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INTRODUCTION 

STATEMENT OF THE PROBLEM 

On December 5, 2007, the Federal Highway Administration (FHWA) published 23 CFR 

Part 630 Subpart K – Temporary Traffic Control (630.1102 – 630.1110)] with an effective 

date of December 4, 2008 (1).  The objective of the rule is to “decrease the likelihood of 

highway work zone fatalities and injuries to workers and road users.” The new rule 

establishes requirements related to five items for Federal-aid projects: 

• General agency guidance or project-specific measures identified through 

engineering studies to determine the need for positive protection in work zones, 

• Exposure control measures to avoid or minimize worker exposure to motorized 

traffic and motorist exposure to work activities, 

• Other traffic control strategies (including uniformed law enforcement officers) to 

minimize work zone crashes, 

• Safe entry/exit of work vehicles onto/from the travel lanes, 

• Contract pay items to ensure availability of funds for these provisions. 

The rule includes a list of 15 factors for state transportation agencies to consider when 

developing guidance for the use of positive protection, exposure control measures, and 

other traffic control strategies (or combinations thereof): 

1. Project scope and duration. 

2. Anticipated traffic speeds through the work zone. 

3. Anticipated traffic volume. 

4. Vehicle mix. 

5. Type of work (as related to worker exposure and crash risks). 

6. Distance between traffic and workers and extent of worker exposure. 

7. Escape paths available for workers to avoid a vehicle intrusion into the work space. 

8. Time of day (e.g., night work). 

9. Work area restrictions (including impact on worker exposure). 

10. Consequences from/to road users resulting from roadway departure. 
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11. Potential hazard to workers and road users presented by device itself and during 

device placement and removal. 

12. Geometrics that may increase crash risks (e.g., poor sight distance, sharp curves). 

13. Access to/from work space. 

14. Roadway classification. 

15. Impacts on project cost and duration. 

At a minimum, the rule states that positive protection shall be considered where work 

zone conditions place workers at increased risk from motorized traffic (e.g., tunnels and 

bridges that limit worker escape routes, long duration projects on high-speed facilities that 

place workers in close proximity to motorized traffic, etc.) and where positive protection 

devices can significantly improve safety (such as to protect a pavement edge drop-off that 

will be in place overnight or longer).  However, the rule does not provide specific 

requirements or thresholds on positive protection usage.  Rather, states are responsible for 

developing general policies or project-specific decision frameworks for determining 

situations, locations and types of positive protection to use (e.g., traditional portable 

concrete barrier [PCB] or some of the newer barrier technologies).  FHWA also encourages 

states to consider techniques intended to reduce the likelihood that a vehicle intrusion into 

the work zone will occur at all.  

PROJECT OBJECTIVES 

The goal of this project was to develop implementation guidance that the Texas 

Department of Transportation (TxDOT) can use to make better decisions regarding when 

and where to use positive protection in work zones, and when to consider exposure control 

and other traffic control measures that could improve work zone safety.  The specific 

objectives of the project were: 

• Analyze the benefits and costs of using portable concrete barrier for positive 

protection in work zones. 

• Analyze the benefits and costs associated with the use of moveable and portable 

barrier technologies that can be more quickly deployed and removed at work sites 

than traditional PCB.  
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• Analyze the benefits and costs of non-positive protection devices that can be used to 

improve safety and reduce work zone intrusion events in work zones. 

• Develop implementation guidelines for these various technologies. 

CONTENTS OF THIS REPORT 

The next chapter provides background on current guidelines and practices nationally and 

within Texas regarding the use of positive protection in work zones.  The methodology and 

results of analyses performed to investigate each of the first three objectives listed above 

are then incorporated into the next three chapters of this report.  The final chapter provides 

a summary of the results and key conclusions.  A set of recommended implementation 

guidelines, suitable as a stand-alone document for inclusion into TxDOT manuals, is 

provided as an appendix. 
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BACKGROUND 

REVIEW OF STATE DOT POSITIVE PROTECTION PRACTICES IN WORK 
ZONES 

A review of state DOT policies and guidelines pertaining to positive protection use in work 

zones finds that many are formulated very similarly to the requirements stated in the 

federal regulations.  The policy often indicates that positive barrier will be “considered” for 

a variety of situations and then lists the same factors found in the subpart K requirements 

almost verbatim.  It should be noted that several states, including Texas, include some 

guidance pertaining to the protection of large (greater than 2 ft) drop-offs near the travel 

lanes.  However, positive protection guidelines beyond that particular condition are fairly 

limited.   

One of the few exceptions found is in Maryland, where specific criteria are defined 

for when positive barrier protection will be required (2): 

“It is the policy of the Maryland State Highway Administration (SHA) that temporary 

traffic barrier protection is required for all work on high-speed facilities where 

(1) The operation occurs on the roadway or shoulder, or is within 10 ft of the edge 

of a travel lane open to traffic, and the duration of work is expected to be at 

least two weeks and the limits of the work area remain unchanged for that 

duration. 

OR 

(2) There is no means of escape for workers from motorized traffic (e.g., tunnels, 

bridges, etc.), and the duration of work is expected to be at least two weeks and 

the limits of the work area remain unchanged for that duration.” 

The Maryland SHA policy does include provisions to deviate from these criteria, but such 

deviation requires an engineering study to determine why temporary traffic barrier 

protection is not feasible. The preparation and submission of an official waiver must be 

approved by the senior manager of the lead office.   

The Virginia DOT (VDOT) is another agency that has established a fairly rigorous 

analysis approach for determining when positive barrier shall be used in work zones (3).  
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However, the VDOT procedure is based on analysis of any fixed objects that will be placed 

in close proximity of the travel lanes during the work zone.  The potential of a run-off-the-

road crash occurring and hitting the fixed object (if it cannot be removed) is first estimated.  

If the potential for a crash to occur is 0.5 or higher (i.e., the potential is at least 50 percent), 

a positive barrier is to be used.  VDOT does distinguish between the use of PCB and the 

use of barrier guardrail fence, which is indicated in the VDOT guidance as being “less 

positive.”   

The Michigan DOT has specified that positive barriers should be used under the 

following conditions: 

• on all bridge work where a precipitous drop-off is within 4 ft of the toe of the 

barrier closest to the active travel lanes,  

• where there is scaffolding or other structures or equipment with workers 

overhead in place for three days or more,  

• where motorized and non-motorized travel lanes are adjacent to each other with 

no difference in elevations or mountable curbs with vehicle operating speeds of 

45 mph or higher, and  

• on all long-duration (three days or more) projects where workers are 

continuously within 6 ft of an open high speed traffic lane or lanes in one 

specific direction (4).   

It is not clear from the guidance whether “continuous” refers to time, to the length of work 

activity relative to the length of the barrier, or both.   

In each of the above examples, concerns over work zone crashes (those in addition 

to drop-off crashes) drive the development of the guidance.  However, further review and 

investigation by the research team failed to uncover any background analyses that may 

have been used to arrive at the threshold criteria used in each case.  It appears that the 

minimum duration thresholds for Maryland and Michigan reflect the practicalities of 

moving PCB into and out of a work zone, rather than any type of benefit-cost analysis.  The 

fact that neither discusses traffic demand nor expected crash frequency provides further 

evidence supporting this hypothesis.  In contrast, the guidelines followed by VDOT 

explicitly consider crash risk, using run-off-road crash rates and the roadway annual 
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average daily traffic (AADT) to estimate risk.  However, as noted previously, the 

guidelines are designed only to consider fixed objects that exist within the work area.  

Consequently, none of the examples listed attempts to consider the worker intrusion crash 

risk potential formally in the analysis process.   

TXDOT WORK ZONE POSITIVE PROTECTION PRACTICES  

Given the lack of formal guidance on the topic, researchers chose to survey district 

personnel around the state to determine any informal processes or rules-of-thumb that were 

being followed with respect to positive protection use in work zones.  Researchers designed 

the survey to determine the following: 

• Factors and criteria that are considered in deciding whether to use positive 

protection for a given work zone segment. 

• Work zone situations (i.e., roadway types, traffic volumes, speeds, project types, 

roadside hazards, etc.) where positive protection is almost always used. 

• Work zone situations where deciding whether to use positive protection is the most 

difficult. 

• Factors other than worker or traffic safety (e.g., contractor productivity, simplicity 

of installation or removal, etc.) that are considered (as well as how they are 

considered) in work zone positive protection decisions. 

• Decision criteria used to specify other vehicle intrusion countermeasures  

(e.g., reduced speed limits, enforcement, etc.) in construction plans.  

The primary inventory tool was an emailed survey of TxDOT districts as well as 

follow-up phone interviews of a selected number of survey respondents.  Information 

gathered from the emailed survey and phone interviews was supplemented with additional 

insights gathered from published TxDOT guidance documents as well as temporary traffic 

control plans for recently bid construction projects in Texas.  Appendix A contains a copy 

of the survey instrument. Twelve districts completed the survey, providing information on 

53 projects in which positive protection was used.  Overall, the researchers received a fairly 

wide range of responses regarding the applications where barrier is typically used.  Bridge 

replacement, roadway widening and reconstruction, interchange reconstruction, and ramp 
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reversal projects were all identified.  In most cases, the projects were scheduled to last from 

6 months to 5 years (although one district did report using positive protection for a one-

month job).  In all but one case, portable concrete barrier (either safety-shaped, F-shaped, 

single-slope, or low-profile) was the positive protection technology of choice (the 

remaining project had used water-filled barrier).  A summary of findings for each of the 

above topics is provided below. 

Positive Protection Decision Factors and Criteria 

District personnel reported considering a number of factors and criteria when deciding 

whether or not to use positive protection: 

 
• Pavement edge drop-off presence and height (40 percent). 

• Worker and motorist safety (19 percent). 

• Close horizontal offsets to hazards (e.g., work area or edge drop-off) (17 percent). 

• High traffic speed (17 percent of projects). 

• Exposed structures (e.g., bridge abutments) (15 percent). 

• Small separation between traffic in opposing directions (6 percent). 

• Project duration (4 percent).   

For some projects, respondents identified multiple factors or criteria such that the 

total of the percentages listed exceeds 100.  As shown in the list, the most common reasons 

or factors cited for using positive protection was the presence of a pavement or edge 

drop off that met or exceeded the current drop-off depth and lateral proximity criteria 

specified in the TxDOT Roadway Design Manual (5) (which came from previous 

pavement edge drop-off research [6]).  Exposed structures such as bridge abutments within 

the clear zone, which require positive protection in all cases, were also cited as a reason 

quite frequently.   

In several instances, respondents cited worker and motorist safety as a consideration 

that led to the use of positive protection. However, when those districts were contacted to 

determine what specific thresholds were used (type of work, AADT level, roadway speed, 

percent trucks, etc.), none could be identified.  Rather, survey respondents indicated that 

they typically consider the body of evidence in a more qualitative manner and try to make a 
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judgment call as to whether the safety risks outweigh the additional costs of requiring 

barriers.  One district indicated that they noted that an average daily traffic (ADT) of about 

30,000 vehicles per day (vpd) was about the volume level at which they started thinking 

more about possible barrier use on a project.  

Survey respondents did note that positive protection use generally required that the 

project be fairly lengthy in duration.  Of the projects provided to the research team for 

examination, only 11 percent were less than one year in duration and 36 percent were 

3 years duration or longer.   

Work Zone Situations where Positive Protection Is Used 

The majority of projects identified by the districts tended to fall under one of four main 

project categories.  As would be expected, these types of projects tend to be longer-

duration activities and the types of projects that can involve the creation of temporary drop-

offs and fixed objects within the clear zone: 

 
• Bridge replacement/repair/widening – 36 percent. 

• Roadway reconstruction – 21 percent. 

• Roadway widening – 15 percent. 

• Interchange construction/reconstruction – 13 percent. 

 
As might also be expected, positive protection is used most often on freeway 

facilities and least often on farm-to-market road projects.  The combination of high speeds 

and high traffic volumes make it easier for work zone designers to justify in their minds the 

use of positive protection.  The distribution of projects using barriers by roadway type is 

provided below: 

• Freeway projects – 36 percent. 

• US highway projects – 34 percent. 

• State highway projects – 15 percent. 

• Farm-to-Market road projects – 13 percent. 

 
The remaining project was located on a loop roadway.  
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Projects where It Is Difficult to Decide on Positive Protection Use 

Although the survey respondents indicated that they did not have specific criteria or 

thresholds of one or more factors that they used to decide when to use positive protection in 

work zones for situations other than drop-offs or fixed object protection, none of the 

surveys or subsequent interviews revealed any insights or experiences about instances in 

which the decision to provide or not provide positive protection was difficult.  As stated 

previously, those interviewed decided primarily based on drop-off or fixed-object concerns, 

and the occasional project in which positive protection was specified for other safety 

concerns did not seem to cause the survey participants much concern.   

Factors Other than Worker or Traffic Safety Considered in Positive Protection 
Decisions 

None of the survey respondents identified any other reasons (such as productivity, 

simplicity of installation and removal, etc.) that they consider when making decisions about 

work zone positive protection.  Discussions during interviews suggested that those types of 

reasons would (or should) come from the contractor’s perspective as part of their bid. If the 

contractor felt that it was in their best interest to use positive protection for those or other 

reasons, the respondents assumed that they would indicate so in their bid and assume the 

costs of providing the barrier.  None of those interviewed could recall a case in which they 

had agreed to pay for barrier that was suggested by the contractor to be included that was 

not with regards  to a safety issue (such as a drop-off or fixed-object) that had been missed 

during work zone design.   

