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CHAPTER 1. INTRODUCTION

INTRODUCTION

The Texas Department of Transportation (TxDOT) is embarking on a multi-decade effort
to expand the state’s transportation system. TxDOT has expressed an interest in using higher
design speeds (above 80 mi/h) for some of these facilities to promote faster and more efficient
travel within the state.

Under National Cooperative Highway Research Program (NCHRP) Report 350, roadside
hardware was tested at a speed of 62 mi/h for passenger vehicles (7). The update to NCHRP
Report 350, known as the American Association of State Highway and Transportation Officials
(AASHTO) Manual for Assessing Safety Hardware (MASH), retains this design impact speed
(2). This impact speed was derived from analyses of reconstructed crash data collected on roads
with design speeds up to 70 mi/h. It is reasonable to expect that both posted speeds and
operating speeds will exceed these values on some of the high-speed roadways being considered
by TxDOT.

The increased speeds will place more demand on roadside safety features. The ability of
existing roadside safety features to accommodate more severe, higher energy impacts is not
known. For economic reasons, many existing roadside safety features are optimized for the
current design impact conditions. Consequently, they have little or no factor of safety for
accommodating more severe impacts. Thus, existing safety devices may not be appropriate for
use on facilities with higher design or operating speeds and new designs may be required.

DESIGN IMPACT CONDITIONS

At the beginning of the project, the researchers met with the project monitoring
committee to establish design impact conditions for the development of roadside safety features
for use on roadways with high design speeds. Impact conditions are generally defined by vehicle
type, vehicle mass, impact speed, and impact angle. Under TxDOT research project 0-5544,
“Development of High Speed Roadway Design Criteria and Evaluation of Roadside Safety
Features, ” recommended design impact speeds for roadways with high design speeds were
derived (3).

The roadway design speed selected for the project was 100 mi/h. Based on this roadway
design speed and recommendations developed under research project 0-5544, a design impact
speed of 85 mi/h was selected for the impact performance evaluation of high-speed roadside
safety hardware under this project. Under project 0-5544, researchers found little justification
for decreasing the impact angle as the impact speed increases. It was recommended that an
impact angle of 25 degrees be maintained for crash testing roadside safety devices for very high
speed roadways until better data become available. It was agreed to follow this recommendation,
and a design impact angle of 25 degrees was chosen for this project.



Although it was not yet published during the performance of this project, it was decided
that the testing and evaluation of safety features under this project follow the MASH guidelines.
MASH has superseded NCHRP Report 350 as the recommended procedures for the impact
performance evaluation of roadside safety features. The design test vehicles in MASH include a
2425-1b passenger car and a 5000-1b, '%-ton, 4-door, pickup truck. Both of these vehicles are
heavier than the design vehicles utilized under NCHRP Report 350.

OBJECTIVES/SCOPE OF RESEARCH

The objective of this research was to initiate the development of roadside safety hardware
suitable for use on very high speed highways. Engineering analyses and finite element
simulations were used to evaluate the impact performance of selected roadside safety devices
subjected to very high-speed impacts. Two systems were selected for further evaluation through
full-scale crash tests: an energy-absorbing bridge rail concept and a modified wood post thrie
beam guardrail system.

This report presents the results of the analyses, testing, and evaluation of these two
barrier systems. Chapter 2 presents the design and analysis of the energy absorbing bridge rail
concept. Chapter 3 summarizes the simulation analyses of the modified wood post thrie beam.
The full scale crash testing of the energy absorbing bridge rail and modified wood post thrie
beam are presented in Chapter 4 and Chapter 5, respectively. A summary of the research results
and conclusions is presented in Chapter 6, and implementation recommendations are discussed
in Chapter 7.



CHAPTER 2. DESIGN AND ANALYSES OF AN
ENERGY ABSORBING BRIDGE RAIL

INTRODUCTION

The researchers developed an energy absorbing bridge rail concept to try to accommodate
MASH testing criteria at impact speeds of 85 mi/h. Several design parameters related to this
concept were evaluated using finite element analyses. Details of the design and analysis process
are presented in this chapter.

DESIGN AND ANALYSIS

TxDOT engineers requested that the bridge rail system incorporate a concrete parapet.
Several common concrete barrier profiles were evaluated in a previous phase of this research
using finite element simulation (4). While the performance issues varied depending on the
profile of the concrete barrier, none were able to meet the MASH evaluation criteria for the high-
speed impact conditions.

Therefore, the basic concept of the energy absorbing bridge rail shown in Figure 2.1 was
conceived. This concept involves using a vertical concrete wall to support two tubular steel rails.
Pipe spacers are incorporated into the system to offset the tubular rails from the rigid concrete
parapet and to function as an energy-absorbing mechanism. The spacers are intended to deform
upon vehicle impact and, thereby, absorb some of the vehicle’s kinetic energy to lessen the
impact severity below that of impacting a rigid concrete wall.

Figure 2.1. Conceptual Drawing of the Energy Absorbing Bridge Rail.



Vehicle impact simulations were performed on the conceptual design using the
commercially available finite element analysis code LS-DYNA (5). LS-DYNA is a general
purpose finite element code capable of simulating complex nonlinear dynamic impact problems.
The performance of the bridge rail was evaluated following MASH criteria for a test level 3
(TL-3) impact, except that the impact speed of the vehicles was 85 mi/h rather than 62 mi/h.

The finite element model of the rail is depicted in Figure 2.2. The 32-inch tall vertical
concrete wall was modeled using a rigid material representation. The 12-inch tall, 8-inch
diameter Schedule 40 pipe spacers were modeled using an elastic-plastic material representation
with the properties of ASTM AS53 steel. In the conceptual design, the pipes spacers were
connected to the wall using bolts that pass through the concrete wall. A second bolt or stud is
used to attach the two 6-inch x 4-inch X% “-inch tubular steel rails to the traffic side of the pipe
spacer. The two tubular steel rail sections were additionally connected to each other mid-span
between pipe spacers using a through-bolt that passed from the top surface of the top rail to the
bottom surface of the bottom rail.

Since no significant damage of these bolts was anticipated, they were modeled using
nodal-rigid-body constraints in LS-DYNA. The use of nodal rigid body constraints in lieu of an
explicit bolt model reduces the complexity of the model by eliminating edge contacts between
the bolt shaft and hole that are generally difficult to numerically enforce. It also reduces
computational time by eliminating the need for further mesh refinement.

Figure 2.2. Finite Element Model of the Energy Absorbing Bridge Rail.



To evaluate the performance of the bridge rail under MASH criteria, impact simulations
were performed with models of a pickup truck and small passenger car. The pickup truck model
used was a 2-ton, 4-door Chevrolet Silverado with a weight of 5000 Ib (see Figure 2.3). This
model was developed by the National Crash Analysis Center under sponsorship from Federal
Highway Administration and the National Highway Traffic Safety Administration.

The MASH test matrix for longitudinal barriers also includes a test with a 2425-1b
passenger car. Since a public domain finite element model of this design vehicle was not
available at the time of this research, the researchers chose to use a 2900-1b Dodge Neon model
to evaluate the impact performance of the bridge rail for test designation 3-10 (see Figure 2.3).
This model was considered to be a reasonable alternative for the 2425-1b design passenger car
vehicle in a previous phase of this research study (4). In all of the simulations performed, the
vehicle impacted the rail at a speed of 85 mi/h and an angle of 25 degrees.

Figure 2.3. Finite Element Models Used in the Simulation Analysis.

Several key design parameters were evaluated using the finite element simulations.
Findings from these simulation analyses are presented below.

Rail Size

The researchers initially performed a simulation with the pickup truck vehicle impacting
two 6-inch x 4-inch % 0.25-inch tubular rail sections. The impact resulted in significant
deformation of the steel tubes. A significant reduction in the rail deformation was observed in a
subsequent impact simulation that incorporated two 6-inch x 6-inch x 0.25-inch tubular rail
members. To reduce maintenance cost by reducing the amount of damage to the tubular rail
elements, the researchers selected the 6-inch x 6-inch x 0.25-inch steel tubes for use in the
bridge rail system.

Rail Height

The initial height of the tubular steel rails evaluated through simulation was 27 inches.
The results of the simulation showed the pickup truck rolling over as it was redirected by the
barrier. In a subsequent design iteration, the height of the rail was raised to 31 inches. Even
though significant roll was observed (see Figure 2.4), the pickup truck did not rollover.



Although vehicle stability was judged to be marginal, the rail height was not further increased
due to concern that it would degrade the impact performance of the small car as discussed below.

Figure 2.4. Pickup Truck Redirects but has a High Roll after Impact with the Rail at
31-Inch Rail Height.

A simulation with the 2900-Ib passenger car model was performed with the tubular rails
set at a height of 31 inches to the top of the stacked rails. The car was redirected in a stable
manner. However, the high impact severity resulted in an occupant impact velocity (OIV) that
was at the allowable threshold of 12 m/s and significant damage to the vehicle’s occupant
compartment as shown in Figure 2.5. The occupant compartment deformation was aggravated
by the proximity of the tubular steel rails to the vehicles A-pillar. It was hypothesized that if the
height of the steel rails could be reduced, or if the two rail tubes were separated such that the
bottom rail could engage the small car at a lower height, it might prevent the vehicle from trying
to under-ride the rails, thus lowering the occupant compartment deformation.

Figure 2.5. Deformation of the Small Car after Impact with the Rail at 36-Inch Rail
Height.



It was already known that reducing the height of the rail by four inches results in rollover
of the pickup truck. The researchers performed another small car simulation with the height of
the tubular steel rails lowered two inches (i.e., 29 inch mounting height). The simulation of the
small car into the bridge rail with a 2-inch reduction in rail height did not result in any significant
reduction in occupant compartment deformation. The researchers then performed another
simulation in which the two 6-inch x 6-inch rail sections were separated from one another. The
height of the upper rail was kept at 31 inches to help maintain stability of the pickup truck. The
height of the lower rail was reduced by 4 inches to determine if lower interaction on the small car
could help reduce occupant compartment deformation.

