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CHAPTER 1. INTRODUCTION

In spite of mounting evidence in recent years that asphalt binders oxidize in pavements
and that this oxidation is harmful to pavement durability, implementation of this evidence to
design practice has been slow. Three likely hypothetical arguments for the lack of
implementation are: that below the immediate surface, temperatures are moderated enough so as
to greatly reduce oxidation, that oxygen transport into the pavement below the surface is
insignificant, and that binder hardening is self limiting due to accompanying decreases in oxygen
diffusivity with oxidation and/or because of depletion of reactive components.

In fact, all three of these hypotheses have been incorporated into the mechanistic-
empirical design guide (MEPDG) resulting in the assumptions that: 1) binders do not oxidize
below about the top inch of pavement, and 2) binder hardening in that top inch advances only to
a maximum, limiting viscosity (AASHTO, 2004). Furthermore, concerning the impact of binder
oxidation on mixture (pavement) performance, the design guide assumes that binder oxidation
does not fundamentally affect the fatigue decline of mixtures as a function of loading cycles.

However, it has indeed become clear that the assumptions of the design guide are
incorrect. The next section of this chapter details recent literature findings that support the notion
that binder oxidation occurs in pavements and significantly below just the top inch. Reports that
this oxidation has a negative impact on mixture and thus pavement fatigue also are cited.
Furthermore, the notion of a limiting viscosity has not been born out, either by laboratory studies
of binder oxidation or by aged binders recovered from aged pavements. In short, all of the
assumptions of the design guide with respect to binder oxidation and hardening in pavements and
its impact on pavement performance, appear to be incorrect.

With an improved appreciation of the extent of binder oxidation in pavements and its
importance to pavement durability, a better quantitative understanding of this phenomenon is
considered essential to cost-effective pavement design and maintenance planning. This improved
understanding includes a better knowledge of the progression of binder oxidation in pavements
through pavement milestones such as: hot mix plant processing, placement, the early (fast-rate)
period oxidation, and the later (constant-rate) period oxidation. Fast-rate and constant-rate period
oxidation periods refer to binder oxidation kinetics at constant temperature and not to what
actually occurs in pavements at non-constant temperature. The next section of this chapter
provides more background detail on the reaction kinetics. Also needed is an ability to predict
how each binder it will respond to pavement service as it moves through these milestones. To
achieve this understanding, further development of binder tests, coupled with calibration with
field binder aging data, were essential.

For example, while the rolling thin-film oven test does a good job of quantifying the
extent of binder oxidation and hardening that takes place in the hot-mix process, tests that go
beyond this point are problematic. The pressure aging vessel procedure oxidizes binders to a
significantly more extended level over a 20-hour period; however, how this level corresponds to
in-service aging time has been unknown and variable, depending on climate and binder kinetics,
plus mixture parameters such as air voids. In addition, how binder hardening in service affects
performance has not been adequately quantified. Some mixtures show less decline of mixture



fatigue resistance in response to binder oxidative hardening than others, and there is little
understanding about why. Binders can easily be aged to a particular level in the laboratory. The
questions have always been “How does such aging correspond to in-service aging?”’ and “What
is its relevance to pavement performance?”” Thus, calibration of laboratory aging to field aging
has been essential.

The effectiveness of maintenance treatments is another issue that has not been well
understood, and as such, the optimal time of placement has been unknown. A prime question to
be addressed was how well treatment binders prevent oxidation by sealing the surface of the
pavement. Actually, this is a two-part question. First, do treatments seal the surface, and second,
if they do, is this surface sealing sufficient to prevent oxidation. It may well be that oxygen can
still find a way to reach the binder from below the surface.

This chapter provides further background perspective on the issues introduced above:
binder oxidation kinetics and hardening in both controlled laboratory conditions and in
pavements; the effect of binder hardening on mixture fatigue resistance; and maintenance
treatments. Also, two surveys of Texas Department of Transportation (TxDOT) districts
regarding their use of maintenance treatments are summarized.

