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EXECUTIVE SUMMARY

BACKGROUND

There are approximately 60,000 bridges across the United States identified as having unknown
foundations as of 2005. Most of the bridges were built between 1950 and 1980, which coincides
with the construction of the Interstate Highway System. Texas alone has over 9,000 bridges with
unknown foundations, 85 percent of which are over local roads. Local government entities such
as counties or private companies typically designed and constructed these bridges, often
categorized as “off-system” bridges. The missing substructure information associated with
unknown foundations has made the safety monitoring of bridges very difficult, especially the

scour-critical bridges.

The FHWA has required all states to eliminate their unknown foundations from the National
Bridge Inventory (NBI). Specifically, this means updating Item 113, Scour-Critical Bridges that
are coded as “U,” bridges with unknown foundations that have not been evaluated for scour.
TxDOT can use the methods developed in the project as new mediums to determine the
substructure characteristics for unknown bridge foundations to accommodate the scour

evaluation for these bridges.

APPROACH TO SOLVE THE PROBLEM

The approach to solve this problem has two components: an evidence-based approach and an
experiment-based approach.  The proposed evidence-based methodology consists of a
deterministic and a probabilistic approach. Both approaches are based on a case study of bridges
in the Bryan District of TXDOT. Data are collected for approximately 185 bridges over-river
with known foundations. This database provides sufficient data for inferences about bridge

foundations, the regional design, and construction criteria, as well as characteristics of the soil.

The dead load and live load of a bridge foundation is computed without going through the
time-consuming exact methods using a proposed load approximation method. The dead load, live

load, and bearing capacity are estimated for piers of bridges in the collected database.



The deterministic approach is to apply Artificial Neural Networks (ANN) to recognize the
inherent pattern in bridge substructure design and to generalize this pattern to unknown
foundation bridges (UFB). This allows for making predictions on substructure type and
dimension with a reasonable accuracy with no need to perform time-consuming and costly

experiments.

The probabilistic approach, on the other hand, aims to generate a number of possible answers for
an unknown foundation, each with a certain amount of plausibility. Probabilistic predictions on
substructure type, dimensions, and soil characteristics based on the evidence provided by

collected data are made using Bayesian methods of inference.

The proposed experiment-based methodology consists of a vibration method, electrical
resistivity imaging, and induced polarization imaging.  Through laboratory and field
experiments, each of these methods aims to identify the depth of bridge foundations. The
electrical resistivity imaging (ERI) and induced-polarization imaging are conducted beneath the
bridge and do not contact the structure. This is an advantage over the vibration method, which

uses the super structure of the bridge.

OUTCOME OF THE STUDY

The deterministic approach first establishes what the type of the foundation is and then, if the
foundation is recognized to be deep (either concrete, steel piling, or drilled shafts), it selects the
appropriate ANN model based on the availability of soil-boring data to predict the depth of the
foundation. The ANN model approximates the pile embedment depth based on the bridge load,

soil properties, location, and year built.

The probabilistic approach also selects the appropriate ANN model based on the foundation type
and soil-boring data availability in order to make a prediction on the bearing capacity of the
foundation. The bridge load, soil properties, location, and the year built are used to approximate
the bearing capacity. Markov Chain Monte Carlo (MCMC) simulations are performed using the
predicted bearing capacity. MCMC simulations obtain probability distributions for foundation
type, foundation dimensions, and soil resistance parameters, depending on the availability of

information about each of these elements.



The vibration method is based on the principle that a foundation that is embedded deeper will be
stiffer than a shallow foundation. By measuring the vibration of bridge piers using accelerometers
after they are excited, the accelerations can be transformed in the frequency domain using a Fast
Fourier Transform. From this, the amplitude of the response versus the frequency is obtained. A

deeper, and therefore stiffer, structure will have a higher frequency response.

Electrical resistivity imaging provides a fast and efficient geophysical method for determining
whether a foundation is embedded to 5 m (16.40 ft) depth or greater. Researchers can deploy the
method in moderate to heavily vegetated, water-covered environments using underwater
electrodes, such as those specially designed for this project. While 3-D resistivity imaging can be
done, it is not recommended for routine bridge foundations. Similarly, induced polarization (IP)
imaging can be used in moderate to heavily vegetated environments. IP is not recommended for
water-covered areas at this time. IP provides the depth of foundations when the depth of
penetration of the data is deeper than the foundation and provides a minimum depth of foundations

when the depth of penetration is shallower than the foundation.

SIGNIFICANCE OF THE STUDY

Results of predicted versus actual pile depth show that the ANN models proposed in this study
are able to fairly accurately predict the embedment depth of deep foundations (R* value >0.85).
ANN models also were successfully able to predict the bearing capacity of bridge foundations.
MCMC simulations provide posterior distributions and cumulative density functions for
foundation type, foundation dimension, and soil properties. Posterior distribution allows for
probabilistic inversion of bridge unknown parameters. This includes estimating the expected

value, standard deviation, and confidence intervals for bridges of unknown parameters.

Despite the promising laboratory work using the vibration method, the researchers shifted their
efforts to enhance the geophysical team with IP testing because a dominant frequency could not be
identified in field work and because numerical modeling showed that the frequency did not change
dramatically with a change in the pile depth of embedment. The researchers find, in general, that it
is possible to image and identify foundations that possess large resistivity contrasts. Similarly, IP
can be used in conjunction with resistivity testing to provide more clarity to the resistivity testing

as the arrays used are very similar.






PART I.
BACKGROUND






Chapter 1.
UNKNOWN BRIDGES ACROSS TEXAS

Following the FHWA requirement to inspect and monitor all bridges across the nation, the
Departments of Transportation (DOTs) across the United States have implemented different
measures to determine the bridges’ vulnerability to failure. As a result, researchers found that for a
considerable number of bridges, the substructure information was not available. This unavailability
has made it extremely difficult to evaluate the bridge safety due to hydraulic hazards such as scour
because the foundation properties (type and dimension) are essential for determining the bridge

vulnerability to scour.

As of 2005, approximately 60,000 bridges throughout the United States have been identified as
having unknown foundations. Most of these bridges were built between 1950 and 1980, which
coincides with the construction of interstate system. These bridges are mostly classified as
off-system bridges, those that counties and local agencies built and owned, and later a DOT
inherited. Therefore, it is expected that these types of bridges be located on local roads and
arterials. Table 1-1 shows the number of unknown foundation bridges (UFB) across the United
States based on their functional classification specified in item 26 of NBI. Figure 1-1 shows the

distribution of these bridges over the years (Stein and Sedmera 2006).

The number of UFBs is significantly different across states. It varies from states where the number
of bridges is relatively high but the majority of which are located on local and minor roads to states
where the number is relatively low but the majority are located on principal arterials. In other
words, both the number and the functional classification of UFBs determine the potential risk

associated with unknown foundation bridges.

Texas has the largest population of bridges with unknown foundations in the United States (9,113).
Among those only 33 (0.4 percent) are located on principal arterials. By contrast, Alaska has only
151 bridges with unknown foundations, but a significantly higher percentage of these are located
on principal arterials (37 bridges or 25 percent). Although researchers expected to see very few
UFBs built in recent years, 69 UFBs are located on principal arterials and were built between 2000
and 2005 (Stein and Sedmera 2006).



Table 1-1. Number of Unknown Foundation Bridges across the United States
(Stein and Sedmera 2006).
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Table 1-1. Number of Unknown Foundation Bridges across the United States

(Stein and Sedmera 2006) (Continued).
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Figure 1-1. Number of UFBs, according to Year of Construction.
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Chapter 2.
COMPUTING METHODS FOR DETERMINATION OF UNKNOWN
FOUNDATION OF BRIDGES

INTRODUCTION

Researchers have tackled the problem of unknown foundations in the United States with different
approaches and occasionally a combination of different methods. There are a number of studies on
applying nondestructive testing (NDT) methods to obtain information about unknown bridge
foundations, while very few studies have used statistical, computational, and numerical solutions to
infer foundation properties. Regarding the uncertainty of results given by these methods and the
uncertain nature of scour, risk-based approaches have shown potential to perform more rational

assessment and classification of UFBs.

This section introduces a comprehensive review on computing methods and risk-based approaches
for predicting pile depth and reviews scour depth at bridge piers. Special attention will be placed
on the use of soft-computing methods such as Artificial Neural Networks (ANNs) and in

probabilistic methods such as Bayesian.

ANNSs are massively parallel computational models initially proposed by McCulloch and Pitts
(Haykin 1999). ANNs have been widely used in various geotechnical applications including pile
capacity prediction, soil modeling, site characterization, settlement of structures, slope stability,
liquefaction, soil permeability and hydraulic conductivity, soil compaction, soil swelling, and

classification of soils (Shahin 2008).

Bayesian methods originated from Bayes’ Theory and the definition of conditional probability that
Thomas Bayes presented. Due to the large degree of uncertainty associated with current
geotechnical engineering design and practice (such as laboratory tests, field measurements, and

constitutive modeling of geomaterials), Bayesian methods of inference can be extremely useful in

this field (Yuen 2010).
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APPLICATION OF NEURAL NETWORK FOR DETERMINATION OF BRIDGE
FOUNDATIONS AND SCOUR DEPTH EVALUATION

A number of studies have applied ANNs to infer scour depth at bridge piers, but only a few used
probabilistic neural network (PNN) analysis. Also, some studies have explored the use of ANNs to
interpret the results of NDTs for determination of UFBs.

Zounemat-Kermani et al. (2009) used ANNs to model the maximum scour depth at pile groups
under clear-water scour condition. Two ANN models (feed forward back propagation [FFBP] and
radial basis function [RBF]), along with a neuro-fuzzy inference model, were used to predict the
depth of the scour. Networks with different combination of input variables like flow depth, mean
flow velocity, critical flow velocity, soil grain mean diameter, pile diameter, distance between the
piles (gap), number of piles normal to the flow, and the number of piles in-line with flow, were
considered for the network training. They also trained a network with dimensionless parameters.
Results showed that the FFBP-NN model provided a better prediction rather than the RBF model.
Figure 2-1 shows the observed versus predicted for calibration and validation data sets. A
sensitivity analysis on the results showed that the pile diameter in dimensional variables and the
ratio of pile spacing to pile diameter in non-dimensional parameters were the most relevant

parameters affecting scour depth prediction (Zounemat-Kermani et al. 2009).
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Figure 2-1. Observed Scour Depth versus Predicted Scour Depth for FFBP-NN Model
(Zounemat-Kermani et al. 2009).
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Kaya (2010) performed an ANN analysis to study the pattern of local scour at bridge piers. This
study contained 380 measurements at 56 bridges in 13 states using the FHWA database. A
three-layer feed-forward neural network with Levenberg-Marquardt optimization algorithm was
designed. Bed load conditions, pier shape, type, skew, length and width, flow depth and velocity,
and grain size were considered as input variables, while the scour depth was defined as the output

or target variable. Figure 2-2 shows the ANN’s prediction results for scour depth..

Lee et al. (2007) also applied back propagation neural network to predict the local scour depth at
bridge piers. Normalized velocity, grain size, and flow depth were the inputs of model. Also,
different numbers of hidden units and model optimization parameter values (learning rate and

momentum factor) were examined to obtain the optimized network (Lee et al. 2007).

8.0

7.5 -

6.0 -

R* = 0.7343
4.5 -

3.0 AN

—— Linear {ANN)

ANN Estimated Scour Depth (m)

0.0 1.5 30 4.5 6.0 7.5 9.0
Observed Scour Depth (m)

Figure 2-2. ANN Prediction Results for Scour Depth (Kaya 2010).

Bateni et al. (2007) proposed multilayer perceptron (MLP) and radial basis function (RBF)
networks to predict scour depth at bridge piers. They defined scour depth to be a function of flow
depth, mean velocity, critical flow velocity, mean grain diameter, and pier diameter. A neuro-fuzzy
adaptive model was also designed with the same input variables. Results showed that MLP and

neuro-fuzzy adaptive models can predict scour depth much more accurately than the existing

methods (Bateni et al. 2007).
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Rix (Rix 1995) used ANNSs to predict the length of piles from synthetic sonic mobility test data. An
ANN was used to enhance the interpretation of noisy non-destructive test results. A
two-dimensional element shown in Figure 2-3 was considered to represent the foundation
geometry (pile cap and pile bent). A force applied on top of the element and the response (particle
velocity) was measured at the same location to obtain sonic mobility data. The ANN was trained
with 500 synthetic mobility curves generated from randomly selected foundation geometries and
material properties. Each sonic mobility curve was composed of 100 discrete frequencies evenly
spaced from 0 to 1000 Hz. The ANN was able to properly map the frequencies in the mobility
curves with the pile length (Rix 1995).

F— a8 —

Sensor Locations T
2to6 ft
16 to 36 in. Swl5h

;

Concrete Pile
10to 40 ft
Soil
V, =400 to 1000 ft/sec

Rigid Layer

Figure 2-3. Foundation Geometry and Material Properties (Rix 1995).
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RISK-BASED AND COMPUTATIONAL APPROACHES FOR DETERMINATION OF
UNKNOWN BRIDGE FOUNDATIONS

NCHRP Risk-Based Approach (Stein and Sedmera 2006)

Stein and Sedmera (2006) proposed a risk-based approach to manage bridges with unknown
foundations that were susceptible to natural hazards such as scour. Their procedure consisted of
collecting appropriate data, estimating risk of failure from an estimated failure probability and
associated economic losses, and selecting the appropriate management plan based on the computed
risk. Risk was defined as the product of probability of failure and cost of failure of a given bridge.
The total cost of failure was defined as the sum of bridge replacement, detour costs (time and

mileage), and the cost of life losses.

The proposed risk-management guideline consists of three phases as shown in Figure 2-4; the first
phase states that if the bridge is categorized as high priority, then an aggressive plan such as
foundation reconnaissance, countermeasure/retrofit, bridge replacement, or closure is required. The
second phase verifies if the bridge meets the minimum performance level (MPL) or not. If not, the
bridge should be qualified for the most aggressive plan of actions (POAs). The third phase
compares the risk of bridge failure with the cost of installing countermeasures. Eventually, the

bridge is eligible for either countermeasures or automated monitoring.

The general risk guideline was applied specifically for scour failure by using HYRISK
methodology. Investigations showed that scour vulnerability estimation given by HYRISK
methodology was strongly correlated with the scour vulnerability specified in NBI item 113. The
probability of failure was estimated based on interviews with transportation officials from 25 states
about historical scour failures. These data suggest the average probability of failure is about 1 in
5000 per year (0.002). However, the average annual probability of failure given by HYRISK for
all over-water bridges was unreasonably large and led to an exaggerated risk values. Thus, the
original probability of failure produced by HYRISK was adjusted downward according to the

probability of failure based on interviews.
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Figure 2-4. General Risk Management Guidelines Flowchart
(Stein and Sedmera 2006).
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In order to validate the method performance, the research team used 60 case studies (bridges with
known foundations) from six states. Results revealed that the proposed method of risk calculation
could successfully identify the required POA for bridges corresponding to their known scour

evaluation.

Florida DOT Method for Reclassifying Unknown Foundations (McLemore et al. 2010)

The FHWA issued a memorandum to all the state departments of transportation requesting that
they address their bridges with unknown foundations by November 2010. In response to this, the
Florida Department of Transportation (FDOT) developed a set of risk-based guidelines to assist
bridge owners in evaluating and prioritizing plans of action—including investigation,
countermeasures, monitoring, rehabilitation, or replacement—for managing bridges with unknown

foundations.

According to the FHWA recommendations, the following procedures were included in the FDOT

approach to reclassify the UFBs:

e Locate historical standard sheets, construction specifications, and design guidance.
e Risk-based evaluation based on the NCHRP.

e ANN.

e Reverse engineering.

e NDT.

The guideline starts with an attempt to locate the as-built plans for as many bridges as possible,
performing scour evaluations based on foundation geometry specified in the plans, and finally
updating item 113 (scour vulnerability of bridge) of the NBI. Figure 2-5 shows the guideline
flowchart.

For bridges with missing plans, the next phase would be to calculate the risk of failure and follow
the risk-based approach that NCHRP proposed. The NCHRP procedure was slightly modified to
address Florida’s bridges.
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For low-priority bridges meeting the MPL and having lifetime risks of failure smaller than
$15,000, a closure plan was recommended as a POA. Otherwise, if the lifetime risk of the bridge is
greater than $100,000 or if the bridge is found to be unstable from scour evaluation, performing

countermeasures or NDT methods was required.

For bridges with lifetime risks between $15,000 and $100,000, ANN, a geotechnical method, and a
hybrid method were applied to infer foundation dimensions and evaluate the bridge scour

vulnerability accordingly.

The Alachua and Collier counties were originally selected at the beginning of the project to
populate the study database. However, more data were sampled from other counties to make the

pilot study applicable to the entire state.

The methods considered for evaluating the foundation embedment were only applicable to piles
(concrete, steel, and timber) because it was understood that these were the only foundation types
existent in UFBs population in Florida. Pile loads are calculated based on a reverse-engineering
method that basically consisted of reevaluating the dead load and live load sustained by the bridge
piers. An alternative and simpler approach proposed in this study suggested the use of an ANN
model based on a data sample of bridges with known pile loads. Figure 2-6 shows the ANN

predictions for pile load versus the real load values obtained from the plans.

After computing the pile loads, three methods were proposed to obtain the pile embedment: ANN
predictive models, a Geotechnical method, and a hybrid approach. An MLP neural network with
one hidden layer and with Levenberg-Marquardt algorithm was created to predict the pile depth

based on a number of input variables associated with the bridge including:

e Pile size.

e Pile design load.

e Slope of the bearing capacity curve between 0 and 20 ft.
e Slope of the bearing capacity curve between 20 and 40 ft.

¢ Pile construction year.
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Figure 2-6. ANN Predictions of Pile Load versus Actual Pile Loads (McLemore et al. 2010).

This model was called CPILE and is only applicable for concrete piles. It imposed a minimum
prediction of 10 ft and a maximum of 70 ft. Also, to make sure that predicted depth is less than the
actual depth, the model results are factored by 0.7. In other words, although the correlation
between observed and predicted pile embedment is rather weak, applying the factor of safety could
guarantee that the model generates a conservative minimum embedment for the bridge pier. Also
for those bridges where a hard layer exists near soil surface, the pile embedment was equal to the
depth of the hard layer. Figure 2-7 shows the CPILE prediction of the Florida study. Note that no

measure of model prediction accuracy is presented for ANN prediction in this study.

Another approach was proposed to cover the weak points of the ANN predictive models. The
method consists of using the soil boring or wash-boring data for a number of known bridges and
developing bearing capacity curves using the FB-Deep software for different pile types and sizes.
The pile embedment was then determined using the corresponding bearing capacity curves and the
required design load. Figure 2-8 shows the bearing capacity curves for different values of SPT-N
for a number of 12-inch concrete piles based on the actual pile embedment and the design load (or

the allowable bearing capacity) extracted from pile driving records.
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Figure 2-8. Pile Embedment versus Design Load Obtained from Pile Driving Records for
12-Inch Concrete Piles (McLemore et al. 2010).
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If the bridge loads were not available, they had to be obtained via one of the previously mentioned
methods of load estimation. If soil-boring data were not available, a uniform soil profile with
constant SPT N-value was assumed. The SPT N-value of 15 is considered the optimum value and
is recommended for establishing the standard bearing capacity curve for concrete and timber
piling. However, the Florida DOT recommended that SPT N-value of 20 be used to establish the
standard bearing capacity curve for steel H-piles. Figure 2-9 shows the pile embedment prediction
for bridges with SPT boring data and the bearing capacity curves for 15-inch concrete piling. To
make sure that predicted pile embedment were less than the actual values, results of the

geotechnical method were reduced by a factor of 0.8.
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Figure 2-9. Comparison of Pile Embedment from Pile Driving Records versus FB-Deep
Analysis Using SPT-N = 15 for Concrete Piles (McLemore et al. 2010).

Finally, the hybrid method consisted of performing both the ANN and the geotechnical method
and selecting the minimum value as the pile embedment. Figure 2-10 shows comparison of the
accuracy of the proposed methods. The objective was to maximize the total accuracy while
minimizing the over-prediction. The colored lines on the plot show how the errors can be changed

by a constant multiplier (safety factor). The curve was generated by changing the magnitude of the
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safety factor, and the numbers along the geotechnical curve are the values of the safety factor at
that point on the curve. The circles show the recommended safety factors for each method. These

factors are 0.8 for the geotechnical, 0.7 for the ANN, and 1.0 for the hybrid method.
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Figure 2-10. Over-Prediction Error versus Total Error for Minimum Pile Embedment per
Bridge for 3 Methods and 25 Bridges (McLemore et al. 2010).

Figure 2-11 shows the flowchart to estimate the pile embedment for unknown foundations.

Static/Back-Calculating (S/B-C) Method (Sayed et al. 2011)

The S/B-C method was developed to reclassify UFBs from unknown to known by predicting
reasonable minimum foundation depths. This method was based on the static equilibrium of the
bridge, i.e., the equality of current service load factored by two or three according to Load and
Resistance Factor Design (LRFD) design or the ultimate load based on the allowable stress design

to the resistance of the foundation.
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This method is reliable and valid only when:

e The foundation is pile or shaft.

¢ Only the minimum reasonable depth is determined, not the actual depth.

e The foundation geometry (diameter, pile group layout) is somehow known (e.g., using
NDT testing).

e The borehole data are available at the bent (pier).

e The bridge is in Florida (this method may not give good response for bridges in other

states).

Figure 2-12 shows a flow diagram describing the implementation of the S/B-C method. The
physical measurements of the components of the super structure and top of the foundation
elements (layout, type, and size) allowed for back-calculation of bridge service load (reverse
engineering). Therefore, the ultimate load was calculated with a reasonable factor of safety for

Allowable Stress Design (ASD) and LRFD.

A 3D finite element model of the bridge pier was generated using the non-linear program
FB-Multiplier/FB-PIER V4. The computation is carried out iteratively until reaching the
stability/instability embedment.

The S/B-C approach was validated by several case studies of known foundation bridges in Florida
and has proven successful in predicting the minimum depth of piles. Figure 2-13 shows the

predicted versus actual pile length for the given case studies.
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Chapter 3.
EXISTING EXPERIMENTAL METHODS

INTRODUCTION

There are approximately 9,000 bridges in Texas with unknown foundations. The bridges spanning
water are of critical importance due to the risk of potential scour. States nationwide are identifying
their unknown foundations to update bridge databases; however, current techniques are typically
invasive and costly. Many reports with extensive research have been published on current surface
and subsurface tests (Maser et al. 1998; Mercado and O’Neil 2003; Olson et al. 1998; Olson 2005;
and Robinson and Webster 2008). Some of the capabilities and limitations of these methods are
presented in this chapter. Bridges are made up of many different components; common variables

of a bridge are shown in Figure 3-1.

Superstucture

Variable Bridge
Superstructure;

Steel, Concrete,

Wood, or Combination

Substructure

(Considered
the Unknown
Bridge
Foundation)

Dry, Marsh or Water

y aw Riprap, Soil or Mud.

i Shallow Footing or
i Pile Cap

Subsurface soil or Bedrock

Deep Foundations: Steel, Concrete
or Timber Piles, or Concrete Drilled
Shafts

Figure 3-1. Variables of an Unknown Bridge Foundation (Olson et al. 1998).
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While there are several elements of a foundation that are important, the foundation type and depth
are the most pertinent when determining an unknown foundation. This is important to note
because most existing methods are limited to determining the foundation depth only and are often

hindered by the type of a foundation.

Conventional excavation is the most effective method for successfully identifying the type and
depth of a foundation, which is independent of the type of the foundation. Excavation results in
exposing a portion of the bridge foundation for visual confirmation. This is not typically done
because, first, it is extremely expensive, especially when the bridge is over water, requiring the
area to be sheeted and dewatered. If the bridge is large, excavations may also be difficult due to a
lack of access, and if the bridge is over water, costly barges may be necessary. Also, excavation
can be very dangerous and difficult for workers. Precautions have to be taken so the foundation is
not undermined and the bridge does not collapse. For this reason, the need for nondestructive
testing was emphasized. This chapter is an overview of existing unknown foundation field

methods.

SURFACE METHODS

Surface methods are generally preferred over subsurface methods for many reasons. First,
boreholes for subsurface methods create an upfront cost for each subsurface test and take time
before the testing can begin. The costs of boreholes increase with common bridge variables such
as water and limited access. Surface methods avoid this initial issue; however, generating useable
results with them can be more difficult as they are often dependent on access to bridge foundations
and the type of the foundation. This section describes the existing surface methods for unknown

bridge foundations.

The simplest nondestructive testing method is a driving rod test which is used to determine if the
foundation is shallow or deep. A half-inch diameter steel rod is driven with a 15 1b hammer
dropped 2 ft near the bridge foundation. Blow counts per foot are recorded until the rod cannot be
driven further. This test can provide the depth to weathered rock, dense sand layers, or soft layers.
Shallow foundations are presumed if the results indicate a strong material or rock near the surface.
While this test is very cost-effective, it is highly dependent on inferences made by the rod refusal.

It is commonly used for small bridges as a first estimate before using a more reliable method.
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The sonic echo test was developed to evaluate the integrity and length of newly constructed piles.
For new piles, the source and receiver are placed on the top of the pile. The source generates an
impulse of known magnitude. Using this magnitude, the velocity of the wave can be estimated.
Using this known velocity and the known dimensions of the recently constructed pile, defects in
the pile can be detected. This method was applied to determine the depth of unknown foundations
by placing the receiver on the top or side of an exposed pile underneath a bridge. If the top was not
exposed, at least two receivers were placed on the side of the structure. Using a handheld hammer,
the compression waves were generated. The depth of the foundation was determined using the

arrival time of the reflected compression wave to the receiver (see Figure 3-2).

Time Domain Sonic Echo Data - Velocity Trace, Depth = 9.96 1t

Depth (tt)

Figure 1 - End Bent 2, Pile 3, Data Set 12
Time Domain Sonic Echo Data - Velocity Trace, Depth = 9.87 ft

10
5
0
-5
-
-1 1 | 1 1 | | |
0 2 4 B 8 10 12
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Figure 2 - End Bent 2, Pile 3, Data Set 13
Time Domain Scnic Echo Data - Velocity Trace, Depth = 9.92 7t
4.
2
o
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-
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Figure 3-2. Results of a Sonic Echo Test.

This method is very effective for columnar substructures. Unfortunately, it is limited because it
was found that the compression waves generated by the impulse are often diffused into other
components, like the pile cap shown in Figure 3-1. Also, it was found, “as a rule of thumb, when
embedded length to diameter ratios are greater than 20:1 to 30:1 in stiffer soils, there will be no

identifiable bottom echoes due to excessive damping of the compression wave energy in the Sonic

Echo” (Olson et al. 1998).
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The bending wave test is similar to the sonic echo test; however, it uses bending waves instead of
compression waves. At least two horizontal receivers are placed on the same side of the pile as the

impact (see Figure 3-3).

“The Strike”
= e

]
/ Data Acquisition

.

2 or more transducers

Figure 3-3. Bending Wave Testing Principle.

Like the sonic echo test, the depth of the foundation is calculated using the velocity of the wave
and the measured arrival times. The velocity of the stress wave is, however, not constant as
bending waves are highly dispersive. The dispersive nature of bending waves sometimes hinders
the effectiveness as the impulse must be a certain amplitude. Also, a major constraint is the
amount of the pile that must be exposed above the ground surface for the two transducers, which
must be spaced over a meter (3.28 ft) apart still with space above the top transducer for the impact.

This test is also only applicable to columnar structures like the sonic echo test.

The ultraseismic test is another wave propagation test; however, it uses geophysical digital data
processing to analyze the propagation of the compression and bending waves. Unlike the sonic
echo test, the ultraseismic test uses multiple channels of data, so it requires access to at least 1.52 m
(5 ft) of the surface of the substructure. Ultraseismic was researched in an attempt to address the
incapability of the sonic echo test and the bending wave test on non-columnar foundations.
Ultraseismic again uses a handheld hammer to generate the waves, but the arrivals and the
reflections of both the compression and bending waves are analyzed using seismic processing. The
compression waves are generated by striking the foundation vertically and the bending waves by

striking it horizontally. Olson et al. (1998) determined that this method has the broadest impact in
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determining unknown foundations of all the surface methods investigated in their study. While
ultraseismic proved to be more successful at testing more complex columnar piers than the
previously described methods, the waves are still not able to travel through pile caps or other
components on top of piles. This led to false results indicating shallower foundations than exist

(see Figure 3-4).
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Figure 3-4. Impedance of Wave Propagation by Complex Foundations
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(Olson et al. 1998).

Another surface method, the Dynamic Foundation Response Method, (Olson et al. 1998) uses a
5.45 kg (12 Ib) impulse hammer with a built in force transducer to excite the bridge in vertical and
horizontal directions along the frame of the substructure as a form of modal analysis. It was
introduced to differentiate between shallow and deep foundations, as other surface methods were
unable to detect piles beneath a pile cap. For this modal analysis, the substructure is struck with a
known force and the accelerometers measure the resulting vibrations. Using these data, the
transfer function is calculated and plots of the transfer function versus the frequency of the
structure are created. This was done under the principle that, all other components of the
structuring being the same, a shallow foundation will exhibit a lower resonance frequency than a
deep foundation. The researchers noted, however, that they needed more powerful vibrations to
excite the bridge to low frequencies comparable to the natural frequencies identified in numerical
modeling. They suggested using other methods to excite the bridge because of this observation. In

a later study, (Olson 2005) again attempted to excite bridges using handheld devices. Researchers
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used a 1.36 kg (3 Ib) impulse hammer, a 45.4 kg (100 Ib) vibrator, and a 5.45 kg (12 1b) impulse

sledge hammer; however, again these did not generate enough energy to excite the bridge.

Ultimately, Olson (2005) used the Vibroseis truck from the University of Texas to excite the
substructure from the bridge deck level because the truck could generate a low frequency output.
While the bridge was excited to necessary frequencies, modeling the data was not yet successful
although several approaches were researched. Olson attempted to use parameter estimation for
finding a solution to different pile cases; however, results were consistently incorrect. Also,
parameter estimation was used to solve for the first vertical mode of vibration of the structure.
However, it was concluded that this method is not feasible for estimating foundation damage

because the effects of the damage are too small to model.

Maser et al. (1998) believed that the approaches such as dynamic and seismic testing were too
complex, requiring specialized knowledge and equipment that are not readily available, thus
making some projects unfeasible. They wanted to implement a simple and low-cost approach using
a stiffness matrix created from measurements that loaded dump trucks caused. They measured
axle loads driving slowly across a bridge while continuously taking measurements. These methods
of excitation differ from those proposed in the vibration-based approach because the methods
reviewed excited the bridge deck enough that compression waves or vertical stiffness values could
be measured. Because this excitation must go through the deck and all the way down the
foundation, more energy must be generated to be effective. The team generated six models to find
stiffness matrices for different foundation types and conducted field tests on two bridges with
different known foundations. Unfortunately, at the time of publication, the measured stiffness
matrices did not show similarities to the models. The team did, however, find that for both the
measured and field tests, the stiffness matrices had distinctly different patterns of coefficients for

spread footings versus pile foundations.

Maser et al. (1998) hypothesized that each foundation type has a unique pattern of stiffness
coefficients. Because the bridge was loaded with a truck that has known properties, they assumed
the loading and certain known displacements to generate a stiffness matrix. While they had not
determined the coefficients at the time of publishing, they showed that the pattern of the

coefficients is different for shallow versus deep foundations, and these differences were similar to
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those predicted by theory. Similarly, Suzuki et al. (2007) used the ratios of a theoretical stiffness
to indicate scour on bridge piers. Accelerometers were attached to the top of bridge piers to
measure the vertical and horizontal accelerations of the pier. Suzuki et al. (2007) noted that a
change in the horizontal stiffness occurs when scour removes the soil from one side of a
foundation. This unbalance of stiffness is being used as a monitoring system for bridges over

water.

SUBSURFACE METHODS

Another way to determine the depth of an unknown bridge foundation is by investigating it using a
subsurface method after drilling a borehole. Many borehole methods exist; however, drilling a
borehole is expensive and can be difficult if the bridge is over water, particularly deep water. The
parallel seismic method is one of the common subsurface methods that is currently used (see
Figure 3-5.) The borehole must be drilled within 1 to 1.5 m (3.28 to 4.92 ft) of the foundation, and
it must be drilled at least 3 m (9.84 ft) deeper than the estimated foundation depth in order to
determine the depth of the foundation. Once the borehole is drilled, a hydrophone or geophone is
lowered at set intervals as the top or side of the exposed foundation is impacted with a handheld
hammer. Hitting the top of the foundation generates better compression waves; however, the side
of the structure can be hit if it is angled downwards should the top of the foundation be
inaccessible. If a hydrophone is used, the cased borehole is filled with water. Also, hydrophones
only work well when the soils around the foundation are fully saturated. The impulse generates
wave energy, and the geophone tracks the arrival times of the refracted waves into the soil.
Parallel seismic not only identifies the depth of the foundation, but also the depth of the scour zone

(Mercado and O’Neil 2003).

The depth of the foundation is noted when the stress wave arrival time is delayed due to the wave
being transmitted through soil instead of the substructure. Olson et al. (1998) observed that the
bottom of more massive foundations can be identified by a peak hyperbolic curve created when the
foundation acts as “a point diffractor...emitting both upward and downward travelling waves into
the borehole” (Olson et al. 1998). They also noted that the parallel seismic method has the

broadest application for determining unknown foundations of the ten that were investigated.
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Figure 3-5. Parallel Seismic Test Method (Olson et al. 1998).