The results of this simulation did not show any significant differences in the occupant
compartment deformation of the small car compared to that observed in the case of the stacked
rail members. The height of the rail was thus kept at 31 inches to the top of the rail in the final
design. Marginal impact performance was predicted for both design vehicles. Significant vehicle
roll was expected for the pickup truck impact, and high occupant compartment deformation was
expected for the small passenger car.

Pipe Thickness

Results of the simulation analysis indicated that some of the Schedule 40 pipe spacers
collapsed quickly during the pickup truck impact prior to any substantial redirection of the
vehicle. Once the pipes collapse in the region of impact, the stiffness of the rail increases
significantly and the energy management becomes less controlled. It was theorized that if the
rate of collapse of the pipe spacers could be reduced through the use of stiffer pipe sections, the
impulse on the pickup truck would be reduced and vehicle stability could be improved. To
investigate this theory, a pickup truck impact simulation was performed with thicker Schedule 80
pipe spacers substituted for the Schedule 40 pipe spacers. The results were not significantly
different from those for the system with Schedule 40 pipes (see Figure 2.6). Furthermore, none
of the Schedule 80 pipes spacers were fully collapsed and this raised concern that the added
stiffness could further increase the severity of the small car impact. Therefore, Schedule 40
pipes spacers were used in the final design.

Pipe Spacing

The researchers also evaluated the affect of pipe spacing on the overall performance of
the rail. It was expected the by placing the pipes closer, the collapse of the pipes will occur at a
slower rate, which may reduce the occupant compartment deformation in the small passenger
vehicle and/or improve stability of the pickup. A small passenger car impact simulation was
performed with the Schedule 40 pipes spacing on 4-ft centers along the length of the rail. The
results were compared to those for the rail with 6.25-ft pipe spacing. The results are shown in
Figure 2.7. While the pipes collapsed at a slower rate when placed closer together, no significant
differences were observed in the occupant compartment deformation. Thus the larger pipe
spacing of 6.25-ft was selected for the final design.



Figure 2.6. Performance of Schedule 40 (Top) and Schedule 80 (Bottom) Pipe Spacers.




(D)

4-ft pipe spacing

Figure 2.7. Affect of Pipe Spacing.



CONCLUSIONS

Based on the simulation analyses, the results of the 85 mi/h impacts into the energy
absorbing bridge rail were expected to be marginal for both the small car and pickup truck. Even
though the pickup truck did not roll over in the simulation analysis, the results predicted a high
vehicle roll angle during redirection, which had the possibility of leading to a rollover in an
actual crash test. The small passenger car impact simulations indicated an occupant impact
velocity near the maximum acceptable value of 12 m/s and high deformation of the occupant
compartment, more specifically to the A-pillar, side doors, front impact wheel area, and the
windshield. However, although the results were predicted to be marginal, the analyses did not
indicate any obvious failure for either vehicle. Therefore, after consultation with the project
director, a decision was made to subject the bridge rail design to further evaluation through full-
scale crash testing. The results of the crash testing are presented in Chapter 4.
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CHAPTER 3. ANALYSIS OF A MODIFIED WOOD POST
THRIE BEAM GUARDRAIL SYSTEM

In the first year of this project, finite element models of the selected hardware devices
were developed, validated, and used in high-speed impact simulations to assess the ability of
each device to meet safety performance guidelines for very high speed applications. One of the
guardrail systems evaluated was the modified thrie beam.

The modified thrie beam guardrail is the result of improvements to the standard thrie
beam guardrail and was specifically designed as a high-containment system to reduce the
rollover incidences for heavy vehicle impacts. The system incorporates deep offset blocks that
are designed to reduce snagging interaction between the impacting vehicle and support posts, and
help keep the thrie beam rail vertically aligned during impact to reduce the probability of vehicle
climb, vaulting, and/or instability.

It was observed in the high-speed simulations that the steel blockouts deformed and
collapsed as the vehicle progressed through the system. This reduced the offset distance between
the rail and posts and led to significant interaction between the front wheel assembly and the
guardrail support posts. The front wheel assembly was observed to ride over the twisted and
bent steel posts, which in turn imparted a vertical acceleration to the vehicle that helped it climb
over the rail.

The researchers identified some modifications designed to mitigate the climbing behavior
of the pickup truck. The goal of these design modifications was to reduce the interaction between
the front wheel assembly and the posts by preventing the collapse of the blockouts that offset the
rail from the posts and changing the failure mode of the posts.

It was recommended that the steel posts and the blockouts used in the current modified
thrie beam design be replaced with wood posts and wood blockouts. Replacing the W14x22
steel blockout with an appropriate depth wood blockout would prevent the collapse of the
blockouts during impact, thus maintaining the desired spacing between the vehicle and the posts.
It was further recommended that the height of the wood blockout be selected such that the lower
corrugation of the thrie beam is unsupported. This permits the bottom of the thrie beam to stay
more vertically aligned during impact, further reducing the probability of vehicle climb, vaulting,
and/or instability.

Replacing the W6x9 steel posts with 6-inch % 8-inch wood posts would eliminate the
lateral torsional bending mode of failure observed in the steel posts. It was theorized that this
will permit the posts to displace further laterally through the soil and further reduce the
interaction between the wheels and posts. However, it was recognized that the fracture of the
wood posts could lead to pocketing of the vehicle in the rail system.

MODELING AND SIMULATION

The modified wood post thrie-beam guardrail that was modeled is shown in Figure 3.1.
The thrie beam rail is mounted on 6-inch x-8 inch wood posts at a height of 34 inches. The rail
is offset from the post using partial depth 6-inch x 12-inch wood spacer blocks. The bottom
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corrugation of the thrie beam rail is left unsupported. The rail and the blockout are attached to
the post using a 5/8-inch diameter x 22-inch long bolt.

12 GA. THRIE—BEAM

i _—’8_'—_ 1"
q» ‘L X3 f"
5/8x22" LONU—/ ’

A3QT BOLT *

6x12" THRIE-BEAM
MODIFIED WOOD BLOCKOUT —

6"x8" TIMBER
GUARDRAIL POST —=

e
§ &% 78"
ey i’ R
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Figure 3.1. Cross Section of the Modified Wood Post Thrie-Beam System from Drawings
and Model.

The length of the system modeled was 106 ft-3 inches and had 17 wood posts spaced
6 ft-3 inches center to center as shown in Figure 3.2. The ends of the thrie-beam rail were
attached to springs that were assigned properties representative of the stiffness of a 37.5-ft long,
NCHRP Report 350 TL-3 compliant terminal system.

Figure 3.2. System Layout with Vehicle Impact Location.
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The thrie beam rail section was assigned material properties based on published tensile
tests of AASHTO M 180 steel obtained from guardrail samples. This material was represented
through an elastic-plastic definition in LS-DYNA. The soil surrounding the posts was assigned a
pressure sensitive geological material definition with parameters that are representative of the
AASHTO M147 road base material that is commonly used in test installations. The wood posts
were assigned wood properties with a fracture strength derived from commonly known wood
strength values. Bolts were assigned elastic-plastic material properties based on ASTM A307
material specifications.

The vehicle model used in the impact simulation was a '4-ton, 4-door, Chevrolet
Silverado that is representative of the 2270P design vehicle in MASH. This vehicle model was
developed by the National Crash Analysis Center under the sponsorship of the Federal Highway
Administration. The vehicle was assigned an initial velocity of 85 mi/h and had a 25 degree
impact angle with the barrier as shown in Figures 3.2 and 3.3. The vehicle impact location was
just before the 7" post from the upstream end of the barrier as shown in Figure 3.2.

Figure 3.3. Iso-Parametric View of the 2270 kg Vehicle Set Up with the Modified Thrie-
Beam Rail.

The modified wood post thrie beam guardrail system was able to contain and redirect the
vehicle. Sequential images of the impact event are shown in Figure 3.4. A total of 11 posts were
predicted to fracture during the impact, but there were no obvious signs of pocketing or rail
rupture. The maximum rail deflection was 74 inches (see Figure 3.5).

The longitudinal acceleration time history for the impact is shown in Figure 3.6. All

occupant risk indices were predicted to be acceptable and overall damage to the vehicle was
moderate (see Figure 3.7).

13
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Figure 3.4. Sequential Images of 2270P Impact with Modified Wood Post Thrie Beam
Guardrail.
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Figure 3.5. Impact at Time of Maximum Rail Deflection.
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Figure 3.6. Longitudinal Acceleration History for CG of the 2270 kg Vehicle.

Figure 3.7. Damage to the Vehicle in the 85 mi/h Simulation.
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CONCLUSIONS

The simulation results indicated that the modified wood post thrie beam guardrail had a
reasonable probability of accommodating an 85 mi/h impact. The fracture of the wood posts
precluded issues with wheel snagging and vehicle stability that were observed in simulations
with the steel post system. The predicted number of fractured posts (11) and the relatively large
dynamic deflection (74 inches) raised some concern regarding pocketing and rail rupture.
However, the thrie beam rail did not approach its failure strain, and there were not obvious
geometric indicators of pocketing. In some respects, the high impact severity caused this strong
post guardrail system to behave in a manner similar to a weak post system. After consultation
with TxDOT personnel, a decision was made to subject the modified wood post thrie beam
guardrail to further evaluation through full-scale crash testing. The results of the crash testing
are presented in Chapter 5.
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CHAPTER 4. FULL-SCALE CRASH TEST PROCEDURES

TEST FACILITY

The full-scale crash tests reported herein were performed at Texas Transportation
Institute (TTI) Proving Ground. TTI Proving Ground is an International Standards Organization
(ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation
(A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed
according to TTI Proving Ground quality procedures and according to the MASH guidelines and
standards.