Types of Barrier End Treatments Used 

Another facet of the surveys targeted district use of various types of barrier end treatments 

used in work zone projects.  Respondents identified a variety of end treatments among the 

53 projects for which information were provided: 

• Taper barrier so blunt end is outside of clear zone. 

• ABSORB 350 Crash Cushion. 

• Narrow React 350. 

• Metal Beam Guardrail Fence. 
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• QuadGuard (of different widths). 

• Trinity Attenuating Crash Cushion. 

• Sloped End Terminal for Low-Profile Barrier. 

• TAU II Crash Cushion. 

• Sand-filled Plastic Barrels. 

• REACT Crash Cushion. 

• Single Guardrail Terminal. 

For the most part, tapering the barrier was preferred where possible because it was 

the cheapest alternative available.  When that was not possible, survey respondents 

indicated that it was usually the contractor’s choice as to what to use, as long as it could fit 

within the space available and could function properly.  In a few cases, the work zone 

designer would specify a particular crash cushion be used in a location, presumably based 

on an analysis of how the crash cushion would perform if hit and how the impacting 

vehicle would react and interact with other aspects of the work zone.    

Technologies Other than Positive Protection to Reduce Intrusion Risk 

The second part of the survey inventoried the use of other technologies, techniques and 

strategies meant to reduce the risk and consequences of vehicle intrusions into the work 

area.  Respondents identified a total of 13 projects in response to this question.  The 

strategies noted as being used for this purpose included: 

• Reduced speed limits. 

• Portable changeable message signs (PCMS). 

• Speed display trailers. 

• Enhanced law enforcement presence. 

• Lane rental provisions in the contract to limit the number of lane closures used by 

the contractor. 

Most of the respondents who provided information about these applications did not 

have any data indicating whether or not they were effective (most did believe they were, 

though).   
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Use of Truck-Mounted Attenuators 

The final questions of the survey examined respondent practices and perceptions toward 

the use of truck-mounted attenuators (TMAs).  A number of typical low-speed mobile 

operation maintenance activities were identified where TMA usage would typically be 

considered: 

• Striping. 

• Patching. 

• Paving (overlays or seal-coats). 

• Guardrail repair. 

• RPM installation. 

• Crack sealing. 

• Sweeping. 

Several respondents simply responded to this question by stating that they follow 

the TxDOT TCP standard sheet requirements, and always use TMAs during mobile 

operations.   
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ANALYSIS OF EXPECTED CRASH REDUCTION BENEFITS AND 
COSTS OF PORTABLE CONCRETE BARRIER USE 

IN WORK ZONES 

The encroachment-based hazard protection benefit-cost analysis approach outlined in the 

AASHTO Roadside Design Guide was viewed as the most logical methodology for 

calculations of crash cost benefits associated with portable concrete barrier use for positive 

protection in work zones (7).   Researchers used the Roadside Safety Analysis Program 

(RSAP) to perform the analysis.  RSAP was developed with the intent of evaluating 

permanent roadside hazard situations and so suffers from a number of limitations relative to 

its use for work zone analyses (8).  However, earlier attempts at evaluating barrier need in 

construction zones essentially relied on the same general approach (discussed in greater 

detail below) and so suffered from the same types of limitations.  In other words, RSAP 

was still the most relevant tool available for this assessment.  It should be noted that RSAP 

is currently undergoing significant revisions to improve ease of input and use (9).  

However, it does not appear that any of these enhancements will make it any more 

applicable to work zone analysis situations. 

BACKGROUND 

Basic Theory of Encroachment Hazard Analysis and Its Implementation in RSAP 

The basic premise of the encroachment hazard analysis is a series of conditional 

probabilities of a vehicle leaving the travel way and striking an object.  In a work zone 

context, the object can be a pavement edge drop-off, structural components under 

construction (culvert, abutment, bridge pillar, etc.), or workers and work 

vehicles/equipment/materials.  The goal is to reduce the severity of crashes with those 

objects by protecting them with barrier.  The assumption is that impacts with the barrier 

will be less severe and so less costly than impacts with the other objects.  Therefore, the 

analysis requires a number of predictions regarding: 

 
• The expected frequency that vehicles lose control and leave the travel way (i.e., a 

roadside encroachment). 
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• The probability that, given a vehicle has left the roadway, it will travel out laterally 

to the distance at which an object is located. 

• The probability that a crash is of a given severity, given that a vehicle has left the 

roadway and traveled out laterally and struck the object. 

 
In RSAP, the probability of an encroachment off of the travel way by a vehicle 

depends on the amount of traffic using a facility and the facility type.   Figure 1 illustrates 

the encroachment models used in RSAP (8).  The actual frequency is then adjusted if the 

roadway section is located on a curve or hill (since encroachments increase somewhat as 

the degree of curvature and percent grade increases).  

 

 
Figure 1.  Encroachment Module Used in RSAP (8). 

 

The “bumps” in encroachment at lower ADT levels are somewhat counterintuitive 

and can cause some analytical difficulties in that it implies that encroachment rates 

decrease slightly at ADTs between 5000 and 7000 vehicles per day.  However, it is 

hypothesized that roadway geometrics as well as vehicle-to-vehicle interactions (or lack 

thereof) at very low volumes may be partially responsible for these trends.   
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Figure 2 presents the probabilities of lateral distance traversal assumed in RSAP.  

These probabilities are also adjusted based on side slopes and other roadside conditions if 

present and provided by the user.  The probability that an encroaching vehicle will reach a 

given lateral distance decreases by 50 percent or more in the first four meters (about 12 ft).   

 
Figure 2.  Lateral Extent of Encroachment Probability Model in RSAP. 

 

To estimate the severity of crashes that occur given an encroaching vehicle has 

traveled out laterally and impacted with an object, RSAP utilizes a series of detailed 

vehicle kinematic models to predict how vehicles (and occupants within the vehicle) will 

respond to the impact.  Given that the resulting crash severities can vary dramatically 

depending on how the vehicle impacts the object (in terms of location of the object, vehicle 

speed and heading, etc.), RSAP uses Monte Carlo simulation techniques to arrive at an 

average crash severity for the condition.  The severity index describes the likelihood of an 

injury or fatality for the given condition evaluated (see Table 1), and can be multiplied by 

standard crash cost values to estimate the average expected crash cost for that condition. 
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Table 1.  Relationship between Crash Severity Index and Injury Severity Level (8). 

 
 

Previous Efforts to Evaluate Barrier Needs in Work Zones 

Current TxDOT guidance regarding the use of positive protection in work zones for 

pavement drop-off conditions (see Figure 3) can be traced to research performed at TTI and 

elsewhere in the mid 1980s (6, 10).  The analysis made use of the hazard encroachment 

methodology for estimating the frequency of vehicles reaching the hazard (pavement drop-

off) some distance away from the travel lanes and then considered the expected crash 

severities of vehicles running into drop-off areas of various heights and edge designs.  

Vehicle overturning and snagging on the edge of the drop-off were the primary results of 

the crash severity estimation; loss-of-control outcomes that ultimately could lead to head-

on or sideswipe collisions with other vehicles remaining on the travel way were not 

considered.   The limitations of the recommendations are acknowledged in the TxDOT 

guidance (10): 
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Figure 3… “provides a practical approach to the use of positive barriers for the 

protection of vehicles from pavement drop-offs.  Other factors, such as the presence 

of heavy machinery, construction workers, or the mix and volume of traffic, may 

make positive barriers appropriate, even when the edge condition alone may not 

justify the barrier.” 

 
Figure 3.  Barrier Use Recommendations for Pavement Drop-Off 

Protection in Work Zones (10). 
 

However, it is the consideration of worker and work equipment hazards and 

consequences of impacts that is the major area of emphasis in the effort described in this 

chapter.  One of the earliest efforts to characterize the risks and costs of worker and 

equipment impacts in work zones utilized a linear relationship between crash severity and 

encroaching vehicle speed, as shown in Figure 4 (11).  Others have argued that workers 

have a very low probability of survival if involved in vehicle collisions as low as 30 miles 

per hour (mph) and so have assumed a 100 percent probability (or nearly so) of a worker 

fatality if struck, regardless of vehicle speed (12, 13, 14).   
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Figure 4.  Relationship between Speed and Crash Severity Index 
Assumed for Workers and Construction Equipment (11). 

 

Past efforts to include worker and equipment considerations have involved placing 

both in various “assumed” locations within a work zone of a given design and performing 

an encroachment-based analysis to assess the expected crash costs associated with them 

(see Figures 5 through 7 as examples).  For Figure 5 and Figure 6, the ADT thresholds for 

barrier warrants reflect a one-year analysis period (11).  For shorter duration work zones, 

the ADT values would simply be adjusted appropriately (i.e., the break-even point for a 6-

month project would be twice the AADTs shown in the figures).  Figure 7 presents vehicle 

exposure in terms of ADT times the number of days of the project.   

Although the documentation of these efforts is somewhat sketchy as to how exactly 

this was done, it appears that the worker and equipment were assumed to be fixed and 

remain present for the entire duration of the analysis.  Obviously, such assumptions are 

highly conservative, as workers are present only when work activity is occurring.   

Likewise, although work equipment may be present during periods of work inactivity at the 

site, such equipment is often moved and parked as far away from the travel way as 

possible, if not protected by a barrier.  On the other hand, one could argue that worker 

protection decisions should not be based on “average” crash costs that might be expected as 

is used by the existing analysis tool, and so an overestimate of worker presence (e.g., 

assuming they are at the site 24 hours a day) is one way to manipulate the analysis output 

to provide a greater than 50 percent chance that barrier presence is justified (i.e., the 
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probability of not providing a barrier at a location where a worker would be struck is 

significantly less than 50 percent). 

 

 
 

Figure 5.  A Typical Freeway Bridge Widening Work Zone Scenario (11). 
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Figure 6.  A Typical Roadway Widening Scenario (11). 
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Figure 7.  A Typical Freeway Part-Width Construction Lane Closure Scenario (14). 
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The other aspect of these assessments is that they combine the various hazards in 

arbitrary and fixed ways so as to limit their usefulness in evaluating the potential need for 

positive protection in future projects that are not exactly of the type that was modeled in 

these assessments.  For example, consider the point at which barrier is recommended for 

work zones depicted in Figure 6 and Figure 7.  The results in Figure 6 and Figure 7 both 

assume that a 1 ft pavement drop-off exists next to the travel lanes.  Although both 

configurations appear similar, evaluation of the benefit-cost graphs would suggest highly 

different results.  Assuming both represent one-year work zones, Figure 6 suggests that 

barrier should be considered if the roadway served as little as 2000 to 5000 vehicles per 

day.  In contrast, Figure 7 suggests that barrier should be considered once ADTs reach 

6000 to 8000 vpd (calculated by taking the exposure number on the x-axis in Figure 7, 

multiplying by one million, and dividing by 365 days in a year).  This occurs despite the 

fact that Figure 7 assumes a very large working area due to the presence of both workers 

and construction equipment, and any intrusion into this area by any encroaching vehicle is 

assumed to result in a fatality.  Differences also exist in terms of societal costs of crashes of 

a given severity, as well as barrier costs.  Certainly, a change in the size and shape of the 

worker area or changes to those cost values just mentioned would yield different benefit-

cost results and thus limit the usefulness of the graphs provided.   

These examples illustrate the need to consider worker and construction equipment 

safety risk and protection needs separate from other features that could necessitate barrier 

use (e.g., pavement drop-offs), and to establish a mechanism for tailoring the amount, 

location, and duration of these hazards within work zones to an overall assessment of the 

appropriateness of PCB protection.  The rest of this chapter describes efforts undertaken on 

this project to formulate this type of analysis for PCB use.  

OBJECTIVE 

The objective of the effort described in this chapter was to develop a better method of 

accounting for worker and construction equipment risk within the framework of an 

encroachment-based analysis of work zone crash costs.  In this way, the benefit-cost 

assessment of the use of PCB to reduce worker and motorist risk could be quantified. 
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METHODOLOGY 

A two-step analysis process was utilized for this part of the project: 

1. Assessment of RSAP’s ability to match current TxDOT decisions and criteria 

regarding PCB use in work zones. 

2. Computation of crash cost reductions achievable through the use of PCB in work 

zones of various configurations. 

 

The first step was accomplished through two efforts: 

• Comparison of the benefit-cost ratios of PCB use by RSAP at two recent TxDOT 

construction projects. 

• Assessment of the output of RSAP relative to the current pavement drop-off 

guidance in use by TxDOT. 

 

Texas A&M University-Kingsville (TAMUK) researchers conducted the analysis of 

the two construction projects, whereas the assessment of the relationship between RSAP 

output and current TxDOT pavement drop-off guidance was performed by TTI.   

For the second step of the analysis, researchers used RSAP to examine the expected 

intrusion crash costs as a function of volume and proximity of the work areas to traffic.  

This required a somewhat different approach to assessing worker and work equipment risk 

in work zones than what has been performed previously.  Those efforts incorporated an 

arbitrary assignment of workers (both number and location) and work equipment within a 

protected area, along with an assumed severity risk profile for possible impacts with either 

item, into the overall estimate of crash costs due to pavement drop-offs and other fixed 

hazards.  Of course, neither workers nor equipment stay in one place or even maintains the 

same relative lateral distance to the travel way during the course of a project.  In addition, 

there are periods of time in which workers are not present, something that previous analysis 

efforts typically ignored.  Even the number of workers and pieces of equipment themselves 

are highly variable from project to project, even for those projects that are similar in nature.   

As the final part of this analysis, researchers examined the use of PCB to reduce 

intrusion risk in two different ways:  
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1. If the intrusion costs were the sole justification for PCB use in the work zone. 

