rural condition). 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 = design lane factor of trucks (depends on number of lanes and urban/rural condition). 

PTT = percent truck traffic. 
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Figure 43 shows the correlation between the predicted and measured IFI. The data points 

in Figure 43 include the IFI measurements at the wheel path and at the shoulder or between the 

wheel path. Higher r-squared values indicate higher correlations between the predicted and 

measured IFI.  

 
Figure 43. Relationship between Predicted and Measured IFI. 

ANALYSIS OF MEAN PROFILE DEPTH  

The researchers also developed a predictive model for MPD as a function of aggregate 

gradation and polishing cycles (or traffic level). The purpose of this model was to predict MPD if 

such information is not available for a given mixture. Nonlinear regression was conducted using 

the SPSS software, and the model is presented in Equation 4.17. Figure 44 shows the correlation 

between the measured MPD and the predicted MPD (r-squared = 0.74). Equation 4.17 indicates 

that the MPD decreases with traffic, and coarser mixtures have higher MPD.  

 MPD = (λ/34.180)-(0.398/k) + (k0.416) - 0.003N (4.17) 

R² = 0.6685
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where 

λ, k = Weibull distribution parameters for aggregate gradation. 

N = number of polishing cycles in thousands. 

 

Figure 44. Relationship between Measured and Calculated MPD Values. 

SKID NUMBER ANALYSIS  

The researchers used the developed IFI models (Equation 2.6 and Equations 4.11 through 

4.13) to predict SN(50) using Equation 3.6. Equation 4.18 presents a modified form of Equation 

3.6 to account for the difference between calculated and measured skid numbers in this study.  

 SN(50) = 4.81 + 140.32 (IFI – 0.045) 𝑒𝑒
−20
𝑆𝑆𝑝𝑝  (4.18) 

where 

IFI: predicted international friction index. 

𝑆𝑆𝑝𝑝: speed constant parameter. 

R² = 0.7411
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The predicted SN(50) values calculated using Equation 4.18 were compared to the SN 

measured in the field using a skid trailer at 50 mph. Figure 45 shows the correlation between the 

measured and predicted SN. Overall, a good correlation was found between the calculated and 

measured skid resistance. Although the r-squared value is 0.63, such correlation is considered 

good given the influence of other factors affecting skid resistance (e.g., geometry of roadway, 

climatic condition, construction quality). Construction quality can affect the surface 

characteristics in many ways, such as segregation, bleeding of asphalt, and rough surface due to 

uneven paving. Asphalt bleeding can significantly reduce the skid number; however, it is 

associated with poor construction practice.  

 
Figure 45. Relationship between the Measured and Predicted SN. 

The researchers further investigated the effect of the traffic level on skid resistance. 

Traffic level is categorized in four groups, as presented in Table 8. The traffic level is expressed 

as TMF, depicted in Equation 4.15. Figure 46 shows the range of skid number values at different 

traffic levels. In general, the SN decreases with the increase in the traffic level. A higher traffic 

level causes more polishing to the surface of asphalt pavements and thus reduces SN.  

R² = 0.6297
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Table 8. Traffic Groups Based on TMF. 

Level Traffic Multiplication Factor 

Low 0–15,000 
Medium 15,000–40,000 

High 40,000–90,000 
Very High > 90,000 

 

 

 
Figure 46. Measured Skid Numbers in Terms of Traffic Level. 

HMA SKID RESISTANCE MODEL SENSITIVITY ANALYSIS  

This section discusses the researchers’ examination of the sensitivity of the HMA skid 

resistance model to various factors (e.g., aggregate gradation, type, and traffic level) that affect 

SN.  

Effect of Mixture Gradation  

Four mixtures with different aggregate gradations were evaluated: Type C dense-graded 

mixture, Type D dense-graded mixture (finer than Type C), PFC, and SMA-C. The performance 

of these mixtures in terms of skid number was assessed using the developed model. All variables 

(e.g., traffic level, aggregate characteristics) were held constant and only the aggregate gradation 
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was varied. Figure 47 shows that the mixtures with coarse aggregate gradations (such as PFC and 

SMA-C) had higher skid numbers. The coarse aggregate gradation provides higher macrotexture 

and thus yields higher SN.  

 

Figure 47. Effect of Mixture Gradation on the Skid Number. 

Effect of Traffic Level  

Figure 48 shows the effect of different traffic levels of AADT on skid resistance. The 

results showed that the skid number decreases with traffic level, as expected; however, the SN 

had a steep slope or reduction at higher traffic levels. Pavement surface experiences most 

polishing at higher traffic levels, which adversely affects skid resistance. 
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Figure 48. Effect of AADT on the Skid Number. 

Effect of Aggregate Type  

Four different aggregate types (e.g., limestone, sandstone, dolomite, and different 

combinations) were examined. The traffic level and aggregate gradation were fixed. Figure 49 

demonstrates that HMA mixtures prepared with aggregates with rough texture such as sandstone 

provide a higher skid number and lower rate of skid reduction than HMA mixtures with soft rock 

such as limestone. Thus, the recommendation is to use rough aggregates in asphalt pavements 

subjected to high traffic levels. Blending of aggregates that have a higher polishing resistance 

with local aggregates is recommended when transporting of good, quality aggregate is prohibited 

by cost concern.  
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Figure 49. Effect of Aggregate Texture on the Skid Number. 

SUMMARY 

This chapter discussed the steps followed by the researchers in analyzing the field and 

laboratory data and developing the IFI and SN models. The developed prediction model 

describes the skid resistance of asphalt pavements as a function of aggregate shape 

characteristics (texture and angularity), aggregate gradation, and aggregate resistance to 

polishing and abrasion, and traffic level. The major difference with this model to the one 

developed by Masad et al. (2010) is the inclusion of aggregate angularity parameters. A good 

correlation was observed between predicted and measured SN. In addition, different factors 

affecting skid resistance were investigated. Coarse aggregate gradation with rough texture 

provided higher skid resistance compared to aggregates with fine gradation and smooth texture. 

Also, a steep reduction in the skid number was observed at higher traffic levels. Higher truck 

traffic accelerated the polishing of pavement at even faster rates. The model is capable of 

predicting skid resistance over the course of a roadway’s service life.  
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CHAPTER 5: 
DATA ANALYSIS AND RESULTS FOR SEAL COAT TEST SECTIONS 

In this chapter, the researchers performed similar steps described in Chapter 4 to analyze 

the test results and develop a skid prediction model for the seal coat surface. Figure 37 shows a 

flowchart of key parameters examined and used in developing the predictive models of the skid 

resistance of seal coat surfaces. The researchers developed mathematical indices to evaluate the 

aggregate resistance to abrasion and polishing and to describe the aggregate gradation. In 

addition, the researchers analyzed the field measurements and developed models to describe the 

IFI and SN.  

ANALYSIS OF AGGREGATE GRADATION 

The cumulative two-parameter (λ, κ) Weibull distribution (Equation 3.5) was used to 

describe the aggregate gradation used in seal coat test sections. There are three aggregate grades 

of seal coat (Grade 3, Grade 4, and Grade 5). Each grade stands for a different aggregate size, 

with Grade 3 being the coarsest. Similar to its use with HMA, the MATLAB program was used 

to fit the Weibull function to the gradation of seal coat aggregate sizes. The scale (λ) and shape 

parameters (κ) were calculated by fitting the aggregate gradation to the cumulative two-

parameter Weibull distribution. Table 9 presents the scale (λ) and shape (κ) and parameters for 

the aggregate gradations examined for developing the seal coat skid prediction model. Figure 50 

shows an example of aggregate gradation of three seal coat sizes. The x-axis represents the 

aggregate size in millimeters, and the y-axis represents the cumulative percent passing of the 

aggregate. As one can see from Table 9 and Figure 50, the Weibull distribution function fits very 

well with the aggregate gradation (r-squared = 0.99).  

Table 9. Scale and Shape Parameters of the Weibull Distribution. 

Aggregate Grade 
No. of 

Sections λ κ 𝑹𝑹𝟐𝟐 
Grade 3 11 12.24 8.80 0.99 
Grade 4 19 9.17 5.14 0.99 
Grade 5 2 5.55 5.37 0.99 
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Figure 50. Weibull Distribution Function for Different Aggregate Sizes. 

ANALYSIS OF AGGREGATE TEXTURE AND ANGULARITY  

A procedure similar to the procedure described in Section 4.2 was used in quantifying the 

aggregate shape characteristics. The AIMS was used to measure the texture and angularity before 

and after the Micro-Deval abrasion test. Figure 51 and Figure 52 show examples of the change in 

texture and angularity of seal coat aggregates due to abrasion and polishing at three stages: 

BMD, AMD105, and 180 min after polishing in the Micro-Deval. Both texture and angularity 

decreased due to abrasion and polishing. As mentioned earlier, the current practice at TxDOT is 

to measure the aggregate shape characteristics before and after the Micro-Deval abrasion test (0 

and 105 min). The researchers considered both procedures when developing analytical models to 

describe the change in angularity and texture of aggregates used in seal coat. Figure 53 and 

Figure 54 show examples of the regression constants of the texture and angularity, respectively.  

The researchers developed models to predict the regression constants in Equations 3.3 

and 3.4 for the aggregates tested before and after 105 min of polishing in the Micro-Deval (BMD 

and AMD105). A total number of 19 aggregates were used in the regression analysis to develop 

equations to predict initial measurements, terminal measurements, and rate of change of texture 

and angularity. Also, SPSS software was used to conduct the regression analysis. Equations 5.1 

through 5.10 determine the regression parameters for texture and angularity loss using two 
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measurements: BMD and AMD105. Equations 5.1 through 5.10 were developed based on the 

aggregates used in seal coat test sections evaluated in this study, while Equations 4.1 through 

4.10 were developed based on the aggregates used in HMA test sections evaluated in this study. 

In the meantime, the researchers recommend measuring the texture and angularity at three 

different time points during Micro-Deval polishing for an accurate characterization.  

 
Figure 51. Texture Indices of Sections in Odessa. 
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Figure 52. Angularity Indices of Sections in Odessa. 

 
Figure 53. Regression Constants for Aggregate Texture. 
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TX(t) = aTX + bTX* EXP (-cTX* t) 
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Figure 54. Regression Constants for Aggregate Angularity. 

 
• Texture model coefficients: 

 aTX + bTX = BMD + 0.134 (R2 = 1) (5.1) 

 aTX = 1.011AMD − 17.918 (R2 = 0.95) (5.2) 

 cTX =  1.555+TL
126.995−(18.174 x ARI)

 (R2 = 0.58) (5.3) 

 TL = BMD−AMD
AMD  (5.4) 

 ARI = 
𝐺𝐺𝐴𝐴𝐴𝐴/𝐵𝐵𝐴𝐴𝐴𝐴

�1−(𝐺𝐺𝐴𝐴𝐴𝐴
𝐵𝐵𝐴𝐴𝐴𝐴)2

 (5.5) 

where 

 aTX + bTX = initial texture index. 

aTX = terminal texture index. 

cTX = rate of change in texture. 

BMD, AMD = texture index before and after 105 min of polishing in Micro-Deval. 

TL, ARI = texture loss and aggregate roughness index, respectively. 
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• Angularity model coefficients: 

  aGA + bGA = 0.994BMD + 21.084 (R2 = 1) (5.6) 

 aGA = 1.232AMD − 648.34 (R2 = 0.94) (5.7) 

 cGA =  1.292+TL
−9.77+(58.155 x ARI)

 (R2 = 0.61) (5.8) 

 TL = BMD−AMD
AMD  (5.9) 

 ARI = 
𝐺𝐺𝐴𝐴𝐴𝐴/𝐵𝐵𝐴𝐴𝐴𝐴

1−(𝐺𝐺𝐴𝐴𝐴𝐴
𝐵𝐵𝐴𝐴𝐴𝐴)2

 (5.10)  

where 

aGA + bGA = initial angularity index. 

aGA = terminal angularity index. 

cGA = rate of change in angularity. 

BMD, AMD = angularity index before and after 105 min of polishing in Micro-Deval. 

TL, ARI = angularity loss and aggregate roughness index, respectively. 

Table 10 summarizes the regression coefficients of aggregate texture and angularity 

evaluated in seal coat test sections.  
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Table 10. Regression Parameters of Aggregate Texture and Angularity. 