The borehole sonic test uses compression and shear wave echoes to determine the depth of the
foundation by noting when the arrival time of the wave changes. Two boreholes are drilled next
to the foundation: one which has the source lowered in it and one which has the receiver.
Lowering the source in the borehole requires that the source be significant enough to generate
waves that will hit the foundation and reflect back. The borehole sonic test is limited by the type
of foundation. It works well for large foundations that have a surface big enough that the body
waves can reflect. However, it does not work well for smaller foundations like piles. The waves
can go around these piles, causing the reflections to not be identified. Borehole radar is similar to
borehole sonic in that it relies on reflections from the soil/foundation boundary to determine the
bottom of the foundation. These reflections are also caused by different material with changing
properties; however, borehole radar relies on the changing dielectric constants instead of
differences in stiffness and only one borehole is used. Relying on dielectric constants means that
changes in water content will greatly affect the results, with more water resulting in a lower depth
of penetration of the signal. Also, “environmental factors such as salt water, conductive soils,
ground moisture conditions, buried electrical power lines, etc., can critically limit and/or confuse

radar signals” (Olson et al. 1998).
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The induction method, used in North Carolina (Robinson and Webster 2008), is performed by
lowering an induction sensor in a borehole, which creates a magnetic field. The borehole must be
drilled within 45.72 cm (18 in) of the foundation in order for the induction test to be successful.
The field is interrupted by metal objects, such as rebar in a foundation. This disruption allows for
the rebar in the foundation to generate its own magnetic field, which is detected by the induction
sensor in the borehole. The received voltages read by the induction sensor are measured at a
minimum of every 0.31 m (1 ft). The depth at which the receiver no longer indicates a voltage
reading is the estimated foundation length. Figure 3-6 shows a successful induction test at a
bridge in North Carolina. The borehole was drilled to 6.55 m (21.5 ft), and the foundation was
determined to penetrate 0.30 m (1 ft) into the weathered rock.

Detector Output Voltage (Volts)
-1 0 i * 3 4 5

Mudline

Depth below top of tube (ft)
S

S

Figure 3-6. Induction Method Results at NCDOT Bridge (Robinson and Webster 2008).

This method is highly dependent on metal within the substructure, which is not always available.
It also assumes that the rebar within the substructure is continuous down to the bottom of the
foundation. Like all borehole methods, it is dependent on access being available for the borehole
to be drilled because for a successful test, the borehole must be drilled very close, within 45.72 cm

(18 in).
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Methods are often hindered by the assumptions researchers make based on typical foundation
construction practices. Unfortunately, some of the bridges with unknown foundations may not
have been built with standard construction methods. For example, there is a story of a bridge that
was temporarily closed because it was discovered that an unknown salt mine beneath the bridge
collapsed. Despite the collapse, engineers were able to go into the salt mine to investigate the
bridge foundation. While beneath the surface, they discovered that the concrete substructure did
not contain reinforcing steel. For reasons like this, methods that depend on certain components of
a substructure that are assumed to always be used could be ineffective in cases when those

components are not included.
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PART II.
EVIDENCE-BASED APPROACH
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Chapter 4.
GENERAL METHODOLOGY

INTRODUCTION

Texas has more than 9,000 bridges with unknown foundations where approximately 85 percent are
located on local roads. These bridges are often categorized as off-system bridges that counties or
private companies originally designed and constructed, and that TxDOT inherited later. The bridge
plans for most of these bridges are missing, and their substructure characteristics are unknown (i.e.,
type of foundation, foundation’s geometry, soil stratigraphy, and soil mechanical properties).
On-system bridges, on the other hand, are defined as bridges that TxDOT designed and
constructed, and their design and construction records are available. Missing substructure
information has made safety monitoring of bridges very difficult, especially for over-river bridges

susceptible to scour.

Following the FHWA'’s national request to remove as many UFBs from the NBI, TxDOT has
implemented a set of actions to update item 113 (scour-critical bridges) of the NBI for those
bridges coded as U in Texas. The purpose of this study is to provide a set of guidelines for TxXDOT
not only to determine the substructure characteristics of UFBs, but also to provide a confidence

measure about their assessment.

The proposed evidence-based approach consists of a deterministic and a probabilistic method. Due
to the timeframe of this project, the proposed approach is based on a case study of bridges located
only in TxDOT’s Bryan District, with the expectation that this can be implemented later in all the
other TxDOT districts.

The proposed approaches require evidence to condition the inferences about UFBs. For this
purpose, a database is populated from the review of 185 over-river bridges with known
foundations. Notice that one of the key hypotheses of the evidence-based approach is that the
collected database is a representative sample of the population describing the district’s bridges,
which allows for generating inferences about bridge foundations that are unknown in the same

district, given the particular characteristics of the UFB’s superstructure.
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The effort placed in retrieving information from each bridge inspection folder of known
foundations is to populate a database capturing characteristics about the effect of regional design

and construction criteria, as well as mechanical characteristics of the soil.

The deterministic method applies ANNs to recognize the inherent pattern in bridges substructure
design and to generalize this pattern to UFBs. This allows for making predictions on substructure
type and dimension with a reasonable accuracy with no need to perform time-consuming and

costly experiments.

The probabilistic method, on the other hand, aims to generate not only a single prediction of the
foundation’s characteristics as with the ANN, but also a number of likely combinations, so that
joint probability density functions can be integrated. This approach requires that prior knowledge
about the foundation’s characteristics be defined in the form of probability density functions and
also requires defining a physically based equilibrium connection to both the known and unknown
foundations: the foundation’s bearing capacity. For this purpose, the proposed Bayesian method is
used to make probabilistic predictions about the UFB’s substructure type and dimensions and the

mechanical characteristics of the supporting soil.

METHODOLOGY

Figure 4-1 and Figure 4-2 present the general flowchart for the deterministic and the probabilistic
methods. The deterministic approach is applicable only for deep foundations (piling or drilled

shafts) while the probabilistic approach can be used for piling, drilled shafts, and spread footing.

The deterministic method first determines what the type of foundation is. If the foundation is
recognized to be deep (either concrete, steel piling, or drilled shafts), the method selects the
appropriate ANN model based on the availability of soil-boring data to predict the depth of the

foundation.
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The probabilistic method also selects the appropriate ANN model based on the foundation type and
soil-boring data availability in order to make prediction on bearing capacity of the foundation. The
predicted bearing capacity is then used to solve the probabilistic inverse problem via Markov
Chain Monte Carlo (MCMC) simulations to obtain probability distributions for foundation type
and dimensions and soil resistance parameters, depending on the availability of information about

each of these elements.

The basic steps of each method are described below, and more details about each step can be found

in the following chapters.

DETERMINISTIC APPROACH

Step 1: Data Collection

A number of input parameters are identified as most relevant for prediction of foundation type and
deep-foundation depth. The following items are required and can be obtained from NBI or from

the Bryan District inspection database:

e Jtem 3: County (code).

e [tem 16: Latitude (to be converted to degrees).

e Item 17: Longitude (to be converted to degrees).

e Item 27: Year built.

e Item 43.1: Main span type.

e [tem 44.1-D1: Substructure type above ground for main spans.
e [tem 46: Total number of spans in bridge.

e Item 48: Max span length (ft).

e Item 51: Roadway width (ft).

Step 2: Determining the Foundation Type Using ANN

The type of foundation is predicted using a classifier ANN model. The ANN model is first trained

with a number of bridge examples and learns the existing pattern in relation between bridge input
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parameters and foundation type. The proposed ANN model can be used to predict almost all

common foundation types.

The ANN classifier is also used to distinguish between deep and shallow foundations, because it is
usually possible to identify foundation type from the substructure above ground, once one knows
that foundation is deep. Also, the proposed ANN model is not capable of making predictions about
foundation dimensions for spread footings; however, it is possible to predict deep-foundation depth

without knowing exactly what the foundation type is (whether it is a concrete pile, steel pile, or a

drilled shaft).

Chapter 7 gives more details on the ANN classifier model, its input parameters, and

implementation.

Step 3: Determining the Depth of Hard Layer

If soil bore data are available for the foundation or for a foundation reasonably close, then it is
recommended to identify if a hard layer such as rock or shale exists in the soil profile and to

determine the depth of the hard layer.

Based on the TxDOT Geotechnical Manual (2006), drilled shafts shall penetrate in hard layer at
least for one shaft diameter, if the hard layer is more than three shaft diameters below surface.
Otherwise, if the hard layer is close to surface, shafts are recommended to have a minimum
length of three shaft diameters. However, pile driving is normally stopped upon refusal, which

occurs when reaching a layer with TCP >100 (blows/ft) (TxDOT 2006).

The bridge plans for the over-river bridges in the Bryan District’s database also show that driven
piles and drilled shafts are extended up to the hard layer as a precaution and safety measure when
considered appropriate. Figure 4-3 shows an example of a bridge plan and where piles are cut off

upon reaching the hard layer.
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Figure 4-3. Bridge Plan Example.

Step 4: Calculating Dead Load and Live Load

A simple, fast method is proposed in this study to estimate the dead load and live load for bridge
foundation. This procedure is based on standard bridge design sheets that TxDOT provided. The
total load for a bridge bent is obtained using the standard tables based on roadway width and span

length. The live load is calculated with the corresponding standard design vehicle based on

AASHTO-LRFD specification. Chapter 6 provides details about the assessment of loads.

Step S: Obtaining Foundation Properties

In a condition where the foundation type is known, introducing to the model some of the

above-ground properties of the foundation, such as size and number of piles for a bridge bent, will

enhance the ANN model predictions
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Step 6: Predicting Pile Depth Using ANN Models

Depending on the soil bore data and foundation type information availability, one of the following

sub-steps is implemented:

Step 6-1: If the foundation type is known to be deep but neither the foundation type nor the
soil bore data are available, the ANN model called MLP-PLO0O is recommended to predict
foundation depth. This particular case assumes that foundation type cannot be inferred with
the desired level of confidence from the ANN classifier or from site investigation. It may
be used simply because the user is only interested in inferring the depth.

Step 6-2: This step addresses the condition in which the foundation type is known to be
deep, the exact foundation type is not known (or cannot be inferred using the desired
confidence level from an ANN classifier), but soil-boring data are available.

0 Step 6-2-1: Compute the average ultimate skin friction (Su) based on TCP values
along the piles and point-bearing capacity (Pb) using the TCP value at the tip of the
piles from the nearest soil bore data, using graphs presented in Figures 4-4 to 4-7,
proposed in TxXDOT Geotechnical Manual (2006). Chapter 5 has more details about
computing average skin friction along the pile and point-bearing capacity at tip of
the pile.

0 Step 6-2-2: Implement the ANN model, MLP-PLO1 to predict foundation (pile)
depth.

Step 6-3: This step addresses the condition in which both the foundation type and soil
information are known.

0 Step 6-3-1: The same procedure as in Step 6-2-1 is performed to obtain average soil
skin friction (Su) and point-bearing capacity (Pb) of the piles based on TCP values
from bore hole data.

0 Step 6-3-2: Implement MLP-PL11 to predict the pile depth.

Step 6-4: If foundation type is known or is inferred using the ANN classifier or by site
investigation but soil bore data are not available, then one can implement the ANN model

called MLP-PL10 to infer foundation depth.
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The proposed ANN model’s architecture, algorithm, learning process and input variables as well as
results of prediction for Bryan District bridges are fully described in Chapter 7. A number of

examples are also presented in Chapter 8.

The minimum value between the depth of the hard layer and the predicted pile depth by the ANN
model is selected as the pile depth.
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PROBABILISTIC APPROACH

Step 1: Data Extraction

The set of data items required for implementing the probabilistic approach can be retrieved from
the NBI. These parameters are used as input data for ANN models in order to first estimate bearing
capacity and later to use the bearing capacity to implement the Bayesian inference. The input

parameters from the NBI required for bearing capacity estimation via ANN are:
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e [Item 3: County (code).

e Item 16: Latitude (to be converted to degrees).

e Item 17: Longitude (to be converted to degrees).
e Item 27: Year built.

Step 2: Dead Load and Live Load Calculation

This step is similar to Step 4 of the deterministic approach.

Step 3: Obtaining Foundation Properties

In a condition where foundation type is known, size and number of piles (columns) for a bridge
bent is required for predicting bearing capacity for each pile. If the foundation type is unknown, at
least the number of piles per bent needs to be estimated based on the roadway width of the bridge

or by other means such as visiting the bridge.

Step 4: Predicting Bearing Capacity Using ANN

Depending on the soil bore data and foundation type information availability, one of the

following sub-steps is implemented:

e Step 4-1: If the foundation type is known to be deep but neither the foundation type nor
the soil bore data are available, the ANN model called MLP-BCOO is recommended to
predict bearing capacity for the interior bent of the bridge. It is assumed here that
foundation type cannot be inferred with the desired level of confidence from an ANN
classifier or from site investigation.

e Step 4-2: This step addresses the condition in which the foundation type is unknown (or
cannot be inferred from the ANN classifier with the desired confidence level) but soil-
boring data are available.

0 Step 4-2-1: Compute the average ultimate skin friction (Su) and point-bearing
capacity (Pb) of the piles as described in Step 6.2.1 of the deterministic approach.
0 Step 4-2-2: Implement the ANN model, MLP-BCO1, to predict bearing capacity

of the bridge interior bent.
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e Step 4-3: This step addresses the condition in which both the foundation type and soil
information is known.

0 Step 4-3-1: The same procedure as described in Step 4-2-1 is performed to obtain
average soil skin friction (Su) and point-bearing capacity (Pb) of the piles based
on TCP values from the nearest borehole data.

0 Step 4-3-2: Implement MLP-BC11 to predict the bearing capacity of the bridge
interior bent.

e Step 4-4: If foundation type is known or is inferred using the ANN classifier or by site
investigation but soil bore data are not available, then one can implement the ANN model
called MLP-BC10 to predict bearing capacity of the bridge interior bent.

e Step 4-5: The probabilistic solution of the inverse problem is implemented by the use of
the Bayesian paradigm and MCMC simulations. This process uses samples from
predefined distributions for each of the unknown variables (prior) and, based on the
matching between the ANN-predicted bearing capacity and a geotechnical model

prediction, populates another sample for each variable (posterior).

Finally, this method provides probability distributions for foundation type, foundation
dimensions, and soil resistance (skin friction and point-bearing capacity), depending on what the

unknowns are.

54



Chapter 5.
DATA COLLECTION

CASE STUDY—BRYAN DISTRICT OF TXDOT

In order to create both ANN-based and Bayesian-type methodology for determination of unknown
foundations, a case study was defined in the Bryan District of TxDOT.

There are about 1,700 bridges in the Bryan District. Among those, 1,100 are crossing rivers and
streams, which are those of concern due to scour vulnerability. Information from the Bryan District
showed that not all types of data are available for all bridges. According to the availability of data,
including the original as-built layouts and inspection data, bridges are separated into two broad

categories:

e On system: In this set, TXDOT mostly constructed the bridges; as-built layouts and
documents are available.

e Off system: In this set, there are no as-built plans for bridges. Inspections are performed to
obtain data for these bridges, so only inspection data are available. Table 5-1 shows the

number of bridges in each category in different counties.

Table 5-1. Bridges in Different Counties for On-System and Off-System Categories.

County No. of On-System No. of Off-System
Bridges Bridges
Brazos 71 65
Freestone 67 41
Leon 65 33
Milam 59 3]
Robertson 54 39
Madison 53 3
Washington 50 10
Grimes 49 38
Walker 45 30
Burleson 44 42
Sum 557 527
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Different Types of Superstructures

Different types of superstructures for Bryan District bridges are:

e Prestressed concrete I-beam (PSC Gir [MULT]): This is a very common type of bridge in
Bryan District.

e Pan Girder Bridge (Con Slab and Gir [PF]): This is the most common bridge type; the
curve in the girder forms an arch, which helps in shear resistance.

e Prestressed concrete box beam bridge (PSC BoxGir [MULT])).

e T-beam bridge (ConGir TB).

e Multiple steel I-beam (Steel IB).

e Prestressed concrete slab span (Con Slab [VD]).

e Concrete flat slab (Con Flat Slab).

Figure 5-1 illustrates percentage of each type of superstructures for bridges in Bryan District.

1.0 0.4_ 0.2 0.6

M Con Slab & Gir (PF)
H Con Flat Slab
® PSC Gir (MULT)
M ConGir TB
H Steel IB
M PSC BoxGir (MULT)
¥ PItGir (MULT)
[ Other PSC
WS PItGir (MULT)
B PItGir (VD, MULT)
PSC Slab (PD)

Figure 5-1. Percentage of Superstructure Type (%).
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Different Types of Substructure

Different types of substructures for Bryan District bridges are:

e Multiple concrete columns (DrSh/Mult Col Bent).

e Multiple concrete columns with a tie beam (DrSh/Conc Col Bent w/Tie Beam).

e Concrete pile (Conc Piling/Pile Bents).

e Multiple concrete columns with a web wall (DrSh/Conc Col Bent Wall).

e Concrete pier on a spread footing (Spread Footing/ConcPier).

e Concrete pier on a pile cap with concrete piles (Pile Cap on Conc Piling/ConcPier).
e Concrete column on a pile cap with steel piles (Pile Cap on Steel/Mult Col Bent).
e Single concrete column on drilled shafts (DrilSh/Sing Col Bent).

e Multiple steel pile, usually H pile (S Piling/Pile Bents).

e Masonry pier on a spread footing foundation (Spread Footing/Masonry Pier).

e Multiple timber pile (T Piling/Pile Bents).

Table 5-2 presents the number and percentage of different substructure types for bridges in the
Bryan District. Also, Figure 5-2 shows the pie distribution of different substructures (below

ground) types.
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Table 5-2. Percentage of Different Types of Substructures.
Substructure Type/ o Substructure Type/ o
Above Gr. No. | % Below Gr. No.| % | Cap Type | No.
Pile Bents 339 | 66.3 | Steel Piling 62 |12.1 g;’;‘“‘rete 484
Single Column Bent 0 0.0 ] Concrete Piling 276 | 54.0 | Steel Cap | O
Multiple Column Bent 126 | 24.7 | Timber Piling 3 0.6 Elan;ber 0
Concrete Column Bent /' | | 4 | 1y itjed Shaft 110 | 21.5 | Masonry 1
Tie Beam Cap
Concrete Column Bent | |1 5 | g d Footing 18 3.5 | Other 0
Wall
. Pile Cap on Steel
Concrete Pier 14 |27 . 10 {2.0 IN/A 27
Piling
Masonry Pier 2 |04 [|PileCaponConcrete |, g
Piling
Trestle (all) 0 |00 |FPieCaponTimber 1, ),
Piling
Other 0 0.0 ] Other 0 0.0
N/A 27 |53 |N/A 27 | 5.3
Sum 511 Sum 511 Sum s

&\b
4 B

6_\Sul;!structure Type(Below Gr.)(%)

H Concrete Piling

M Drilled Shaft

M Steel Piling

M NA (single span bridge)

M Spread Footing

m Pile Cap on Steel Piling
Pile Cap on Concrete Piling
Timber Piling
Pile Cap on Timber Piling
Other

Figure 5-2. Percentage of Substructure (below Ground) Type.




DATA SAMPLING

A set of meetings were held in the Bryan District office to investigate the possibility of collecting
data for bridges in Bryan. Data collection was then started by finding bridge inspection folders and
scanning the relevant documents such as bridge plan, bridge inspection sheets, etc. Data were
collected for about 40 percent of on-system bridges over rivers (about 185) with known
foundations. These bridges were sampled from four populations of bridges with major foundation
types (drilled shafts [DrSh], concrete piling [Conc], steel piling [St], and spread footing) in the

Bryan District with the same proportions.

For each of the bridges’ interior bents, relevant data for a representative pile of that bent was
collected. Relevant information was identified for the purpose of ANN and Bayesian modeling

based on the design procedures and standards instructed by:

e AASHTO standards (LRFD Highway Bridge Design Specifications [2007]).

o  AASHTO Standard Specifications for Highway Bridges (2002).

e TXDOT bridge standard manual (Bridge Inspection Manual [2006], Geotechnical Manual
[2006]).

Data are mostly collected from the inspection database provided by the TXDOT and from the
design and construction plans found in bridge inspection folders. Data collected from these
bridges forms a database that provides parameters required for ANN model training and also useful
information about distribution of different relevant parameters for the Bayesian method of
estimation. These parameters include superstructure elements, substructure elements, load

elements, and soil properties.

Data from As-Built Layouts

As-built plans include several types of documents, including general documents, traffic control
plans, roadway documents, bridge documents, and environmental documents. Most of our required
data were found in the bridge documents section. Generally this includes hydraulic and hydrologic
data, scour analysis, bridge layouts, and soil-boring data. Figure 5-3 and Figure 5-4 show a typical

bridge plan and soil-boring data.
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As demonstrated in Figure 5-3, the soil type and strength are determined by performing a specific
test named Texas cone penetration test (TCP), which is very similar to the standard cone

penetration test.
The procedure as described in TxDOT’s Geotechnical Manual (2006) is outlined below:

e Attach a 76 mm (3 in) diameter penetrometer cone on the bottom of the drill stem and
lower it to the bottom of the cored hole.

e Attach the anvil to the top of the drill stem, and position the 77 kg (170 Ib) hammer
above it.

e Drive the penetrometer cone 12 blows or approximately 152 mm (6 inches), whichever

comes first, to seat it in the soil or rock.
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Figure 5-3. A Typical Bridge Plan.
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Skin friction and point-bearing capacity based on Texas cone penetration data can be estimated

from Figures 5-5 to 5-7.
The following data are collected from as-built bridge plans for each interior bent:

¢ Foundation dimensions at the time of design, this includes:

Pile embedment depth, referred as pile depth (dp) in this study.

Pile cross section dimensions/area (Dia for DrSH/Dim for Conc pile/As; for steel pile).
Spread footing width and length and depth of embedment (B, L, Df).

Left and right span lengths for the bent.

O O O O O

Number of piles in the bent (Pile group number, GN).

e Soil-boring data for the nearest borehole to the bent including:
0 Average TCP (blows/ft) value along the pile (avg. TCP).
0 TCP value at pile tip (or at bottom of the foundation) in blows/ft (point TCP ).
Note: For TCP greater than 100 (blows/ft), amount of penetration for 100 blows reported in
the boring log is converted to the virtual number of blows required for 12 inches of cone
penetration.
0 Average skin friction along the pile (su).

0 Point-bearing (Pb) at tip of the pile.

Data from TxDOT Inspection Database (NBI)

The following items are extracted from NBI for each bridge interior bent:

e [tem 3, County.

e Item 27, Year built.

e Item 31, Design load.

e Item 34, Bridge skew.

e [tem 43, Span type.

e [tem 44, Substructure type.

e Item 48, Max span length.

e Item 51, Roadway width (ft).

62



e [tem 52, Deck width (ft).

e [tem 107, Deck type.

e [tem 109, AADT truck percent.
e [Item 114, Future AADT.

Descriptive Statistics

Figure 5-5 to Figure 5-6 show histograms for different parameters in the database. Note that each
of the bridges had one or more interior bents, and the total number of records is two to three times

greater than the total number of bridges (185).
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Figure 5-5. Histogram for Bridge Year Built.
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SPATIAL FEATURES

To demonstrate the risk components distribution over the collected bridges, a set of GIS maps were
developed. The aim was to visualize different components of scour failure for collected bridges in

this study.

Figure 5-16 demonstrates the location of bridges in the Bryan District of TxDOT used in this study
along with the scour-critical index and average annual daily traffic (AADT). This map allows for
determining the most and the least scour-critical bridges as well as making a rough assessment
about the life-loss risk associated with these bridges. Note that the scour-critical index decreases as
the scour vulnerability increases. Only three bridges are identified as scour critical, having red or
yellow color in the map. The good news is that these bridges have small AADT, which make us

less worried about life-loss risk.
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Figure 5-17 presents the location of bridges along with scour-critical index and year built. It is
observed that the three scour-critical bridges were built before 1960. Also, a trend is observed
about the association of the age of bridges with the scour-critical index. As the age of the bridge

increases, the lower the scour-critical index (the more sensitive the bridge is to scour).

Figure 5-18 shows the location of bridges along with scour-critical index and population density
over the Bryan District. The two most critical bridges are located in Burleson County, where the

population density is relatively low.
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Chapter 6.
LOAD AND BEARING CAPACITY CALCULATION

INTRODUCTION

To implement both the deterministic and probabilistic approaches for identifying unknown
foundations, it is required to assess the loads sustained by the bridge’s interior bent. It is also
necessary to compute the bearing capacity (BC) corresponding to the set of known foundation
bridges, which will serve as the dependent variable to train the ANNs that will allow a probabilistic

assessment of the bridges with unknown foundations.

This estimate of loads can be considered the lower bound threshold for the foundation allowable
bearing capacity, what ensures that the bridge system is in static equilibrium. The loads for the
prediction of all foundation types were not factored, as dictated in the TxDOT’s Geotechnical
Manual. In practice, it is expected to find over-designed bridges where loads are smaller than the
allowable BC estimates due to the conservative design. Therefore, a departure from a linear pattern

between loads and the actual BC computed from the as-built information is expected.

This chapter describes the process to estimate the dead load and live load for bridge bents and also
the standard procedure used to compute bearing capacity for different types of known bridge

foundations.

CALCULATING ULTIMATE BEARING

According to AASHTO standard specifications for highway bridges (AASHTO 2002), bridge
foundations are designed using the load factor design method (LFD) (i.e., strength design method)
or allowable stress design (ASD) (i.e., service load design method) methods. The AASHTO LRFD
standard recommends the load-resistance factor design for all limit state designs (2007). As of
2000, LFD is to be used for on-system bridges. Either ASD or LFD may have been used for
off-system bridges (TxDOT Bridge Inspection Manual [2006]).

The bearing capacity of foundations is calculated from soil strength and foundation geometry as
indicated by the TxDOT’s Geotechnical Manual (2006), except for the case of spread footings,
where the AASHTO LRFD Standard (2002) is followed. This is because the TxDOT’s
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Geotechnical Manual does not include spread footings, and is expected to provide a conservative
approach with similar design criteria as that used for shafts and piling. The formulation and

procedure is described below for different foundation types.
Drilled Shaft

The ultimate load bearing capacity for drilled shafts is computed using the following equation,

qu = PbAp + SuA€ (Eq 6_1)
where ¢, is the ultimate load bearing capacity, £, is the point-bearing capacity, and S, is the skin

friction. The variables B, and S, are obtained using the graphs proposed in TxDOT’s

Geotechnical Manual, which correlate the TCP value with the allowable skin friction and
point-bearing capacity (2006). Allowable bearing capacity is calculated by factoring both skin
friction and point-bearing capacity. In addition to the resistance factor, a reduction factor of 0.7
should be applied to skin friction because of the soil disturbance during the drilling. For LFD, the

resistance factor for skin friction in clay is 0.65; for point-bearing, it is 0.55.

For drilled shafts in interior bents of river crossing bridges, the first 10 ft of the soil surface is
disregarded in foundation design according to the TxDOT Geotechnical Manual (2006). This
procedure is due to potential erosion from scour, future excavation, and seasonal soil moisture
variations. If the shaft tip is drilled in a hard layer overlain by soft strata, the skin friction
contribution of the soft layer could be ignored. Also, if soft layers exist within two shafts diameter
of the proposed tip, the allowable point-bearing capacity for soft soil should be considered in the

design.

Bearing capacity is mostly dominant for the design of foundations rather than structural stability,
except when a hard layer exists very near to the surface. Table 6-1 shows the allowable service

load for drilled shafts.
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Table 6-1. Maximum Allowable Drilled Shaft Service
(TxDOT Geotechnical Manual [2006]).

Diameter Load
(in) (Tons)
30 275
36 400
42 525
48 700
54 900
60 1100

Concrete and Steel Piling

Piling is typically used in soft soil conditions because of its small tip area. The point-bearing
contribution is modest and is often disregarded in design according to the TxDOT Geotechnical
Manual (2006). The bearing capacity is calculated using the same procedure described for the
drilled shafts. The maximum recommended value for skin friction for piling design is 1.4 tons per
square foot (tsf). As for drilled shafts, if a soft layer exists within two diameters of the proposed tip
depth, the point-bearing capacity should be obtained based on the soft layer. Also, when a pile
encounters a hard layer with TCP value greater than 100 blows per foot, it often refuses to
advance, and it can be assumed that the pile has developed the maximum allowable service load as

specified in Table 6-2.

Table 6-2. Maximum Allowable Pile Service Loads
(TxDOT Geotechnical Manual [2006]).

Diameter | Maximum length Footing (per
(in) (ft) pile)

16 85 125

18 95 175

20 105 225

24 125 300
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The tip area for steel piling is calculated assuming that a soil plug is formed at the tip in soft soils.
The safety factor used for allowable stress design is 2. The resistance factor for skin friction of clay
varies between 0.5 and 0.7, and is 0.7 for point (tip) bearing. The reduction factors for skin friction
and point bearing of sand obtained using SPT are 0.45 and 0.55, respectively, when obtained by
CPT records.

Spread Footing

According to TxDOT’s Geotechnical Manual (2006), foundations of bridges should be designed as
either drilled shafts or piling. However, a few bridges were identified with spread footing in the

Bryan District.

According to the LRFD specifications (AASHTO 2002), the following equations are proposed to
obtain the ultimate bearing capacity for spread footings in saturated clay, which is the dominant
surface soil in Bryan area. No specifications were designated in TxXDOT’s Geotechnical Manual

for the design of spread footings (2006). The ultimate bearing capacity is found using:

qull = CNcm + y'Dqum (Eq 6_2)

where C equalss,, the undrained shear strength; N ,N =~ are the modified bearing capacity

factors that are functions of footing shape, embedment depth, soil compressibility, and load

inclination; y is the buoyant density of soil (tcf); D , 1s the embedment depth taken to the bottom
of footing; and N, is 1 for saturated clay and relatively level ground and 0 for footing on sloping

ground or adjacent to sloping ground.

For D,/B>25 andH /V <04 ,

O e R

For D,/B<2.5 andH /V < 0.4,

N, =N, {H o.z@ﬂ[l —1.3(%} (Eq. 6-4)
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where N, is 5.0 for Eq. 6-3 on relatively level ground and 7.5 for Eq. 6-4 on relatively level

ground. Also, B is the width of the foundation, L is the length of the foundation, His the

horizontal load, and V is the vertical load.

The nominal (ultimate) bearing capacity of a layer of cohesionless soil such as sands or gravels, in
tsf, is defined by:

qult = 0'57/BCwlNym + yCWZDqum (Eq 6-5)

where C

wl

and C , are coefficients as specified in Table 6-3 as a function of D, ; D, is the depth
of the water surface taken from the ground surface; and N, is the modified bearing capacity

factor.

Table 6-3. C,; and C,» versus Dy,

Dw Cwl Cw2
0 0.5 0.5
Ds 0.5 1
>1.5 B+Dy 1 1

Notice that for intermediate positions of ground water table, interpolation is allowed.
The bearing capacity factors are defined by:
N, =N,s.c,i

,S,C 0, (Eq. 6-6)
and

N,, =N,sc,id (Eq. 6-7)

99 949 49

in which N and N_are bearing capacity factors. These are defined as:

N,=2(N,+1)tan(g,) (Eq. 6-8)
and
lz'tan((;}/ )1:;222/;
N,=e ! (Eq. 6-9)
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Also, S . and S, are foundation shape factors, defined as:

B
S, = 1—0.4&) (Eq. 6-10)
and
S :1+E£jtan(¢ ) (Eq. 6-11)
q L f :

while ¢, and ¢_ are the soil compressibility factors. The compressibility factors are defined as:

L0.68 (3.07sin(g, )[1og(21,)])
(74‘4 ‘ jtan(¢f} ‘ 1+sin(¢f)

<1 (Eq. 6-12)

1 =2 % (Eq. 6-13)
q

where D, is the relative density in percentage, g is the effective overburden pressure, and P, is

and

the atmospheric pressure taken as 1.05 tsf. The variables i and i are the load inclination factors

defined as:
i, = [1 ——] (Eq. 6-14)

In the case where the load is inclined in the direction of the width, 7 is 2.50 for a square footing,

2.67 for a footing with L/B =2 , and 2.00 for footing with% >10. For a load inclined in the
direction of the length, 71is 2.50 for a square footing, 2.33 for a footing with % =2, and 2.00 for

footing WithL/B >10 . Finally, 4, is the depth factor:

d, :1+2tan((,15f)(l—sin((zﬁf))2 tan™' (%) (Eq. 6-15)
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In Texas, it can be assumed that horizontal load is negligible comparing to vertical load for bridges
where the earthquake and wind loads are not dominant. Thus, it can be assumed that H/V is almost

zero and that the load inclination factors are roughly equal to one.

The allowable bearing capacity is obtained by applying a resistance factor. According to LRFD
specifications, these factors depend on foundation type, design method, and in-situ tests (SPT,

CPT) by which soil strength is obtained. For shallow foundations on sand, this factor is 0.35 if ¢, is

obtained by SPT and 0.45 if obtained by CPT. Likewise, for shallow foundations on clay, the

resistance factor is 0.6 if ¢, is measured in a laboratory and 0.6 if obtained by the CPT method.

In this study, the friction angle of cohesionless soil is obtained from the graph presented in
TxDOT’s Geotechnical Manual (2006) (Figure 6-1), using the TCP value at bottom of the spread
footing. Also, the unit weight of the soil is required to calculate the bearing capacity of spread
footings. The soil unit weight is obtained from Table 6-4 depending on the SPT value. The relation
between SPT and TCP is presented in Table 6-5.
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Table 6-4. Unit Weight of Soil versus SPT (Bowles 1968).

Granular |Coheslve

SPT({N-Value) [v(Ib/ft3) [SPT(N-Value) [¥(lb/ft3)
0tc 4 70-100 to 4 100-120
4 to 10 |190-115 to8 110-130
10 te 30 110-130 to 32 120-140
30 to 50 110-140

>50 130-150
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Table 6-5. SPT and TCP Relation (Touma and Reese 1969).

iCohesionIess iCohesive

ISoil INTCP  [NSPT __ [Soil INTCP  |NSPT

lveryloose  |oto8  JO.5NTCP |verysoft |3 0.7 N TCP

I | soft to

lloose [Bto20 .5NTCP |medium [Bto1l |0.7 NTCP
medium [20to 60 0.5 NTCP |[stiff 11to21 (0.7 NTCP
dense i60 to 100 [0.SNTCP |verystiff [21to43 [0.7NTCP

very dense  [>100 0.5 N TCP _|hard >43 0.7 N TCP

Concrete Cap on Group of Piles

The ultimate bearing capacity for this type of foundation is obtained based on LRFD specifications

for group of pile axial load resistance.
Cohesive Soils

For cohesive soils, the ultimate bearing capacity is:

0, =nnq,, (Eq. 6-16)

where 771s the efficiency (reduction) factor. The efficiency factor is 0.65 for center-to-center

spacing of 2.5 diameters and 1 for center-to-center spacing of 6.0 diameters. Also, 7 is the

number of piles in a group.

If the piles cap is in firm contact with the ground, no reduction factor is needed. If not, but the soil
is stiff, still no reduction factor shall be used. However, if the cap is not in firm contact with the
piles and if the soil is soft at the surface, individual resistance factors of each pile shall be

multiplied by an efficiency factor.