The test facilities at the TTI Proving Ground consist of a 2000 acre complex of research
and training facilities situated 10 miles northwest of the main campus of Texas A&M University.
The site, formerly an Air Force Base, has large expanses of concrete runways and parking aprons
well suited for experimental research and testing in the areas of vehicle performance and
handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety
evaluation of roadside safety hardware. The site selected for the placement of the high-speed
bridge rail was along a wide out-of-service runway. The runway consists of an unreinforced
jointed concrete pavement in 12.5 ft x 15 ft blocks nominally 8-12 inches deep. The runway is
over 50 years old and the joints have some displacement, but are otherwise flat and level.

CRASH TEST CONDITIONS
Per MASH, the recommended test matrix for longitudinal barriers consists of:

e MASH test designation 3-10: An 1100C (2425 1b/1100 kg) vehicle
impacting the critical impact point (CIP) of the length of need (LON) of the
barrier at a nominal impact speed and angle of 62 mi/h and 25 degrees,
respectively. The primary objective of this test is to evaluate risk of occupant

injury.

e MASH test designation 3-11: A 2270P (5000 1b/2270 kg) vehicle impacting
the critical impact point (CIP) of the length of need (LON) of the barrier at a
nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This
test is primary a strength test that evaluates the ability of the barrier to contain
and redirect the vehicle in a stable manner.

Both of these tests were performed on the energy-absorbing bridge rail. The CIP
determined for these tests was 32 ft-8 inches downstream of the end of the bridge rail, or

47.25 inches upstream of a splice.

Only test designation 3-11 was performed on the modified thrie beam guardrail. The CIP
determined for this test was midspan between posts 15 and 16.
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All crash test, data analysis, and evaluation and reporting procedures followed under this
project were in accordance with guidelines presented in MASH with the exception of vehicle
impact speed. Appendix A presents brief descriptions of these procedures. For this project, the
impact speed was increased from the nominal 62 mi/h to 85 mi/h to assess the performance of
the barriers under high-speed conditions.

EVALUATION CRITERIA

The crash tests performed were evaluated in accordance with MASH. As stated in MASH,
“Safety performance of a highway appurtenance cannot be measured directly but can be judged
on the basis of three factors: structural adequacy, occupant risk, and vehicle trajectory after
collision.” Accordingly, researchers used the safety evaluation criteria from Table 5.1 of MASH
to evaluate the crash tests reported herein.
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CHAPTER 5. FULL-SCALE CRASH TESTING OF THE
ENERGY ABSORBING BRIDGE RAIL

TEST ARTICLE
Design and Construction

The concrete parapet portion of the bridge rail was similar in design to the TxDOT T221
bridge rail but with additional reinforcement to provide the strength necessary to resist the higher
forces generated during the high-speed impacts. The parapet had a 10.5-inch wide wall, a
12-inch wide beam at the top, and was 32 inches tall. Vertical reinforcement in the parapet
consisted of #4 “U-shaped” stirrups spaced on 6-inch centers. The longitudinal reinforcement
consisted of six #5 bars spaced at 5.375 inches on both the traffic and field side of the parapet.
The parapet was anchored to an unreinforced concrete runway using two #5 bars. The bars were
secured into drilled holes at an embedment depth of 5 inches using an epoxy adhesive.

Two 6 inch % 6 inch x 1/4 inch tubular steel rails were attached to the traffic face of the
concrete parapet at a height of 31 inches to the top of the upper rail. Adjacent rail sections were
spliced to one another using a 5 inch % 5 inch % 3/8 inch tubular steel sleeve. A 5/16-inch steel
plate was welded to adjoining sides of the 24-inch long sleeve to provide the desired fit inside
the rail elements. The splice locations of the upper and lower rail sections were offset from one
another a distance of 40 inches. The rails sections were connected to one another using a
3/4-inch diameter x 14-inch long A325 bolt that passed vertically through each of the rail
members 20 inches from each splice location, which corresponded to the middle of the
overlapped rail section.

Pipe spacers were used to offset the steel rail from the concrete parapet and provide a
mechanism for dissipating some of the energy of the impacting vehicle. The 8-inch diameter x
12-inch long Schedule 40 pipe spacers were spaced 80 inches on center. The pipe spacers were
attached to each of the tubular rail members using 5/8-inch diameter x 1-1/2-inch long A307
studs that were welded to the field side of the tubular rails. The pipe spacers were attached to the
concrete parapet using a 1-inch diameter bolt inserted through a 3 inch x 1-1/2 inch 11 gauge
A36 embedded sleeve. The sleeve provided horizontal tolerance to assist with assembly of the
rail.

A cross section of the high-speed energy absorbing bridge rail is shown in Figure 5.1.
Photographs of the completed test installation are shown in Figure 5.2. Detailed drawings of the
bridge rail are presented in Appendix B.

Material Specifications

The concrete for the parapet was specified to have a 28-day compressive strength of
3600 psi. The concrete strength on the day of the test was 4424 psi. All reinforcing steel was
grade 60. The tubular rail sections and tubular splice sleeves were ASTM A500 steel. The pipe
spacers were ASTM AS53 steel, and the connection bolts used to attach the rails to one another
and the pipe spacers to the concrete parapet were ASTM A325. The studs used to connect the
pipe spacers to the tubular rail members were ASTM A307.
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Figure 5.1. Details of the High-Speed Energy-Absorbing Bridge Rail.



Figure 5.2. Energy-Absorbing Bridge Rail Installation before Test Nos. 470619-1 and 2.
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TEST NO. 460719-1 (MASH TEST 3-10)

Test Designation and Actual Impact Conditions

MASH test 3-10 involves an 1100C vehicle with test inertial mass of 2420 Ib £55 1b
impacting the bridge rail at an impact speed of 62.2 mi/h +2.5 mi/h and an angle of 25 degrees
+1.5 degrees. However, for this test, the target impact speed was 85 mi/h. The target impact
point was 32 ft-8 inches downstream from the end of the bridge rail, which corresponded to
47.25 inches upstream of a splice. The 2002 Kia Rio used in the test had a test inertial mass of
2438 1b, and the actual impact speed and angle were 85.2 mi/h and 25.7 degrees, respectively.
The actual impact point was 32 ft-5 inches downstream from the end of the bridge rail.

Test Vehicle

A 2002 Kia Rio, shown in Figures 5.3 and 5.4, was used for the crash test. Test inertia
weight of the vehicle was 2438 1b, and its gross static weight was 2606 1b. The height to the
lower edge of the vehicle bumper was 8.50 inches, and the height to the upper edge of the
bumper was 22.75 inches. Figure C1 in Appendix C gives additional dimensions and
information on the vehicle. The vehicle was directed into the installation using the cable reverse
tow and guidance system and was released to be free-wheeling and unrestrained just prior to
impact.

Weather Conditions

The test was performed on the morning of August 7, 2009. Weather conditions at the
time of testing were as follows: Wind speed: 10 mi/h; Wind direction: 200 degrees with respect
to the vehicle (vehicle was traveling in a southeasterly direction); Temperature: 93°F, Relative
humidity: 42 percent.

Test Description

The 2002 Kia Rio, traveling at an impact speed of 85.2 mi/h, impacted the energy-
absorbing bridge rail 32 ft-5 inches downstream from the end of the bridge rail at an impact
angle of 25.7 degrees. Shortly after impact, the metal rail began to deflect as the pipe spacers
began to collapse. At 0.018 s, the windshield began to shatter at the right lower corner. The
frame of the passenger door began to deform at 0.019 s, and the roof over the right front
passenger began to deform at 0.020 s. At 0.034 s, the glass in the right front passenger door
began to shatter at the lower front corner, and at 0.039 s, the vehicle began to redirect. The glass
in the right front passenger door separated from the door frame at 0.048 s, and the roof reached
its maximum deformation at 0.071 s.
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Figure 5.3. Vehicle/Installation Geometrics for Test No. 460719-1.
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Figure 5.4. Vehicle before Test No. 460719-1.
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At 0.079 s, the head of the dummy began to extend out of the right front passenger
window. The rear of the vehicle contacted the rail at 0.106 s. At 0.118 s, the head of the dummy
was extended its maximum distance out of the right front passenger window. Due to dust
obscuring the view, it could not be ascertained if the head of the dummy actually touched the
bridge rail. By 0.174 s, the head of the dummy re-entered the interior of the vehicle.

At 0.246 s, the vehicle lost contact with the rail traveling at an exit speed and angle of
67.6 mi/h and 3.9 degrees, respectively. As the vehicle continued tracking forward after exiting
the test installation, the left front of the vehicle impacted a secondary rigid concrete structure,
which induced significant additional damage to the front of the vehicle. The vehicle
subsequently came to rest 230 ft downstream of impact and 42 ft toward traffic lanes.
Figures D1 and D2 in Appendix D show sequential photographs of the test period.

Damage to Test Installation

The vehicle contacted the energy-absorbing bridge rail 32 ft-5 inches downstream from
the end of the bridge rail and remained in contact with the metal rail element for a distance of
13 ft. The maximum rail deflection was 5.25 inches at joint 2-3. No damage to the concrete wall
was evident. Figure 5.5 shows damage to the installation.

Vehicle Damage

A secondary frontal impact of the redirected vehicle with the end of another rigid
concrete barrier complicated the damage assessment of the vehicle. The secondary impact
occurred on the left side of the vehicle and, therefore, the following damage on the right side of
the vehicle was attributed to the initial impact with the bridge rail. The front bumper, hood, right
front fender, right front tire and wheel rim, roof over the passenger side, right B-post, right door
and door glass, right rear quarter panel, rear bumper, right side floor pan, right side firewall, and
right side kickpanel were damaged due to impact with the energy-absorbing bridge rail.
Maximum exterior crush to the right side of the vehicle was 16 inches in the side plane at the
right front corner at bumper height. Maximum occupant compartment deformation (OCD) on
the right side was 9.0 inches in the firewall area. It is believed that the secondary impact likely
contributed to the damage in this area, but the OCD measurement was not adjusted for this.
Photographs of the vehicle after the test are shown in Figures 5.6 and 5.7. Exterior crush and
occupant compartment measurements are documented in Appendix C, Tables C1 and C2.
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Figure 5.5. Installation after Test No. 460719-1.
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Figure 5.7. Interior of Vehicle for Test No. 460719-1.
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Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for
evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was
40.8 ft/s at 0.072 s, the highest 0.010-s occupant ridedown acceleration was -16.3 G from 0.072
to 0.082 s, and the maximum 0.050-s average acceleration was -16.1 G between 0.032 and
0.082 s. In the lateral direction, the occupant impact velocity was 40.7 ft/s at 0.072 s, the highest
0.010-s occupant ridedown acceleration was -10.0 G from 0.082 to 0.092 s, and the maximum
0.050-s average was -24.0 G between 0.025 and 0.075 s.