State Section ID 
Texture Parameters Angularity Parameters 

 
 

 
  

 

Pharr 

US 77_PHR_GR3_Cameron 211.61 287.86 0.0278 1707 1223 0.0160 

US 281_PHR_GR3_Hidalgo 312.17 269.61 0.0204 1285.62 1309.54 0.0422 

US 281_PHR_GR3_Brooke_TRM 752 211.63 287.84 0.0278 1707 1223 0.0160 

US 281_PHR_GR3_Brooke_TRM 722 312.17 269.61 0.0204 1285.62 1309.54 0.0422 

Dallas-FW 
US 377_FTW_GR3_Hood 99.72 120.31 0.0195 1426 1253 0.0220 

US 377_FTW_GR3_Tarrant 99.72 120.31 0.0195 1426 1253 0.0220 

SH 199_FTW_GR3_Parker 99.35 95.90 0.0197 1379.59 1275.29 0.0388 

Brownwood 

US 67_BWD_GR4_Coleman 99.72 120.31 0.0195 1426 1253 0.0220 

US 67_BWD_GR4_Brown 99.72 120.31 0.0195 1426 1253 0.0220 

US 183_BWD_GR4_Eastland 113.72 135.62 0.0178 1484 1257 0.0204 

US 377_BWD_GR4_Brown 99.72 120.32 0.0195 1426 1253 0.0220 

San 
Antonio 

US 90_SAT_GR4_Bexar 81.15 66.65 0.0210 1883 780.87 0.0159 

FM 1518_GR3_Bexar 232 34.76 0.0296 1477 1188 0.0161 

SH 16_SAT_GR4_Atascosa_TRM 626 419.22 43.43 0.0168 1931 1213 0.1650 
SH 16_SAT_GR 4_Atascosa_TRM 
642 312.17 269.61 0.0204 1285.62 1309.54 0.0422 

YKM SH 36_YKM_GR 3_Austin 75.97 80.45 0.0177 1721 926.22 0.0195 

Lufkin 

US 59_LFK_GR3_Angelina 433.34 125.42 0.0176 1955.98 1005.25 0.0225 

US 69_LFK_GR4_Angelina 221.09 62.57 0.0176 1011.73 972.41 0.0273 

US 287_LFK_GR4_Trinity 221.09 62.57 0.0176 1011.73 972.41 0.0273 

FM 2213_LFK_GR5_San Augustine 221.09 62.57 0.0176 1011.73 972.41 0.0273 

US 59_LFK_GR4_Shelby 232 34.76 0.0168 1477 1188 0.0167 

Odessa 

LP 338_ODA_GR4_Ector 287.64 139.91 0.0169 1916 851.62 0.0201 

US 385_ODA_GR4_Crane 86.28 86.17 0.0181 1348 1323 0.0215 

US 385_ODA_GR4_Ector 86.28 86.17 0.0181 1348 1323 0.0215 

Beaumont 

SH 82_BMT_GR4_Jefferson 221.09 62.57 0.0176 1011.73 972.41 0.0273 

FM 365_BMT_GR4_Jefferson 221.09 62.57 0.0176 1011.73 972.41 0.0273 

FM 105_BMT_GR4_Orange 221.09 62.57 0.0176 1011.73 972.41 0.0273 

Atlanta 

US 80_ATL-GR4_Harrison 221.09 62.57 0.0176 1011.73 972.41 0.0273 

US 59_ATL_GR3_Cass_RG_TRM238 156.93 34.44 0.0182 2208 483 0.0181 

SH 77_ATL_GR4_Cass_TRM 745_SS 150.62 93.79 0.0179 1726 855.24 0.0195 
SH 77_ATL_GR4_Cass_TRM 
720_RG 115 51.46 0.0169 2313 589.66 0.0176 

 

DEVELOPMENT PREDICTIVE MODEL FOR IFI FOR SEAL COAT  

Similar to the IFI models developed for HMA in Section 4.3, IFI models were also 

developed for seal coat. These models were used to describe parameters of IFI (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 +

𝑎𝑎𝑇𝑇𝑇𝑇 𝑏𝑏𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑇𝑇 𝑎𝑎𝐺𝐺𝐺𝐺 𝑏𝑏𝐺𝐺𝐺𝐺 𝑐𝑐𝐺𝐺𝐺𝐺 
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𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) of Equation 2.6. There are three models: one for initial IFI (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚), one 

for terminal IFI (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚), and one for the rate of change in IFI (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). These models incorporate 

parameters that describe aggregate gradation, aggregate shape characteristics (texture and 

angularity) and its resistance to abrasion and polishing. These models provide good correlation 

between predicted IFI (Equation 2.6) and measured IFI (Equation 2.2). These models are 

presented in Equations 5.11 through 5.13. Equation 4.14 was used to convert the traffic level to a 

corresponding number of polishing cycles (N) since Equation 2.6 is a function of the number of 

polishing cycles in the laboratory (N).  

 

 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =  40.493+𝜆𝜆
330−0.0011(𝐺𝐺𝐴𝐴𝐴𝐴)2

 (5.11) 

 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.4 ∗ ln �1.43757∗(𝑎𝑎𝑇𝑇𝑇𝑇+𝑏𝑏𝑇𝑇𝑇𝑇)+46.8933∗𝜆𝜆+3343.491∗𝑘𝑘
2.02031∗(𝑎𝑎𝐺𝐺𝐺𝐺+𝑏𝑏𝐺𝐺𝐺𝐺)

� (5.12) 

 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 2.654𝐶𝐶𝑇𝑇𝑇𝑇 + 1.5𝐶𝐶𝐺𝐺𝐺𝐺 (5.13) 

where 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = terminal IFI. 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = initial IFI. 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = rate of change in IFI. 

λ, k = scale and shape parameters of Weibull distribution. 

AMD = the texture after 150 min in Micro-Deval. 

𝑎𝑎𝑇𝑇𝑇𝑇, 𝑏𝑏𝑇𝑇𝑇𝑇 = regression constants for texture. 

𝑎𝑎𝐺𝐺𝐺𝐺, 𝑏𝑏𝐺𝐺𝐺𝐺 = regression constants for angularity. 

𝐶𝐶𝑇𝑇𝑇𝑇 = rate of change in texture. 

𝐶𝐶𝐺𝐺𝐺𝐺 = rate of change in angularity. 

Figure 55 shows the correlation between the predicted and measured IFI. The data points 

in Figure 55 include the IFI measurements at the wheel path and at the shoulder or between the 

wheel path. Good correlation was found between the predicted IFI and measured IFI (r-squared 

of 0.68). Such correlation is considered fair since other factors may contribute to the change in 

skid resistance of seal coat over time. Such factors may include bleeding, raveling, and the like.  
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Figure 55. Relationship between Predicted and Measured IFI. 

ANALYSIS OF MEAN PROFILE DEPTH  

The researchers also developed a predictive model for MPD as a function of seal coat 

size and polishing cycles. The purpose of this model was to predict MPD of seal coat surfaces if 

such information is not available. Nonlinear regression was conducted using SPSS software, and 

the model is presented in Equation 5.14. Figure 56 shows the correlation between the measured 

MPD and the predicted MPD (r-squared = 0.53). Such correlation is considered fair given the 

wide range of seal coat sizes used in the field. Equation 5.14 demonstrated that MPD decreases 

with traffic, and coarser seal coat has a higher MPD. 

 MPD = (λ/5.403) + (3.491/k) + (k0.104) + N−0.47 – 2.594 (5.14) 

where 

λ, k = Weibull distribution parameters for aggregate gradation. 

N = number of polishing cycles in thousands. 

R² = 0.6773
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Figure 56. Relationship between Measured and Calculated MPD Values. 

SKID NUMBER ANALYSIS 

The researchers used the developed IFI models (Equation 2.6 and Equations. 5.11 

through 5.13) to predict SN (50) using Equation 3.6. Equation 5.15 presents a modified form of 

Equation 3.6 to account for the difference between calculated and measured skid numbers of seal 

coat test sections evaluated in this study.  

 SN(50) = 4.81 + 140.32 (IFI – 0.045) 𝑒𝑒
−20
𝑆𝑆𝑝𝑝  (5.15) 

where 

IFI = predicted international friction index. 

𝑆𝑆𝑝𝑝 = speed constant parameter. 

The predicted SN(50) values calculated using Equation 5.15 were compared to the SN 

measured in the field using a skid trailer at 50 mph. Figure 57 shows the relationship between the 

measured SN values in the field and the predicted SN using Equation 5.15. A fair relationship 
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was found (r-squared = 0.58). Such correlation is considered good for the seal coat surfaces since 

the skid performance of seal coat is highly affected by the quality of construction. For example, 

the researchers noticed that a number of test sections had bleeding.  

 
Figure 57. Relationship between Measured and Predicted SN. 

The researchers investigated the effect of the traffic level on the skid resistance of seal 

coat test sections. The traffic level is categorized in four groups, as presented in Table 11. The 

traffic level is expressed as TMF, which is presented in Equation 4.15.  

Figure 58 shows the range of skid number values for seal coat test sections at different 

traffic levels. Seal coat test sections that experience low traffic level had a higher SN, and in 

general, the SN decreases with increase in traffic levels. Higher traffic levels cause more 

polishing and steep skid reduction.  
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Table 11. Traffic Groups Based on TMF. 

Level Traffic Multiplication Factor 
Low 0–5,000 

Medium 5,000–20,000 
High 20,000–40,000 

Very High > 40,000 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
  

 
 

 

 

Figure 58. Measured Skid Numbers at Different Traffic Level. 

SEAL COAT SKID RESISTANCE MODEL SENSITIVITY ANALYSIS  

The researchers examined the sensitivity of the seal coat skid resistance model to various 

factors (e.g., seal coat size, aggregate type, and traffic level) that affect SN. 

Effect of Seal Coat Size 

Three different sizes of seal coat were examined (Grade 3, Grade 4, and Grade 5). All 

variables (e.g., traffic level, aggregate characteristics) were held constant, and only the seal coat 

aggregate size was varied. Figure 59 shows the SN with times for the three different seal coat 
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grades. As expected, Grade 3 had a higher SN compared to Grade 4 and Grade 5. Grade 3 

provides higher macrotexture and thus yields a higher SN than the other grades.  

 
Figure 59. Effect of Seal Coat Aggregate Size on the Skid Number. 

Effect of Traffic Level 

Figure 60 shows the effect of different traffic levels on the skid resistance of seal coat. 

The results demonstrated that the SN decreases as the traffic increases. Higher traffic level is 

associated with a steep reduction in the SN since it causes significant polishing in a relatively 

short time.  
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Figure 60. Effect of AADT on the Skid Number. 

Effect of Aggregate Type  

Four different aggregate types/sources (Limestone 1, Limestone 2, sandstone, and 

igneous rock) were examined. Other variables, including the traffic level and aggregate 

gradation, were held constant. Figure 61 demonstrates that seal coat constructed with rough 

aggregates such as sandstone, which had better resistance to abrasion and polishing, provides a 

higher skid number and lower rate of skid reduction than seal coat surfaces constructed with 

relatively softer rocks (e.g., Limestone 1).  

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14

SK
ID

 N
U

M
B

E
R

 (S
N

)

YEARS

5000 10000 20000 50000



87 

 
Figure 61. Effect of Aggregate Texture on the Skid Number. 

SUMMARY 

This chapter discussed the development of the IFI and SN models for seal coat. The 

developed prediction model describes the skid resistance of seal coat as a function of seal coat 

aggregate size (gradation), aggregate shape characteristics (texture and angularity) and its 

resistance to polishing and abrasion, and traffic level. A fair correlation was found between 

predicted and measured SN. In addition, different factors affecting the skid resistance of seal coat 

were investigated. Grade 3 was found to yield higher MPD and SN than other grades. Seal coat 

constructed with rough aggregates had higher SN than seal coat with smooth aggregates. Also, 

higher traffic levels caused a steep reduction in the skid resistance of seal coat. The model is 

capable of predicting the skid resistance of seal coat over the course of its service life. 
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CHAPTER 6: 
A SYSTEM FOR PREDICTING SKID NUMBER USING DESKTOP 

APPLICATION  

Chapter 4 and 5 document the skid prediction models for asphalt mixture and seal coat 

surface, respectively. Both of these models feature similar inputs and equations with only minor 

variations. In order to simplify the calculation of predicted skid numbers, a desktop computer 

application was developed based on the macro tool developed earlier under Research Project 

0-5627.  

A computer application was developed using Access-based VBA language to execute the 

steps needed to calculate the skid resistance of asphalt pavement as a function of traffic. This 

section describes the program and the steps needed to calculate the pavement skid resistance for 

both asphalt mixture surface and seal coat surface. 

In one folder named Application, the application has two Microsoft Access files: 

application file and data file. Once the user opens the application file by double clicking, he/she 

will notice the first page (Figure 62). This “About” page describes the function of the SAAP 

application. On the next page (Figure 63), the user needs to input a new project name or select 

one of the existing projects in order to proceed to the next window. Next, the user selects the 

type of pavement surface (Figure 64)—asphalt mixture or surface treatment. Depending on the 

surface-type selection, the application uses the appropriate prediction model. The inputs for both 

asphalt mixture and seal coat surface are very similar. In the next step, (Figure 65), the mixture 

gradation is inputted to the application. The user can either enter the gradation or select one of 

the standard mixture gradations used in the state of Texas. Similarly, if surface treatment is 

selected as the pavement surface, the user can either enter the gradation or select the standard 

aggregate grade. If the user selects to enter the gradation manually by selecting an <input 

gradation> radio button, a separate window pops up (Figure 66) where the amount of percent 

passing for selected sieves are entered. The user can select any number of sieves (minimum four) 

and enter the percent passing values for each selected sieve. This information is used to calculate 

the scale and shape factors (λ and κ) of the combined gradation. 
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Figure 62. Initial Window of the Program. 