Furthermore, it is necessary to check for failure mechanisms and design for the case that yields the
minimum bearing capacity. For a pile group of width X, length Y, and depth Z the bearing capacity

for block failure is:

0,=Q2X+@Y)ZS, + XYN,S, (Eq. 6-17)
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where S_u is the average undrained resistance along the depth of penetration of the piles (tsf) and

S, = undrained shear strength at the base of the group (tsf).

For %( <2.5,
N, = 5(1+ 0'2Xj[1+ OQX] (Eq. 6-18)
Y Y
For %( >2.5,
N, = 7.5[1+%J (Eq. 6-19)

Cohesionless Soils

The bearing capacity for pile group in cohesionless soil is equal to sum of the resistance of all the
piles in the group (i.e., the efficiency factor is 1 whether the pile cap is or is not in contact with

soil).

Care should be taken when a weak soil layer exists beneath a strong soil. The potential for a

punching failure and large settlement should be considered.

The allowable bearing capacity is computed by applying a resistance factor as designated in LRFD

specifications. The resistance factors for pile groups are the same as for single piles.

LOAD DETERMINATION FOR BRIDGE FOUNDATIONS: METHOD I

Dead Load

Dead load for a foundation in an interior bent is obtained by adding up all permanent loads that are
sustained by the foundation from all components of the superstructure, including the deck, girders

(beams), bent cap, column, and railing weights.

For simple span bridges, the tributary area is one-half of the spans on each side of the interior bent.

For continuous span bridges, the distribution of loads is more complex due to the fact that loads are
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distributed somewhat differently. However, choosing one-half of each adjacent span will produce a

reasonable answer.

For determination of bridge superstructure dead load, the weights of the individual components are
summed. For beam-type bridges, the weight (per linear foot) of the beams must be known or
determined, as well as the weight of the bridge deck and the bridge railings. For monolithic
beam/deck structures like pan form bridges, the dead load is most easily determined from the

volume of concrete used in the superstructure.

The TxDOT as-built bridge plans are used to obtain the superstructure construction details for
different superstructure types. From these standard sheets, one can obtain the total weight of

reinforcing steel and the total volume of concrete for the slab, girders or beams, and bent caps.

Most bridges have concrete barriers, and TxDOT standard detail sheets are based on this type of
barrier. A typical concrete barrier (T551) has a weight of 380 plf. In rare cases, it may be useful to
adjust foundation weights for the specific barrier found on the structure, thus, for reasonable

estimates, a concrete barrier is assumed for all bridges.

Live Load

Prior to the adoption of the LRFD specifications, there were at least four different versions of
AASHTO live-load standard computation methods. The H series modeled single unit trucks, while
the HS series modeled semi-trucks. Note that the HS series has a variable dimension shown
between the rear two axles. For the purpose of foundation load determination, this dimension will

always be set at 14 ft, which serves to concentrate the maximum load over the interior bent.

Figure 6-2 shows diagrams of the various load configurations. The lane loading (the uniform
shown in Figure 6-2) generally controls bridges with longer spans (>70 ft). Most structures on
unknown foundations are locally owned (off-system) bridges with relatively short span lengths, so
the truck loadings will generally control. Note that the concentrated loads shown in the calculation
of foundation loads are used to obtain the live load, rather than the higher-concentrated load

designated for shear.
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Figure 6-2. Standard AASHTO Design Loads and Maximum Reaction of an
Interior Bridge Bent with Single Spans.
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The current design vehicle designated by the LRFD standard is referred to as the HL-93. This load
is the combination of the HS-20 truck load with the uniform load portion (640 1b per linear ft) of
the HS-20 lane loads. Since the LRFD design has been applied to structures built only in the past
10 years, there should not be LRFD-designed bridges on unknown foundations. However, the

current on-line bridge standard sheets are all designed with the HL-93 live load.

When determining live loads on interior bents, the H series truck is placed with the heavy axle
directly over the interior bent and the lighter axle sitting on the longer adjacent span (if spans are
not equal). The HS series truck is placed with the center axle directly over the bent, the heavier end
axle on the longer adjacent span (if spans are not equal), and the lightest axle on the other adjacent

span.

The number of live load lanes placed on a bridge is a function of the roadway width. The roadway
width is divided by 12 ft, and the integer portion of the result is considered the number of lanes on
the bridge. For structures designed with more than two lanes, a reduction factor is applied to live
load to account for the probability that all lanes will not be fully loaded simultaneously. The factors
typically used are 1.0 for bridges with one or two lanes, .90 for bridges with three lanes, and .75 for

bridges with four or more lanes.

Actual Live load = N (No. of bridge lanes) x F4 (of std. design vehicle, item 31) x R.F. (for
multiple presence in all lanes): (Eq. 6-20)

where

R.F. =1 for two lanes
and

R.F. = 0.9 for three lanes
and

R.F.=0.75 for four and more lanes.

AASHTO design code calls for an impact multiplier to be used on live loads when designing

superstructure components. However, the impact factor is not used in the calculation of foundation
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loads, since the superstructure and substructure attenuate the impact as the load travels down to the

foundation elements.
LOAD DETERMINATION FOR BRIDGE FOUNDATIONS: METHOD I1

Dead load determination using the previous method (Method I) requires the collection of a number
of details from the superstructure, which makes the process very time-consuming. Therefore
another method is proposed to make the process faster. As mentioned earlier, TXDOT provides
online resources that can be used for the design of bridges. These resources include the “standard
design sheets” for different bridge types (TxDOT 2011). The foundation loads are estimated for
sample cases of each superstructure type. Therefore, the total foundation load can be estimated
with an acceptable accuracy using these sheets. Figure 6-3 shows the flowchart for obtaining

foundation loads using the TxDOT standard sheets.

The load assessment process starts with identifying the superstructure type and finding
corresponding standard design sheets based on the bridge roadway width and bridge skew.
Table 6-6 presents different types of superstructures found in the database. There is a little
difference in terminology used for superstructure types by TxDOT and the terminology used in the

inspection database as shown in Table 6-6.
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Figure 6-3. The Flowchart to Obtain the Total Load
Using TxDOT Bridge Design Standard Sheets.
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Table 6-6. Different Superstructure Types Used by TxDOT for Standard Design Sheets.

Superstructure Type-Code TxDOT Standard Design
Prestressed Concrete Prestressed I-Girder standards are available for
I-beam-1131 structures with Type Tx28 thru Tx62 girders.

These are included in the issued set of Prestressed
Concrete [-Girder standards.

Concrete flat slab-1126 Cast-In-Place Concrete Slab Span standards are
available for structures using a 14" or 16" slab
depth. These are included in the TXDOT-issued
set of C-I-P Concrete Slab Span standards.
Multiple steel I-beam-1111 Steel Beam standards are available for structures
with Type W18, W21, W24, W27, W30, W33,
W36, or W40 beams. These are included in the
TXDOT-issued set of Steel Beam standards.
Prestressed concrete slab Prestressed Slab Beam standards are available
span-1137 for structures with Type SB12 or SB15 beams
using 5" cast-in-place slab as a topping. These are
included in the TXDOT- issued set of Prestressed
Concrete Slab Beam standards. .

Prestressed concrete box beam | Prestressed Box Beam standards are available
bridge-1133 for structures with Type B20, B28, and B34
beams using 5" cast-in-place slab or 2" ACP
overlay as toppings. These are included in the
TXDOT-issued set of Prestressed Concrete Box
Beam standards.

Other Prestressed Concrete-1139 | Prestressed Concrete Double T-beam

Concrete Slab and Girder (Pan | Concrete Slab and Girder (Pan Form)
Form)-1125 standards are available. These are included in the
TXDOT-issued set of Concrete Slab and Girder
standards.

The next step is to determine the roadway width using the bridge layout, which can be found in the
inspection database item 51 or using the bridge layout. The standard sheets are prepared for a
typical roadway width of 24, 28, 30, 32, 38, 40, 42, or 44 ft, while there is a wide range (between
19 and 90 ft) of roadway width of bridges in the Bryan District. To overcome this limitation, it is

reasonable to extrapolate load estimates for widths greater than 44 ft.
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Finally, the bridge skew can be found in item 34 of the inspection database or from the bridge

layout. The bridges skew varies between 0°, 15°, 30°, and 45°.

Once the superstructure type is found and the roadway width and the bridge skew are defined, it is
possible to find the corresponding TxDOT standard design sheet for a particular bridge. Standard
sheets normally provide the load per pile/shaft based on various span lengths, but this value is for a
specific number of piles or shafts per bent for a reference case used in the standard sheet.
Therefore, the value obtained for the load per pile/shaft should be adjusted according to the number
of piles/shafts per bent for the desired bridge. Another observation on the use of the design sheets
is that the span length for each bent is obtained by averaging the left and right span lengths.
Table 6-7 shows the foundation load table obtained from a standard bridge design sheet for 24 ft,

prestressed concrete I-beam, 15° skewed.

Table 6-7. Foundation Loads Table for 24 ft PSC I-Beam Bridge with a 15° Skew.

FOUNDATION LOADS(
Span :'r;r-_l_:'id Pile Load (Tons/Pile)
Average Loods - — . .
I Pile|ld4 Pile|s Pile
Ft Tons/Shaft| F1o Ftg Ftg
30 96 35 27 22
35 106 39 30 24
40 15 42 32 26
45 125 45 14 28
20 134 43 37 30
55 143 51 39 32
60 152 54 41 34
85 181 57 43 35
0 169 60 46 37
7' 178 63 48 19
BO ar a6 50 q1
85 196 68 52 42

A set of regression lines are developed based on various loads versus span lengths for both column
(shaft) and pile bent for each bridge standard sheet. Figure 6-4 shows the regression lines for
prestressed concrete I -beams for a 24-ft roadway width and different bridge skews. The regression

coefficients are obtained for each combination of roadway width and bridge skew for each of the
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existing superstructure types. Table 6-8 presents the load coefficients of column bent for a

prestressed concrete [-beam bridge.

400
. y =3.5664x+ 102.93
[%] 2 - r
£ 300 R*=0.9996
2 ¢ ——24-0&15
e
o —-24-30
@ 200 n
= y =3.5888x+ 86.977 24-45
a R?=0.9995
®
o 100
—

0
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Ave. Span Length (ft)

Figure 6-4. Load versus Average Span Length for Prestressed Concrete I-Beams.

A MATLAB code is developed to automate the process of load assessment (included in the
Appendix). These programs input the table of coefficients as well as a table containing roadway
width, average span length, and skew for bridge bents and outputs for the total estimated load for

each bridge bent.

Although the loads obtained from the standard sheets are reasonable, they are based on current
TxDOT standards that are based on LRFD design requirements. The live-load model for the LRFD
code uses heavier loading conditions than the live-load models used in previous design
specifications. Consequently, the resulting foundation loads will be higher. However, for highway
bridges, the dead load of the structure is generally higher than the live load. For long-span concrete
bridges, the ratio of dead load to live load can exceed 80 percent. So while the current live load has
resulted in an increase in foundation loads, experience has shown the increase in overall load to be

on the order of 10 to 20 percent.

92



Table 6-8. Load Estimation Coefficients for a Column
Bent of Prestressed Concrete I-Beam Bridge.

RW SQ a b
24 0 3.59 86.98
24 15 3.59 86.98
24 30 3.59 88.98
24 45 3.57 102.93
28 0 3.90 98.59
28 15 3.90 98.59
28 30 3.89 101.92
28 45 3.79 106.23
30 0 4.07 98.29
30 15 4.04 100.91
30 30 4.03 103.15
30 45 3.90 107.59
38 0 4.89 122.60
38 15 4.89 122.60
38 30 4.87 127.13
38 45 4.80 140.00
44 0 5.48 133.87
44 15 5.39 141.24
44 30 5.48 137.87
44 45 5.37 157.44
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In order to adjust the total load for the design vehicle and also to split the contributions for dead

and live load, the following procedure is proposed:

e Assess the total load (live load + dead load) using the bridges design standard sheets as
explained in the Load Determination for Bridge Foundations — Method II section.

e Assess the live load based on the design vehicle HL93, as explained in the Live Load
section.

e Subtract the live load obtained from previous step from the total load to obtain the dead
load.

e Obtain the live load based on the real design vehicle of the bridge designated in item 31
(design vehicle).

VALIDATION OF THE PROPOSED LOAD ESTIMATION PROCEDURE

In order to validate the proposed dead-load estimation method, a couple of bridges with different
superstructure types are selected. The dead load for the interior bent of the bridge is exactly
calculated by summing weights of different structural elements including the bent cap, slab/beams,
shafts/piles, and railing. The weights of these elements are given in the table of quantities available

in the bridge plan.

The estimated value is then compared to the value given by the proposed approximate method for
five bridges. The average error between the estimated and actual loads is about 11 percent, as

presented in Table 6-9. A detailed computation for one of the bridges is presented in the Appendix.

Table 6-9. Load Estimation Error for Five Sample Bridges.

Bridge Error (%)|

17-82-2144-01-002 |  2.56
17-21-0050-02-123 | 18.13
17-21-0050-01-001 8.33
17-239-0315-08-016| 15.22
17-21-0049-09-43 12.80

Avg. Error 11.41
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Chapter 7.
DETERMINISTIC APPROACH—ARTIFICIAL NEURAL NETWORK
MODELS

INTRODUCTION

An Artificial Neural Network (ANN) is a soft computing approach that can be applied to
regression and classification problems with high accuracy (Haykin 1999, Shahin 2008). Here, this
approach has been applied for predicting the foundation’s:

e Type.
¢ Embedment depth for deep foundations.

e Bearing capacity.

The first two items defines the deterministic approach, while the last one is part of the probabilistic

approach (discussed later in Chapter 8).
ARTIFICIAL NEURAL NETWORKS

Attempts for simulating the process of learning, perception, and cognition in the human brain leads
to creation of parallel computing networks called Artificial Neural Networks. Since the first neural
models proposed by McMulloch and Pitts (1943), ANNs have been developed over time and
modified to solve more complex problems in pattern recognition, prediction, optimization,
associative memory, and control. ANNs can be viewed as weighted directed graphs in which
artificial neurons are nodes and directed edges (with weights) are connections between neuron

outputs and neuron inputs.

Updating network architecture and connection weights so that networks can efficiently perform a
task, is considered learning in ANNs. The network is usually trained by presenting a set of
input-output data, similar to a regression problem. The ANN is able to learn from the underlying
rules, like implicit relation between inputs and outputs acting as an artificial intelligent model,

achieving great success in non-linear regression problems.

Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) networks are recognized as

universal approximators. These networks have proven to perform satisfactorily for different
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function approximation and regression problems in geotechnical engineering (Haykin 1999). A
variant of RBF is the Generalized Regression Neural Network (GRNN) (Specht 1991). These three
network types are examined for assessing foundation depth and bearing capacity in this study.
PNN and the MLP network are considered for the classification-type problems for the purpose of
foundation-type determination. The architecture and learning algorithm for each type of ANN is

described in following sections.

MULTILAYER PERCEPTION NETWORKS

MLPs are feed-forward neural networks with at least one hidden layer consisting of neurons with
sigmoid activation function. The learning procedure is to adjust the weights of connections in the
network to minimize the objective or error function. The objective function is the mean square
error (MSE) between targets (real values) and outputs of the network (measured values) for all data

points in a training set. MSE is calculated by:

n 2
MSE:lZ(di—yl.) (Eq. 7-1)

s
where d, is the desired response vector, y, is the output of network, and 7 is the number of

training examples.

The most popular algorithm of error function minimization is the back propagation algorithm,
which is based on the gradient decent method. This method starts with any set of weights and
repeatedly changes each connection weight by an amount proportional to gradient of the error
function with respect to that weight. However, this method is often very slow, giving preference to
high-performance algorithms that converge much faster than gradient decent, such as the
Levenberg-Marquardt algorithm, Conjugate Gradient algorithm, Quasi-Newton algorithms, and

Bayesian Regularization algorithms.

Error back-propagation learning consists of conducting two rounds: a forward pass and a backward
pass. In the forward pass, an input vector is applied to the sensory nodes of the network, and its
effect propagates through the network layer by layer. Back propagation can be considered as
generalization of the least mean square algorithm (LMS) (Haykin 1999). During the forward pass,

the synaptic weights of the networks are not changing; however, during the backward pass, the
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synaptic weights are all adjusted based on an error-correction rule. Basically in MLP networks,
actual response of the network is subtracted from a desired response to produce an error signal.
The weights are then adjusted to make the difference between the response of the network and the
desired response as small as possible. Figure 7-1 shows the MLP network architecture used in this

study. This model consists of one hidden layer and an output layer consisting of one single neuron.

[IW]:weights for 1t layer

(P1 >
P2
- P3 y (depth of pile) } [l
a' = y= Purline(LW 4 + b))
_Pn >
Input . Output
Layer a' =tansig(IW P +b) Layer
Hidden Layer
(N Neurons)
Figure 7-1. MLP Network Architecture.
Radial Basis Network

RBF networks are used both for complex pattern classification and approximation problems in
high-dimensional spaces. Learning can be viewed as finding a surface in a multidimensional space
that provides the best fit to the training data. RBF networks are designed as feed-forward networks
consisting of three layers: input, hidden, and output. According to Cover’s theorem, in
interpolation problems, the network performs a nonlinear mapping from the input space to hidden

space and then a linear mapping from the hidden space to the output space (Haykin 1999).
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The first layer consists of input nodes, which applies input vector containing a specific number of
elements to the next layer (hidden layer). The hidden layer is composed of nonlinear neurons that
are connected directly to all of the neurons in the output layer. The number of nodes in the output

layer depends on the number of the elements in the targets (outputs) of the problem.

The (weighted) distance of the inputs from hidden units’ centers are computed and then passed
through the radial basis function (in the case of Gaussian neurons, these values are transferred
using a Gaussian function). In this sense, a unit will have maximum value when the new input
exactly matches its center. The outputs of the hidden units are then multiplied by the weights of the
second layer (output layer) and are transferred using a linear function. In this sense, the outputs of
the network would be superimpositions of the activities of all the radial functions in the network

(Poggio and Girosi 1990).

The network weights (connection weights) are updated during learning by minimizing an objective
function, which is defined as the measure of error between the network’s outputs and actual values
of targets for the training points. In addition to weights, the centers of the radial basis and the width

(spread) of the radial functions are also updated during learning (Poggio and Girosi 1990).

RBF and MLP NNs are recognized as universal approximators; however, despite having
similarities, one of the fundamental differences between MLP and RBF is the way in which hidden
units combine values coming from preceding layers in the network. MLPs use inner products,
while RBFs use the Euclidean distance. According to the literature, MLP needs more time for

training because of back propagating the error, while RBF networks are faster in learning.

Generalized Regression Neural Network

A variant of RBF, GRNN was introduced by Specht (1991). RBF and GRNN have similar

architectures, and the only difference between them is in adjusting the second-layer weights.

In RBF networks, the weights and biases in the second layer are computed by minimizing the
difference between the output of second hidden layer and actual (measured) outputs. This usually

caused the network to generate exact solutions or zero error for training data.
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The weights in the second layer of GRNN are not adjusted using error minimization. Instead, the
weights are set equal to the value of the outputs (targets), so the hidden layer has the same number

of neurons as input/target pairs. Figure 7-2 presents the architecture of RBF and GRNN networks
used in this study.
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N (/> v(depthof pike) | [
a =y = Purline(LW.d +b,)
_Pn —>
Input Output
Layer
Layer s
a' = ¢ P

Hidden Layer
N=No. of training
examples

Figure 7-2. RBF and GRNN Network Architecture.

Probabilistic Neural Network

PNN has similar architecture as GRNN networks. However, PNNs perform classification where
the target variable is categorical, while GRNN is used for regression-type problems where the
target is a continuous variable. The output layer for PNN is a decision-making layer and has as
many neurons as number of classes (categories) of input parameters. The transfer function of
output neurons for PNNs is not linear as in GRNNSs; rather, it is a function that compares inputs of

all neurons and outputs (one for the largest value and zero for others.)
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FOUNDATION DEPTH PREDICTION

Model Selection Analysis

Finding the best network type and configuration for the purpose of foundation depth prediction
required considering different aspects of designing a neural network based model. These aspects

are a selection of input parameters, network type and architecture, learning algorithms, hidden

Figure 7-3. Architecture of PNN Network.

units’ transfer functions (activation function), and data-sampling methods.

Input Parameters

Selection of input parameters for approximating a target variable using neural networks highly
depends on one’s knowledge of the problem. The criteria for selecting the relevant input

parameters for pile-depth prediction is based on the limit state design method of foundations,

which requires foundation load and allowable bearing capacity to be equal.
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Several networks with different combinations of parameters were compared to determine the most

relevant input parameters. Table 7-1 lists the final selected input parameters.

Table 7-1. ANN Input Parameters for Pile-Depth Approximation.

Input Parameters (Variables)
Load
Dead Load per bent/ per pile (tons)
Live Load per bent/pile (tons)
Geometry

Pile Diameter/Dimension/Cross Section Area
(in/in’)
Item # 51: Roadway Width (ft)
when number of piles per bent is not available

Soil Properties
Avg. TCP (Blows/ft)
Skin Friction (tsf)

Time and Location

Item 3: County
Item 27: Year Built
Item 16: Latitude (°)
Item 17: Longitude (°)

Neural Network Type and Algorithm

A preliminary analysis was performed to find the best network type using only a fraction of the
database. A number of MLP, RBF, and GRNN networks with different Gaussian function widths
(spreads) and also a series of MLP networks were developed using the NN toolbox of MATLAB
(MATLAB Neural Network Toolbox, 2009). The evaluation of the networks’ performance was
based on the root mean square error (RMSE) and the correlation coefficient (R) for the best linear
fit between the measured values (targets) and the predicted values (outputs) of the network. The

correlation coefficient is defined as:

i(yi _ti)z
1_ i=1
Z(ti _t_)z

R= (Eq. 7-2)
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The root mean square error is defined as:

RMSE = Z":( yi—t) (Eq. 7-3)

i=1
where y, is the predicted value (output), ¢, is the actual value (target), RMSE is the root mean

square error, and R is the correlation coefficient.

MLP networks were trained using two distinct optimization algorithms: Levenberg-Marquardt and
Bayesian regularization, where the former is referred to as MLP-LM and the latter is referred to as
MLP-BR. Before training, the database was pre-processed, meaning that the duplicated data points
and the data points missing the pile depth value were eliminated. Also, both input and output data
were normalized regarding the maximum value for each parameter, so that all parameters fell

within the range [—1, 1].

For the purpose of training the MLP-LM network, the data set was divided into three parts;
60 percent for training, 20 percent for validation, and 20 percent for testing. The training,
validation, and testing were sampled randomly during the training process. The network was
trained and monitored using the validation set. When the validation error started to increase, the
training was stopped. The performance of the model was examined using the test data set, which

had not been presented to the network.

The network was retrained several times using the same procedure, until reaching R greater than
0.8 for both the test data set and the whole data set presented to the network (training plus
validation plus test). Each time the network was retrained, the model chose new initial weights and
biases. Thus repeatedly retraining the network caused the model to find the optimum value for the
initial weights and biases which led to minimizing the error and improving the prediction’s

accuracy.

The MLP-BR network was generated with the same architecture as the MLP-LM but is trained
using the Bayesian regularization algorithm. In this algorithm, weights and biases are assumed to
be random variables, and the regularization parameters are associated to the variance of these
distributions. Further, there is no validation error in this method, and the network will stop training

when the effective number of weights and biases has converged (Demuth et al. 2009).
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R for the test data set is close to 0.9 for the MLP-BR network as well as the MLP-LM network,

which proves the ability of these networks to generate fairly accurate predictions.

For RBF and also GRNN networks, the working database is divided into training (70 percent) and
test (30 percent) subsets. The weights and biases in the network were adjusted using the training

set, and the generalization of the network was evaluated using a test set.

Although RBF and GRNN show a good correlation coefficient for training data, the small R2 in
the test set (particularly in the case of the RBF) indicates that these networks cannot generalize
well in this problem. This could be due to the fact that RBF networks perform well only if they are
supplied with a large amount of vectors in the training set, specifically when dealing with several

input variables.

Table 7-2 presents a summary of results obtained from different NNs. The best generalization
belongs to MLP-LM, followed by MLP-BR. Results show that both of the MLP networks
outperform the GRNN and the RBF networks. As expected, GRNN generated far more accurate
results compared to RBF, since only a small number of data points were presented to the models in

this study.

Table 7-2. Summary of Results for Different Neural Networks.
RBF GRNN MLP-LM MLP-BR

Method training test training test training test training test

R 1.00 033 0.77 0.62 0.87 0.89 095 0.81

RSME 0.029 1.8E3 829 10.26 7.56 9.99 4.00 8.08

These results helped to define the MLPs with the Levenberg-Marquardt optimization algorithm for
approximation of both pile depth and bearing capacity.

Number of Hidden Units

There are several rules of thumb for determining the number of hidden units. For instance, one

hidden layer usually suffices, the number of hidden neurons is better between the number of input
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elements and number of output elements, and that number should never be larger than twice the
number of input elements. However, there is no theory yet which specifies the required number of

hidden units for an MLP network.

Fewer hidden neurons increase the prediction error and prevent the model from having enough
flexibility to fit the data point. On the other hand, too many hidden neurons make the model too
complex and cause the model to be over fitted to the data points and to fail to generalize to new

data points.

Trenn (2008) performed a study on the necessary number of hidden units for a multilayer
perceptron network. Based on this study, the minimum number of hidden units for a single hidden

layer network to reach a certain order of approximation, N, is:

(N + noj
PR (Eq. 7-4)

n,+2

where n, is the number of input variables and 7 is the number of hidden units.

N is the approximation order that refers to the degree of Taylor polynomial which approximates

the MLP function. For instance in this case, " is equal to 10, so if considering an approximation
order of 3, almost 23 neurons is needed in the hidden layer. This formula gives the minimum
required number of hidden units and not the sufficient number of hidden units. It can be shown that

more hidden units mean more model parameters and thus more accurate approximation.

This study also shows that the only effective factor on approximation accuracy is the number of
model parameters (weights and biases) that are determined by the number of hidden units for a
given number of input elements. Thus, the necessary number of hidden units can be included in
just one layer, and more than one hidden layer is not necessary. Increasing the number of hidden
layers allows having a lower number of hidden units yet the same number of model parameters.
Based on the analysis of the number of hidden units, 20 hidden neurons were found to be the

optimized number of neurons in this study.
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Transfer function

Transfer function, or activation function, maps the input of a neuron to its output in a
computational network. Transfer functions can be linear, sigmoidal, Gaussian, or step functions.
Multilayer perceptron networks apply either a log sigmoid or tan sigmoid transfer function in the

hidden units and linear function in output units.

Log-sigmoid function appears as:

1

f(x)=—— (Eq. 7-5)
I+e
Tan-sigmoid function appears as:
eX _e*X
f(xX)=——— (Eq. 7-6)
e +e

Figure 7-4 shows the graphical forms of log-sigmoid and tan-sigmoid function.

[W
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Figure 7-4. Sigmoid Transfer Functions.

An MLP network with log-sigmoid and a similar one with tan-sigmoid for hidden units are trained;
however, the R’ value for training, test, and validation sets was not significantly different. Based on
this analysis, ANN models for pile depth and bearing capacity prediction are designed with
tan-sigmoid transfer functions for hidden units, which can generate both positive and negative

outputs.
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Data Split Method

How samples for training, validation, and test data sets are chosen and how the examples for each
set are divided can affect perceptions of model performance. The only way to estimate model true
error is to test the model error on an entire population, meaning that one would need to have access
to an unlimited number of samples. However, this is not possible due to the costly process of data

collection.

In order to make a reasonable estimate of model performance (error), different methods of data

partitioning are recommended:

e Holdout method. In this method, data are divided into two groups, training and test, with a
certain proportion (usually 60:40 percent). Data can be selected randomly for each group,
or the database can be split into two blocks. The network is trained using a training set, and
the network generalization is examined using the test data set. The error rate is computed
solely based on one possible test data set, which might happen to be an unfortunate subset
and result in underestimating or overestimating the prediction accuracy.

e Cross validation method—random subsampling. In this method, data points are
randomly selected for a fixed number of examples in training and test data sets (usually
60:40 percent); the network is trained with a training data set and tested with the test data
set. This process is performed iteratively for a certain number of times, and the error is
computed for each iteration. The model error is the average of error rate for all iterations.
This method forms an ensemble of networks that can work in parallel to make predictions
for new input data. The best estimation would be the average of predictions by all networks

in the ensemble.

The cross-validation method is selected for this study because of its advantages over the hold-out
method. The cross-validation method allows for making use of all examples in the database for
both training and testing purposes and thus provides a more reasonable estimate of the model’s true
error. It also helps to reduce the bias of predictions by providing ensembles of networks trained by

different subsamples of the same population.
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ANN-Predictive Model

The final configuration of the ANN model for pile depth approximation is the MLP network with
Levenberg-Marquardt optimization algorithm. This network has one hidden layer with 20 neurons

with tan-sigmoid activation function.

For the purpose of training, the working database is split into three groups: training, validation, and
test with 3:1:1 proportions. The weight of the network is adjusted using training examples. The
network performance is monitored during training using validation examples. The learning process

continues until the network error starts to increase for validation data points.

The random subsampling method is used to make use of all data points for the purpose of training
and testing. This subsampling runs for 10,000 iterations, and each time a new network is trained

from scratch and the performance of the model is measured.

Neural networks are designed to perform interpolation. However, like any other regression
methods, they are weak at performing extrapolation. Therefore, they are expected to retrieve more

accurate predictions given an input data within the range of the training database.

During the random subsampling, there is the possibility of populating non-uniform subsets,
meaning that the test data points might be outside the range of training data points. In order to
avoid this problem, ANN networks that perform poorly are removed from the ensemble based on

the following selection criteria:

R? (All) > 0.8 and R? (Validation)>0.7 and R? (Test)>0.9 (Eq. 7-7)

This allows for forming an ensemble of best-performance networks to be used as a predictive
model. Figure 7-5 shows an example of random subsampling, how test data points vary for each of

the networks in the ensemble, and how they cover almost all points in the database.
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Figure 7-5. Random Subsampling Method Test Set Data Points for Each Network in the
Ensemble: (Left) 87 Networks, (Right) 10 Networks.

ANN MODELS FOR FOUNDATION-TYPE CLASSIFICATION

ANN classifiers are powerful tools to classify categorical data. Identifying foundation type can be
very helpful for determining the foundation geometry and scour vulnerability. Two ANN classifier
models are proposed to classify the foundations based on the bridge-relevant information. One
determines the foundation type of bridge among all possible categories of the Bryan District
bridges. The other ANN classifier specializes only in determining if the foundation is either deep
or shallow because, for the proposed deterministic method in this study, it is important to know if

the foundation is deep or not before proceeding with predictions about foundation depth with the

ANN models.
Model Selection Criteria

Input Parameters

A preliminary analysis was also performed to identify the most relevant parameters. Table 7-3
shows the model input and target parameters. These parameters are items of NBI that are

considered to be the most influential on foundation type.
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Table 7-3. Input Parameters for Foundation Classification.

Input Parameter

Item 3: County

Item 27: Year Built

Item 43-1: Main Span Type

Item 44-1: Substructure Type above Ground for Main Span

Item 46: Total Number of Spans

Item 48: Max Span Length

Iltem 51: Roadway Width

Target Parameter

Item 44-1: Substructure Type below Ground for Main Span

Neural Network Type and Algorithm

PNN and MLP are types of networks that can be used for classification purposes. The architecture
and learning algorithm for these two networks were fully described in the Artificial Neural
Network section. The only difference between MLP approximator and MLP classifier is in the
output layer. MLP classifiers, same as PNN, should have as many neurons as the number of
possible categories for target parameter in output layer. These nodes are not linear, as in MLP
approximators; rather, they have a function that identifies the neuron with the largest output value
and the corresponding category. Figure 7-6 shows the architecture of MLP classifier used in this
study.

Herein, the model performance is measured by a factor called classification accuracy (CA), defined

as the ratio of the correctly classified examples over total number of examples.

_ No. of correctly classified examples

CA (Eq. 7-8)

Total no. of examples
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to PNN. Table 7-4 shows the performance of each classifier.

Figure 7-6. Architecture of MLP Classifier.

Table 7-4. Classification Results for PNN and MLP.

Preliminary analysis showed that MLP network can classify more numbers of examples compared

Twenty neurons with tan-sigmoid transfer function are considered for hidden layer of the MLP

classifier. The same arguments as mentioned in the Number of Hidden Units and Transfer

Model PNN MLP
Training Test Training Validation | Test
CA 0.69 0.71 0.9 0.76 0.75
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Data Split Method

The random subsampling method is used, and the database is split into three subsets: training,
validation and test with 6:2:2 proportion. The data points are randomly sampled for each subset.

This is repeated for 1,000 iterations, and the classification accuracy of 1,000 networks is averaged.

The MLP classifier learns the pattern existing in training examples and generalizes to examples in
the test subset. The validation set examples are used to prevent the network being overfit to the

training examples.

PREDICTION AND VALIDATION

Foundation Type

Figure 7-7 and Figure 7-8 show results of foundation classification. Figure 7-7 presents
classification between eight possible foundation types (FTS8), and Figure 7-8 gives classification

between deep and shallow foundation (FT2). Table 7-5 presents the summary of results for each

subset.
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Figure 7-7. Foundation Classification Using MLP-FT8.
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Table 7-5. Results of Foundation-Type Classification.

Model MLP-FT2 MLP-FT8

Subset Training | Validation Test Training Validation | Test
No. of examples | 22 7 7 290 97 97
Ave. CA 1 0.91 0.90 0.9 0.76 0.75

It can be observed that both the MLP-FT98 and MLP-FT2 were able to classify the foundation for

both training and test examples with a fairly good accuracy. CA for MLP-FT2 is 0.91 and 0.75 for

MLP-FTS, which shows that it is significantly more accurate to classify the foundation as deep or

shallow rather than to identify the exact foundation type.

Foundation Depth

Eight different MLP models were developed to predict pile depth based on the availability of

soil-boring and foundation type information. The coding of each of these combinations is

described below:

e MLP-PLO0O: Foundation type, dimension, and soil resistance is unknown.

e MLP-PLO1: Foundation type and dimensions are unknown; soil resistance is known.
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e MLP-PL10: Foundation type is known; foundation dimensions and soil resistance are
unknown. Three models are created based on the foundation type:
0 Concrete piling (conc).
O Drilled Shafts (DrSh).
0 Steel piling (steel).
e MLP-PL11: Foundation type and soil resistance are known; foundation dimensions are
unknown; and three models are created based on the foundation type:
0 Concrete piling.
O Drilled Shafts.
0 Steel piling.