2. If those costs would contribute incrementally to a decision whether or not to use 

PCB to protect a pavement drop off or other work zone hazard. 

The costs associated with the provision of PCB protection of workers and work 

equipment should be treated differently, depending on the overall needs of the work zone 

project being analyzed.  In the first category described above, the costs of providing PCB 

and removing/storing it after the project is completed would need to be offset by the 

estimated savings in intrusion crash costs.  In the second category, the same PCB costs 

would be compared to the combined crash cost savings potential achievable by protecting a 

drop-off condition and the protection of other intrusion crashes that occur.   

RESULTS 

Appropriateness of RSAP  

TAMUK researchers investigated the functionality and reasonableness of the RSAP model 

for Texas work zone analysis by applying it to two different work zones that were actually 

implemented with PCB.  The researchers initially reviewed a variety of projects via online 

project plans available through the TxDOT website.  Two projects were selected: 

• A 1.8-mile pavement rehabilitation project on US 281 between CR 449 and 

FM 2508 south of Alice, TX. 

• A 1.6-mile pavement rehabilitation project on I-37 between Carbon Plant Road and 

McKinzie Road in Corpus Christi, TX. 

 
The US 281 project was a 2-year effort.  In this area, US 281 carried an average of 

16,000 vehicles per day.  A 60-mph speed limit was established within the work zone.  PCB was 

used through much of the work zone to separate the travel lanes from work activity (including a 

pavement drop-off).  Other characteristics of the project are shown in Table 2.  Similarly, the 

I-37 project was a 19-month effort.  This facility carries a significantly higher amount of traffic 

(70,300 vpd).  A 60-mph speed limit was also established in the work zone.  A short section of 

roadway within the work zone was protected by PCB.  Other parameters of the project are shown 

in Table 3.  
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Researchers utilized national inputs for various data required in RSAP in terms of PCB 

installation and maintenance costs, crash costs, etc.  Even so, the results of the analyses 

supported the use of PCB in both cases.  As shown in Table 4, the benefit-cost ratios exceeded 

1.0.  In the case of the US 281 project, the longer duration and other factors resulted in a B/C 

ratio in excess of 1.5. 

 

Table 4.  Results of RSAP Analysis of TxDOT Projects. 
Project Exposure (Vehicle-

Days x 106) 
Benefit-Cost Ratio 

of PCB Use 
US 281 11.6 > 1.5:1 

I-37 40.6 > 1.3:1 
 

For the second part of the assessment of RSAP appropriateness for Texas, TTI 

researchers used recent TxDOT bid PCB prices for installation, movement, and 

removal/storage.  In addition, crash cost values were updated to those recommended by 

FHWA (15).  Then, a series of RSAP runs were made to evaluate the effect of lateral 

distance and vehicle exposure upon the benefit-cost values of providing PCB to protect a 

pavement drop-off.   

With regard to the costs of providing PCB in work zones, one finds considerable 

variability in unit bid prices (per foot) as a function of district, barrier type, and amount to 

be used.  Smaller amounts of barrier tended to have wider variation in prices than did 

projects with long sections of barrier specified.  The values finally entered into RSAP are 

shown in Table 5. 
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Table 5.  PCB Unit Costs for Texas. 

PCB Type 

Costs per foot 

Furnish and 
Install 

Install 
Designated 

Source 
Remove 

Safety Shape $37.50 $7.98 $4.92 
F-Shape $47.00 $14.96 $7.40 

Low-Profile (45 mph or less) $24.66 $4.78 $13.08 
 

With regard to the crash cost values, the data from the FHWA report (15) were 

initially in 2001 dollars. Consequently, the human capital cost components to the overall 

value were multiplied by the ratio of the Consumer Price Index (CPI) for 2008 and that for 

2001. Then, the difference between the comprehensive cost and the human capital cost for 

2001 was multiplied with the ratio of Employment Cost Index (ECI) for 2008 and that for 

2001. Adding the two components yields the comprehensive cost per crash in 2008 dollar 

value. The updated unit crash cost values by crash severity and roadway speed were 

entered into RSAP and are reported in Table 6.   

 

Table 6.  Comprehensive Cost Values Updated to 2008 Dollars. 
Speed 
Limit/Severity ≤ 45 mph ≥ 50 mph 

K $4,541,640 $4,978,305 
A $262,789 $310,540 
B+C $80,932 $76,208 
O $6,996 $6,808 

 

With these modified values entered into RSAP, a series of typical work zones were 

analyzed to evaluate how well RSAP coincides with current TxDOT pavement drop-off 

guidance.  A multilane roadway segment was created, and a vertical drop-off was modeled 

as existing parallel to the roadway at various distances from the travel way.  The 

encroachment rate was increased by 40 percent to account for the generally higher crash 

rates that exist in work zones, similar to the approach taken in earlier uses of RSAP for 

work zone analysis (13, 14).  For each drop-off lateral offset configuration, roadway ADT 

was manipulated, and the benefit-cost ratio of providing PCB versus a no-PCB condition 

were compared to the costs of providing that barrier.  RSAP is somewhat limited in the 



 

29 

drop-off conditions it can model, currently allowing either 1-ft or 7-ft drop-offs to be 

evaluated.  Consequently, the 7-ft drop-off condition was used in the analysis, which may 

have resulted in somewhat higher crash severities than would occur with a 2-ft drop-off, 

which is the threshold TxDOT uses.  On the other hand, researchers used the most 

expensive average PCB cost value scenario (furnish and install plus removal costs) for all 

of the analysis, which is probably higher than what would exist for many projects.  

Researchers estimated the ADT and lateral distance values at which the B/C ratio reaches 

0.75, 1.0, and 1.5 as a way to reflect conditions that generally does not require protection 

(B/C < 0.75), is in the range of possible barrier need and should be examined through an 

engineering analysis (0.75 < B/C < 1.25), and those conditions where barrier use is 

generally going to be easily justifiable (B/C > 1.25).  Current TxDOT guidance compared 

to RSAP output is shown in Figure 8.  

As the figure indicates, RSAP results align very well with current TxDOT 

guidelines at close lateral distances (i.e., 5 ft from the travel lanes).  However, RSAP and 

existing guidance diverge as the lateral offset of the drop-off increases.  Specifically, RSAP 

results are less sensitive to traffic exposure than existing guidance, meaning that it does not 

take as much additional traffic exposure to justify PCB use at greater lateral offsets than 

what currently exists as guidance.  However, the RSAP analysis condition is for a much 

deeper drop-off condition than was used to generate the existing TxDOT guidance.  In 

addition, the updated crash costs are substantially higher (even accounting for inflation) 

than what was used to develop the current guidance.  Consequently, researchers were 

comfortable that the RSAP output was a reasonable tool for work zone PCB analyses.  
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Figure 8.  Comparison of TxDOT and RSAP Assessment of 
Work Zone Drop-Off Conditions. 

  

Assessment of Intrusion Crash Costs Considerations 

PCB Justification Based Solely on Intrusion Costs 

Once the researchers were comfortable with the output that RSAP was providing and its 

general agreement with TxDOT drop-off guidance, researchers evaluated a generic work 

zone without a pavement drop-off condition.  Specifically, researchers examined a 

continuous intrusion area hazard as depicted in Figure 9.  Analysis of the entire work zone 

as an intrusion area was a major departure from the efforts to model individual workers or 

specific work areas with higher severity indices as was done previously.  
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Figure 9.  Illustration of Representation of Intrusion Area Hazard in RSAP. 

 

Typically in work zones, workers do not stay in one place or even maintain the 

same relative lateral distance to the travel way during the course of a project.  In addition, 

there are workers are not present, something that previous analysis efforts typically 

ignored.  Also, the number of workers varies greatly from project to project, even for those 

projects that are similar in nature.  The solution to this challenge adopted by the researchers 

was to not attempt to portray individual workers and equipment but rather simply represent 

the entire work area in terms of the severities of intrusion events that occur. Previous 

analyses assumed a higher severity risk profile for possible impacts with workers when 

PCB (when used) 

Intrusion area 
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portraying individual workers in the work zone. To better represent intrusion area as a 

whole, previously-published data regarding the severity of intrusion crashes and near 

misses at highway work zones in New York (16) was utilized.  The distribution of 

property-damage-only, injury, and fatal crashes observed from intrusion crashes in that 

database provided an indication of the overall severity of intrusion events into work zones.  

Table 7 presents that data.  

Table 7.  Severity of Intrusion Crashes in New York (16). 

Crash 
Severity 

Daytime 
Work Zones 

(n=133) 

Nighttime  
Work Zones 

(n=39) 

Both Types  
Combined 

(n=172) 
Fatal 
Injury 
PDO 

2.3% 
36.8% 
60.9% 

7.7% 
53.8% 
38.5% 

3.5% 
40.7% 
55.8% 

  

The researchers then mapped this distribution to the Severity Index matrix 

presented in Table 1.  Due to the relatively high percentage of fatal crashes occurring in 

that dataset, it was concluded that intrusion events equated to a severity index of 5.  The 

researchers further assumed that these intrusion events represented an intrusion speed of 

approximately 55 miles per hour (since most of these events were on freeway or other high-

speed roadways).  Assuming that the SI value would be zero when speeds are zero, and 

would be 5 when operating speeds were 50 mph, the SI versus impact speed relationship 

shown in Figure 10 was incorporated into RSAP analysis of the entire work zone as an 

intrusion area. 

A series of analyses at different ADT levels were then computed with and without 

the work zone area protected by PCB.  Researchers used RSAP to analyze two operating 

speeds through the work zone: 50 and 70 mph.  The researchers acknowledge that it is very 

difficult to get motorists to reduce their speeds significantly when traversing work zones on 

high-speed facilities, and so the 70 mph condition is probably the more realistic condition 

in most rural areas, unless heavy enforcement or other speed control measures are being 

used.   
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Figure 10.  Intrusion Severity Index Relationship Developed for Use in RSAP. 

 
For analysis purposes, Figure 11 illustrates a one-year, one-half mile work zone on 

a 70-mph divided highway with the actual work area located two feet beyond the edge of 

the travel lane (the buffer distance corresponding to either PCB or channelizing devices 

placed next to the travel lane).  Under this scenario, intrusion crash costs savings alone can 

justify PCB protection once the roadway ADT approaches 40,000 vpd, as long as there are 

constant hazards in the work area.  Furthermore, this value can simply be extrapolated to 

look at other work zone durations (i.e., this is equivalent to a 6-month work zone with an 

ADT of 80,000 vpd, a 2-year work zone on a 20,000 vpd facility, etc.).   

Interestingly, if the operating speed on the facility is 50 mph, Figure 11 indicates 

that intrusion crash costs alone would not justify PCB use under any ADT levels.  The 

presence of PCB actually increases crash costs slightly at that speed over a no-PCB 

condition, according to RSAP.  This is due primarily to a reduced frequency of intrusions 

that extend beyond the assumed 2-ft buffer zone between the travel lane and intrusion area 

under the 50-mph condition (relative to those occurring if speeds are 70 mph).   
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(a) 70 mph Operating Speed 

 

 
 

(b) 50 mph Operating Speed 
 

Figure 11.  Comparison of Yearly Intrusion Crash Cost Savings and PCB Costs for a 
0.5-mi Work Zone on a Multilane Highway. 
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Further analyses using RSAP also suggests that any lateral buffer space that is 

provided between the work area and traffic moving through the work zone will also 

dramatically reduce the cost-effectiveness of PCB use strictly for intrusion crash 

protection.  As an example, Figure 12 presents the identical analysis of the 0.5-mile work 

zone on a 70-mph facility but with the work area located one lane removed from traffic 

(i.e., there exists a 12-ft buffer space) and also at 20 ft from the travel lane.  At these lateral 

distances, the PCB can generate modest reductions in intrusion crash costs, but these do not 

completely offset the costs of providing and removing the PCB until the ADT values reach 

approximately 60,000 to 75,000 vpd (for a one-year work zone).  This would suggest that, 

under these situations, the intrusion crash cost reduction benefit would generally have to be 

combined with drop-off or other protection considerations in order to fully justify PCB use.  

Of course, proportionally lower ADTs could justify PCB use if the work zone is longer 

than one year in duration. 

These graphs were considered reasonable assessments of multilane facilities (both 

divided and undivided).  Researchers believed the different characteristics of a two-lane, 

two-way highway warranted separate examination of this roadway configuration.  Figure 

13 shows this analysis.  The same types of effects are evident.  For the 70-mph scenario, 

some crash cost reductions are seen by providing PCB but not enough to surpass the 

installation costs over the range of ADTs possible on two-lane highways unless the project 

is several years long.  The 50-mph scenario results in slightly greater crash costs when the 

PCB is in place relative to the costs of crashes occurring without PCB present.  The 

analysis indicates that it takes considerable exposure (the product of ADT and work zone 

duration) to justify the use of PCB at a project on a two-lane highway strictly on the basis 

of reducing work zone intrusion crash costs other than those attributable to pavement drop-

offs.  Whereas consideration of other types of intrusion crashes can be added to pavement 

drop-off criteria and potentially justify PCB use at lower ADTs and project durations, it 

alone cannot justify PCB use in most cases, even if the hazards in the work area are 

continually present.   
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(a) 12-ft work area offset from traffic 
 

 
 

(b) 20-ft work area offset from traffic 
 

Figure 12.  Comparison of Yearly Intrusion Crash Cost Savings and PCB Costs 
for a 0.5-mi Work Zone Located 12 ft and 20 ft from Travel Lanes 

on a Multilane Highway, 70 mph Operating Speed. 
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(a) 70 mph Operating Speed 
 
 

 
 

(b) 50 mph Operating Speed 
 

Figure 13.  Comparison of Yearly Intrusion Crash Cost Savings and PCB Costs  
for a 0.5-mi Work Zone on a 2-Lane Undivided Roadway. 
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Researchers found that the analyses are extremely sensitive to the assumptions 

regarding the continuous presence of workers, equipment, and materials in the work area 

that would constitute an intrusion area hazard.  To illustrate this point, Figure 14 illustrates 

the annual crash costs estimated by RSAP due to impacts with the barrier and due to 

intrusions into the work/equipment/materials space.  As can be seen, the actual differences 

in those types of costs are fairly small for the same analysis period (one year).  