Figure 5.8 summarizes these data and other pertinent information from the test.
Figures E1 through E7 in Appendix E present vehicle angular displacements and accelerations
versus time traces.

Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is
provided below.

Structural Adequacy
A. Test article should contain and redirect the vehicle or bring the vehicle to a
controlled stop; the vehicle should not penetrate, underride, or override the
installation although controlled lateral deflection of the test article is
acceptable.

Results:  The energy-absorbing bridge rail contained and redirected the 1100C
vehicle. The vehicle did not penetrate, underride, or override the bridge
rail. Maximum dynamic deflection of the metal rail element was
5.25 inches at joint 2-3. (PASS)

Occupant Risk
D. Detached elements, fragments, or other debris from the test article should not

penetrate or show potential for penetrating the occupant compartment, or
present an undue hazard to other traffic, pedestrians, or personnel in a work
zone.
Deformation of, or intrusions into, the occupant compartment should not
exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof
<4.0 inches; windshield = 3.0 inches, side windows = no shattering by test
article structural member,; wheel/foot well/toe pan <9.0 inches; forward of
A-pillar <12.0 inches, front side door area above seat <9.0 inches, front

side door below seat <12.0 inches, floor pan/transmission tunnel area
<12.0inches)
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Occupant Risk (continued)

Results:  No detached elements, fragments, or other debris from the bridge rail were
present to penetrate or show potential for penetrating the occupant
compartment, or to present undue hazard to others in the area. (PASS)
Maximum occupant compartment deformation was 9.0 inches in the right
side floor pan/toe pan area. (PASS)

F. The vehicle should remain upright during and after collision. The maximum
roll and pitch angles are not to exceed 75 degrees.

Results:  The 1100C vehicle remained upright during and after the collision event.

Maximum roll angle was 13 degrees at 1.7 s, and maximum pitch angle
was 10 degrees at 2.00 s. (PASS)

H. Occupant impact velocities should satisfy the following:
Longitudinal and Lateral Occupant Impact Velocity
Preferred Maximum
30 ft/s 40 ft/s

Results:  Longitudinal occupant impact velocity was 24.6 ft/s, and lateral occupant
impact velocity was 40.7 ft/s. (MARGINAL)

1. Occupant ridedown accelerations should satisfy the following:
Longitudinal and Lateral Occupant Ridedown Accelerations
Preferred Maximum
15.0 Gs 20.49 Gs

Results:  Longitudinal ridedown acceleration was -16.3 G, and lateral ridedown
acceleration was -10.0 G. (PASS)

Vehicle Trajectory
For redirective devices, the vehicle shall exit the barrier within the exit box.

Result:  The 1100C vehicle exited within the exit box. (PASS)
The vehicle came to rest 230 ft downstream of impact and 42 ft toward
traffic lanes.
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TEST NO. 460719-2 (MASH TEST DESIGNATION 3-11)

Test Designation and Actual Impact Conditions

MASH test 3-11 involves a 2270P vehicle weighing 5000 1b 100 Ib impacting the bridge
rail at an impact speed of 62.2 mi/h 2.5 mi/h and an angle of 25 degrees +1.5 degrees.
However, for this test, the target impact speed was 85 mi/h. The target impact point was
24 inches upstream of the centerline of the sixth pipe spacer. The Dodge Ram 1500 Quad-Cab
pickup used in the test weighed 5006 Ib, and the actual impact speed and angle were 86.4 mi/h
and 25.3 degrees, respectively. The actual impact point was 24 inches upstream of the centerline
of the sixth spacer.

Test Vehicle

A 2002 Dodge Ram 1500 Quad-Cab pickup, shown in Figures 5.9 and 5.10, was used for
the crash test. Test inertia weight of the vehicle was 5006 1b, and its gross static weight was
5006 Ib. The height to the lower edge of the pickup bumper was 13.5 inches, and height to the
upper edge of the bumper was 26.0 inches. Height to the center of gravity of the pickup was
28.06 inches. Figure C2 in Appendix C gives additional dimensions and information on the
vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance
system, and was released to be free-wheeling and unrestrained just prior to impact.

Weather Conditions

The test was performed on the morning of August 14, 2009. Weather conditions at the
time of testing were as follows: Wind speed: 10 mi/h; Wind direction: 192 degrees with respect
to the vehicle (vehicle was traveling in a southeasterly direction); Temperature: 88°F, Relative
humidity: 59 percent.

Test Description

The 2002 Dodge Ram 1500 Quad-Cab pickup, traveling at an impact speed of 86.4 mi/h,
impacted the energy absorbing bridge rail 2 ft upstream of the centerline of the sixth pipe spacer.
Shortly after impact, the metal rail began to deflect as the pipe spacers began to collapse. At
0.031 s, the top of the right front passenger door separated from the door frame of the vehicle.
At 0.052 s, the windshield began to crack in the lower right corner and the top of the right rear
door began to separate from the door frame. At 0.054 s, the vehicle began to redirect, and at
0.062 s, the right front door glass began to shatter. At 0.162 s, the vehicle was parallel to the
barrier and was traveling at a speed of 73.1 mi/h. The rear of the vehicle reached its maximum
pitch at 0.330 s. At 0.339 s, the vehicle lost contact with the bridge rail traveling at an exit speed
and exit angle of 71.6 mi/h and 4.6 degrees, respectively. After losing contact with the rail, the
vehicle rolled onto its impact side and then flipped several times before coming to rest.

Figures D3 and D4 in Appendix D show sequential photographs of the test period.
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Figure 5.9. Vehicle/Installation Geometrics for Test No. 460719-2.

33



0018
e

Figure 5.10. Vehicle before Test No. 460719-2.
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Damage to Test Installation

Damage to the bridge rail is shown in Figures 5.11 and 5.12. The fifth through eighth
pipe spacers between the concrete parapet and the metal rail were deformed. The rail had a

maximum permanent deflection of 6.5 inches between the sixth and seventh pipe spacer.
Working width was 2.38 ft.

Vehicle Damage

After redirecting and exiting the barrier, the pickup truck rolled over two and one-half
times, struck a tree, and subsequently came to rest on its wheels. Damage to the vehicle due to
the rollover event was extensive, and it is unclear how much damage is attributable to the
secondary impact with the tree. The right side frame rail, left rear spring, the right front upper
and lower A-arms and ball joints were deformed, the right front wheel assembly separated at the
ball joints, and the right rear wheel assembly separated at the rear axle. The right front door also
separated from the truck. Also damaged were the front bumper, hood, grill, radiator and support,
fan, water pump, windshield, right side A-B-C posts, right passenger door and glass, roof and
rear glass, cargo bed, tailgate, and rear bumper. Maximum exterior crush to the vehicle was
estimated to be 20 inches. Maximum occupant compartment deformation was 8.3 inches near
the floor pan in the lateral area across the cab from kickpanel to kickpanel. Photographs of the
vehicle after the test are shown in Figures 5.13 and 5.14. Exterior crush and occupant
compartment measurements are documented in Appendix C, Tables C3 and C4.

Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for
evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was
17.4 ft/s at 0.085 s, the highest 0.010-s occupant ridedown acceleration was -7.9 G from 0.091 to
0.101 s, and the maximum 0.050-s average acceleration was -9.0 G between 0.037 and 0.087 s.
In the lateral direction, the occupant impact velocity was 31.8 ft/s at 0.085 s, the highest 0.010-s
occupant ridedown acceleration was -13.6 G from 0.156 to 0.166 s, and the maximum 0.050-s
average was -16.9 G between 0.036 and 0.086 s.

Figure 5.15 presents these data and other pertinent information from the test. Figures E8
through E14 in Appendix E presents vehicle angular displacements and accelerations versus time
traces.
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Figure 5.11. After Impact Trajectory Path for Test No. 460719-2.
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Figure 5.12. Installation after Test No. 460719-2.
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Figure 5.13. Vehicle after Test No. 460719-2.

38



Figure 5.14. Interior of Vehicle for Test No. 460719-2.
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Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is

provided below.

Structural Adeguacy

B.

Test article should contain and redirect the vehicle or bring the vehicle to a
controlled stop; the vehicle should not penetrate, underride, or override the
installation although controlled lateral deflection of the test article is
acceptable.

Results:  The energy-absorbing bridge rail contained and redirected the 2270P

vehicle. The vehicle did not penetrate, underride, or override the
installation. Maximum deformation of the metal rail was 6.5 inches.
(PASS)

Occupant Risk

D.

Detached elements, fragments, or other debris from the test article should not
penetrate or show potential for penetrating the occupant compartment, or
present an undue hazard to other traffic, pedestrians, or personnel in a work
zone.

Deformation of, or intrusions into, the occupant compartment should not
exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof

<4.0 inches,; windshield = <3.0 inches; side windows = no shattering by test
article structural member; wheel/foot well/toe pan <9.0 inches, forward of
A-pillar <12.0 inches, front side door area above seat <9.0 inches; front

side door below seat <12.0 inches; floor pan/transmission tunnel area
<12.0inches)

Results:  No detached elements, fragments, or other debris from the bridge rail were

F.

present to penetrate or to show potential for penetrating the occupant
compartment, or to present undue hazard to others in the area. (PASS)
Maximum occupant compartment deformation was 8.3 inches in the

lateral area across the cab from kickpanel to kickpanel near the floor pan.
(PASS)

The vehicle should remain upright during and after collision. The maximum
roll and pitch angles are not to exceed 75 degrees.