 
 

 
Figure 63. Project Name Input. 
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Figure 64. Pavement Surface Type Input. 

 

 
Figure 65. Choice of Mixture Type. 
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Figure 66. Manual Aggregate Gradation Input. 

In the next few steps, the aggregate texture and angularity values measured using AIMS 

are entered. The window shown in Figure 67 provides the options to input either the texture (and 

angularity) measured at two points (before polishing and after polishing for 105 minutes in the 

Micro-Deval) or the texture (and angularity) measured at three points (before polishing, after 

polishing for 105 min, and 180 min in the Micro-Deval). The use of three data points provides a 

more accurate estimation of aggregate resistance to polishing. This step will be followed by the 

appearance of windows to enter the texture data of aggregates from one or more sources. The 

user can select up to three aggregate sources used in the mixture. As shown in Figure 68, users 

can input the texture value of the component aggregate source(s). In the same window, the user 

needs to input the percentage ratio of each aggregate source relative to the combined gradation 

and the percent retained on the No. 4 sieve for each of the sources. This information is required 

to calculate the weighted average of texture and angularity of combined gradation when two or 

more aggregate sources are used.  
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Figure 69 shows the window that pops up if the user opts for three data points (Figure 

67). Similar to Figure 68, the user inputs the ratio of aggregate in combined gradation and 

amount of percent retained on the No. 4 sieve for each source as well as their texture data 

measured by AIMS at three different polishing levels.  

For the next step, the user inputs aggregate angularity data similar to aggregate texture 

data. Figure 70 or Figure 71 pops up depending on whether the user selected two data points or 

three data points for the texture/angularity measurement (Figure 67).  

 
Figure 67. Selection of AIMS Test Data Points. 

 
Figure 68. Aggregate Texture Input for Two Data Points. 
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Figure 69. Aggregate Texture Input for Three Data Points. 

 

 
Figure 70. Aggregate Angularity Input for Two Data Points. 
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Figure 71. Aggregate Angularity Input for Three Data Points. 

Once the user enters the aggregate angularity data and clicks the Next button, a new 

window (Figure 72) appears. At this stage, the user enters the mean profile depth of the 

pavement. There are two options: the user can enter the MPD value or let SAAP estimate the 

MPD values. The user can input the measure of mean profile depth for that particular mixture or 

grade (seal coat). It is preferred to have the measurement done at the initial stage of the 

pavement’s service life. The SAAP projects the reduction of the MPD throughout its service life 

based on the traffic count. Alternately, the user can select the SAAP estimation option. That way, 

SAAP estimates the MPD values based on the shape and scale factors calculated from combined 

aggregate gradation and traffic count.  
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Figure 72. Mean Profile Depth Input. 

After entering the MPD information, the user inputs the highway configuration and 

traffic data (Figure 73). In this step, users enter the information about the highway type 

(rural/urban or divided/undivided), the total number of through traffic lanes in each direction, the 

total AADT for both directions (for undivided highway, K roadbed) or the AADT for each 

direction (for divided highway, R or L roadbed), and the percent truck traffic (Figure 73). Using 

this information, the application calculates the adjusted AADT for the design lane. Again, the 

adjusted AADT is used to calculate the TMF. Please note that the current application does not 

consider the traffic growth factor. 

When the user clicks the Next button on Figure 73, the software generates the skid 

number for 15 years at 1-year intervals starting from year one. 
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Figure 73. Highway Type and Traffic Data Input. 

The next step (Figure 74) in the software provides options on how the user wants to see 

the output. In this window, there are three options for the display of results. The first option is to 

obtain a prediction of skid resistance as a function of years in service (up to 15 years). This chart 

also contains the project and prediction (iteration) number in the top left corner. The user can 

also print the chart by clicking the Print tab (Figure 75).  
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Figure 74. Output Data Display Options. 
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Figure 75. Skid Prediction Chart for 15 Years. 

The second option is to get a classification of the pavement section based on its skid 

resistance after a specified number of years and corresponding threshold values. If the user 

selects “Classify an Asphalt Pavement Section Based on Its Skid Resistance,” a window (Figure 

76) pops up in which the user needs to input some additional information required for pavement 

classification. These input parameters are: 

• The length of service life in years for which a pavement section will be classified. 

• The skid resistance threshold values based on which a pavement section will be 

classified (Figure 75). The first threshold value is the acceptable skid number above 

which the designer is not concerned. The second threshold value is the skid number 

above which (but below the acceptable value) one should monitor the surface 

condition more frequently and below which one should take corrective measure to 

restore surface friction. 
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After clicking on the Set button, a window with the pavement classification will be 

presented (Figure 77). Depending on the predicted skid number at the end of service life and 

designer selected threshold values, the pavement is classified as high, medium, or low. For 

display purposes, the high, medium, and low is shown as a green, yellow, and red bar chart, 

respectively.  

 
Figure 76. Selection of Thresholds or Aggregate Classification. 
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Figure 77. Sample Aggregate Classification Based on Skid Performance. 

The third option for displaying the data is to export the input and output data into a 

Microsoft Excel spreadsheet. By clicking this button, the user can export the input and output file 

in a separate folder. Once the user selects this option a new window (Figure 78) pops up. The 

user has the option to change the input file name and the location folder. Once input file is saved, 

the same window provides the option to save output file where the user can save the output file 

with different bane and location folder. Figure 79 and Figure 80 show sample input and output 

data in a spreadsheet. Input file records all the data or preferences selected by the user. The 

output file show the projected skid number, IFI, MPD, and adjusted traffic count for each year 

starting from Year 1 to 15.    

The application can be terminated by clicking the Exit Application button. The 

application saves all the input data entered previously. The user can also navigate through the 

application by clicking the tabs located on top of the windows.  
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Figure 78. Saving Input and Output Spreadsheet Files. 

 
 

 
Figure 79. Sample Input Spreadsheet. 
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Figure 80. Sample Output Spreadsheet. 

AGGREGATE CLASSIFICATION SYSTEM BASED ON PROPOSED MODEL  

In this section, the model is used to illustrate the influence of aggregate characteristics 

and aggregate gradation on skid resistance. In addition, the results presented herein demonstrate 

how this model can be used to select the optimum aggregate characteristics and gradation such 

that the required skid resistance level is achieved given a certain traffic level. Table 12 presents 

an example of classification through threshold values set by the user. 

The analysis involved the use of four AADT/lane levels with five percent truck traffic in 

all cases representing interstate, U.S. highway, state highway, and farm-to-market sections from 

the state of Texas. Five different mix types commonly used in the state of Texas were selected, 

and scale and shape parameters of the corresponding Weibull function were determined. In order 

to facilitate the comparison between the various sections, the SN(50) values in Table 12 were 

used to classify the pavement sections after 5 years of service. All the highways were considered 
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as divided, two-lane each way, and located in urban area. Results were obtained the SAAP 

application. 

Table 12. Skid Number Threshold Values after Five Years of Service. 

Aggregate Class SN Threshold Value 

High SN(50) ≥ 30 
Medium  20 ≤ SN(50) < 30  

Low SN(50) < 20 
 

Table 13 shows the classification of the various pavement sections. Both Aggregate J, 

and K are combination of aggregates from three different sources. Aggregate P entirely consists 

of aggregates from one source.  PFC, SMA-C, and SMA-D all three mixtures demonstrate high 

skid performance (Level H after 5 years) at all traffic levels when designed with Aggregate K. At 

same scenario, Type C mixture showed medium skid performance (Level M after 5 years) at 

high traffic levels and Type D mixture showed medium performance at both medium and high 

traffic level. Similarly, Aggregate J, and P showed different degrees of performance based on the 

traffic levels and mixtures types. Aggregate P even exhibited low skid performance (Level L 

after 5 years) for most traffic levels when used in Type D mixture and low performance for 

medium to high traffic when used in Type C mixture. 

These results clearly demonstrate how the proposed models provides flexibility for 

engineers to select an aggregate source and a mixture design that achieve the required skid 

number after a certain traffic level. It also show that an aggregate (or combination of aggregates) 

may show different performance based on the type of mixtures and the traffic level they are 

subjected to.  
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Table 13. Aggregate Classification for Different Roads. 

AADT/Lane 
Mix Type    

Type C Type 
D PFC SMA-

C 
SMA-

D 
Aggregate J 

500 H H H H H 
5000 H M H H H 
15000 M L H H M 
34000 M L H M M 

Aggregate K 
500 H H H H H 
5000 H H H H H 
15000 H M H H H 
34000 M M H H H 

Aggregate P 
500 M M H H H 
5000 M L H H M 
15000 L L M M M 
34000 L L M M L 
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CHAPTER 7: 
CONCLUSIONS AND RECOMMENDATIONS  

CONCLUSIONS 

Skid resistance is a key component in road safety. In this study, the researchers developed 

prediction models for the IFI and SN for flexible pavements with an asphalt mixture and seal 

coat as the surface course. These models were developed based on a comprehensive testing 

program in the field and laboratory. Field testing included measurements of the coefficient of 

friction using DFT, the MPD using CTMeter, and the skid number using a skid trailer. In the 

laboratory, the researchers used test methods to quantify the aggregate resistance to abrasion and 

polishing in addition to determining the measurements of aggregate texture and angularity using 

the AIMS apparatus. Statistical methods were used to develop the prediction models for friction 

and SN for HMA and seal coat. The main findings of this study are summarized below:  

• The results showed good correlations between the developed models and 

experimental measurements.  

• The developed skid prediction model for HMA incorporates parameters that describe 

aggregate shape characteristics (texture and angularity), aggregate gradation, 

aggregate resistance to polishing and abrasion, and traffic level. 

• The skid prediction model for seal coat incorporates parameters that describe seal 

coat aggregate gradation, aggregate shape characteristics (texture and angularity), 

aggregate resistance to polishing and abrasion, and traffic level.  

• The model results demonstrated that aggregate and surface characteristics as well as 

traffic level have a significant effect on skid resistance and the rate of skid reduction. 

Higher traffic levels caused a steep reduction in the skid number due to significant 

surface polishing in a short time. 

• Asphalt mixtures prepared with coarse aggregate gradations had higher macrotexture 

and higher skid resistance than asphalt mixtures with fine aggregate gradations.  

• Aggregate texture and the rate of texture change is the most influential factor 

affecting the skid resistance of both asphalt mixtures and surface-treatment surfaces.  

• Seal coat Grade 3 was found to yield higher MPD and skid number than other grades.  
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• The AIMS and Micro-Deval tests were found to be proper tools to evaluate aggregate 

shape characteristics and their resistance to abrasion and polishing.  

• The models are capable of predicting the skid resistance of HMA and seal coat over 

the course of their service life.  

RECOMMENDATIONS 

Based on the findings of this study, the following recommendations are made for 

implementation and future research. 

• These models can be used during mix design (or gradation of seal coat) procedure to 

optimize the aggregate selection and aggregate gradation to produce mixtures with 

adequate friction. Maintenance personnel can also utilize this tool to predict the future 

skid number for in-service roads in order to figure out the timing of corrective 

treatment related to its frictional resistance.  

• The skid value of seal coat sections depends highly on the quality of construction. 

Asphalt bleeding or flushing can drastically reduce the skid resistance on seal coat 

surfaces regardless of the quality of aggregate. More test sections of seal coat should 

be included in future studies.  

• Skid prediction models for both HMA and seal coat need to be validated with more 

field measurements, especially on roads whose conditions differ from that of Texas 

roads. Such measurements should cover more asphalt mixture types, aggregate type, 

and sources, aggregate combinations, traffic levels, and different climatic conditions. 

• These prediction models were developed with data obtained from skid testing with 

smooth tires at 50 mph. In order to apply these models at different conditions, models 

should be calibrated for local test conditions (e.g., ribbed tires, different test speeds). 

• State DOTs or agencies can build their aggregate texture and angularity database 

under their aggregate quality monitoring program. Mixture designers can use such 

databases in conjunction with skid prediction models to determine the future skid 

resistance of the intended mixture under traffic. 
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• Aggregate imaging measurement systems need modification in order to characterize 

aggregates with different shades of color. 

• Design lane factors for AADT and trucks used to determine the traffic on design lane 

should be revisited based on more robust data.  
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APPENDIX A: 
ASPHALT MIXTURE TEST SECTION RESULTS 

Table 14. Combined Mixture Gradation. 