Consequently, if there exists significant periods of time during a project in which there are 

no hazards within the work/equipment/materials space, no crash reduction benefits can be 

generated, and the additional crash costs that occur with the barrier that has been installed 

could quickly overwhelm any benefit that may be gained by protecting the 

work/equipment/materials space during some portion of time when such hazards are 

present.  Comparing the two lines in Figure 14, if the work/equipment/materials space were 

vacant as little as five percent of the time, the increased crash costs due to having the 

barrier in place would exceed the crash costs that would be expected to occur when 

work/equipment/materials were present, and so it would not be possible to justify PCB use 

solely on the basis of reducing those types of intrusions.     

Intrusion Cost Effect on PCB Drop-Off Criteria 
 
The effect of estimated intrusion crash costs on the decision criteria currently used by 

TxDOT for drop-off protection was also examined using RSAP.  The approach used was to 

add the potential intrusion crash cost increases (i.e., those involving workers, equipment, 

and materials as estimated in the previous section) to those already represented in the 

existing TxDOT pavement drop-off guidance, which represents the intrusion crash costs 

expected to be incurred by motorists if a pavement drop-off is present.  Initially, the 

researchers believed that this approach would double-count intrusion effects if the drop-off 

condition was located immediately adjacent to the travel lanes (i.e., the drop-off itself 

would always be the first hazard encountered if a motorist left the travel lane.  However, 

depending on the height of the drop-off, it is possible that the vehicle itself would remain 

stable and continue to move through the work area until striking some other object.  

Consequently, the additive approach of intrusion effects was ultimately adopted in this 

analysis. 
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Figure 14.  Intrusion Crash Costs Reduced versus Barrier Crash Costs Added, 
70-mph Operating Speed. 

 

  The TxDOT guidance on use of PCB for drop-off scenarios (depicted in Figures 3 

and 8) was interpreted such that the upper limit separating the “barrier recommended” and 

“engineering judgment” sections of the graph was assumed to be equivalent to a 

benefit/cost (B/C) ratio of 1.25 and the lower limit separating the “engineering judgment” 

and “barrier not needed” sections was assumed to be equivalent to a B/C ratio of 0.75.   

One can envision two distinct scenarios in which the combination of drop-off crash 

costs and other intrusion crash costs should be considered together.  The first of these, 

depicted in Figure 15, is a scenario where a pavement drop-off condition is located some 

distance away from the travel lanes, and workers/equipment/materials are positioned 

between the drop-off and the travel lanes.  In this case, the barrier would always be 

positioned adjacent to the travel lanes (when used).  The costs of impacts with the barrier 

would thus be the same regardless of the lateral distance of the drop-off, as would the costs 

of vehicle intrusions into the work/ equipment/materials space since it also remains at the 

same distance from the travel lane, but the crash costs due to the drop-off when the barrier 
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is not used would decrease as the lateral offset of the drop-off increases.  This is because 

the frequency of errant vehicles reaching the drop-off would decrease.   

 
Figure 15.  Scenario where Work Space Is between Drop-Off and Traffic. 

 

Figure 16 depicts the second scenario where the drop-off is always being the first 

hazard encountered by an encroaching vehicle, and the work/equipment/materials space is 

located beyond the drop-off.     

Barrier (when used) 

Drop-off 

Work/Equipment/Materials 
Space 
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Figure 16.  Scenario where the Drop-Off Is between the Work Space and Traffic. 
 

Researchers used the crash cost reductions (including the costs of crashes with the 

barrier) calculated from the RSAP work/equipment/materials space intrusion crash analyses 

and added the estimated drop-off crash costs that would be averted by having a barrier in 

place.  This latter value was calculated by using the RSAP barrier crash cost estimates at 

various offset values to determine the remaining crash cost reduction benefit that correlates 

with the exposure and lateral offset value shown in the drop-off guidance.  The combined 

Barrier (when used) 

Drop-off 

Work/Equipment/ 
Materials Intrusion 
Space 
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crash cost benefits were then compared to the PCB installation and maintenance costs to 

develop an overall B/C ratio.   

Figures 17 and 18 present the results of incorporating the current pavement edge 

drop-off positive protection guidance with the results of intrusion crash cost analyses 

described in this chapter (the combination of drop-off crash costs and 

work/equipment/materials space intrusions).  Figure 17 represents the condition where the 

work/equipment/materials space is located immediately adjacent to the travel lanes and the 

drop-off is located beyond the work area, whereas Figure 18 is the condition where the 

work area is beyond the lateral offset of the drop-off condition.  The grey lines represent 

the original pavement drop off guidelines, and the colored lines reflect the combined 

analyses results.  The assumptions in these situations are that work activity is occurring 

every other day (3–4 days per week) for 8 hours per day for which intrusion crashes are of 

concern (obviously, the drop-off concern exists 24/7).  The graphs are appropriate for any 

duration work zone.  All that needs to be done is to estimate the work zone duration as a 

fraction of a year and multiply by the ADT to determine the actual exposure number to be 

used in the graphs. 

In Figure 17, the lateral axis begins at 5 ft, as it is unlikely that work activity could 

occur in an area any narrower between travel lanes and the drop-off itself.  In addition, two 

conditions are presented—one representing the situation in which intrusion hazards are 

present continuously during the work zone and one in which it is assumed that there are 

work zone intrusion hazards only for 3–4 days per week for 8 hours per day (i.e., a typical 

project work schedule, for example).  For comparison purposes, the lightly-shaded lines 

represent the existing positive protection drop-off criteria in the graphs.  The condition 

where intrusion crash risks are present only during normal work hours (costs other than 

those associated with running to the drop-off) has a fairly minor effect upon the positive 

protection thresholds already established for drop-off conditions.  In contrast, the condition 

where intrusion hazards are expected to be present continuously during the work zone has 

positive protection threshold values that are much less than those which consider pavement 

drop-off conditions only.  The graphs are also less sensitive to lateral offset of the drop-off 

to the travel lanes (i.e., the slope of the line is flatter), since it is assumed that work activity 

is occurring right up to the buffer area next to the travel lane (or positive protection if 



 

43 

provided).  Consequently, the influence of the drop-off upon crash costs diminishes as its 

lateral offset increases (for a given exposure level) and more of the crash costs of concern 

become associated with intrusion into the work/equipment/materials space. 

In Figure 18, positive protection thresholds are provided when the work space is 

located beyond the drop-off location.  The graphs look similar in shape to those shown in 

Figure 17, although the influence of the work space intrusion hazard analysis upon the 

recommendations is less dramatic.  Such a result should be expected.  In situations where 

the work space is located beyond the lateral offset of the drop-off condition, the risk of an 

errant vehicle traversing out to the drop-off and then to the other intrusion risks in the work 

space is dramatically less than when the drop-off and other intrusion hazards are located 

much closer to the travel lanes. 

In both Figures 17 and 18, the effect of considering work/equipment/materials 

space intrusion crash costs is fairly limited when these types of hazards are expected to 

exist only occasionally (i.e., 3–4 days per week, 8 hours per day).  It is only when the 

hazards are expected to be present almost continuously do the graphs differ dramatically 

from that of existing drop-off guidance.  Consequently, justification of PCB use based on 

consideration of both drop-off costs and work space intrusion costs is highly dependent 

upon assumptions about how the work space will be managed.  In most cases, occasional 

work space hazard presence is likely to be the more realistic assumption.  However, 

situations where work activity is anticipated to occur around the clock, and limited work 

space locations such as bridges or tunnels where equipment and materials must be stored 

close to the travel lanes even when activity is not occurring, may justify utilizing the 

guidance based on a continuous presence of work space hazards. 
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(a) Work/Equipment/Materials Space Intrusion Crash Risks Exist 8 hours per day, 

3–4 days per week 
 
 

 
 

(b) Work/Equipment/Materials Space Intrusion Crash Risks Exist Continuously (24/7) 
 

Figure 17.  Recommended PCB Usage Guidance when Work Space 
 Is in Front of the Drop-Off and Immediately Adjacent to the Travel Lanes. 
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(a) Work/Equipment/Materials Space Intrusion Crash Risks Exist 8 hours per day,  
3–4 days per week 

 
 

 
 

(b) Work/Equipment/Materials Space Intrusion Crash Risks Exist Continuously (24/7) 
 

Figure 18.  Recommended PCB Usage Guidance when Work Space Is beyond 
the Drop-Off.  
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ANALYSIS OF EXPECTED CRASH REDUCTION BENEFITS AND 

COSTS OF PORTABLE AND MOBILE BARRIERS IN WORK ZONES 

INTRODUCTION 

Although PCB is by far the most common positive barrier in use statewide, its size and 

weight make installation/removal and transport costs fairly significant.  As a result, it is 

generally not feasible for use in more temporary applications.  Recently, barrier 

technologies that are more portable than PCB have become available.  These include 

moveable concrete barriers, steel barriers, water-filled barriers, and vehicle-mounted 

mobile barriers (17-19) are some samples.  These technologies can be transported, installed 

in or next to a travel lane, and removed more quickly than traditional PCB.  These 

characteristics make such protection viable options for even short-term and short-duration 

work operations.  However, such systems also cost more initially than PCB (although 

prices are likely to begin coming down as their penetration into the marketplace increases) 

and have somewhat different crash test characteristics, such as greater lateral deflections if 

not fully anchored when hit, than PCB.  Another type of portable protection system is the 

truck-mounted attenuator.  TMAs are attached to the rear of shadow vehicles or work 

vehicles moving at slow speeds on a roadway in a mobile work operation.  Crash tests have 

verified the ability of this type of technology to reduce rear-end crash severity.   

Although these technologies do offer the potential for reducing work zone crash 

costs, the cost-effectiveness of these technologies under various roadway and work zone 

situations has not been fully assessed.  This chapter documents the methodology and results 

of analyses performed to examine the crash cost reduction benefits and implementation 

costs of these types of technologies. 

DESCRIPTIONS OF PORTABLE BARRIER SYSTEMS 

Moveable Barrier 

Moveable barrier technology has existed for several years.  This technology consists of 

short (1-meter) segments of concrete barrier linked together, each with a special T-shaped 

top.  A specially designed transfer machine moves along, lifting the barrier by its top and 

transferring it laterally to the other side of the machine (see Figure 19).  The design of the 
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system is such that is protected from approaching traffic by the barrier itself at all times.  

The system requires a rather lengthy time to set up and is generally used where a fairly long 

section of barrier must be moved one or more times per day.  However, once in place, the 

barrier can be moved laterally to close or open a lane at a fairly quick pace (about 3 mph). 

 

 
Figure 19.  Example of Moveable Barrier and a 

Barrier Transfer Machine. 
 

Several TxDOT districts (Austin, Dallas, and El Paso) have utilized the technology 

on one or more projects.  Costs of the technology vary, but appear to fall in the $70 to $150 

per linear ft category.  This cost includes the movement of the barrier as many times as 

needed during the project.  Functionally, researchers considered moveable barriers to be 

equitable to PCB in terms of protection from lateral vehicle intrusions into the work space, 

the primary benefit being in terms of its ability to avoid reducing capacity during peak travel 

periods and thus reduce creating queues and delays.  Consequently, the 

work/equipment/materials space intrusion crash cost analyses performed in the previous 

chapter are considered to be relevant for moveable barrier.  The breakeven ADT where the 

costs of the barrier would be offset solely by the reduced intrusion crash costs would be 

much higher, though, because moveable barrier is two to three times the cost of PCB.   

Steel Barrier 

Recently, steel barrier segments that can be quickly unloaded at a worksite and linked 

together to provide longitudinal crash protection have been developed to protect workers 

from work space intrusions during work activities that last only a short time at any one 

location (see Figure 20).  Some steel barrier designs include retractable wheels that can be 



 

49 

lowered so that the steel sections can be moved by hand laterally across travel lanes as 

needed to create protected work spaces.  Other designs include wheels and vehicle 

attachments that allow the barrier to be moved along with the work activity as it progress 

down the roadway.  Minimum lengths of steel barrier are required to achieve various crash 

test performance levels.  The extent of lateral deflection depends on the specific barrier 

design and whether the barrier is anchored at its ends or not.  TxDOT has not had a lot of 

experience with this type of barrier yet.  Based on very limited data, it appears that steel 

barrier is currently priced at approximately $180 per linear ft.   However, this value is 

likely to change as the product becomes more commonly used. 

 

 
 

Figure 20.  Example of the Deployment and Use of Steel Barrier. 
 

