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CHAPTER 1. INTRODUCTION

Recent changes to the Texas hot-mix asphalt (HMA) mix-design procedures, such as
adaption of the higher-stiffer performance-grade (PG) asphalt-binder grades and the Hamburg
test, have ensured that the HMA mixes that are routinely used on Texas highways are not prone
to rutting. However, performance concerns have been raised about these HMA mixes, which are
now drier, more difficult to compact, and more susceptible to both reflective and fatigue
cracking. This is particularly problematic with the dense-graded Type C and D mixes that are
widely used throughout the state of Texas. Several new ideas are under consideration to either:

e Modify the existing HMA mix-design criteria and/or include new and simpler

cracking test procedures.

¢ Develop new HMA mix-design methods that have the potential to optimize the HMA

field performance, particularly with respect to cracking.

RESEARCH OBJECTIVES AND SCOPE OF WORK

As indicated above, the primary objective of this research project was to develop new
generation HMA mix-design procedures that optimize both rutting and cracking performance,
without compromising the constructability aspects of the HMA mixes. Using the accelerated
loading facility (ALF) at the Louisiana Transportation Research Center (LTRC) in the state of
Louisiana, the objective of the work presented in this report was to evaluate two HMA mix-
design methods, namely:

1. The Texas gyratory (TG) method.

2. The proposed balanced mix design (BMD) method.

Field evaluation of these two HMA mix-design methods was based on the accelerated
pavement testing (APT) of a typical Texas dense-graded Type C mix under ALF loading
conditions. Primarily, the intent of this APT task was to evaluate and validate the mix-design
methods and the associated laboratory test procedures in terms of their potential to predict field

rutting and cracking potential of the HMA mix under accelerated loading conditions.
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DESCRIPTION OF THE REPORT CONTENTS

This report consists of six chapters including this chapter (Chapter 1), which provides the
background, the research objectives, methodology, and scope of work. Chapter 2 provides a
description of the HMA mix-design methods that were evaluated including the Type C HMA
mix-design characteristics. LTRC’s APT facility, the ALF machine, and construction details for
the APT test sections are discussed in Chapter 3, followed by the laboratory test results in
Chapter 4.

Chapter 5 is a presentation of the APT-ALF test results for rutting, reflective cracking,
and fatigue cracking, respectively. Chapter 6 then provides a summation of the report with a list
of the key findings and recommendations. Some appendices of important data are also included

at the end of the report.

SUMMARY

In this introductory chapter, the background and the research objectives were discussed.
The research methodology and scope of work were then described followed by a description of
the report contents. In this report, some of the laboratory tests such as the Hamburg and Dynamic
Shear Rheometer use standard metric (SI) units, and as such some of the test results (including

some dimensions such as length, diameter, etc.) have been reported in metric units.



CHAPTER 2. MIX-DESIGN METHODS, HMA MIX EVALUATED,
AND THE EXPERIMENTAL DESIGN PLAN

Two HMA mix-design methods, namely the Texas gyratory (TG) and the proposed
balanced mix design (BMD), were evaluated. A typical Texas dense-graded Type C mix was
utilized for both laboratory and field (APT) evaluation of the two HMA mix-design methods.

These aspects are discussed in the subsequent text of this chapter.

THE TEXAS GYRATORY MIX-DESIGN METHOD

The Texas gyratory is the mix-design method traditionally used by the Texas Department
of Transportation (TxDOT) for designing HMA mixes (TxDOT, 2011). It is a volumetric-
density-based method, and the optimum asphalt-binder content (OAC) is selected based on
meeting a prescribed TG lab density criterion, such as 96 or 97 percent for most dense- to fine-

graded Texas HMA mixes. Laboratory sample molding and compaction at a minimum of three

trial asphalt-binder contents (ACs) is accomplished with the Texas gyratory compactor (TGC);
see Figure 2-1 (TxDOT, 2011).

100 mm diameter
by 50+1.5 mm thicknes
- & g -

S

Figure 2-1. The Texas Gyratory Compactor.

Laboratory HMA mix performance evaluation at the selected design OAC and
93=+1 percent lab density is achieved with the indirect-tension test (IDT) and the Hamburg wheel



tracking test (HWTT), respectively. HMA mix-design acceptance at the design TGC lab density
is based on the following criteria (TxDOT, 2004):
¢ Void in mineral aggregate (VMA)—a minimum of 14 percent for Texas Type C
mixes for example, i.e., VMA > 14 percent for Type C mixes. Note however that as
specified in the TxDOT standards handbook (TxDOT, 2011), the VMA threshold
varies per mix type.
e Hamburg—a rut depth of less than 12.5 mm, i.e., Rutgwrr < 12.5 mm in a 50 °C
water bath (after 10,000, 15,000, and 20,000 load passes for PG 64-22, PG 70-22, and
PG 76-22 mixes, respectively).

e IDT—adry tensile strength range of 85 to 200 psi, i.e., 85 < IDTpyy < 200 psi at

ambient temperature.

HMA mixes and/or asphalt-binder contents that simultaneously meet these IDT, HWTT,
and VMA criteria are judged as acceptable (TxDOT, 2011). Full details of this HMA mix-design
procedure and the TGC can be found in TxDOT test procedures Tex-204-F and Tex-206-F
(TxDOT, 2011).

THE PROPOSED BALANCED MIX DESIGN METHOD

The concept of the proposed balanced mix design method is fundamentally centered on
designing HMA mixes that are both rutting and cracking resistant (Zhou et al., 2006). As shown
in Figure 2-2, the mix-design philosophy is based on designing and selecting an OAC that
simultaneously meets certain prescribed laboratory rutting and cracking requirements based on
the HWTT and Overlay Tester (OT) tests, respectively, with a minimum of three trial asphalt-

binder contents at 93+1 percent lab density.
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Figure 2-2. Graphical Illustration of the Balanced Mix-Design Concept.

The Hamburg-Overlay Pass-Failure Criteria

Based on Figure 2-2, the HWTT is the limiting criterion for the maximum selectable design
OAC, i.e., the upper limit of the design OAC. The standard HWTT rutting criterion is 12.5 mm
(i.e., Rutpgwrr < 12.5 mm). HMA mixes and/or asphalt-binder contents meeting this criterion are
judged as acceptable with sufficient lab rutting resistance.

The OT is the limiting criterion for the minimum selectable design OAC, i.e., the lower
limit of the design OAC. HMA mixes and/or asphalt-binder contents that last over 300 cycles
(i.e., Not > 300) prior to crack failure at 93 percent stress reduction are tentatively judged as
acceptable with reasonable lab cracking resistance. However, 300 cycles is still a subjective OT
criterion that is under review and has not yet been standardized. Both HWTT and OT test
samples, with a minimum of three asphalt-binder contents, are gyratory molded to 93+1 percent

lab density.