BACKGROUND PERSPECTIVE FOR THIS PROJECT

As outlined above, although evidence that binder oxidation in pavements occurs, that it
occurs beyond the near-surface of the pavement, that it is ongoing throughout the life of the
pavement, and that it has a very profound effect on pavement durability is mounting and gaining
acceptance, important implementation questions remain. Understanding how best to design
mixtures in a way that takes binder oxidation into account to achieve maximum pavement
durability is a very complex but important issue. A second, related issue is the use of
maintenance treatments to impede or reduce binder oxidation in pavements.

This TxDOT project (Project 0-6009) was designed to provide information on these
issues so as to achieve significant improvements to pavement durability at significant life-cycle
cost savings to TxDOT. The discussion that follows presents a background and literature survey
of key issues that impact the major concern of this project, which is long-term pavement
performance. Of specific interest are binder oxidation and hardening in pavements, their impact
on pavement design and performance, and maintenance treatments.

Binder Oxidation and Hardening

Important questions concerning binder oxidation and hardening have been studied over
the years:

e What are the reactions involved in binder oxidation?

e How fast does binder oxidation occur in controlled laboratory conditions and in
pavements?

e What is the impact of oxidation on binder physical properties?

e What is the mixture response in terms of fatigue resistance to binder oxidation?



Recent work on the first three questions prior to this project is considered further in this section,
and the last question is addressed in the next section.

Oxidation Chemistry

Perhaps the most fundamental issue impacting binder hardening in pavements is the basic
binder oxidation chemistry. This issue has been explored rather extensively in significant reports
by Lee and Huang (1973), Lau et al. (1992), Petersen et al. (1993) and others. A general
observation of these reports is that carbonyl compounds form as a result of oxidation and that,
while the exact nature of the carbonyl compounds and the formation rates as a function of
temperature and oxygen partial pressure may vary from asphalt to asphalt, the common factor is
that for each asphalt the carbonyl content can be used as a surrogate for total oxidative changes.
Qualitatively the carbonyl growth varies linearly with total oxygen increase, even though the
quantitative dependence varies from asphalt to asphalt (Liu et al., 1998b).

Oxidation Kinetics — the Constant-Rate Period

A second aspect of binder oxidation is the oxidation kinetics, studied and reported by
Petersen et al. (1993), Liu et al. (1996), and others. The basic carbonyl reaction rate can
generally be described using an Arrhenius expression (Eq. 1-1) for temperature variation and
pressure dependence:

dCA — rCA — AP(Ze—E/RT

dt (1-1)

where A is the frequency (pre-exponential) factor, P is the pressure, a is the reaction order with
respect to oxygen pressure, E is the activation energy, R is the gas constant, and 7 is the absolute
temperature. Values of 4, E, and a are very asphalt dependent, though 4 and E are generally
correlated (Liu et al., 1996). Recent studies by Domke et al. (2000) show that the activation
energy, E, is also pressure dependent for many asphalts, and this dependence is a function of
asphaltenes.

Lau et al. (1992) reported results for 10 asphalts in which they determined values for E,
a, and 4. In general, the reaction rates of asphalt binders undergo an initial rapid rate period that
declines over time until a constant rate period is reached and the reaction rate given in the
equation above describes this constant rate period. The early time, faster rate period has been
variously described as the “initial jump” by Lau et al. (1992) or the “initial spurt” by Petersen et
al. (1993). The point is that while the parameters of the oxidation rates vary from one asphalt to
another, the basic form of the reaction rates are essentially the same. Kinetic parameters have
been determined for a number of different asphalts including the SHRP core asphalts and others.
Glover et al. (2005) report many of these results.



Oxidative Hardening

A third facet of binder oxidation is the impact that the oxidation has on the binder’s
physical properties. Fundamentally, the oxidation of the binder creates carbonyl compounds,
primarily by oxidizing aromatic compounds in the naphthene aromatic, polar aromatic, and
asphaltene fractions. These more polar carbonyl groups result in stronger associations between
asphalt components, which increase the asphaltene fraction, and in turn lead to a stiffening of the
binder in both its elastic modulus and its viscosity. Results have been reported in terms of the
low shear rate limiting viscosity, and it has been observed that this viscosity increases in direct
proportion to the carbonyl band infrared carbonyl growth (Martin et al., 1990). The
proportionality factor has been termed the hardening susceptibility (Lau et al., 1992; Domke et
al., 1999).