Results:  The 2270P vehicle remained upright during the collision event. However,

upon exiting the bridge rail, the vehicle rolled several times and came to
rest upright. (FAIL)
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L Occupant impact velocities should satisfy the following:
Longitudinal and Lateral Occupant Impact Velocity

Preferred Maximum
30 ft/s 40 ft/s

Results:  Longitudinal occupant impact velocity was 17.4 ft/s, and lateral occupant
impact velocity was 31.8 ft/s. (PASS)

L Occupant ridedown accelerations should satisfy the following:
Longitudinal and Lateral Occupant Ridedown Accelerations

Preferred Maximum
15.0 Gs 20.49 Gs

Results:  Longitudinal occupant ridedown acceleration was -7.9 G, and lateral
occupant ridedown acceleration was -13.6 G. (PASS)

Vehicle Trajectory
For redirective devices, the vehicle shall exit the barrier within the exit box.

Result:  The 2270P vehicle exited within the exit box. (PASS)
The vehicle came to rest 85 ft downstream of impact and 23 ft toward
traffic lanes.
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CHAPTER 6. FULL-SCALE CRASH TESTING OF THE
MODIFIED WOOD POST THRIE BEAM GUARDRAIL

TEST ARTICLE
Design and Construction

The modified wood post thrie beam guardrail incorporates a standard 12-gauge thrie
beam rail section mounted at a height of 34 inches on 6-inch x 8-inch x 6 ft-6 inch long wood
posts. The posts were spaced on 6 ft-3 inch centers and embedded 43 inches a compacted road
base material. The rail was offset from the posts using 6-inch wide x 12-inch deep wood spacer
blocks. The length of the spacer blocks was 16 inches, which left the bottom corrugation of the
thrie beam rail unsupported. The rail was attached to the blockout and post using a single
5/8-inch diameter x 22-inch long button head bolt through the upper post bolt slot in the thrie
beam section. The rail splices were located midspan between posts.

The length of the thrie beam rail section was 150 ft. A 6 ft-3 inch transition section was
used to transition the thrie beam to a W-beam rail. A 37.5 ft, wood post ET-PLUS terminal was
attached to the transition section. The W-beam rail in the terminal section was tapered down
from a height of 30 inches to 27 inches over a distance of 25 ft. The overall length of the
installation was 237.5 ft.

A cross section of the modified wood post thrie beam guardrail is shown in Figure 6.1.
Photographs of the completed test installation are shown in Figure 6.2. Detailed drawings of the
bridge rail are presented in Appendix F.

Material Specifications

The thrie beam and W-beam guardrail conformed to AASHTO M180. The wood posts
were Grade 1 southern yellow pine. The posts were installed in soil meeting AASHTO standard
specifications for “Materials for Aggregate and Soil Aggregate Subbase, Base and Surface
Courses,” designated M147-65(2004), grading B. The guardrail post bolts and rail splice bolts
were ASTM A307.

Soil Conditions

No rainfall occurred during the 10 days prior to the test. Moisture content of the
AASHTO M147-65(2004), grading B base in which the modified thrie beam guardrail was
installed was 6.1 percent.

In accordance with Appendix B of MASH, soil strength was measured the day of the
crash test (see Appendix G, Figure G1). During installation of the modified thrie beam guardrail,
two W6x16 posts were installed in the immediate vicinity of the barrier utilizing the same fill
material and installation procedures used in the previously conducted standard dynamic test (see
Appendix G, Figure G2).
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As determined from the test results shown in Appendix G, Figure G2, the minimum post
load required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of
25 inches, is 3940 1b, 5500 1b, and 6540 1b, respectively (90 percent of static load for the initial
standard installation). On the day of the test, April 14, 2009, loads on the post at deflections of
5 inches, 10 inches, and 15 inches were 7000 Ibf, 9060 1bf, and 10,000 Ibf, respectively. The
strength of the backfill material met minimum requirements.
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Figure 6.1. Details of the High-Speed Thrie Beam Guardrail.
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TEST NO. 460719-3 (MASH TEST DESIGNATION 3-11)
Test Vehicle

A 2003 Dodge Ram 1500 Quad-Cab pickup, shown in Figures 6.3 and 6.4, was used for
the crash test. Test inertia weight of the vehicle was 5019 b, and its gross static weight was
5019 Ib. The height to the lower edge of the vehicle bumper was 13.5 inches, and height to the
upper edge of the bumper was 26.0 inches. Height to the center of gravity of the pickup was
28.06 inches. Figure C3 in Appendix C gives additional dimensions and information on the
vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance
system, and was released to be free-wheeling and unrestrained just prior to impact.

Weather Conditions

The test was performed on the morning of August 21, 2009. No rainfall occurred during
the 10 days prior to the test date. Weather conditions at the time of testing were as follows:
Wind speed: 5 mi/h; Wind direction: 213 degrees with respect to the vehicle (vehicle was
traveling in a northerly direction); Temperature: 88°F, Relative humidity: 66 percent.

Test Description

The 2003 Dodge Ram 1500 Quad-Cab pickup impacted the thrie beam guardrail at
midspan between posts 15 and 16 at an impact speed of 84.1 mi/h and an impact angle of
25.6 degrees. At 0.017 s after impact, the bumper of the vehicle reached post 16, and post 15
began to deflect toward the field side. Post 17 began to move toward the field side at 0.030 s,
and post 16 fractured at ground level at 0.031 s. At 0.056 s, post 18 began to move toward the
field side and posts 13—15 began to rotate clockwise. Post 17 fractured at ground level at
0.065 s, and the vehicle began to redirect slightly as the vehicle bumper reached post 17 at
0.069 s. At 0.086 s, post 19 began to move toward the field side, and at 0.092 s, post 18
fractured at ground level. The blockout at post 15 separated from the rail at 0.113 s. Between
0.145 s and 0.157 s, the end anchorage failed and released the upstream end of the rail. Post 19
fractured at ground level at 0.157 s. At 0.170 s, the rail separated from post 13, and at 0.177 s,
the rail began to pull post 20 toward traffic lanes. At 0.241 s, the left front corner of the vehicle
contacted the elbow that had formed at the location of post 20. The rail separated from post 14 at
0.364 s, and the rail wrapped around the side of post 21 at 0.357 s as the vehicle traveled behind
the post. The vehicle continued to travel behind the guardrail and came to rest facing the field
side 19 ft away from the field side of the guardrail between posts 30 and 31. Figures D5 and D6
in Appendix D show sequential photographs of the test period.
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Figure 6.3. Vehicle/Installation Geometrics for Test No. 460719-3.
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Figure 6.4. Vehicle before Test No. 460719-3.
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Damage to Test Installation

Damage to the thrie beam guardrail is shown in Figures 6.5 and 6.6. Post 1 moved
downstream through the soil 1 inch, and post 2 was rotated 30 degrees clockwise and leaning
downstream 10 degrees. The anchor bracket connecting the anchor cable to the rail between
posts 1 and 2 was pulled out of the rail. Posts 3—5 and 7 were split vertically and the thrie beam
rail separated from the posts. Post 6 was split vertically and fractured at ground level. The thrie
beam rail separated from posts 823, and posts 1623 were fractured at ground level. The thrie
beam rail element was wrapped around post 24, which was leaning downstream at an angle of
6 degrees and had moved upstream through the soil 2.75 inches.

Vehicle Damage

The 2270P vehicle sustained damage to the right upper and lower ball joints, right upper
and lower A-arms, right tie rod, and sway bar. Also, the front bumper, hood, right front fender,
right front tire and wheel rim, right front door, right rear door, right rear exterior bed, right rear
wheel rim, and rear bumper were deformed. The left front fender was dented. Maximum
exterior crush to the vehicle was 18 inches in the front plane at the right front corner at bumper
height. No deformation or intrusion of the occupant compartment occurred. Photographs of the
vehicle are shown in Figures 6.7 and 6.8. Exterior crush and occupant compartment
measurements are documented in Appendix C, Tables C5 and C6.

Occupant Risk Factors

Data from the accelerometer, located at the vehicle center of gravity, were digitized for
evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was
15.4 ft/s at 0.125 s, the highest 0.010-s occupant ridedown acceleration was -13.2 G from 0.261
to 0.271 s, and the maximum 0.050-s average acceleration was -9.0 G between 0.228 and
0.278 s. In the lateral direction, the occupant impact velocity was 16.1 ft/s at 0.125 s, the highest
0.010-s occupant ridedown acceleration was -5.9 G from 0.259 to 0.269 s, and the maximum
0.050-s average was -5.7 G between 0.034 and 0.084 s.

Figure 6.9 summarizes these data and other pertinent information from the test.

Figures E15 through E21 in Appendix E presents vehicle angular displacements and
accelerations versus time traces.
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Figure 6.5. After Impact Trajectory Path for Test No. 460719-3.
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Figure 6.6. Installation after Test No. 460719-3.




Figure 6.7. Vehicle after Test No. 460719-3.
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Figure 6.8. Interior of Vehicle for Test No. 460719-3.
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Assessment of Test Results

An assessment of the test based on the applicable MASH safety evaluation criteria is
provided below.

Structural Adequacy
A. Test article should contain and redirect the vehicle or bring the vehicle to a
controlled stop; the vehicle should not penetrate, underride, or override the
installation although controlled lateral deflection of the test article is
acceptable.

Results:  The high-speed thrie beam guardrail did not contain the 2270P vehicle.
The vehicle penetrated the rail and came to rest on the field side. (FAIL)

Occupant Risk
D. Detached elements, fragments, or other debris from the test article should not

penetrate or show potential for penetrating the occupant compartment, or
present an undue hazard to other traffic, pedestrians, or personnel in a work
zone.
Deformation of, or intrusions into, the occupant compartment should not
exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof
<4.0 inches,; windshield = <3.0 inches; side windows = no shattering by test
article structural member; wheel/foot well/toe pan <9.0 inches, forward of
A-pillar <12.0 inches, front side door area above seat <9.0 inches; front

side door below seat <12.0 inches; floor pan/transmission tunnel area
<12.0inches)

Results:  Several posts fractured at ground level, but remained relatively close to the
installation. This debris did not penetrate or show potential for penetrating
the occupant compartment, or to present hazard to others in the area. No
occupant compartment deformation occurred. (PASS)

F. The vehicle should remain upright during and after collision. The maximum
roll and pitch angles are not to exceed 75 degrees.