Selection of the Design Asphalt-Binder Content
Figure 2-2 clearly shows that as the asphalt-binder content increases, the rutting
resistance decreases, and vice versa for the cracking resistance. Conversely, the opposite result

would be expected if the asphalt-binder content were decreased. A balanced OAC design
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includes an asphalt-binder content in the zone of the asphalt-binder contents in which the HMA
mix simultaneously passes both the laboratory HWTT rutting (Rutywrr < 12.5 mm) and OT
cracking (Nor > 300) requirements, respectively. Any asphalt-binder content selected as the

design OAC within this zone is acceptable and is considered to be representative of a lab rut- and

crack-resistant mix (Zhou et al., 2006; Walubita & Scullion, 2008).

THE HWTT AND OT TEST DEVICES

The HWTT is a standard test device used for characterizing the rutting resistance of
HMA mixes in the laboratory including stripping susceptibility assessment (moisture damage
potential). The OT, on the other hand, is a simple performance test used for characterizing the
cracking potential of HMA mixes in the laboratory at an ambient (room) temperature of 25 °C.
Figures 2-3 and 2-4 show photographical views of the HWTT and OT devices, respectively, and
include the test sample setups. Details of the test loading configurations including the pass-fail

criteria are summarized in Table 2-1 (Zhou et al., 2006; TxDOT, 2011).

Hamburg =
(Rutting) _ g

Figure 2-3. The Hamburg Wheel Tracking Test Device.



Sample size = 150 mm length
by 75 mm wide by 37.5 mm in thickness

Figure 2-4. The Overlay Tester.

Table 2-1. Test Loading Configuration for the Hamburg and Overlay.

Item Hamburg Overlay
Test objective Laboratory characterization of the rutting resistance =~ Laboratory characterization of
and stripping potential of HMA mixes cracking potential of HMA mixes

Load magnitude 158 Ibf 0.025 inches of horizontal
displacement

Loading mode Repetitive passing Cyclic triangular displacement-
controlled waveform

Loading frequency 52 passes per minute 10 s per cycle
(5 s loading and 5 s unloading)

Test temperature 122 °F (50 °F) 77 °F (ambient = 25 °C)

Specimen dimensions 6 inches in diameter by 2.5 inches thick 6 inches long by 3 inches wide by
1.5 inches thick

Pass-fail criteria < 12.5 mm after 10,000 passes for PG 64-XX mixes > 300 cycles at 93% reduction in

< 12.5 mm after 15,000 passes for PG 70-XX mixes the initial peak load (tentative)—
< 12.5 mm after 20,000 passes for PG 76-XX mixes  still under review

EXPERIMENTAL DESIGN PLAN

Using a similar HMA mix type (i.e., a Type C mix), the experimental design plan was to
design and select the OAC using the two different mix-design methods (TG and BMD) and then
compare both the laboratory and field APT performance of the HMA mixes. As a way of
validating the mix-design methods, the APT-ALF testing served as a means to verify the

laboratory performance predictions. The subsequent text presents the HMA mix designs.



THE HMA MIX UTILIZED FOR APT TESTING

A ¥-inch nominal maximum aggregate size (NMAS) dense-graded Type C mix was

utilized to comparatively evaluate the TG and the BMD methods under APT-ALF testing
(Walubita et al., 2010). Table 2-2, Figure 2-5 thru 2-7, and Appendix A summarize the HMA

mix-design characteristics.

Table 2-2. HMA Mix-Design Details for APT Testing.

Item TG Method BMD Method

Mix designation Control Modified

Mix type Type C Type C

Materials PG 76-22 (Valero) + Limestone PG 76-22 (Valero) + Limestone
(Brownwood) (Brownwood)

Design OAC 4.3% 52%

Corresponding TGC lab density 96.0% 97.5%

(96% < TGC < 98%

VMA (> 15%) 14.0 14.2%

Hamburg rutting (< 12.5 mm) 4.7 7.0

Overlay crack cycles (> 300) 90 600

IDT (85 < IDT <200 psi) 165 psi 130 psi

APT placement Control sections Modified sections

1 Specifications 2 Stockpiles

3 Create Blend

Blend Mixture

Please specify the blend by specifying
percentages below or by dragging a blend
gradation point at right

% Used
20,00 %%

Stockpile

Total Cost:

40,00

Percent Passing [%)

100

a0

60

40

20

Gradation Chart

100 100

#200 #50 1 #16

#100 #30

#
1/4"

3a" 34" 1.5"

1jz" 1.0

Sieve Size

Figure 2-5. Aggregate Gradation for the Type C Mix.
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Determination of the Design OAC Using the TG Method

With the TG method, the criterion for selecting the design OAC for this particular mix
was 96 percent TGC lab density (TxDOT, 2004, 2011). As shown in Figure 2-6, the asphalt-
binder content corresponding to this density level (96 percent) was 4.3 percent; thus, this content

was selected as the design OAC based on this method.

98 -
97 -
S
>
G 9
(]
()
(@)
2 95 - I
9% -
93 | | | | | | 1
3.5 4.0 43 45 5.0 5.5

Asphalt-Binder Content (%)
Figure 2-6. TGC Density and Asphalt-Binder Content Results.

At 4.3 percent asphalt-binder content, the measured laboratory indirect tensile strength
and rut depth of the HMA mix were 165 psi and 4.7 mm, respectively; see Table 2-2. These
values sufficiently met both the Texas IDT (85 < IDTpyy < 200 psi) and HWTT (Rutywrr <
12.5 mm after 20,000 load passes) requirements for laboratory performance evaluation (TxDOT,
2004, 2011). Based on this TG method at 96 percent TGC lab density, 4.3 percent asphalt-binder

content was considered satisfactory as the design OAC for this mix.



Determination of the Design OAC Using the Proposed BMD Method

Figure 2-7 shows the Hamburg and Overlay test results for a trial asphalt-binder content

range of 4.3 to 6.2 percent.

Hamburg Rut Depth (mm)

14.0 - - 500
12.5mm
12.0 -
10.0 -
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| >
[ ©
6.0 4 i : §
|
I : - 200 ©
4.0 - | I
| |
20 : Acceptable design OAC :
0 - [
| |
|
0.0 —Y . ¥ 50
5-1 6.2
4.0 4.5 5.0 5.5 6.0 6.5

Asphalt-Binder Content (%)

Figure 2-7. Hamburg-Overlay and Asphalt-Binder Content Results.