More recently, a DSR function (G'/(n'/G") measured at 44.7°C, 10 rad/s and time-
temperature shifted to 15°C 0.005 rad/s) has been defined that includes both elastic and viscous
properties and at more mid-range test conditions (frequency and/or temperature) than are
represented by the low shear rate limiting viscosity (which, by definition, is at very low
frequency or, equivalently, at high temperatures). This DSR function also increases linearly with
carbonyl content, and the slope of this relationship is termed the DSR function hardening
susceptibility. Glover et al. (2005) report the DSR function hardening susceptibility for a number
of asphalts.

For either of these hardening functions, one can develop kinetics equations, just as can be
done for carbonyl formation kinetics in that the hardening rate can be expressed in an Arrhenius
rate form, thereby bypassing the carbonyl kinetics. Equivalently, the hardening susceptibility can
be multiplied by the oxidation reaction rate to obtain the hardening rate, again, after the initial
jump period has been passed, with the reaction rate constant at a fixed temperature.

Oxidation Kinetics — a Broader View

The oxidation kinetics discussion above was restricted to the constant-rate period of
binder oxidation. Binder oxidation is somewhat more complicated, involving a fast but declining
rate period leading up to the constant-rate period. Eq. 1-2 includes the various mechanisms by
which hardening occurs, in the absence of oxygen diffusion resistance:

Inn, =Inn, +A(lnn,,) + A(nn ;) +7, -1 (1-2)

where 7, is the original viscosity, #;, is the viscosity at time #, A(In #,,) is the hardening in the hot
mix plant simulated by an oven test, A(In #) is the hardening that occurs in an early rapid “initial
jump” stage, and r,, is the subsequent constant rate of hardening. Figure 1 shows this sequence in
which 7,, is the viscosity after the oven test and #; is the viscosity after the initial jump defined
by the intercept of the constant-rate line. Region A will be defined as the time for the initial
jump, and region B is a constant-rate region. Eq. 1-2 is valid for time long enough to carry the
process past region A. If there is diffusion resistance, this rate will decline as the asphalt hardens.
Eq. 1-2 and Figure 1 are expressed in terms of zero-shear viscosity 7, * but hardening in terms of



other properties (such as the dynamic shear rheometer, [DSR] function G'/(n'/G’), discussed
above and in the next section, follow the same hardening kinetics.

log (Viscosity)

Time
Figure 1. Typical Hardening Response of an
Unmodified Asphalt Binder to Oxidation.

Asphalt oxidative hardening is almost entirely caused by asphaltene formation (Lin,
1995; Lin et al., 1995, 1996, 1998), and the rate can be expressed as follows:

. Jdlng _Jlnp JAS JCA
"6t OAS OCA Ot (1-3)

where 0 In #/0AS is the impact of asphaltene (AS) increase on increasing viscosity and is
affected by asphaltene size, which in turn is affected by maltene solvent power; 0AS/OCA is the
extent to which increases in carbonyl area (CA) produce asphaltenes; and 0 CA/0¢ is the rate of
CA formation. The increase of CA correlates linearly with oxidation (Liu et al., 1998b). Eq. 1-4
can be simplified as:

= HS 7., (1-4)

where HS is the combination of the first two terms in Eq. 1-3. This combination is remarkably
constant as oxidation proceeds and is independent of oxidation temperature below about 100
110°C. It has a characteristic value for each asphalt except that it is pressure dependent. This
term is called the hardening susceptibility (Lau et al. 1992; Domke, 1999). The rate of carbonyl
formation is given above as Eq. 1-1 (Lin et al., 1996; Lin et al., 1998; Liu et al., 1997).