Section ID 
Sieve Size, Cumulative Passing % 

No. 200 No. 50 No. 30 No. 16 No. 8 No. 4 3/8" 1/2" 3/4" 

IH 30_ATL_SMA_ 8.1 15.9 18 21.1 27.8 49.5 86.3 100 — 

US 59_ATL_CMHB-F_FM 2792 6.4 13.2 19 21 26.8 52.1 92 99.2 100 

US 59_ATL_TY D_TRM 310 5.6 18.7 22 — 36.8 58.6 93.4 99.1 100 
US 59_ATL_TY D_SHELBY CO 
LINE 5.9 18.3 21.4 — 37.6 56.5 91.8 99 100 

US 271_ATL_CMHB-F_CAMP 5.4 15.2 17.6 21.1 25.3 40.3 97.2 100 100 

IH 35 TOM Mix_AUS 6.6 10.2 13 17.3 24.1 56.3 100 100 100 

RM 3238_AUS_TOM 8.7  14.2 21.1 30.2 47.5 79.4 99.6 100 — 

US71_AUS_TOM  6.5 10.7 12.9 16 21 47.3 99.3 100 — 

IH10_BMT_SMA-D 8.4  11.1 14.6 15.6 18.1 26.3 65.5 88.1 100 

SH 82_BMT_SMA-D 8.8  13.1 15.9 18.5 24.2 30.2 66.5 85.9 100 

SL 207_BMT_TY D 4 14.5 26.5 — 40.5 67.9 98.6 100 100 

US 69_BMT_PFC 1.6 — — — 5.4 14.9 54.3 83 100 

US 90_BMT_SMA-D 8.1 11.1 13.8 18 23 28.7 65.1 89 100 

IH 45_BRY_TY C 2.8 10.4 15.5 — 35.4 61.3 80.4  — 100 

IH 45_BRY_PFC  2 — — — 3.1 4.7 45.4 88.9 100 

SH 6_BRY_NEW PFC 1.8 — — — 3.9 7.7 45.7 81 100 

SH 6_BRY_OLD PFC 1.8 — — — 3.9 7.7 45.7 81 100 

IH 35_LRD_SMA_WEBB  10.1 — — — 22.5 30.3 70.1 93.1 100 

IH 35_LRD_SMA-C_LASALLE 8 10.7 12.7 15.5 19.8 21.3 47.8 87.8 100 

US 59_LFK_PFC_Nacodoches 1.9 — — — 3.7 9.5 52.7 80.5 100 

SH 7_LFK_TY D_Houston 4.9 14.8 20.8 — 32.6 51.9 78.4 — 100 

IH 20_ODA_SP-C_Martin 7.6  12.4 16.1 21.9 30.7 55.7 87 98.5 100 

IH 20_ODA_SP-D_Midland_2012  7.8 12.9 17 23.4 34.7 56.5 90.6 99.2 100 

IH 20_ODA_SP-D_Midland_2013 7.7 13.7 17.9 24.4 34.1 55.5 90.5 99.2 100 

IH 10_SAT_SMA-D_BEXAR 8.1  11.9 13.1 15.5 19 24.1 54.9 86.2 100 

IH 10_SAT_TY C_BEXAR 5.2  17.4 24.5  — 39.6 53.9  80.6  — 100 

IH 37_SAT_PFC_BEXAR 2 — — — 2.8 8.7 52 83 100 

IH 10_YKM_TY D_AUSTIN 3.6 17.4 27 — 38.7 61.3 96.2 100 100 

SH 36_YKM_TY D_AUSTIN 3.3 13.5 22 — 38.3 60.5 91.1 99.9 100 

US 77_PHR_TY D_Kennedy 4.6 16.9 24.4 — 44.6 61.4 89.1 98.8 100 

US 281_PHR_TY D_Hidalgo 4.9 20 26.3 — 42.1 64.4 90.4 98.5 100 
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Table 15. Combined Mixture Gradation (Former Sieve Sizes) 

Section ID 
Sieve Size, Cumulative Passing % 

No. 200 No. 80  No. 40  No. 10 No. 4 3/8" 1/2" 
SH 6 Bwp 2-1, Wp 2-1 Middle 3.3 8.1 13.5 34.9 58.3 82 99.7 
SH 6 Bwp 2-1 Bottom 4.4 19.0 30.1 45.9 69.4 98.4 100 
US 385_ODA_CMHB-F 5.6 8 11.3 21.7 49.4 98.9 100 
IH 20_ODA_PFC_2004 5.6 8 11.3 21.7 49.4 98.9 100 
 

Table 16. Aggregate Texture and Angularity Data. 

Section ID 
Texture Angularity 

BMD AMD105 AMD180 BMD AMD105 AMD180 
IH 30_ATL_SMA_ 212.865 146.956 139.730 2711.048 2103.727 2031.181 
US 59_ATL_CMHB-F_FM 2792 338.796 245.080 223.442 3042.002 2326.436 2295.421 
US 59_ATL_TY D_TRM 310 340.293 231.230 223.177 3053.064 2415.128 2312.008 
US 59_ATL_TY D_SHELBY CO 
LINE 340.098 235.487 223.212 3051.622 2412.691 2309.846 

US 271_ATL_CMHB-F_CAMP 355.781 211.213 187.858 2485.036 1935.100 1906.148 
IH 35 TOM Mix_AUS 329.621 244.752  2628.379 1831.138  
RM 3238_AUS_TOM 331.297 250.479  2649.302 1814.856  
US71_AUS_TOM 329.565 244.562  2627.683 1831.680  
IH10_BMT_SMA-D 315.475 297.725  3017.425 2657.225  
SH 82_BMT_SMA-D 377.775 261.721 

 
3090.563 2656.750  

SL 207_BMT_TY D 253.704 201.486 189.059 2652.508 1951.370 1922.113 
US 69_BMT_PFC 259.897 215.728 

 
2646.732 2271.563  

US 90_BMT_SMA-D 273.437 200.993 
 

2637.083 1865.109  
IH 45_BRY_TY C 283.627 202.653  2711.190 2041.385  
IH 45_BRY_PFC 193.050 132.300  2712.175 1622.375  
SH 6_BRY_NEW PFC 331.112 249.844 

 
2646.984 1816.660  

SH 6_BRY_OLD PFC 331.112 249.844 
 

2646.984 1816.660  
IH 35_LRD_SMA_WEBB 240.897 187.361 

 
2721.731 1751.527  

IH 35_LRD_SMA-C_LASALLE 444.207 245.921 
 

2872.847 1983.396  
US 59_LFK_PFC_Nacodoches 347.048 249.150 227.080 3086.559 2442.439 2342.207 
SH 7_LFK_TY D_Houston 300.203 240.824 

 
2863.631 2191.003 

 IH 20_ODA_SP-C_Martin 366.900 252.524 245.190 2743.733 1917.715 1807.820 
IH 20_ODA_SP-D_Midland_2012 342.062 239.151 225.472 2733.780 1884.024 1756.817 
IH 20_ODA_SP-D_Midland_2013 342.113 239.193 225.512 2733.800 1884.093 1756.922 
US 385_ODA_CMHB-F 427.542 309.266 

 
2768.035 1999.970 

 IH 20_ODA_PFC_2004 427.542 309.266 
 

2768.035 1999.970 
 IH 10_SAT_SMA-D_BEXAR 277.855 191.877 173.304 2596.041 1794.027 1535.405 

IH 10_SAT_TY C_BEXAR 202.321 144.655 135.983 2659.633 1754.349 1625.360 
IH 37_SAT_PFC_BEXAR 278.050 238.885 232.119 2653.709 1750.563 1553.372 
IH 10_YKM_TY D_AUSTIN 263.446 105.022 84.846 2652.319 1602.676 1394.093 
SH 36_YKM_TY D_AUSTIN 118.595 75.3504 68.607 2772.539 1623.814 1565.969 

US 77_PHR_TY D_Kennedy 309.350 213 
 

2902.400 2685.675 
 US 281_PHR_TY D_Hidalgo 298.826 197.464 185.798 2804.579 2638.757 2620.220 

SH 6 Bwp 2-1, Wp 2-1 Middle 313.753 259.750 
 

3203.438 2677.501 
 SH 6 Bwp 2-1 Bottom 313.753 259.750 

 
3203.438 2677.501 
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Table 17. Traffic Data. 

TxDOT 
District Section ID 

Design 
Lane 
Factor for 
AADT 

Design Lane 
Factor for 
Truck 

Average 
AADT 

Avg. % 
Truck 
Traffic 

Atlanta 

IH 30_ATL_SMA_ 0.7 0.8 13860 37 

US 59_ATL_CMHB-F_FM 2792 0.7 0.9 4478 16.2 

US 59_ATL_TY D_TRM 310 0.7 0.9 5202 15.2 
US 59_ATL_TY D_SHELBY  
CO LINE 0.7 0.9 6572 22.2 

US 271_ATL_CMHB-F_CAMP 0.4 0.45 13268 15.2 

Austin 

IH 35 TOM Mix_AUS 0.4 0.5 28317 27.1 

RM 3238_AUS_TOM 0.5 0.5 4540 4.4 

US71_AUS_TOM 0.7 0.9 20500 6.3 

Beaumont 

IH10_BMT_SMA-D 0.7 0.8 22700 22.5 

SH 82_BMT_SMA-D 0.4 0.45 7764 18.8 

SL 207_BMT_TY D 0.5 0.5 4860 11.9 

US 69_BMT_PFC 0.6 0.8 28164 8.8 

US 90_BMT_SMA-D 0.4 0.45 3928 10.7 

Bryan 

IH 45_BRY_TY C 0.7 0.8 13150 34 

IH 45_BRY_PFC 0.7 0.8 13150 34 

SH 6_BRY_NEW PFC 0.7 0.9 12860 14 

SH 6_BRY_OLD PFC 0.7 0.9 12120 15 

Laredo 
IH 35_LRD_SMA_WEBB 0.4 0.5 11400 24 

IH 35_LRD_SMA-C_LASALLE 0.8 0.9 6700 28 

Lufkin US 59_LFK_PFC_Nacodoches 0.8 0.9 13970 22.6 

Odessa 

IH 20_ODA_SP-C_Martin 0.8 0.9 7614 37.6 

IH 20_ODA_SP-D_Midland_2012 0.8 0.9 7480 37.4 

IH 20_ODA_SP-D_Midland_2013 0.7 0.8 16430 27.4 

US 385_ODA_CMHB-F 0.8 0.9 3642 12.8 

San 
Antonio 

IH 10_SAT_SMA-D_BEXAR 0.7 0.8 25330 18.8 

IH 10_SAT_TY C_BEXAR 0.7 0.9 25180 11.7 

IH 37_SAT_PFC_BEXAR 0.7 0.9 13380 21.4 

Yoakum 
IH 10_YKM_TY D_AUSTIN 0.7 0.8 20000 25 

SH 36_YKM_TY D_AUSTIN 0.5 0.5 5500 18 

Pharr 
US 77_PHR_TY D_Kennedy 0.8 0.9 4700 27 

US 281_PHR_TY D_Hidalgo 0.8 0.9 11313 28 
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A-4 CTMETER DATA 
Table 18. Beaumont CTMeter Data. 

CTM, (mm) 
Beaumont 

IH-10 LP-207 SH-82 
SMA US-69 US-90 

WP1 0.77 0.67 0.50 1.63 1.02 
WP2 0.97 0.69 0.59 1.70 0.98 

 
Table 19. Odessa CTMeter Data. 

CTM (mm) 
Odessa 

I-
20_Midland_SPD12 

I-
20_Martin_PFC 

I-
20_Martin_SPC 

I-
20_Midland_2013 

WP1 0.70 1.61 0.74 0.76 
WP2 0.73 1.61 0.77 0.66 
WP3 0.71 — 0.70 0.65 
WP4 — — — — 

BWP1 — — 0.65 0.82 
BWP2 — — — — 
BWP3 — — — — 
BWP4 — — 0.65 0.73 

Shoulder1 0.8 1.61 — — 
Shoulder2 — 1.57 — — 
Shoulder3 — — — — 
Shoulder4 0.65 — — — 

 
Table 20. Atlanta CTMeter Data. 

CTM (mm) 

Atlanta 

IH-30-ATL 
US-59-
Panola-
CMHBF 

US-59-
Panola-
FM999 

US-59-
Panola-

TRM311 
US-271-ATL 

WP1 0.61 0.68 0.38 0.52 0.81 
WP2 0.68 0.6 0.35 0.53 0.73 
WP3 0.71 0.7 0.34 0.6 0.77 
WP4 0.71 0.64 0.31 0.59 — 

BWP1 0.66 — — — 0.71 
BWP2 — — — — — 
BWP3 0.79 — — — 0.7 
BWP4 — — — — — 

Shoulder1 — 0.67 0.69 0.5 0.66 
Shoulder2 — — — — — 
Shoulder3 — 0.62 0.56 0.44 0.52 
Shoulder4 — — — — — 
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Table 21. Pharr and San Antonio CTMeter Data. 