The model performance is measured by the coefficient of determination (R’), and root mean
squared error is obtained from the actual value of pile depth and the predicted pile depth for a

given bridge foundation. The coefficient of determination, R’ is defined as:

i(yi_ti)z

RP=1-2 (Eq. 7-9)
Z (ti - t_)z
i=1

The root mean square error (RMSE) is defined as:

RMSE = /Zn:(y[—r,,)z (Eq. 7-10)

where y, is the predicted value (output) and ¢, is the actual value (target).

As the two equations show, RMSE and R have negative correlation, i.e., when one increases the

other decreases.

Figure 7-9 to Figure 7-12 show MLP ensemble prediction for some of the MLP models mentioned
earlier in Step 6 of the deterministic approach (see Chapter 4). These figures show each network
and the average prediction over all networks in the ensemble for all examples in the database. R’

and RMSE for average ensemble prediction are also shown in these figures. The same figures for
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each of the eight models are presented in the Appendix. Table 7-6 presents the summary of results

for different MLP models.

It can be observed that for all eight MLP models, the order of magnitude of average R’ for the
examples in the working data set is above 0.85. This indicates that these models were able to learn

from examples in the training set and then successfully generalize to new examples in the test set.
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Figure 7-9. Ensemble Prediction for MLP-PLO00.
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Table 7-6. Results of MLP Models for Pile Embedment Depth Prediction.

Subset No of All Training Validation Test
Examples | R® |RMSE | R’ RMSE |R* |RMSE |R* |RMSE

Model
MLP-PL00 | 378 0.86 |6.33 0.88 |4.71 0.79 | 8.90 091 |7.10
MLP-PLO1 | 378 0.89 |6.16 091 |3.74 0.80 | 9.45 0.92 |7.25
MLP- 217 09 |4.76 094 |2.94 0.79 |7.22 091 |5.87
PL10-Conc
MLP- 80 0.85 | 7.84 0.84 |[4.93 0.84 | 10.45 0.94 | 10.12
PL10-DrSh
MLP- 35 0.86 |4.08 0.81 |2.97 0.79 |5.46 0.92 |5.03
PL10-Steel
MLP- 259 091 |4.42 094 |2.08 0.80 | 7.25 091 |5.49
PL11-Conc
MLP- 91 0.88 | 6.42 0.89 |1.96 0.81 | 11.08 0.94 | 7.91
PL11-DrSh
MLP- 35 0.87 |4.70 094 |2.52 0.68 | 8.57 0.82 | 4.05
PL11-Steel
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Chapter 8.
PROBABILISTIC APPROACH: BAYESIAN INFERENCE

INTRODUCTION

Figure 8-1 depicts the basic components for determining unknown foundations using the proposed
probabilistic approach. This method is composed of two stages, where each stage includes two

basic procedures.

In the first stage, the dead load, live load, and bearing capacity for known bridge piers are
calculated, and then an ANN model is created and trained using relevant information included in
the working database defined as the input parameters and aiming at predicting the foundation’s
bearing capacity as the target parameter. As a result of this stage, an ANN model is generated that
is able to predict the bearing capacity for a bridge foundation, according to information collected

about its superstructure, load, and location elements.

The MCMC method is implemented for solving the inverse problem, defined as the
multidimensional sampling of a foundation’s components starting with foundation type,
dimensions, and soil resistance, which can target the bearing capacity that is estimated using
ANN. The basic procedures for both stages are described in more detail in the following sections

and are summarized in the flowchart of Figure 8-2.
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LOAD AND BEARING CAPACITY ESTIMATION: STEP 1

Dead load, live load, and bearing capacity of foundations for all piers of bridges in the database are
computed using superstructure, substructure information, and soil properties as described in
Chapter 6. Theoretically, dead load and live load should relate to bearing capacity of a foundation

following limit-state design, depending on the standard and method used at the time of design:

ypDL+y,LL=¢q, (Eq. 8-1)

wherey,,y, are the load factors, DLis the dead load, LLis the live load, ¢ is the resistance
factor, and ¢, is the ultimate bearing capacity. Also, y, and y, are obtained from AASHTO

standards based on the method of design. Table 8-1 shows the corresponding values for two

AASHTO standards: LRFD and Highway Bridge.

Table 8-1. Load Factors Based on AASHTO Standards.

Standard Design method Yp YL

Highway Bridges | Allowable Stress Design | 1 1

Load Factor Design 1.3 | 1.3x1.67
LRFD Allowable Stress Design | 1 1
Load Factor Design 1.25 | 1.75

The ultimate bearing capacity is reduced by a factor of 0.5 for different foundation types.
Figure 8-3 presents the allowable bearing capacity versus estimated total load for foundations in
the working database. It is expected that all points will be along the equity line or above; however,
as observed in Figure 8-3, there are a few steel and concrete piles for which the points are located

below the equity line. This could be due to over-estimation of loads in these cases.
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Figure 8-3. Allowable Bearing Capacity versus Estimated Total Load
for Foundations in the Working Database.

ANN MODEL DESIGN FOR BEARING CAPACITY: STEP 11

The aim is to correlate the relevant features of bridges extracted from the TxDOT inspection
database and folders (including superstructure features, load, year built, county, location, etc.), with
the bearing capacity of known foundations using ANN. This results in finding the implicit
relationship between superstructure, load, and location elements of bridges and the bearing

capacity of their foundations. The model selection criteria are described in the following sections.

Input Parameters

Input parameters for bearing capacity (BC) approximation are quite similar to those for pile depth
approximation. Table 8-2 presents the input parameters for MLP-BC models. For cases where soil
properties are not available, average TCP and skin friction (Su) should be removed from input

parameters.
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Table 8-2. Input Parameters
for MLP-BC Models.

Parameter (variable)
Load Elements
Dead load (tons)
Live load (tons)

Soil Properties
Ave. TCP (blows/ft)
Skin Friction (tsf)
Location and Time
County

Year built

Latitude (°)
Longitude (°)

Neural Network Type and Algorithm

According to preliminary analysis, an MLP network with a Levenberg-Marquardt algorithm is
selected as the network type for BC approximation. R° and RMSE evaluated the network

performance.
Number of Hidden Units and Transfer Function

Following the arguments described earlier in the Number of Hidden Units section, one hidden
layer including 20 hidden neurons is considered for the MLP-BC models. Tan-sigmoid is selected

for the hidden unit activation function based on a preliminary analysis.
Data Split Method

The random subsampling method was performed by iteratively sampling data points for training,
validation, and test data sets and training new networks each time. Ten thousand networks were
generated using this method to form an ensemble of MLP networks for prediction of BC. The same
criteria as described in the ANN Predictive Model section is applied to identify and remove the

poor-performance networks from the ensemble:

R? (All) > 0.8 and R? (Validation)>0.7 and R* (Test)>0.9 (Eq. 8-2)
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The ratio of database split was 3:1:1, where the networks were trained using examples in the
training set and later tested using examples in the test set. The error on validation set examples

determined when to stop training the network.

PREDICTING BEARING CAPACITY FOR UNKNOWN FOUNDATIONS: STEP III

After training the ANN model based on information from known foundations in Step II, it follows
to use this model for predicting the bearing capacity of unknown foundations (Step III). Ten
different MLP models are developed to predict BC based on the availability of soil-boring and

foundation-type information:

e MLP-BCO00: Foundation type, dimensions, and soil resistance are unknown.
e MLP-BCO1: Foundation type and dimensions are unknown; soil resistance is known.
e MLP-BCI10: Foundation type is known; foundation dimensions and soil resistance is
unknown; four models are created based on the foundation type:
0 Concrete piling.
O Dirilled Shafts.
0 Steel Piling.
e Spread footing.
MLP-BCI11: Foundation type and soil resistance are known; foundation dimensions are
unknown; four models are created based on the foundation type:
0 Concrete piling.
O Dirilled Shafts.
0 Steel Piling.
(0]

Spread footing.

The average ensemble prediction for all bridge piers in the database are shown here for different
MLP-BC models (Figure 8-4 to Figure 8-7). The figures corresponding to each of the 10 models
are provided in the Appendix.
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In order to show how these models work for a set of unknown foundations, a number of bridge
examples were randomly selected from the database and their values of BC were predicted using

the proposed ANN models.

Ten percent of the examples were randomly selected, and BC was predicted for each of the
10 ANN models. Figure 8-8 to Figure 8-11 show the corresponding predictions for four of the 10
models. Complimentary figures for other MLP-BC model predictions are provided in the

Appendix. Table 8-3 summarizes the results of all models for BC prediction.

It can be observed that R’ is above 0.81 for different models and for different foundation types for
all examples in the data set and is above 0.87 for test data set. This indicates that the MLP-BC

models are able to predict the bearing capacity of bridge piers fairly accurately.
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Figure 8-8. MLP-BCO00 Predictions for Randomly Selected Bridge Piers.
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Table 8-3. Results of MLP-BC Models for Prediction of Bearing Capacity.

Subset All Training Validation Test

&

=

g o

S S

@2 | R . | RMSE | R> | RMSE | R> | RMSE | R* | RMSE
Mod g

-

Z £
MLP-BCOO0 | 279 | 094 | 906.14 | 0.95| 513.54| 0.87 | 1167.48 | 0.90 | 1149.73
MLP-BCO1 | 279 | 092 | 978.86| 093 | 523.87| 0.84 | 1399.75| 0.96 | 1155.35
MLP- s
BC10-Conc 091 | 6141 ] 092| 4894| 083 | 8296| 092| 66.58
MLP- .
BC10-DrSh 0.86 | 278.83| 0.88| 220.00| 0.81| 367.39| 0.94| 298.70
MLP- "
BC10-Steel 097 | 4344 | 0.96 19.88 | 0.88| 5573 | 092| 53.58
MLP-
BC10- 91 0.85|2533.60 | 0.85| 3128.12| 0.85| 1978.96 | 0.71| 712.08
Spread
MILP- 278
BC11-Conc 093 | 5474| 097| 2979| 0.84| 87.63| 093 | 6582
MLP- i
BC11-DrSh 0.94 | 266.58 | 098 | 80.68| 0.84| 411.88| 0.87 | 372.25
MLP- s
BC11-Steel 098 | 3563 1.00 245| 089 | 5236 092 | 49.44
MLP-
BC11- 91 081265976 | 0.76 | 3128.12| 0.60 | 2657.08 | 0.98 | 558.15
Spread

PROBABILISTIC INVERSION: STEP IV

Bayesian probabilistic inversion is performed by defining a prior probability distribution and a
likelihood probability distribution. The prior distribution reflects the state of information about a

set of parameters, before introducing additional evidence (i.e., data, model predictions). The
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likelihood is a probability density function describing the probability of observed data given the
model parameters. The product between the prior and the likelihood, divided by a constant of
proportionality, is called the posterior distribution. The posterior distribution represents the updated
state of information about the parameters, given the new evidence. It can be integrated with respect

to each model parameter, via the implementation of MCMC sampling (Robert 2007).

The probabilistic determination of unknown foundations consists of sampling the most likely
combinations of the foundation’s parameters (i.e., foundation type, foundation dimensions, and soil
resistance), conditioned by the ANN prediction of bearing capacity, which itself is conditioned on

the known data characteristics about the load and superstructure.

In Step I described earlier, the bearing capacity was obtained using the foundation type, foundation
dimensions, and soil resistance from known foundations, whereas in Step IV, the probabilistic
solution to the inverse problem will result in the definition of probability distributions of each of
these variables. These will indicate the most likely combinations between the three parameters, as

well as their probabilistic confidence measures.
Bayes Paradigm and MCMC Method (Robert 2007)

Bayesian inference is a methodology to estimate the probability of a vector of variables (or
hypotheses) when new evidence becomes available (also known as updating process). This is
based on the Bayes’ paradigm, which refers to the fact that the addition of new evidence may

contribute to reducing the uncertainty of a set of parameters to validate a hypothesis.

Bayesian inference assumes at random the parameters of interest, what permits them to operate in
the probability state, and any interaction between them, through joint or marginal probability

distributions.

If we consider € vector of model parameters and D vector of new observations about the process

of interest, p(&)represents the prior distribution, and P(D| 6?) represents the likelihood. Following

the Bayesian paradigm:
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P(0|D)- P(9)P(D|0)

_ (Eq. 8-3)
jp(e)P(D|9)d9

It is possible to assess the posterior P(D|6)distribution, which is the updated version of prior

distribution given the new observed dataD. The denominator of the above equation is a
normalizing constant, which permits to describe the posterior as a proportion of the prior and the

likelihood:

P(6|D)x P(0)P(D|0) (Eq. 8-4)

When the posterior is not analytica, MCMC allows for sampling of posterior probability
distributions, from which it is possible to draw each of the participating parameters’ marginal
distributions. It is possible also to assess the degree of correlation (linear or non-linear) between
the marginal distributions and even identify multiple modes (as opposed to optimization methods
where only one set of parameters is selected, thereby leaving no method establishing the
correlation between parameters, which provides the possibility of being trapped in local
minima/maxima). The success of this numerical methodology is based on the notion that infinite
samples can be taken via a Markov Chain converging to a stationary process, irrespective of its
previous sampling values. The first samples can be discarded since it takes some time for the chain
to converge and become stationary, and the rest of samples can be kept to populate the posterior
distribution and each parameter’s marginal distribution. The number of samples (m) that are

discarded is called the “burn-in.”

There are several methods to determine if the number of samples (%) is enough or to select a proper
value for burn-in (m). The diagnostic plots are used in this study to ensure the convergence of the
chain. This includes the statistic defined by the cumulative mean and standard deviation of each

parameter chain.

To select or reject a “point” sample (i.e., a set of parameters) during the sampling of the chain,
there exist different rules such as the Metropolis-Hasting’s sampler, the independence sampler, and
the Gibbs’ sampler. The Metropolis-Hasting’s type of sampler is used in this study, since it is the

most general sampler method.
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Problem Definition

In the context of this study, the unknown parameters are the foundation type and foundation
dimension for a bridge pier (bent) as well as the soil resistance parameters required for bearing-
capacity estimation. The priors for these parameters are obtained from the distribution of
parameters based on the collected sample of bridges from the Bryan District of TxDOT (working
database). The observed data are the bearing capacity predicted by the MLP-BC models, which is

assumed to be deterministic due to its very high accuracy prediction.

The new evidence introduced into the Bayesian paradigm represents the estimate of the bridge
bearing capacity, conditioned on the specific characteristics of the superstructure (i.e., for an
unknown foundation bridge, what is known are the details of the superstructure, already correlated

via ANN with the foundation’s bearing capacity).

Four types of problems are defined based on available information about a bridge pier. A similar
coding used to describe the ANN models is used here, where the first index in the problem
corresponds to the availability of foundation type, and the second corresponds to availability of soil
resistance. An index value of 0 implies that the information is unavailable for the corresponding

parameter or it is unknown; whereas an index of 1 implies the opposite case.

e Problem 11 refers to the condition for which foundation type and soil resistance
parameters are available but the foundation dimensions are unknown. Depending on the
foundation type, four different solution frameworks are developed.

e Problem 10 refers to the condition for which foundation type is known, but the soil
resistance parameters and foundation dimensions are unknown. Again, for each foundation
type, the corresponding solution frameworks are developed.

e Problem 01 refers to the condition for which foundation type and dimensions are unknown
but the soil resistance parameters are available or obtainable.

e Problem 00 refers to the most general condition for which the foundation type and

dimensions and also the soil resistance parameters are unknown.
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Prior and Model Parameters

For each of the four scenarios defined above, the unknown parameters associated with the bridge
foundation and the supporting soil are considered as model parameters and defined as random

variables.

Table 8-4 shows different unknown parameters and their corresponding priors. Also, Figure 8-12
to Figure 8-17 present some of the model parameters of prior distributions. These are formulated
for each parameter of interest included in the working database. The remaining prior distributions
are included in the Appendix. Table 8-5 presents the model parameters associated with each

problem.

Table 8-4. Definition of Model Parameters and Their Corresponding Prior Distributions.

Parameter | Explanation Prior
Foundation Type
FT | 1 = Conc, 2 = DrSh, 3 = Steel, 4 = Spread | Discrete distribution
Concrete Piling
dpCn (ft) | pile depth for concrete piles Lognorm (3.26,0.30)
DCn (in) dimension of pile (cross section) Lognorm (2.71,0.06)
Drilled Shafts
dpDr (ft) pile depth for a drilled shafts Lognorm (3.72,0.30)
DDr (in) diameter of drilled shafts Lognorm (3.48,0.17)
Steel Piling
dpSt (ft) pile depth for steel piles Lognorm(3.16,0.26)
ASt (in?) cross section area for steel piles Lognorm (4.94,0.08)
Spread Footing
B (ft) width of a spread footing Lognorm (1.64,0.20)
L (ft) length of a spread footing Lognorm (3.28,1.13)
Df (ft) embedment depth for spread footings Lognorm (1.96,0.86)
Soil Resistance
Su (tsf) skin friction Lognorm (0.57,0.74)
Pb (tsf) point-bearing capacity Lognorm (3.02,0.98)
Phi (deg) friction angle of soil (for spread footings) | Lognorm (3.70,0.21)
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Table 8-5. Coding of Model Parameters for Each Problem Definition.

Problem Model Parameters

Problem11-Conc dpCn

Problem11-DrSh dpDr

Problem11-Steel dpSt

Problem11-Spread B, L, Df

Problem10-Conc dpCn, Su, Pb

Problem10-DrSh dpDr, Su, Pb

Problem10-Steel dpSt, Su, Pb

Problem10-Spread B, L, Df, C=Su, Phi

ProblemO1 dpCn, DCn, dpDr, DDr, dpSt, ASt, B, L, Df

Problem00 dpCn, DCn, dpDr, DDr, dpSt, ASt, B, L, Df, Su, Pb,
Phi

A lognormal distribution is considered prior distribution of model parameters due to their physical
nature and data distribution (except for foundation type). Also, for all problem scenarios, unknown
parameters are considered independent, so the joint prior distribution is equal to the product of

prior distributions for each parameter.

The lognormal probability distribution is denoted as lognorm (u,0), where p and o are distribution

parameters. A lognormal probability density function appears as:

1 -o.s[mjz

P(x) = (Eq. 8.5)

2

— /H—Z : c . . Qu+c?), o? .
in which E(x)=e is the mean of the distribution and Var(x)=e (e —1) is the

variance of the distribution.
Likelihood Function

Likelihood is defined as the distribution of model prediction error. Error is defined as the
difference between predicted BC and estimated (measured) BC. Distribution of error can be
predicted by the corresponding MLP-BC for bridge piers in the database. Error distribution

(probability density function) is considered to be normal. Normal distribution, N (¢, o )appears as:

139



1 70.5["*” )2

P(x) = e +°

(Eq. 8-6)
2o

in which E(x)= g is the mean of the distribution and Var(x)= o’ is the variance of the

distribution. The error of BC estimation can be defined as:

Err=BC, - BC, (Eq. 8-7)

where BC, is predicted by the ANN model and BC; is the bearing capacity function.

Figure 8-18 shows the cumulative density function (CDF) of prediction error for different MLP-
BC models. The error function depends on the equation for BC estimation, and thus it depends on
which foundation type we are assuming to have. The BC equation is the same as equations
described in Chapter 6 for different foundation types. Thus for four different foundation types, the
BCs are:

2
BC, —Conc = min(GNO.SSu L(den - 10)[4>< chzj” j + o.spb(Dli”j ],GN(8.214DCn ~56.429)

(Eq. 8-8)

DDr

)
BC, — DrSh=min| GN O.7><O.5Su(dpDr—10)(7r><Dllz)rj+0.5Pb 72'% ,GN x73.928¢"400>"
(Eq. 8-9)

BC, - Steel = min [GN[O.SSM (dpSt—10) (%x %j +0.5Pb (%D ,GN (0.6x18x ASt)j
(Eq. 8-10)

and
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Figure 8-18. CDF for Prediction Error of Different MLP-BC Models.

Recall that the structural bearing capacity is also considered in computing the BC and that the
minimum between the geotechnical and structural BC is selected as the foundation bearing
capacity. The structural BC equations for concrete piles and drilled shafts are empirical equations

derived from the relation between maximum allowable service loads and the size of the pile (shaft).

After performing preliminary analyses, it was found that including the structural BC in the
likelihood function generates inconsistency in results because for some of the problem definitions,

the structural BC is not a function of model parameters. (It is only a function of pile size.)
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Therefore, the predicted embedment depth would be the minimum depth, since the BC predicted

by MLP-BC models is based on the minimum between structural and geotechnical BC.

The Cw, and Cw; are assumed to be 0.5 and Cy; C,, and dq are equal to one in the BC equation of
spread footing. Also, the soil is assumed to be fully saturated. Furthermore, it is assumed that if the

soil is sandy, then C (Su) is close to zero, and if the soil is clayey then ¢ is zero.

Table 8-6 presents the ANN model for BC prediction, the PDF for error distribution, and the

likelihood function associated with each problem and each foundation type.
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Proposal Distribution

The Metropolis-Hasting sampler obtains samples from a proposal distribution to generate the chain
for the parameter. The probability of choosing a candidate point from the proposal distribution

only depends on the previous point (state) of the chain.

One of the necessary characteristics of a proposal distribution is its simplicity. For this problem, a
multivariate normal distribution is used for all parameters except FT, which is a categorical
variable and has a discrete distribution. For foundation type, a discrete uniform probability

distribution is used. A multivariate normal distribution function appears as:

P(X)= (2”)k/2 |2|1/2 el ) (Eq. 8-12)
where u is:
H,
e 'lfz : mean (Eq. 8-13)
H,
and Y is:
O, P00, - f,0,0,
R e R (Eq. 8-14)
pnlanal anO-nGZ an

The model parameters are assumed to be independent, thus the covariant matrix is a diagonal

matrix in this case.

The discrete uniform distribution function is shown in the following equation. For N categories, the

probability of any value between 1 to N is 1/N:

.....

P(X| N)z%l(l (X)) (Eq. 8-15)
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RESULTS OF BAYESIAN INFERENCE

The proposed MCMC simulation is performed for the same example bridge for different possible
scenarios reflected in different problem definitions. This helps to cross-validate the proposed
probabilistic approach. Pier 2 of the bridge with ID 17-166-0209-05-075 is selected for performing
the MCMC simulation. Table 8-7 shows the actual values of bridge parameters. Results of each
problem’s simulations are shown in this section. Note that only sample plots are shown here, and

complementary plots are included in the Appendix.

Table 8-7. Actual Parameters Values for
Bridge 17-166-0209-05-075 for Pier 2.

Parameter Value

FT 1 (DrSh)
DDr 30 in

dpDr 37 ft

GN 3

Pb 34 tsf

Su 1.64 tsf
BC, 746.17 tons
BCe 615.51 tons
y 0.075 tct

1 30 deg

Problem 11 (Known Foundation Type and Soil Resistance Parameters)

The MCMC simulations in this case are performed for 1,000,000 iterations. To illustrate, the
sequence of the MCMC sampling, shows the simulations for all model parameters (in this case,
pile depth [dp]). Figure 8-19 shows the simulations for all model parameters (in this case, pile
depth [dp]). The corresponding convergence analysis plot is shown in Figure 8-20. These figures
demonstrate how the samples are randomly selected over the range of the parameters and how the
cumulative mean and standard deviation become stationary after some point in the sample

sequence. The burn-in point is considered to be at sample 200,000.
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Figure 8-20. Convergence Analysis, Cumulative Mean, and Standard
Deviation of Samples versus Sample Sequence for Problem 11.

Figure 8-21 shows the marginal CDF drawn from the posterior. CDFs allow for obtaining quintiles
and confidence intervals, and determine the probability of exceeding a specific foundation depth,
which is equivalent to the probability that the scour vulnerability of the bridge foundation will be

more than what is evaluated using the estimated depth.
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In order to emphasize the effect of conditioning the estimate of foundation depth once new details
about the superstructure and the foundation bearing capacity are known, Figure 8-22 compares
both the prior and the marginal of the posterior for foundation depth. It is remarkable the effect of
new evidence in the uncertainty reduction and shift in the distribution’s statistics, providing a
measure of confidence at the time of making a decision about the assessment of the foundation’s

depth.
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Figure 8-21. CDF Plot of the Posterior for Problem 11.
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Figure 8-22. Marginal and Posterior for Pile
Depth for Problem 11.
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The expected value (mean) of the marginal of the posterior is 44 ft, corresponding to a 45 percent
chance of having a shallower depth. Considering a pile depth to be around 35 ft will result in an
almost 10 percent (or the 10th quantile of the posterior distribution is almost 35 ft) chance of

having a shallower depth.

Table 8-8 presents the expected value (exp), standard deviation (stdd), 95 percent confidence
interval (Clgsy,), mode value (i.e., the most frequently occurring value), and the 10th quantile. It is
observed that the mode of the marginal posterior distributions for dp are close to the actual pile

depth.

Table 8-8. Statistics of Posterior Distribution
of the Model Parameters for Problem 11.

Statistics \ Value

dp(ft)
Exp 45.11
Stdd 8.52
CI 959 [45.09 45.12]

Mode
10" quantile | 34.4

Problem 10 (Known Foundation Type and Unknown Soil Resistance Parameters)

In Problem 10, MCMC simulations are performed for 1,000,000 iterations for the same bridge.
Figure 8-23 shows the simulations for all model parameters (three in this case). The corresponding
convergence analysis plots are shown in Figure 8-24, and the CDF plots for model parameters are

presented in Figure 8-25.

As with Problem 11, simulation and convergence diagnostic plots indicate that the sample chain
has converged to the target distribution because the mean and standard deviation have become
constant after some point in the sample chain. The burn-in point is considered to be at sample

200,000.
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for Problem 10.

A comparison between the prior marginal and posterior distributions of the model parameters are
presented in Figure 8-26. It is observed that consistently the posterior distribution is narrower than
the prior for each foundation’s parameter, which implies the reduction in uncertainty of parameter
estimation due to the updating given by information of the superstructure and the estimate of the
bearing capacity. Also, the maximum likelihood value (mode of the distribution) becomes closer to

the actual value in the posterior for all three model parameters.
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Figure 8-27 shows the prior and posterior joint relative frequency density for two of the
foundation’s parameters (dp and Su). The prior joint distribution indicates that the two parameters
are assumed to be independent, whereas the posterior joint distribution demonstrates that there is a
non-linear correlation between them (one increases as the other decreases and vice versa following

a non-linear pattern). The joint relative density for the complementary combinations of parameters
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is presented in the Appendix.
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Table 8-9 presents statistics of the posterior, including the expected value, standard deviation,
95 percent confidence interval for the expected value, model value (i.e., the most frequently
occurring value), and 10" quantile for the model parameters. It is observed that the mode of the

marginal posterior distributions for dpDr, for Su and Pb are close to the actual values.

Table 8-9. Statistics of Posterior Distribution of the Model Parameters for Problem 10.

Parameter dp (ft) Su (tsf) Pb (tsf)
Statistics

Exp 39.05 2.39 43.80

Stdd 10.54 1.02 21.80

CI 59, [39.031 39.072] [2.3874 2.3914] [43.753 43.838]
Mode 41.88 1.98 34.44

10" quantile 26.84 1.29 19.07

Problem 01 (Unknown Foundation Type and Known Soil Resistance Parameters)

As with Problem 11 and Problem 10, the MCMC simulation is validated using Pier 2 of the bridge
17-166-0209-05-075, considering the scenario of Problem O1. Simulation is performed for

2,000,000 iterations. Figure 8-28 shows the simulations for the model parameters (10 parameters).
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Figure 8-28. Sample Chains for Model Parameters for Problem 01.

Figure 8-29 and Figure 8-30 show convergence analysis plots for the cumulative mean and
standard deviation. The burn-in point is considered to be at the 200,000 sample. The CDF plots for

different model parameters are presented in Figure 8-31 and Figure 8-32.

Figure 8-33 shows the prior and posterior distributions for FT (foundation type). Notice that the
relative frequency for DrSh (which is the actual foundation type) has significantly increased

compared to other foundation types.
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Figure 8-34 shows the prior and the marginal of the posterior for the depth and size of the drilled
shaft. Similar plots are generated for all other model parameters and are provided in the Appendix.

Here, it is observed that posterior distribution is more certain compared to its corresponding prior

distribution.
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Figure 8-34. Marginal Probability of Prior and Marginal Posterior
for dpDr and DDr — Problem01.

Figure 8-35 presents the prior and posterior joint relative distribution for dpDr and DDr. The same
plots for other relevant model parameters are presented in the Appendix. The prior joint
distribution demonstrates the independency of the two model parameters while the posterior
distribution shows a significant reduction in the uncertainty. A slight non-linear negative

correlation is also observed between dpDr and DDr.
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Figure 8-35. Joint Relative Frequency Density of Prior (Left) and Posterior (Right)
for dpDr versus DDr.
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Table 8-10 summarizes the statistics of posterior distributions for different model parameters. It is
observed that the mode of the marginal posterior distributions for dpDr and DDr is close to the

actual values.

Table 8-10. Statistics of Posterior Distributions of the Model Parameters for Problem 01.

arameter | dpCn DCn dpDr | DDr dpSt | ASt B L Df
(fo (in) (ft) (in) (in?) (fy (@ | (dO
Statistics
Exp 30.74 1510 |44.90 |33.33 [26.44 |141.00 [4.92 |842 |9.62
Stdd 8.66 0.92 11.77 |5.31 6.26 11.03 0.88 391 |5.92
CI 959, [30.726 | [15.09 | [44.87 |[33.31 |[26.39 |[140.92 | [4.90 |[8.35 |[9.528
30.764] | 6 3 7 4 3 7 3 9.721]
15.010 | 44.921 | 33.338 | 26.486 | 141.084 | 4.936 | 8.480
] ] ] ] ] ] ]
Mode 32.32 15.11 |35.43 [31.58 [20.82 |137.42 |[549 |855 |12.88
10" quantile | 20.54 13.93 130.87 [26.78 |18.87 |127.09 [3.86 |391 |3.63

Problem 00 (Unknown Foundation Type and Unknown Soil Resistance Parameters)

Pier 2 of the bridge 17-166-0209-05-075 is analyzed this time under the conditions of problem 00.
Here, it is assumed that there is no information about foundation type or for soil boring. A million

samples are drawn using MCMC simulation.

Figure 8-36 shows the sample chains for different model parameters (14 parameters), and
Figure 8-37 and Figure 8-38 demonstrate the convergence analysis plots showing variation of

cumulative mean and standard deviation versus sample sequence for the model parameters.

It is observed that the cumulative mean and standard deviation became almost constant after
taking a number of samples for most of the model parameters and that the chains are converged to

stationary distributions.

It is observed that not enough samples are selected from FT = 4, which is the spread footing due to
the value of BC and the very small prior probability of having spread footing. Due to the limited

amount of known samples, the chain has not converged for the spread footing model parameters.
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CDF plots of posterior distributions for the model parameters are presented in Figure 8-39 and
Figure 8-40. Note that Su and Pb plots correspond to FTv=v2 (DrSh), which is the actual
foundation type.
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To determine the influence of providing the estimate of the foundation BC, a comparison between
the prior and posterior marginal distributions for dpDr, DDr, and FT is shown in Figure 8-41.
Complementary plots for other model parameters are included in the Appendix. Results reflect
little changes when looking at single parameters, apparently due to the total lack of information

about the substructure characteristics of this bridge as compared to previous problem types.
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Figure 8-41. Prior Distributions and Marginal Posterior Distributions for dpDr and
DDr (Up) and FT (Bottom) for Problem 00.

Also, a comparison of the joint relative frequency distributions (probability) prior and posterior
distributions for DDr and dpDr are presented in Figure 8-42. Similar plots for other possible
combinations of model parameters are included in the Appendix. It is observed from this figure
how the uncertainty in the parameters is reduced in the posterior when compared to the prior
distribution. Comparing the prior and posterior of FT, one can see that the probability of DrSh

dramatically increased in the posterior, which is an indication of the actual foundation type.

165



60

60
&5 50
0.8
. 40
ol E 06
= o
5 30 < 30 0.4
20 20 0.2
"% 50 100 150 "% 50 100 150 °
dpDr(ft) dpDr(ft)
Figure 8-42. Joint Relative Frequency Density of Prior (Left) and Posterior (Right) for
dpDr versus DDr.

Table 8-11 provides statistics of different model parameters obtained from corresponding posterior
marginal distributions. Notice that the expected value of the dpDr, DDr, Su and Pb are fairly close

to the actual known values of the given bridge.
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Table 8-11. Statistics of Posterior Distributions of the Model Parameters for Problem 00.

rameter dpCn DCn Su (tsf) Pb (tsf)
Statistics (ft) (in)
FT=1, Conc
Exp 29.16 15.06 3.24 68.83
Stdd 7.92 0.89 1.95 58.05
CI 950, [29.139 29.185] | [15.058 [3.238 [68.667 69.000]
15.063] 3.249]
Mode 35.61 14.11 2.40 17.66
10™ quantile 19.89 13.94 1.24 17.02
FT=2, DrSh
rameter dpDr DDr Su(tsf) Pb(tsf)
Statistics (ft) (in)
Exp 42.24 32.21 2.21 44.50
Stdd 11.21 4.98 1.18 33.89
CI 950, [42.203 [32.191 [2.211 [44.389 44.601]
42.280] 32.225] 2.219]
Mode 56.46 37.00 1.25 70.34
10™ quantile 290.14 26.10 0.95 13.73
FT=3, Steel
rameter dpSt ASt(in’) Su (tsf) Pb (tsf)
Statistics (ft)
Exp 25.93 140.63 3.26 58.90
Stdd 5.44 10.11 1.68 47.02
CI 950, [25.883 25.970] | [140.544 [3.246 [58.516 59.266]
140.706] 3.273]
Mode 22.47 140.66 2.53 35.03
10™ quantile 19.24 127.74 1.36 16.03
FT=4, Spread
arameter B L Df Su (tsf) Phi (Deg)
Statistic (ft) (ft) (ft)
B(ft) L(ft) DA(ft) Su phi
Exp 6.53 8.17 10.18 2.49 42.33
Stdd 3.91 7.185 1018 1.92 22.26
CI 959, [5.915 7.140] [7.050 9.298] | [8.576 [2.186 [38.845
11.761] 2.786] 45.808]
Mode 3.98 9.63 3.77 1.24 34.46
10™ quantile 3.94 2.67 3.77 0.98 27.84
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PART III.
EXPERIMENT-BASED APPROACH
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Chapter 9.
VIBRATION METHOD

INTRODUCTION

The use of inducing vibrations for unknown bridge foundation testing is not a new concept. Much
research was invested in different ways to excite a bridge using pulse excitation with built-in force
transducers (Olson et al. 1998 and Olson 2005). These methods, however, failed to generate
enough energy to excite the bridge as desired. For this reason, the research team proposed using
Briiel and Kjar 4383 Piezoelectric Charge Accelerometers. The accelerometers were attached to a
bridge pier quickly and nondestructively. These sensors measure acceleration in three directions
when three are used and send it directly to a data logger. By impacting the pier with a hammer,
readings from the sensors were used to calculate the natural frequency of the pier from which the
depth of the foundation can be inferred. A numerical simulation employing the finite element
method was also created. In this model, shallow foundations were compared to deep foundations,
each with different embedment depths. An eigenvalue analysis with frequencies and mode shapes
for each system was created to compare the different responses of frequency relative to the

foundation depth and type.