Results:  The 2270P vehicle remained upright during and after the collision event.
(PASS)

H. Occupant impact velocities should satisfy the following:
Longitudinal and Lateral Occupant Impact Velocity

Preferred Maximum
30 ft/s 40 ft/s

Results:  Longitudinal occupant impact velocity was 15.4 ft/s, and lateral occupant
impact velocity was 16.1 ft/s. (PASS)
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L Occupant ridedown accelerations should satisfy the following:
Longitudinal and Lateral Occupant Ridedown Accelerations

Preferred Maximum
15.0 Gs 20.49 Gs

Results:  Longitudinal occupant ridedown acceleration was -13.2 G, and lateral
occupant ridedown acceleration was -5.9 G. (PASS)

Vehicle Trajectory
For redirective devices, the vehicle shall exit the barrier within the exit box.

Result: ~ The 2270P vehicle exited toward the field side of the barrier. (N/A)
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CHAPTER 7. SUMMARY AND CONCLUSIONS

As TxDOT plans for future expansion of the state’s highway network, interest in higher
design speeds has been expressed as a means of promoting faster and more efficient travel and
movement of goods within the state. TxDOT funded project 0-6071 as part of a proactive
consideration of safety on these high-speed facilities. This project began the process of
developing roadside safety hardware suitable for use on high-speed highways. The impact
conditions selected for the design, testing, and evaluation of this high-speed hardware include a
speed of 85 mi/h and an angle of 25 degrees for barrier impacts. The design vehicles are those
specified by the pending AASHTO Manual for Assessing Safety Hardware (MASH) and include
a 5000-1b, Y4-ton, 4-door pickup truck and a 2425-1b passenger car.

After evaluation of several barrier systems using finite element simulation, two designs
were selected for further evaluation through full-scale crash testing. These included an energy
absorbing bridge rail concept and a modified wood post thrie beam guardrail.

The 85 mi/h impact simulations of the energy absorbing bridge rail predicted marginal
performance for both the small car and pickup truck. The results showed a high vehicle roll
angle during redirection, which indicated the possibility of vehicle instability and rollover. The
simulated small passenger car impact indicated an occupant impact velocity near the maximum
acceptable value of 12 m/s and significant occupant compartment deformation. However,
considering the challenge of accommodating these severe impact conditions and in absence of
any obvious failure for either vehicle, TxDOT elected to approve some full-scale crash tests.

ENERGY ABSORBING BRIDGE RAIL

The energy-absorbing bridge rail contained and redirected the 1100C vehicle. The
1100C vehicle remained upright during and after the collision event. Maximum roll angle was
13 degrees at 1.7 s, and maximum pitch angle was 10 degrees at 2.00 s. Maximum occupant
compartment deformation was 9.0 inches in the right side floor pan/toe pan area, which is the
allowable limit for this area recommended in MASH. Longitudinal occupant impact velocity was
24.6 ft/s, and lateral occupant impact velocity was 40.7 ft/s. The maximum limit according to
MASH 1is 40 ft/s, which was slightly exceeded in the lateral direction. It is noted that under
NCHRP Report 350, a value of 41 ft/s (12.49 m/s) was considered acceptable by FHWA.
Longitudinal and lateral ridedown accelerations were -16.3 G and -10.0 G, respectively, both of
which are below the recommended threshold of 20 G. As summarized in Table 7.1, the
performance of the energy absorbing bridge rail was considered marginal.

In a subsequent test, the energy-absorbing bridge rail contained and redirected the 2270P
vehicle. However, upon exiting the bridge rail, the vehicle rolled over. As summarized in
Table 7.2, this outcome is unacceptable. This stability issue is discussed further in Chapter 8. It
is of interest to note that the occupant compartment deformation and occupant risk indices were
within the limits specified in MASH.
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MODIFIED WOOD POST THRIE BEAM GUARDRAIL

A performance assessment of the modified wood post thrie beam guardrail is presented in
Table 7.3. As shown in this table, the 2270P vehicle was not successfully contained and
redirected. Failure of the upstream anchorage permitted the vehicle to penetrate behind the
guardrail. Although the outcome of the test was unacceptable, it is not necessarily an indictment
of the modified wood post thrie beam guardrail system. Further discussion and
recommendations regarding this system are presented in Chapter 8.
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CHAPTER 8. IMPLEMENTATION STATEMENT

The goal of this research project was to identify roadside safety hardware suitable for use
on highways with very high design speed. For purposes of this project, a roadway design speed
of 100 mi/h was selected and the corresponding design impact speed for the evaluation and
testing of roadside safety devices was taken to be 85 mi/h based on research conducted under
project 0-5544.

This impact speed results in an impact severity far outside the normal design range.
Therefore, conventional engineering design practice was of limited value. Finite element
simulation was used as a tool to evaluate the impact performance of selected barrier designs.
Although some performance concerns related to the very high-speed impacts were noted, a
decision was made in conjunction with TxDOT personnel to test two systems: an energy
absorbing bridge rail and a modified wood post thrie beam guardrail. The simulation results
indicated that these two systems had a reasonable probability of meeting the required
performance criteria. The tests were also designed to develop an enhanced understanding of
vehicle and hardware performance at very high impact speeds and serve as a means of validating
simulation models. Validity of the models could not be established during the initial phase of
this research due to the absence of testing under these severe impact conditions.

The energy absorbing bridge rail and modified wood post thrie beam guardrail failed to
meet all of the evaluation criteria recommended in the new AASHTO Manual for Assessing
Safety Hardware (MASH). New or modified designs are required to address these performance
issues before implementation can be addressed. Recommendations for further research and
development of these systems are discussed below.

BRIDGE RAIL

Simulation analyses identified performance issues with common concrete barriers
profiles under high-speed impact conditions. Although the results varied for the different
profiles evaluated, the concerns were generally related to vehicle stability, occupant risk, and
occupant compartment deformation.

Since TxDOT engineers desired to retain a concrete rail if possible, researchers
recommended that a more flexible metal rail be attached to the traffic face of a concrete parapet
to help manage the energy of the impacting vehicle. The idea was to absorb some of the energy
of the impacting vehicle prior to the vehicle engaging the rigid concrete barrier system to help
moderate occupant impact velocity and occupant compartment deformation while maintaining
vehicle stability.

The design evolved to include dual tubular steel rail elements attached to the face of a
vertical concrete parapet by means of energy dissipating spacer pipes. The energy absorbing
bridge rail design met the MASH performance evaluation criteria when impacted by a 2425-1b
passenger car at 85 mi/h. However, a subsequent test with a 5000-1b pickup truck was
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unsuccessful due to rollover of the vehicle after it exited the barrier. It was noted that the
occupant risk and occupant compartment deformation criteria were met. Therefore, if the
stability problem can be addressed, a satisfactory high-speed bridge rail solution appears
achievable.

The pipe spacers are designed to help control energy dissipation through their plastic
deformation. It was noted that at least one of the pipe spacers was completely collapsed during
the pickup truck impact. After this collapse, the rail system imparted a significant impulse to the
pickup truck that induced instability as it completed its redirection and exited the barrier system.
Increasing the rail height through the addition of a third tubular section or providing separation
between the two existing rail elements is a possible solution that can be explored. In addition to
providing a higher reaction point that can impart a greater restoring moment, the addition of a
third tubular steel rail would provide more contact surface area and better load distribution on the
vehicle. However, increasing the rail height and stiffness raises concerns related to small
passenger car impacts because it can aggravate already marginal performance in terms of
occupant impact velocity and occupant compartment deformation and would increase the
potential for an occupant’s head to contact the rail during impact.

Another potential means of improving vehicle stability and achieving acceptable impact
performance is to incorporate larger diameter pipe spacers. If complete collapse of the spacer
pipes can be avoided or delayed, the impulse on the pickup truck can be reduced and stability
will be improved. The concept is to provide more collapse distance without significantly
changing the stiffness of the rail system. Therefore, the impact performance with the small car
should not degrade. The disadvantage of this modification is that it will increase the lateral
“footprint” of the barrier and require additional deck space to install.

GUARDRAIL

It was observed in the high-speed simulations of the standard modified steel post thrie
beam guardrail that the steel blockouts deformed and collapsed. This led to significant
interaction between the front wheel assembly of the impacting vehicle and the guardrail support
posts that led to the vehicle climbing over the rail.

The researchers proposed some modifications to mitigate this behavior. It was
recommended that the steel posts and the blockouts be replaced with wood posts and wood
blockouts. The objective was to eliminate vehicle climb by preventing collapse of the blockouts
and changing the failure mode of the posts. The impact simulation of this modified wood post
thrie beam guardrail predicted stable containment and redirection of the pickup truck.

During the full-scale crash test, the upstream end anchorage failed and released the rail.
This allowed the pickup truck to penetrate behind the guardrail system. The terminal system was
not explicitly modeled in the simulation. The length of the guardrail installation was believed to
be sufficient to limit the forces reaching the anchor assembly.
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Unfortunately, the failure of the anchorage precluded a complete evaluation of the
modified wood post thrie beam guardrail design. The guardrail performed as intended until the
time of anchor failure. The vehicle was being redirected and there was no evidence of vehicle
pocketing. However, no conclusions regarding the ability of the guardrail to accommodate high-
speed impact conditions can be drawn without further testing.