CTM 
(mm) 

Pharr San Antonio 

US-77-
Ken 

US-281-
TyD 

I-10-Bex-
SMA 

I-10-Bex-
TyC I-37-PFC US-90-

Uvalde 
US-281-

ATS 

WP1 0.73 0.7 0.81 0.57 1.65 0.39 0.52 
WP2 0.69 0.64 0.64 0.58 1.58 0.35 0.46 
WP3 0.73 0.62 0.76 0.54 1.78 0.33 — 
WP4 — — — — — — — 

BWP1 — — 0.93 0.63 1.74 — 2.43 
BWP2 — — — — — — 2.63 
BWP3 — — 0.63 0.5 1.86 — — 
BWP4 — — — — — — — 

Shoulder1 0.33 0.6 — 0.4 — 0.36 — 
Shoulder2 — — — — — — — 
Shoulder3 0.34 0.58 — — — 0.4 — 
Shoulder4 — — — — — — — 

 
 

Table 22. Laredo CTMeter Data. 

CTM (mm) 

Laredo 

IH-35-LRD-
LAS-NB 

IH-35-
LRD-LAS-

SB 

IH-35-LRD-
NP-COT-S 

IH-35-LRD-
LRD-Webb 

WP1 0.42 0.48 0.27 1.2 
WP2 0.44 0.47 0.24 1.1 
WP3 — 0.47 — 1.25 
WP4 — — — 1.02 

BWP1 0.46 — 1.03 — 
BWP2 0.51 — 1.07 — 
BWP3 — — — — 
BWP4 — — — — 

Shoulder1 — 0.94 1.19 0.83 
Shoulder2 — — 1.1 — 
Shoulder3 — 0.96 — 0.98 
Shoulder4 — — — — 
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Table 23. Lufkin, Houston, and YKM CTMeter Data. 

CTM (mm) 
Lufkin Houston YKM 

SH7-LFK US-59-
Noco SH-6 IH-10 SH-36-HMA 

WP1 0.62 1.76 1.55 0.45 0.63 
WP2 0.6 1.71 1.60 0.45 0.69 
WP3 0.61 1.79 1.42 0.36 0.59 
WP4 0.55 — 1.74 0.39 0.56 

BWP1 0 1.86 — — — 
BWP2 — — — — — 
BWP3 — 1.81 — — — 
BWP4 — — — — — 

Shoulder1 0.66 — 1.96 0.71 0.56 
Shoulder2 — — — — — 
Shoulder3 0.8 — 2.13 0.64 0.54 
Shoulder4 — — — — — 

 
 

Table 24. Austin CTMeter Data. 

CTM 
(mm) 

Austin 

FM3328 I35-Austin SH-71 

WP1 0.58 0.82 0.8 

WP2 0.51 0.77 0.74 

WP3 0.47 0.78 0.83 

WP4 — — — 

BWP1 — 0.84 — 

BWP2 — — — 

BWP3 — — — 

BWP4 — — — 

Shoulder1 0.45 — 0.97 

Shoulder2 0.43 0.8 0.75 

Shoulder3 — — — 

Shoulder4 — — — 
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Table 25. Bryan CTMeter Data. 

CTM (mm) 
Bryan 

IH45-PFC IH45-TYC SH6-PFC-new SH6-PFC-old 

WP1 1.30 1 1.80 1.54 
WP2 1.21 0.91 1.53 1.71 
WP3 — — — — 
WP4 — — — — 

BWP1 1.59 0.97 2.14 1.89 
BWP2 1.59 0.86 1.85 1.87 
BWP3 — — — — 
BWP4 — — — — 

Shoulder1 — — — — 
Shoulder2 — — — — 
Shoulder3 — — — — 
Shoulder4 — — — — 

 
 
A-5 DFT DATA 

Table 26. Beaumont DFT Data. 

DFT at 20 km/h 

Beaumont 

IH-10 LP-207 SH-82 
SMA US-69 US-90 

WP1 0.42 0.50 0.52 0.61 0.53 
WP2 0.40 0.54 0.52 0.40 0.54 
WP3 0.42 0.55 — 0.38 — 
WP4 0.42 0.56 — 0.36 — 

BWP1 — — — — — 
BWP2 — — — — — 
BWP3 — — — — — 
BWP4 — — — — — 

Shoulder1 0.7 0.71 0.69 0.49 0.63 
Shoulder2 — — 0.69 — — 
Shoulder3 0.605 0.68 — 0.46 — 
Shoulder4 — — — — — 
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Table 27. Odessa DFT Data. 

DFT at 20 km/h 
Odessa 

I-20_Midland_SPD12 I-20_Martin_PFC I-20_Martin_SPC I-20_Midland_2013 

WP1 0.53 0.55 0.39 0.49 
WP2 0.52 0.57 0.40 0.48 
WP3 0.53 — 0.37 0.48 
WP4 — — — — 

BWP1 — — 0.49 0.61 
BWP2 — — — — 
BWP3 — — — — 
BWP4 — — 0.50 0.6 

Shoulder1 0.73 0.68 — — 
Shoulder2 — 0.72 — — 
Shoulder3 — — — — 
Shoulder4 0.75 — — — 

 
        

 

Table 28. Atlanta DFT Data. 

DFT at 20 
km/h 

Atlanta 

IH-30-
ATL 

US-59-
Panola-
CMHBF 

US-59-
Panola-
FM999 

US-59-
Panola-

TRM311 

US-271-
ATL 

WP1 0.73 0.49 0.57 0.535 0.71 
WP2 0.73 0.51 0.60 0.54 0.71 
WP3 0.73 0.53 0.56 0.55 0.73 
WP4 0.73 0.54 0.57 0.53 — 

BWP1 0.78 — — — 0.76 
BWP2 — — — — — 
BWP3 0.78 — — — 0.73 
BWP4 — — — — — 

Shoulder1 — 0.66 0.785 0.72 0.77 
Shoulder2 — — — — — 
Shoulder3 — 0.71 0.79 0.74 0.85 
Shoulder4 — — — — — 
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Table 29. Pharr and San Antonio DFT Data. 

DFT at 20 
km/h 

Pharr San Antonio 

US-77-
Ken 

US-281-
TyD 

I-10-
Bex-
SMA 

I-10-Bex-
TyC I-37-PFC US-90-

Uvalde 
US-281-
ATS 

WP1 0.47 0.44 0.46 0.49 0.39 — 0.31 
WP2 0.46 0.43 0.43 0.48 0.38 0.58 0.28 
WP3 0.45 0.43 0.47 0.46 0.4 0.58 — 
WP4 — — — — — — — 

BWP1 — — 0.45 0.45 0.31 — 0.60 
BWP2 — — — — — — 0.63 
BWP3 — — 0.42 0.44 0.33 — — 
BWP4 — — — — — — — 

Shoulder1 0.62 0.57 — 0.69 — 0.73 — 
Shoulder2 — — — — — — — 
Shoulder3 0.61 0.54 — — — 0.75 — 
Shoulder4 — — — — — — — 

 
 

Table 30. Laredo DFT Data. 

DFT at 20 
km/h 

Laredo 

IH-35-LRD-
LAS-NB 

IH-35-LRD-
LAS-SB 

IH-35-LRD-
NP-COT-S 

IH-35-LRD-
LRD-Webb 

WP1 0.39 0.37 0.205 0.43 
WP2 0.40 0.37 0.225 0.44 
WP3 — 0.36 — 0.40 
WP4 — 0.36 — 0.46 

BWP1 0.43 — — — 
BWP2 0.42 — 0.54 — 
BWP3 — — — — 
BWP4 — — — — 

Shoulder1 — 0.57 0.61 0.62 
Shoulder2 — — 0.62 — 
Shoulder3 — 0.54 — 0.63 
Shoulder4 — — — — 
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Table 31. Lufkin, Houston, and YKM DFT Data. 

DFT at 20 km/h 

Lufkin Houston YKM 

SH7-LFK US-59-
Noco SH-6 IH-10 SH-36-

HMA 

WP1 0.63 0.45 0.41 0.40 0.29 
WP2 — 0.4 0.44 0.41 0.33 
WP3 0.61 0.43 0.41 0.40 0.30 
WP4 0.59 — 0.40 0.41 0.29 

BWP1 — 0.53 — — — 
BWP2 — — — — — 
BWP3 — 0.46 — — — 
BWP4 — — — — — 

Shoulder1 0.74 — 0.40 0.59 0.61 
Shoulder2 — — — — — 
Shoulder3 0.76 — 0.45 0.64 0.63 
Shoulder4 — — — — — 

 
 

Table 32. Austin DFT Data. 

DFT at 20 km/h 
Austin 

FM3328 I35-Austin SH-71 

WP1 0.64 0.49 0.49 
WP2 0.65 0.44 0.50 
WP3 0.65 0.49 0.51 
WP4 — — — 

BWP1 — — — 
BWP2 — 0.56 — 
BWP3 — — — 
BWP4 — — — 

Shoulder1 0.84 — 0.62 
Shoulder2 0.86 0.57 0.63 
Shoulder3 — — — 
Shoulder4 — — — 
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Table 33. Bryan DFT Data. 

DFT at 20 km/h 
Bryan 

IH45-PFC IH45-TYC SH6-PFC-new SH6-PFC-old 

WP1 0.35 0.34 0.31 0.36 
WP2 0.33 0.34 0.29 0.35 
WP3 — — — — 

WP4 — — — — 

BWP1 0.41 0.37 0.37 0.45 

BWP2 0.39 0.33 0.33 0.44 

BWP3 — — — — 

BWP4 — — — — 

Shoulder1 — — — — 

Shoulder2 — — — — 

Shoulder3 — — — — 

Shoulder4 — — — — 
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APPENDIX B: 
SEAL COAT TEST SECTION RESULTS 

Table 34. Aggregate Gradation (Cumulative Percent Retained). 

Sieve Size Cumulative Retained (%) 
Grade 3 Grade 4 Grade 5 

1" — — — 
7/8" — — — 
3/4" 0 — — 
5/8" 0–2 0 — 
1/2" 20–40 0–5 0 
3/8" 80–100 20–40 0–5 
1/4" 95–100 — — 
No. 4 — 95–100 50–80 
No. 8 99–100 98–100 98–100 
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Table 35. Aggregate Texture and Angularity Data. 

Section ID 
Texture Angularity 

BMD AMD105 AMD180 BMD AMD105 AMD180 

US 77_PHR_GR3_Cameron 499.365 227.121 213.534 2926.364 1945.145 1735.848 

US 281_PHR_GR3_Hidalgo 581.650 326.500  2589.625 1569.775  
US 281_PHR_GR3_Brooke_TRM 752 499.365 227.121 213.534 2926.364 1945.145 1735.848 

US 281_PHR_GR3_Brooke_TRM 722 581.650 326.500  2589.625 1569.775  
US 377_FTW_GR3_Hood 219.709 125.641 105.146 2676.475 1702.489 1496.160 

US 377_FTW_GR3_Tarrant 219.709 125.641 105.146 2676.475 1702.489 1496.160 

SH 199_FTW_GR3_Parker 195.125 116  2649.700 1646.050  
US 67_BWD_GR4_Coleman 219.709 125.641 105.146 2676.475 1702.489 1496.160 

US 67_BWD_GR4_Brown 219.709 125.641 105.146 2676.475 1702.489 1496.160 

US 183_BWD_GR4_Eastland 249.449 125.035 116.680 2738.360 1693.279 1518.136 

US 377_BWD_GR4_Brown 219.709 125.641 105.146 2676.475 1702.489 1496.160 

US 90_SAT_GR4_Bexar 147.835 90.971 83.988 2646.301 2214.888 1922.761 

FM 1518_GR3_Bexar 266.692 238.899 233.901 2664.419 1728.358 1552.914 

SH 16_SAT_GR4_Atascosa_TRM 626 462.408 434.028 424.305 3144.438 1972.419 1940.779 

SH 16_SAT_GR 4_Atascosa_TRM 642 581.650 326.500  2589.625 1569.775  
SH 36_YKM_GR 3_Austin 156.480 88.002 79.740 2648.315 1815.372 1749.992 

US 59_LFK_GR3_Angelina 558.637 446.350  2957.900 2113.900  
US 69_LFK_GR4_Angelina 283.537 236.412  1974.913 1347.463  
US 287_LFK_GR4_Trinity 283.537 236.412  1974.913 1347.463  
FM 2213_LFK_GR5_San Augustine 283.537 236.412  1974.913 1347.463  
US 59_LFK_GR4_Shelby 266.692 238.899 233.901 2664.419 1728.358 1552.914 

LP 338_ODA_GR4_Ector 427.542 309.266 293.333 2768.035 1999.971 1932.344 

US 385_ODA_GR4_Crane 172.532 100.092 90.883 2665.842 1654.067 1408.696 

US 385_ODA_GR4_Ector 172.532 100.092 90.883 2665.842 1654.067 1408.696 

SH 82_BMT_GR4_Jefferson 283.537 236.412  1974.913 1347.463  
FM 365_BMT_GR4_Jefferson 283.537 236.412  1974.913 1347.463  
FM 105_BMT_GR4_Orange 283.537 236.412  1974.913 1347.463  
US 80_ATL-GR4_Harrison 283.537 236.412  1974.913 1347.463  
US 59_ATL_GR3_Cass_RG_TRM238 191.247 165.049 159.389 2691.062 2288.818 2230.886 

SH 77_ATL_GR4_Cass_TRM 745_SS 244.489 156.482 152.577 2579.935 1931.762 1787.538 

SH 77_ATL_GR4_Cass_TRM 720_RG 166.072 132.860 120.722 2905.053 2391.690 2358.177 
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Table 36. Traffic Data. 