LABORATORY CALIBRATION

The accelerometers used for the motion sensor component of this project were calibrated in the
Haynes Coastal Engineering Laboratory at Texas A&M University through an experimental modal
analysis. Two concrete slabs were buried at different depths in the two-dimensional tow-dredge
tank in the Haynes Lab. The two-dimensional tank is a concrete structure that is 45.72 m (150 ft)
long, 3.66 m (12 ft) wide, and 3.05 m (10 ft) deep. The bottom of the tank has removable steel
sheets that cover the sediment pit filled with sand. The pit is 7.62 m (25 ft) wide by 1.52 m (5 ft)
deep. The two 1.83 m (6 ft) long, 0.30 m (1 ft) wide, and 7.62 cm (3 in) thick concrete slabs were

buried vertically as shown in Figure 9-1.
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Figure 9-1. Haynes Laboratory Setup.

The left slab was buried 0.76 m (2.5 ft) deep in the sediment pit, and the right was buried 0.91 m
(3 ft) deep. After the slabs were in place, approximately 0.3 m (1 ft) of water was pumped into the
tank, which can be seen in Figure 9-1.

An accelerometer was attached to the face of each slab, 15.24 cm (6 in) from the edge, in the center
of the slab, as shown in Figure 9-2. The other side of the slab was then struck with a rubber impact

hammer, creating a pulse excitation.

Figure 9-2. Impacting the Slab.

The accelerometer was attached to a signal conditioner and a computer with a Fast Fourier

Transform (FFT) analyzer. The output for each impact of the slab was the excitation response of
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the slab measured at a constant frequency step. The amplitude of the response versus frequency
was plotted for each bridge deck. The slab buried 0.91 m (3 ft) below the soil is a stiffer system,
which should result in a higher frequency. This can be mathematically proven by the fundamental

equation:

a):\/% (Eq. 9-1)

where @ is the circular frequency, k is the stiffness, and M is the mass. Because the mass of the
two slabs are identical, a stiffer system should result in a higher frequency. Figure 9-3 contains the

results of the response of the buried slabs.
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Figure 9-3. Response of the Buried Slabs.

While the amplitude of each response can be neglected because the slabs were not hit with the
same force, the results were as expected; the slab buried deeper had a higher frequency response.
The laboratory calibration was deemed successful because of the expected results from the
experiment explained. Because experiments in the controlled laboratory environment could not be
expanded to be more complex further than what was described, the team moved the motion sensor

calibration from the lab to bridges in the field for more experimentation.
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FIELD CALIBRATION

The accelerometers used for the motion sensor approach of this project were attached to several
different bridges in different formations to calibrate them for field use. An advantage of using
accelerometers for unknown foundations is that they can be attached to a bridge pier quickly and
nondestructively and are capable of measuring the acceleration in three directions and sending the
data directly to a data logger. Data from these accelerometers was collected in different ways to

determine the optimal approach for determining unknown bridge foundation depth.

Initially, three accelerometers were attached to the face of one side of a pier on the bridge over
Kountze Bayou in Burleson County. The bridge is on 15.85 m (52 ft) precast concrete piles.
Approximately 1.52 m (5 ft) of the pile is exposed above the ground surface, on which the
accelerometers were evenly spaced vertically and placed in the middle horizontally. The locations

of the three accelerometers used for this experiment are represented by each square in Figure 9-4.

Figure 9-4. Accelerometers on Kountze Bayou Bridge.

The pier was then impacted with a large rubber hammer on the side perpendicular to the
accelerometers. When inspecting the data, it was noted that the force created by an impact hammer
was not great enough to generate any significant data. The research team also recorded traffic data
as it drove over the bridge. While several trucks drove over the bridge, the vibrations of the pier
were still not strong enough to yield measureable data. The intent of these data was to measure the

vibration of the individual pier over a given length of time. From this, parameters such as
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frequency, damping, vibration amplitude, and phase eigenmodes can be determined. Each
accelerometer was attached to a signal conditioner and a computer with a FFT analyzer. The
output for each impact of the pier is the excitation response of the pier measured at a constant
frequency step. Unlike in the laboratory test, the influencing parameters of the bridge, like its size
and additional components, made it too difficult to excite the pier to the level required for valuable
results. The results of these tests showed no measurable data from which the depth of the
foundation could be inferred. After the negative results from using the excitation response alone, a
Time Domain Decomposition (TDD) was done in order to strengthen the weak signal that was not
discernible in the frequency domain. After several attempts using a TDD, still no measureable

results were found.

Another field test was conducted at the University Drive East bridge over Carter Creek. Three
accelerometers were attached to the bridge bent, one in the direction of traffic along the bridge (x-
direction), one perpendicular in the direction of the flow of the river (y-direction), and one in the
vertical direction (z-direction). The acceleration of the bridge bent was measured in the three
directions for 10 sec and 100 sec periods. Using the nearby traffic light to time when the
measurements began, 11 different measurements were taken using the traffic. Within these data
sets, were periods of light traffic, heavy traffic, traffic with a charter bus, and a four-axle truck
alone. For each data set, a Hann window was applied to select the desired data within the set for
optimal output. Figure 9-5 shows the acceleration of the bridge bent versus time in the three

directions for the traffic with a bus.
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Figure 9-5. Acceleration of Bridge Bent with a Charter Bus.

When looking at these accelerations, the movement of the bent when heavy traffic passed over it
can clearly be seen as the large peaks around 3 and 3.5 seconds. An FFT analysis was then applied
to these data in all three directions. Figure 9-6 shows the results of the bus traffic in the frequency

domain.
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Figure 9-6. Frequency Domain of Bridge Bent with a Charter Bus.

Despite the clear peaks in acceleration, no apparent dominant frequency like what was seen in the
laboratory test was noted in any of the three directions. As previously mentioned, one sample was
collected when a four-axle truck drove over the bridge. This sample was taken for 100 seconds

instead of 10. The increase in accelerations can be seen in Figure 9-7 in all three directions.
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Figure 9-7. Acceleration of Bridge Bent with a Four-Axle Truck.

Again, despite the large jump in acceleration when the truck was over the bent, no dominant
frequency was noted in the lower frequencies as expected for large structures. Also, the frequency
domain is noisier for the longer 100 sample period than the 10 second sample, as illustrated in

Figure 9-8.
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Figure 9-8. Frequency Domain of Bridge Bent with a Four-Axle Truck.

Despite the promising laboratory tests, which were conducted on buried reinforced concrete slabs,
due to the difficulties of exciting the large structure with enough force to excite the bridge to the
desired frequencies, it was decided that using accelerometers for determining the depth of
unknown foundations of bridges was not feasible. The motion sensor team shifted their efforts to

helping the resistivity imaging team using another technique, induced polarization.

NUMERICAL SIMULATION

During the field calibration, numerical simulations were also created to determine the feasibility of
modeling the field work in order to decrease the time spent in the field. These models were created
for a simultaneous project on bridge scour (Briaud et al. 2011). After verifying a numerical
simulation could match the field data, more simulations could be created to model different
foundation types, while monitoring and identifying various quantities of interest. Using numerical
simulation, foundations with varying lengths were generated. Using these different cases, the

effects of change in length on quantities of interest were studied. Also, the sensitivity of the
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quantities of interest with variation in length could be identified, so a recommendation could be
made for the most critical quantity. These parametric studies were used to establish the
relationship between the foundation type and the monitored quantities. The change in natural
frequency with foundation type was also investigated. A finite element (FE) model of a bridge was
made from the drawings and details obtained from TxDOT. The material properties were obtained
from both the drawings and were also evaluated at the site. The commercial finite element
program LS-DYNA was used for the analysis (LSTC 2003), and the FE models considered in this
project were generated by HyperMesh (Altair 2003).

Finite Element Model

Two FE models for a bridge on US 59 over the Guadalupe River were created. Figure 9-9 shows

the bridge that was modeled.

U e R
I

Figure 9-9. US 59 over the Guadalupe River.

The first model, the simplified model, was made using the equivalent area and moment of inertia
for the bridge. The bridge was modeled using one-dimensional beam elements, and the soil was

modeled by a fully integrated quadratic eight-node element with nodal rotations. The second
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model, the full scale model, was made using a fully integrated quadratic eight-node element with

nodal rotations for the bridge as well as the soil.
Simplified Model

Figure 9-10 shows the simplified model of the bridge with a pile length of 10 m (30 ft). The soil
and the concrete were considered elastic. The penalty method was used to model the contacts
between the different elements. In this method, normal interface springs were placed between all
penetrating nodes and the contact surfaces. The method is stable, does not excite mesh
hourglassing, and is capable of handling contacts between dissimilar materials. The material
properties were obtained by a combination of field testing and manufacturer specifications.

Table 9-1 shows the material properties used.

Figure 9-10. Simplified FE Model for Bridge with Full-Pile Length.

Table 9-1. Material Property of Concrete and Soil.

Material Density Modulus of Elasticity | Poisson’s | Unconfined Compressive
% E ratio Strength
kg/m® (Ib/ft%) MPa (kips) v MPa (kips)
Concrete | 2500 (156) 27000 (3916) 0.2 30.0 (4.35)
Soil 1982 (123) 12.0 (1.74) 0.35 -
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A parametric study was performed to study the response of the bridge when the depth of the

foundation was changed. Two models with different foundation depths were simulated:

e Full pile length (10 m [30 ft]).
e Half pile length (5 m [15 ft]).

Figure 9-11 shows the simplified model with a pile length of 10 m (30 ft) without soil.
Figure 9-12 shows the simplified model with a pile length of 5 m (15 ft) without soil.

—

//

Pile Length 10
m (30 ft)

Figure 9-11. Simplified FE Model with Full-Pile Length (No Soil).

o

Pile Length
I 5m (15 ft)

Figure 9-12. Simplified FE Model with Half-Pile Length (No Soil).
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Table 9-2 shows the comparison of the natural frequency of the simplified bridge model. Two
cases were compared; one with a full-pile length of 10 m (30 ft) and the other with half-pile
length of 5 m (15 ft). The relevant modes were compared to study the variation with the change
in pile length. The change in the frequency for the corresponding mode shapes was less than
5 percent. The bending mode of the pile in the traffic direction and the axial mode in the vertical

direction show change, but the mode in flow direction remained unaffected.

Table 9-2. Comparison of Natural Frequency of Simplified Bridge.

Full Pile Length 10 m (30 ft) Half Pile Length 5 m (15 ft) Percentage Change
(%)
Mode Type Frequency | Mode Type Frequency ’
No. (Hz) No. (Hz)
1 Bending 3.691 1 Bending 3.689 0.054
(Flow) (Flow)
5 Bending 5.437 5 Bending 5.400 0.680
of Pier of Pier
(Traffic) (Traffic)
10 Bending 8.051 11 Bending 8.049 0.024
(Flow) (Flow)
17 Vertical 14.250 16 Vertical 13.699 3.866
Pier Pier

Full-Scale Model

The full-scale model used a 3D solid model for modeling the elements. The bridge was modeled
by a fully integrated quadratic eight-node element with nodal rotations. The gravitational load
was transferred using dynamic relaxation. The foundation was also modeled by a fully
integrated quadratic eight-node element with nodal rotations. Mesh refinement achieves

convergence, so hourglass energy was minimized.
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Material Models

A rate-dependent material model was applied for all the materials due to the sensitivity of the
material properties with loading rate. For this project, a continuous surface cap model, available
in the software, was used to model the concrete. This model also takes into account the strain
rate dependency of the concrete strength. The same material properties as the simple model were

used for the full-scale model.

Contact Algorithm

The contact between the different parts was modeled using the Contact Automatic Surface To
Surface algorithm. In tied contact types, the “slave nodes” are constrained to move with the
“master surface.” At the beginning of the simulation, the nearest master segment for each slave
node was located based on an orthogonal projection of the slave node to the master segment. If
the slave node was deemed close to the master segment based on established criteria, the slave
node was moved to the master surface. This allowed for the initial geometry to be slightly
altered without invoking any stresses. As the simulation progressed, the isoperimetric position
of the slave node with respect to its master segment was held fixed using kinematic constraint

equations.

Two cases with varying pile length were simulated similar to the simple model previously
mentioned. Figure 9-13 shows the model of the full-scale bridge with the full-pile length of
10 m (30 ft) with soil. Mesh refinement was done to achieve convergence. Figure 9-14 shows

the model of the full-scale bridge with full pile lengths and without soil.
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Figure 9-13. Full-Scale Model of Bridge with Soil.

z |
l 1

Figure 9-14. Full-Scale Model of Bridge without Soil (Full-Pile Length).

Figure 9-15 shows the model of the full scale bridge with half-pile length of 5 m (15 ft) and

without soil.
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Figure 9-15. Full-Scale Model of Bridge without Soil (Half-Pile Length).

A parametric study was done to analyze the effect of variation of pile length on the natural
frequency of the full scale bridge similar to the simplified model. For the parametric study of the
variation of the response quantity with the pile length, two models were created. One was with a

full pile length of 10 m (30 ft), and other is a half-pile length of 5 m (15 ft).

Figure 9-16 shows the mode shape of the full-scale bridge with full-pile length. The mode is in the
flow direction. Figure 9-17 shows the corresponding mode shape of the full-scale bridge with the
half-pile length.

Figure 9-16. Mode Shape of the Full-Scale Bridge (Full-Pile Length).
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Figure 9-17. Mode Shape of the Full-Scale Bridge (Half-Pile Length).

Table 9-3 presents the comparison of the natural frequency of the full scale bridge in different
modes. The modes one, two, and three, which are the bending modes of the pile in the flow
direction, did not have a significant change. The fourth mode is the bending of the pile in the

traffic direction.

Table 9-3. Comparison of Natural Frequency of Full-Scale Bridge.

Full Pile Length 10 m (30 ft) Half Pile Length 5 m (15 ft) Percentage
Change (%)
Mode No. Frequency (Hz) Mode No. Frequency (Hz)
1 2.025 1 2.050 1.23
2 2.368 2 2.368 0.00
3 2.992 3 2.993 0.03
4 3.807 4 3.384 11.1

The fourth mode decreased by 11 percent, which is a significant change in the frequency for the
mode in the traffic direction. The bridge was excited more in the traffic direction as compared to
the flow direction. Note that the greatest change in the simplified model was in the axial vertical
direction, and the second greatest change was in the traffic direction. However, it changed by

only 0.68 percent.
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Chapter 10.
ELECTRICAL METHODS BACKGROUND

INTRODUCTION

The basics of the electrical resistivity and IP methods, mainstays of near-surface applied
geophysics for many decades, are reviewed in this chapter. The techniques have enjoyed
resurgence in popularity since the mid-1990s, due to rapid and impressive advancements in data

acquisition, forward modeling, and inversion capabilities.

INTRODUCTION TO THE RESISTIVITY METHOD

The fundamental steps involved in the resistivity method may be outlined as follows:

e An electric current / [amperes, 4 ]| is directly injected into the ground through a pair of
electrodes, and the resulting voltage 7 [volts,V ] is measured between a second pair of

electrodes.
e The impedance Z =%[%} of the Earth is the ratio of the voltage output at the

potential electrodes to the current input at the current electrodes.

e The impedance is then transformed into an apparent resistivity p, [ohm-meters,Qm ],

which is an intuitively understood indicator of the underlying electrical resistivity

structure p (r)of the Earth. Different arrangements of the electrodes permit apparent

resistivity to be determined at different depths and lateral positions. A map of the
apparent resistivity plotted at these locations is termed a pseudosection (Loke 2000).

e The pseudosection is then inverted to obtain a 2D or 3D resistivity section p (r)of the

ground.

e Finally, a geological interpretation of the resistivity section is performed incorporating,
as far as possible, prior knowledge based on outcrops, supporting geophysical or
borehole data, and information gained from laboratory studies of the electrical resistivity

of geological materials (see Table 10-1).
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Table 10-1. Resistivity of Common Geological Materials.

Geomaterial Resistivity [Qm]
Clay 1-20

Sand, wet to moist 20-200

Shale 1-500

Porous limestone 100-10°

Dense limestone 10°-10°
Metamorphic rocks 50-10°

Igneous rocks 10>-10°

The electrical resistivity method has a long history in applied geophysics, including the
pioneering work of Conrad Schlumberger of France in 1912. A few years prior to that, Swedish
explorationists experimented with locating conductive bodies by moving around the potential

electrode pair while keeping the current electrode pair in a fixed location (Dahlin 2001).

FUNDAMENTALS

The resistivity technique is founded on basic principles familiar to all scientists and engineers
working in the physical sciences. Consider a cylindrical sample of material of length L [m],

resistance R [Q], and cross-sectional area A [m?]. The resistivity o [Qm ] is a material
property equal toszA/L. (See Figure 10-1.) The spatially variable resistivity p(r)of the
subsurface is the physical property that is sensed by the resistivity method. The reciprocal of the

resistivity is the electrical conductivityaz%o. Electrical conductivity is a measure of the

ability of a material to sustain long-term electric current flow. Thus, electric current can flow

readily in low-resistivity zones and is weak or absent in high-resistivity zones.
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area, A

> total current, /

length, L

Figure 10-1. Definition of Resistivity, p .

Figure 10-2 shows a general exploration scenario, in which a battery is connected to two
electrodes that serve as a current source/sink pair. The electric current streamlines, and
equipotentials are displayed in the figure for a current injection of / =1 A4 and uniform resistivity

p=1Qm.

log, g voltage [V]
0.20
0.02
-0.17
-0.35
-0.54
-0.72
-0.91

depth [m]

6.0

70

80

9.0

10 0.0 <10 <20 +3.0 +4.0 +5.0
x-position [m]

Figure 10-2. Potential and Streamlines of Electric Current
for a Point Source and a Point Sink of Current.
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The current density J is related to electric field E by Ohm’s law J = oE so that

I pr
E:%sz=47/;2 (Eq. 10-1)

Ohm’s law for continuous media, as stated in Eq. 10-1, generalizes the familiar circuit law

V = IR ,where V is voltage, [ is current, and R is resistance.

To better understand how the resistivity method is used to estimate Earth resistivity, consider an
electric current [ injected into a hypothetical whole-space of uniform resistivity p . Suppose the
return electrode is placed at infinity. The situation is depicted in Figure 10-3. In the vicinity of
the injection point, the current spreads out symmetrically in all three dimensions. At point P at

distance r from the injection point, the current density J is given by

i
J=—"T
4y

(Eq. 10-2)

where 477 is the area of a spherical surface of radius 7. The numerator in Eq. 10-2 expresses the
magnitude and direction of the current at point P, while the denominator expresses the

cross-sectional area through which the current uniformly flows.

%

current, I ™
—

00— ‘/ . — 00

resistivity, p °

=

[00]

Figure 10-3. Current Injection into a Whole Space of Uniform Resistivity, 7 .

The voltage, V, measured at observation point P in Figure 10-3 is equal to the work done by a
vector field, F, to move a test charge from infinity to point P. Work, W, is defined as the product

of work and distance or more accurately in our case the line integral:
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W=[Fds (Eq. 10-3)
C

where C is any path from infinity terminating at point P. The force experienced by a test charge

is proportional to the electric field E; hence, the voltage at P is defined as the integral

0 [} 1,0 Ip
V=| E-dr=| —L—dr=—-— Eq. 10-4
I’ L 4rr? Ay (Eq )

Now suppose that the injection point is located on the surface of a half-space representing the

Earth, as shown in Figure 10-4.

f +
®
,f!
//
|
N 1
surface \
‘_/\/"’
resistivity, p
current streamlines

Figure 10-4. Voltage Measured between Points P and Q for a Point Source of Electric
Current Injected into a Half Space of Uniform Resistivity, p .

The electric current, which cannot flow through the non-conducting air, flows radially outward

through a hemisphere of radius r and surface area 277°. Hence, the current density in this case is

A

- so that, using Eq. 10-1 and Eq. 10-4, the voltage measured at point P is V = p ,

27y 27xry,
9

J=

where r, 1s the distance from the current source to the potential electrode P. This is the basic

equation of resistivity. The voltage measured across the terminals P and Q of the voltmeter is the

difference

Ip| 1 1
VPQ = VP —VQ =Z|:r——r—:| (Eq 10-5)
P 9]

where 7, is the distance from the current source to the potential electrode Q.
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Eq. 10-5 is derived under the assumption that the Earth has a uniform resistivity p. In reality, the
resistivity distribution inside the Earth is heterogeneous. We therefore rearrange Eq. 10-5 to find

an apparent resistivity p, :

-1

2 1 1

pa=LV ———| =kZ (Eq. 10-6),
I |\ 1

which is interpreted to be the resistivity that would have been measured if the Earth were, in fact,
homogeneous. Notice that the apparent resistivity can be written as a product of the measured

Earth impedance Z = % and a geometric factor x that depends only on the arrangement of the

current and potential electrodes. In the configuration shown in Figure 10-4, which is known as a

pole-dipole arrangement, the geometric factor is:
-1
1 1
K=2r|——— (Eq. 10-7)
o1

Although the pole-dipole arrangement has received attention from near-surface geophysicists, a
more general exploration scenario is the arbitrary four-electrode configuration shown in

Figure 10-5, which includes a point source and the return point sink of current. The geometric

-1
o . 1
factor in this general case isx =27 {— - —} .

=1.0A r 1 B_
/ y
YA P AB surface .
Vi | P 0

resistivity, p

Figure 10-5. Voltage Measured between Points P and Q for a Point Source A and Point
Sink B of Electric Current.
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Historically, a number of four-electrode configurations have proven popular for a wide range of
applications of geophysics. As we describe below, computer-controlled configurations of
hundreds of electrodes are now in routine use (Loke 2000). Nevertheless, it remains worthwhile
to briefly discuss a few of the traditional four-electrode configurations (Figure 10-6) in order to
gain insight into the capabilities of the resistivity method and to explore the advantages and
disadvantages of the various electrode configurations in terms of depth penetration, lateral
resolution, ease of deployment, and signal-to-noise ratio. Zonge et al. (2005) gave a review of

other popular electrode configurations.

()

il
i
A
W
A P | 0 surface 37777
resistivity.
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.
Aﬁﬂ—h} / PF@TQ

<—aq—r< na >4—aq—>

Figure 10-6. Traditional Four-Electrode Configurations:
(a) Schlumberger; (b) Wenner; and (c) Dipole-Dipole.

The Schlumberger array (Figure 10-6a) is designed for sounding, that is, determining the Earth
resistivity depth profile p (z) at a single location. The potential electrodes PQ are kept centered at
a fixed location with constant separation 2a. The current electrodes AB are centered at the same
location, but voltage readings are made as the separation between them is expanded about the
AB midpoint. In this way, apparent resistivity is determined as a function of the current electrode

separation. It is traditional to display Schlumberger array data as a graph of the form p, (AB/2),
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where AB/2 is half of the current electrode separation. The geometric factor for the

Schlumberger array is:

k=(n-1)(n+1)7a/2 (Eq. 10-8)

A Schlumberger sounding can achieve excellent depth penetration with sufficiently large AB
separations. However, the array has limited lateral resolution as it is designed for vertical
sounding. The Schlumberger array is cumbersome in the field since its deployment requires
lengthy wire connections that must be repositioned for each measurement. The signal-to-noise
ratio is moderate to good. The voltage reading is taken in the middle of the array, which suggests
that a good signal level should be achieved. However, as shown in Figure 10-2, voltages are

generally low at the AB midpoint, at least over a uniformly resistive Earth.

The Wenner array (Figure 10-6b) is designed for lateral profiling to determine the Earth
resistivity p(x) at a roughly constant depth of penetration. There is a fixed separation, denoted a,
between adjacent electrodes, with the potential electrodes PQ placed inside the current electrodes
AB as in the Schlumberger array. Apparent resistivity is determined as the array is moved along

a lateral profile. It is easy to see that the geometric factor for the Wenner array is:

Kk =2ra (Eq. 10-9)

The penetration depth of the Wenner array depends on the spacing a; the larger its value, the
deeper the penetration. The Wenner array is quite effective at mapping lateral contrasts in
resistivity within its fixed depth of penetration. The array is moderately easy to deploy as the
trailing electrode can be leapfrogged to the front, as the configuration is advanced along the
profile. This means that only one electrode movement is required per measurement.
Signal-to-noise ratio is generally good since the potential electrodes PQ are located in the central
part of the array and are relatively widely spaced compared to the current electrode separation

AB.

The dipole-dipole configuration is shown in Figure 10-6¢. The current electrodes AB and the
potential electrodes PQ have the same spacing a, but the two pairs are widely separated by a

distance, na, where n>>1. The geometric factor for the dipole—dipole array is:
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k=zn(n+1)(n+2)a (Eq. 10-10)

The dipole-dipole array offers many of the same advantages as Schlumberger depth sounding
and Wenner lateral profiling. However, the signal-to-noise ratio deteriorates at large values of n
and the voltage measurements across the electrodes PQ are susceptible to distortion by

small-scale, near-surface heterogeneities.

RESISTIVITY PSEUDOSECTIONS

A convenient way to display multi-electrode resistivity data is by means of a resistivity
pseudosection. As shown in Figure 10-7, the measured apparent resistivity p, associated with a
current electrode pair AB and a potential electrode pair PQ is plotted at the intersection of two
lines, each making a 45° angle with the ground surface and passing through the center of one of
the electrode pairs. This procedure is repeated for each pair of current and potential electrodes.
The resulting pseudosection provides a very rough indication of the true earth resistivity since
the maximum sensitivity to the ground structure of a given voltage measurement occurs at the
midpoint of the four-electrode configuration at a depth of one-half the separation of the

current-potential electrode pairs.

To provide an example of resistivity imaging, a data set was acquired using the multi-electrode
Sting R&/IP system (www.agiusa.com) illustrated in Figure 10-8. The acquisition protocol
involved a computer-controlled sequence of Schlumberger and dipole-dipole -electrode
configurations, as discussed in more detail below. The measured pseudosection is shown in the
top panel of Figure 10-9. The large solid squares at the top of the pseudosection correspond to
electrode locations while the smaller symbols that appear in the interior of the pseudosection
mark the locations where the measured apparent resistivity is evaluated. The pseudosection is
displayed by color contouring the apparent resistivity data. The trapezoidal shape of the
pseudosection reflects the fact that the measured data are only minimally sensitive to ground

structure in the two triangular regions beneath either the current or the potential electrodes.
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Figure 10-7. Construction of a Dipole-Dipole Resistivity Pseudosection.

Figure 10-8. (Left) Multi-electrode Resistivity System from Advanced Geosciences, Inc.;

(Right) Close-up of an Electrode Installation.
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Figure 10-9. Measured Apparent Resistivity Pseudosection (Top) for a Hybrid
Schlumberger-DD Electrode Configuration, along with the Inverted Resistivity Image
(Bottom).

The Calculated Pseudosection (Middle) is Based on the Solving the Forward Problem for the Resistivity
Structure Shown at the Bottom. Note the Good Match Between the Measured and Calculated
Pseudosections.

ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT)

Traditional electrical resistivity soundings use a conventional electrode configuration such as
Schlumberger, Wenner, dipole-dipole, pole-dipole, or pole-pole. (See Figure 10-6.) A sounding,
in which the electrode separation lengths are varied without moving the array midpoint, provides
a local 1D electrical resistivity depth model, p (z). Alternatively, lateral profiling of p (x) over a
narrow depth interval can be achieved by traversing the electrode array along a horizontal profile
without changing the electrode separations. Neither the sounding nor the profiling method,
however, provide an accurate indication of subsurface resistivity distribution in complex

geological terrains.

Resistivity imaging of complex subsurface structures has recently been enabled with the

development of multi-electrode acquisition systems and 2D and 3D inversions. The resistivity
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technique for near-surface applications has surged in popularity due to these advances. Daily and
Owen (1991) published pioneering work on electrical resistivity tomography (ERT) that

considered a cross-borehole electrode configuration.

ERT imaging is performed by matching the measured apparent resistivity pseudosection to a
computed pseudosection that is obtained by solving, for a given earth resistivity structure p (7),
the governing scaled-Laplace equation. The electric potential distribution V' (7) is evaluated at the
locations of the electrodes and then transformed into a computed apparent resistivity. The model
p (r) is then adjusted and the apparent resistivity recomputed, ideally until it matches the
measured apparent resistivity to within a predefined acceptable tolerance. The bottom two panels
of Figure 10-9 show a resistivity image and its calculated apparent resistivity response. The
spatial structure of the resistivity image, in this example, reflects variations in subsurface

moisture content.

There is a possibility for interpretation errors to occur if ERT data are acquired on a sparse set of
orthogonal 2D lines and then subjected to fully 3D modeling and inversion. Gharibi and Bentley
(2000) recommend that, to avoid artifacts, the line spacing should be not more than two to four
times the electrode spacing. Furthermore, the electrode spacing should not be greater than the

dimensions of the smallest feature to be imaged.

MULTI-ELECTRODE SYSTEMS

The development of direct current resistivity techniques in the last decade has been rapid in both
instrumentation and software (Dahlin 2001) and now includes systems comprising a large (>100)
number of automatically switched electrodes. The multi-electrode techniques have tremendously
improved investigation capabilities. Instead of making individual measurements at various
spacings by repeatedly moving the equipment, the multi-electrode technique is now able to

rapidly collect thousands of measurements with a stationary apparatus (Hiltunen and Roth 2003).

A 2D multi-electrode ERI survey is carried out using a string of electrodes connected to a
multi-core cable. The electrode cable is divided into sections, which are connected end-to-end.
Electrodes are inserted into the ground at specified intervals along a survey line. A resistivity

meter and electronic switching unit are used to automatically select the combination of four
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electrodes for each measurement (Loke 2000). Figure 10-10 shows an example of the electrode

arrangement and measurement sequence for a 2D ERI survey.
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Figure 10-10. The Arrangement of Electrodes for a 2D Electrical Survey and the Sequence
of Measurements Used to Build a Pseudo-Section (Loke 2000).

Often the survey line is longer than the available electrode spread. In such cases, after the
original data have been acquired, the survey line can be extended or “rolled” by moving the first
electrode cable section and electrodes to the end of the last cable. Data for each roll are then
recorded and added to the previous data as one complete data file. This procedure is called the
roll-along technique. Using this technique, a survey line in principle can be extended indefinitely

(AGI Advanced Geosciences 20006).

The resulting data set from a 2D ERI survey consists of various configurations of transmitting
C1 and C2 and receiving P1 and P2 electrode pairs that comprise a mixed sounding and profiling
of the subsurface section. The depth of investigation depends on the largest dipole separation
during the survey but not on the total length of a survey line. The roll-along technique does not
increase the depth of investigation. The actual depth of penetration also depends on the

subsurface resistivity distribution (AGI Advanced Geosciences 2006). In general, a larger
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spacing (a) and larger value of n give relatively deep information about the subsurface structure,
while a small spacing (a) and small (n) offer relatively good horizontal resolution for the
shallower sections of the ground. The 2D electrical resistivity images obtained with the
multi-electrode technique are generally used for studying shallow structures located a few tens of
meters down to about 100 meters deep, whereas the traditional vertical electrical sounding
technique mainly aims at determining the depths of horizontal 1D structures down to depths of

several hundred meters.

3D ELECTRICAL RESISTIVITY SURVEYS

Since all geological structures are 3D in nature, a fully 3D ERI survey using a 3D interpretation
model should give a more accurate and reliable picture of the subsurface (Loke 2000) than its 2D
counterpart. One method of 3D electrical resistivity acquisition is combining data from 2D lines
into a single data set for 3D inversion (Gharibi and Bentley 2000), (Samouélian et al. 2005).
However, the best 3D coverage is where current electrodes and potential measurements are made

over a large range of azimuths and are not necessarily deployed along straight lines.

A popular quasi-3D surveying method is based on a rectangular acquisition grid. Figure 10-11
shows the electrode arrangement for such a survey using a multi-electrode system with
56 electrodes. The data set is collected with electrodes arranged in square or rectangular grids

with constant electrode spacing in both x and y directions.
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Figure 10-11. The Arrangement of 56 Electrodes and Roll-along Method for a Quasi-3D
Survey with a Multi-electrode System (modified from Advanced Geosciences 2006).

UNDERWATER RESISTIVITY TECHNIQUES

The ERI method is widely used for ground surface surveys. Kim et al. (2002), Loke and Lane
(2004), Kwon et al. (2005), Castilho and Maia (2008), and others have recently adapted this
method for water-covered environments. The use of the electrical resistivity technique to image
subsurface structures in water-covered areas is important due to frequent bridge and tunnel
construction activities on and under riverbeds. However, it is difficult to image beneath a river
bottom (Kwon et al. 2005). ERI carried out in underwater environments often has low signal
levels compared to ground surface surveys due to the high resistivity contrast between the water

and the earth (Chung et al. 2001).
There are several scenarios for resistivity surveys in water-covered areas:

e A mixed terrain/underwater environment, in which some of electrodes are deployed
under the water surface while others are deployed on the ground surface. This
configuration is used when the survey line crosses a creek or narrow stream.

e An underwater environment, in which all electrodes are deployed under the water surface

on uneven bottom.
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e A mobile survey with floating electrodes deployed on the water surface.

e A mobile survey with electrodes towed along the riverbed.

Figure 10-12 illustrates the various electrode scenarios for 2D ERI in water-covered

environments.