The following equation summarizes these results where [P] or [T,P] or [P] indicates that
the property is a function of temperature or temperature and pressure, or just pressure:

Inn, =1nn, + Ay )P+ re, 7P} HS[P) ¢ s



Because only one term is multiplied by time, the relative rankings of asphalts from any
accelerated aging procedure will change with the length of the test as well as with the
temperature and pressure. Note that particularly relevant hardening rate parameters are the initial
Jjump (7;), the hardening susceptibility (HS), and the oxidation rate, rca.

The Fast-Rate Reaction Period

Figure 1 showed binder reaction kinetics, in terms of binder rheology, separated into an
initial fast-rate (initial jump) period and a second constant-rate period. Accurately representing
binder oxidation in pavements requires understanding the relative amount of time spent by the
binder in each of these different periods during the course of a pavement’s life. The following
discussion addresses literature reports of these two reaction periods and the fast-rate period
reaction kinetics.

The Fast-Rate Period in Pavements. While the reaction kinetics of binder oxidation
during the constant-rate period (described above) have been studied extensively, the early-time,
fast-rate period reaction kinetics has been studied much less, providing a source of error in
comparisons of field and laboratory binder oxidative hardening. Though in the laboratory we can
assure that the fast-rate period of oxidation has been passed, it is more difficult to tell when it
ends in the field due to the lower field temperatures and the cyclical nature of temperatures in
pavements. Using constant-rate period kinetics to assess field aging without knowing if the fast-
rate period has been passed may contribute considerable error and uncertainty to the results and
conclusions. Thus, an improved understanding of oxidation kinetics during the fast-rate period is
important.

Recovered binders from field cores from Texas and Minnesota (MnROAD) were
measured for rheological properties and then aged further in a 60°C environmental room for up
to eight months (Woo et al., 2007). Figure 2 shows the stiffness (in the form of the DSR
function) of each of the extracted and recovered binders (zero months ER aging) plus increases
that occur with further ER aging (2, 4, 6, and 8-month ER aging). If the binder, as recovered
from the core, together with its subsequently-aged samples all form a single straight line, then
they are all past the fast-rate (initial jump) period. However, if the binder, as recovered from the
core, lies below a straight line formed by its subsequently-aged samples, then the core sample
was not past the initial jump. From the figure, it seems clear that the binder recovered from the
Texas pavements had passed the fast-rate period after two to three years aging in the pavement,
whereas the MnROAD AC 120/150 binder was still within this period, even after 12 years of
field aging. From these data, it seems that the fast-rate period of aging is not as important for
Texas pavements, relative to long term pavement aging, as it is for Minnesota.
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Fast-Rate Period Reaction Kinetics. Dickinson and Nicholas (1949) investigated
oxygen absorption by tar oils. Two parallel reactions were suggested, one a first order reaction
with respect to phenol and the other a zero order reaction with respect to aromatics. The
combined effect of these two reactions produced an early time fast (but declining) rate period of
oxygen absorption, followed by a later-time constant-rate period after the first reaction
terminated due to depletion of phenol, the limiting reactant. The reaction kinetics model they
proposed for tar oil was:

M=k-t+M,-[1-exp(k,-1)] (1-6)

where M is total amount of oxygen absorbed by the tar oil and & and &, are reaction constants for
the constant-rate and fast-rate reactions, respectively. The constant-rate reaction constant £ is

temperature and oxygen pressure dependent according to k= A-P“ -exp(-E,/RT), and k, is
independent of temperature and pressure for tar oil. M is the maximum oxygen absorption due
to the first reaction, which depends linearly on oxygen pressure, M, « P.

A similar model was observed for oxygen absorption by asphalt. Van Oort (1956)
measured oxygen absorption by seven-micron thin films of asphalt at 22°C and atmospheric
pressure. Seven different asphalts were aged for 50 weeks. From the oxygen absorption versus
time relation, a fast increase of oxygen absorption was observed during the first 10 weeks;
however, the rate of absorption decreased until a constant rate was reached after about 30 to 40
weeks.