According to Figure 2-7, the selectable asphalt-binder content range that meets both the

Hamburg rutting (i.e., rut depth < 12.5 mm rut depth after 20,000 HWTT load passes for PG 76-

22 mixes) and the Overlay cracking (i.e., crack cycles > 300) requirements is from 5.1 to

6.2 percent. To accommodate the field density requirements (i.e., < 98 percent), and for the

purposes of practicality, 5.2 percent was selected as the balanced design OAC meeting both the

laboratory rutting and cracking requirements; see Table 2-2.

As Figure 2-7 illustrates, the Overlay crack test is the determinant of the lower limit (i.e.,

> 5.1 percent) for the selectable design OAC. The Hamburg rutting test, on the other hand, is the

determinant of upper limit (i.e., < 6.2 percent) of the selectable design OAC.

The Type C mix described in Table 2-2 and Figure 2-5 thru 2-7 is a typical Texas dense-

graded HMA mix that is commonly used on Texas highways. Both the asphalt-binder (Valero)
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and limestone (Brownwood) aggregates were locally sourced in Texas. For easy identification,
the design based on the TG (4.3 percent OAC) and the BMD (5.2 percent OAC) was utilized as
the Control and Modified mix designs, respectively, for APT testing under ALF loading. For
each design OAC, the corresponding laboratory TGC density and VMAs are listed in Table 2-3.

Table 2-3. Design OAC, the Corresponding Lab TGC Density, and VMA.

Mix Mix Designation Design OAC Corresponding VMA
Lab TGC Density =14)
Type C Control 4.3% 96.0% 14.0
Modified 5.2% 97.5% 14.2
SUMMARY

This chapter provided a discussion of the mix-design methods and the HMA mix that was
utilized for APT testing under ALF loading at the LTRC facility in Louisiana. A typical Texas
dense-graded Type C mix with PG 76-22 asphalt-binder (Valero) and limestone aggregates
(Brownwood) was utilized for evaluating two HMA mix-design methods, namely the TG and
BMD methods. The experimental design plan included two OAC designs based on the TG and
BMD methods, namely the Control at 4.3 percent design OAC and the Modified at 5.2 percent
design OAC, respectively.






CHAPTER 3. THE LTRC-APT FACILITY, ALF DEVICE,
AND APT TEST SECTION CONSTRUCTION

This chapter provides a description of the LTRC-APT test facility and the ALF machine.
Construction details including quality control (QC)/quality assurance (QA) tests are also

discussed. Finally, the chapter includes a summary of key points (Walubita et al., 2010).

THE LTRC-APT FACILITY AND THE ALF MACHINE

The Texas Transportation Institute (TTI) developed a contractual agreement with the
LTRC to test the Texas mixes at the LTRC-APT facility near Baton Rouge in Louisiana. The
climate and environmental conditions in the southern part of Louisiana where the APT facility is
located do not differ significantly from those of Texas. Thus, since Texas lacks such an APT
facility, it was deemed appropriate to do the APT testing at the LTRC in Louisiana. The LTRC
has an established ALF machine, shown in Figure 3-1, and has been actively running accelerated

load tests for more than 5 years.

T

Figure 3-1. LTRC’s ALF Machine.
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The ALF device is a 100-ft-long, 55-ton accelerated loading device used to simulate truck
loading for pavement testing. When running, the weight and traffic movement is simulated
repetitively in one direction via a computer-controlled trolley. The LTRC-ALF is a uni-
directional APT device with dual wheels that are 9 inches wide, with a 6-inch separation between
the tires. The ALF loading is adjustable, ranging from 5 to 10.5 kips per tire, with a maximum
operable tire pressure of up to 150 psi. The test area under the ALF is approximately 40 ft long,
with a tire contact area of 445 inch” at 100 psi. The maximum operable ALF speed is 120 mph.

In total, the LTRC facility consists of 12 individual lanes, each 215 ft long and 13 ft
wide. The individual lanes are designable to any pavement structure of interest. TTI utilized only
three lanes, for reflective cracking, rutting, and fatigue crack evaluation of the Type C mix,

respectively (see Chapter 2 for the mix-design details).

CONSTRUCTION OF THE APT TEST SECTIONS

Construction of the APT test sections was completed in summer 2009. Two lanes
(designated as Lanes 2 and 3) with four sections consisted of 3-inch-thick HMA plus 4-inch-
thick stone granular base over a 6-inch-thick cement-treated base (CTB) layer. The third lane
(designated as Lane 1) consisted of a 2-inch-thick HMA over 8-inch-thick joint concrete
pavement (JCP) resting on a 7-inch-thick CTB layer. Figure 3-2 shows a diagrammatical layout

of the constructed test sections.

Subgrade, Subbase, and Base Materials
The subgrade consisted of in-situ natural soil material, i.e., a class A-4 soil material type.
On Lane 1, the base was JCP and the subbase was a 5 percent CTB layer. For Lanes 2 and 3, the

base and subbase were Kentucky limestone and 10 percent CTB layer, respectively.

Construction of Joints in the JCP Sections (TTI Lane 1)

One innovative feature of this APT test site was that the joints constructed in the
experimental JCP sections had poor load transfer efficiency (LTE). The LTE of the Control
joints was close to 100 percent. However, the LTE was reduced to 50 percent over the other
experimental JCP Sections 4 and 5. This was necessary to effectively evaluate the reflective

cracking potential of the HMA mixes. Figure 3-3 illustrates the joint construction process.

3-2



OZ--4-+4C X

mco-—=-<>»m

TTI Lane =

3" HMA
4" Granular
6" Soil Cement

CONTROL [MIX

@

3" HMA
7" Granular
3" Soil Cement

15 ft

QD Z —--C 2

mcao-—=—<2m

TTI Lane 2

3 HMA
4" Granular
6" Soil Cement

@ MODIFIED | MIX

3" HMA
7" Granular
3" Soil Cement

00

Z0=-=-0OMmMrrTmMmMD

TTI Lane 1

Joints in JCP

(R p—————

2" HMA
8" JCP
7" Soil Cement

Figure 3-2. LTRC-APT Experimental Test Sections.
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Figure 3-3. Construction of the Low LTE Joints at the LTRC-APT Test Site (TTI Lane 1).

Based on Figure 3-2, the low LTE joints at 50 percent with voiding were initially planned
for JCP Sections 3 and 6. Due to site conditions, however, the low LTE joints with voiding were
switched over to JCP Sections 4 and 5 during construction; see example in Figure 3-4 for
Sections 3 and 4. As seen in Figure 3-4, Section 4 with voiding had poorer LTE joints than

Section 3, and thus would be expected to reflectively crack quicker than Section 3.
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HMA Placement, Paving, and Compaction Process
HMA (Type C) placement was consistent with the Texas construction specifications
(TxDOT, 2004). No material transfer device was engaged in this construction operation. As

Figure 3-5 shows, the trucks dumped the hot mix directly into the paver.

- | _- ;%. il

b e

'

Figure 3-5. HMA Placement and Compaction Operations.