Mobile Barrier 

Many work activities move slowly or intermittently along the roadway and so cannot be 

protected by temporary concrete barrier.  Shadow vehicles with truck-mounted attenuators 

are typically used to protect workers on foot in mobile operations.  However, these devices 

do not provide lateral impact protection.  Recently, a few truck-mounted technologies have 

been developed to protect workers from lateral work space intrusions.  Specifically, a steel 

beam “cage” is attached to a semi-tractor trailer cab that can then be towed to a location 

and deployed around a small area to protect a work crew on foot near moving traffic (see 
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Figure 21).  Similar to steel barriers, mobile barriers have not been utilized significantly by 

TxDOT, although a few districts are contemplating the purchase of one or more units in the 

future.  Such technology is fairly expensive to purchase, costing between $200,000 and 

$250,000 per unit. Once again, the price of the technology may change over time as more 

and more agencies adopt its use.  Unfortunately, data on the longevity or effective service 

life of this technology are not readily available either.   

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 21.  Examples of Mobile Barrier Technology. 
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Truck-Mounted Attenuators  

Truck-mounted attenuators have been in existence for many years and are well-accepted as 

a crash protection device for mobile and short duration operations (see Figure 22).  Several 

vendors and models of TMAs exist in the marketplace.  The attenuator absorbs the impact 

energy of a rear-end crash into the work vehicle, reducing the severity of the crash for both 

the motorist and workers in the work vehicle.  Care must be taken to match the correct type 

of TMA to the work vehicle and operating conditions on which the vehicle will be used.  

Work operations that involve workers on foot must be carefully planned with respect to 

how shadow vehicles and TMAs will be used to allow sufficient roll-ahead distance for the 

shadow vehicle to avoid hitting the workers in the event the TMA is impacted by an 

approaching motorist.  The cost of a TMA varies by type, manufacturer, and quantity 

ordered; prices ranging between $15,000 and $20,000 each can be found on various 

company websites.   

 
Figure 22.  Example of a TMA in Use during a 

Mobile Operation. 
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ANALYSIS METHODOLOGIES 

Researchers used two different types of analyses to evaluate these types of technologies.   

First, researchers analyzed portable steel barrier and mobile barrier with RSAP in an 

extension of the roadside hazard analysis used to evaluate PCB use.  However, rather than 

consider the protection of an entire work zone as was done in the previous chapter for PCB, 

researchers evaluated a much smaller work space (45-ft length) in RSAP (see Figure 23).   

Any intrusions into this limited work space were modeled as always resulting in a worker 

fatality.  This distance approximately equals the length of work area needed for many 

maintenance work activities based on a review of various work tasks performed by workers 

on foot (18).  Obviously, an assumption of a worker fatality for each intrusion is very 

liberal and places a high degree of value on reducing intrusion risk. Still, given the fact that 

speed limits are generally not reduced for these types of work operations, and the high 

degree of importance that highway agencies and contractors are placing on improving 

worker safety, researchers view this assumption as reasonable.   

 

 
Figure 23.  Short-Term Work Space Modeled in RSAP. 

 

The values computed by RSAP for this analysis were subsequently converted to 

hourly crash cost reduction values, as these types of highly-portable barriers can be rolled 

in and out of travel lanes or shoulders as needed during hours of work activity only.  The 
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overall intent was not to develop simple benefit-cost comparisons of the various 

technologies, since the costs of these newer devices are likely to change significantly as 

demand for them increase and production costs decrease.  In addition, the total service lives 

of these devices are not known with any degree of precision either.  By estimating potential 

crash cost reductions of these devices on an hourly basis, it is possible to consider different 

device cost/service life assumptions to determine if the device can be cost effective under 

various roadway and traffic volume levels.   

The second type of analysis focused specifically on truck-mounted attenuator use 

during mobile and short duration work activities.  The purpose of a TMA is to reduce the 

severity of a rear-end collision by an approaching vehicle impacting a work vehicle that is 

temporarily stopped or moving at very slow speeds.  For this analysis, researchers used 

rear-end crash rates at work zone operations measured in previous research (16) to estimate 

the frequency of rear-end collisions with a work vehicle.  Analysis of crash outcome data 

involving work vehicles with and without TMAs provided data on the savings in crash 

costs that result from having a TMA in use.   

RESULTS 

Portable Steel and Mobile Barrier Systems 

Initially, researchers performed a number of RSAP analyses for various assumed approach 

speeds on various roadways.  Researchers also examined the relative lateral distance 

between a travel lane and the location of the work space.  However, researchers found that 

these variables did not have a significant effect on the output results over the range of 

parameters evaluated.  The resulting outputs represented an annual exposure and so were 

divided by the number of hours in a year to achieve an hourly crash cost reduction estimate.  

The research team recognized that traffic volumes differ dramatically between daytime and 

nighttime conditions. However, single-vehicle run-off-road crashes typically comprise a 

greater proportion of crashes at night than during the day (16).  Furthermore, data on work 

zone intrusion crashes also suggest that they represent a greater proportion of work zone 

crashes at night than during the day.  In fact, analyses by the research team suggested that 

hourly work zone intrusion crash cost reductions would be approximately the same 

regardless of whether daytime or nighttime work operations were being considered.   
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Figure 24 illustrates the types of data obtained from the RSAP analyses once the 

output was converted to average hourly benefit of providing positive protection of these 

small work spaces.  The hourly benefit is the difference in estimated crash costs without 

any protection present (in which case, any intrusion within the work space area would 

cause a fatality) and those when positive protection is present (in which case, the crash 

costs could be those sustained by the encroaching vehicle that impacts the protection 

technology).  The assumption is that the portable and mobile barrier crash costs would be 

similar to those for portable concrete barrier.  However, researchers did not have actual 

crash or test data involving those devices that could be used to verify or refute this 

assumption.  As would be expected, the benefits are most significant for situations in which 

the work space is located immediately adjacent to moving traffic (i.e., it is in a closed 

traffic lane or in a closed shoulder).  Additional graphs for rural freeway conditions, and 

undivided roadway conditions, are provided in Appendix B.   

 Based on the analysis results, researchers dropped the consideration of operating 

speed, and considered only work spaces located adjacent to the travel lane (with the typical 

2-ft buffer defined where channelizing devices or the barriers would be located).   The 

result of the analysis was the simplified graph shown in Figure 25.  This graph can then be 

used to determine how many hours it would take to offset the cost of a particular positive 

protection device or technology when used on a facility serving a given ADT.  For 

example, the cost of providing 200 ft of steel barrier to protect a work space that is priced 

at $180 per ft for various ADT levels is shown in Figure 26.  Also shown in that figure is 

the breakeven hours needed if the price of steel barrier would drop to $100 per ft.  Taking 

this computation one step farther, Figure 27 provides an estimate of the number of 6-hour 

work shifts that would be required to offset the cost of steel barrier at $180 and $100 per ft 

purchase prices. One sees that the cost of steel barrier protection of work activities can be 

recouped fairly quickly (within one to two years of daily use) once ADTs exceed 50,000 to 

75,000 vpd, especially if steel barrier costs decrease in the near future. 
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Figure 24.  Examples of Estimated Positive Protection Benefits for a 45-ft Work Space 

with a Single Worker: 70 mph Urban Freeway Conditions. 
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Figure 25.  Simplified Relationship between ADT and Hourly Crash Cost 

Reduction Benefits of Portable or Mobile Positive Protection. 
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Figure 26.  Hours to Offset Costs of Steel Barrier Use. 
 
 

 
 

Figure 27.  Six-Hour Work Shifts to Offset Costs of Steel Barrier Use. 
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A similar analysis can be performed for the use of mobile barriers.  As discussed 

previously, these devices are currently priced at between $200,000 and $250,000.  Figures 28 

and 29 illustrate the number of hours and number of 6-hour work shifts that would be required to 

offset those costs via reduced work zone intrusion crash costs.  As the figures indicate, it takes 

considerably longer (as much as ten times longer) to offset the costs of these types of devices 

with reduced work zone intrusion crash costs.  However, these devices do still appear to be 

justifiable at higher ADT levels (i.e., ADTs greater than approximately 100,000 vpd).  At these 

volume levels, the current costs of mobile barriers could be offset within 5 to 10 years of use. 

Obviously, if these devices decrease in cost over time, the costs could be reduced in a 

corresponding shorter duration. 

 

 
Figure 28.  Hours to Offset Cost of Mobile Barrier. 
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Figure 29.  Six-Hour Work Shifts to Offset Costs of Mobile Barrier Use. 

 

Truck-Mounted Attenuators  

As described previously, an encroachment-based analysis model (i.e., RSAP) would not be 

appropriate for assessing the benefits and trade-offs associated with the use of TMAs during 

mobile and short-duration operations, as TMAs primarily protect work crews and the traveling 

public from rear-end crashes between motorists and slow-moving or stopped work vehicles.  

Rather, an analysis should be based on the expected reduction in those rear-end crash costs 

associated with the use of TMAs.  The devices themselves are assumed to reduce the severity of 

such crashes, but not necessarily their frequency.  Therefore, researchers hypothesized again that 

it should be possible to determine the number of hours of work activity needed to offset TMA 

costs at various roadway ADT levels as a way of assessing TMA cost-effectiveness.  The key 

data items needed are an estimate of the reduction in crash costs that are achieved by the use of 

TMAs and the frequency of rear-end crashes that are likely to occur between a motorist and a 

work vehicle with or without a TMA present. 

To assess crash cost reductions of TMA use, researchers utilized the New York State 

Department of Transportation (NYSDOT) work zone crash database from years 2000 through 
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2005.  Researchers reviewed the narrative of the crashes to identify those that involved a 

collision between a motorist and a work vehicle.  The NYSDOT database also identified whether 

or not the work vehicle impacted had a TMA in place at the time of the collision.  By comparing 

the severity of the crashes where a TMA was not present to those when a TMA was in place, it 

was possible to determine the average reduction in crash severity that could be attributable to the 

presence of the TMA.  Assigning the standard cost values for various levels of crash severity as 

previously documented in Table 6, it was then possible to estimate the average crash cost 

reduction that was achieved when a TMA was present.   

The NYSDOT work zone crash database yielded a total of 186 crashes between motorists 

and work vehicles.  As shown in Table 8, 63 percent of those collisions did involve a work 

vehicle that had a TMA attached, whereas 37 percent involved a collision with a work vehicle 

that did not have a TMA.  The table also shows yearly counts of three crash severity levels 

(property-damage-only, injury, fatality).  Summed over the five years, one sees the distribution 

of the crashes by severity for each condition of interest (with or without a TMA present).  The 

numbers and percentages are very telling.  For crashes where a TMA was present, approximately 

65 percent of the crashes involved property damage only, and 35 percent involved an injury to 

the public or to a worker.  No fatalities occurred in these types of crashes either.  In contrast, 

60 percent of the crashes where a TMA was not present involved an injury to the public or a 

worker.  In addition, 3 percent of these types of crashes resulted in a fatality.  Only 37 percent of 

the crashes resulted in just property damage.  The differences between the with-TMA and 

without-TMA conditions were statistically significant at a 95 percent level of confidence.  

Comparing the percentages between the two conditions, one sees that TMAs reduce the chance 

of injury or death when rear-end collisions occur between motorists and work vehicles by 

55 percent.  Stated another way, the chance of injury or death is 1.8 times higher when a TMA is 

not present compared to when a TMA is present.   
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Table 8.  Collisions between Motorists and Work Vehicles with and without a TMA. 

Year Crashes with TMAs Crashes without TMAs 
PDO Injury Fatal PDO Injury Fatal 

2000 10 6 0 4 11 1 
2001 9 5 0 0 8 1 
2002 20 9 0 9 6 0 
2003 14 10 0 6 10 0 
2004 12 3 0 5 6 0 
2005 12 8 0 1 0 0 

Totals 77 
(65%) 

41 
(35%) 

0 
(0%) 

25 
(37%) 

41 
(60%) 

2 
(3%) 

χ2=16.243 > χ2
(0.05, 2) = 5.991 

PDO = property damage only  

 

To estimate the average cost of a crash for both with- and without-TMA conditions, 

researchers multiplied the proportion of each severity level in Table 8 by the corresponding 

estimated cost of a crash of that severity level, based on crash cost research updated from 

2001 to 2008 dollars using the Consumer Price Index (CPI) (15):  

• PDO = $9,516. 

• Injury = $120,477. 

• Fatal = $4,978,305. 

The result was an estimated average cost of a rear-end crash between a motorist and work 

vehicle of $48,070 if a TMA is present and $222,561 if no TMA is present, which is a difference 

of $174,490 per crash.  Thus, rear-end crashes between motorists and work vehicles are almost 

four times more expensive if a TMA is not present to reduce the severity of the crash.   

With the benefit of TMA use (in terms of crash cost savings) established, researchers 

then turned their attention to estimating the frequency with which such collisions occur.  

Unfortunately, the NYSDOT database does not include work zone exposure information upon 

which to develop estimates of motorist-work vehicle collision crash frequencies.  Therefore, 

researchers assumed that the frequency of such collisions was comparable to the rate at which 

rear-end work zone collisions occur between motorists.  While it can be argued that work 

vehicles have much greater conspicuity (warning lights, retroreflective high visibility markings, 
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etc.) than typical vehicles driven by the public, work vehicles often travel at much lower speeds 

relative to the speed of traffic and so create larger and more frequent speed differentials than 

occur between motorists in two vehicles.  To account for the fact that only rear-end collisions 

involving a work (shadow) vehicle were of interest, only a fairly small region around a work 

convoy (200 ft) was examined in the analysis. Overall, researchers believe that the analysis that 

follows represents a fairly reasonable (and likely conservative) assessment of rear-end crash 

potential between motorists and work vehicles. 

Expected crash frequencies were based on the results of the recent national research of 

both daytime and nighttime work zones (16).  In that study, crashes in work zones were modeled 

as a function of normal roadway crash risk, multiplied by a crash modification factor that 

accounted for increased crash risk due to work zone activities.  For this analysis, the crash 

increases associated with work operations involving temporary lane closures were used, as 

illustrated in Table 9.  Interestingly, the changes in work zone crash frequency were not found to 

be correlated to ADT, but were fairly constant over the entire range of ADTs included in the 

dataset.  