Viscosity changes with time showed a trend similar to oxygen absorption but had the
apparent advantage of being able to be determined more precisely. This observation suggests that
viscosity change rather than oxygen absorption might be a better indicator of the beginning of
constant rate period, as viscosity is closely related to binder performance. In addition, viscosity
change is mainly due to oxidation which leads to carbonyl area growth, while oxygen absorption
not only leads to the formation of CA but also leads to products that have no apparent effect on
viscosity. Thus, the study of CA and viscosity would seem to be the better variables for the
understanding of fast-rate aging period.

Despite the obvious similarity of kinetics between asphalt and tar oil, three possible
differences should be explored. First, it is quite possible that k, for asphalts is temperature and

pressure dependent. Second, M> may be a non-linear function of oxygen pressure. Finally, neat
binders have a finite (non-zero) initial viscosity or carbonyl area.

The Importance of Oxidative Hardening to Mixture Performance
Impact of Binder Oxidation on Mixture Fatigue

The above discussion has addressed the issue of binder oxidation reaction and kinetics
and the resulting binder hardening. A fourth issue regarding binder oxidation is “So what?”’
Assuming binders oxidize in pavements, what is the importance of this oxidation to pavement
performance? For example, to what extent is the fatigue life of a pavement impacted by binder
oxidation? Walubita et al. (2005a, 2005b, 2006a and 2006b, 2006¢) recently addressed this
question. The results indicate that binder oxidation in pavements can have a very significant
negative impact on pavement fatigue life (fatigue resistance). While the mechanism of this
fatigue life decline with oxidation is not yet well understood, early data indicate that it is a very
important phenomenon and that there can be significant differences between different mixture
designs as shown in Figure 3. The reasons for these differences need to be understood.
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Specific results from this recent multi-year research project that directly impact the
experimental plan presented later in this project report in Chapter 2 include:

e Fatigue life decreases significantly primarily as a result of aging due to binder oxidation
and its subsequent effect on mixture properties.

e The decrease in fatigue life is a function of more than just the binder stiffening due to
oxidative aging. Thus mixture parameters that may be controlled during the mix design
process are important to ensure adequate fatigue resistance.

¢ Different mixtures show unique declines in fatigue life due to aging.

e The CMSE approach is valid for understanding the different mixture responses to aging.

e Two different methods show promise in capturing the effects of aging on fatigue life.
One method is more empirical but practical, and the second facilitates greater
understanding of the aging mechanism.

So, the decline of mixture fatigue resistance under controlled-strain conditions is an
important phenomenon that varies from mixture to mixture. Unknown, however, are the
quantitative contributions of each of the various mixture parameters (air voids, binder content,
binder composition, aggregate type, and aggregate gradation) to the differences in decline of
mixture fatigue life with binder oxidation. Quantitative assessment of these differences is
essential. Also, assessing pavement durability as it is influenced by binder oxidation and traffic
loading, and in light of laboratory conclusions on the effect of binder aging on mixture fatigue
resistance, will require monitoring pavement fatigue resistance over time.

Oxidation in Pavements

The final issue of binder oxidation in pavements is the question of whether binders
oxidize in pavements at all in the face of presumed reduced temperatures and restricted oxygen
transport to the binder below the surface. The work discussed above showed that binders harden
as a result of oxidation and that the kinetics of oxidation and the hardening that results from
oxidation are quite well known (or can be measured) and can be described quantitatively in terms
of oxidation temperature and pressure. The work discussed above also indicates that if binders
oxidize in pavements, the impact on pavement fatigue performance can be profound. All of these
factors, however, are moot if binder oxidization does not occur in pavements, and the question of
whether this oxidation occurs has no clear answer in the literature. In fact, a very well cited and
accepted literature report concludes that binder oxidation occurs only in the top inch of the
pavement and that below the top inch the binder is left virtually unaffected by years of use and
years of environmental exposure (Coons and Wright, 1968). Their conclusion is formalized in a
recently developed mechanistic empirical pavement design guide (AASHTO, 2004) that assumes
in its calculation that binders oxidize only in the top inch. Parenthetically, calculations performed
using the MEPDG under TxDOT Project 0-4468 suggest that binder oxidation and the
consequent increase in pavement stiffness (and the presumed decrease in deformation under load
as a result of this stiffness) actually have a positive, beneficial impact on pavement fatigue life.