The air and surface temperatures at the time of HMA placement were 82 and 105 °F,
respectively, which satisfied the Texas construction specification requirements (TxDOT, 2004).
To meet the 143 to 145 pcf density requirements, the compaction rolling pattern consisted of two
vibrating passes and two static passes of an 18-ton steel wheel roller; see Figure 3-5. An example

of the finished HMA mat at the LTRC-APT test site is shown in Figure 3-6.

pe | Y
)

Finished HMA mat (Type C)

Figure 3-6. Finished HMA Mat at the LTRC-APT Test Site (August 2009).
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CONSTRUCTION QUALITY CONTROL/QUALITY ASSURANCE TESTS
The following QC/QA tests were conducted during construction of the APT test sections
and are discussed herein: mat temperature measurements, density measurements, ground-

penetrating radar (GPR) measurements, and coring.

Infrared (IR) Thermal Imaging

TTI conducted IR temperature measurements during placement of the HMA mix on all
three lanes at the LTRC-APT test site. Figure 3-7 shows the IR thermal imaging of the HMA mat
(Walubita et al., 2010).

End of lane
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Figure 3-7. IR Thermal Imaging of the HMA (Type C) Mat.

In Figure 3-7, the red colors represent temperatures around 300 °F, whereas the blue
colors are temperatures of around 220 °F. The green colors represent temperatures between

235 and 270 °F. The numbers on the plot are the actual temperatures at that location.
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In general, blue is the undesired IR thermal color reading, as it often indicates cold spots.
For a target HMA mat placement temperature of 300 °F with a tolerance of 30 °F, the green and
red IR thermal color readings would be considered acceptable. As Figure 3-7 shows, the mat
temperature was not very uniform, with visual evidence of thermal segregation particularly on
Lanes 1a and 2. There are some intermittent cold spots (bluish) of thermal segregation in the mat.
On Lane 1b, the mat temperatures were fairly uniform, particularly in the middle part of the lane,
with an average of about 290 °F.

As will be discussed in the subsequent sections, this thermal segregation did not appear to
have significantly affected the uniformity in the compaction operation. The in-situ densities were

fairly consistent and within the target range; see Table 3-1.

Nuclear Density Measurements
With the exception of Test 4 for the Control mix, Table 3-1 shows that the HMA mat
densities were satisfactorily within the 143 to 145 pcf range. The coefficient of variation (COV)

was less than 1 percent, which is indicative of uniform compaction and consistent density.

Table 3-1. QC Nuclear Density Measurements.

Mix Test 1 Test 2 Test3 Test4 Average COV Corresponding
Designation % Density
Control 143.0 144.0 144.6 142.7 143.6 0.6% 92.6%
Modified 144.3 143.7 143.5 144.5 144.0 0.3% 93.7%

Ignition Oven Tests for the Asphalt-Binder

As Table 3-2 shows, the burned off asphalt-binder contents from field-extracted cores
and plant mixes were slightly less than the design OAC but still within the Texas +0.3 percent
specification tolerance (TxDOT, 2004, 2011). Thus, the contractor satisfactorily met the

specification requirements with respect to the asphalt-binder content.

Table 3-2. Asphalt-Binder Content Results Based on the Ignition Oven Test.

Mix Design Burned off Asphalt- Deviation by Weight Meets +£0.3%
Designation OAC Binder Content of Total Mix Tolerance
Control 4.30% 4.13% -0.17% Yes
Modified 5.20% 5.10% -0.10% Yes
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GPR Measurements
Figure 3-8 shows GPR readings taken just after placement of the HMA mat. The GPR

readings for Lanes 2 and 3 with some blue coloring suggest density variations within the HMA
mat, which may be critical for the rutting performance of the HMA mixes. Density
measurements of cores taken from these locations are discussed in the subsequent chapters of

this report.
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Figure 3-8. GPR Measurements.



As Figure 3-8 shows, both the HMA and the base exhibited inconsistent thickness. This
was a construction quality issue that could impact the APT performance of the test sections

under ALF loading.

Raw Materials, Plant Mixes, and Cores

Researchers obtained substantial quantities of both the plant-mix and field-extracted
cores (both mix designs) from the APT test site for laboratory testing at the TTI lab. HMA
specimens were also molded on site using TTI’s mobile lab and hauled to TTI for subsequent lab
testing. Raw materials including asphalt-binder and aggregates were also obtained for testing at

the TTI lab. Chapter 4 includes a discussion of the results of these laboratory tests.

SUMMARY

Construction of the APT test sections in Louisiana was completed in summer 2009.
Details of the construction process were discussed in this chapter. The list below provides a
summation of the key points from this chapter (Walubita et al., 2010):

e A dense-graded Type C mix with PG 76-22 asphalt-binder (Valero) and limestone
aggregates (Brownwood) was placed as the surfacing HMA layer on the APT test
sections in Louisiana.

e Two OAC designs based on the TG and BMD methods, namely the Control at 4.3
percent OAC and the Modified at 5.2 percent OAC content, were utilized.

e Construction QC tests were conducted and included IR thermal imaging, nuclear
density measurements, GPR measurements, and coring for forensic evaluations.

e The HMA layer thickness for rutting and fatigue crack evaluation was 3 inches, while
it was 2 inches for the reflective crack evaluation over a JCP.

e On some of the JCP sections, voiding was incorporated to reduce the LTE over the
joints to about 50 percent.

e On all the sections, the subbase consisted of a CTB layer—5 percent for reflective

cracking evaluation, and 10 percent for the rutting and fatigue crack evaluations.
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CHAPTER 4. LABORATORY TEST RESULTS

Researchers conducted various laboratory tests to comparatively characterize the material
properties and predict the performance of the Type C mix, namely the Control and Modified mix

designs, respectively. Table 4-1 lists these laboratory tests.

Table 4-1. List of Lab Tests.

#  Test Test Objective

1 Troxler ignition oven Asphalt-binder and aggregate extractions.

2 Hamburg HMA rutting resistance characterization at 50 °C (in a water bath).

3 Overlay HMA cracking potential assessment at 77 °F.

4 Dynamic modulus (DM) HMA modulus properties at 14 to 130 °F and 0.1 to 25 Hz.

5 Repeated load permanent HMA permanent deformation and visco-elastic properties at 77 °F
deformation (RLPD) (25 °C) and 104 °F (40 °C).

6 Direct-tension, Characterization of HMA fracture and crack-resistance properties at
indirect-tension, and 77 °F. (As a supplement to the OT test, the DT, IDT, and SCB tests
semi-circular bending (SCB) were conducted as surrogate crack tests to provide additional data on

the fracture and crack-resistance properties of the HMA mixes.)