If the need for a high-speed guardrail system persists, the researchers recommend that the
modified wood post thrie beam system be further tested in combination with a modified
anchorage system with increased capacity. The weak-post W-beam barrier also showed promise
for high-speed vehicle containment and could be further evaluated in any subsequent research.
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APPENDIX A. CRASH TEST AND DATA ANALYSIS PROCEDURES

The crash test and data analysis procedures were in accordance with guidelines presented
in MASH. Brief descriptions of these procedures are presented as follows.

ELECTRONIC INSTRUMENTATION AND DATA PROCESSING

The test vehicle was instrumented with three solid-state angular rate transducers to
measure roll, pitch, and yaw rates; a triaxial accelerometer near the vehicle center of gravity
(C.G.) to measure longitudinal, lateral, and vertical acceleration levels; and a backup biaxial
accelerometer in the rear of the vehicle to measure longitudinal and lateral acceleration levels.
These accelerometers were ENDEVCO® Model 2262CA, piezoresistive accelerometers with a
+100 G range.

The accelerometers are strain gauge type with a linear millivolt output proportional to
acceleration. Angular rate transducers are solid state, gas flow units designed for high-“g”
service. Signal conditioners and amplifiers in the test vehicle increase the low-level signals to a
+2.5 volt maximum level. The signal conditioners also provide the capability of a resistive
calibration (R-cal) or shunt calibration for the accelerometers and a precision voltage calibration
for the rate transducers. The electronic signals from the accelerometers and rate transducers are
transmitted to a base station by means of a 15-channel, constant bandwidth, Inter-Range
Instrumentation Group (I.R.1.G.), FM/FM telemetry link for recording and for display.
Calibration signals from the test vehicle are recorded before the test and immediately afterwards.
A crystal-controlled time reference signal is simultaneously recorded with the data. Wooden
dowels actuate pressure-sensitive switches on the bumper of the impacting vehicle prior to
impact by wooden dowels to indicate the elapsed time over a known distance to provide a
measurement of impact velocity. The initial contact also produces an “event” mark on the data
record to establish the instant of contact with the installation.

The multiplex of data channels, transmitted on one radio frequency, is received and
demultiplexed onto a TEAC® instrumentation data recorder. After the test, the data are played
back from the TEAC® recorder and digitized. A proprietary software program (WinDigit)
converts the analog data from each transducer into engineering units using the R-cal and pre-zero
values at 10,000 samples per second per channel. WinDigit also provides Society of Automotive
Engineers (SAE) J211 class 180 phaseless digital filtering and vehicle impact velocity.

All accelerometers are calibrated annually according to the SAE J211 4.6.1 by means of
an ENDEVCO® 2901, precision primary vibration standard. This device and its support
instruments are returned to the factory annually for a National Institute of Standards Technology
(NIST) traceable calibration. The subsystems of each data channel are also evaluated annually,
using instruments with current NIST traceability, and the results are factored into the accuracy of
the total data channel, per SAE J211. Calibrations and evaluations are made any time data are
suspect.
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The Test Risk Assessment Program (TRAP) uses the data from WinDigit to compute
occupant/compartment impact velocities, time of occupant/compartment impact after vehicle
impact, and the highest 10-millisecond (ms) average ridedown acceleration. WinDigit calculates
change in vehicle velocity at the end of a given impulse period. In addition, WinDigit computes
maximum average accelerations over 50-ms intervals in each of the three directions. For
reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz
digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical
directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular
displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time.
These displacements are in reference to the vehicle-fixed coordinate system with the initial
position and orientation of the vehicle-fixed coordinate systems being initial impact.

ANTHROPOMORPHIC DUMMY INSTRUMENTATION

An Alderson Research Laboratories Hybrid II, 50™ percentile male anthropomorphic
dummy, restrained with lap and shoulder belts, was placed in the driver’s position of the 1100C
vehicle. The dummy was uninstrumented. Use of a dummy in the 2270P vehicle is optional
according to NCHRP Report 350, and there was no dummy used in the tests with the 2000P
vehicle.

PHOTOGRAPHIC INSTRUMENTATION AND DATA PROCESSING

Photographic coverage of the test included three high-speed cameras: one overhead with
a field-of-view perpendicular to the ground and directly over the impact point; one placed behind
the installation at an angle; and a third placed to have a field-of-view parallel to and aligned with
the installation at the downstream end. A flash bulb activated by pressure-sensitive tape
switches was positioned on the impacting vehicle to indicate the instant of contact with the
installation and was visible from each camera. The films from these high-speed cameras were
analyzed on a computer-linked Motion Analyzer to observe phenomena occurring during the
collision and to obtain time-event, displacement, and angular data. A 16-mm movie cine, a
BetaCam, a VHS-format video camera and recorder, and still cameras were used to record and
document conditions of the test vehicle and installation before and after the test.

TEST VEHICLE PROPULSION AND GUIDANCE

The test vehicle was towed into the test installation using a steel cable guidance and
reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path,
anchored at each end, and threaded through an attachment to the front wheel of the test vehicle.
An additional steel cable was connected to the test vehicle, passed around a pulley near the
impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the
tow vehicle moved away from the test site. A 2-to-1 speed ratio between the test and tow vehicle
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existed with this system. Just prior to impact with the installation, the test vehicle was released
to be free-wheeling and unrestrained. The vehicle remained free-wheeling, i.e., no steering or
braking inputs, until the vehicle cleared the immediate area of the test site, at which time the
vehicle’s brakes were activated to bring it to a safe and controlled stop.
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APPENDIX C. TEST VEHICLE PROPERTIES AND INFORMATION

Date:  2009-08-07 Test No.:  460719-1 VIN No.: KNADC123126132882
Year: 2002 Make: Kia Model: Rio
Tire Inflation Pressure: 29 psi Odometer: 117041 Tire Size: P185/65R14

Describe any damage to the vehicle prior to test:

ACCELEROMETERS
note:

/ P q,
AL e / ‘E\ e N T
M
— &\ \\ ™ g\) A

® Denotes accelerometer location.

3
M
i
)

NOTES:

Engine Type: 4 cylinder

—)
Engine CID: 1.5 liter - & L
Transmission Type: TEST INERTIAL C.M.
X Auto or Manual WE Z‘Q ::Sj
x FWD RWD 4WD
Optional Equipment: oL
p—
AN ()
Dummy Data: K \\/J
Type: 95" percentile male : »
Mass: 168 Ib H
Seat Position:  Passenger Side L F i E - D
front X rear\/|
Geometry: inches ¢
A 62.50 F 32.00 K 12.00 P 3.25 U 15.50
B 56.12 G L 24.25 Q 22.50 \Y/ 21.50
C 164.25 H 36.17 M 56.50 R 15.50 W 39.50
D 37.00 | 8.50 N 57.00 S 8.62 X 110.50
E 95.25 J 22.75 (@) 28.00 T 63.00
Wheel Center Ht Front 10.75 Wheel Center Ht Rear 11.12
RANGE LIMIT: A =653 inches; C =168 8 inches; E =98 £5 inches; F =35 %4 inches; G = 39 %4 inches;
O = 24 14 inches; M+N/2 =56 +2 inches
Test Gross
GVWR Ratings: Mass: Ib Curb Inertial Static
Front 1691 Méront 1494 1511 Allowable 1593 Allowable
Back 1559 M ear 905 922 Range 1013 Range =
Total 3250 Motal 2399 2438 2420 55 Ib 2606 2585+551b
Mass Distribution:
b LF: 786 RF: 725 LR: 460 RR: 467

Figure C1. Vehicle Properties for Test No. 406719-1.
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Table C1. Exterior Crush Measurements for Test No. 406719-1.

Date: 2009-08-07 Test No.: 460719-1 VIN No.: KNADC123126132882

Year: 2002 Make: Kia Model: Rio

VEHICLE CRUSH MEASUREMENT SHEET!
Complete When Applicable

End Damage Side Damage
Undeformed end width Bowing: B1 X1
Corner shift: Al B2 X2
A2
End shift at frame (CDC) Bowing constant
(check one) X1+ X2
<4 inches T -
>4 inches

Note: Measure C; to Cg from Driver to Passenger side in Front or Rear impacts — Rear to Front in Side Impacts.

Direct Damage

Specific
Impact Plane* of Width** Max*** Field G Gz G G G Cs D
Number C-Measurements (CDC) Crush L**
1 Front plane at bumper ht 15 41 40 41 36 32 24 19 12 0
2 Side plane above bump 15 16 43 3 4 6.5 9.25 12 16 +35

Measurements recorded

in inches

'Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at
beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual
C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.

Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g.,
side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.
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Table C2. Occupant Compartment Measurements for Test No. 460719-1.