Table 9.  Crash Increases during Daytime and Nighttime Work Activities  
Involving Temporary Lane Closures. 

Crash Severity 
Daytime 

Work 
Activities 

Nighttime 
Work 

Activities 
PDO Crashes 

Injury and Fatal 
Crashes 

+80.8% 
+45.5% 

+74.8% 
+42.3% 

 

Although the increase in crash frequency due to the presence of work zone activity 

involving a temporary lane closure was found to be ADT independent, the proportion of the 

crashes that involved rear-end collisions was not.  Rather, the proportion of crashes that 

involved rear-end collisions increased as the ADT of the roadway increased.  Figure 30 

illustrates this increase.  The estimated work zone crashes expected to occur each hour of 

the mobile or short-duration work operation were then multiplied by the percentage of 

those crashes that are expected to involve rear-end collisions with the work vehicle and by 

the average reduction in crash costs attributable to the use of TMAs.  Figure 31 shows the 

results of those computations. 
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Figure 30.  Work Zone Crashes Involving Rear-End Collisions (adapted from 16). 

 

 

Figure 31.  Hourly Crash Cost Reductions due to TMA Use. 
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As was done in the previous section for portable and mobile barriers, it is useful to 

examine TMA values in terms of the number of hours it takes to offset the costs of the 

device through reduced crash costs.  A review of typical prices for TMAs suggests an 

approximate cost of about $15,000.  Using this value, Figure 32 illustrates the number of 

hours needed to recoup the costs of TMA use as a function of ADT on a facility.  One sees 

that it is fairly easy to offset the costs of TMAs at about any ADT level during daytime 

operations.  At night, it becomes fairly easy to justify TMA use once ADTs exceed 

50,000 vpd.  Interestingly, that is the ADT level at which agencies typically begin 

conducting work operations that occur in travel lanes, including mobile and short-duration 

work activities, during nighttime hours to avoid creating excessive delays and queues (16).  

If the analysis is again extended to consider the number of 6-hour work shifts needed to 

offset TMA costs, one finds that the devices do not require extremely long service lives to 

justify their use.  In fact, as Figure 33 suggests, a TMA will offset its costs in expected 

reduced work zone crash costs in about one year or less of use during the day at any 

volume level and at night when ADTs are above 50,000 vpd. 

 

 
 

Figure 32.  Hours to Offset Costs of TMA Use. 
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Figure 33.  Number of Work Shifts Needed to Offset TMA Use. 
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ASSESSMENT OF OTHER TRAFFIC CONTROL MEASURES TO 
REDUCE WORK ZONE INTRUSIONS 

INTRODUCTION 

Even if an engineering analysis of a work zone indicates that PCB or other barrier 

protection is not justified, the FHWA regulations direct state agencies to consider other 

techniques believed to have the potential to reduce vehicle crashes and intrusion potential 

into the work area or to reduce the consequences of such intrusions should they occur (20).  

These techniques tend to fall into one or more of the following categories: 

• Exposure control techniques. 

• Other traffic control improvements (improved worker and vehicle visibility, 

methods to improve driver or worker alertness, speed reduction techniques). 

The reduction of worker and motorist exposure to work zones is a significant 

emphasis area for FHWA as well as for TxDOT and other state highway agencies.  Efforts 

in this category include: 

• Full road closures. 

• Moving work activities to nights and/or weekends when traffic volumes are lower. 

• Efforts to increase traffic diversion to other routes or modes in the corridor. 

• Contracting techniques to increase the pace of work and thus reduce total work zone 

durations. 

Past research has shown that these techniques do have the potential to reduce 

crashes in the work zone (16).  However, the implications of these strategies on crashes 

elsewhere in the corridor have not yet been assessed.  

An argument that is often made is that drivers sometimes do not adequately detect 

and recognize the presence of workers and the need to be more careful when negotiating 

the work zone.  Therefore, enhancements to the visibility of the work zone or to the 

workers and vehicles themselves could help reduce work zone crash (including intrusion 

crash) potential.  These techniques include specifying warning lights on advance warning 

signs, use of PCMSs, high-visibility apparel requirements for workers, enhanced vehicle 

warning light systems, and enhanced lighting systems for night work operations (especially 
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if flaggers are used).  Once again, while the effect of some of these countermeasures has 

been assessed in terms of speed reductions or other operational influences, none have been 

correlated to a measurable reduction in crash likelihood. 

Techniques used to enhance driver alertness and awareness of the work zone is 

assumed to correspond to reduced crash likelihood (including intrusion crashes into the 

work area); once again this has not been established for certain through objective research.  

Many of the techniques listed above for speed reduction and improved visibility (rumble 

strips, drone radar, enforcement presence, PCMS usage, vehicle warning light systems, 

enhanced work zone lighting systems, etc.) are believed to raise driver awareness levels as 

well.  The display of dynamic information to the driver (delays, presence of queues, etc.) 

on PCMS through the application of work zone ITS systems also falls into this category.  

Also included in this category are those techniques that aid the worker in identifying when 

an errant vehicle has entered into the work area (spotters, intrusion alarms, etc.).   

Excessive speeds through work zones are often cited as a major concern by work 

zone traffic control designers and field personnel alike.  It is typically argued that slower 

speeds allow more time for drivers to react to an unexpected situation or to correct their 

vehicle path if they begin to leave the travel way for some reason.  It is also recognized that 

crash severity is reduced when speeds are slower.  Speed display trailers or portable 

changeable message signs (PCMS) that provide feedback to the driver about their speed, 

drone radar, portable rumble strips, the CB Wizard, and flagging have all been tried as 

work zone speed management techniques (20).  The amount of speed reductions achieved 

with these techniques varies.  On the other hand, the provision of law enforcement 

personnel in work zones has typically achieved more substantial speed reductions when 

such personnel are present, as has the use of pilot cars to lead vehicles through the work 

zone.  However, these techniques are manpower intensive and significantly more expensive 

to employ.   

In this chapter, researchers summarize the key considerations relative to the 

application of these non-positive-protection strategies for improving safety in work zones. 
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EXPOSURE CONTROL TECHNIQUES   

The fewer times motorists encounter work zones, the fewer chances there are for work 

zone-related crashes to occur.  Reducing the number of work zones, the length of time 

during which work zones are set up and the adverse impact that work zones have on traffic 

will reduce the exposure of road users and workers to crashes (16). 

Several strategies are available to accomplish this particular objective (20): 

• Strategies to reduce work zone duration and to reduce the number of work zones 

that are required. 

• Full-time roadway closure for construction operations. 

• Nighttime road work. 

• Demand management programs to reduce volumes through work zones. 

Techniques that accelerate construction progress can be viewed as a type of safety 

benefit, even though such techniques are not typically implemented as a way to improve 

safety.  These can consist of changes to project design, scheduling, and sequencing to 

accelerate the work of construction.  Typically, these changes and innovations occur 

because of contract acceleration incentives included in the project bid documents.  If the 

duration of a work zone on a facility is reduced over time, then vehicle exposure to the 

work zone (and resulting additional crash costs due to the work zone) will undoubtedly be 

lower, assuming that comparable levels of safety are provided in the work zones that are 

actually used.   

As an example, Figure 34 presents the estimated additional crash costs that occur 

per 100 hours of daytime work zone per work-zone-mile, based on a recent study of 

daytime and nighttime work zones (16).  The values illustrate the reduction in crash costs 

that can be achieved for each 100-hour reduction in work zone duration.  Efforts that 

reduce the amount of inactive work zone time are typically the simplest to achieve.  

However, the use of innovative construction practices can also lead to reduced work 

activity times as well.  A similar graph for nighttime conditions is shown in Figure 35. 
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Figure 34.  Effect of Strategies to Reduce Work Zone Frequency and 

Duration: Daytime Conditions (16). 
 

 
 

Figure 35.  Effect of Strategies to Reduce Work Zone Frequency and 
Duration: Nighttime Conditions (16). 
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When and where it is possible to do so, completely closing a roadway section to 

allow construction or maintenance work to be performed eliminates the potential for traffic 

crashes to occur in the activity area.  In addition, the elimination of interactions between 

construction vehicles/equipment and traffic often allows for larger workspaces and 

increased worker productivity, thus reducing the total duration of the work activity.  It is 

possible that work quality can be improved as well.  Closing one direction of a freeway and 

putting both directions of traffic on the other directional roadway via median crossovers is 

one example of this strategy.  Likewise, closing one direction and moving traffic onto the 

adjacent frontage road around the work zone is another example.  However, this strategy 

can entail the complete closure of both travel directions and detouring of traffic onto 

completely different roadways in the region.  

From a safety assessment perspective, the amount by which traffic crashes in the 

work zone is reduced can be significant since both the additional crash costs due to the 

work zone and the crashes normally occurring on that roadway segment are eliminated.  

However, these reductions in crash costs may be offset to some degree by an increase in 

crash costs on the detour route(s) due to the additional traffic exposure that is placed on 

each route.  Whereas this is not likely to be a significant concern when median crossovers 

or frontage road detours are employed, it may be more important if traffic is being 

completely detoured off of a freeway-type facility onto arterials and other surface streets.  

Normally, crashes occur more frequently on arterial streets than on freeways but are less 

severe.  Consequently, a detailed analysis of a particular site and the feasible alternative 

routes would be required to assess whether there is a net crash cost benefit to a full 

roadway closure.  Estimating the additional crash costs on these detour routes requires 

information on how much additional traffic is being carried on each route, the normal 

traffic volumes on those routes, and the expected crash rate. 

The decision whether work must be performed at night should involve a 

comprehensive cost-effectiveness evaluation that should consider the implications of each 

alternative (including active night work) with respect to three key impact factors: 

• Impact to the community and traffic (business operations, pedestrians and 

bicyclists, emissions, public transit, emergency services, noise effects, lighting and 

glare effects, traffic diversion impacts, etc.). 
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• Impact on safety (construction safety, traffic safety, and safety during maintenance 

efforts). 

• Impact on constructability (contractor experience, temperatures, supervision 

capabilities, worker efficiency, lighting plan quality, and materials/equipment 

availability). 

In the majority of cases, however, avoidance of adverse traffic impacts drives the 

decision of whether or not to work at night.  Various criteria are used to determine when 

the threshold of maximum acceptable impacts is exceeded.  Some agencies simply identify 

a maximum per-day or per-hour traffic volume per open lane that can exist if a lane closure 

is to be allowed.  If the traffic volume during all or part of the time that the lane closure is 

being anticipated is higher than that threshold, it must be scheduled during a time when 

traffic volumes are lower.  Other agencies use predicted estimates of delay or queue lengths 

to decide if work must be performed at night.  Although congestion avoidance may be the 

primary factor compelling agencies and contractors to work at night, there is evidence that 

doing so does have a safety benefit as well to the motoring public. The extent of the 

expected savings when lanes are closed is illustrated graphically in Figure 36.  Also shown 

are the expected savings of working at night when travel lanes do not need to be 

temporarily closed.  For the former, the crash cost savings are substantial and increase 

exponentially at higher AADT levels.  In contrast, there is little incentive from a safety 

standpoint to working at night if travel lanes do not need to be closed.  As the figure 

illustrates, the difference in expected crash costs between working during the day versus at 

night are fairly small for most of the AADT range. 
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Figure 36.  Example of Reduction in Crash Costs Achieved by Working at Night (16). 
 

Transportation demand management (TDM) programs are one part of a 

comprehensive traffic management approach to improve safety and reduce delays in work 

zones (20).  The goal of TDM is to reduce the total amount of traffic attempting to use the 

work zone and other routes in the corridor by encouraging various trip reduction techniques 

(carpooling/vanpooling, increased use of transit, increased bicycling/walking, etc.).  In this 

way, vehicle exposure in the work zone is reduced, which improves safety.  As example, 

the potential safety benefit of 10 and 20 percent trip reductions due to TDM techniques 

during times when work is active and lanes are temporarily closed is illustrated in Figure 

37(16).  TDM techniques work to reduce all crash costs on a facility, not only those 

additional costs that are attributable to the presence of the work zone.  It must be kept in 

mind that these crash cost savings are achieved if the number of trips being made is 

reduced, not simply moved to other routes in the corridor. 
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Figure 37.  Example of Reduction in Crash Costs by Travel Demand Management 
Strategies during Work Activity with Temporary Lane Closures (16). 

 

OTHER TRAFFIC CONTROL IMPROVEMENTS 

Improved Worker and Vehicle Visibility 

Ensuring that both workers and work vehicles are adequately visible to approaching 

motorists is believed to improve work zone safety and potentially reduce the likelihood of 

vehicle intrusions into the work area, especially those that occur because of deliberate 

driver decisions and actions to do so.  Unfortunately, the magnitude of such crash 

reductions is not easily quantifiable.  Consequently, only general recommendations can be 

provided.  

The intent of the recent FHWA rulemaking on high-visibility vests is to ensure that 

workers are adequately visible to approaching motorists and to other workers operating 

construction equipment in and around the work zone (21).  The regulations significantly improve 

worker visibility, especially at night.  Ensuring that the visibility of vests is maintained and that 

vests that no longer perform as intended are removed from use is a key responsibility of highway 

agencies, including TxDOT.  Guidance on vest conditions that are considered acceptable, 

marginal, or unacceptable (and thus should be discarded) is available (22). 
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With regard to work vehicles, visibility must be considered both when they are in 

operation and in use within the work space, as well as when they are not being used and are left 

out in or near the work site.  For the former, the regular vehicle warning lights and supplemental 

special flashing beacons or other lights are used to warn motorists.  For the latter, the use of 

retroreflective markings on the back and side of the vehicle enhances its visibility.  Some 

agencies choose to have channelizing devices or barricades placed in front of parked vehicles to 

further ensure their visibility.   