For each of the tests listed in Table 4-1, a minimum of three replicate specimens were
utilized per mix design (Control and Modified). The target air void (AV) content for all the
samples molded from raw materials and plant mixes was 7£1 percent (TxDOT, 2004, 2011). The
laboratory test plan incorporated testing of samples fabricated from:

e Raw materials (asphalt binder and aggregates).

e Plant mixes.

e Field-extracted cores.

Thirty percent COV was utilized as a measure of acceptable statistical variability in the
test results, i.e., COV < 30 percent. Based on the lab tests listed in Table 4-1, test results for both
the Control and Modified Type C mix designs are discussed in the subsequent text. A summary

of key findings is then presented at the end of the chapter.
IGNITION OVEN TEST AND AGGREGATE EXTRACTIONS

Although on the lower side, the ignition oven-derived asphalt-binder contents from the

plant mixes and cores that are reported in Table 3-2 of Chapter 3 were satisfactorily within the
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Texas +£0.3 percent specification tolerance (TxDOT, 2004, 2011). As shown in Figure 4-1,
however, the aggregate extraction tests indicated that the combined gradation of the plant mix
was out of the design specification on the %-inch (19 mm) and ¥s-inch (9.5 mm) sieve sizes. This
was primarily attributed to the gradation of the coarse C-rock that was slightly different from the

design gradation on these particular sieve sizes; see Appendices A and B.
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Figure 4-1. Comparison of Combined Aggregate Gradations.

HMA SAMPLE AIR VOIDS AND CORE DENSITY

The average AV for all the lab-molded HMA samples from raw materials and plant
mixes was 7+1 percent. For the field-extracted cores prior to ALF trafficking, the AV ranged
from 3.3 to 8.5 percent with an average of 5.8 percent and a COV of 29 percent. Based on the
core AV measurements in the lab, the average in-situ HMA densities for the APT test sections
were approximated to be as follows:

e Control sections with 4.3 percent OAC = 94.3 percent.

e Modified sections with 5.2 percent OAC = 96.0 percent.
HAMBURG AND OVERLAY TEST RESULTS

Table 4-2 summarizes the Hamburg and Overlay test results, and Figure 4-2 shows

pictorial views of some test samples (TxDOT, 2011).



Table 4-2. Hamburg and Overlay Results.

Item Hamburg Overlay
Control Modified  Control Modified
Lab molded (TTTI lab design) 4.7 mm 7.0 mm 105 330
Plant mix from the APT test site 2.3 mm 4.1 mm 41 446
Field cores (at zero ALF traffic loading) 3.0 mm 4.7 mm 560 1200+
Raw materials from contractor plant 3.0 mm 7.7 mm 32 306
Criterion utilized < 12.5 mm after 20,000 HWTT > 300 cycles (tentative)

load passes

Ham,burg

Figure 4-2. Photographs of Hamburg and Overlay Test Samples from Field Cores.

While the Hamburg test results were marginally different, the Modified mix (with
5.2 percent OAC) exhibited better lab crack resistance than the Control mix (with 4.3 percent
OAC), as expected. As evident in Table 4-2, the Modified mix lasted over 300 OT cycles for all
the samples tested including the field cores. For the Control mix, only the field cores at zero ALF
traffic loading lasted over 300 OT cycles, probably due to the relatively higher core density of
94.3 percent (compared to 93 percent for lab-molded samples). Theoretically, these results
suggest that the Modified mix would be more crack resistant under ALF trafficking than the
Control mix.
DYNAMIC MODULUS TEST RESULTS

Based on dynamic modulus (|[E*|) testing at various temperatures (14 to 130 °F) and
loading frequencies (25 to 0.1 Hz), |[E*| master curves were generated for both the Control and

Modified mix designs, respectively (American Association of State Highway and Transportation
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Officials [AASHTO], 2001; Walubita et al., 2012). These |E*| master curves, at a reference

temperature of 77 °F, are shown in Figure 4-3.
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Figure 4-3. |[E*| Master Curves at a Reference Temperature of 77 °F.

As expected, Figure 4-3 shows that the Control mix with 4.3 percent OAC was
comparatively stiffer (and, theoretically, more rut resistant) than the Modified mix with
5.2 percent OAC. At 77 °F and 10 Hz frequency, the modulus of the Control mix was
approximately 33 percent higher than the modulus of the Modified mix in magnitude. Based on
Figure 4-3, the HMA moduli at 10 Hz (and 77 °F) were approximately:

e Control mix (4.3 percent OAC) = 1550 ksi.

e Modified mix (5.2 percent OAC) = 1170 ksi.
PERMANENT DEFORMATION TEST RESULTS

The RLPD test was utilized to characterize the permanent deformation and visco-elastic
properties of the HMA mixes at the two test temperatures of 77 °F and 104 °F, respectively.
Details of the RLPD test protocol are documented elsewhere (Zhou and Scullion, 2004; Walubita
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and Scullion, 2007). The RLPD test results are summarized in Table 4-3 and Figure 4-4,

respectively.

Table 4-3. RLPD Visco-Elastic Parameters, Alpha (@) and Mu ().

HMA Mix Test o Average a p Average p
Temperature
Control 4 0.6151 0.1768
—_— 0.5828 0.1634
Control 5 77 °F 0.5505 0.1499
Modified 4 (25°C) 0.6200 0.2486
- —_— 0.6215 0.2536
Modified 5 0.6231 0.2585
Control 6 0.7556 0.5774
—_— 0.7603 0.5806
Control 7 104 °F 0.7650 0.5839
Modified 6 (40 °C) 0.6974 0.5618
- _ 0.7148 0.7195
Modified 7 0.7322 0.8771
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Figure 4-4. RLPD Permanent Deformation Curves.

As expected, both Table 4-3 and Figure 4-4 indicate that the Control mix was more
resistant to permanent deformation. After 10,000 RLPD load repetitions at 40 °C, for instance,
the Control mix had accumulated less than half the permanent compressive strains accumulated

by the Modified mix, e.g., 1,300 versus 3,300 pe. Looking at Figure 4-4 and considering the
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magnitudes of the permanent strains, it is apparent that the Modified mix with high asphalt-
binder content at 5.2 percent OAC was comparatively more susceptible to permanent
deformation, particularly at elevated RLPD testing temperatures of around 104 °F.

In terms of the visco-elastic properties and deformation characteristics of the mix, the
smaller the u value, the greater the resistance to permanent deformation (Zhou and Scullion,
2004; Walubita and Scullion, 2007). Thus, the Control mix, as Table 4-3 shows, exhibited
greater resistance to permanent deformation based on the magnitudes of visco-elastic parameters
(w) at both the two temperatures evaluated than the Modified mix. Theoretically, more rutting

would thus be expected with the Modified than the Control mix under ALF traffic loading.