=] -
—1

Figure 10-12. Scenarios for ERI Surveys of Water-Covered Areas.

Each type of electrode deployment has advantages and limitations depending on the local
conditions (Castilho and Maia 2008). Direct contact of electrodes to the earth increases the
current injected, and the resulting sensitivity to subsurface anomalies is much greater than with
floating electrodes. However, it requires effort to install electrodes on the water bottom. In
practical field surveys, the floating and towed electrode methods are sometimes convenient if a

boat is readily available.
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ELECTRICAL PROPERTIES OF ROCKS

In the shallow subsurface, the most important geological factor controlling the bulk electrical
resistivity is the spatial distribution of pore-fluid electrolytes. The aqueous pore fluids may be
contained in pores, fractures, or faults, with ions in the pore fluids being the predominant charge
carriers. The solid matrix of grains is typically semi-conducting, with notable exceptions being
metallic grains and the surface of certain clay minerals. The pore space in a rock is generally
much more conductive than the solid grains owing to the presence of dissolved ions in the pore

fluid solution.
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Figure 10-13. Electrical Conductivity of Saturated Soils,
after Santamarina et al. (2005).

Electrolytic conductivity increases or equivalently resistivity decreases with increasing salinity,

porosity ¢ , and temperature 7. A high-salinity pore fluid has a greater concentration of ions

available for conduction. A rock with high interconnected porosity often has an abundance of

paths for conduction. Higher temperature enhances the mobility of ions. The variation of bulk
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electrical conductivity, as a function of salinity for sand-dominated and clay-dominated saturated

soils, is outlined in Figure 10-3.

In clean, unfractured sandstones characterized by water saturation Sy and porosity, ¢, the

traditional Archie’s law (Archie 1942) gives the bulk electrical conductivity O [siemens per

meter, S/m] as:

o=aoc,S,¢" (Eq. 10-11)

Petroleum geoscientists and, more recently, hydrogeophysicists have long used this empirically
based relationship with saturation exponent n~2 to describe the bulk electrical conductivity ¢ of
hydrocarbon reservoirs and aquifers. The parameter m, historically known as the cementation
exponent, depends on the grain shape and generally lies within the range m~1.2-2.2 for
sandstones (Worthington 1993). The leading coefficient a can vary widely depending on the pore
cementation, tortuosity, grain size and shape, fluid wetability, clay content, and numerous other

factors.

The quantity ow~0.3—1.0 S/m (Keller and Frischknecht 1966) in Eq. 10-11 is the electrical
conductivity of the pore electrolyte, which is controlled by the salinity, or more generally, the
total dissolved solids in the pore water. Commonly, an intrinsic formation factor F=ow/c for a
fully water-saturated (Sw=1) rock unit is defined. Since pore fluids are electrically conductive
relative to the solid rock matrix, we have ow>c and hence F>1. From Archie’s law (Eq. 10-11)

for a fully saturated rock, we see that the formation factor is related to porosity by F~¢ ™.

Clay minerals originating from secondary diagenetic processes can coat the sand grains and clog
the pore throats, reducing the porosity and permeability. A general rule of thumb is that
high-porosity sandstones are clean while low-porosity sandstones are shaly. Clay minerals also
have an inherent negative surface charge which contributes an additional electrical conduction
pathway that is not found in clean sandstones. Thus, clay-bearing formations generally have a

considerably higher bulk electrical conductivity than clean sandstones.

Carbonate rock units commonly exhibit secondary porosity, such as moldic vugs caused by

anhydrite dissolution of fossil remains, which develop after the rock is formed. The secondary
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porosity can carry a considerable fraction of the permeability. The bulk permeability depends
strongly on whether the vugs are separate or touching each other. Furthermore, the range of
intergranular textures found in carbonate rocks varies greatly from coarser grain-dominated to

finer mud-dominated fabrics.

In carbonates, the relationship between electrical resistivity and porosity is quite complicated
(Summers 2006). Archie’s law has limited predictive value in carbonates, as the m value can
vary widely and is difficult to ascertain for a given formation. Asquith (1995) has noted that
large values of m are associated with higher separate-vug porosities, while a lower m value is

associated with touching-vug porosity, such as fractures.

The resistivity of igneous and metamorphic rocks is greatly dependent on the degree of
fracturing: as a rule, the more fractured a rock and the higher its water content, the higher the
conductivity. Sedimentary rocks normally have lower-resistivity values compared to igneous and
metamorphic rocks since they usually have more porosity and higher water content. There are
many geological processes such as dissolution, faulting, shearing, columnar jointing, weathering,
and hydrothermal alteration, which can alter a rock and significantly lower the resistivity of the

rock.

Unconsolidated sediments generally have much lower resistivity values than consolidated rocks.
The electrical resistivity of soils varies across a large range of values from 1 Qm for saline soil to
about 10° Qm for dry soil. Electrical current in soils vary with the amount of water in the

connected pores and on the quantity of dissolved salts (Samouélian et al. 2005).

ELECTRICAL RESISTIVITY OF CONCRETE

The electrical resistivity of concrete is related to the microstructure of the cement matrix, the
porosity, and the pore-size distribution. The mobility of ions in the pore solution plays an
important role in determine bulk conductivity (Humkeler 1996). As concrete is manufactured,
water becomes trapped in pores. When resistivity is measured, electric current is carried by the
ions in the pore water. Moreover, the electrical resistivity of concrete has been used as an

indirect index to evaluate the corrosion of embedded steel (Su et al. 2002). The electrical
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resistivity of reinforced concrete may vary over a wide range from 10' to 10° Qm, depending on

degree of corrosion, the moisture content, and the material composition (Tuutti 1982).

Browne (1982) reports that concrete resistivity should be in the range of 500 to 1,000 Qm to
prevent corrosion of the reinforcement steel. Gonzalez et al. (1993) added that the corrosion rate
is negligible when concrete resistivity is higher than 10,000 Qm. Concrete structures with low
risk of corrosion generally have high resistivity values whereas concrete structures with high risk
of corrosion have lower resistivity values. The resistivity of concrete also increases as the

concrete dries out (Polder 2001).

In an ERI survey, the presence of rebar in a concrete foundation can cause interference with the
foundation resistivity determination, especially if the rebar are in direct contact with the ground.
The concrete foundation in this case would have high bulk conductivity, and the resistivity
contrast of the foundation with its surrounding materials might be small. If the geological
materials surrounding a concrete foundation are high in resistivity relative to that of the concrete,
an ERI inversion may not be able to distinguish between the concrete foundation and its

surrounding materials (Conrad 2010).

INTRODUCTION IN THE IP METHOD

Consider the hypothetical situation shown in Figure 10-14 in which electrical charges are
distributed unevenly within the subsurface. Charge accumulations are portrayed schematically in
the figure as positive and negative “charge centers.” The charges may be volumetrically
distributed, or they may reside on mineral surfaces and other interfaces. In either case, the
regions where charge is concentrated can be viewed as the spatially extended terminals of a kind
of natural battery, or geobattery. The sketch shown in the figure greatly simplifies the realistic
charge distributions that occur within actual geological formations, but it is instructive for the
present purpose. Electrical energy supplied from an external source can maintain the
“out-of-equilibrium” charge distributions shown in Figure 10-14. Without an energy input, they
would rapidly neutralize in the presence of the conductive host medium, and the geobattery
would soon discharge. The IP method of geophysical exploration is based on measurements
normally made at the surface of the Earth of electric potentials that are associated with

subsurface charge distributions.
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Figure 10-14. Generic Subsurface Charge Polarization.

Suppose a standard resistivity experiment is performed in which the current 7 is suddenly
switched off at time 7=0. The voltage across any pair of potential electrodes does not
instantaneously drop to zero if the ground is polarizable. Rather, the voltage drops rapidly from

its initial value ¥V, to V) and thereafter decays slowly, often with a characteristic stretched

exponential shape of the form ~texp(—atﬁ ) with 0<f<1, as shown in Figure 10-15. This

transient behavior is known as the time-domain IP effect. Notice that the IP decay curve cannot
simply be explained by an effective capacitance C in series with an effective resistance R in an
equivalent RC circuit of the Earth. The discharge of such a capacitance after current switch off

generates a transient voltage that decays purely exponentially as ~exp(~#/RC) (Tipler 1982) not

according to a stretched exponential law.

There are many ways to measure the time-domain IP effect in field studies, and a number of
different expressions have appeared in the literature. Let V' (#y) be the voltage measured at some

fixed time f, after switch off. The polarizability, 7, of the ground has been defined as:

n= [mV/V] (Eq. 10-12)

r(s)
,

0
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Figure 10-15. A Typical IP Decay Curve.

The partial chargeability M, of the ground is its polarizability 7 averaged over a predefined time

window [#1,£,] during the stretched exponential decay:

M, :Vij.V(t)dt [ms] (Eq. 10-13)

04

There is a considerable amount of inconsistency throughout the geophysical literature with
respect to the exact definitions of 7 and M,,. Equations 10-12 and 10-13 are commonly used, but

other definitions and nomenclature have been adopted by different authors.

NON-POLARIZING ELECTRODES

The difference in electric charge transport mechanism between the soil pore-fluid electrolyte and
the metal electrodes staked into the ground results in an electrochemical impedance mismatch at
the metal/electrolyte interface. If electric current passes in one direction between the soil and the
electrode for an extended period of time, charge accumulates at the interface manifesting itself as
an electrode polarization. The result is a spurious DC voltage. It is easy to misinterpret the
spurious DC voltage as an apparent chargeability of the subsurface. The polarizability of a metal
electrode depends on the type of metal employed, as shown in LaBrecque and Daily’s (2008)
study.
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Non-polarizing electrodes reduce the electrochemical mismatch, and hence mitigate the spurious
contribution to electrode polarization. Essentially, a non-polarizing electrode is one whose
potential does not change upon the passage of an electric current (Bard and Faulkner 1980).
Typical materials used in the fabrication of non-polarizing electrodes are Pb/PbCl, and
Cu/CuSOs. The metal electrode is enclosed within a porous medium or a hard gel that is infused
with a solution containing a salt of the same metal. The salt solution buffers the transition from
electronic conduction in the metal electrode to ionic conduction in the soil electrolyte. The
non-polarizing electrodes used for this project contain a copper rod that is surrounded by
Cu/CuSO4 with a porous stone at the tip. Figure 10-16 shows the non-polarizing electrode and

the core.

The potential of carefully made Pb/PbCl, non-polarizing electrodes, such as those described by

Petiau (2000), remain stable over time frames lasting months to years.

| =i a0y

Figure 10-16. Non-polarizing Electrode and Copper Core.
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Chapter 11.
ELECTRICAL RESISTIVITY IMAGING

INTRODUCTION

In this chapter, the ERI field equipment is described, and data acquisition and imaging results
from a number of bridges and test sites are reviewed. The experimental sites span a range of
conditions, including both small and large foundations, both known and unknown foundations,

and both land surface and mixed terrain/underwater environments.

EQUIPMENT

Resistivity imaging data were acquired with the AGI SuperSting™ R8/IP multi-channel imaging
system (www.agiusa.com). Voltages are measured simultaneously across eight pairs of potential
electrodes for a single current injection, resulting in rapid data acquisition. Each of four cables is
equipped with 14 electrode connection points, or takeouts, spaced at 2 m (6.56 ft) intervals. The 56
steel electrodes are 45 cm (17.72 in) in length and 1 c¢cm (0.39 in) in diameter. Figure 11-1 shows

the equipment and field setup.

The imaging system is powered by a 12-V deep-cycle battery. A rugged field laptop is used to
upload command files and download the resulting data files. A tape measure is used to locate the
positions of electrodes. A hammer is used for inserting electrodes into the ground. A total-station

surveying instrument is used to measure site terrain variations to ~1 cm (0.39 in) accuracy.

Underwater electrode stakes were designed and built for the surveys conducted in water-covered
areas. The upper half of each electrode is waterproofed by sealing inside a PVC pipe, leaving the
lower half exposed. A wire is inserted into the PVC pipe and connected to the electrode. In this
way, electrodes planted into a riverbed are electrically insulated from the water. A successful test
of the underwater electrodes was conducted at a small lake at Texas A&M University’s Riverside

Campus.
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Figure 11-1. (Upper Left) AGI SuperSting™ R8/IP Meter; (Upper Right)
Electrodes Connected to the Cable Takeouts; (Lower Left)
Underwater Electrodes; (Lower Right) Field Setup.

A command file is uploaded to the imaging system console prior to data acquisition. The command
file prescribes the sequence of electrodes to be used for current injection and voltage
measurements. An acquisition protocol is selected that provides the desired penetration depth and
spatial coverage. The total number of measurements is reported to help the user ensure that the

survey is completed within the allotted time.

The SuperSting imaging system automatically switches the various electrodes during acquisition.
Electrodes are planted into the ground as firmly and deeply as possible to ensure good electrical
contact. The electrodes are fastened to the cable takeouts via spring assemblies. The roll-along

technique is used, as required, to extend the length of a survey profile by 14 electrodes at a time.

Once the field setup is complete, prior to data acquisition, coupling tests are conducted to check
electrode contact resistances. These should be in the range 0.5—5 kQ. Errors are reported if the

system detects poor ground contacts or, alternatively, loose connections at the cable takeouts. If the
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ground surface is highly resistive, salt water is added at the point of ground contact. During
acquisition, repeat measurements are made and those with a variation greater than 5 percent are

rejected as noise.

Mainly 2D electrical resistivity imaging (2D ERI) surveys are carried out in this study. The
vertical extent of the subsurface targets, i.e., the bridge foundations, is of greater interest here
than their horizontal extent. The dipole-dipole array is used since it is known to be sensitive to

horizontal resistivity variations at depth (Loke 2010).
FORWARD MODELING

Forward modeling is employed to predict responses from typical bridge foundations embedded in
typical geological backgrounds. Accordingly, the subsurface resistivity structure is divided into
two zones: the background geology and the concrete foundation embedded within the geology.
Generally, bridge foundations rest upon firm, highly resistive bedrock while the earth material

surrounding the columns is typically less resistive alluvium or soil.

A portable resistivity meter is used to estimate in situ soil resistivity. For example, at one test site it
is found to be ~120 Qm. The in situ resistivity of the concrete is more difficult to measure, so a
wide range of values must be explored by forward modeling. Concrete foundations in good
condition are expected to be highly resistive, whereas extensively corroded foundations should be

much more conductive.

Forward modeling is used to explore the impact of concrete foundations on resistivity imaging.
Bridge foundations are modeled here in 2D using various sizes and depths. In 3D they are modeled
at 1 x 1 m? (3.28 x 3.28 ft*) horizontal extent and 9 m (29.53 ft) depth (for deep foundations) and
at either 3 x 3 or 5 x 3 m” (9.84 x 9.84 or 16.40 x 9.84 ft*) horizontal extent and 5 m (16.40 ft)
depth (for shallow foundations). The forward modeling assumes a homogeneous geological

background of 116 Qm.

3D-forward modeling is performed here using the RES3DMOD finite element code. A
dipole-dipole inline configuration on land is specified with 1 m (3.28 ft) electrode spacing and 2 m

(6.56 ft) line spacing. A single foundation of specified resistivity is placed at the center of the

215



electrode array, embedded within the homogeneous background. The electrodes are assumed to be

laid out on flat ground surface.

The RES3DMOD program allows the user to examine the synthetic pseudo-section and to alter the
resistivity model as desired. The computed apparent resistivity values are perturbed by 5 percent
Gaussian noise to simulate realistic field conditions. After the calculation, 2D apparent resistivity

profiles along the x-direction are extracted.

Synthetic apparent resistivity pseudo-sections, calculated directly in 2D or extracted from 3D
calculations, are inverted using the RES2DINV blocky least-squares optimization code with the
vertical resistivity variations preferentially weighted. The inverted resistivity section is termed a

resistivity image. The validity of 2D imaging in an actual 3D environment is evaluated.

TEST SITES AND DATA ACQUISITION

Laboratory experiments and field ERI surveys were carried out between 2009 and 2011.
Figure 11-2 shows the project flowchart. The bridges are located in Brazos and Burleson
counties in Texas. The Bryan TxDOT District granted access to the bridges. Data were acquired
in non-flood seasons when sites were easily accessible. Figure 11-3 shows maps of the five study

arcas.
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Figure 11-2. Flow of ERI Experimentation and Data Acquisition.
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Haynes Laboratory

Initial evaluation of ERI testing of concrete foundations using underwater electrodes was
conducted at Haynes Coastal Engineering Laboratory on the Texas A&M campus. The electrical
resistivity imaging system was evaluated in a water tank of length 45.72 m (150 ft), width 3.66 m
(12 ft), and depth 3.35 m (11 ft).

In the first test, two concrete slabs were buried in sediment to 0.76 and 0.91 m (2.5 and 3 ft) depths
below 0.3 m (1 ft) of water. Four underwater electrodes were deployed in the orientation shown in
Figure 11-4, initially with 0.25 m (0.82 ft) spacing. Measurements were made for several values of

electrode spacing.

Figure 11-4. Electrical Resistivity Experiments at the Haynes Laboratory.

Stable apparent resistivity values were successfully measured. While a large resistivity contrast
exists between the foundations and the water-saturated sediment, the resistivity of the tank walls
and floor is comparable to that of the foundations. The ERI testing was curtailed, however, since
the tank walls and floor greatly distorted the measurements. A more useful field test of the
underwater electrodes was conducted at a lake at the Riverside campus of Texas A&M
University. Again, excellent stable readings of apparent resistivity were found. The experiments
then shifted to actual bridge sites and the National Geotechnical Test site on the Texas A&M

campus.
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Bridge 14 on FM 50

Bridge 14 spans Old River on FM 50 in Burleson County, roughly 20 km southwest of College
Station (see Figure 11-3.). The TxDOT layout shows concrete pile foundations of 0.39 m (1.28 ft)
square cross-section and 10.1-15.8 m (10.1-51.84 ft) burial depth. At the time of survey, the river
was ~6 m (19.69 ft) wide with maximum water depth ~1 m (3.28 ft). The area beneath the bridge is
of moderate topographic relief with occasional boulder-sized concrete fragments. The soil
lithology consists of reddish clay ~7.3 m (24 ft) thick underlain by clayey sand depth of 10.4 m
(34.12 ft), below which lies coarse sand and gravel to 14.6 m (50 ft). Silty and clayey sand is
present to 21 m (68.90 ft), the bottom of the hole. Visual inspection of the piles revealed the

presence of exposed metal hooks, some in contact with the ground.

The site is a mixed terrain/underwater environment, as shown in Figure 11-5 and Figure 11-6.
Profile BG14 consists of 56 electrodes spaced at 0.5 m (1.64 ft); it is aligned parallel to the
roadway and centered on the river. Underwater electrodes were used as needed. ERI data were
acquired November 30, 2009, on wet ground caused by overnight rain. Equipment setup time was
~1 hr with an additional 20 min for each of six roll-alongs. Data measurement time was 1.5 hr plus

45 min for each roll-along.

Figure 11-5. Bridge 14 Illustration Showing ERI Profile and Foundations.
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Figure 11-6. Bridge 14 ERI Fieldwork.

Bridge 15 on FM 50

Bridge 15 spans Koontz Bayou Creek on FM 50 in Burleson County roughly 35 km (21.75 mi)
southwest of College Station (Figure 11-3). The TxDOT layout shows the same concrete pile
foundations as Bridge 14. The ERI surveys lie in the flooding area, but the water level was low at
the time of the survey. The site has low relief with occasional concrete cobbles. The soil lithology

consists of red and grey clay to 16.7 m (54.80 ft) depth underlain by gravel to 19.2 m (63 ft).

Initially, three ERI profiles of length 33.5 m (109.91 ft) shown in Figure 11-7 were run parallel to
the river with 0.61 m (2 ft) electrode and 0.5 m (1.64 ft) line spacing. Profile B15A is closest to the
row of concrete piles, and B15C is furthest. A second survey consisting of two profiles of length
55 m (180.45 ft) (BGI5A and BGI15B) was performed in roughly the same locations and
orientation as the first survey, with 1 m (3.238 ft) electrode spacing and 1 m (3.28 ft) line spacing.

Underwater electrodes were not required.
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Figure 11-7. Bridge 15 Illustration Showing ERI Profiles and Foundations.

Figure 11-8. Bridge 15 ERI Fieldwork.

ERI data were acquired January 27, 2010, and January 29, 2010, on moist ground a few days after
a rainfall event. Profile B15A, nearest the foundations, was expected to provide the best images of

them. All profiles were expected to have similar geological background.
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National Geotechnical Experimentation Site (NGES)

NGES, located on Texas A&M Riverside Campus ~16 km (9.94 mi) west of College Station
(Figure 11-3), has been used for civil engineering research projects over the past 20 years. The site
includes a number of groups of buried, steel-reinforced concrete structures such as spread footings
and drilled shafts with square and cylindrical cross-sections. Metal and rebar debris is scattered

over the site.

The unknown and known foundations at NGES are used here as proxies for actual bridge
foundations since their depths are well documented, and the site is more accessible for testing
geophysical methods than a river site. The terrain is a mix of undulated and flat due to previous
excavations and earth shaping. The stratigraphy consists of fine silty sand to 3.6 m (11.81 ft) depth,
underlain to 9.1 m (29.86 ft) depth by a layer of fine clean sand and further to 13.4 m (43.96 ft) by
silty sand and clay seams. Below the sand lies clay to at least 33 m (108.27 ft) (Ballouz et al.
1991). Five known drilled shaft foundations constructed in December 1991 contain planned defects
such as necking, bulbs, soft bottoms, mud cake, and cave-ins. Their dimensions range from

10.4—15.7 m (34.12-51.51 ft) in length and 0.8—1.1 m (2.62—3.61 ft) in diameter.

A group of five spread footings and five reaction shafts were built at NGES in December 1995 to
test their stability in sand. One small, intact 0.9 m (2.95 ft) square footing proved suitable for
resistivity experimentation; the others were unsuitable due to severe cracking. The intact footing
is of known height 1.2 m (3.94 ft), embedded 0.76 m (2.49 ft) in the ground. There are three
PVC pipes containing rebar embedded into this footing. Other drilled shafts and spread footings
at NGES of unknown provenance are intact and appear to have been built after the previous
group. They are categorized as unknown foundations. Two drilled shafts have 0.91 m (2.99 ft)
and 0.3 m (0.98 ft) diameters while a spread footing is 3 x 3 m (9.84 x 9.84 ft) square. The
locations of the drilled shafts (circles), the footings (squares), and the resistivity profiles (/ines)

of the quasi-3D geophysical survey are shown in Figure 11-9.
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Figure 11-9. NGES Illustration Showing 3D ERI Profiles and Foundations.

Several ERI surveys with different objectives were performed at NGES. The first survey was
conducted in two stages, May 24—28, 2010, and June 3-5, 2010, with the goal of exploring the full
capabilities of quasi-3D resistivity imaging for evaluating concrete foundations. Data were
acquired as a series of dipole-dipole profiles of length 55 m (180.45 ft) and electrode spacing 1 m
(3.28 ft), including 18 E-W profiles (NGES1-18) spaced 2 m (6.56 ft) apart and crossed by 6 N-S
profiles (NGES19-23) spaced 5 m (16.40 ft) apart. Reciprocal measurements were made on all
survey profiles. Electrodes intersecting concrete were covered in wet clay to ensure good electrical

coupling.

A fully 3D ERI survey was conducted on February 25, 2011, over the shallow footing SF-5. Mixed
arrays of dipole-dipole, Wenner, Schlumberger, equatorial, and dipole-dipole configurations were
used to test advantages over conventional arrays. Profiles were laid out in a 14 X 4 m (45.93 x
13.12 ft) rectangular grid with 0.5 m (1.64 ft) electrode spacing and 1 m (3.28 ft) line spacing, as
shown in Figure 11-10.
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Figure 11-10. 3D ERI Layout at Footing SF-5.

A number of 2D ERI profiles employing 28 or 56 electrodes, at 1 m spacing, targeted individual
foundations at NGES between December 10 and February 2011. Data were acquired directly over
small foundations and alongside larger foundations in a “side-scanning” mode. The latter is

preferred since it can be applied at actual bridge sites. Figure 11-11 shows the 3D survey profiles.

ERI data were acquired on six profiles over three known drilled-shaft foundations: three at TS2;
two at TS4; and one at RS5. At drilled-shaft TS2, profile TS2A was conducted directly across the
foundation while TS2B and TS2C were side-scanning (see Figure 11-12). Similarly, as shown in
Figure 11-13, profiles TS4A and RS5A directly crossed the foundation while profile TS4B was
side-scanning. Profiles SP1A and SP1B at spread footing SF-5, employing 28 electrodes at 0.5 m

(1.64 ft) spacing, were also side-scanning, as shown in Figure 11-14.
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TS2A " TS2B TS2C
Figure 11-12. 2D ERI Profiles TS2A, TS2B, and TS2C.
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TS4A TS4B ~ RS5A

Figure 11-13. 2D ERI Profiles TS4A, TS4B, and RS5A.

SFIA | SFIB

Figure 11-14. 2D ERI Profiles SF1A and SF1B.

At NGES, data were also acquired over the unknown drilled-shaft foundation. Profile UK1A
directly crossed the drilled shaft while profile UK1B is side-scanning, as shown in Figure 11-15.
Both profiles used 56 electrodes with 1 m (3.28 ft) electrode spacing. Four side-scanning profiles
(SF3A, SF3B, SF3C, and SF3D) at 1 m (3.28 ft) electrode spacing were deployed along the four
sides of the 3 m (9.84 ft) square footing shown in Figure 11-16. A further two profiles (SF3E and
SF3F) ran directly across opposite corners of the footing. A final 2D-ERI profile F1 with 56
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electrodes at 1 m (3.28 ft) spacing was conducted directly across the spread footing to provide

confirmation.

Figure 11-16. 2D Profiles SF3A and SF3B.
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Bridge over Little Brazos River, HW 21

2D-ERI profiles were acquired in a mixed terrain/underwater environment beneath the Highway 21
(HW21) westbound bridge spanning the Little Brazos River in Brazos County ~20 km (12.42 mi)
NW of College Station (Figure 11-3). The TxDOT layout is not available, but the available layout

of the adjacent eastbound bridge should be a good indicator of subsurface conditions.

The heavily vegetated terrain around the bridge has high relief, with the steepest slopes on the west
bank. The north-south flowing river was ~25 m (82.02 ft) wide and ~1.4 m (4.59 ft) deep at the
time of the survey. Brown and grey shale to 3.1 m (10.17 ft) depth is exposed in outcrops on the
riverbed and along the bank and is underlain by siltstone to 12.2 m (40.03 ft) depth.

The foundations at the eastbound bridge are drilled shafts of 0.91 m (2.99 ft) diameter and 22.55 m
(73.98 ft) total length, embedded 10.36 m (33.99 ft) into the riverbed (Figure 11-17). At the
westbound bridge, six foundations reside in the water-covered area, three on each of two bents.
Visual inspected found significant erosion of the foundation with corroding rebar exposed, some of
which are in contact with water. Reinforced concrete rubble from a previously demolished bridge

is present in the water and on the bank.

Two ERI profiles using 56 electrodes at 1 m (3.28 ft) spacing were acquired at this site
(Figure 11-18) in a mixed terrain/underwater environment. Profile BHW21A acquired on April 7,
2011, oriented north-south parallel to water flow, targeted a drilled-shaft foundation on the north
bank. Profile BHW21B oriented northeast-southwest was carried out on April 26, 2011, and
targeted a foundation in the river near the south bank. The resistivity of the water was measured
with a portable meter. Water depth was measured at the underwater electrodes. Due to dry soil
conditions, water was used to improve electrical contact of the electrodes. Electrode and cable
setup time was ~3.5 hr due to the difficult working conditions. Reciprocal measurements were

recorded on both profiles.
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BHW2IB

Figure 11-18. Field Setup at Little Brazos River.

Railway Bridge over Brazos River, HW 21

ERI-2D profiles were acquired in a moderately vegetated land environment beneath a railway
bridge adjacent to the HW 21 roadway bridge spanning the Brazos River in Brazos County ~25 km
(15.53 mi) northwest of College Station (Figure 11-3). The targeted foundation has a hexagonal
cross-section with 8, 3, and 3 m side lengths and an unknown depth. The terrain is undulating with

steep banks sloping toward the river as shown in Figure 11-19. The site is underlain by weathered
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grey and brown shale rock exposed as outcrops along the riverbank and reddish brown
fossiliferous sandstone exposed on the steep slopes. Two ERI profiles were acquired
(Figure 11-20) under very dry conditions at this site on July 6, 2011, using 28 electrodes with 2 m
(6.56 ft) spacing. It was difficult to deploy the electrodes in a straight line due to the hard bedrock.
Bankside profile RWB1 was deployed east-west, parallel to the river, on rugged terrain of
weathered shale. Profile RWB2 runs perpendicular to the river up the slope. The two profiles

intersected near their centers. Reciprocal measurements were carried out for both profiles.

Figure 11-19. Brazos Railway Bridge Site Showing ERI-2D Profiles and Foundation.
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(1) S

Figure 11-20. Field Setup at Railway Bridge over Brazos River.

ELECTRICAL RESISTIVITY IMAGING RESULTS

In this section, 2D and 3D inversion results are presented and discussed. For surveys conducted
at bridge sites with known foundations, the interpretation of each profile is validated using
TxDOT-provided bridge layouts. The ERI geophysical method is well-understood and
well-established. However, a limitation of the ERI technique is that the interpretation of ERI
images becomes difficult in the presence of complex subsurface features. The ERI method
applied to bridge sites is straightforward if the foundations are known and geological background
structures are relatively simple. When the lateral position of the foundation on the survey profile
is known, ERI interpretation (including an estimation of foundation depth) can be performed by
qualitative examination of the subsurface anomalies at the known foundation position. ERI
image quality depends on a number of factors including data quality, data coverage, and
robustness of the inversion algorithm. However, one of the primary determinants of image
quality is the resistivity contrast between the foundation and the background geology, which of

course is not under the control of the experimenter.

Application of the ERI method to image long, slender bridge foundations is challenging. Bridge
foundations, being man-made, have different characteristics compared to natural geological

structures of similar shape such as igneous dikes. Moreover, it is well-known that the geological
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interpretation of geophysical data is inherently ambiguous. A number of distinct subsurface
geometries can produce the same resistivity image. Resolving ambiguities is based somewhat on
the expected subsurface geology and wherever possible should include comparison with

auxiliary data such as drill core, geophysical logs, and other types of geophysical data.

The bulk resistivity of a reinforced concrete foundation may be higher or lower than that of the
surrounding geological materials, depending on its physical condition. For example, a zone of
low resistivity in an ERI image could be caused by the presence of a conductive rebar cage
embedded in a deteriorating foundation. On the other hand, a zone of high resistivity could be
caused by an intact foundation with no cracks or exposed rebar. Careful interpretation of
resistivity imaging results is necessary, although not sufficient, to estimate the physical condition

of the foundation.
3D-Forward Modeling Results

A number of 3D ERI synthetic responses were evaluated by varying the depth and lateral
dimensions of deep and shallow foundations and also varying the resistivity contrast of the

foundation relative to the surrounding geological medium.

Figure 11-21 shows a vertical slice through 3D ERI images of a 9 m (29.53 ft) deep foundation
of lateral dimensions 1 x 1 m” (3.28 x 3.28 ft*). In the upper image, the resistivity of the
foundation is 0.01 QQm, and it is embedded in a homogeneous geological medium of 50 QOm. The
image shows a low resistivity anomaly, due to the foundation, in the middle of profile. However,
the shape of the low-resistivity zone is distorted, and the bottom of the foundation cannot be
clearly discerned. In the lower image, the resistivity of the foundation is 10,000 QOm. Although
the image does contain a zone of high resistivity close to surface, the foundation at depth is not

detected.
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Figure 11-22 shows a vertical slice through 3D ERI images of a 5 m (16.40 ft) shallow
foundation of lateral dimensions 3 x 3 m* (9.84 x 9.84 ft*). The resistivity of the foundation in
the upper and lower images is 50 and 200 Qm, respectively. In the upper image, a well-defined
zone of low resistivity approximately 5 m (16.40 ft) in vertical extent is found at the location of
the foundation. In the lower image, the location, shape and vertical extent of the high-resistivity

anomaly can be identified but overall it is poorly focused.

Figure 11-23 shows a vertical slice through 3D ERI images of a 5 m (16.40 ft) shallow footing of
lateral dimensions 5 x 3 m? (16.40 x 9.84 ft*). The resistivity of the foundation in the upper and
lower images is 50 and 200 Qm, respectively. In both cases, the foundation is clearly and

accurately imaged. The bottom and sides of the anomalies are well defined.
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The 3D model studies suggest that ERI imaging is able to detect the presence of a bridge
foundation, especially one that is conductive relative to the geological background. While it is
always difficult to resolve the precise shape and depth, increasing the lateral size of the
foundation offers better images. These 3D model studies are clearly not complete. The electrode
spacing and configuration should be tuned to optimize the spatial resolution of the foundation.
Moreover, in real-data acquisition, noise can vary significantly depending on several factors not
under control of the experimenter. Although the bottom of the foundation cannot always be
located precisely, an important goal that can be met in most cases is the determination of whether
the foundation is deeper or shallower than the depth of critical scour, which is typically 5 m.
These 3D model studies led the way for a series of field investigations on foundations at actual

bridge and test sites.

Bridge 14 Results

Figure 11-24 shows the ERI image from profile BG14 at Bridge 14. The underwater segment of
the profile is marked by the blue zone above the ground surface. Small tick marks on the ground
surface are half the electrode spacing of 0.5 m (1.64 ft). The depth of investigation is ~6 m
(19.69 ft). The survey profile intersected eight concrete pile foundations. Several possible
foundation bodies are outlined in the resistivity image based on their relatively low resistivity
zones (< 3 Qm). There does not appear to be a low resistivity anomaly corresponding to the third
foundation located at 28 m (91.86 ft). The geology is interpreted to be consolidated sediments
based on its resistivity between 5 and 45 Qm. A relatively high resistivity body (> 100 Qm)
below the river section is interpreted to be slightly weathered bedrock. A thin high resistivity
layer near the surface at the beginning of profile is supposed to be the consolidated material of an

asphalt road.
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The inversion result can be compared to the TxDOT bridge layout. The piles are 0.39 x 0.39 m?
(1.28 x 1.28 ft) in cross-section, and the length embedded into the ground varies from 10.1 to
15.8 m (33.14 to 51.84 ft). From the resistivity image, however, there is not a strong indication of a
long and slender anomaly that represents accurately the shape of the concrete pile foundations.
However, a visual inspection at the concrete piles supports their appearance as low-resistivity
zones. All concrete piles at Bridge 14 are in good condition. However, a hooked metal sling is
found in contact with the ground. These metal cables are used for holding or lifting the piles up and

down during bridge construction.