Contradicting the work of Coons and Wright and the assumptions of the pavement design
guide are the extensive data reported in Glover et al. (2005) in which a large number of Texas
pavements were cored, the binder extracted and recovered, and then the sample tested to



determine binder stiffness as a function of age in the pavement. The results of this work indicate
rather strongly that in fact binders can age in pavements well below the surface and that the
hardening of binder in the pavement is virtually unabated over time. These data also are reported
in a recent paper by Al-Azri et al. (2006).

A Simple Model of Binder Oxidation in Pavements

More recent work provided significant new results on binder hardening in pavements that
relate both to modeling binder oxidation and to calibration with binders recovered from
pavements (Woo et al., 2007). The discussion of this model is presented in some detail below
because this simple model provides the basic concepts and results of more detailed models that
will be explored in this project.

The model considers the pavement to behave as a semi-infinite slab with an imposed
periodic temperature at the pavement surface. The periodicity occurs daily because of daytime
and nighttime temperatures swings, and yearly due to seasonal variations of temperature. Such a
model is used extensively in geology to estimate the temperature of the earth’s crust as a function
of time and depth, and it is now considered whether such a model is applicable for hot mix
asphalt (HMA) pavements (U.S. Geological Survey, 2006). Such a model of temperature in the
pavement as a function of time and depth below the surface follows the well-known thermal
diffusion model given by Eq. 1-7 in which Q(x,t) = (T(X,t) - T4y,) is the temperature deviation
from (oscillation about) an average temperature, ¢ is time, and x is depth below the surface into
the pavement.

)

K==
a  ox (1-7)

In this equation, x is the thermal diffusivity, which is equal to &/(pC), where k is the thermal
conductivity, pis density, and C is the heat capacity of the solid material. This model assumes no
temperature variation parallel to a pavement’s surface, so it is an unsteady-state, one-dimensional
model.

It is assumed the pavement is initially at uniform temperature (7,g) and that at the
surface there is imposed a temperature oscillation (of amplitude 4, frequency @ and phase shift
). These conditions provide initial and boundary conditions according to Eq. 1-8.

[.C.:O(x,0)=0
B.C.: for x=0 and ¢ > 0, ©(0,¢)= A cos(wt —¢) (1-8)
The asymptotic, periodic solution to this problem is given by Eq. 1-9 (Carslaw and
Jaeger, 1959).
1/2
O=Ae ™" cos | wr— x[zﬁ] .y
) (1-9)
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Thus, according to this model, the temperature, after a sufficiently long period of time persists as
a periodic temperature profile that is attenuated in amplitude according to the depth below the
surface and also shifted in phase according to the depth below the surface.

Measured temperature profiles are available from SHRP program long-term pavement
performance (LTPP) site measurements and allow estimates of the thermal diffusivity
independently from both the amplitude attenuation and from the phase shift. As an example,
temperature amplitude data from Refugio, Texas (LTPP site 48-1060), provided an estimate of
thermal diffusivity of 0.010 cm?/s and the phase shift data provide an estimate of 0.0092 cm?/s.
The agreement between these two estimates is very good. Note also that the model says that the
temperatures at various depths should oscillate about the same average temperature.

Comparisons to Field Aging. Using this model for pavement temperature as a function
of time and depth, and using known asphalt binder oxidation kinetics parameters while also
assuming that the transport rate of oxygen to the binder does not limit the oxidation rate,
estimates of binder oxidation in Texas SH 21 were calculated. By neglecting the effect of oxygen
diffusion resistance we obtain an upper limit estimate of the binder oxidation rate.

The same procedure was followed for a pavement that was part of the MnROAD
controlled study. Original binder was not available, so binder oxidation kinetic para