SURROGATE CRACK TEST RESULTS

As indicated previously in Table 4-1, the DT, IDT, and SCB tests were conducted as
surrogate crack tests to:

e Provide additional data on the fracture and crack-resistance properties of the two mix

designs (i.e., the Control mix at 4.3 percent OAC versus the Modified mix at
5.2 percent OAC).

e Supplement the OT test results.

Schematics of these tests and the analysis models are summarized in Tables 4-4 and 4-5,
respectively. Walubita et al. (2010) documented full details of the DT, IDT, and SCB test
procedures including the loading configurations and the data analysis models. Table 4-5 does not
list any analysis models for the OT because data analysis for this test is simply based on the
initial measured peak load and the automatically counted number of repetitive load cycles to
crack failure at 93 percent reduction in the initial peak load (Zhou et al., 2006).

Like the OT, all the crack tests were conducted at ambient temperature (77 °F), and

Table 4-6 summarizes the results.



Table 4-4. List of Crack Tests (Walubita et al., 2010).

Feature\Test

oT

IDT

SCB

Schematic

6/! ¢x 2HT

6" ¢x 3" Hx2"T

47¢ x 6'H

Specimen size 6" Lx 3" Wx 15"T

Sample No No Yes Yes (coring)

coring/notching (0.25" notching)

Sample gluing/curing  Yes/12 hr No No Yes/12 hr

Loading mode Repeated cyclic Monotonic Monotonic Monotonic

Test parameters 0.0.25 inches 2 inch/min 0.05 inch/min, 0.05 inch/min
@ 77 °F @ 77 °F @ 77 °F @ 77 °F

Output data Peak load & cycles to HMA tensile HMA tensile HMA tensile
crack failure strength, strength, strength,

strain, & fracture strain, & fracture strain, &

energy

energy

fracture energy

Tentative pass-fail
criterion

OT cycles > 300 @

939% stress reduction
(tentative)—still under

review (Tex-248-F)

85 < oypr= 200 psi
(Tex-226-F)

Not yet established

Eipr > 3000 ne
(based only on
lab data &
analytical
modeling)

Note: L =length, W = width, T = thickness, H = height, ¢ = diameter.

Table 4-5. Analysis Models Used for the Crack Test Data (Walubita et al., 2010).

Test Model Equation # Description of Model Parameters
IDT 2P 1 oppr = tensile stress/strength, P = axial peak load,
Oipr = p—y t = specimen thickness, D = specimen diameter,
&pr= horizontal strain, AL = average horizontal
_ AL 2 deformation at peak load, & Lo = initial distance
T = T between the LVDT holders, where LVDT stands for
linear variable differential transformer.
SCB 4.263P 3 oscp = tensile stress/strength (MPa), P = axial peak
Oscp = D load (N), ¢ = specimen thickness (mm), gpr = strain @
peak load (mm/mm), AL = average vertical ram
2(AL) 4 displacement at peak load (mm), & D = specimen
Escp = ——— diameter (mm). (Empirical equation based on SI
D units.)
opr= tensile stress/strength, P = axial peak load,
DT Opr = ﬂ 5 D = specimen diameter, gpr = tensile strain @ peak
nD? load, AL = average tensile elongation at peak load, &
AL 6 L, = initial distance between the LVDT holders.
Epr = 10° E




Table 4-6. Summary of Crack Test Results for Plant-Mix Samples.

Test Parameter Control Mix  Modified Mix Discriminatory Ratio

(43% OAC)  (52% OAC)  (Modified/Control)

oT Initial peak load 729 658 0.9

Number of cycles to failure 41 446 10.9

DT Tensile strength (psi) 89 61 0.7

Tensile strain at failure (ue) 4767 6646 1.4

IDT Tensile strength (psi) 165 130 0.8

Horizontal strain at failure 0.011 0.021 1.9
(inch/inch)

Fracture energy (Ib-in/in”)* 14.84 19.64 1.3

SCB Tensile strength (psi) 177 159 0.9

Vertical strain at failure 0.030 0.047 1.6
(inch/inch)

Fracture energy (Ib-in/in”)* 6.20 7.07 1.1

*Fracture energy computed only up to point of peak failure load.

As theoretically expected, the Control mix with a low AC exhibited high tensile strength
values while sustaining relatively lower tensile strains to failure than the Modified mix. Clearly,
the monotonic DT, IDT, and SCB test results indicate that the Modified was a relatively soft and
more ductile mix based on its higher and lower tensile strength and strain values, respectively.
This means that if subjected to the same loading and environmental conditions under a similar
pavement structure, the Control mix would likely sustain fracture damage and crack failure much
quicker than the Modified mix.

Overall, all the crack test results in Table 4-6 indicate that the Modified mix with high
AC was a relatively superior mix in terms of resistance to fracture damage and cracking in the
laboratory. That is, for the same PG 76-22 asphalt-binder and limestone aggregates, the results
from all the crack tests indicate that the Modified 5.2 percent AC design had superior laboratory
cracking resistance potential and was more ductile than the Control 4.3 percent AC design, as
expected. However, the discriminatory ratio (DR) with a value of 10.9 shows that the OT cycle
was much more superior in terms of capturing the differences in the laboratory cracking

resistance potential between the two mix designs. With DR values ranging from 1.4 to 1.9, the

4-8



tensile strain at failure seemed to fall second in line as a potential mix screening fracture

parameter for laboratory cracking resistance assessment.

SUMMARY
Various laboratory tests including the HWTT, DM, RLPD, OT, DT, IDT, and SCB were
conducted to comparatively characterize the material properties and predict the expected APT
field performance of the Control (4.3 percent AC) and Modified (5.2 percent AC) mixes,
respectively. For the test conditions considered, analysis of the laboratory test results indicated
the following:
e The Control (4.3 percent AC) designed based on the TG method was a relatively stiff
mix (i.e., high modulus value) and more rut resistant than the Modified mix.
Therefore, the Control mix was theoretically expected to exhibit superior rutting
resistance performance in the field under APT testing.
e The Modified (5.2 percent AC) designed based on the BMD method with high AC
level exhibited superior fracture properties and was more crack resistant than the
Control mix. Therefore, the Modified mix was theoretically expected to exhibit

superior cracking resistance performance in the field under APT testing.






CHAPTER 5. FIELD APT-ALF TEST RESULTS

The field APT test results under ALF trafficking are presented and discussed in this
chapter. These APT tests included comparative performance evaluation of the two HMA mix
designs, the Control at 4.3 percent OAC and Modified at 5.2 percent OAC, in terms of the
following distresses:

e Rutting.

e Reflection cracking.

o Fatigue cracking.