TxDOT 
District Section ID 

Design Lane 
Factor for 

AADT 

Design Lane 
Factor for 

Truck 

Average 
AADT 

Avg % 
Truck 
Traffic 

Pharr 

US 77_PHR_GR3_Cameron 0.8 0.9 8500 22 

US 281_PHR_GR3_Hidalgo 0.8 0.9 8482 29 

US 281_PHR_GR3_Brooke_TRM 752 0.8 0.9 6000 34 

US 281_PHR_GR3_Brooke_TRM 722 0.8 0.9 7336 32 

Dallas-FW 

US 377_FTW_GR3_Hood 0.8 0.9 10923 9.2 

US 377_FTW_GR3_Tarrant 0.8 0.9 13055 7.5 

SH 199_FTW_GR3_Parker 0.5 0.5 5822 18.2 

Brownwood 

US 67_BWD_GR4_Coleman 0.4 0.45 5665 13.5 

US 67_BWD_GR4_Brown 0.4 0.45 5846 13.5 

US 183_BWD_GR4_Eastland 0.5 0.5 2395 15.8 

US 377_BWD_GR4_Brown 0.4 0.45 13186 7.8 

San Antonio 

US 90_SAT_GR4_Bexar 0.7 0.9 24357 3.6 

FM 1518_GR3_Bexar 0.5 0.5 2854 19.7 

SH 16_SAT_GR4_Atascosa_TRM 626 0.8 0.9 4532 13.8 

SH 16_SAT_GR 4_Atascosa_TRM 642 0.5 0.5 9000 21.3 

YKM SH 36_YKM_GR 3_Austin 0.5 0.5 5500 18 

Lufkin 

US 59_LFK_GR3_Angelina 0.7 0.8 11760 28.2 

US 69_LFK_GR4_Angelina 0.4 0.45 12888 13.3 

US 287_LFK_GR4_Trinity 0.5 0.5 1746 28.1 

FM 2213_LFK_GR5_San Augustine 0.5 0.5 500 13.5 

US 59_LFK_GR4_Shelby 0.4 0.45 10250 34.2 

Odessa 

LP 338_ODA_GR4_Ector 0.5 0.5 4171 27 

US 385_ODA_GR4_Crane 0.8 0.9 2484 15.5 

US 385_ODA_GR4_Ector 0.8 0.9 3929 12 

Beaumont 

SH 82_BMT_GR4_Jefferson 0.5 0.5 1877 11 

FM 365_BMT_GR4_Jefferson 0.5 0.5 3820 7 

FM 105_BMT_GR4_Orange 0.8 0.45 13264 5.6 

Atlanta 

US 80_ATL-GR4_Harrison 0.5 0.5 3464 7.7 

US 59_ATL_GR3_Cass_RG_TRM238 0.8 0.9 8826 21 

SH 77_ATL_GR4_Cass_TRM 745_SS 0.5 0.5 2935 12 

SH 77_ATL_GR4_Cass_TRM 720_RG 0.8 0.9 1193 19 
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B-4 CTMETER DATA 

Table 37. Beaumont and Odessa CTMeter Data. 

CTM (mm) 

Beaumont Odessa 

FM-105 FM-
365 

SH-82 
Seal 
Coat 

LP_338_
Seal 
Coat 

US_385_C
MHBF 

US_385_Sea
lCoat_Ector 

US_385_Seal
Coat_Crane 

WP1 2.38 2.62 1.18 0.81 0.89 0.72 1.55 
WP2 2.42 2.54 1.20 0.94 0.78 0.96 1.53 
WP3 — 2.61 — 0.96 0.74 0.83 — 
WP4 — 2.42 — — — — — 

BWP1 2.46 3.12 2.28 1.72 — 1.51 2.14 
BWP2 2.42 — 2.1 — — — 2.26 
BWP3 — 3 — — — — — 
BWP4 — — — 1.96 — 1.56 — 

Shoulder1 — — — — 0.77 — 2.97 
Shoulder2 — — — — — — — 
Shoulder3 — — — — — — — 
Shoulder4 — — — — 0.85 — — 

 

 

Table 38. Atlanta CTMeter Data. 

CTM 
(mm) 

Atlanta 

SH-77-Atlanta SH-77-Cass-Gravel US-59-Cass US-80-Harrison 

WP1 1.31 2.57 1.8 2.03 

WP2 1.33 2.44 2.03 1.9 

WP3 1.53 — 1.9 1.9 

WP4 1.26 — — — 

BWP1 — 2.79 — — 

BWP2 — 2.81 — — 

BWP3 — — — — 

BWP4 — — — — 

Shoulder1 3.26 — 3.13 2.49 

Shoulder2 — — — — 

Shoulder3 2.39 — 3.38 2.61 

Shoulder4 — — — — 
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Table 39. Pharr CTMeter Data. 

CTM (mm) 

Pharr 

US-77-
Camer 

US-281-
Haidalgo-
SealCoat 

US-281-
Brook-742 US-281-718 

WP1 1.9 0.62 0.81 0.45 
WP2 2.27 1.57 0.8 0.51 
WP3 2 0.7 0.8 0.48 
WP4 1.79 — — — 

BWP1 2.42 2.33 1.84 — 
BWP2 — — — — 
BWP3 2.27 2.37 1.61 1.27 
BWP4 — — — — 

Shoulder1 — — — — 
Shoulder2 — — — — 
Shoulder3 — — — — 
Shoulder4 — — — — 

 
 

Table 40. San Antonio CTMeter Data. 

CTM (mm) 

San Antonio 

FM-1518 US-90-Seal 
Coat 

SH-16-
McMullen 

SH-16-ATS-
TRM642 

SH-16-ATS-
TRM626 

WP1 2.31 2.48 1.42 1.05 1.29 
WP2 2.04 2.25 1.35 1.22 1.73 
WP3 — — — — — 
WP4 — — — — — 

BWP1 2.81 3 — 2.49 2.72 
BWP2 — 2.37 — 2.14 2.82 
BWP3 — — — — — 
BWP4 — — — — — 

Shoulder1 — — 2.93 — — 
Shoulder2 — — 2.98 — — 
Shoulder3 — — — — — 
Shoulder4 — — — — — 
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Table 41. YKM and Brownwood CTMeter Data. 

CTM (mm) 

YKM Brownwood 

SH-36-
SealCoat 

US67-
Brown 

US67-
Coleman 

US183-
Eastland US377-Brown 

WP1 1.37 1.15 0.82 1.45 1.89 
WP2 1.24 1.01 0.71 1.48 1.96 
WP3 — — — — — 
WP4 — — — — — 

BWP1 — 1.96 — 1.71 — 
BWP2 — 1.9 — 1.68 — 
BWP3 — — — — — 
BWP4 — — — — — 

Shoulder1 3.48 2.38 2.05 — 2.68 
Shoulder2 — — — — — 
Shoulder3 — — — — — 
Shoulder4 — — — — — 

 
 

Table 42. Dallas-FW CTMeter Data. 

CTM (mm) 
Dallas-FW 

SH 199-
Parker 

US 377-
Hood US 377-Tarrant 

WP1 2.65 — 2.23 
WP2 2.14 2.49 0.48 
WP3 — — 2.38 
WP4 — — — 

BWP1 2.92 — — 
BWP2 2.69 — — 
BWP3 — — — 
BWP4 — — — 

Shoulder1 — 2.9 3.21 
Shoulder2 — 3 3.41 
Shoulder3 — — — 
Shoulder4 — — — 
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Table 43. Lufkin CTMeter Data. 

Measurement 
Location 

CTM (mm) 

Lufkin-
FM2213 

US 59-
Shelby 

US-59-LFK-
ANG 

US-69-
LFK-
ANG 

Grovton-287 

WP1 1.53 1.62 1.97 1.15 2.78 
WP2 1.65 1.42 2 1.12 2.82 
WP3 — 1.43 1.96 1.64 2.86 
WP4 — — 1.93 1.74 — 

BWP1 1.93 2.24 — — 3.09 
BWP2 2.02 2.20 — — — 
BWP3 — — — — 3.26 
BWP4 — — — — — 

Shoulder1 — — 2.83 2.88 — 
Shoulder2 — — — — — 
Shoulder3 — — 2.53 3.33 — 
Shoulder4 — — — — — 

 
 

B-5 DFT DATA 

Table 44. Beaumont and Odessa DFT Data. 

DFT at 20 km/h 

Beaumont Odessa 

FM-
105 FM-365 SH-82 

Seal Coat 
LP_338_S
eal Coat 

US_385
_CMHB

F 

US_385_
SealCoat
_Ector 

US_385_Seal
Coat_Crane 

WP1 0.93 0.88 0.98 0.44 0.54 0.2 0.35 
WP2 0.84 — 0.98 0.50 0.54 0.26 0.35 
WP3 — 0.83 — 0.50 0.54 0.25 — 
WP4 — 0.87 — — — — — 

BWP1 0.91 0.42 0.90 0.55 — 0.35 0.45 
BWP2 0.84 — 0.93 — — — 0.43 
BWP3 — 0.80 — — — — — 
BWP4 — — — 0.56 — 0.34 — 

Shoulder1 — — — — 0.69 — 0.64 
Shoulder2 — — — — — — — 
Shoulder3 — — — — — — — 
Shoulder4 — — — — 0.69 — — 
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Table 45. Atlanta DFT Data. 

DFT at 20 km/h 
Atlanta 

SH-77-Atlanta SH-77-Cass-Gravel US-59-Cass US-80-Harrison 

WP1 0.72 0.63 0.56 0.98 
WP2 0.71 0.61 0.60 0.965 
WP3 — — 0.57 0.99 
WP4 0.78 — — — 

BWP1 — 0.69 — — 
BWP2 — 0.64 — — 
BWP3 — — — — 
BWP4 — — — — 

Shoulder1 0.96 — 0.79 0.97 
Shoulder2 — — — — 
Shoulder3 0.84 — 0.73 0.98 
Shoulder4 — — — — 

 
 

Table 46. Pharr DFT Data. 

DFT at 20 km/h 

Pharr 

US-77-
Camer 

US-281-
Haidalgo-
SealCoat 

US-281-Brook-
742 US-281-718 

WP1 0.31 0.28 0.24 0.25 
WP2 0.28 0.30 0.27 0.28 
WP3 0.29 0.33 0.25 0.26 
WP4 0.30 — — — 

BWP1 0.31 0.58 0.27 0.55 
BWP2 — — — — 
BWP3 0.36 0.58 0.26 0.51 
BWP4 — — — — 

Shoulder1 — — — — 
Shoulder2 — — — — 
Shoulder3 — — — — 
Shoulder4 — — — — 
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Table 47. San Antonio DFT Data. 

DFT at 20 
km/h 

San Antonio 

FM-1518 US-90-Seal 
Coat 

SH-16-
McMullen 

SH-16-ATS-
TRM642 

SH-16-ATS-
TRM626 

WP1 0.69 0.39 0.47 0.56 0.53 
WP2 0.66 0.34 0.49 0.57 0.53 
WP3 — — — — — 
WP4 — — — — — 

BWP1 0.75 0.41 — 0.69 0.65 
BWP2 — 0.43 — 0.71 0.61 
BWP3 — — — — — 
BWP4 — — — — — 

Shoulder1 — — 0.67 — — 
Shoulder2 — — 0.63 — — 
Shoulder3 — — — — — 
Shoulder4 — — — — — 

 
 

Table 48. YKM and Brownwood DFT Data. 

DFT at 20 
km/h 

YKM Brownwood 

SH-36-
SealCoat US67-Brown US67-

Coleman 
US183-
Eastland 

US377-
Brown 

WP1 0.44 0.19 0.23 0.32 0.22 
WP2 0.41 0.18 0.19 0.22 0.26 
WP3 — — — — — 
WP4 — — — — — 

BWP1 — 0.24 — 0.31 — 
BWP2 — — — 0.32 — 
BWP3 — — — — — 
BWP4 — — — — — 

Shoulder1 0.74 0.41 0.31 — — 
Shoulder2 — — — — — 
Shoulder3 — — — — — 
Shoulder4 — — — — — 
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Table 49. Fort Worth DFT Data. 

DFT at 20 km/h 
Dallas-FW 

SH 199-Parker US 377-Hood US 377-
Tarrant 

WP1 0.27 0.25 0.22 
WP2 0.25 0.24 0.16 
WP3 — — 0.24 
WP4 — — — 

BWP1 0.39 — — 
BWP2 0.30 — — 
BWP3 — — — 
BWP4 — — — 

Shoulder1 — 0.59 — 
Shoulder2 — — 0.51 
Shoulder3 — — — 
Shoulder4 — — — 

 
Table 50. Lufkin DFT Data. 