Date: 2009-08-07 Test No.: 460719-1 VIN No.: KNADC123126132882
Year: 2002 Make: Kia Model: Rio
7
— OCCUPANT COMPARTMENT
q ) DEFORMATION MEASUREMENT
Before After
G (inches) (inches)
il = Al 67.25 57.00
e A2 64.50 55.75
A3 67.50 61.00
B1 39.50 44.00
B1, B2, B3, B4, B5, B6 B2 35.50 39.50
Z F B3 39.12 44.75
[ &AL B4 34.88 36.75
C1,C2,&CB | B5 35.12 36.75
@ — B6 34.88 35.50
c1 26.62 13.00
c2 e
c3 26.25 17.25
‘ D1 10.25 13.75
BL B2 B3 gz 9.12 8.75
E1&E2
% E1 49.44 49.00
>, E2 51.00 49.00
F 49.00 45.00
G 49.00 53.00
H 37.00 30.50
| 37.00 32.00
J* 50.25 44.25

*Lateral area across the cab from
driver’s side kickpanel to passenger’s side kickpanel.
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Date: 2009-08-14 Test No.: 460719-2 VIN No.: 3D7HA18N22G161086
Year. 2002 Make: Dodge Model: Ram 1500 Quad-Cab
Tire Size: 245/70R17 Tire Inflation Pressure: 44 psi
Tread Type: Highway Odometer: 98140
Note any damage to the vehicle prior to test:
0 X
® Denotes accelerometer location.
NOTES: N !
M Wi — 2 | * whesN
Engine Type: V-8 A \ T
Engine CID: 4.7 Liter [p— B = l
Transmission Type: e e o
X Auto or Manual N
FWD x RWD 4WD .
Optional Equipment: B .
T — ] -
Dummy Data: O 3 ‘ A ;FL
Type: No Dummy ‘ i S K
Mass: f f
Seat Position: 4 M ear
D —
Geometry: inches
A 77.00 F 39.00 K 20.50 P 3.00 U 27.50
B 73.25 G 28.06 L 28.75 Q 29.50 Y, 33.00
C 227.00 H 62.36 M 68.25 R 18.50 w 59.50
D 47.50 I 13.50 N 67.25 S 14.25 X 140.50
E 140.50 J 26.00 0] 44.75 T 75.50
Wheel Center Ht Front 14.12 Wheel Well Clearance (FR) 6.12 Frame Ht (FR) 16.62
Wheel Center Ht Rear 14.25 Wheel Well Clearance (RR) 11.25 Frame Ht (RR) 24.25

RANGE LIMIT: A=78 +2 inches; C=237 +13 inches; E=148 £12 inches; F=39 +3 inches; G => 28 inches; H =63 +4 inches;

0=43 %4 inches; M+N/2=67 £1.5 inches

Test
GVWR Ratings: Mass: Ib Curb Inertial
Front 3650 Miront 2713 2784  Allowable
Back 3900 Miear 2046 2222  Range
Total 6650 M+otal 4759 5006 5000 +1101b
Mass Distribution:
b LF: 1411 RF: 1373 LR: 1071

Figure C2. Vehicle Properties for Test No. 460719-2.
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Table C3. Exterior Crush Measurements for Test No. 460719-2.

Date: = 2009-08-14 Test No.: 460719-2 VIN No.: 3D7HA18N22G161086

Year: 2002 Make: Dodge Model: Ram 1500

VEHICLE CRUSH MEASUREMENT SHEET!
Complete When Applicable

End Damage Side Damage
Undeformed end width Bowing: Bl X1
Corner shift: Al B2 X2
A2
End shift at frame (CDC) Bowing constant
(check one) X1+ X2
<4 inches T N
> 4 inches

Note: Measure C; to Cs from Driver to Passenger side in Front or Rear impacts — Rear to Front in Side Impacts.

Direct Damage

Specific C c c c c C +
Impact Plane* of Width** Max*** Field ! ? } ¢ ’ ¥ D
Number C-Measurements (CDC) Crush L**

Front plane 20

Side plane 18

Measurements recorded

in  inches

'Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at
beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual
C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.

Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g.,
side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.
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Table C4. Occupant Compartment Measurements for Test No. 460719-2.

Date:  2009-08-14 TestNo.: 460719-2 VIN No.: 3D7HA18N22G161086
Year. 2002 Make: Dodge Model: Ram 1500
OCCUPANT COMPARTMENT
— DEFORMATION MEASUREMENT
ZY L / Before After
\ (inches ) (inches )
N S Al 64.50 64.25
G A2 64.25 63.50
D a3 65.25 63.25
Bl 44.50 48.75
B2 39.38 71.69
B3 45.25 47.25
B4 42.18 43.31
B5 42.50 43.44
B6 42.19 38.50
| Cc1 2950 e
cz2 e e
C3 27.25 26.00
D1 1275 e
D2 2.62 N/A
D3 11.62 14.75
( 525 El 62.50 N/A
B1,4 | E2 64.75 N/A
| R E3 64.50 N/A
‘ E4 64.12 62.38
— F 60.00 59.00
G 60.00 57.00
H 39.75 N/A
. I 39.75 37.25
dl;slteerr’ilseiltrjeeak?cclzgzietrteocs‘;sfsrgrrlger’s side kickpanel. J* 24.56 16.25
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Date: 2009-08-21 Test No.: 460719-3 VIN No.: 1K7HA18NX3S140902
Year. 2003 Make: Dodge Model: Ram 1500 Quad-Cab
Tire Size: 245/70R17 Tire Inflation Pressure: 35 psi
Tread Type: Highway Odometer: 177426
Note any damage to the vehicle prior to test:
0 X
® Denotes accelerometer location.
NOTES: N !
M Wi — 2 | * whesN
Engine Type: V8 A \ T
Engine CID: 4.7 liger [p— B = l
Transmission Type: e e o
X Auto or Manual N
FWD x RWD 4WD .
Optional Equipment: B .
T — ] -
Dummy Data: O 3 ‘ A ;FL
Type: No dummy ‘ i S K3
Mass: f f
Seat Position: 4 M ear
D —
Geometry: inches
A _ 700  F _ 300 K _ 2050 P 3.00 U 27.50
B 73.25 G 28.02 L 28.75 Q 29.50 Y, 33.00
C 227.00 H 62.98 M 68.25 R 18.50 w 59.50
D 47.50 I 13.50 N 67.25 S 14.25 X 140.50
E 140.50 J 26.00 0] 44.75 T 75.50
Wheel Center Ht Front 14.12 Wheel Well Clearance (FR) 6.12 Frame Ht (FR) 16.62
Wheel Center Ht Rear 14.25 Wheel Well Clearance (RR) 11.25 Frame Ht (RR) 24.24
RANGE LIMIT: A=78 £2 inches; C=237 13 inches; E=148 +12 inches; F=39 %3 inches; G => 28 inches; H = 63 %4 inches;
0=43 %4 inches; M+N/2=67 £1.5 inches
Test Gross
GVWR Ratings: Mass: Ib Curb Inertial Static
Front 3650 Mront 2780 2769  Allowable Allowable
Back 6900 Mrear 1989 2250 Range Range
Total 6650 Motal 4769 5019 5000 +1101b 5000 +110 Ib
Mass Distribution:
b LF: 1398 RF: 1371 LR: 1113 RR: 1137

Figure C3. Vehicle Properties for Test No. 460719-3.
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Table C5. Exterior Crush Measurements for Test No. 460719-3.

Date: 2009-08-21 Test No.: 460719-3 VIN No.: 1K7HA18NX3S5140902

Year. 2003 Make: Dodge Model: Ram 1500 Quad-Cab

VEHICLE CRUSH MEASUREMENT SHEET!
Complete When Applicable

End Damage Side Damage
Undeformed end width Bowing: Bl X1
Corner shift: Al B2 X2
A2
End shift at frame (CDC) Bowing constant
(check one) X1+ X2
<4 inches T N
> 4 inches

Note: Measure C; to Cs from Driver to Passenger side in Front or Rear impacts — Rear to Front in Side Impacts.

Direct Damage

Specific
Impact Plane* of Width** Max*** Field G Gz G G G Cs D
Number C-Measurements (CDC) Crush L**
1 Front plane at bumper ht 19 18 62 12 5.5 4 5.5 5.5 19 0
2 Side plane at bumper ht 19 13 21 | 6.25 9 11| 115 12 13 +87

Measurements recorded

in  inches

'Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at
beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual
C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc.

Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g.,
side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.
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Table C6. Occupant Compartment Measurements for Test No. 460719-3.

Date: 2009-08-21 Test No.: 460719-3 VIN No.: 1K7HA18NX3S140902
Year. 2003 Make: Dodge Model: Ram 1500 Quad-Cab
OCCUPANT COMPARTMENT

] = DEFORMATION MEASUREMENT

— —

ﬁ Before After
\ (inches) (inches)

1 S Al 64.44 64.44
6 A2 64.50 64.50
L U a3 65.12 65.12

B1 45.25 45.25

B2 39.25 39.25

B3 45.50 45.50

B4 52.25 52.25

B5 42.75 42.75

B6 42.75 42.75

| C1 29.75 29.75

C2 e

C3 27.75 27.75

D1 12.75 12.75

D2 2.50 2.50

D3 11.62 11.62

( 525 E1l 62.50 62.50
B1,4 | E2 64.50 64.50
| Bl E3 64.31 64.31
E4 64.00 64.00

= = F 59.50 59.50
G 59.50 59.50

H 39.00 39.00

) | 39.00 39.00
dl;slfrr’zlseil(;iak?cCI:SZf1;Ihfo(:;;sfsrgr%er’s side kickpanel. J* 62.12 62.12
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APPENDIX D. SEQUENTIAL PHOTOGRAPHS

0.000 s

0.049 s

0.098 s

0.147 s

Figure D1. Sequential Photographs for Test No. 460719-1
(Overhead and Frontal Views).
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0.196 s

0.246 s

0.295 s

0.344 s

Figure D1. Sequential Photographs for Test No. 460719-1
(Overhead and Frontal Views) (Continued).
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L —
0.295s

\
€

= —
0.147 s 0.344 s
Figure D2. Sequential Photographs for Test No. 460719-1
(Rear View).
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0.000 s

0.049 s

0.098 s

0.147 s

Figure D3. Sequential Photographs for Test 460719-2
(Overhead and Frontal Views).
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0.196 s

0.246 s

0.295 s

0.344 s

Figure D3. Sequential Photographs for Test 460719-2
(Overhead and Frontal Views) (Continued).
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0.147 s 0.344 s
Figure D4. Sequential Photographs for Test 460719-2
(Rear View).
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- » - 0.000s

0.049 s

o 1 0.098 s

0.148 s

Figure D5. Sequential Photographs for Test No. 460719-3
(Overhead and Frontal Views).
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0.197 s

0.246 s

0.295 s

0.344 s

Figure D5. Sequential Photographs for Test No. 460719-3
(Overhead and Frontal Views) (Continued).
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v . i K

e e . a. A 208 Bl e vl oo 0
0.148 s 0.344 s
Figure D6. Sequential Photographs for Test No. 460719-3
(Rear View).
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APPENDIX E. VEHICLE ANGULAR DISPLACEMENTS
AND ACCELERATIONS
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APPENDIX F. DETAILS OF THE HIGH-SPEED
_ THRIE BEAM GUARDRAIL
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APPENDIX G. SOIL STRENGTH DOCUMENTATION
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