At this site, small electrode spacing was used, but the depth extent of the concrete piles is not
clearly detectable. Decreasing the electrode spacing increases the spatial resolution. If the electrode
spacing was to be reduced below 0.5 m (1.64 ft), a better defined foundation anomaly might be
obtained, but it would remain challenging to determine the depth of the long and slender
foundations since the depth of investigation would also be reduced. The roll-along technique is not

useful since increasing the number of electrodes does not increase the depth of penetration.
Bridge 15 Results

Figure 11-25 shows the ERI images from profiles BGI5A, BG15B, and BG15C at Bridge 15.
Recall that the first profile is coincident with a row of five regularly spaced concrete pile
foundations, while the other profiles are parallel to the first one at 0.5 m (1.64 ft) line spacing.
Topography is not included here due to the relatively flat ground surface. The electrode spacing
is 0.61 m (2 ft), the total length of the profiles is approximately 33.5 m (109.91 ft), and the depth
of penetration is about 7 m (22.97 ft). After five iterations, the inversion process converged with

an RMS misfit of 2.8, 1.96, and 1.37 for profiles B15A, B15B, and B15C, respectively.
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The inversion result from profile BG15A shows the locations of foundations marked by regularly
spaced, high-resistivity bodies near the ground surface. The resistivity values are > 35 Qm and
extend to ~1 m (3.28 ft) depth. The inversion result from profiles B15B and B15C do not show
clear indication of concrete pile anomalies. Rather a thin continuous layer of high resistivity
>35 Qm is found near the surface. This could be due to concrete boulders exposed under the
bridge. All profiles show a low-resistivity layer at 3 m (9.84 ft) depth that is interpreted as the

saturated zone.

Figure 11-26 shows ERI images from the second survey at Bridge 15. The electrode spacing has
been increased to 1 m (3.28 ft) yielding a total length of the profiles of 55 m (180.45 ft). The depth
of penetration is now about 11 m (36.09 ft). Somewhat similar results to the first survey are
obtained, but the concrete pile foundations are not imaged as clearly. A discontinuous thin layer of
resistivity > 20 Qm is found near the surface. The low resistivity zone of about 2 Qm is interpreted

as the zone of groundwater saturation.
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The TxDOT bridge layout shows small concrete piles 0.39 x 0.39 m? (1.28 x 1.28 ft*) in cross-
section with a length embedded into the ground of 13.1 m (42.98 ft). The ERI images reveal
small, high-resistivity bodies near the surface but do not capture the shape and length of the
concrete piles. The concrete piles have sufficient resistivity contrast, but they are too slender to

be accurately imaged by the resistivity method.
NGES 3D Results

Figure 11-27 presents horizontal depth slices at 0—3 m (0-9.84 ft) depth from the 3D resistivity
image at NGES. It is of interest to match zones of anomalous resistivity with the known
positions of foundations. Scattered high-resistivity bodies are found near the surface, but there is
no clear indication of the foundations. Cultural interference from metal fences and discarded
metal such as rebar may be responsible for many of the anomalies. A distinct, localized high-

resistivity zone is found at depth 1-3 m (3.28—9.84 ft) in the middle to south portion.
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Figure 11-27. Horizontal Slices through the NGES 3D Image at 0—3 m (0—9.84 ft) Depths.

Better results are found at the deeper slice, 3—6 m (9.84—19.69 ft), shown in Figure 11-28. This
central anomalous zone of low resistivity coincides with a group of drilled shafts and a spread
footing. However, the inferred depths are greater than expected, and the precise shape of the

foundations cannot be determined.
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Figure 11-28. Horizontal Slices through the NGES 3D
Image at 3—6 m (9.84—19.69 ft) Depths.

Figure 11-29 and Figure 11-30 present vertical slices extracted from the NGES 3D resistivity
image. Distinct low resistivity zones are found in (x/z) planes 8, 9, 10, 11, and 13. These zones
are in locations that are consistent with positions of reaction shafts. Zones of high resistivity
interpreted as spread footings have greater depth than expected and are of larger size. The
extracted 2D images from the 3D inversion may be compared directly with the 2D inversion
results from individual profiles. The images from 2D inversion and the sliced 2D images at the
same location are rather different. The 2D inversion images are much more consistent with the
site layout. The 2D images sliced from the 3D inversion result are distorted. The distortions and
artifacts present in the sliced 2D images may cause misinterpretation. Fully 3D experimentation

was carried out over Footing 5, but the data set SF1-3D was discarded due to very poor data

quality.
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Figure 11-29. Vertical Slices of the NGES 3D Resistivity Image.
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Figure 11-30. Vertical Slices of the NGES 3D Resistivity Image.

The 3D-ERI method in principle should provide the most accurate images of 3D subsurface
structures. In the case of foundation determination at NGES; however, it was found that the
quasi-3D inversion procedure does not provide clear, accurate images of known foundations. A
possible explanation is that the survey profiles did not sufficiently cover all major clusters of
spread footings and drilled shafts. Moreover, the various foundations are not all elongated,
vertical structures, so that the 3D images provide a wide range of anomaly shapes that are
difficult to interpret. One important limitation of the 3D survey is the need to have a sufficiently
large electrode layout. The number of electrodes must be greater than conventional 2D electrode
deployments to ensure adequate vertical and horizontal data coverage. The ERI method for
bridge foundation determination is usually conducted in an undulated terrain, and accessibility
may limit surveys to one direction. For these reasons, the 3D-ERI technique is not likely to be a

useful practical technique for bridge engineering geophysics investigations.
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NGES 2D Results

Figure 11-31 shows the ERI-2D inversion results for profiles TS2A, TS2B, and TS2C conducted
over drilled shaft TS2. The length of the profile is 55 m (180.45 ft), and depth of penetration is
~12 m (39.37 ft). A low-resistivity zone (< 20 Qm) corresponding to the drilled shaft appears at
the middle of each profile. The width of the low resistivity zone gradually increases from 1.5 m
(4.92 ft) near the surface to 4 m (13.12 ft) at the bottom. A high resistivity body appears close to
the surface, while the surrounding geological materials dominantly show high resistivity values.
From the NGES site layout, the length of the drilled shaft is 10.8 m (35.43 ft), so that the zone of

low resistivity is wider and longer than the actual structure.

Figure 11-32 shows the inversion results for profile TS4A and TS4B at Drilled Shaft TS4.
Figure 11-33 shows the inversion results for profile RS5A conducted over drilled shaft RSS.

These inversion results show similar images to those for drilled shaft TS2.
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The accuracy of the results may be verified using the site layout. A vertical zone of low
resistivity extends from the surface to the bottom of each image. However, the depth of the
drilled shaft cannot be estimated from the resistivity images. Moreover, 3D effects might cause
distortions at depth in the lower sections of the image, and the presence of conductive rebar
might affect background resistivity. The images are consistent with the hypothesis that as the
drilled shaft was being constructed, the rebar cage was exposed along and at the bottom of the

hole, and has made contact with the ground.

Figure 11-34 shows ERI-2D images for profiles SF1A and SF1B conducted overa 1 x 1 m?

(3.28 x 3.28 ft%) spread footing. The length of the profiles is 13.5 m (44.29 ft), with penetration
depth ~3 m (9.84 ft). The profile SF1A shows a body of low resistivity of 20 to 40 Qm located
between 6.5 and 7.5 m (21.33—-24.61 ft). This zone represents the footing buried to a depth of
about 1 m (3.28 ft) from the ground surface. A somewhat similar result is found for profile
SF1B. The accuracy is verified according to the site layout and visual inspection. The zone of
low resistivity of ~1 m (3.28 ft) width and 1 m (3.28 ft) depth is the approximate size of the
spread footing. Again, the presence of rebar exposed to ground strongly affects the results of a

resistivity survey and likely causes the low resistivity values associated with the spread footing.
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Further experimentation was conducted over a drilled shaft and a 3 x 3 m* (9.84 x 9.84 m?)
shallow spread footing that are categorized as unknown foundations. Figure 11-35 shows
inversion results for profiles UK1A and UKI1B conducted over the drilled shaft. The length of
the profiles is 55 m (180.45 ft), and the depth of penetration is about 12 m (39.37 ft). The UK1A
images show a high resistivity zone (> 250 Qm) at the location of the foundation. The zone is
I m (3.28 ft) wide and 3 m (9.84 ft) deep. The UKIB image shows a smaller zone of high
resistivity. The central anomaly is interpreted as an unreinforced concrete drilled shaft or solid
concrete of 0.9 m (2.95 ft) diameter embedded ~3 m (9.84 ft) in the ground. According to
forward modeling, slender vertical foundations are difficult to image. For this reason, the actual

foundation might be longer than its ERI-interpreted length.
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Four profiles (SF3A, SF3B, SF3C and SF3D), were carried out along the four sides of the
footing, and two profiles (SF3E and SF3F) were conducted across opposite corners of the
footing. Only the first two inversion results (SF3A, SF3B) are illustrated here because other two
profiles (SF3C, SF3D) provide an identical result. Moreover, the profiles carried out across
opposite corners are of very poor quality data, so they were discarded. Figure 11-36 shows
inversions results of profiles SF3A and SF3B conducted over the 3 x 3 m? (9.84 x 9.84 ft%)
spread footing. The depth of penetration is 5 m (16.40 ft). Both profiles give a similar result,
showing very high resistivity zones (> 1500 Qm) at the location of the footing. The high
resistivity zones of depth are ~3 m (9.84 ft) from ground surface and of width ~6 m (19.69 ft),
indicating that the anomaly shape is considerably larger than the actual footing size. The thin

low-resistivity zone at the top of the SF3B image is caused by wet ground during the survey.
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Figure 11-37 shows the inversion result for profile F1 conducted over the 3 x 3 m? (9.84 x
9.84 ft*) spread footing. The length of the profile is 55 m (180.45 ft) with depth of penetration
~12 m (39.37 ft). Topographic information is included in the inversion process. At the position
of the spread footing, the image shows a very high resistivity zone > 2000 Qm. A low resistivity
zone appears on the top of the image as in the previous experimentation. The design layout of
this spread footing is 3 x 3 x 1 m’ (9.84 x 9.84 x 3.28 ft’). A picture of the footing before the
concrete was poured is shown in Figure 11-38. The lack of correlation between the images and
the actual footing may be due to a low contrast in resistivity between the foundation and the soil.
Also, 2D side-scanning profiles are subject to a significant distortion of the images of an actual

3D structure.
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Figure 11-38.3 x 3 x 1 m’ (9.84 x 9.84 x 3.28 ft’)
Foundation during Construction (Dunn 2010).

The work at NGES and Bridge sites 14, 15 indicate that using electrode spacing < 1 m (3.28 ft)
for detecting a foundation smaller than 1 m (3.28 ft) diameter is not recommended. Due to loss
of resolution with depth, imaging a slender foundation to depth > 10 m (32.81 ft) is not feasible.
The smallest advisable electrode spacing is 1 m (3.28 ft). The lessons learned from resistivity

imaging at NGES were applied to additional bridge sites.

Bridge over Little Brazos River

The ERI-2D images for profiles BHW21A and BHW21B at Little Brazos River are shown in
Figure 11-39. The length of the profiles is 55 m (180.45 ft) and depth of penetration is ~11 m
(36.09 ft). The water in the river where electrodes are underwater is marked by the thin blue zone
above the ground surface. The foundation anomaly is clearly outlined as relatively low resistivity

zone.
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The inversion result BHW21A (top) spans a small range of resistivity values (5—23 Qm) indicating
little heterogeneity in the subsurface geology. This is consistent with prior information from the
TxDOT layout. Near-surface heterogeneities with high resistivity values >23 Qm are located
between 44 and 49 m (144.36—160.76 ft). Field investigation shows an association with debris
from a previous demolished bridge. The central anomaly has a width that is much greater than the
actual foundation diameter of 1 m (3.28 ft). The bottle-like shape is about 2 m (6.56 ft) wide near
the surface and widens to 4.5 m (14.76 ft) at depth. The interpreted depth of the foundation is
~10 m (32.81 ft).

The inversion result BHW21B (Figure 11-39 bottom) provides consistent results to the previous
profile BHW21A. The low resistivity body associated with the foundation contrasts with the
higher resistivity values of the surrounding geological materials. The interpreted depth of the

foundation is ~10 m (32.81 ft).

Visual inspection of the drilled shaft foundations supports the inversion results. The foundation
is corroded with rusting rebar exposed and in contact with water. Broken concrete boulders and
rebar from the previous bridge were found scattered under the bridge in water and on the bank.
The inversion result shows a lower resistivity for the foundations than the surrounding geological
materials. It is assumed that cracks or corrosion has degraded the reinforced concrete foundation
and caused the iron rebar to come into contact with the ground, resulting in an efficient transport

of ions through the concrete and the surrounding materials.

The images are compared with known information from the TxDOT layout of the eastbound
bridge of the same construction. The drilled shaft foundation at the eastbound lane is known to
be 0.91 m (2.99 ft) in diameter and 22.55 m (73.98 ft) in total length. The foundations are located
in water-covered areas, with a 10.36 m (33.99 ft) long section embedded into the ground. The
resistivity image is consistent with this layout. Although the resolution of the 2D ERI in a mixed
terrain underwater area is generally lower than 2D ERI performed over a land surface area, these
inversion results clearly show the existence of low-resistivity anomalies at the known foundation
position. Although the images do not indicate the precise shape of the foundation, the horizontal
and vertical extent of the anomaly is sufficient to estimate the size and depth of the foundation.

From this inversion result, it may be concluded that the 2D-ERI method used widely for land

263



surveys can be adapted effectively for unknown bridge foundation investigations in

water-covered environments.

Railway Bridge over Brazos River

The ERI-2D images for the two orthogonal profiles RWB1 and RWB2 at the Brazos river
railway bridge are shown in Figure 11-40. The length of the profiles is 54 m (177.17 ft), and the
depth of penetration is ~10 m (32.81 ft). The inversion results clearly indicate a strong contrast in
resistivity of the large spread footing and the surrounding geological materials. The inversion
results show lower resistivity values of geological materials and higher resistivity values of the

foundation.

At RWBI, the footing is imaged as the high resistivity anomaly > 80 OOm between 20 and 31 m
(65.62—101.71 ft). Its shape is somewhat rectangular with a width of 11 m (36.09 ft) and depth of
5 m (16.40 ft). A thin zone of high resistivity anomaly close to the footing is caused by
outcropping boulders and discontinuous bedrock. Lower resistivity values correspond to
weathered rock materials. The low resistivity value <10 QQm underlying the spread footing is
typical of weathered materials in the area. This zone of low resistive anomaly also appears
toward both end sections of profile where clay particles and elevated moisture act to increase
electrical conductivity. The shallowest bedrock is found close to the foundation, with resistivity
values ranging between 10 and 40 Qm. This layer represents weathered to moderately weathered

shale, as observed on the surface.
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The RWB2 image provides important additional information. The center of this profile was placed
a few meters away from the foundation due to lack of access. A high resistivity anomaly > 80 Qm
corresponds to the footing. It is located between 22 and 25 m (72.18-82.02 ft) with a somewhat
rectangular shape of width 3 m (9.84 ft) and depth 5 m (16.40 ft). Discontinuous bedrock underlies
the foundation, as in the previous profile. The sloping section between 25 and 32 m
(82.02—104.99 ft) reveals discontinuous high resistivity bodies > 80 Qm. This location marks the
occurrence of exposed sandstone outcrops. Conversely, a low resistivity zone (< 5 (Qm) beneath
the high resistivity bodies is interpreted as a highly weathered zone and is perhaps also high in
water content. A near-surface thin layer from 37 m (121.39 ft) at the end of profile with a

comparatively high resistivity value is interpreted as hard ground.

Both railway bridge images show a foundation anomaly that is consistent with the actual size of the
foundation (11 x 3 m” [36.09 x 9.84 ft*] in lateral dimensions and 5 m [16.40 ft] in vertical extent).
The foundation has high resistivity in accordance with the visual observation that iron rebar is not
in contact with the ground. The foundation footing is intact. The inversion results demonstrate that
the 2D-ERI method is an effective tool for delineating shallow bridge foundations that are much
larger than the electrode spacing. Unfortunately, the bridge layout showing the original design of
the footing is not available, so the interpretation cannot be verified. The two orthogonal profiles

increase the image reliability relative to a single profile in any direction.
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Chapter 12.
INDUCED POLARIZATION

INTRODUCTION

Induced polarization is a unique approach to determining the unknown foundations of bridges
primarily because current methods, when successful, do not show the type of the foundation, only
the depth. Also, because the test is conducted alongside the structure and does not physically use
it, the complexity of the substructure will not hinder its results. Induced polarization is widely
used for archaeological surveys looking for buried artifacts (Meyer et al. 2007) and for
distinguishing between coarse and fine-grained materials in landfill explorations (Leroux et al.
2007). 1P is also used to characterize waste dumps, distinguishing between reinforced concrete at
the bottom of the dumps and the garbage on top of it (Bavusi et al. 2006). It is used for aquifer
explorations and locating unexploded ordnances and land mines (Pellerin 2002) and is increasingly

used for contaminant-plume mapping (Sogade et al. 2006).

While IP has been proven in several subsurface applications, it has not yet been used for unknown
foundations. However, it has been used for laboratory measurements of corrosion of reinforcing
bars in concrete. [P measurements were taken in the frequency domain with electrodes placed on
the concrete surface, successfully measuring a change in the IP response as corrosion occurred in
the reinforcement (Hubbard et al. 2003). These results are important because they show that
although IP has not previously been used for unknown foundation measurements, reinforced

concrete does, in fact, possess a measureable IP response.

INDUCED POLARIZATION MEASUREMENTS

For IP, the dipole-dipole array introduced in Chapter 10 is primarily used; however, other arrays
were investigated to ensure that the dipole-dipole is the optimal array for this application.
Figure 12-1 shows how the arrays look in the field. Arrays similar to this are set up alongside

bridges with unknown foundations.
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Figure 12-1. Field Setup.

Figure 12-2 shows the two types of electrodes used. The electrodes on the left are stainless steel
electrodes while the electrodes on the right are non-polarizing (NP) electrodes discussed in

Chapter 10.

These electrodes are manufactured by AGI along with the SuperSting system that was used for this
project. However, using two types of electrodes is time-consuming and more expensive, SO
research has been conducted on the feasibility of using only the steel electrodes for IP
measurements and later correcting for the additional polarization potentials (Dahlin et al. 2002).
Dahlin et al. took measurements at two different locations and gathered similar data when

comparing the NP electrodes and the stainless steel electrodes after a correction for the additional
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noise was applied. They also used a specific data collection sequence. When using stainless steel
electrodes only after an electrode has been used to transmit current, even when a cyclic positive
and negative current is used, a charge can remain in the electrode for over 600 sec. This additional
charge is one of the reasons NP electrodes are used; however, Dahlin (2002) notes that if a data
collection sequence does not use electrodes as potential electrodes immediately after they transmit

current, the amount of noise can be minimal.

When looking at Figure 12-1, one can assume that the SuperSting system appears to be designed
primarily for investigations only on dry land; however, AGI also manufactures marine cables that
are capable of gathering data under fully saturated conditions. Sogade et al. (2006) noted that
resistivity measurements alone are more sensitive to fluctuating groundwater conditions than IP
measurements. When testing during a period of rain, “the IP measurements...were barely affected
by the wet-dry conditions, as shown by the much smaller RMS [Root Mean Square] error of the
wet-dry measurements” (Sogade et al. 2006). This lower sensitivity to fluctuating ground water

conditions is another advantage of IP.

While the equipment available for this research measures chargeability in the time domain
exclusively, it can also be measured in the frequency domain. The percent frequency effect
(PFE) is measured in the frequency domain. Related to frequency domain measurements is the
apparent frequency effect (AFE), which is the difference between apparent resistivity and the
frequency excitation of a conducting target (Apparao et al. 2000). When using AFE, researchers
noted that if a highly conductive target cannot be detected using resistivity, it cannot be detected
using IP unless it contains conducting materials that cannot be detected by resistivity. While
materials that cannot be detected by resistivity but instead by IP were not identified, the
importance of the coupling between resistivity and IP should be noted. This coupling is
imperative when normalized chargeability is used instead of apparent chargeability. Slater and
Lesmes (2002) noted that the typical parameters for IP, chargeability, PFE, and the phase angle
yield a poor measurement of the surface polarization, which is what often interests geophysicists.
Similarly, the IP response that is most useful for bridge foundations is also the surface
polarization. Normalized chargeability, MN , is the apparent chargeability, M, divided by the

resistivity magnitude, p .
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MN=0, M _M (Eq. 12-1)
P
Normalized chargeability better quantifies the surface polarization. Slater and Lesmes (2002)
conducted laboratory and field experiments to study the dependence of apparent chargeability
and normalized chargeability on salinity and clay content. It was illustrated that normalized
chargeability improves interpretations of IP data in both the laboratory and the field. For this
reason, normalized chargeability was used for the field work in this research by doing simple

preprocessing of the raw data in MATLAB.
FORWARD MODELING

While IP is a technique widely used for locating cavities as well as other underground objects
like minerals, it is not generally used for civil engineering applications. A parametric study was,

therefore, conducted to identify the most influential factors for using IP for foundations.

Model Background

Before a parametric study could be conducted, field tests were necessary to obtain a range of
values of chargeability for reinforced concrete. These tests were conducted at one of the NGES
on the Texas A&M Riverside campus, which was sponsored by the National Science Foundation
and the Federal Highway Administration in 1997. This site contains a sand site, shown below,
which consists of five spread footings and five reaction shafts. There are two 3 x 3 x 1.2 m’
(9.84 x 9.84 x 3.94 ft’) footings; one 2.5 x 2.5 x 1.2 m’ (8.20 x 8.20 x 3.94 ft*) footing (shown
in Figure 12-3); one 1.5 x 1.5 x 1.2 m® (4.92 x 4.92 x 3.94 ft’) footing; and one 1 x1 x 1.2 m’
(3.28 x 3.28 x 3.94 ft’) footing; along with four 21.3 m (70 ft) long, 0.91 m (3 ft) diameter
drilled shafts with underreamed bells and one 5 m (16.40 ft) long, 0.91 (3 ft) diameter drilled
straight shaft.
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Figure 12-3. Large Footings at the Sand Site.

The general soil layering at the sand site consists of a medium dense, tan, silty, fine sand to
3.5m (11.48 ft) below the surface; medium dense, silty sand with clay and gravel from 3.5 to
7m (11.48 to 22.97 ft), medium dense, silty sand to sandy clay with gravel from 7 to 11 m
(22.97 to 36.09 ft); and very hard, dark gray clay from 11 to 33 m (36.09 to 108.28 ft). The
water table at the sand site is located 4.9 m (16.08 ft) below the surface (Gibbens 1995). Several
trial experiments were conducted at the sand site to ensure that reinforced concrete does, in fact,
possess a measureable chargeability. From these field tests, it was determined that the
chargeability of reinforced concrete is 80-100 mV/V. It was also determined that concrete
without reinforcement does not possess a measureable IP response with the field setup used for
this research. This band of data was used to generate the forward models to simulate various
field conditions to lessen the time consuming field work. An example of one of these field tests
onthe 1 x1 x 1.2 m’ (3.28 x 3.28 x 3.94 ft’) footing with its corresponding inversion is shown in
Figure 12-4. Note that the foundation does not appear to be embedded 1.2 m (3.94 ft) because

approximately 0.4 m (1.31 ft) is exposed above the ground surface.
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Figure 12-4. Field Results of a Small Footing at the Sand Site.

Because the depth of the foundation is known at Riverside Campus, the depth of the foundation
is shown on the figure. This field test was conducted using a dipole-dipole array with 14
stainless steel and 14 non-polarizing electrodes. Several other field tests were conducted on

other known foundations at the sand site from which the band of 80—-100 mV/V was determined.

Single Foundation Models

All models in the parametric study are simulated using EarthImager 2D™, which is the program
accompanied with the SuperSting equipment that AGI created. The forward modeling program
within EarthImager 2D is a finite element approach with user-prescribed starting models that use
the Cholesky Decomposition for its forward equation solver. Within the forward model settings
is a program called Survey Planner. Survey Planner first allows the user to input synthetic
material properties into an interactive workspace in which the dimensions of the different

materials can also be inserted as shown in Figure 12-5.
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Figure 12-5. Synthetic Chargeability Model.

Survey Planner then employs a forward model to generate the raw data that would be gathered in

the field should these conditions exist as shown in Figure 12-6.
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Figure 12-6. IP Survey Planner Results.

The bottom image is the synthetic model (Figure 12-6), input by the user from which the top image
is generated showing the synthetic raw data. The final step (the middle image) is an inversion of
the synthetic pseudosection. When the inversion is run, the top image looks like what the raw data

collected in the field will look like, and the middle image is an example of what the final product
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will be. Overlays of the synthetic models have been drawn on the inversions, so the accuracy can
easily be seen for each case. Ten models were created to evaluate the feasibility of using IP for
bridge foundations that vary in material, size, and depth. Because the IP model is coupled with a
resistivity model, base values were assumed for the foundations and backgrounds of both inputs. It
was also determined in the field, using this equipment, that reinforced concrete foundations possess
a resistivity of 30—40 Qm. Also, when the field tests were conducted, the background resistivity of
the field location, at the National Geotechnical Testing Sand Site, was measured from
100—115 Qm and the background chargeability was measured from 5 to 15 mV/V. A background

resistivity of 100 Qm and a background chargeability of 11 mV/V were assumed for each model.

Beginning with the simplest model, below is a 0.5 x 3 m? (1.64 x 9.84 ft*) spread footing
embedded 0.25 m (0.82 ft) (Figure 12-7).
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Figure 12-7. 0.5 x 3 m” (1.64 x 9.84 ft*) Spread Footing Buried 0.25 m (0.82 ft).
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The strong correlation between the synthetic model and the inverted IP section was expected
because the foundation was near the surface where data are more easily collected. From this
image, the foundation type and depth can be easily identified; however, the strong chargeability of
100 mV/V does not extend to the full width of the foundation. This could be attributed to the soil

coverage over the edges of the foundation.

Next, a 1 x 4.85 m® (3.28 x 15.91 ft*) straight shaft foundation with a chargeability of 90 mV/V

was generated. Figure 12-8 shows a strong correlation with the input model down to 3 m (9.84 ft).
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Figure 12-8. 1 x 4.85 m” (3.28 x 15.91 ft®) Straight Shaft Foundation.

The inverted IP section does not, however, show a strong response to the full depth of the model.
This lack of full-depth correlation between the synthetic model and final inversion is due to the fact
that, with only 28 electrodes spaced 1 meter (3.28 ft), data only is collected to 5.9 m (19.36 ft).
These data are shown in the synthetic apparent chargeability pseudosection above, and there is

only one data point generated at the bottom and center of this model. In order to gather data deeper
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to yield a stronger IP response for more electrodes, more electrodes must be used, making a longer
array in the field. To investigate this reasoning, next a 1 x 5.5 m* (3.28 x 18.04 ft) straight shaft
foundation was created using a 56 electrode array instead of a 28 electrode array, still spaced at one
meter (3.28 ft). Figure 12-9 demonstrated that using more electrodes in the field will, in fact,
generate an [P effect on a foundation to a greater depth of penetration, which was expected. With a
1 meter (3.28 ft) wide foundation and electrode spacing and 56 electrodes, this model gathered a
strong IP response to approximately 4.45 m (14.60 ft). It does not, however, gather data to twice

the depth of the previous models despite the fact that two times as many electrodes were used.

0.0 6.0 12.0 18.0 24.0 30.0 36.0 420 480 54.0 mV/v
0.0 . . . . 87
3.0 4 65
g
S 59
[-%
1
89 4
1.9 - . - -
Synthetic Apparent Chargeability Pseudosection
0.0 6.0 120 18.0 24.0 30.0 36.0 420 480 54.0 mv/v
0.0
30
£
5 59
(-5
-]
89
19 . . —
Inverted IP Section  Iteration = 1 RMS = 0.98 (mV/V)  Electrode Spacing = 1 m
0.0 6.0 12,0 18.0 24.0 30.0 36.0 420 480 54.0 mV/v
0.0
1.7
150
E 4.3 100
= 90
g
= 82 50
20
10

Synthetic Model. Background Chargeability = 11 mV/V

Figure 12-9. 1 x 5.5 m* (3.28 x 18.04 ft*) Straight Shaft Foundation with 56 Electrode
Array.

Next, to investigate the influence of the width of the foundation relative to the length of the
array, without changing the electrode spacing, a foundation of equal depth, 5.5 m (18.04 ft), was
created with a width of 4 m (13.12 ft) as shown in Figure 12-10.
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Figure 12-10. 4 x 5.5 m” (13.12 x 18.04 ft*) Straight Shaft Foundation with 56 Electrodes.

The correlation between the synthetic model and the inverted IP section matched much more
closely for the larger foundation with less variation in the chargeability on the surface than the

smaller foundations.

While deep foundations can be simple straight shaft piles, some bridges also use a pile cap with
driven steel H-piles that are much deeper (greater than 10 m [32.81 ft]). For this reason, a forward
model of a pile cap with steel piles was also created. The value of chargeability that was assumed
for the H-piles, 150 mV/V, was assumed from a brief field test conducted on a galvanized steel
pipe that yielded a chargeability of around 200 mV/V (see Figure 12-11). This field test is
discussed in the Riverside Campus section within this chapter. Note that, in the deep foundation

model, a clear boundary between the reinforced concrete pile cap and the steel piles exists.
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Figure 12-11. Reinforced Concrete Pile Cap with Three 12.5 m (41.01 ft) H-Piles.

Despite the dissimilarities between the synthetic model and the inverted IP section, the inversion
showed the clear start of the pure steel versus the reinforced concrete. Steel possesses a much
higher chargeability than reinforced concrete. The strong IP response for steel is expected, as
previously mentioned. Induced polarization is often used for iron ore exploration (Sumi, 1959).
Because the IP effect in steel is much stronger than that of reinforced concrete, the pile cap is much
harder to discern despite how close it is to the surface. Yet, because the shaft, which is attached to
the cap, will be exposed above the surface in the field, investigators will be able to infer that steel
exists below the surface if a strong reaction like this is seen after a field test. This will most likely
be in the form of a pile group below a pile cap because of the great increase in chargeability. Also,
despite the fact that three piles were included in the synthetic model, only the buildup of the charge
is shown on the exterior piles. This is not greatly troubling, however, because knowing the
minimum depth of the exterior piles is sufficient information for classifying an unknown bridge

foundation to a degree of certainty.
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Despite the fact that more data can be collected deeper with more electrodes, currently only 28
non-polarizing electrodes are available for field work at Texas A&M University, so more models
were investigated with only 28 electrodes in attempt to optimize field work. While the smaller
28-electrode data collection system yields results that look like the synthetic model, it loses
resolution with depth around 4 m (13.12 ft). A solution to this problem was to use more
electrodes. However, while the larger array does penetrate deeper, it was not significantly greater
than the 28 electrode array, and resources were limited. For this reason, the 28-electrode system
was again used but with an electrode spacing of two m (6.56 ft) instead of one m (3.28 ft). The
farther the electrodes are spaced, the greater the depth from which the data will be collected. A

tradeoff was that resolution of the data was lower.

Compared to Figure 12-8, which had an electrode spacing of 1 m (3.28 ft), Figure 12-12 penetrates
deeper, by over 1 m, (3.28 ft). Figure 12-9, which used 56 electrodes, showed an IP response down
to 4.45 m (14.60 ft), the same as Figure 12-12, below; however, having the electrode spacing
greater than the foundation width caused the resolution to be of lower quality. The inversion
appeared to be wider than the model, and data were lost at the top of the foundation. For this
reason, the next model (Figure 12-13) was created with both a 2 m (6.56 ft) wide electrode spacing

and foundation.

The inversion in Figure 12-13 shows that again the data penetrates with a strong IP response to
4.45 m (14.60 ft) as in Figure 12-12; however, the width of the foundation now also matches the
width of the synthetic model. For this reason, it was decided that the electrode spacing should

always be equal to or less than the width of the foundation for higher data quality.
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Figure 12-12. 1 x 5.5 m” (3.28 x 18.04 ft*) Straight Shaft with 2 m (6.56 ft)
Electrode Spacing.

280



0.0 6.0 120 18.0 240 30.0 36.0 42.0 48.0 540  mVIV

0.0 & . n . n & n & 86
3.0 4 - 65
E
5 59 4 F
=3
]
89 4 -
1.9 - po =
Synthetic Apparent Chargeability Pseudosection
0.0 6.0 12.0 18.0 240 30,0 36.0 42.0 48.0 54.0
0.0
30
£
4 59
g
[=]
39
11.9
Inverted [P Section  Iteration = 1 RMS = 1.00 (mV/V)  Electrode Spacing = 2 m
0.0 6.0 12.0 18.0 24.0 300 36.0 42.0 48.0 540 mV/IV
0.0
1.7
150
E 43 100
i 90
a
8.2 50
20
10

Synthetic Model.  Back d Chargeability = 11 mV/V

Er

Figure 12-13. 2 x 5.5 m? (6.56 x 18.04 ft*) Straight Shaft with 2 m Electrode Spacing.

Multiple Foundation Models

The shallow foundation that was tested in the field in order to obtain base values for
chargeability was modeled in a more complex system. Three spread footings that did not have
any soil cover as in Figure 12-7, were modeled to ensure the same results as the field test and to
infer on the influences they will have on one another (see Figure 12-14). Because the depth of

embedment is small, 1 m (3.28 ft), they did not draw chargeabilities from one another.
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Figure 12-14. Three 3 x 1 m* (9.84 x 3.28 ft*) Footings Spaced at 3 m (9.84 ft).

The strong correlation between these three foundations and the inverted IP section again shows
the strength of IP on shallow foundations. For this reason, the foundations were lengthened to
5 m (16.04 ft) and reduced in width to 1 m (3.28 ft), leaving a spacing of 5 m (16.04 ft) between
the foundations (see Figure 12-15).
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Figure 12-15. Three 1 x § m’ (3.28 x 16.40 ftz) Straight Shafts Spaced at 5 m (16.40 ft).