DFT at 20 
km/h 

Lufkin  

Lufkin-
FM2213 

US 59-
Shelby 

US-59-
LFK-ANG 

US-69-LFK-
ANG US-287 

WP1 — 0.59 — 0.86 0.72 
WP2 0.86 0.58 0.31 0.87 — 
WP3 — 0.55 0.31 0.88 0.41 
WP4 — — 0.31 0.89 — 

BWP1 — 0.65 — — 0.71 
BWP2 0.81 0.66 — — — 
BWP3 — — — — 0.79 
BWP4 — — — — — 

Shoulder1 — — 0.45 0.83 — 
Shoulder2 — — — 0 — 
Shoulder3 — — 0.56 0.83 — 
Shoulder4 — — — — — 
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APPENDIX C: 
SAAP FLOW CHART FOR ASPHALT MIXTURE 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Gradation 
Parameters λ, κ for 
Equation 1 

 

        Aggregate 
Texture & 
Angularity Model 
Coefficients 

    

     Start 

  1- BMD* 

 2-AMD 105** 

 

Texture & 
Angularity 

Model      

  1- BMD 

 2-AMD 105 

  3- AMD180*** 

 

       Solver 

       Solver      Aggregate Texture & 
Angularity Model 
Coefficients             
aTx, bTx, cTx, aGA, bGA, cGA 

 

IFI Model Coefficients amix, bmix, cmix 
Equations 6, 7, 8 

     Mean Profile 
Depth (MPD) 

 

        Calculated MPD 
Equation 9 

     Three Point 
Texture& 
Angularity 

     Two Point 
Texture & 
Angularity  

       Measured MPD in the 
field 

 

       Percent passing for 
each sieve 

 

         From Table 1 

 

Equation 2-1, 2-2 
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* Texture or Angularity before Micro-Deval measured by AIMS. 

** Texture or Angularity after 105 minutes in Micro-Deval measured by AIMS. 

*** Texture or Angularity after 180 minutes in Micro-Deval measured by AIMS. 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

         Number of Polishing 
cycles (N) Equation 10 

         International Friction 
Index (IFI) Equation 11 

        Skid number (SN) 
Equation 12 

    End 

        Display 
for 30 
years 
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1. Determine the gradation parameters λ and κ. 
 
1a. Option 1—Input gradation (percent passing) for any combination of the following 
standard sieves: 
1", 7/8", 3/4", 5/8", 1/2", 3/8", #4, #8, #10, #16, #30, #80, #200. 
 

Use the solver to fit Equation 1 to the gradation curve. The output is the parameters λ 
and κ. 

( )
( )

; , 1
x

F x e
κ

λ

λ κ
−

= −
       Equation 1 

1b. Option 2: Select a standard mix gradation from the table below. The default values 
for λ and κ in Table 1 will be used. 
 

Table 1. Scale and shape parameters 
 

Mix Design Scale Parameter λ Shape Parameter κ 

Type C 5.204 0.9018 
Type D 3.648 0.894 
PFC 10.26 2.45 
SMA-D 8.542 1.381 
Crack Attenuating Mixture (CAM) 3.168 1.000 
SMA-C 9.82 1.568 
CMHB-C 8.578 1.077 
TOM 3.134 0.9747 
SP-C 5.109 1.032 
SP-D 4.764 0.9991 
CMHB-F 5.205 1.218 

 
 

2. Input number of aggregate sources used in the mix and the percent retained sieve #4 

for each source. 

 

3. Input aggregate texture/angularity data for each aggregate source. 

3a. Option 1—input: 

• Texture/angularity measured using AIMS at t = 0 polishing time. 

• Texture/angularity measured using AIMS at t = 105 minutes of polishing.  

Then use Equations 3 to 5 to output aTxi, aTxi+bTxi, cTxi, aGAi, aGAi+bGAi and cGAi: 

𝑎𝑎𝑇𝑇𝑚𝑚 + 𝑏𝑏𝑇𝑇𝑚𝑚 = 0.999𝐵𝐵𝐵𝐵𝐷𝐷𝑇𝑇𝑚𝑚 + 0.438 𝑖𝑖     Equation 3_1 
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  𝑎𝑎𝐺𝐺𝐺𝐺 + 𝑏𝑏𝐺𝐺𝐺𝐺 = 0.999𝐵𝐵𝐵𝐵𝐷𝐷𝐺𝐺𝐺𝐺 + 2.646 𝑖𝑖      Equation 3_2 
 
𝑎𝑎𝑇𝑇𝑚𝑚 = 0.864𝐴𝐴𝐵𝐵𝐷𝐷𝑇𝑇𝑚𝑚 + 14.985 𝑖𝑖      Equation 4_1 
 𝑎𝑎𝐺𝐺𝐺𝐺 = 1.237𝐴𝐴𝐵𝐵𝐷𝐷𝐺𝐺𝐺𝐺 − 699.759 𝑖𝑖      Equation 4_2 

 
𝑐𝑐𝑇𝑇𝑚𝑚 = 𝐺𝐺+𝑇𝑇𝐷𝐷

𝐵𝐵+𝐶𝐶 × 𝐺𝐺𝐴𝐴𝐴𝐴
𝑖𝑖        Equation 5_1 

  Where: A = 0.492, B = 59.506, C = −7.106 

𝑐𝑐𝐺𝐺𝐺𝐺 = 𝐺𝐺+𝑇𝑇𝐷𝐷
𝐵𝐵+𝐶𝐶 × 𝐺𝐺𝐴𝐴𝐴𝐴

𝑖𝑖         Equation 5_2 

  Where: A = 1.891, B = 111.658, C = 1.081 

BMD AMDTL
BMD
−

=
i
        Equation 5(a) 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝐺𝐺𝐴𝐴𝐴𝐴

𝐵𝐵𝐴𝐴𝐴𝐴�

1−�𝐺𝐺𝐴𝐴𝐴𝐴 𝐵𝐵𝐴𝐴𝐴𝐴� �
2 i       Equation 5(b) 

Where: 

i stands for an aggregate source. TL and ARI should be calculated separately for texture and 

angularity. 

 

3b. Option 2—input:  

• Texture measured using AIMS at t = 0 polishing time. 

• Texture measured using AIMS at t = 105 minutes of polishing.  

• Texture measured using AIMS at t = 180 minutes of polishing.  

Use solver to fit Equation 2 to three data points and determine aTx, bTx, and cTx:  

𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 (𝑇𝑇) = 𝑎𝑎𝑇𝑇𝑚𝑚 +  𝑏𝑏𝑇𝑇𝑚𝑚. exp(−𝑐𝑐𝑇𝑇𝑚𝑚. t)𝑖𝑖    Equation 2_1 

Angularity (t)  = 𝑎𝑎𝐺𝐺𝐺𝐺 +  𝑏𝑏𝐺𝐺𝐺𝐺. exp(−𝑐𝑐𝐺𝐺𝐺𝐺. t)𝑖𝑖    Equation 2_2 

 

4. Calculate the weighted average aTx, bTx, cTx, aGA, bGA, and cGA for all aggregate 

sources as follows: 

𝑎𝑎𝑇𝑇𝑚𝑚����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑎𝑎𝑇𝑇𝑚𝑚 

𝑏𝑏𝑇𝑇𝑚𝑚����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑏𝑏𝑇𝑇𝑚𝑚 
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𝑐𝑐𝑇𝑇𝑚𝑚���� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑐𝑐𝑇𝑇𝑚𝑚 

𝑎𝑎𝐺𝐺𝐺𝐺����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑎𝑎𝐺𝐺𝐺𝐺 

𝑏𝑏𝐺𝐺𝐺𝐺����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺 

𝑐𝑐𝐺𝐺𝐺𝐺���� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑐𝑐𝐺𝐺𝐺𝐺 

𝑎𝑎𝑚𝑚 =
𝑃𝑃𝑒𝑒𝑇𝑇𝑐𝑐𝑒𝑒𝑃𝑃𝑇𝑇 𝑇𝑇𝑒𝑒𝑇𝑇𝑎𝑎𝑖𝑖𝑃𝑃𝑒𝑒𝑟𝑟 𝑜𝑜𝑃𝑃 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑒𝑒 #4 𝑖𝑖𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒 𝑖𝑖

𝑆𝑆𝑇𝑇𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇ℎ𝑒𝑒 𝑝𝑝𝑒𝑒𝑇𝑇𝑐𝑐𝑒𝑒𝑃𝑃𝑇𝑇 𝑇𝑇𝑒𝑒𝑇𝑇𝑎𝑎𝑖𝑖𝑃𝑃𝑒𝑒𝑟𝑟 𝑜𝑜𝑃𝑃 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑒𝑒 #4 𝑜𝑜𝑜𝑜𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑠𝑠
 

𝑤𝑤𝑚𝑚 = 𝑝𝑝𝑒𝑒𝑇𝑇𝑐𝑐𝑒𝑒𝑃𝑃𝑇𝑇 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒 𝑖𝑖 𝑖𝑖𝑃𝑃 𝑇𝑇ℎ𝑒𝑒 𝑆𝑆𝑖𝑖𝑇𝑇 

 

5. Use the parameters obtained from the previous steps to calculate amix, bmix, and cmix 

using Equation 6, 7, and 8. 

 

 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =  49.3144+𝜆𝜆
351.289−0.00193×(𝐺𝐺𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚)2

       Equation 6 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.33𝑎𝑎𝑃𝑃 (1.43757(𝑎𝑎𝑇𝑇𝑚𝑚+𝑏𝑏𝑇𝑇𝑚𝑚)+46.8933𝜆𝜆+(333.491ϗ))
(2.42031×(𝑎𝑎𝐺𝐺𝐺𝐺+𝑏𝑏𝐺𝐺𝐺𝐺)

+ 1.0081  Equation 7 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = 0.018 + (1.654𝑐𝑐𝑇𝑇𝑚𝑚 + 1.346𝑐𝑐𝐺𝐺𝐺𝐺)      Equation 8 

 

6. Obtain the mixture MPD. 

6a. Option 1: Enter the MPD values from experimental measurements. 

6b. Estimate MPD from gradation parameters using Equation 9. 

 

MPD =(λ/34.180)-(0.398/k) + (k0.416) – 0.003N Equation 9 
 

7. Input highway and traffic information: 

Divided/undivided, number of lanes in each direction, total AADT in both directions 

(undivided) or total AADT in one direction for divided highway, percent of truck traffic. 
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8. Calculate TMF using Equation 10a. 

The TMF is calculated using Equation 4.15  

TMF = Number of days between construction and field testing x adjusted traffic
1000

 (4.15) 

The adjusted traffic is calculated using Equation 4.16. 

Adjusted traffic = 𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇𝑚𝑚 (100−𝑃𝑃𝑇𝑇𝑇𝑇)𝑚𝑚 𝐴𝐴𝐷𝐷𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇
100

 +  𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇 𝑚𝑚 𝑃𝑃𝑇𝑇𝑇𝑇 x 𝐴𝐴𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚 20 
100

 (4.16) 

Where: 

AADT: average annual daily traffic for each roadbed (both direction for undivided and one 

direction for divided highway). 

𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇: design lane factor of AADT (depends on number of lanes and urban/rural condition). 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘: design lane factor of trucks (depends on number of lanes and urban/rural condition). 

PTT: percent truck traffic. 

Rural Highway 
Number of 
Lanes in each 
direction 

Undivided Divided 
DLAADT DLtruck DLAADT DLtruck 

1 0.50 0.50 N/A N/A 
2 0.40 0.45 0.80 0.90 
3 0.30 0.40 0.40 0.50 

 
 
Urban Highway 

Number of 
Lanes in each 
direction 

Undivided Divided 
DLAADT DLtruck DLAADT DLtruck 

1 0.50 0.50 N/A N/A 
2 0.30 0.40 0.70 0.90 
3 0.25 0.35 0.40 0.50 
4 N/A N/A 0.30 0.40 

9. Calculate equivalent number of polishing cycles N using Equation 10. 

1

10
mix

mix

CA B c
cN TMF

+ × +

= ×       Equation 10 
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Where:  

A = −-0.452, B = −58.95, C = 5.834×10-6. 

10. Calculate IFI as a function of equivalent number of polishing cycles using Equation 

11. 

( )( ) expmix mix mixIFI N a b c N= + × − ⋅      Equation 11 

 

11. Calculate SN as a function of vehicles using Equation 12. 

 𝑆𝑆𝑆𝑆50(𝑆𝑆) = 4.81 + 140.32[𝐴𝐴𝐼𝐼𝐴𝐴(𝑆𝑆) − 0.045] × 𝑒𝑒
−20
𝑆𝑆𝑆𝑆    Equation 12 

MPDS P 7.892.14 +=       Equation 12(a) 

 

12. Plot SN as a function N. 

 

13. Input parameters for ranking a road section.  

Skid resistance service life that the road should be resurfaced afterwards, Skid resistance 

threshold values. 