Researchers also intermittently conducted numerous auxiliary tests, including the
following, during ALF trafficking: (a) weather-related aspects, particularly temperature profiles;
(b) density measurements; (c) falling weight deflectometer (FWD) measurements; and
(e) coring/forensic evaluation. Some of these data are included in the appendices of this report,
i.e., Appendix C through E.

In this chapter, the ALF loading parameters for each test section are discussed first,
followed by a presentation of the performance evaluation test results. Results for auxiliary tests

are then presented, followed by a bulleted list of key findings that summarize the chapter.

ALF LOADING PARAMETERS

Table 5-1 summarizes the actual ALF loading parameters utilized for each test section,
including the axle load, tire pressure, wheel speed, and lateral wander. On some sections, the
ALF loading parameters for both the Control and Modified mixes were changed while the ALF

trafficking was in progress. This was necessary to accelerate the distress.
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ALF RUTTING TEST RESULTS

The ALF rutting tests were conducted in summer 2009 between the months of September
and November. Up to 75,000 ALF load repetitions were applied on the HMA rutting Sections 1
(Control) and 2 (Modified). The average pavement temperatures during ALF trafficking were as
follows:

e Section 1 (Control mix with 4.3 percent AC): 89.3 °F.

e Section 2 (Modified mix with 5.2 percent AC): 88.9 °F.

Consistent with the laboratory test predictions based on the BMD method and as
theoretically expected, the Modified mix with more asphalt-binder rutted more than the Control
mix under ALF trafficking. After 100,000 ALF load passes under equivalent test temperatures,
the rut depth on Section 2 with the Modified mix (at 5.2 percent AC) was almost 50 percent
more than that accumulated on Section 1 with the Control mix (at 4.3 percent AC), i.e., 15 versus

8 mm. These results are shown graphically and pictorially in Figures 5-1 and 5-2, respectively.

15 - 15

10 -

Rut Depth (mm)

=¢—Secl_Control (Type C_4.3% AC)
=f-Sec2_Modified (Type C_5.2%AC)

0 L] L] L] L] 1
0 20,000 40,000 60,000 80,000 100,000

Number of ALF Loading Applications

Figure 5-1. Rutting under ALF Load Trafficking.
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Figure 5-2. Surface Rutting on Sections 1 (Control) and 2 (Modified).

As shown in Figure 5-3, subsequent trenching of the test sections indicated that all the
rutting was coming from the top HMA layer. Deformation in the base and subgrade was

marginal.

Secl: Control = 4.3% AC
i T

T

Figure 5-3. Trenching and Pictorial Comparison of Rutting on Sections 1 and 2.

In general, the APT performance of these rutting test sections was consistent with the
laboratory test predictions (Chapter 4) and was as theoretically expected, i.e., the Control (with
low AC) performed better in terms of rutting resistance compared to the Modified mix. For the
same APT test conditions, the Modified section had rutted almost twice (1.9 times) the rut depth
measured on the Control section after equivalent number of 100,000 ALF load applications. This
to some extent provides a preliminary validation platform for the proposed balanced mix-design

method.



ALF REFLECTIVE CRACKING TEST RESULTS

As Table 5-1 shows, APT sections 3, 4, 5, and 6 were designated for reflective crack
evaluations with different levels of LTE. Like for rutting, the reflective cracking sections
performed as expected and correlated well with the balanced HMA mix-design and laboratory
test predictions:

e The Control sections with low AC (4.3 percent) cracked earlier than the Modified

sections with 5.2 percent AC.

e The sections with poor LTE (i.e., LTE = 50 percent) cracked earlier than the sections

with good LTE (i.e., LTE > 90 percent).

Under similar ALF trafficking conditions, reflective cracking appeared on the Control
Section 4 with poor LTE (i.e., LTE = 50 percent) just after 75,000 ALF load passes; see
Figure 5-4 below. In the case of the Control Section 3 with good LTE (i.e., LTE > 90 percent),
reflective cracking was only visible after 175,000 ALF load passes, thus further substantiating

that LTE has an influence on the rate of reflective crack propagation.

= Control

Figure 5-4. Reflective Cracking on Control Section 4 (LTE = 50 Percent).

By contrast however, no cracking was observed on the Modified Section 6 (with
LTE = 50 percent) even after applying 100,000 ALF load passes and increasing the tire load; see
Table 5-1 and Figure 5-5. For the Modified Section 5 with good LTE (i.e., LTE > 90 percent),
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cracking started to manifest around the joints after 143,000 ALF load passes—no cracking was

observed within the test sections; see Figure 5-6.

Control (4.3% OAC)

> Modified (5.2% OAG):,
Cracked @ 75 000 ,a'-'ulLli.r 0al i

No cracking@ 75 00 )JD.LF load passes

Figure 5-5. Reflective Cracking Comparison of Section 4 (Control, LTE = 50 Percent) and
Section 6 (Modified, LTE = 50 Percent) after 75,000 ALF Load Passes.

Cracking at joint location Statioh_# 47.5
after 150000 ALF load passes

Figure 5-6. Cracking at a Joint on Modified Section 5 with Good LTE (> 90 Percent).

ALF FATIGUE CRACKING TEST RESULTS
In contrast to the laboratory HMA mix-design and test predictions, the fatigue crack test

sections performed unexpectedly under ALF loading: the Modified (with high AC) section
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cracked, while there was no cracking on the Control section with low AC (4.3 percent); see
Figure 5-7. Also, both sections unexpectedly accumulated substantially high rutting. As
illustrated in Figure 5-8 through 5-10, forensic evaluations suggested the following:

e The Control Section 8 (4 inches) was thicker than the Modified Section 7 (3 inches)
in terms of the surfacing HMA layer; see Figure 5-8. This was considered to be due to
construction-related issues; see Chapter 3.

e The distresses (particularly rutting) were found to be related to the base and
construction problems; see Figure 5-8.

e Coring indicated micro-damage and micro-cracking on the Modified Section 7.

e As can be inferred from Table 5-1, ALF trafficking on these sections was done

around summertime during high temperatures, hence the high rutting, particularly on

the Control Section 8.

Sec7 (Modified; 5.2% OACQC)

ores from un-cracked wheel path cracked during the
ring process; indication of microdamage/microcracks

Figure 5-7. Fatigue Cracking on Modified Section 7.
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Figure 5-9. Comparison of Type C HMA Layer Thickness for the Fatigue Sections 7 and 8.
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Cores fromun-cracked
wheel patireracked during
the coring process;
indication of
microdamage/microcracks

Intactcores from un-
trafficked outsidewheel
path

Figure 5-10. Cracked and Uncracked Cores from Modified Section 7.