With the foundations spaced at 5 m (16.04 ft), some influence can be seen from the surrounding
foundations. The high chargeability value does not extend to the bottom of the predicted model
as for the single pile deep foundations, but a minimum depth prediction of 3 m (9.84 ft) could
still be made with these data. For this reason, it is more advantageous if each pile can be isolated
as discussed in the Single Foundation Models section. Alternatively, the farther the piles are
spaced apart, the less influence they have on each other. If space was available for a larger array
and foundations were spaced far apart, they could be tested as shown below where 56 electrodes
are again used instead of 28. With 56 electrodes, 1 x 5.5 m” (3.28 x 18.04 ft*) piles were
modeled 10 m (32.81 ft) apart (see Figure 12-16).
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Figure 12-16. Three 1 x 5.5 m’ (3.28 x 18.04 ftz) Straight Shafts Spaced at 10 m (32.81 ft).

Using the larger array with 10 m spacing allowed for less influence of each pile on one another.
Also, because the array is larger, the inverted IP section shows the piles to a greater depth than
the 28-electrode array. For this reason, when the substructure is larger and spaced over 10 m

apart, the 56 electrode array is advantageous.
RIVERSIDE CAMPUS TEST

As introduced in the forward model section, Texas A&M University has a NGES at the
Riverside Campus on the outskirts of College Station, Texas. The Riverside campus was used as
a replacement for the laboratory phase for IP for this project. This was done because there are
only foundations at the test site, and they were all installed on level ground. This simplified the
testing by eliminating a bridge super structure, unlevel ground that requires surveying, and the
possibility of water. Four different foundations, one buried pipe, and one H-pile were tested

several times at the Riverside campus to optimize the field setup for bridges. The depths of five
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of these materials were known and one, the large 3 x 3 x 1 m’ (9.84 x 9.84 x 3.28 ft’)

foundation, was identified after testing and data processing was complete.

One Cubic Meter Foundation

Testing began with the smallest known foundation at the sand site, an unreinforced 1 x 1 x
1.2m’ (3.28 x 3.28 x 3.94 ft’) spread footing. The foundation contains a reinforcement cage
slightly elevated from the bottom of the footing with #11 rebar spaced 150 mm (5.91 in)
center-to-center in both directions. The three PVC pipes that can be seen in Figure 12-17 were
set in place to allow the drilling of three telltales after the construction. The telltales were used

to measure vertical displacements during loading in another project.

Figure 12-17. Small-Spread Footing.

The initial results from testing the small spread footing were shown in Figure 12-4; however, this
foundation was tested several times as a base test for checking the equipment and optimal field
setup. Normalized chargeability was applied to each model presented in this section. Because
the entire output from one field test has already been shown (Figure 12-4), each model in this
section will only be the final IP results. The full results have been included in the appendix for
each model along with extra data that have not been presented within the text. Figure 12-18

shows the normalized chargeability results with the actual foundation dimensions overlaid by a
black box.
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Figure 12-18. Normalized Chargeability Results for Small Footing.

This test, which was repeated several times, shows the strong correlation between the inverted IP
results and the actual foundation for a small footing. The strong correlation may be attributed to

the mat-like steel cage that is located at the bottom of the foundation.

Once the small foundation was tested several times to validate that the results were repeatable,
optimal arrays for testing bridge foundations were investigated. Using the same field setup each
time, five different command files were investigated: a Wenner-Schlumberger array, a
dipole-dipole array, a pole-pole array, a dipole-dipole array with reciprocal measurements, and a
vertical sounding. The dipole-dipole array was recommended for IP surveys, and after
investigation it yielded the best results with the least amount of noise. The vertical sounding was
the simplest to set up; however, the results were not as clear to interpret as the dipole-dipole array

and required more data processing along with more effort to generate the array file.

Similarly, once the optimal array was determined, the dipole-dipole, the optimal setup of the
array was investigated. The electrodes were set up so that the foundation was in the middle of
the array; however, where the foundation was located relative to the electrodes was changed.
Note that in Figure 12-17 the stainless steel electrodes are next to the foundation, and the NP
electrodes are farther away. The NP electrodes were also placed next to the foundation with the
stainless steel electrodes farther away. Both electrodes were placed next to the foundation, so
that the signal was forced to go through the foundation at shallow depths. The latter can be seen

in Figure 12-19.
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Figure 12-19. Deep Foundation with Optimal Electrode Placement.

Foundation without Reinforcement

After the optimal array was determined from testing on the shallow foundation, a deeper
foundation that the resistivity team also investigated was tested. The resistivity team noted that
this foundation is approximately 4 m (13.12 ft) deep. The foundation posed a new challenge;
however, because it is surrounded by a tarp at the top of the foundation that is thought to go the

full length of the foundation. Also, it is believed that the foundation is not reinforced.

Depth (m)

Inverted [P Section  [teration =1 RMS =5.09 (mV/V) Electrode Spacing = | m

Figure 12-20. Results from Unreinforced Pile.

The lack of any high chargeability expected from foundations supports the hypothesis that this
foundation does not contain any reinforcement. The extremely low chargeability in the middle
of the foundation may be due to the tarp, which most likely contains non-chargeable plastics.

Because no more intermediate length piles exist at the NGES sand site, the research group then

tested a deep pile.
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Deep Pile

In addition to the small spread footings that have been put in place at the NGES, five deep
foundations were installed on a nearby embankment. These 0.9 m (2.95 ft) in diameter
foundations were installed to depths varying from 15.8 m (51.84 ft) to 10.4 m (34.12 ft) below
the ground surface for a previous project at the experiment site. Once the 1 m (3.28 ft) shallow
foundation was tested successfully and following the identification of the failure for the
intermediate foundation due to the tarp or lack of reinforcement, the research team moved on to
testing one of the deep piles to more closely simulate field conditions. Most bridges have deep
foundations, not shallow. Several of these foundations have deteriorated over time as shown in
Figure 12-21. An exposed reinforcing cage can be seen in the third and fifth foundation, and the
foundation closest to the photographer shows deep cracks along the side of the exposed top. For
this reason, the least deteriorated of the five foundations was chosen for the deep foundation

testing.

Figure 12-21. Five Straight Shaft Foundations at the NGES.

Figure 12-19 shows the field setup for the test run for the deep foundation where 14 stainless
steel and 14 NP electrodes were used spaced at 1 m (3.28 ft) intervals. Only 14 electrodes were
used at this time because of limited space available. The results are disheartening because they
do not show a clear foundation as in the small foundation; however, a strong charge up can be
seen at the bottom of the figure. It is known that the foundation is over three times deeper than

the depth of penetration in the image shown in Figure 12-22.
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Figure 12-22. Deep Pile.

Despite the little correlation between the inverted section and the actual pile, the array was not
rerun with more electrodes. Space was limited, and with 28 electrodes, the depth of penetration is
less than 6 m (19.69 ft). This depth is still less than half the depth of the pile, which is 10.8 m
(35.43 ft). The strong charge up at the bottom of the inversion still provides the researchers with
some information. While the finite depth of the foundation cannot be determined from this test,
a minimum depth can be estimated. Also, should more electrodes (the full 28) be used, this
minimum depth would be deeper, proving more useful. Note that the chargeability for this
foundation was much higher than previous and later foundations that were tested. This high
chargeability may be due to deterioration of the pile. As previously discussed, the other four
piles at the site show significant deterioration of the pile above the ground. It is a reasonable
assumption that this deterioration continues down the piles in various locations. They were

designed for dynamic and static testing, and each pile contains intended defects.
Pipe

As previously mentioned, a galvanized steel gas line imbedded at a known depth was also tested
in order to obtain an estimate for steel, to use in a forward model (Figure 12-23). The depth of
this pipe is known from numerous tests. The array was set up perpendicular to the direction of

the pipe, so the pipe and line crossed at the middle of the array.
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Figure 12-23. Gas Line Test.

While the exact dimensions of the pipe are not known because as-built plans were not located,
numerous nondestructive tests have indicated that the pipe is located 1.5 m (4.92 ft) below the
ground surface, which is where the strong IP response appears. While the diameter of the pipe

may be exaggerated, the depth can be easily identified from this test.

Large Foundation

The large foundation at the experiment site was constructed for a research project on dynamic
impedance functions of shallow foundations. A 3 x 3 x 1 m’ (9.84 x 9.84 x 3.28 ft°) fully
embedded footing was constructed, fully reinforced with #6 reinforcing steel every 12.7 cm (5 in).

The results, as shown below in Figure 12-24, indicate that the foundation is approximately 1.22 m
(4.00 ft).

Inverted IP Section  leration = | RMS = 76.01 (ms) Electrode Spacing = 2 m

Figure 12-24.3 m X 3 m x 1 m (9.84 ft x 9.84 ft x 3.28 ft) Foundation.

Note that the results shown appear to be a 2 m (6.56 ft) wide foundation even though the
foundation is in fact 3 x 3 m® (9.84 x 9.84 ft?). This is because the spacing between the take outs
on the SuperSting cables are spaced at 2.5 m (8.20 ft), so the array could not be set up to fully
span the foundation. For this reason, electrodes were spaced at 2 m (6.56 ft) intervals, and the

array crossed the foundation on a bias. The results show a foundation depth of approximately
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1.22 m (4 ft), 0.22 m (0.72 ft) deeper than the actual foundation. The additional strong
chargeability between the electrodes at 20 m (65.62 ft) and 22 m (72.18 ft) down the line on the

right side is due to another foundation at the sand site that the array side scanned.
H-pile

A final field test was conducted at the Riverside campus because several bridges across Texas
have driven steel H-pile foundations. Texas A&M University has 17 driven H-piles at the
NGES, which were tested before a steel H-pile bridge was considered. The pile tested can be

seen in Figure 12-25.

Figure 12-25. H-Piles at the NGES.

Preliminary tests were necessary because IP produces a much stronger response for steel than
concrete. While concrete does hold a surface charge, it is not as easily charged as steel or other
metals. For this reason, initial testing of steel leads to chargeabilities too high for the post
processing to handle, so adjustments in the testing procedure had to be made. All other tests
have been run at the maximum current that the equipment allowed: 2000 mA; however, when
this was done for steel, the chargeabilities greatly exceeded the maximum IP. Another test was
run with the maximum current lowered to 700 mA, and the results were better. However, the best

results, which can be seen in Figure 12-26, were achieved with a maximum current of 500 mA.
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Figure 12-26. H-Pile Results with 500 mA Max Current.

The strong response from the steel H-pile can be seen around built up near the 13th and 14th
electrodes. The H-pile is not 1 m (3.28 ft) wide like the array, so the results are not as sharp as
with previous tests. The large 1 m (3.28 ft) spacing was used over the width of the H-pile
because of the depth to which the H-pile is buried. Closer electrode spacing would lead to a
shorter depth of penetration. Using a 28 m (91.86 ft) long array, the depth of penetration is still
only 5.9 m (19.36 ft), which is not deeper than the foundation. Despite this, the strong charge
build up to 5.25 m (17.22 ft) is still noted. The other areas of strong charges are likely due to the

other H-piles next to where the array was set up.
FULL-SCALE BRIDGE TEST

Finally, once all useful foundations at the NGES were tested several times and the data were
processed, the research team tested three bridges within the Brazos District with known
foundations. All of these bridges have straight shaft concrete piles, one with 3.66 m (12 ft) piles
over no water, one with 6.10 m (20 ft) piles with no water, and one with 3.66 m (12 ft) piles over
a very shallow creek. The first two were tested to determine the maximum depth of penetration
to which accurate data can be gathered, so a foundation depth could be estimated. The bridge
with a shallow creek was tested because it is a shallow foundation that would enable good results

and introduced a new variable, water.

Clear Creek Bridge

Bridge 17-145-1147-01-017 is located in Leon County, Texas on FM 977, 1.15 miles southeast
of FM 3. It is a minor collector road that was built in 1988 and is 55.5 m (182.1 ft) long and
10.5 m (34.5 ft) wide from curb to curb. It crosses the Clear Creek; however, the creek is so low
that only one pile group goes through it. Two dry pile groups, including the one tested, can be

seen in Figure 12-27.
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Figure 12-27. Bridge 17-145-1147-01-017.

The array was set up two different ways on separate testing days. First, the electrode spacing
was the standard 1 m (3.28 ft) in order to gather data to 5.9 m (19.36 ft), deeper than the 3.66 m
(12 ft) piles. Results are shown in Figure 12-28.
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Figure 12-28. Bridge 17-145-1147-01-017 with 1 m (3.28 ft) Spacing.

The results gathered data to the full depth of the pile; however, they did not show a high
chargeability at the top of the pile. This may be due to the fact that the current is not transmitted
in the 2D plane; instead, it spreads outward in a circular 3D plane that may not capture the upper
portion of the foundation. Despite this, a strong chargeability is shown at the bottom half of the
foundation with a chargeability much higher than that of natural objects within the ground. The
chargeability of the foundation, however, appears to cover a much larger area than the actual
foundation. This anomaly occurs when the foundation is not as wide as the electrode array. For
this reason, the bridge over Clear Creek was retested with an electrode spacing of 0.57 m

(1.87 ft), the width of the widest part of the foundation. Results are shown in Figure 12-29.
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Figure 12-29. Bridge 17-145-1147-01-017 with .57 m (1.87 ft) Spacing.

Despite the smaller electrode spacing, which confined the IP response to the width of the
foundation, the results no longer penetrated to the full depth of the foundation, so there is no
strong stop in the response as in Figure 12-27. These different testing procedures show the

importance of gathering data beyond the depth of the foundation.

Davidson Creek Bridge

Bridge 17-026-0116-03-037 is located in Burleson County, Texas on SH 21 0.2 miles northeast
of SH 36 outside of Caldwell, Texas. It is a principal arterial road that was built in 1968 and
reconstructed in 1988. It is 97.5 m (319.9 ft) long and 19.9 m (65.3 ft) wide from curb to curb.

Davidson Creek was entirely dry at the time of testing as shown in Figure 12-30.

Figure 12-30. Bridge 17-026-0116-03-037.

A 10.8 m (35.43 ft) long electrode array was used, using 28 NP and 28 stainless steel electrodes
spaced 0.4 m (1.31 ft) or the pile diameter. The Davidson Creek was dry at the time of testing.
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However, the pile tested was chosen because the array could be set up on a nearly level ground
surface, so that surveying was not necessary. Figure 12-31 shows the long array, along with the

level ground surface.

Figure 12-31. Field Setup for Bridge 17-026-0116-03-037.

The small electrode spacing of 0.4 m (1.31 ft) led to a shallower depth of penetration of the data,
2.07 m (6.79 ft). Unfortunately, the pile was again deeper than the depth of penetration, 5.47 m

(18 ft), which led to poor resolution in the inversion (see Figure 12-32).
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Figure 12-32. Inversion of Bridge 17-026-0116-037.

Again, the highly chargeable area at the bottom of the image is due to the foundation going much
deeper than the data were collected. Also, this field test yielded lower quality results because the
soil was found to be highly conductive, which was a new field anomaly. Numerous data sets

were collected at this bridge, each showing the soil to be highly conductive. This affected the
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output; however, by increasing the estimated noise of the IP data collected, the results were

improved.

Gum Creek Bridge

Bridge 17-094-0315-02-019 is located in Grimes County, Texas, on SH 90, 3.75 miles north of
SH 30 outside of Roans Prairie, Texas. It is a minor arterial road that was built in 1927 and
reconstructed in 1960 and is 36.6 m (121.1 ft) long and 13 m (42.7 ft) wide from curb to curb.
Gum Creek was flowing over two pile groups at the time of testing; stagnant water was in a
small channel sitting in the traffic direction the full length of the bridge. Despite the stagnant
water channel, the array was set up in the traffic direction to enable the test to be run through the

water and keep the cables dry (see Figure 12-33).

Figure 12-33. Field Setup for Bridge 17-094-0315-02-019.

Electrodes were spaced 1 m (3.28 ft), again using 28 NP and 28 stainless steel electrodes. Two
piles were tested, directly in the array path; however, two more were side scanned because of
their nearness to the array. Also, the first electrode was placed within 1 m (3.28 ft) of the bridge
abutment. Figure 12-34 shows the two piles that the array bisects.
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Figure 12-34. Two Piles Tested through Water.

Note that the electrodes are not flush on the sides of the foundations, but are instead spaced 1 m
(3.28 ft) apart. While this lowers the resolution of the results, more accurate results on the depth
of the foundation are achieved when the array penetrates deeper than the foundation depth. The

piles were located between the eighth and ninth electrodes and the 13th and 14th.

Several field tests were run on this bridge, as it was the first one tested through water. Most of
the results were extremely noisy, with a high jump in the data over random windows in the IP
data collection. Also, the water proved to make the subsurface highly chargeable, much higher
than soil that was not fully saturated during the other tests. This test, Figure 12-35, shows some
highly charged areas that are within the bounds of the chargeability when data are collected
deeper than the foundation. The high area around the 20th electrode is due to another pile that
was side scanned by the array, and the other high area near the 25th and 26th electrode is due to
another pile. Figure 12-35 also shows the piles that were side scanned. Despite these promising
results, the inversion took many iterations of different inversions to come to this conclusion. If
the foundations were indeed unknown, a minimum depth of these foundations would have been

difficult to determine with an acceptable degree of certainty.
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Figure 12-35. Inversion for Bridge 17-094-0315-02-019 through Water.
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PART IV.
CONCLUSIONS
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EVIDENCE-BASED APPROACH CONCLUSIONS

An evidence-based approach is proposed in this study, providing a comprehensive tool to
determine the unknown bridge foundations. The proposed guidelines are capable of generating
both deterministic and probabilistic predictions of foundation types and dimensions. It can also
generate probabilistic prediction of soil resistance parameters (Su and Pb) when the soil-boring

data are not available.

ANNSs proved to be successful in recognizing complex patterns between embedment depth and
foundation type. ANNs were also able to predict the bearing capacity of bridge foundations with

reasonable accuracy.

Regarding the uncertainty in the ANN predictions, the Bayesian paradigm and the MCMC
sampling method were implemented to quantify the uncertainty in the unknown determination
process. This was achieved by conditioning estimates of the characteristics of the unknown
foundation on the superstructure characteristics and the estimate of the corresponding bearing
capacity, resulting in joint probability distributions for unknown features of a bridge foundation,
rather than only one prediction. These allowed to measure the influence of incorporating evidence
into the determination of unknown foundations and to assess the correlation (linear and non-linear)
between the foundation’s parameters. Furthermore, it was verified that for all problem types, single

modes concentrated the most likely scenarios of the uncertain foundation parameters.

The use of the marginal posterior CDFs for different foundation types, dimensions and soil
resistance parameters can be used to make probabilistic inferences for these parameters. For
instance, for a specific embedment depth value, it is possible to assess the probability of not
exceeding a specific depth. (It may be likely that the actual embedment depth exceeded the

researchers’ estimation.)

Results from the probabilistic approach for one of the bridges in the Bryan District showed that the
actual unknown values are close to the predicted mode value (value with maximum probability) of
the corresponding posterior distributions. This cross-validates the effectiveness of the proposed

methodology.
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The proposed guideline can be used to determine the unknown bridge foundations in any district if
the conditions allow for an evidence-based approach to be implemented, to quantify the influence

of varying pieces of information about the foundation characteristics of a given bridge.

It must be emphasized, that since the present study was based on a working database populated in
the TxDOT Bryan District, results can only be applicable to this specific demarcation.
Nevertheless, the proposed methodology can be used to make predictions about any unknown
bridge foundation at any other place, as long as evidence about known foundation characteristics

can be used to train and condition the corresponding models.

VIBRATION-METHOD CONCLUSIONS

The vibration method was tested in a laboratory setting and under field conditions at two bridges.
It was also numerically modeled while field tests were conducted. In the laboratory setting, two
concrete slabs were buried at different depths in the Haynes Coastal Engineering Laboratory at
Texas A&M University using an experimental modal analysis. These slabs were buried in the
2D tow-dredge tank in the Haynes Lab. Using an accelerometer placed in the center of each slab
and a rubber mallet, the research group measured the acceleration versus time of the vibrations of
these slabs. After applying a Fast Fourier Transform to these data, the amplitude of the response
versus the frequency was obtained for each slab. The results were as expected, showing a
difference in the two frequencies; the foundation that was buried deeper had a higher frequency,

which was also expected.

After a successful simplified laboratory test, the researchers moved to the field to test bridges.
Using three accelerometers placed directly on the pile, the researchers attempted to excite the
pile again using the mallet, using a hammer fit with a built-in force transducer, and using heavy
traffic. Unfortunately, when inspecting these results, no dominant frequency could be seen as in
the laboratory setting. Next, the researchers attached the three accelerometers to the bridge bent
instead of the pile, this time in three different directions. Using heavy traffic and recording the
vibrations with an oscilloscope, they again recorded acceleration versus time and transferred the
data into the frequency domain. Again, no dominant frequency could be seen and the data

appeared to be nosier than when attaching the electrodes directly to the pile.
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While field experiments were implemented, several numerical models were also developed to
determine the feasibility of modeling the field work in order to decrease the time spent in the
field. These simplified and complex bridge models were created for a simultaneous project on
bridge scour (Briaud et al. 2011). Unfortunately, a dramatic change in the frequency of the
models was also not found when the pile lengths were increased. Thus, despite the promising
laboratory work, because a dominant frequency could not be identified in field work and because
numerical modeling showed that the frequency did not change dramatically with a change in the
pile depth of embedment, the researchers shifted their efforts to enhance the geophysical team
with IP testing.

ELECTRICAL RESISTIVITY IMAGING CONCLUSIONS

The 2D-ERI method is a powerful non-invasive geophysical technique for bridge foundation
investigations. The method can be deployed in moderate to heavily vegetated, water-covered
environments using underwater electrodes, such as those specially designed for this project. The
dipole-dipole electrode configuration is preferred since it has good capabilities to map slender
vertical structures. A fully 3D-ERI survey is time-consuming, and the resulting images are not
much better than their 2D counterparts. Hence, 3D-ERI is not considered to be cost-effective at

bridge sites.

The ERI method is made easier at bridge sites since the lateral positions of foundations are known
in advance. The depth of a foundation can be estimated by visual inspection of the resistivity
image, although precise determination of the length of slender foundations is challenging. The sign
of the resistivity anomaly of a reinforced concrete foundation is related to its physical condition. A
foundation in poor condition is typically a zone of low resistivity if there are conductive rebar
elements in contact with soil. Conversely, an intact foundation in excellent conduction is likely to

be a zone of high resistivity.

The ERI method has been tested with different electrode spacings on different sizes and types of
foundation. Due to the reduction in spatial resolution of the resistivity method with depth, imaging
a small and slender foundation with a size smaller than 1 m (3.28 ft) to a depth of greater than 5 m
(16.40 ft) is difficult. There is also a tradeoff between electrode spacing and depth of penetration.
The penetration depth of the dipole-dipole configuration is ~20 percent of the profile length. The
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smallest advisable electrode spacing is 1 m (3.28 ft), using 56 electrodes. For a large foundation of

greater than 3 m (9.84 ft) diameter, an appropriate electrode spacing is 1.5 m (4.92 ft).

Electrical resistivity of earth materials is related to bulk physical properties such as porosity, water
content, clay content, lithology, and fracture density. The electrical resistivity method requires a
significant resistivity contrast to image subsurface structures. For example, if the earth materials
surrounding the foundation are intact rocks, the high background resistivity can approach that of an
intact concrete foundation. If the surrounding earth materials are clay or shale, the low background
resistivity can approach that of a reinforced concrete foundation in poor condition. In either of

these cases, it is difficult to obtain a distinct foundation image.

In water-covered areas, direct contact of electrode stakes to the riverbed is recommended to
achieve greater sensitivity to foundations than could be obtained with floating electrodes. Depth
of water should be not more than two to three times the electrode spacing. Bridge sites should be
accessed during non-flood season. Bridge foundation materials may be steel, wood, concrete, or
masonry. In this research, the ERI method has been carried out on concrete foundations only. It
is often sufficient to image only the upper portion of the foundation to assess bridge safety from
scour hazard. The researchers find, in general, that it is possible to image and identify

foundations possessing large resistivity contrasts to their scour-critical depths.
IP CONCLUSIONS

IP is a new nondestructive geophysical technique for unknown bridge foundations. The arrays
used for IP are similar to those used for 2D-ERI, so IP can be easily assimilated into a testing plan
where resistivity testing is used and vice versa. Also, as with ERI, the dipole-dipole electrode
configuration is preferred since it yielded the best results for reinforced foundations. When
comparing the standard apparent chargeability measurement to a modified normalized
chargeability measurement, normalized chargeability greatly reduces noise, making the inversion
more clear. Field measurements can be converted to normalized chargeability by preprocessing
the data. This preprocessing involves dividing the IP windows by the resistivity value for that

point. The data can then be uploaded into Earthimager 2D.
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It was determined through both forward modeling and field testing that the electrode spacing is
highly influential on the quality of the inversion output. While similar to ERI, a wider electrode
spacing will create a longer array that in turn will increase the depth of penetration of the
dipole-dipole configuration. If the spacing is wider than the foundation width, there is a loss of
resolution in the inversion. This loss or resolution leads to the foundation appearing to be wider
than it in fact is. However, a more definitive foundation depth can be seen if this larger array has a

depth of penetration that exceeds than the foundation depth.

The depth of penetration is also related to the amount of space available for testing and the
number of electrodes used. While data were only collected to 3.66 m (12 ft), if more
non-polarizing electrodes and cables are obtained, a larger array can be used if space is available,
which will gather data from greater depths. Despite this, a trend can be seen in Table 13-1.
Reinforced concrete appears to have a normalized chargeability between 350 and 400 mV/V on
average when data are collected deeper than the foundation depth. Each of these images
presented shows a clear foundation depth, overestimating the actual foundation by no more than
0.64 m (2.10 ft). For the foundations where data were not collected deeper than the actual
foundation, the chargeability is much higher, 671-700 mV/V. This high chargeability appears
clustered at the bottom of the inversion directly below the location of the foundation, which can
be seen from the surface. Using this information, a minimum depth of the foundation can be

given; this depth can be used to update the bridge database for assessing scour-critical bridges.

Finally, while it is possible to test bridge foundations through water using IP, the inversion
process is much more complex. While the results shown for the Gum Creek Bridge provided
accurate results, this was achieved after many iterations. Without previous knowledge of the
bridge foundation depth, this testing procedure would be difficult to use with an appropriate

degree of certainty.
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Table 13-1. Summary of IP Images Presented.
Foundation eye . .
Depth Chargeability | Material Location Comment
m ft mV/V - - -
0.8 | 2.62 152 Reinforced NGES -
Concrete
Unkpown 1 Concrete NGES Beheyed to be
Pile unreinforced
108 | 35.43 700 Reinforced NGES Data not collected
Concrete deep enough
1.5 492 427 Steel Riverside Campus Gas Pipe
1| 3.28 371 Reinforced NGES -
Concrete
Unkpown 671 Steel NGES Data not collected
Pile deep enough
366 | 12 372 Reinforced || 1 o County :
Concrete
3.66 12 700 Reinforced Leon County Data not collected
Concrete deep enough
6.1 20 700 Reinforced Burleson County Data not collected
Concrete deep enough
3.66 12 351 Reinforced Grimes County Water
Concrete

The researchers feel that IP can be used for determining the depth of unknown foundations made
of both steel and reinforced concrete provided that access is available below the super structure
to the bridge foundations. If there are enough electrodes or enough space for an array that will
provide results with a depth of penetration deeper than the unknown foundation, a foundation
depth can be given within less than 1 m (3.28 ft). If the depth of penetration is not deeper than
the foundation depth, a minimum depth of the foundation can be estimated based on the depth of

penetration.
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FIGURES

This section includes figures that have not been presented in the main text.
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Figure A-1. Ensemble Predictions of MLP-PL10 for Drilled Shafts.
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Figure A-2. Ensemble Predictions of MLP-PL10 for Steel Piles.
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Figure A-3. Ensemble Predictions of MLP-PL11 for Concrete Piles.
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Figure A-4. Ensemble Predictions of MLP-PL11 for Steel Piles.
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Figure A-5. MLP-BC10 Predictions for Drilled Shafts for Randomly Selected Bridge Piers.
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Figure A-6. MLP-BC10 Predictions for Steel Piles for Randomly Selected Bridge Piers.
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Figure A-7. MLP-BC11 Predictions for Concrete Piles for Randomly Selected Bridge Piers.
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Figure A-8. MLP-BC11 Predictions for Steel Piles for Randomly Selected Bridge Piers.
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Figure A-9. MLP-BC10 Predictions for Drilled Shafts, for All Data Points.
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Figure A-10. MLP-BC10 Predictions for Steel Piles, for All Data Points.
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Figure A-11. MLP-BC10 Predictions for Spread Footings, for All Data Points.
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Figure A-12. MLP-BC11 Predictions for Concrete Piles, for All Data Points.
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Figure A-13. MLP-BC11 Predictions for Steel Piles, for All Data Points.
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Figure A-14. MLP-BC11 Predictions for Spread Footings, for All Data Points.
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Figure A-18. Prior Distribution and Histogram for Width of Spread Footings (B).
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for Df for Problem 01.
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Figure A-36. Prior and Marginal Probability Distribution of Posterior
for dpCn for Problem 00.

330



0.5 . T : '
prior
0.45}- |ﬂIJ. — posterior -

0.4 \
\
035+ [ '

0.25}

o
(4% ]
T
e
N
1

o
[p]
T

Probability Density

0.15+
01+ J
\

0.05+
\

10 15 20 25
DCn(in)

Figure A-37. Prior and Marginal Probability Distribution of Posterior
for DCn for Problem 00.

0.08; T r T T T ——————
P — prior
/R posterior
0.07 FaR | posterior |
0.06+ / .
:llr "-,‘
£ 0,05 / ]
T / \
o
o /
2004} 1
a J."I I".
@ /
£ 003t / 1
/ II-"r '-..\
0.02/ J L)
f I : \\\
/ A
oot / / \ .
0~ i L 1 1 1 1 1 = B
15 20 25 30 35 40 45 50
dpSt(it)

Figure A-38. Prior and Marginal Probability Distribution of Posterior for dpSt
for Problem 00.
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Figure A-40. Prior and Marginal Probability Distribution of Posterior for B
for Problem 00.
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for Problem 00.
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Figure A-42. Prior and Marginal Probability Distribution of Posterior for Df
for Problem 00.
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DEVELOPED CODES

This section includes codes developed in this study.

MATLAB code developed for estimating total load of a bridge bent:

clc;

clear;

% Get the bridge info table

x=load("bridge_info.txt")

% Define the superstructure type and find corresponding load
parameters

loadfunc=load("1125-DrSh.txt")
m=size(x,1)
for 1=1:m
% Find the corresponding typical RW for the bridge
% EImportant: Remember to change the bins depending on the loadfunc
table typical RW & Skews
RwBins=[24 28 30 38 44];

MaxRwB in=max(RwBins);
RWDis=[abs(x(i,1)-RwBins(1,1)),abs(x(i,1)-RwBins(1,2)),abs(x(i,1)-
RwBins(1,3)),abs(x(i,1)-RwBins(1,4)),abs(x(i,1)-RwBins(1,5))];
[RwDis, IRW]=min(RWDis);

Rw(1)=RwBins(IRw);

% find the corresponding typical skew for the bridge
SkBins=[0 15 30 45];
SkDis=[abs(x(i,2)-SkBins(1,1)),abs(x(i,2)-SkBins(1,2)),abs(x(1,2)-
SkBins(1,3)),abs(x(1,2)-SkBins(1,4))];

[SkDisn, 1Sk]=min(SkDis);
Sk(1)=SkBins(ISk);
% start calculating load for each bent using load parameters
J=0
while j<size(loadfunc,1)
1=3+1;
1T x(i,1)<=MaxRwBin
1T loadfunc(,1)==Rw(i) & loadfunc(j,2)==Sk(1)
TotLoad(1,1)=loadfunc((,3)*x(1,3)+loadfunc(j.,4);
break
end
elseif x(i,1)> MaxRwBin
1T loadfunc((,1)==Rw(1) & loadfunc(j,2)==Sk(1)
TotLoad(i,1)=x(i,1)/MaxRwBin
*(loadfunc(j,3)*x(i1,3)+loadfunc(j,4));
break
end
end
end
end
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VALIDATION OF LOAD ESTIMATION PROCEDURE-BRIDGE ID: 17-82-2144-01-002

L,=75 ft, L,=45 ft, RW=32 ft

Est. total load per shaft using the proposed method=114 tons

The estimated quantities table for this bridge is extracted from the bridge as-built plans:

SUMMARY OF ESTIMATED QUANTITIES

BID ITEM

DESCRIPTION | CRILLED DRILLED | €L C COMC | CL C CONC | CL $ CONC | REINF COMC | PRESTR | CONC SURF ARMOR RIPRAP RATL
SHAFT SHAFT CABUTY (BENT) (APPR SLAB) SL4B coMc | TREAT JOINT ISTONE Y T203)
BEAM | (CLASS 1) | (NITH SEALT[  COMMON)
i (DAY
BRIDGE e N 130 1% v cr | 112 1M
ELEMENT LF LE~ CY Y (a4 5F LF 57 LF Y LF
2 - WBUTMENTS 3 (z22) GO | 80.6 1.2 e
? ~ INTERIOR BENTS bz (.0) | - _
| = 165.00° PRESTR CONC BEAM UNIT ~~ 5280 655,45 | 575 330
| -
P T J
TOTAL 146 60 64, 01} 28 1017 80, 6 5280 55, 45 575 79.2 282 18

Dead Load: Weight of superstructure items:
Interior bent cap = 1/2 * (38.1 * 4.05) = 77.16 kips
Drilled Shafts = 1/2 (168 x 0.15 x 1 x (30/12) ~ 2/4) = 61.85 kips
Concrete slab = 8/12 x 32 x (75 + 45)/2 x 0.15 =192 kips
Railing = (75 + 45) x0.38=45.6 kips
Beams =4 x (75 + 45)/2x0.516=123.8 kips
Sum = 50045 kips = 250.23 tons

Live Load-HL93

2x(0.32(75+4)— (448/75 + 112/45)+72) = 203.88 kips = 101.94 tons

Total Load

250.23 +101.94 = 352.22 tons/bent = 352.22/3 = 117.41 tons/shaft

Error of Estimation
(117.41 — 114)/114 =2.99%
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