 

14. Rank a road section based on the following skid number values. 

Example of a situation where user can define threshold values of skid number—what 

he/she thinks is acceptable (high), acceptable but requires frequent monitoring (medium), 

or not acceptable (low).  

Aggregate Class SN Threshold Value 

High SN (50) ≥ 30 
Medium  21≤ SN (50) < 30  

Low SN (50) < 21 
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APPENDIX D: 
SAAP FLOW CHART FOR SURFACE TREATMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Gradation 
Parameters λ, κ for 
Equation 1 

 

        Aggregate 
Texture & 
Angularity Model 
Coefficients 

    

     Start 

  1- BMD* 

 2-AMD 105** 

 

Texture & 
Angularity 

Model      

  1- BMD 

 2-AMD 105 

  3- AMD180*** 

 

       Solver 

       Solver      Aggregate Texture & 
Angularity Model 
Coefficients             
aTx, bTx, cTx, aGA, bGA, cGA 

 

IFI Model Coefficients amix, bmix, cmix 
Equations 6, 7, 8 

     Mean Profile 
Depth (MPD) 

 

        Calculated MPD 
Equation 9 

     Three Point 
Texture& 
Angularity 

     Two Point 
Texture & 
Angularity  

       Measured MPD in the 
field 

 

       Percent passing for 
each sieve 

 

         From Table  

 

Equation 2-1, 2-2 
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* Texture or Angularity before Micro-Deval measured by AIMS. 
** Texture or Angularity after 105 minutes in Micro-Deval measured by AIMS. 
*** Texture or Angularity after 180 minutes in Micro-Deval measured by AIMS. 
 
  

 

 

 

 

 

 

 

 

 

 

         Number of Polishing 
cycles (N) Equation 10 

         International Friction 
Index (IFI) Equation 11 

        Skid number (SN) 
Equation 12 

    End 

        Display 
for 30 
years 
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1. Determine the gradation parameters λ and κ. 
 
1a. Option 1—Input gradation (percent passing) for any combination of the following 
standard sieves: 
1", 7/8", 3/4", 5/8", 1/2", 3/8”, #4, #8, #16, #30, #50, #80, #200. 
 
 
 

Use the solver to fit Equation 1 to the gradation curve. The output is the parameters λ 
and κ. 

( )
( )

; , 1
x

F x e
κ

λ

λ κ
−

= −
       Equation 1 

1b. Option 2: Select a standard mix gradation from the table below. The default values. 
for κ and λ in this Table 1 will be used. 
 

Table 1. Scale and shape parameters 
 

Mix Design Scale Parameter λ Shape Parameter κ 
Grade 3 12.24 8.809 
Grade 4 9.176 5.142 
Grade 5 5.556 5.372 

 
2. Input number of aggregate sources used in the mix and the percent passing sieve #4 

for each source. 

 

3. Input aggregate texture data for each aggregate source. 

3a. Option 1—input:  

• Texture measured using AIMS at t = 0 polishing time. 

• Texture measured using AIMS at t = 105 minutes of polishing.  

Then use Equations 3 to 5 to output aTxi, aTxi+bTxi, cTxi, aGAi, aGAi+bGAi and cGAi: 

𝑎𝑎𝑇𝑇𝑚𝑚 + 𝑏𝑏𝑇𝑇𝑚𝑚 = 𝐵𝐵𝐵𝐵𝐷𝐷 + 0.134 𝑖𝑖       Equation 3_1 
  𝑎𝑎𝐺𝐺𝐺𝐺 + 𝑏𝑏𝐺𝐺𝐺𝐺 = 0.994𝐵𝐵𝐵𝐵𝐷𝐷 + 21.084 𝑖𝑖       Equation 3_2 

 
𝑎𝑎𝑇𝑇𝑚𝑚 = 1.011𝐴𝐴𝐵𝐵𝐷𝐷 − 17.918 𝑖𝑖      Equation 4_1 
 𝑎𝑎𝐺𝐺𝐺𝐺 = 1.232𝐴𝐴𝐵𝐵𝐷𝐷 − 648.34 𝑖𝑖      Equation 4_2 

 
𝑐𝑐𝑇𝑇𝑚𝑚 = 𝐺𝐺+𝑇𝑇𝐷𝐷

𝐵𝐵+𝐶𝐶 × 𝐺𝐺𝐴𝐴𝐴𝐴
𝑖𝑖        Equation 5_1 
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  Where: A = 1.555, B = 126.995, C = -18.174 

𝑐𝑐𝐺𝐺𝐺𝐺 = 𝐺𝐺+𝑇𝑇𝐷𝐷
𝐵𝐵+𝐶𝐶 × 𝐺𝐺𝐴𝐴𝐴𝐴

𝑖𝑖         Equation 5_2 

  Where: A = 1.292, B = -9.77, C = 58.155 

BMD AMDTL
BMD
−

=
i
        Equation 5(a) 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝐺𝐺𝐴𝐴𝐴𝐴

𝐵𝐵𝐴𝐴𝐴𝐴�

1−�𝐺𝐺𝐴𝐴𝐴𝐴 𝐵𝐵𝐴𝐴𝐴𝐴� �
2 i       Equation 5(b) 

where 

i stands for an aggregate source. TL and ARI should be calculated separately for texture and 

angularity. 

 

3b. Option 2—input:  

• Texture measured using AIMS at t = 0 polishing time. 

• Texture measured using AIMS at t = 105 minutes of polishing.  

• Texture measured using AIMS at t = 180 minutes of polishing.  

Use solver to fit Equation 2 to three data points and determine aTx, bTx, and cTx:  

𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 (𝑇𝑇) = 𝑎𝑎𝑇𝑇𝑚𝑚 +  𝑏𝑏𝑇𝑇𝑚𝑚. exp(−𝑐𝑐𝑇𝑇𝑚𝑚. t)𝑖𝑖    Equation 2_1 

Angularity (t)  = 𝑎𝑎𝐺𝐺𝐺𝐺 +  𝑏𝑏𝐺𝐺𝐺𝐺. exp(−𝑐𝑐𝐺𝐺𝐺𝐺. t)𝑖𝑖    Equation 2_2 

 

4. Calculate the weighted average aTx, bTx, cTx, aGA, bGA, and cGA for all aggregate 

sources as follows: 

𝑎𝑎𝑇𝑇𝑚𝑚����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑎𝑎𝑇𝑇𝑚𝑚 

𝑏𝑏𝑇𝑇𝑚𝑚����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑏𝑏𝑇𝑇𝑚𝑚 

𝑐𝑐𝑇𝑇𝑚𝑚���� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑐𝑐𝑇𝑇𝑚𝑚 

𝑎𝑎𝐺𝐺𝐺𝐺����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑎𝑎𝐺𝐺𝐺𝐺 
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𝑏𝑏𝐺𝐺𝐺𝐺����� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺 

𝑐𝑐𝐺𝐺𝐺𝐺���� =  �𝛼𝛼𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑤𝑤𝑚𝑚𝑐𝑐𝐺𝐺𝐺𝐺 

𝑎𝑎𝑚𝑚 =
𝑃𝑃𝑒𝑒𝑇𝑇𝑐𝑐𝑒𝑒𝑃𝑃𝑇𝑇 𝑇𝑇𝑒𝑒𝑇𝑇𝑎𝑎𝑖𝑖𝑃𝑃𝑒𝑒𝑟𝑟 𝑜𝑜𝑃𝑃 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑒𝑒 #4 𝑖𝑖𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒 𝑖𝑖

𝑆𝑆𝑇𝑇𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇ℎ𝑒𝑒 𝑝𝑝𝑒𝑒𝑇𝑇𝑐𝑐𝑒𝑒𝑃𝑃𝑇𝑇 𝑇𝑇𝑒𝑒𝑇𝑇𝑎𝑎𝑖𝑖𝑃𝑃𝑒𝑒𝑟𝑟 𝑜𝑜𝑃𝑃 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑒𝑒 #4 𝑜𝑜𝑜𝑜𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑠𝑠
 

𝑤𝑤𝑚𝑚 = 𝑝𝑝𝑒𝑒𝑇𝑇𝑐𝑐𝑒𝑒𝑃𝑃𝑇𝑇 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑇𝑇𝑒𝑒 𝑖𝑖 𝑖𝑖𝑃𝑃 𝑇𝑇ℎ𝑒𝑒 𝑆𝑆𝑖𝑖𝑇𝑇 

 

5. Use the parameters obtained from the previous steps to calculate amix, bmix, and cmix 

using Equation 6, 7, and 8. 

 

 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =  40.493+𝜆𝜆
330−0.0011×(𝐺𝐺𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚)2

       Equation 6 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = 0.4𝑎𝑎𝑃𝑃 (1.43757(𝑎𝑎𝑇𝑇𝑚𝑚+𝑏𝑏𝑇𝑇𝑚𝑚)+46.8933𝜆𝜆+(3433.491ϗ))
(2.02031×(𝑎𝑎𝐺𝐺𝐺𝐺+𝑏𝑏𝐺𝐺𝐺𝐺)

    Equation 7 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = (2.654𝑐𝑐𝑇𝑇𝑚𝑚 + 1.5𝑐𝑐𝐺𝐺𝐺𝐺)        Equation 8 

 

6. Obtain the mixture MPD. 

6a. Option1: Enter the MPD values from experimental measurements. 

6b. Estimate MPD from gradation parameters using Equation 9. 

MPD = (λ/5.403) + (3.491/k) + (k0.104) +𝑆𝑆−0.47 – 2.594     Equation 9 
 

7. Input road information: 

Divided/Undivided, Number of lanes in each direction, Total AADT in both directions, 

Percent of truck traffic. 

 

8. Calculate TMF using Equation 10a. 

The TMF is calculated using Equation 4.15.  

TMF = Number of days between construction and field testing x adjusted traffic
1000

 (4.15) 

The adjusted traffic is calculated using Equation 4.16. 
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Adjusted traffic = 𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇𝑚𝑚 (100−𝑃𝑃𝑇𝑇𝑇𝑇)𝑚𝑚 𝐴𝐴𝐷𝐷𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇
100

 +  𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇 𝑚𝑚 𝑃𝑃𝑇𝑇𝑇𝑇 x 𝐴𝐴𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚 20 
100

    (4.16) 

where: 

AADT: average annual daily traffic for each section. 

𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐴𝐴𝑇𝑇: design lane factor of AADT (depends on number of lanes and urban/rural 

condition). 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘: design lane factor of trucks (depends on number of lanes and urban/rural condition). 

PTT: percent truck traffic. 

Rural Highway 

Number of 
Lanes in each 
direction 

Undivided Divided 
DLAADT DLtruck DLAADT DLtruck 

1 0.50 0.50 N/A N/A 
2 0.40 0.45 0.80 0.90 
3 0.30 0.40 0.40 0.50 

 
 
Urban Highway 

Number of 
Lanes in each 
direction 

Undivided Divided 
DLAADT DLtruck DLAADT DLtruck 

1 0.50 0.50 N/A N/A 
2 0.30 0.40 0.70 0.90 
3 0.25 0.35 0.40 0.50 
4 N/A N/A 0.30 0.40 

 
TMF: Traffic Multiplication Factor  

 
9. Calculate equivalent number of polishing cycles N using Equation 10. 

1

10
mix

mix

CA B c
cN TMF

+ × +

= ×       Equation 10 

Where: A = -0.452, B= -58.95, C= 5.834×10-6 
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10. Calculation IFI as a function of equivalent number of polishing cycles using 

Equation 11. 

( )( ) expmix mix mixIFI N a b c N= + × − ⋅      Equation 11 

 

11. Calculate SN as a function of vehicles using Equation 12. 

𝑆𝑆𝑆𝑆50(𝑆𝑆) = 4.81 + 140.32[𝐴𝐴𝐼𝐼𝐴𝐴(𝑆𝑆) − 0.045] × 𝑒𝑒
−20
𝑆𝑆𝑆𝑆    Equation 12 

MPDS P 7.892.14 +=        Equation 12(a) 

12. Plot SN as a function N. 

 

13. Input parameters for ranking a road section.  

Skid resistance service life before the road should be resurfaced, Skid resistance 

threshold values. 

 

14. Rank a road section based on the following skid number values. 

 

Example of a situation where user can define threshold values of skid number—what 

he/she thinks is acceptable (high), acceptable but requires frequent monitoring (medium), 

or not acceptable (low).  

Aggregate Class SN Threshold Value 

High SN (50) ≥ 30 
Medium  21≤ SN (50) < 30  

Low SN (50) < 21 
 

15.  Export input and output data files 

Input and output data are created in two separate Microsoft Excel files. 
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Example of a situation where user can define threshold values of skid number—what 

he/she thinks is acceptable (high), acceptable but requires frequent monitoring (medium), 

or not acceptable (low).  

Aggregate Class SN Threshold Value 

High SN (50) ≥ 30 
Medium  21≤ SN (50) < 30  

Low SN (50) < 21 
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