Various researchers have studied the design and placement of special flashing warning 

lights for construction and maintenance vehicles (23-25).  TxDOT policy defines acceptable 

flashing warning light systems for use on TxDOT vehicles as well as other construction, 

maintenance, utility, and service vehicles statewide. Care must be exercised to ensure that the 

warning lights are not overpowering or blinding to motorists at night.  Work vehicles should also 

be oriented such that their headlights are not pointed toward approaching traffic, especially when 

working in the right lane or shoulder of a multi-lane highway, as this can create significant 

confusion and erratic maneuvers by motorists (26).   

Improving Driver and Worker Alertness 

A number of strategies and technologies are available that strive to increase driver awareness and 

alertness in work zones (20).  These include such things as portable changeable message signs, 

flags on warning signs, flashing warning lights on signs and channelizing devices, and sequential 

warning light systems on lane closure tapers.  Certain work zone intelligent transportation system 

(ITS) applications can also improve driver alertness and awareness of work zone hazards.  

TxDOT requires flags on certain advance warning signs and PCMS use for certain work zone 

operations.  Additional use of these and other devices are left up to the work zone designer or 

project engineer to determine.  Overuse of such devices can reduce their credibility and 

effectiveness over time.  Consequently, it is important that each application fulfills the basic 

MUTCD requirements for a traffic control device (27): 

• Fulfill a specific need. 

• Command attention. 

• Convey a clear, simple meaning. 
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• Command respect from road users. 

• Give adequate time for proper response. 

Failure to follow these basic principles leads to the reduced credibility of these devices 

with the motoring public.  If the devices are not perceived as credible, drivers simply 

ignore them and their effectiveness at alerting and improving awareness is lost. 

Devices and strategies designed to increase alertness and awareness of workers 

include such things as: 

• Back-up warning alarms on construction equipment. 

• Use of spotters. 

• Intrusion alarms. 

Audible back-up alarms are required on construction equipment.  Research is under 

way looking at the effectiveness of other types of alarms to help reduce the frequency of 

worker injuries due to being backed over by construction equipment.  Spotters can be used 

to monitor and protect workers near construction equipment or can be used to monitor 

traffic approaching a work zone, and sound an alarm if an intrusion is going to occur.  

There have been a number of efforts to develop intrusion alarms that could be deployed in 

a work zone to automatically alert workers of an intrusion.  Pneumatic tubes, infrared 

beams, and other detection devices have all been tried but with only limited success.  False 

alarms were a problem in most cases, as was the time required to install and maintain the 

devices (28).  As a result, most systems are no longer available.  The only exception is a 

simple device shown in Figure 38 (29).  The device is attached to a channelizing device.  A 

CO2 cartridge is punctured if the channelizing device is knocked over, activating an air 

horn that warns workers in the vicinity of a potential intrusion.   
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Figure 38.  Example of Intrusion Warning Devices. 

 

Speed Reduction Techniques 

The final subcategory of techniques that are believed to offer the potential to improve work zone 

safety and reduce work zone intrusion potential are those techniques designed to reduce motorist 

speeds approaching and traveling through the work zone.  Conceptually, slower speeds provide 

increased time to react to any unexpected situations that may arise, and reduce stopping 

distances.  However, attempts to slow down vehicles excessively can increase speed differentials 

between vehicles, which can increase crash risk.  Consequently, it is important that speed 

reduction techniques only be used where it is absolutely necessary to do so.   

Techniques that have been used to reduce vehicle speeds include the following: 

• Presence of law enforcement.  

• Drone radar. 

• Speed display trailers (including PCMS with radar). 

• Citizen band (CB) radio information systems. 

• Transverse rumble strips. 

• Transverse pavement markings. 

• Reduced lane widths with channelizing devices. 

In a few cases, speed display trailers have resulted in speed reductions up to 10 mph (30).  

However, in most applications, techniques other than law enforcement presence typically reduce 
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speeds by only a few miles per hour.  It should be noted that even if the reduction in speed is 

rather small, these techniques may effectively alert drivers and so achieve some safety benefit.   

The use of traffic law enforcement at a highway work zone is recognized as one of the 

most effective means available for reducing speeding, speed variability, and undesirable driving 

behaviors such as tailgating and unsafe lane changes, thereby improving traffic and worker 

safety in the work zone.  The presence of work zone enforcement is also believed to raise driver 

awareness and level of alertness, reducing perception-reaction times in response to unexpected 

hazards encountered.  A variety of enforcement philosophies and strategies have been used in 

work zones (overt versus covert enforcement, active enforcement versus traffic-calming 

techniques, etc.), depending on the needs of the highway agency.  Specific reasons should exist 

for providing enforcement at a work zone.  Enforcement costs are not insignificant, and represent 

an additional burden on enforcement agency manpower and equipment resources in a region, 

even when highway agency funds are being used to pay for such efforts.  If enforcement is to be 

used, it should be address specific hazards, and the strategy used should be capable of 

minimizing those hazards.  Hazards generally fall into one of two categories: 

• Work activity hazards. 

• Work zone design hazards. 

Work activity hazards are present only during times when work is occurring, whereas work 

zone design hazards are typically present at all times (both when work is occurring and 

when the work zone is inactive).  Engineering judgment is normally required to determine 

which work zones most need enforcement support.  However, an analysis of potential 

savings in crash costs due to enforcement presence in work zones has yielded the 

recommendations found in Table 10.  The recommended AADT values needed to offset the 

costs of dedicated enforcement depend on both the price of enforcement and the 

assumptions regarding their effectiveness in reducing work zone crashes (31).  It should be 

noted that these values do not consider other types of benefits that enforcement presence in 

a work zone may create (i.e., increased traffic flow due to less aggressive driving, higher 

worker productivity and quality due to a sense of increased safety within the work space, 

etc.).  Consequently, agencies may choose to justify enforcement use at even lower AADT 

levels than those shown.   
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Table 10. Comparison of Enforcement Benefits and Costs in Freeway Work Zones (31).  
 

 
 
 

Enforcement Costs 

AADT where Enforcement Benefits Are 
Approximately Equal to Enforcement 

Costs 
Favorable-Benefit 

Scenario 
Conservative-

Benefit Scenario 
$25 per hour 
     Daytime work zone 
     Nighttime work zone 

 
5,000 vpd 
20,000 vpd 

 
20,000 vpd 
45,000 vpd 

$50 per hour 
     Daytime work zone 
     Nighttime work zone 

 
10,000 vpd 
35,000 vpd 

 
35,000 vpd 
100,000 vpd 

$75 per hour 
     Daytime work zone 
     Nighttime work zone 

 
15,000 vpd 
50,000 vpd 

 
50,000 vpd 
150,000 vpd 

$100 per hour 
     Daytime work zone 
     Nighttime work zone 

 
20,000 vpd 
65,000 vpd 

 
70,000 vpd 
200,000 vpd 

vpd = vehicles per day 
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SUMMARY AND CONCLUSIONS 

The goal of this project was to develop implementation guidance that the Texas Department of 

Transportation can use to make better decisions regarding when and where to use positive 

protection in work zones, and when to consider exposure control and other traffic control 

measures that could improve work zone safety.  Researchers examined national and statewide 

practices regarding the use of positive protection in work zones.  Researchers also used RSAP to 

examine crash cost reduction potential that could be achieved through the use of PCB under two 

different conditions: 

• When intrusion crash costs alone (those involving workers, traffic control devices, 

work equipment, materials, etc.) would justify PCB use. 

• When the combination of intrusion crash costs and costs of pavement drop-off 

considerations combine to justify PCB use. 

An intrusion crash severity index was developed from the NYSDOT work zone 

crash data and used to model various configurations of work space and lateral drop-off 

location from the travel lanes.  The RSAP analysis tool was also used to evaluate potential 

intrusion crash costs for short-term and short duration work zones where highway workers 

are on foot immediately adjacent to moving traffic.  For these situations, any intrusions into 

a very short (i.e., 45 ft) work space around the work crew was treated as a fatality, and 

crash cost reductions achieved by having portable or mobile barriers protecting the work 

crew were estimated on a per-hour basis.   

The positive protection crash cost benefits of providing TMAs for moving operations 

were also examined as part of this research.  For that part of the analysis, recent work zone crash 

analyses were used to estimate rear-end crash cost frequencies between motorists and the back of 

a work vehicle.  For each crash expected, the difference in crash cost severity with and without a 

TMA in place were computed and converted into expected crash cost reductions per hour of 

work operation.   

The final topics examined were exposure control and other traffic control techniques 

encouraged by FHWA to potentially reduce the frequency of work zone intrusions and to make 
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the work zone safer overall.  Analysis results from recently-completed studies were synthesized 

to illustrate the potential crash cost savings associated with those techniques. 

Based on the results of these various analyses, researchers drew the following findings 

and conclusions: 

• For facilities where operating speeds are approximately 70 mph and work is 

occurring immediately adjacent (i.e., within 2 feet) to travel lanes, intrusion crash 

costs savings alone can justify PCB protection once the roadway ADT approaches 

40,000 vpd over a year-long work zone, so long as there are constant hazards in the 

work space being protected by barrier.  This ADT value can then be extrapolated to 

other work zone durations (i.e., equivalent to a 6-month work zone with an ADT of 

80,000 vpd, a 2-year work zone on a 20,000 vpd facility, etc.).  If all hazards are 

removed from the work space after each work shift, PCB use cannot be justified 

strictly on intrusion crash cost concerns.  Similarly, if actual travel speeds are lower 

(i.e., 50 mph), PCB use for reducing intrusion crash cost potential alone does not 

appear to be justifiable at any ADT levels.   

• For work zones in which drop-off conditions are also of concern, the analysis 

indicates that consideration of the potential for other types of intrusion crashes (in 

addition to drop-off crashes) does reduce the vehicle exposure thresholds at which 

PCB can be justified relative to current thresholds that consider drop-off conditions 

only.  The extent to which the thresholds are affected depends on assumptions 

regarding the amount of time intrusion hazards exist in the work space.  When 

intrusion hazards are present only during normal work activity on a typical work 

schedule, vehicle exposure thresholds are only slightly lower than they are for drop-

off conditions alone.  However, if the intrusion hazards in the work space will be 

there continuously (if there are equipment or materials that are left next to the travel 

lanes, for example), the vehicle exposure thresholds at which PCB can be justified 

will be 15 percent or more below those for drop-off conditions alone. 

• Analysis of steel or mobile barrier technologies to create small, protected work 

spaces showed that the technologies are currently fairly expensive relative to the 

intrusion crash cost reductions that are possible, and so will generally be justifiable 

only on high-volume, high-speed facilities.  It is expected that as these technologies 
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become more common and production increases, their prices will decrease.  Even at 

their current prices, though, steel barrier appears capable of justifying its cost in 

terms of reduced intrusion crash cost potential within a year or two.  In contrast, 

mobile barrier technology will require a longer time to recoup its investment cost 

but does appear to be able to do so for those agencies with a significant amount of 

high-volume, high-speed roadway under their jurisdiction. 

• Analysis of rear-end crash potential with work vehicles in mobile and short-

duration operations indicates that TMAs are highly effective in reducing rear-end 

crash severity and crash costs.  Each crash with a TMA results in a crash cost 

savings of $174,490 relative to the crash costs that would have occurred if no TMA 

were present. Based on current TMA prices, agencies can recoup their costs in 

terms of reduced rear-end crash costs in less than a year of daytime work shifts on 

facilities serving 20,000 vpd or more and of nighttime work shifts on facilities 

serving 50,000 vpd or more.   

• For work zones that do not serve enough traffic to warrant consideration of positive 

protection devices, a number of exposure control techniques and other traffic 

control measures are available to reduce intrusion crash risks.  Techniques that 

reduce the total duration of a project are especially effective in reducing work zone 

crash costs.  Working at night also reduces vehicle exposure and work zone crash 

costs that are incurred for a given duration of work.  Reducing the total number of 

vehicle trips through the work zone via travel demand management is another way 

to reduce work zone crash costs.  However, these types of techniques must actually 

reduce the number of vehicle-miles driven in the corridor.  Techniques that divert 

traffic from the work zone to alternative routes in the corridor may also reduce 

work zone crash costs, but increase crash costs on those alternative routes due to 

increased vehicle exposure on those routes.   

• Finally, the use of law enforcement in work zones is another technique that is 

believed to offer work zone crash cost reduction benefits (in addition to the other 

types of benefits of having enforcement present).  The roadway ADT levels at 

which it is believed that enforcement presence is offset by reduced work zone crash 

costs varies by time of day, expected magnitude of crash cost reductions, and cost 
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of enforcement.  Roadways with ADTs as low as 5,000 can justify enforcement use 

under a favorable set of assumptions.  On the other hand, higher enforcement costs 

and a more conservative assumption regarding the effectiveness of enforcement can 

result in ADT thresholds of 100,000 vpd or higher in order to justify enforcement 

costs. 
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Greetings! 
 
The Texas Transportation Institute, under TxDOT sponsorship, is conducting RMC 4 project 
0 6163, “Improved Positive Protection Guidance for Work Zones.” This brief survey is intended 
to gather information from TxDOT districts regarding current practices related to the use of 
positive protection on various road construction and maintenance projects.  Please respond to the 
questions below at your convenience.  If you have any questions regarding the information being 
requested, please contact: 
 
Gerald Ullman 
Texas Transportation Institute 
Ph. (979) 845-9908 
Email: g-ullman@tamu.edu    
 
Thank you in advance for your assistance with this important research activity. 
 