5-9



SUMMARY
The bullet list below summarizes the key findings and recommendations drawn from the
APT testing with the ALF:

e The rutting sections performed as expected; the Control mix (4.3 percent AC)
performed relatively better in terms of rutting resistance than the Modified mix (5.2
percent AC) and correlated with laboratory test predictions.

e The reflective cracking sections performed as expected and correlated with the
laboratory test predictions; the Control sections with 4.3 percent AC cracked earlier
than the Modified with 5.2 percent AC, and the poor LTE (50 percent) sections
cracked earlier than the good LTE (> 90 percent) sections.

¢ In addition to rutting, the fatigue crack sections performed unexpectedly: the
Modified section cracked (but not the Control), predominantly due to base problems,
construction issues, and time of ALF trafficking.

Based on these promising APT test results (particularly for rutting and reflective

cracking) that exhibited good correlation with the laboratory test predictions, consideration
should be undertaken to incorporate both the Hamburg and OT tests in future HMA mix-design

methods. Evidently, this means that there is a need to consider standardizing the BMD method.
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CHAPTER 6. SUMMARY AND RECOMMENDATIONS

Based on the two HMA mix-design methods evaluated (namely the TG and BMD), the

APT performance of the test sections under ALF trafficking was found to be consistent with the

laboratory test predictions and theoretical expectations. For the Type C mix (PG 76-22 +

limestone) considered, and the laboratory and ALF-APT tests undertaken, the following key

findings were concluded:

The balanced HMA mix-design and laboratory test predictions correlated well with
the field APT testing under ALF trafficking for the rutting and reflective cracking
evaluations. The Control mix (with low AC) performed better in terms of rutting
resistance but poorer in terms of cracking resistance, as expected, and vice versa for
the Modified mix (high AC).

As predicated in the laboratory, the Modified mix design based on the BMD method
exhibited superior cracking resistance potential in the field under APT testing with
the ALF device. In general, the BMD method yielded very promising results with the
following characteristics: (a) it is lab performance-based; (b) it yields high design AC
content; (c) it leads to improved HMA mix constructability (workability and
compactability) due to increased AC for lubrication; (d) it leads to improved cracking
resistance potential; and (e) it leads to improved durability due to increased AC.
Compared to the traditional TG method, the new BMD method exhibited superiority,
particularly in terms of cracking resistance potential of the mix, while at the same
time balancing the rutting requirements.

Consistent with the laboratory test results, field construction monitoring also
indicated better constructability characteristics with improved density attainment for
the Modified mix that was designed based on the BMD method.

Utilization of the ALF offers a practical and rapid APT tool for comparatively
evaluating mix designs and correlating with laboratory test predictions. Where
resources permit, APT should thus be incorporated in studies of this nature,

particularly where new test methods and/or materials are being evaluated.

In consideration of these findings and observations, it is therefore recommended to

consider incorporating Hamburg (rutting evaluation) and OT (cracking evaluation) testing in the
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next generation of Texas HMA mix-design methods. Specifically, TxDOT should strongly
consider implementing the BMD method for routine mix design and screening; see Appendix F
for the tentatively proposed and generalized laboratory performance and screening criteria for
OAC selection and HMA mix design.

Overall, this study satisfactorily provided a preliminary APT validation platform for the
BMD method. While the method may be associated with an increased bidding/construction cost
due to the resultant high AC level, the anticipated superior long-term performance and durability
of the designed HMA mix with minimal maintenance activities will generally outweigh the high
initial cost. Furthermore, while the BMD method is tailored to improve the constructability and
balance performance (cracking) of HMA, proper HMA mix design alone does not preclude the
effects of poor structural designs, high traffic loading, adverse environmental conditions, and/or
poor construction practices to guarantee satisfactory performance. Additionally, there are
challenges of simultaneously addressing other HMA performance/functional requirements such

as texture, skid resistance, bleeding/flushing, surface roughness, riding quality, etc.
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APPENDIX A. TYPE C MIX CHARACTERISTICS
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APPENDIX B. LAB TEST RESULTS
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Table B-1. DM Test Results.

Temperature, °F Loading Frequence, Hz Control Mix (4.3% OAC) Modified Mix (5.2% OAC)

14 25 7,540,381 5,359,625.5
14 10 7,103,127 5,073,791.8
14 5 6,852,647 4,844,051.6
14 1 6,177,241 4,326,556.1
14 0.5 5,858,230 4,081,151.8
14 0.1 5,005,914 3,399,690.7
40 25 4,838,867 3,426,450.2
40 10 4,294,902 3,089,236.9
40 5 3,958,595 2,844,122.7
40 1 3,264,479 2,289,714.9
40 0.5 2,950,508 2,061,715.2
40 0.1 2,273,036 1,556,547.8
70 25 1,996,448 1,448,712
70 10 1,571,741 1,158,201
70 5 1,366,621 975,852
70 1 890,316 590,776
70 0.5 707,894 457,559
70 0.1 428,261 254,107
100 25 771,566 515,646.3
100 10 534,755 338,736.2
100 5 420,828 257,007.3
100 1 223,504 130,352.9
100 0.5 173,393 98,517.1
100 0.1 106,168 60,589.6
130 25 302,114 209,144.8
130 10 191,994 137,713.6
130 5 140,107 94,746.1
130 1 78,864 55,114.4
130 0.5 65,956 45,433.2
130 0.1 47,101 32,271.0
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APPENDIX C. EXAMPLE OF WEATHER DATA COLLECTED

DURING APT TESTING
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APPENDIX D. EXAMPLE FWD DATA COLLECTED

DURING APT TESTING
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APPENDIX E. TRANSVERSE RUT MEASUREMENTS DURING ALF

TRAFFICKING

Rut Depth (mm)

Figure E-1. Transverse Rut Measurements on Control Section 1.
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Figure E-2. Transverse Rut Measurements on Modified Section 2.
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Figure E-3. Transverse Rut Measurements on Control Section 7.
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Figure E-4. Transverse Rut Measurements on Modified Section 8.
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APPENDIX F. TENTATIVE AND GENERALIZED HWTT-OT PASS-FAIL
SCREENING CRITERIA

Failure Criteria — Rut Depth

Acceptable Engineer’s Discretion _

0 =« » 10 « - 12.5 - mm

Figure F-1. Laboratory Hamburg Rutting Performance Criteria.

Tentative OT Pass-Fail Screening Criteria

oo [ v oo |

OT Cycles 1 < 1 30 - » 200 < » 700 >
Decision - Engineer’s Decision Accept

Figure F-2. Proposed Laboratory OT Cracking Performance Criteria.

Theoretically, HMA mixes and/or AC levels not meeting the laboratory performance
requirements shown in Figures F-1 and F-2 are considered rutting and/or cracking susceptible,
and consideration should be given to redesigning them or rejecting them. Utilization of any mix

design that does not meet these laboratory performance requirements should be at the discretion

of the engineer.

F-1
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