Contact Information of Survey Respondent 
 
Name:  __________________________________________ 

Job Title:  __________________________________________ 

District:  __________________________________________ 

Email:   __________________________________________ 

Phone:  __________________________________________ 

Address:  __________________________________________ 

  __________________________________________ 

  

Part I:  Use of Portable Concrete Barrier in Work Zones 
 
1. Please provide the following information for any projects (up to 5) in your district during the 

past year where you utilized portable concrete barrier to separate the work area from traffic 
during all or part of the project.  
 
 

Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors or reasons why you required PCB to be used: __________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 
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Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors or reasons why you required PCB to be used: __________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors or reasons why you required PCB to be used: __________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors or reasons why you required PCB to be used: __________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors or reasons why you required PCB to be used: __________________________________ 

_____________________________________________________________________________ 

______________________________________________________________________________ 
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2. For each of the projects you listed in question 1, what type(s) of end treatments did you use to 
protect motorists from the blunt end of the PCB?  Why were these treatments selected? 

 
______________________________________________________________________________ 

______________________________________________________________________________ 

_____________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 
 
3. Have you had any projects in your district during the past year where thought was given to 

using PCB, but a decision not to use it was made for some reason?  If so, please provide the 
following information for up to 3 such projects. 

 
 
Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors why PCB was initially considered for use _____________________________________ 

______________________________________________________________________________ 

Factors or reasons why it was eventually decided that PCB would not be used _______________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 
Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors why PCB was initially considered for use _____________________________________ 

______________________________________________________________________________ 

Factors or reasons why it was eventually decided that PCB would not be used _______________ 

_____________________________________________________________________________ 
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______________________________________________________________________________ 

 
 
Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Factors why PCB was initially considered for use _____________________________________ 

______________________________________________________________________________ 

Factors or reasons why it was eventually decided that PCB would not be used _______________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 
 
4. Have you used other types of barriers (steel, water-filled, etc.) instead of PCB on a project in 

the past 3 years? ___________   
 
 
Part II:  Use of Other Techniques to Improve Worker and Motorist Safety in Work 
Zones 
 
5. What techniques or strategies have you implemented (other than what is required in the Texas 

MUTCD or the Texas Traffic Control Plan Standard Sheets) to improve worker and/or 
motorist safety?  Examples include speed control strategies (payment for extra law 
enforcement, speed display trailers, etc.); enhanced signing, marking, or delineation; work 
zone intrusion alarms; requirements for larger lateral or longitudinal buffer areas adjacent to 
work areas; etc.  Please identify up to 3 project(s) in your district during the past year where 
these techniques were or will be (for ongoing projects) employed. 

 
 
Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Techniques or strategies used _____________________________________________________ 

Factors or reasons why the technique(s) were selected for this project ______________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
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Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________ Is the project ongoing now?__________________ 

Techniques or strategies used _____________________________________________________ 

Factors or reasons why the technique(s) were selected for this project _____________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 
 
Project No: _________ Route: _______________ Type of Project: ________________________ 

Project Duration: ______________________Is the project ongoing now?__________________ 

Techniques or strategies used _____________________________________________________ 

Factors or reasons why the technique(s) were selected for this project ______________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

Part III:  Use of Truck-Mounted Attenuators 
 

6. Do you require truck-mounted attenuators to be used on work or shadow vehicles in your 

district?  ___________  

 

7. What criteria does your district follow in determining whether or not a particular work 

operation requires the use of a truck-mounted attenuator? 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________ 
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APPENDIX B: GUIDELINES ON THE USE OF POSITIVE PROTECTION 
IN WORK ZONES 
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INTRODUCTION 

The decision whether to use positive protection to separate the work space from traffic requires 
consideration of a number of roadway and work zone characteristics, including (1): 

• Project scope and duration. 
• Anticipated traffic speeds through the work zone. 
• Anticipated traffic volume. 
• Vehicle mix. 
• Type of work (as related to worker exposure and crash risks). 
• Distance between traffic and workers, and extent of worker exposure. 
• Escape paths available for workers to avoid a vehicle intrusion into the work space. 
• Time of day (e.g., night work). 
• Work area restrictions (including impact on worker exposure). 
• Consequences from/to road users resulting from roadway departure. 
• Potential hazard to workers and road users presented by device itself and during device 

placement and removal. 
• Geometrics that may increase crash risks (e.g., poor sight distance, sharp curves). 
• Access to/from work space. 
• Roadway classification. 
• Impacts on project cost and duration. 

Efforts to reduce vehicle and worker exposure in work zones should also be considered, as should 
other traffic control devices and strategies which can improve the overall safety of the work zone 
for workers and for the traveling public.   

POSITIVE PROTECTION JUSTIFICATION 

Both FHWA regulations and TxDOT Work Zone Safety and Mobility guidelines state that 
positive protection devices shall be considered in work zone situations that place workers at 
increased risk from motorized traffic, and where positive protection devices offer the highest 
potential for increased safety for workers and road users, such as: 

(1) Work zones that provide workers no means of escape from motorized traffic (e.g., tunnels, 
bridges, etc.). 

(2) Long duration work zones (e.g., two weeks or more) resulting in substantial worker 
exposure to motorized traffic. 

(3) Projects with high anticipated operating speeds (e.g., 45 mph or greater), especially when 
combined with high traffic volumes. 
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(4) Work operations that place workers close to travel lanes open to traffic. 
(5) Roadside hazards, such as drop-offs or unfinished bridge decks, that will remain in place 

overnight or longer. 

PCB Use for Positive Protection 

Previous positive barrier guidance targeted the protection of travelers from drop-off conditions 
only.  In reality, positive protection can also protect workers from being hit by motorists who 
inadvertently enter the work space.  In addition, positive protection can keep motorists from 
hitting stopped work vehicles or equipment, piles of material or debris, etc., within the work space 
as well.   
 
Table B-1 identifies three conditions for which positive barrier use has been analyzed and found 
to be cost-beneficial.  Positive barrier use can be justified solely on the basis of protecting the 
work space from intrusions, or on the basis of combined consideration of pavement drop-off and 
other work space intrusion cost reductions combined.  If the latter, a distinction is made as to 
whether the work area is located closer to the travel lanes than the drop-off condition, or farther 
away.   
 
 

Table B-1.  Portable Barrier Justification Criteria 
Work Zone Condition Justification Criteria 

No drop-off condition present, but 
other intrusion hazards will be placed 
close to travel lanes and present  
continuously during the work zone  

Justifiable if the operating speed on 
the facility is 65 mph or higher, and 
the expected vehicle exposure (the 
product of total roadway ADT and 
number of work zone years) exceeds 
40,000 vehicle-years.  

Drop-off condition present beyond 
area of work activity  

Figure B-11 

Drop-off condition present between 
travel lanes and area of work activity  

Figure B-21 
1  The light-shaded lines in the figures represent previous positive barrier use thresholds based on 

drop-off considerations only 
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(a) Intrusion Crash Risks Exist 8 hours per day, 3–4 days per week 
 

 
(b) Intrusion Crash Risks Exist Continuously (24/7) 

 
Figure B-1.  Recommended PCB Usage Guidance when Work Space Is in Front of the 

Drop-Off and Immediately Adjacent to the Travel Lanes. 
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(a) Intrusion Crash Risks Exist 8 hours per day, 3–4 days per week 
 

 
 

(b) Intrusion Crash Risks Exist Continuously (24/7) 
 

Figure B-2. Recommended PCB Usage Guidance when Work Space Is Beyond the 
Drop-Off. 
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The first criteria pertains to the situation where work area hazards will be continuously present in 
the work zone (even when work activity is not occurring) within 2 feet proximity to the travel 
lanes.  For the other two conditions, the appropriate graph within each figure should be used, 
depending on whether work hazards are expected to be present only during typical work activity 
hours, or present at all times even when work is not occurring.  These graphs would replace the 
single graph for pavement drop-off analyses now in use.  In each case, the analyst would use the 
drop-off lateral distance and depth, along with the traffic exposure value, to determine whether 
the combined consideration of the drop-off and the presence of work hazards would justify barrier 
use. 
 
The thresholds can be used for any duration work zone, by simply converting the estimated work-
days to an equivalent fraction of a year and multiplying by the roadway ADT.  It should be noted 
that, for simplicity purposes, overall two-way ADT values should be used when assessing the 
justification of barrier use in the work zone based on this guidance.   

Portable Steel Barrier Use 

For short-duration and short-term work zones, protection of a limited work space can be very 
important to the safety of the work crew.  Presently, data is limited on both the effectiveness of 
steel barrier in protecting work space intrusions, as well as the costs.  Therefore, Figure B-3 is 
provided as general guidance as to the cost-effectiveness of steel barrier under various 
assumptions of cost and roadway ADT.   
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Figure B-3. Six-Hour Work Shifts to Offset Costs of Steel Barrier Use. 

 

Mobile Barrier Use 

Mobile barriers consist of a steel beam cage or wall attached to a semi-tractor trailer cab that can 
be towed to a location and then deployed around a small area to protect a work crew on foot near 
moving traffic.  These devices can be highly-effective for short-duration and even mobile 
operations when workers are on foot in the work space.  Currently, these devices cost 
approximately $200,000–250,000.  Figure B-4 provides guidance on the cost-effectiveness of 
these devices.   
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Figure B-4. Six-Hour Work Shifts to Offset Costs of Mobile Barrier Use. 
 

Truck-Mounted Attenuators 

The AASHTO Roadside Design Guide (5) provides general guidelines on priorities for using 
truck-mounted attenuators on work vehicles during mobile and other work operations as a 
function of roadway type.  Analysis of rear-end crash frequency and severities involving work 
equipment with and without TMAs in use indicates substantial crash cost reductions achieved by 
their use.  Figure B-5 provides cost-effectiveness information, assuming an approximate cost of 
$15,000 per TMA.  Overall, TMAs can effectively return their investment in the form of reduced 
crash costs within a year of use on essentially all roadways during daytime operations, and on 
roadways with ADTs greater than 50,000 vpd for nighttime operations.   
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Figure B-5. Number of Work Shifts Needed to Offset TMA Use. 
 

USE OF EXPOSURE CONTROL MEASURES 

The fewer times motorists encounter work zones, the fewer chances there are for work-zone-
related crashes to occur.  Reducing the number of work zones, the length of time during which 
work zones are set up, and the adverse impact that work zones have on traffic will reduce the 
exposure of road users and workers to crashes. 
 
Several strategies are available to control worker and vehicle exposure: 

• Reducing work zone durations (via accelerated construction and contracting techniques) 
and number of work zones required through longer-lasting materials, or coordination of 
multiple maintenance activities into a single work operation. 

• Full-time roadway closures. 
• Nighttime road work. 
• Demand management programs to reduce volumes through work zones. 

 
These strategies also have implications in terms of traveler mobility as well as work productivity 
and quality.  Therefore, engineering judgment must be used to determine whether some or all of 
these are appropriate for a given project.   
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USE OF LAW ENFORCEMENT 

The use of traffic law enforcement at a highway work zone is recognized as one of the most 
effective means available for reducing speeding, speed variability, and undesirable driving 
behaviors such as tailgating and unsafe lane changes, thereby improving traffic and worker safety 
in the work zone.  The presence of work zone enforcement is also believed to raise driver 
awareness and level of alertness, reducing perception-reaction times in response to unexpected 
hazards encountered.  Specific reasons should exist for providing enforcement at a work zone.  
Enforcement costs are not insignificant, and represent an additional burden on enforcement 
agency manpower and equipment resources in a region, even when highway agency funds are 
being used to pay for such efforts.  If enforcement is to be used, it should be to address specific 
hazards, and the strategy used should be capable of minimizing those hazards.   
 
Table B-2 shows the recommendations made after researchers analyzed the potential savings in 
crash costs due to enforcement presence in work zones.  The recommended annual average daily 
traffic (AADT) values needed to offset the costs of dedicated enforcement depend on both the 
price of enforcement and the assumptions regarding their effectiveness in reducing work zone 
crashes.  It should be noted that these values do not consider other types of benefits that 
enforcement presence in a work zone may create (i.e., increased traffic flow due to less aggressive 
driving,  higher worker productivity and quality due to a sense of increased safety within the work 
space).  Consequently, a project engineer can justify enforcement use at even lower AADT levels 
than those shown.   
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Table B-2. Comparison of Enforcement Benefits and Costs in Freeway Work Zones.  
   

 
 
 

Enforcement Costs 

ADT where Enforcement Benefits Are 
Approximately Equal to Enforcement Costs 
Favorable-Benefit 

Scenario 
Conservative-Benefit 

Scenario 
$25 per hour 
     Daytime work zone 
     Nighttime work zone 

 
5,000 vpd 
20,000 vpd 

 
20,000 vpd 
45,000 vpd 

$50 per hour 
     Daytime work zone 
     Nighttime work zone 

 
10,000 vpd 
35,000 vpd 

 
35,000 vpd 
100,000 vpd 

$75 per hour 
     Daytime work zone 
     Nighttime work zone 

 
15,000 vpd 
50,000 vpd 

 
50,000 vpd 
150,000 vpd 

$100 per hour 
     Daytime work zone 
     Nighttime work zone 

 
20,000 vpd 
65,000 vpd 

 
70,000 vpd 
200,000 vpd 

vpd = vehicles per day 
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